WO2019235036A1 - 凍結真空乾燥装置及び凍結真空乾燥方法 - Google Patents

凍結真空乾燥装置及び凍結真空乾燥方法 Download PDF

Info

Publication number
WO2019235036A1
WO2019235036A1 PCT/JP2019/013493 JP2019013493W WO2019235036A1 WO 2019235036 A1 WO2019235036 A1 WO 2019235036A1 JP 2019013493 W JP2019013493 W JP 2019013493W WO 2019235036 A1 WO2019235036 A1 WO 2019235036A1
Authority
WO
WIPO (PCT)
Prior art keywords
frozen particles
freeze
vacuum drying
drying apparatus
opening end
Prior art date
Application number
PCT/JP2019/013493
Other languages
English (en)
French (fr)
Inventor
勉 西橋
美尚 中野
村上 裕彦
剛 吉元
薫樹 伊藤
卓巳 小宮
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to CN201980004028.3A priority Critical patent/CN111065874B/zh
Priority to JP2019538464A priority patent/JP6616053B1/ja
Publication of WO2019235036A1 publication Critical patent/WO2019235036A1/ja
Priority to US17/107,297 priority patent/US11112176B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
    • F26B5/065Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing the product to be freeze-dried being sprayed, dispersed or pulverised
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/001Details of apparatus, e.g. for transport, for loading or unloading manipulation, pressure feed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/12Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft
    • F26B17/16Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft the materials passing down a heated surface, e.g. fluid-heated closed ducts or other heating elements in contact with the moving stack of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/32Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
    • F26B3/34Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
    • F26B3/347Electromagnetic heating, e.g. induction heating or heating using microwave energy
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/40Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by drying or kilning; Subsequent reconstitution
    • A23L3/44Freeze-drying
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/08Granular materials

Definitions

  • the present invention relates to a freeze vacuum drying apparatus and a freeze vacuum drying method.
  • the raw material liquid is sprayed on the vacuum container, the droplets formed in the vacuum container are frozen, the frozen powder is collected on the collection tray, and heat is conducted to the collection tray for freezing.
  • Many powders are sublimated and dried. However, in this method, since heat conduction between frozen powders in a vacuum atmosphere is low, sublimation drying may take a long time.
  • an object of the present invention is to provide a freeze vacuum drying apparatus and a freeze vacuum drying method capable of realizing freeze vacuum drying and cost reduction in a short time.
  • a freeze vacuum drying apparatus includes a spraying unit, a tube unit, a heating unit, and a collection unit.
  • the spraying unit sprays the raw material liquid into the vacuum container.
  • the tube portion is non-linear, has a first opening end and a second opening end, and is formed by self-freezing a droplet formed by spraying the raw material liquid into the vacuum vessel. Frozen particles are captured from the first open end.
  • the heating unit sublimates and drys the frozen particles by heating the frozen particles moving in the tube part from the first opening end toward the second opening end by kinetic energy obtained at the time of spraying. To do.
  • the collection part is formed by the sublimation drying of the frozen particles in the pipe part, and collects the dry particles released from the second open end of the pipe part.
  • the raw material liquid is freeze vacuum dried in a short time by the heating unit in the non-linear tube portion, and the dry particles are collected in the collection unit.
  • the apparatus becomes small, a large exhaust mechanism is not required, and cost reduction is realized.
  • the tube part has a turning shaft in a direction from the spraying part to the collecting part, and can be turned spirally between the spraying part and the collecting part.
  • the raw material liquid is freeze-dried in a short time by the heating unit in the spiral tube, and the dried particles are collected in the collection unit.
  • the tube portion In the freeze vacuum drying apparatus, the tube portion generates a gas generated by sublimation drying while the frozen particles move in the tube portion between the first opening end and the second opening end. You may have at least one opening part which can discharge
  • the heating unit may include a heating mechanism that heats the frozen particles at a high frequency.
  • a freeze vacuum drying apparatus the ice part of the frozen particles absorbs high frequency, and the frozen particles are efficiently sublimated and dried.
  • the heating unit may include a heating mechanism that heats the frozen particles by thermal radiation. According to such a freeze vacuum drying apparatus, the ice part of the frozen particles is heated by thermal radiation, and the frozen particles are efficiently sublimated and dried.
  • the tube portion may be made of a gas permeable resin. According to such a freeze vacuum drying apparatus, the dried gas is efficiently discharged out of the pipe portion.
  • the heating unit may include a plurality of units, and each of the plurality of units may independently heat the frozen particles. According to such a freeze vacuum drying apparatus, the electric power supplied from the heating part to the pipe part can be changed independently according to the position of the pipe part.
  • the freeze-drying apparatus may further include a transport mechanism capable of exchanging the collection unit with another collection unit. According to such a freeze vacuum drying apparatus, even if dry particles are collected in one collection unit, they are replaced with another collection unit, so that a large amount of dry particles can be obtained with one apparatus. .
  • the raw material liquid is sprayed into the vacuum container.
  • a non-linear tube portion having a first opening end and a second opening end is used, and frozen particles formed by self-freezing droplets formed by spraying the raw material liquid into the vacuum vessel Captured from the first open end.
  • the frozen particles that move in the tube portion from the first opening end toward the second opening end are heated in the tube portion by the kinetic energy obtained during spraying, so that the frozen particles are sublimated and dried.
  • the frozen particles are formed by sublimation drying in the tube portion, and the dry particles released from the second open end of the tube portion are collected.
  • the raw material liquid is freeze-dried in a short time by the heating part in the non-linear tube part, and the dried particles are collected in the collecting part.
  • the apparatus becomes small, a large exhaust mechanism is not required, and cost reduction is realized.
  • FIG. 1 shows the relationship between the moving time of frozen particles (horizontal axis) and the temperature of frozen particles (left vertical axis), and the relationship between the moving time of frozen particles and the weight of frozen particles (right vertical axis).
  • FIG. (B) shows the relationship between the moving time of the frozen particles (horizontal axis) and the velocity of the frozen particles (left vertical axis), and the relationship between the moving time of the frozen particles and the number of rotations of the frozen particles (right vertical axis).
  • FIG. It is a schematic diagram which shows the modification 1 of the freeze vacuum drying apparatus which concerns on this embodiment. It is a typical side view which shows the modification 2 of the freeze vacuum drying apparatus which concerns on this embodiment. It is a typical side view which shows the modification 3 of the freeze vacuum drying apparatus which concerns on this embodiment.
  • FIG. 1 is a schematic side view showing a freeze vacuum drying apparatus according to this embodiment.
  • the vertical direction of the freeze vacuum drying apparatus 100 is the Z-axis direction
  • the horizontal direction is the X-axis direction
  • the front-rear direction is the Y-axis direction.
  • a freeze vacuum drying apparatus 100 shown in FIG. 1 includes a vacuum vessel 10, a spray unit 20, a tube unit 30 ⁇ / b> A, a heating unit 40, a collection unit 50, a cooling trap 60, an exhaust mechanism 70, and a raw material container 201. It comprises.
  • the tube part 30 ⁇ / b> A and the heating part 40 are arranged between the spray part 20 and the collection part 50.
  • the spray unit 20 side is the upper side
  • the collection unit 50 side is the lower side.
  • the vacuum vessel 10 is maintained in a reduced pressure atmosphere of 500 Pa or less, preferably 100 Pa or less by the exhaust mechanism 70.
  • water becomes a solid (ice) or gas (water vapor) phase at a temperature of 70 K (Kelvin) or more from the phase equilibrium diagram of water. That is, the inside of the vacuum vessel 10 in this embodiment is an environment in which liquid (water) hardly exists and solid (ice) or gas (water vapor) exists.
  • the spray unit 20 includes a main body unit 21 and a nozzle unit 22.
  • the spray unit 20 sprays the raw material liquid 200 stored in the raw material container 201 as droplets 210 into the vacuum container 10.
  • the raw material liquid 200 stored in the raw material container 201 is supplied to the main body 21 via the pipe 202.
  • the raw material liquid 200 supplied to the main body portion 21 is sprayed as droplets 210 from the nozzle portion 22 into the vacuum vessel 10.
  • the hole diameter of the injection port of the nozzle part 22 is 50 ⁇ m or more and 400, for example.
  • the spray pressure is 0.3 MPa or less.
  • the raw material liquid 200 corresponds to a powdered food, a powdered beverage, a pharmaceutical or the like dispersed in a solvent such as water.
  • the distance between the nozzle part 22 and the opening end 301 (first opening end) of the pipe part 30A is at least 300 mm.
  • the droplets 210 fall in a line in the direction from the spray unit 20 toward the tube unit 30A, and self-freeze before dropping to the open end 301 of the tube unit 30A. That is, the liquid is ejected from the spray unit 20 in a columnar shape, and then changes into a row of droplets 210 due to the effect of the surface tension of the liquid, and the droplets 210 are self-frozen due to the loss of vaporization heat.
  • the droplet 210 self-freezes into frozen particles 220 at a position 300 mm below the tip of the nozzle portion 22.
  • the frozen particle 220 formed by the self-freezing of the droplet 210 falls to the open end 301 of the tube portion 30A.
  • the frozen particles 220 formed by self-freezing before the droplets 210 fall into the opening end 301 fall in a line from the spray unit 20 toward the tube unit 30A.
  • the average particle size of the frozen particles 220 is not less than 100 ⁇ m and not more than 600 ⁇ m.
  • FIG. 30 A of pipe parts are arrange
  • FIG. 30 A of pipe parts are not comprised linearly in the Z-axis direction, but are comprised nonlinearly.
  • the tube portion 30 ⁇ / b> A has a turning shaft 30 r in a direction from the spray portion 20 toward the collection portion 50, and turns spirally between the spray portion 20 and the collection portion 50.
  • 30 A of pipe parts should just be non-linear form, for example, may meander.
  • the spiral tube portion 30 ⁇ / b> A has a main body portion 310 and an opening end 301 and an opening end 302 (second opening end) at both ends of the main body portion 310.
  • the open end 301 is located immediately below the nozzle portion 22.
  • the tube portion 30 ⁇ / b> A captures the frozen particles 220 formed by the self-freezing of the droplets 210 from the open end 301.
  • the entrance near the open end 301 has a taper structure in which the inner diameter increases toward the spray portion 20. Thereby, the frozen particle 220 falling toward the opening end 301 is reliably captured in the tube portion 30A.
  • the frozen particles 220 captured in the tube portion 30A are not scattered outside the tube portion 30A by the kinetic energy obtained when the droplets 210 are sprayed, and the tube is directed from the opening end 301 toward the opening end 302. It moves in the part 30A. Further, in the present configuration in which the spray unit 20 is disposed on the upper side and the collection unit 50 is disposed on the lower side, gravity also acts on the frozen particles 220. That is, the frozen particle 220 moves in the tube portion 30A from the opening end 301 toward the opening end 302 by kinetic energy or gravity obtained when the droplet 210 is sprayed.
  • the frozen particle 220 does not fall linearly from the position of the opening end 301 to the position of the opening end 302, but bypasses the position of the opening end 301 due to the presence of the spiral main body portion 310. You will reach the position.
  • the heating unit 40 sublimates and dries the frozen particles 220 by heating the frozen particles 220 moving in the tube portion 30A from the opening end 301 toward the opening end 302 by the kinetic energy obtained during spraying.
  • the heating unit 40 has a heating mechanism that heats the frozen particles 220 with a high frequency.
  • the heating unit 40 includes an internal electrode 411, an external electrode 412, and a high frequency power supply 420.
  • the internal electrode 411 is, for example, a cylindrical mesh electrode, and is disposed inside the tube portion 30A.
  • the central axis of the internal electrode 411 coincides with the helical axis 30r of the tube portion 30A.
  • the external electrode 412 is, for example, a cylindrical mesh electrode, and is disposed outside the tube portion 30A.
  • the central axis of the external electrode 412 coincides with the helical axis 30r of the tube portion 30A.
  • the high frequency power supply 420 applies a high frequency electric field between the internal electrode 411 and the external electrode 412. For example, when a positive potential is applied to the internal electrode 411 by the high frequency power supply 420, a ground potential (or a negative potential) is applied to the external electrode 412, and when a positive potential is applied to the external electrode 412, A ground potential (or negative potential) is applied to the internal electrode 411. Since the main body part 310 of the tube part 30A is sandwiched between the internal electrode 411 and the external electrode 412, a high-frequency electric field spreads uniformly over the main body part 310.
  • the solvent of the raw material liquid 200 is water
  • 200 kHz to 13.56 MHz is selected as the frequency of the high frequency emitted from the high frequency power source 420.
  • a high-frequency electric field having such a frequency is efficiently absorbed by the ice (water crystal) of the frozen particles 220.
  • the ice part of the frozen particle 220 is selectively warmed. Therefore, in the tube portion 30A, the ice portion of the frozen particles 220 is sublimated and dried as water vapor, and dry particles 230 in which the ice is removed from the frozen particles 220 are formed in the tube portion 30A.
  • the water vapor generated in the pipe portion 30 ⁇ / b> A is released from the opening end 301 or the opening end 302 and is captured by the cooling trap 60 in the vacuum vessel 10. Further, since the internal electrode 411 and the external electrode 412 are mesh electrodes, water vapor can pass through each of the internal electrode 411 and the external electrode 412, and residence in the electrode is suppressed.
  • the cooling trap 60 is provided in the vicinity of the opening end 301, but may be disposed in the vicinity of the opening end 302. The cooling trap 60 may be disposed in the vicinity of each of the opening end 301 and the opening end 302.
  • the dry particles 230 formed in the tube portion 30A by sublimation drying are discharged from the open end 301 of the tube portion 30A due to the influence of kinetic energy or gravity of the self.
  • the dry particles 230 released from the open end 301 fall to the collection unit 50 disposed below the open end 301 and are collected by the collection unit 50.
  • the collection unit 50 includes, for example, a collection container 51 and a transport mechanism 52.
  • the transport mechanism 52 can exchange the collection container 51 positioned below the opening end 302 with another collection container 51. For example, when a predetermined amount of dry particles 230 is collected in one collection container 51, a new collection container 51 is disposed below the opening end 301 by the transport mechanism 52. The dry particles 230 are newly collected by the new collection container 51. That is, the freeze vacuum drying apparatus 100 can collect the dry particles 230 in a large amount and for a long time.
  • the material of the pipe portion 30A it is desirable to use a resin that minimizes the coefficient of friction with the contacted frozen powder. Furthermore, it is desirable to apply a gas permeable resin through which the gas (vapor) being dried can easily pass.
  • the adhesion force of the resin to the ice is about 1/10 of the adhesion force of the metal to the ice, and the frozen particles 220 are less likely to adhere to the inner wall of the tube portion 30A by using the resin tube portion 30A.
  • the adhesive force with respect to resin tends to decrease, so that the temperature becomes high. For this reason, it becomes difficult for the frozen particles 220 to adhere to the inner wall of the tube portion 30 ⁇ / b> A by heating the frozen particles 220 by the heating unit 40.
  • the frozen particles 220 are subjected to a recoil force opposite to the direction in which the water molecules are released from the water molecules, and are difficult to adhere to the inner wall of the tube portion 30A. Become. Note that vibration such as ultrasonic waves may be applied to the tube portion 30A in order to reliably suppress the attachment of the frozen particles 220 to the tube portion 30A.
  • FIG. 2A shows the relationship between the moving time of the frozen particles (horizontal axis) and the temperature of the frozen particles (left vertical axis), and the relationship between the moving time of frozen particles and the weight of the frozen particles (right vertical axis).
  • FIG. 2B shows the relationship between the movement time of the frozen particles (horizontal axis) and the velocity of the frozen particles (left vertical axis), and the relationship between the movement time of the frozen particles and the number of rotations of the frozen particles (right vertical axis).
  • the particle size of the frozen particles 220 is 300 ⁇ m
  • the helical diameter of the tube portion 30A is 0.4 m
  • the power supplied to the tube portion 30A is 38W.
  • the left end of the horizontal axis corresponds to the position of the upper end of the internal electrode 411 (or the external electrode 412).
  • the temperature of the frozen particles 220 is frozen. It rises with the movement time of the particle 220. Then, when the moving time reaches 1.3 seconds, the weight of the heating unit 40 decreases rapidly. This means that the ice portion is removed from the frozen particles 220 and the frozen particles 220 become dry particles 230, and the weight is rapidly reduced.
  • the speed of the frozen particles 220 was initially 20 m / sec, but gradually decreased with the lapse of the moving time, and 6.5 m when the weight rapidly decreased. / Sec. This is because the frozen particles 220 are subjected to a frictional load from the tube portion 30A as the frozen particles 220 move in the spiral tube portion 30A. However, even when the weight of the frozen particles 220 sharply decreases, the speed of the frozen particles 220 is still maintained at 6.5 m / sec, indicating that the frozen particles 220 do not stop inside the tube portion 30A. .
  • the moving time of the frozen particle 220 elapses, the number of times the frozen particle 220 turns is increased. This corresponds to the movement distance of the frozen particles 220 becoming longer.
  • the weight of the frozen particles 220 is rapidly reduced, that is, ten turns are required for the frozen particles 220 to become the dry particles 230.
  • the spiral diameter of the tube portion 30A is set to 0.4 m, it can be seen that the frozen particles 220 are surely changed into the dry particles 230 if the main body portion 310 of the tube portion 30A is swung 10 times or more.
  • the raw material liquid 200 is freeze-dried in the vacuum container 10, and the frozen particles are directly collected in the collection container 51 without using the pipe portion 30 ⁇ / b> A.
  • a method of drying by a heat conduction method from a supporting support is adopted.
  • 10 liters of the raw material liquid 200 (concentration: 10 vol%) is freeze-dried in the vacuum vessel 10 (pressure: 10 Pa is maintained), and after the frozen particles are collected in the collection vessel 51, the dried particles are It is known that 9 liters of gas is generated after drying for 1 hour and requires 6.4 kW of electric power.
  • freeze-drying apparatus 100 when the freeze-drying apparatus 100 is used, frozen particles having a diameter of 200 ⁇ m are sprayed at a falling speed of 20 m / second and dried in about 1 second, so that 6.3 ⁇ 10 ⁇ 7 (m 3 / It is known that the required power is about 1.6 kW.
  • the frozen particles 220 formed by self-freezing the droplets 210 sprayed into the vacuum vessel 10 are guided into the non-linear tube portion 30A to be heated. 40 is sublimated and dried in the tube portion 30A.
  • the frozen particles 220 become dry particles 230 in the tube portion 30 ⁇ / b> A, and the dry particles 230 are collected by the collection unit 50.
  • the frozen particles 220 do not fall directly on the collecting unit 50, but are detoured by the non-linear tube 30A before being collected by the collecting unit 50, It is heated by the heating unit 40 during the movement over a long distance. And as a heating method, since the high frequency electric field of the frequency band absorbed by ice is used, the frozen particle 220 is efficiently sublimated and dried. The drying time is within a few seconds. Also, the heating power can be kept low.
  • the raw material liquid 200 is freeze vacuum dried in a short time, and a large amount of dry particles 230 can be obtained by sequentially replacing the collection container 51. Further, the freeze vacuum drying apparatus 100 can be downsized and does not require a large exhaust mechanism 70. Thereby, cost reduction is realized.
  • the length of the tube portion 30A that is rotated 10 times with a spiral diameter of 0.4 m is approximately 10 m.
  • the frozen particles 220 move in the tube portion 30A during sublimation drying, so that scattering of the frozen particles 220 in the vacuum vessel 10 is suppressed. Further, since the dry particles 230 after the frozen particles 220 are dried are collected in the collection container 51, the collection container 51 is less likely to scatter from the collection container 51. Thereby, the recovery rate of the dry particles 230 is improved. For example, when frozen particles 220 are accommodated in a tray and the frozen particles 220 are dried by a heat conduction method from a support that supports the tray, the frozen particles 220 are subjected to the recoil of water vapor jumping out of the frozen particles 220 and the flow of gas. There is a possibility of scattering from the tray into the vacuum container 10.
  • FIG. 3 is a schematic diagram showing a first modification of the freeze vacuum drying apparatus according to the present embodiment.
  • FIG. 3 illustrates the tube portion 30B of the freeze vacuum drying apparatus 101 according to the first modification.
  • the configuration of the freeze vacuum drying apparatus 101 other than the tube portion 30B is the same as that of the freeze vacuum drying apparatus 100.
  • At least one opening 320 is provided between the opening end 301 and the opening end 302.
  • the opening part 320 is provided in a part of the pipe part 30B and has a first joint part 321 having an inner diameter larger than the outer diameter of the pipe part 30B.
  • the opening part 320 is provided in a part of the pipe part 30B and faces the first joint part 321.
  • the two joint portions 322 are configured to be inserted.
  • the first joint part 321 is provided downstream of the second joint part 322.
  • the opening 320 is formed by providing a gap between the first joint portion 321 and the second joint portion 322. From the opening 320, a gas (for example, water vapor) generated by sublimation drying while the frozen particle 220 moves in the tube portion 30B is released.
  • a gas for example, water vapor
  • a filter member is provided between the first joint portion 321 and the second joint portion 322 so as to release only gas (water vapor) to the outside of the tube portion 30B and not to release the frozen particles 220 to the outside of the tube portion 30B. Also good.
  • the filter member is made of, for example, a metal net or a porous material.
  • the tube portion 30B has at least one opening 320 for releasing gas to the outside of the tube portion 30B, the water vapor released from the frozen particles 220 by sublimation drying in the tube portion 30B is efficiently obtained. It is discharged out of the tube part 30B. This further shortens the drying time. Further, since the water vapor pressure in the tube portion 30B is lower than the water vapor pressure in the tube portion 30A, it is difficult to generate plasma formed by ionizing water vapor in the tube portion 30B by a high frequency electric field.
  • FIG. 4 is a schematic side view showing Modification 2 of the freeze vacuum drying apparatus according to the present embodiment.
  • the heating unit 43 has a heating mechanism that heats the frozen particles 220 by heat radiation.
  • the heating unit 43 includes an internal heater 431 and an external heater 432.
  • the tube portion 30A may be replaced with the tube portion 30B.
  • the internal heater 431 has a cylindrical shape, for example, and is disposed inside the tube portion 30A.
  • the central axis of the internal heater 431 coincides with the helical axis 30r of the pipe portion 30A.
  • the external heater 432 has, for example, a cylindrical shape and is disposed outside the tube portion 30A.
  • the central axis of the external heater 432 coincides with the spiral axis 30r of the pipe portion 30A.
  • the internal heater 431 and the external heater 432 are, for example, carbon heaters.
  • the tube portion 30A is made of glass, quartz, or the like. Thereby, the radiant heat emitted from the internal heater 431 and the external heater 432 is conducted to the inside of the pipe portion 30A.
  • the frozen particles 220 moving in the tube portion 30A are heated by radiant heat (for example, infrared rays) emitted from the internal heater 431 and the external heater 432, and the frozen particles 220 are sublimated in the tube portion 30A. dry.
  • the dry particles 230 are collected by the collection unit 50 also in the freeze vacuum drying apparatus 102.
  • FIG. 5 is a schematic side view showing Modification 3 of the freeze vacuum drying apparatus according to the present embodiment.
  • the heating unit 40 includes a plurality of units, and each of the plurality of units can independently heat the frozen particles 220.
  • the heating unit 40 includes an upper heating unit 40A and a lower heating unit 40B.
  • the plurality of units is not limited to two and may be three or more. Note that the tube portion 30A may be replaced with the tube portion 30B.
  • the upper heating unit 40A includes an upper internal electrode 411A, an upper external electrode 412A, and an upper high-frequency power source 420A.
  • the lower heating unit 40B includes a lower internal electrode 411B, a lower external electrode 412B, and a lower high-frequency power source 420B.
  • the upper heating unit 40A is separated from the lower heating unit 40B in the Z-axis direction.
  • the upper internal electrode 411A is, for example, a cylindrical mesh electrode, and is disposed inside the upper portion of the tube portion 30A.
  • the upper part is the upper half of the pipe part 30A.
  • the central axis of the upper internal electrode 411A coincides with the helical axis 30r of the tube portion 30A.
  • the upper external electrode 412A is, for example, a cylindrical mesh electrode, and is disposed outside the upper portion of the tube portion 30A.
  • the central axis of the upper external electrode 412A coincides with the helical axis 30r of the tube portion 30A.
  • the upper high frequency power supply 420A applies a high frequency electric field (200 kHz or 13.56 MHz) between the upper internal electrode 411A and the upper external electrode 412A.
  • the lower internal electrode 411B is, for example, a cylindrical mesh electrode, and is disposed inside the lower portion of the tube portion 30A.
  • the lower part is the lower half of the pipe part 30A.
  • the central axis of the lower internal electrode 411B coincides with the helical axis 30r of the tube portion 30A.
  • the lower external electrode 412B is, for example, a cylindrical mesh electrode, and is disposed outside the lower portion of the tube portion 30A.
  • the central axis of the lower external electrode 412B coincides with the helical axis 30r of the tube portion 30A.
  • the lower high frequency power supply 420B applies a high frequency electric field (200 kHz or 13.56 MHz) between the lower internal electrode 411B and the lower external electrode 412B.
  • the electric power supplied from the heating unit 40 to the tube unit 30A can be partially changed with respect to the tube unit 30A.
  • the heating power at the upper part of the pipe part 30A can be set higher than the heating temperature at the lower part of the pipe part 30A by increasing the input power by the upper heating part 40A than the lower heating part 40B.
  • the frozen particles 220 are dried with a high input power by the upper heating unit 40A, and the sublimation drying after the middle period when the ice of the frozen particles 220 has decreased. Then, the frozen particles 220 are sublimated and dried by the lower heating unit 40B with a lower input power.
  • the sublimation drying time in the initial to middle stage in which the frozen particles 220 contain a lot of ice is shortened, and the frozen particles 220 are included in the frozen particles 220 in the middle and later stages where the ice has decreased. It makes it difficult to damage power other than water. Therefore, higher quality dry particles 230 can be obtained.

Abstract

【課題】短時間で凍結真空乾燥と、コスト低減とを実現させる。 【解決手段】凍結真空乾燥装置は、噴霧部と、管部と、加熱部と、捕集部とを具備する。上記噴霧部は、原料液を真空容器内に噴霧する。上記管部は、非直線状であり、第1開口端と第2開口端とを有し、上記原料液が上記真空容器内へ噴霧して形成される液滴が自己凍結して形成される凍結粒子を上記第1開口端から捕捉する。上記加熱部は、噴霧時に得た運動エネルギーによって上記第1開口端から上記第2開口端に向かって上記管部内を移動する上記凍結粒子を上記管部内で加熱することにより上記凍結粒子を昇華乾燥する。上記捕集部は、上記凍結粒子が上記管部内で昇華乾燥することにより形成され、上記管部の上記第2開口端から放出される乾燥粒子を捕集する。

Description

凍結真空乾燥装置及び凍結真空乾燥方法
 本発明は、凍結真空乾燥装置及び凍結真空乾燥方法に関する。
 真空凍結乾燥装置では、原料液が真空容器に噴霧され、真空容器内で形成された液滴が凍結し、凍結紛体が捕集トレイに捕集されて、捕集トレイに熱を伝導させて凍結紛体を昇華乾燥するものが多い。しかし、この手法では、真空雰囲気での凍結紛体間の熱伝導が低いことから、昇華乾燥に多大な時間がかかる場合がある。
 これに対し、大容量の凍結紛体を短時間で一括乾燥する凍結真空乾燥が提案されている(例えば、特許文献1参照)。
特開2014-119140号公報
 しかし、大容量の凍結紛体を短時間で昇華乾燥するには、大容量の高周波電源が必要になる。さらに、大容量の凍結紛体から放出される溶媒を短時間で乾燥するには大流量の真空排気機構が必要になる。このように、真空凍結乾燥装置については、大容量の凍結紛体を短時間で凍結真空乾燥することと、コスト低減とが相反する場合がある。
 以上のような事情に鑑み、本発明の目的は、短時間で凍結真空乾燥と、コスト低減とを実現させた凍結真空乾燥装置及び凍結真空乾燥方法を提供することにある。
 上記目的を達成するため、本発明の一形態に係る凍結真空乾燥装置は、噴霧部と、管部と、加熱部と、捕集部とを具備する。
 上記噴霧部は、原料液を真空容器内に噴霧する。
 上記管部は、非直線状であり、第1開口端と第2開口端とを有し、上記原料液が上記真空容器内へ噴霧して形成される液滴が自己凍結して形成される凍結粒子を上記第1開口端から捕捉する。
 上記加熱部は、噴霧時に得た運動エネルギーによって上記第1開口端から上記第2開口端に向かって上記管部内を移動する上記凍結粒子を上記管部内で加熱することにより上記凍結粒子を昇華乾燥する。
 上記捕集部は、上記凍結粒子が上記管部内で昇華乾燥することにより形成され、上記管部の上記第2開口端から放出される乾燥粒子を捕集する。
 このような凍結真空乾燥装置によれば、原料液が非直線状の管部内で加熱部によって短時間で凍結真空乾燥され、乾燥粒子が捕集部に捕集される。凍結真空乾燥装置では、装置が小型となり、大型の排気機構を要さず、低コスト化が実現する。
 上記の凍結真空乾燥装置においては、上記管部は、上記噴霧部から上記捕集部に向かう方向に旋回軸を有し、上記噴霧部と上記捕集部の間で螺旋状に旋回してもよい。
 このような凍結真空乾燥装置によれば、原料液が螺旋状の管部内で加熱部によって短時間で凍結真空乾燥され、乾燥粒子が捕集部に捕集される。
 上記の凍結真空乾燥装置においては、上記管部は、上記第1開口端と上記第2開口端との間において、上記凍結粒子が上記管部内を移動中に昇華乾燥することにより発生するガスを上記管部外に放出することが可能な開口部を少なくとも1つ有してもよい。
 このような凍結真空乾燥装置によれば、管部が管部外にガスを放出する開口部を少なくとも1つ有するため、凍結粒子が昇華乾燥によって放出する水蒸気を効率よく管部外に放出することができる。
 上記の凍結真空乾燥装置においては、上記加熱部は、上記凍結粒子を高周波により加熱する加熱機構を有してもよい。
 このような凍結真空乾燥装置によれば、凍結粒子の氷部分が高周波を吸収して、凍結粒子が効率よく昇華乾燥する。
 上記の凍結真空乾燥装置においては、上記加熱部は、上記凍結粒子を熱輻射により加熱する加熱機構を有してもよい。
 このような凍結真空乾燥装置によれば、凍結粒子の氷部分が熱輻射によって加熱されて、凍結粒子が効率よく昇華乾燥する。
 上記の凍結真空乾燥装置においては、上記管部がガス透過性の樹脂で構成されてもよい。
 このような凍結真空乾燥装置によれば、乾燥したガスが効率よく管部外に放出される。
 上記の凍結真空乾燥装置においては、上記加熱部は、複数のユニットからなり、上記複数のユニットのそれぞれが独立して上記凍結粒子を加熱してもよい。
 このような凍結真空乾燥装置によれば、管部の位置に応じて、加熱部から管部に投入する電力を独立して変えることができる。
 上記の凍結真空乾燥装置においては、上記捕集部を別の捕集部に交換することが可能な搬送機構をさらに具備してもよい。
 このような凍結真空乾燥装置によれば、1つの捕集部に乾燥粒子が捕集されても、別の捕集部に交換されるので、1つの装置で大量の乾燥粒子を得ることができる。
 上記目的を達成するため、本発明の一形態に係る凍結真空乾燥方法では、原料液が真空容器内に噴霧される。
 第1開口端と第2開口端とを有する非直線状の管部が用いられ、上記原料液が上記真空容器内へ噴霧して形成される液滴が自己凍結して形成される凍結粒子が上記第1開口端から捕捉される。
 噴霧時に得た運動エネルギーによって上記第1開口端から上記第2開口端に向かって上記管部内を移動する上記凍結粒子が上記管部内で加熱されることにより上記凍結粒子が昇華乾燥する。
 上記凍結粒子が上記管部内で昇華乾燥することにより形成され、上記管部の上記第2開口端から放出される乾燥粒子が捕集される。
 このような凍結真空乾燥方法によれば、原料液が非直線状の管部内で加熱部によって短時間で凍結真空乾燥され、乾燥粒子が捕集部に捕集される。凍結真空乾燥装置では、装置が小型となり、大型の排気機構を要さず、低コスト化が実現する。
 以上述べたように、本発明によれば、短時間で凍結真空乾燥ができ、コスト低減が図られた凍結真空乾燥装置及び凍結真空乾燥方法が提供される。
本実施形態に係る凍結真空乾燥装置を示す模式的側面図である。 図(a)は、凍結粒子の移動時間(横軸)と凍結粒子の温度(左縦軸)との関係、及び凍結粒子の移動時間と凍結粒子の重量(右縦軸)との関係を示すシミュレーション図である。図(b)は、凍結粒子の移動時間(横軸)と凍結粒子の速度(左縦軸)との関係、及び凍結粒子の移動時間と凍結粒子の旋回回数(右縦軸)との関係を示すシミュレーション図である。 本実施形態に係る凍結真空乾燥装置の変形例1を示す模式図である。 本実施形態に係る凍結真空乾燥装置の変形例2を示す模式的側面図である。 本実施形態に係る凍結真空乾燥装置の変形例3を示す模式的側面図である。
 以下、図面を参照しながら、本発明の実施形態を説明する。各図面には、XYZ軸座標が導入される場合がある。また、同一の部材または同一の機能を有する部材には同一の符号を付し、その部材を説明した後には適宜説明を省略する場合がある。
 図1は、本実施形態に係る凍結真空乾燥装置を示す模式的側面図である。本実施形態では、凍結真空乾燥装置100の上下方向をZ軸方向、横方向をX軸方向、前後方向をY軸方向としている。
 図1に示す凍結真空乾燥装置100は、真空容器10と、噴霧部20と、管部30Aと、加熱部40と、捕集部50と、冷却トラップ60と、排気機構70と、原料容器201とを具備する。凍結真空乾燥装置100においては、噴霧部20と捕集部50との間に、管部30A及び加熱部40が配置されている。本実施形態では、噴霧部20側を上側、捕集部50側を下側とする。
 真空容器10は、排気機構70によって、500Pa以下、好ましくは100Pa以下の減圧雰囲気に維持される。このような減圧雰囲気に維持された真空容器10内では、水は、水の相平衡状態図から温度70K(ケルビン)以上で固体(氷)または気体(水蒸気)のいずれか一方の相になる。すなわち、本実施形態における真空容器10内は、液体(水)が存在しにくく、固体(氷)または気体(水蒸気)が存在する環境になっている。
 噴霧部20は、本体部21と、ノズル部22とを有する。噴霧部20は、原料容器201に貯留された原料液200を真空容器10内に液滴210として噴霧する。例えば、原料容器201に貯留された原料液200は、管202を介して本体部21に供給される。本体部21に供給された原料液200は、ノズル部22から真空容器10内に液滴210となって噴霧される。ノズル部22の噴射口の孔径は、例えば、50μm以上400である。また、噴霧圧は、0.3MPa以下である。原料液200としては、粉末食品、粉末飲料、医薬品等を水等の溶媒に分散させたものが該当する。
 ノズル部22と管部30Aの開口端301(第1開口端)との距離は、少なくとも300mmである。液滴210は、例えば、噴霧部20から管部30Aに向かう方向に列状となって落下し、管部30Aの開口端301に落下する前に自己凍結する。すなわち、噴霧部20から柱状に液体が吐出され、その後、液体の表面張力の効果により列状の液滴210へと変化し、この液滴210が気化熱を奪われることで自己凍結する。例えば、ノズル部22の先端から下方に300mmの位置で、液滴210が自己凍結して凍結粒子220になる。液滴210が自己凍結して形成された凍結粒子220は、管部30Aの開口端301に落下する。液滴210が開口端301に落ちる前に自己凍結して形成される凍結粒子220は、列状となって噴霧部20から管部30Aに向かって落下する。凍結粒子220の平均粒径は、100μm以上600μm以下である。
 管部30Aは、噴霧部20と捕集部50との間に配置される。管部30Aは、Z軸方向において直線状に構成されているのではなく、非直線状に構成されている。例えば、図1に示すように、管部30Aは、噴霧部20から捕集部50に向かう方向に旋回軸30rを有し、噴霧部20と捕集部50の間で螺旋状に旋回している。管部30Aは、非直線状であればよく、例えば、蛇行状でもよい。
 螺旋状の管部30Aは、本体部310と、本体部310の両端に、開口端301と、開口端302(第2開口端)とを有する。開口端301は、ノズル部22の直下に位置する。管部30Aは、液滴210が自己凍結して形成された凍結粒子220を開口端301から捕捉する。開口端301近傍の入り口は、図示するように、噴霧部20に向かうほど内径が拡がるテーパ構造を有する。これにより、開口端301に向かって落下する凍結粒子220が確実に管部30A内に捕捉される。
 管部30A内に捕捉された凍結粒子220は、液滴210が噴霧されたときに得た運動エネルギーによって、管部30A外に飛散することもなく、開口端301から開口端302に向かって管部30A内を移動する。さらに、噴霧部20が上側、捕集部50が下側に配置された本構成では、凍結粒子220に重力も働く。すなわち、凍結粒子220は、液滴210が噴霧されたときに得た運動エネルギーまたは重力によって開口端301から開口端302に向かって管部30A内を移動する。
 従って、凍結粒子220は、開口端301の位置から開口端302の位置まで直線状に落下するのではなく、螺旋状の本体部310の存在によって開口端301の位置から迂回して開口端302の位置まで辿り着くことになる。
 加熱部40は、噴霧時に得た運動エネルギーによって開口端301から開口端302に向かって管部30A内を移動する凍結粒子220を管部30A内で加熱することにより凍結粒子220を昇華乾燥する。図1の例では、加熱部40は、凍結粒子220を高周波により加熱する加熱機構を有する。例えば、加熱部40は、内部電極411と、外部電極412と、高周波電源420とを有する。
 内部電極411は、例えば、円筒状のメッシュ電極であり、管部30Aの内側に配置される。内部電極411の中心軸は、管部30Aの螺旋軸30rと一致する。外部電極412は、例えば、円筒状のメッシュ電極であり、管部30Aの外側に配置される。外部電極412の中心軸は、管部30Aの螺旋軸30rと一致する。
 高周波電源420は、内部電極411と外部電極412との間に高周波電界を印加する。例えば、高周波電源420によって内部電極411に正電位が印加された場合、外部電極412には、グランド電位(または、負電位)が印加され、外部電極412に正電位が印加された場合には、内部電極411には、グランド電位(または、負電位)が印加される。管部30Aの本体部310は、内部電極411と、外部電極412とに挟まれることから、本体部310には、高周波電界が満遍なく行き渡る。
 例えば、原料液200の溶媒が水の場合、高周波電源420から放出される高周波の周波数として、例えば、200kHzから13.56MHzが選択される。このような周波数の高周波電界は、凍結粒子220の氷(水結晶)に効率よく吸収される。これにより、凍結粒子220の氷部分が選択的に暖められる。従って、管部30A内では、凍結粒子220の氷部分が水蒸気となって昇華乾燥して、管部30A内で凍結粒子220から氷が除かれた乾燥粒子230が形成される。さらに、移動中の微粒子に対して交番電界を与えることから、容器、トレイ等に堆積したバルク状の微粒子への処理と比較すると、均一な加熱が実現できる。特に、浸透深さが低い高周波数の電源を利用する場合には、顕著な効果が得られる。
 管部30A内で発生した水蒸気は、開口端301または開口端302から放出されて、真空容器10内で冷却トラップ60に捕獲される。また、内部電極411と外部電極412とは、メッシュ電極であることから、水蒸気は、内部電極411及び外部電極412のそれぞれを通過することができ、電極内部での滞留が抑えられる。なお、図1の例では、冷却トラップ60は、開口端301の近傍に設けられているが、開口端302の近傍に配置してもよい。冷却トラップ60は、開口端301及び開口端302のそれぞれの近傍に配置されてもよい。
 昇華乾燥によって管部30A内で形成された乾燥粒子230は、自らが持つ運動エネルギーまたは重力の影響によって管部30Aの開口端301から放出される。開口端301から放出された乾燥粒子230は、開口端301の下方に配置された捕集部50に落下し、この捕集部50に捕集される。
 捕集部50は、例えば、捕集容器51と、搬送機構52とを有する。搬送機構52は、開口端302下に位置する捕集容器51を別の捕集容器51に交換することできる。例えば、1つの捕集容器51に所定の量の乾燥粒子230が捕集された場合、搬送機構52によって新たな捕集容器51が開口端301の下方に配置される。この新たな捕集容器51によって乾燥粒子230が新たに捕集される。すなわち、凍結真空乾燥装置100においては、大量かつ長時間にわたって乾燥粒子230の捕集作業が可能になる。
 管部30Aの材料としては、接触した凍結紛体との摩擦係数が最少となる、樹脂製が望ましい。さらに、乾燥中のガス(蒸気)が透過しやすいガス透過性の樹脂が適用されることが望ましい。氷に対する樹脂の付着力は、金属の氷に対する付着力の1/10程度であり、樹脂製の管部30Aを用いることで凍結粒子220が管部30Aの内壁に付着しにくくなる。また、氷においては、その温度が高くなるほど樹脂に対する付着力が減少する傾向にある。このため、凍結粒子220を加熱部40によって加熱することで、凍結粒子220が管部30Aの内壁に付着しにくくなる。さらに、凍結粒子220から水分子が放出されるときには、凍結粒子220は、水分子から水分子が放出する方向とは逆の反跳力を受けることになり、管部30Aの内壁に付着しにくくなる。なお、管部30Aには、凍結粒子220の管部30Aへの付着を確実に抑制するために、超音波等の振動を印加してもよい。
 図2(a)は、凍結粒子の移動時間(横軸)と凍結粒子の温度(左縦軸)との関係、及び凍結粒子の移動時間と凍結粒子の重量(右縦軸)との関係を示すシミュレーション図である。図2(b)は、凍結粒子の移動時間(横軸)と凍結粒子の速度(左縦軸)との関係、及び凍結粒子の移動時間と凍結粒子の旋回回数(右縦軸)との関係を示すシミュレーション図である。ここで、凍結粒子220の粒径は、300μm、管部30Aの螺旋径は、0.4m、管部30Aに供給される電力は、38Wとする。また、横軸の左端は、内部電極411(または、外部電極412)の上端の位置に相当する。
 図2(a)に示すように、管部30A内に捕集された凍結粒子220が管部30A内を移動しながら、加熱部40による加熱が開始されると、凍結粒子220の温度が凍結粒子220の移動時間とともに上昇する。そして、移動時間が1.3秒になった時点で、加熱部40の重量が急激に減少する。これは、凍結粒子220から氷部分が除去されて、凍結粒子220が乾燥粒子230となり、重量が急激に減少することを意味する。
 一方、図2(b)に示すように、凍結粒子220の速度は、当初、20m/秒であったものの、移動時間の経過とともに徐々に遅くなり、重量が急激に減少した時点で6.5m/秒まで下がる。これは、凍結粒子220が螺旋状の管部30A内を移動することにともない、凍結粒子220が管部30Aから摩擦の負荷を受けるためである。但し、凍結粒子220の重量が急激に減少した時点でも、凍結粒子220の速度は、依然として6.5m/秒を維持し、凍結粒子220は、管部30Aの内部で停止しないことを示している。
 また、凍結粒子220の移動時間が経過するに応じて、凍結粒子220の旋回回数が増加する。これは、凍結粒子220の移動距離が長くなることに対応する。例えば、凍結粒子220の重量が急激に減少、すなわち、凍結粒子220が乾燥粒子230となるには、10回の旋回が要することが分かる。換言すれば、管部30Aの螺旋径を0.4mに設定したときには、管部30Aの本体部310を10回以上旋回させれば、凍結粒子220が確実に乾燥粒子230になることが分かる。
 従前の凍結真空乾燥装置では、例えば、原料液200を真空容器10内で凍結乾燥させ、管部30Aを介さず捕集容器51に凍結粒子を直接回収し、この凍結粒子を捕集容器51を支持する支持台から熱伝導方式で乾燥する方式が採られている。この方式では、例えば、10リットルの原料液200(濃度:10vol%)を真空容器10(圧力:10Paを維持)内で凍結乾燥させ、捕集容器51に凍結粒子を集めた後、乾燥粒子を作るには、1時間の乾燥で、9リットルの気体を発生することになり、電力として6.4kWを要することが分かっている。
 これに対して、凍結真空乾燥装置100を用いれば、直径200μmの凍結粒子が20m/秒の落下速度で噴霧され、1秒前後で乾燥されるので、6.3×10-7(m/sec)の気体発生量となり、所要電力は、1.6kW程度になることが分かっている。
 このように、凍結真空乾燥装置100によれば、真空容器10内へ噴霧された液滴210が自己凍結して形成された凍結粒子220が非直線状の管部30A内に誘導されて加熱部40によって管部30A内で昇華乾燥する。そして、管部30A内で凍結粒子220が乾燥粒子230となり、乾燥粒子230が捕集部50に捕集される。
 つまり、凍結真空乾燥装置100では、凍結粒子220は、捕集部50に直接的に落下するのではなく、捕集部50に捕集される前に非直線状の管部30Aによって迂回され、長い距離での移動中に加熱部40によって加熱される。そして、加熱手法としては、氷に吸収される周波数帯域の高周波電界が用いられので、凍結粒子220は、効率よく昇華乾燥する。その乾燥時間は、数秒以内である。また、加熱電力も低く抑えられる。
 従って、凍結真空乾燥装置100では、原料液200が短時間で凍結真空乾燥され、捕集容器51を順次入れ替えることで大量の乾燥粒子230を得ることができる。また、凍結真空乾燥装置100では、装置の小型化が可能になり、大型の排気機構70を要さない。これにより、低コスト化が実現する。
 例えば、螺旋径が0.4mで10回旋回させた管部30Aの長さは、およそ10mである。非直線状の管部30Aを用いないで凍結真空乾燥装置100と同じ作用をさせるには、噴霧部20と捕集部50との間の距離を10m程度離間させる必要がある。なぜなら、凍結粒子220が10m移動することで、乾燥粒子230となるからである。このため、このような装置構成では、装置が大型になるとともに、大型の排気機構が必要になり、コスト上昇を招来する。
 また、凍結真空乾燥装置100では、凍結粒子220は、昇華乾燥中に管部30A内を移動するので、真空容器10内での凍結粒子220の飛散が抑制される。また、凍結粒子220が乾燥した後の乾燥粒子230が捕集容器51に捕集されるので、捕集容器51からの捕集容器51の飛散が起きにくくなる。これにより、乾燥粒子230の回収率が向上する。例えば、トレイに凍結粒子220を収容し、トレイを支持する支持台から熱伝導方式で凍結粒子220を乾燥すると、凍結粒子220は、凍結粒子220から飛び出す水蒸気の反跳とガスとの流れを受けてトレイから真空容器10内に飛散する可能性がある。
 次に、凍結真空乾燥装置の変形例を説明する。
 (変形例1)
 図3は、本実施形態に係る凍結真空乾燥装置の変形例1を示す模式図である。図3には、変形例1に係る凍結真空乾燥装置101の管部30Bが例示されている。管部30B以外の凍結真空乾燥装置101の構成は、凍結真空乾燥装置100と同じである。
 管部30Bにおいては、開口端301と開口端302との間において、開口部320が少なくとも1つ設けられている。開口部320は、管部30Bの一部に設けられ管部30Bの外径よりも内径が大きい第1継手部321に、管部30Bの一部に設けられ第1継手部321に対向する第2継手部322が挿入されることで構成される。第1継手部321は、第2継手部322よりも下流に設けられる。
 第1継手部321と第2継手部322との間に隙間が設けられることにより、開口部320が形成される。開口部320からは、凍結粒子220が管部30B内を移動中に昇華乾燥することにより発生するガス(例えば、水蒸気)が放出する。
 また、第1継手部321と第2継手部322との間には、ガス(水蒸気)のみを管部30B外に放出し、凍結粒子220を管部30B外に放出しないフィルタ部材が設けられてもよい。フィルタ部材は、例えば、金属網、ポーラス材等で構成される。
 凍結真空乾燥装置101によれば、管部30Bが管部30B外にガスを放出する開口部320を少なくとも1つ有するため、管部30B内で凍結粒子220が昇華乾燥によって放出する水蒸気が効率よく管部30B外に放出される。これにより、乾燥時間がさらに短くなる。また、管部30B内の水蒸気圧は、管部30A内の水蒸気圧に比べて低くなるので、管部30Bに高周波電界によって水蒸気が電離して形成されるプラズマが発生しにくくなる。
 (変形例2)
 図4は、本実施形態に係る凍結真空乾燥装置の変形例2を示す模式的側面図である。
 図4に示す凍結真空乾燥装置102においては、加熱部43が凍結粒子220を熱輻射により加熱する加熱機構を有する。例えば、加熱部43は、内部ヒータ431と、外部ヒータ432とを有する。管部30Aは、管部30Bに替えてもよい。
 内部ヒータ431は、例えば、円筒状であり、管部30Aの内側に配置される。内部ヒータ431の中心軸は、管部30Aの螺旋軸30rと一致する。外部ヒータ432は、例えば、円筒状であり、管部30Aの外側に配置される。外部ヒータ432の中心軸は、管部30Aの螺旋軸30rと一致する。内部ヒータ431及び外部ヒータ432は、例えば、炭素製のヒータである。また、凍結真空乾燥装置102においては、管部30Aがガラス、石英等によって構成される。これにより、内部ヒータ431及び外部ヒータ432から発せられる輻射熱が管部30Aの内部にまで伝導する。
 凍結真空乾燥装置102によれば、管部30A内を移動する凍結粒子220が内部ヒータ431及び外部ヒータ432から発せられる輻射熱(例えば、赤外線)によって加熱され、凍結粒子220が管部30A内で昇華乾燥する。そして、凍結真空乾燥装置102においても乾燥粒子230が捕集部50によって捕集される。
 (変形例3)
 図5は、本実施形態に係る凍結真空乾燥装置の変形例3を示す模式的側面図である。
 図5に示す凍結真空乾燥装置103においては、加熱部40が複数のユニットからなり、複数のユニットのそれぞれが独立して凍結粒子220を加熱することができる。例えば、加熱部40は、上部加熱部40Aと、下部加熱部40Bとを有する。なお、複数のユニットは、2つとは限らず、3つ以上でもよい。なお、管部30Aは、管部30Bに替えてもよい。
 上部加熱部40Aは、上部内部電極411A、上部外部電極412A、及び上部高周波電源420Aを有する。下部加熱部40Bは、下部内部電極411B、下部外部電極412B、及び下部高周波電源420Bを有する。上部加熱部40Aは、Z軸方向において、下部加熱部40Bとは離れている。
 上部内部電極411Aは、例えば、円筒状のメッシュ電極であり、管部30Aの上部内側に配置される。ここで、上部とは、管部30Aの上半分とする。上部内部電極411Aの中心軸は、管部30Aの螺旋軸30rと一致する。上部外部電極412Aは、例えば、円筒状のメッシュ電極であり、管部30Aの上部外側に配置される。上部外部電極412Aの中心軸は、管部30Aの螺旋軸30rと一致する。上部高周波電源420Aは、上部内部電極411Aと上部外部電極412Aとの間に高周波電界(200kHzまたは13.56MHz)を印加する。
 下部内部電極411Bは、例えば、円筒状のメッシュ電極であり、管部30Aの下部内側に配置される。ここで、下部とは、管部30Aの下半分とする。下部内部電極411Bの中心軸は、管部30Aの螺旋軸30rと一致する。下部外部電極412Bは、例えば、円筒状のメッシュ電極であり、管部30Aの下部外側に配置される。下部外部電極412Bの中心軸は、管部30Aの螺旋軸30rと一致する。下部高周波電源420Bは、下部内部電極411Bと下部外部電極412Bとの間に高周波電界(200kHzまたは13.56MHz)を印加する。
 このような構成であれば、管部30Aに対して部分的に加熱部40から管部30Aに投入する電力を変えることができる。
 例えば、下部加熱部40Bよりも上部加熱部40Aによる投入電力を大きくするによって、管部30Aの上部における加熱温度を管部30Aの下部における加熱温度よりも高く設定することができる。例えば、凍結粒子220に氷が多く含まれる初期から中期の昇華乾燥では、上部加熱部40Aによって高めの投入電力で凍結粒子220を乾燥させ、凍結粒子220の氷が減ってきた中期以降の昇華乾燥では、下部加熱部40Bによって低め投入電力で凍結粒子220を昇華乾燥する。
 このような手法によれば、凍結粒子220に氷が多く含まれる初期から中期の段階での昇華乾燥の時間が短くなるとともに、氷が減ってきた中期以降の段階での凍結粒子220に含まれる水以外の物質に電力によるダメージを与えにくくなる。従って、より高品質な乾燥粒子230を得ることができる。
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。各実施形態は、独立の形態とは限らず、技術的に可能な限り複合することができる。
 10…真空容器
 100、101、102、103…凍結真空乾燥装置
 20…噴霧部
 21…本体部
 22…ノズル部
 200…原料液
 201…原料容器
 202…管
 210…液滴
 220…凍結粒子
 230…乾燥粒子
 30A、30B…管部
 30r…螺旋軸
 301…開口端
 302…開口端
 310…本体部
 320…開口部
 321…継手部
 322…継手部
 40、43…加熱部
 40A…上部加熱部
 40B…下部加熱部
 411…内部電極
 412…外部電極
 411A…上部内部電極
 411B…下部内部電極
 412A…上部外部電極
 412B…下部外部電極
 420…高周波電源
 420A…上部高周波電源
 420B…下部高周波電源
 431…内部ヒータ
 432…外部ヒータ
 50…捕集部
 51…捕集容器
 52…搬送機構
 60…冷却トラップ
 70…排気機構
 80…搬送機構

Claims (9)

  1.  原料液を真空容器内に噴霧する噴霧部と、
     第1開口端と第2開口端とを有し、前記原料液が前記真空容器内へ噴霧して形成される液滴が自己凍結して形成される凍結粒子を前記第1開口端から捕捉する非直線状の管部と、
     噴霧時に得た運動エネルギーによって前記第1開口端から前記第2開口端に向かって前記管部内を移動する前記凍結粒子を前記管部内で加熱することにより前記凍結粒子を昇華乾燥する加熱部と、
     前記凍結粒子が前記管部内で昇華乾燥することにより形成され、前記管部の前記第2開口端から放出される乾燥粒子を捕集する捕集部と
     を具備する凍結真空乾燥装置。
  2.  請求項1に記載の凍結真空乾燥装置であって、
     前記管部は、前記噴霧部から前記捕集部に向かう方向に旋回軸を有し、前記噴霧部と前記捕集部の間で螺旋状に旋回している
     凍結真空乾燥装置。
  3.  請求項1または2に記載の凍結真空乾燥装置であって、
     前記管部は、前記第1開口端と前記第2開口端との間において、前記凍結粒子が前記管部内を移動中に昇華乾燥することにより発生するガスを前記管部外に放出することが可能な開口部を少なくとも1つ有する
     凍結真空乾燥装置。
  4.  請求項1~3のいずれか1つに記載の凍結乾燥装置であって、
     前記管部は、ガス透過性の樹脂で構成される
     凍結真空乾燥装置。
  5.  請求項1~4のいずれか1つに記載の凍結真空乾燥装置であって、
     前記加熱部は、前記凍結粒子を高周波により加熱する加熱機構を有する
     凍結真空乾燥装置。
  6.  請求項1~5のいずれか1つに記載の凍結真空乾燥装置であって、
     前記加熱部は、前記凍結粒子を熱輻射により加熱する加熱機構を有する
     凍結真空乾燥装置。
  7.  請求項1~6のいずれか1つに記載の凍結真空乾燥装置であって、
     前記加熱部は、複数のユニットからなり、前記複数のユニットのそれぞれが独立して前記凍結粒子を加熱することができる
     凍結真空乾燥装置。
  8.  請求項1~7のいずれか1つに記載の凍結真空乾燥装置であって、
     前記捕集部を別の捕集部に交換することが可能な搬送機構をさらに具備する
     凍結真空乾燥装置。
  9.  原料液を真空容器内に噴霧し、
     第1開口端と第2開口端とを有する非直線状の管部を用い、前記原料液が前記真空容器内へ噴霧して形成される液滴が自己凍結して形成される凍結粒子を前記第1開口端から捕捉し、
     噴霧時に得た運動エネルギーによって前記第1開口端から前記第2開口端に向かって前記管部内を移動する前記凍結粒子を前記管部内で加熱することにより前記凍結粒子を昇華乾燥し、
     前記凍結粒子が前記管部内で昇華乾燥することにより形成され、前記管部の前記第2開口端から放出される乾燥粒子を捕集する
     凍結真空乾燥方法。
PCT/JP2019/013493 2018-06-08 2019-03-28 凍結真空乾燥装置及び凍結真空乾燥方法 WO2019235036A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980004028.3A CN111065874B (zh) 2018-06-08 2019-03-28 真空冻结干燥装置和真空冻结干燥方法
JP2019538464A JP6616053B1 (ja) 2018-06-08 2019-03-28 凍結真空乾燥装置及び凍結真空乾燥方法
US17/107,297 US11112176B2 (en) 2018-06-08 2020-11-30 Freeze vacuum drying apparatus and freeze vacuum drying method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018110092 2018-06-08
JP2018-110092 2018-06-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/107,297 Continuation US11112176B2 (en) 2018-06-08 2020-11-30 Freeze vacuum drying apparatus and freeze vacuum drying method

Publications (1)

Publication Number Publication Date
WO2019235036A1 true WO2019235036A1 (ja) 2019-12-12

Family

ID=68770168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013493 WO2019235036A1 (ja) 2018-06-08 2019-03-28 凍結真空乾燥装置及び凍結真空乾燥方法

Country Status (4)

Country Link
US (1) US11112176B2 (ja)
CN (1) CN111065874B (ja)
TW (1) TW202001172A (ja)
WO (1) WO2019235036A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11175093B1 (en) 2020-05-18 2021-11-16 MII Ltd. Vacuum freeze-drying apparatus and vacuum freeze-drying method
WO2021235459A1 (ja) 2020-05-18 2021-11-25 株式会社エムアイアイ 真空凍結乾燥装置及び真空凍結乾燥方法
JP2022030573A (ja) * 2020-08-07 2022-02-18 株式会社アルバック 真空凍結乾燥方法および真空凍結乾燥装置
JP7085088B1 (ja) 2021-08-03 2022-06-16 株式会社エムアイアイ 凍結乾燥物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11874060B2 (en) * 2020-11-16 2024-01-16 Sublime Stericeuticals Corporation Continuous throughput lyophilizer-powder filler within a sterile boundary
CN112611166B (zh) * 2020-12-09 2022-06-03 赤水市信天中药产业开发有限公司 一种石斛饮片制备用冷冻干燥装置及干燥方法
CN113847783B (zh) * 2021-09-13 2022-08-23 常州大学 一种适用于六安瓜片的多能耦合旋风式茶叶干燥系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731392A (en) * 1971-02-25 1973-05-08 H Gottfried Continuous freeze dryer
US4033048A (en) * 1976-01-12 1977-07-05 Clayton Van Ike Freeze drying apparatus
JP2006090671A (ja) * 2004-09-27 2006-04-06 Ulvac Japan Ltd 凍結真空乾燥装置および凍結真空乾燥方法
JP2006177640A (ja) * 2004-12-24 2006-07-06 Ulvac Japan Ltd 凍結真空乾燥装置
WO2012063678A1 (ja) * 2010-11-12 2012-05-18 株式会社アルバック 凍結真空乾燥装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228838A (en) * 1959-04-23 1966-01-11 Union Carbide Corp Preservation of biological substances
JPH0615001B2 (ja) 1984-09-04 1994-03-02 株式会社クメタ製作所 噴霧乾燥装置
US6223455B1 (en) 1999-05-03 2001-05-01 Acusphere, Inc. Spray drying apparatus and methods of use
JP3741361B2 (ja) * 2001-04-04 2006-02-01 共和真空技術株式会社 食品・薬品等の凍結乾燥装置および凍結乾燥方法
NZ550563A (en) * 2006-10-16 2009-01-31 Agres Ltd Improvements in spray freeze drying
CN101464091B (zh) 2008-12-31 2011-01-26 张文华 尾气循环式螺旋管气流干燥器及其干燥方法
EP2578974A1 (en) * 2011-10-05 2013-04-10 Sanofi Pasteur Sa Process line for the production of freeze-dried particles
JP6138477B2 (ja) 2012-12-13 2017-05-31 中部電力株式会社 真空凍結乾燥装置及び真空凍結乾燥方法
CN203443286U (zh) * 2013-07-05 2014-02-19 山东新华医疗器械股份有限公司 一种连续生产型冻干机
CN206390193U (zh) * 2016-12-29 2017-08-11 粉嫩公主生物科技有限公司耒阳分公司 一种食品干燥灭菌用冻干装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731392A (en) * 1971-02-25 1973-05-08 H Gottfried Continuous freeze dryer
US4033048A (en) * 1976-01-12 1977-07-05 Clayton Van Ike Freeze drying apparatus
JP2006090671A (ja) * 2004-09-27 2006-04-06 Ulvac Japan Ltd 凍結真空乾燥装置および凍結真空乾燥方法
JP2006177640A (ja) * 2004-12-24 2006-07-06 Ulvac Japan Ltd 凍結真空乾燥装置
WO2012063678A1 (ja) * 2010-11-12 2012-05-18 株式会社アルバック 凍結真空乾燥装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11175093B1 (en) 2020-05-18 2021-11-16 MII Ltd. Vacuum freeze-drying apparatus and vacuum freeze-drying method
WO2021235459A1 (ja) 2020-05-18 2021-11-25 株式会社エムアイアイ 真空凍結乾燥装置及び真空凍結乾燥方法
KR20220154833A (ko) 2020-05-18 2022-11-22 카부시키가이샤 엠아이아이 진공동결건조장치 및 진공동결건조방법
US20230100406A1 (en) * 2020-05-18 2023-03-30 Mii, Ltd. Vacuum freeze-drying apparatus and vacuum freeze-drying method
US11644236B2 (en) 2020-05-18 2023-05-09 Mii, Ltd. Vacuum freeze-drying apparatus and vacuum freeze-drying method
JP2022030573A (ja) * 2020-08-07 2022-02-18 株式会社アルバック 真空凍結乾燥方法および真空凍結乾燥装置
JP7085088B1 (ja) 2021-08-03 2022-06-16 株式会社エムアイアイ 凍結乾燥物
WO2023013630A1 (ja) 2021-08-03 2023-02-09 株式会社エムアイアイ 凍結乾燥物
JP2023022634A (ja) * 2021-08-03 2023-02-15 株式会社エムアイアイ 凍結乾燥物
KR20230164181A (ko) 2021-08-03 2023-12-01 카부시키가이샤 엠아이아이 동결 건조물
US20240085107A1 (en) * 2021-08-03 2024-03-14 MII Ltd. Freeze-dried product
US11940214B1 (en) 2021-08-03 2024-03-26 Mii, Ltd. Freeze-dried product

Also Published As

Publication number Publication date
US20210080179A1 (en) 2021-03-18
CN111065874B (zh) 2020-12-29
TW202001172A (zh) 2020-01-01
CN111065874A (zh) 2020-04-24
US11112176B2 (en) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2019235036A1 (ja) 凍結真空乾燥装置及び凍結真空乾燥方法
JP5230034B2 (ja) 凍結乾燥装置
JP7020634B2 (ja) 植物材料から油を抽出する方法
US20180078874A1 (en) Method and apparatus for extracting botanical oils
JP7038435B2 (ja) 噴霧凍結造粒乾燥粉体製造装置及び噴霧凍結造粒乾燥粉体製造システム
EP2270409B1 (en) Freeze-drying method and freeze-drying apparatus
JP2007535652A (ja) 乾燥工程及び装置
JPH09508695A (ja) 溶液から材料を乾燥する方法
JP2003524142A (ja) 粒子状の物品の製造方法
JPS59210291A (ja) 加熱乾燥方法及び装置
JP2006297243A (ja) 真空スプレードライヤ
JP6887050B1 (ja) 真空凍結乾燥方法および真空凍結乾燥装置
JP4180551B2 (ja) 凍結真空乾燥装置および凍結真空乾燥方法
JP6616053B1 (ja) 凍結真空乾燥装置及び凍結真空乾燥方法
JP2006177640A (ja) 凍結真空乾燥装置
JP4421885B2 (ja) 噴霧式真空乾燥法による封入装置
CN113015879A (zh) 用于散装冷冻干燥系统的冷冻干燥室
KR101881354B1 (ko) 분무건조 방식을 이용한 에어로졸 입자 생성장치
KR100801562B1 (ko) 복합 가열형 분무식 동결건조기
WO2020161863A1 (ja) 真空凍結乾燥方法及び真空凍結乾燥装置
JP2023528418A (ja) 凍結室と凝縮器の組み合わせによる凍結乾燥
DE102012109406B4 (de) Verfahren und Anlage zur kontinuierlichen Produktion von pharmazeutischen Lyophilisaten
RU2353351C1 (ru) Способ выделения из жидкой среды термочувствительных лекарственных препаратов и установка для его осуществления
WO2006120117A1 (en) Reactor and method for gentle product drying
RU2710070C1 (ru) Распылительная сушилка для флотационной пульпы

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019538464

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815344

Country of ref document: EP

Kind code of ref document: A1