TW202001172A - 凍結真空乾燥裝置以及凍結真空乾燥方法 - Google Patents

凍結真空乾燥裝置以及凍結真空乾燥方法 Download PDF

Info

Publication number
TW202001172A
TW202001172A TW108118301A TW108118301A TW202001172A TW 202001172 A TW202001172 A TW 202001172A TW 108118301 A TW108118301 A TW 108118301A TW 108118301 A TW108118301 A TW 108118301A TW 202001172 A TW202001172 A TW 202001172A
Authority
TW
Taiwan
Prior art keywords
frozen particles
open end
vacuum drying
tube portion
particles
Prior art date
Application number
TW108118301A
Other languages
English (en)
Inventor
西橋勉
中野美尚
村上裕彦
吉元剛
伊藤薫樹
小宮卓巳
Original Assignee
日商愛發科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商愛發科股份有限公司 filed Critical 日商愛發科股份有限公司
Publication of TW202001172A publication Critical patent/TW202001172A/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
    • F26B5/065Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing the product to be freeze-dried being sprayed, dispersed or pulverised
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/001Details of apparatus, e.g. for transport, for loading or unloading manipulation, pressure feed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/12Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft
    • F26B17/16Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft the materials passing down a heated surface, e.g. fluid-heated closed ducts or other heating elements in contact with the moving stack of material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/32Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
    • F26B3/34Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
    • F26B3/347Electromagnetic heating, e.g. induction heating or heating using microwave energy
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/40Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by drying or kilning; Subsequent reconstitution
    • A23L3/44Freeze-drying
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2200/00Drying processes and machines for solid materials characterised by the specific requirements of the drying good
    • F26B2200/08Granular materials

Abstract

本發明的目的係在於實現短時間的凍結真空乾燥以及成本降低。本發明之凍結真空乾燥裝置係具備噴霧部、管部、加熱部以及收集部。上述噴霧部係將原料液對真空容器內噴霧。上述管部係非直線狀,具有第一開口端與第二開口端,且從上述第一開口端捕捉凍結粒子,上述凍結粒子係上述原料液向上述真空容器內噴霧而形成之液滴自我凍結所形成。上述加熱部係將藉由噴霧時得到的動能在上述管部內從上述第一開口端朝向上述第二開口端移動的上述凍結粒子於上述管部內加熱,藉此昇華乾燥上述凍結粒子。上述收集部係收集乾燥粒子,上述乾燥粒子係藉由上述凍結粒子在上述管部內昇華乾燥所形成且從上述管部的上述第二開口端被釋放。

Description

凍結真空乾燥裝置以及凍結真空乾燥方法
本發明係關於一種凍結真空乾燥裝置以及凍結真空乾燥方法。
在真空凍結乾燥裝置中,大多是下述裝置:將原料液對真空容器噴霧,將在真空容器內所形成的液滴凍結,將凍結粉體收集到收集盤(collecting tray),使熱傳導到收集盤而將凍結粉體予以昇華乾燥。但是,以此手法而言,有著在真空環境氣體下的凍結粉體之間的熱傳導低而導致昇華乾燥花費莫大時間的情形。
相對於此,提案有一種在短時間將大容量的凍結粉體一併乾燥的凍結真空乾燥 (例如參照專利文獻1)。 [先前技術文獻] [專利文獻]
專利文獻1:日本特開2014-119140號公報。
[發明所欲解決之課題]
但是,要在短時間將大容量的凍結粉體予以昇華乾燥,需要大容量的高頻率電源。進一步地,要將從大容量的凍結粉體所釋放的溶劑在短時間乾燥,需要大流量的真空排氣機構。如此,對真空凍結乾燥裝置而言,有著要在短時間將大容量的凍結粉體予以凍結真空乾燥一事與成本降低(cost down)相違背的情形。
有鑑於以上般的情況,本發明的目的係在於提供一種實現短時間的凍結真空乾燥與成本降低之凍結真空乾燥裝置以及凍結真空乾燥方法。 [用以解決課題的手段]
為了達成上述目的,本發明的一形態之凍結真空乾燥裝置係具備噴霧部、管部、加熱部及收集部。 上述噴霧部係將原料液對真空容器內噴霧。 上述管部係非直線狀,具有第一開口端與第二開口端,且從上述第一開口端捕捉凍結粒子,上述凍結粒子係上述原料液向上述真空容器內噴霧而形成之液滴自我凍結所形成。 上述加熱部係將藉由噴霧時得到的動能(kinetic energy)在上述管部內從上述第一開口端朝向上述第二開口端移動的上述凍結粒子於上述管部內加熱,藉此昇華乾燥上述凍結粒子。 上述收集部係收集乾燥粒子,上述乾燥粒子係藉由上述凍結粒子在上述管部內昇華乾燥所形成且從上述管部的上述第二開口端被釋放。 根據這樣的凍結真空乾燥裝置,原料液在非直線狀的管部內藉由加熱部在短時間被凍結真空乾燥,且乾燥粒子被收集到收集部。以凍結真空乾燥裝置而言,裝置變得小型,不需要大型的排氣機構,實現低成本化。
在上述凍結真空乾燥裝置中,上述管部可以在從上述噴霧部朝向上述收集部的方向具有迴旋軸,且可以在上述噴霧部與上述收集部之間迴旋成螺旋狀。 根據這樣的凍結真空乾燥裝置,原料液在螺旋狀的管部內藉由加熱部在短時間被凍結真空乾燥,且乾燥粒子被收集到收集部。
在上述凍結真空乾燥裝置中,上述管部可以至少具有一個開口部,前述開口部係能夠在上述第一開口端與上述第二開口端之間將藉由上述凍結粒子在上述管部內移動中昇華乾燥而產生的氣體往上述管部外釋放。 根據這樣的凍結真空乾燥裝置,由於至少具有一個讓管部將氣體往管部外釋放的開口部,故能夠有效率地將凍結粒子藉由昇華乾燥而釋放的水蒸氣往管部外釋放。
在上述凍結真空乾燥裝置中,上述加熱部可以具有用高頻率將上述凍結粒子加熱的加熱機構。 根據這樣的凍結真空乾燥裝置,凍結粒子的冰部分吸收高頻率,凍結粒子有效率地昇華乾燥。
在上述凍結真空乾燥裝置中,上述加熱部可以具有用熱輻射將上述凍結粒子加熱的加熱機構。 根據這樣的凍結真空乾燥裝置,凍結粒子的冰部分藉由熱輻射所加熱,凍結粒子有效率地昇華乾燥。
在上述凍結真空乾燥裝置中,上述管部可以由氣體透過性的樹脂所構成。 根據這樣的凍結真空乾燥裝置,將已乾燥的氣體有效率地往管部外釋放。
在上述凍結真空乾燥裝置中,上述加熱部可以由複數個單元(unit)所構成,且上述複數個單元可以各自獨立地加熱上述凍結粒子。 根據這樣的凍結真空乾燥裝置,能夠因應管部的位置來獨立地改變從加熱部對管部投入的電力。
在上述凍結真空乾燥裝置中,可以進一步地具備能夠將上述收集部交換成其他收集部的運送機構。 根據這樣的凍結真空乾燥裝置,就算乾燥粒子被收集到一個收集部也可交換成其他收集部,因此能夠以一個裝置得到大量的乾燥粒子。
為了達成上述目的,在本發明的一形態之凍結真空乾燥方法中,將原料液對真空容器內噴霧。 使用具有第一開口端與第二開口端之非直線狀的管部,從上述第一開口端捕捉凍結粒子,上述凍結粒子係上述原料液向上述真空容器內噴霧而形成之液滴自我凍結所形成。 將藉由噴霧時得到的動能在上述管部內從上述第一開口端朝向上述第二開口端移動的上述凍結粒子於上述管部內加熱,藉此昇華乾燥上述凍結粒子。 收集乾燥粒子,上述乾燥粒子係藉由上述凍結粒子在上述管部內昇華乾燥所形成且從上述管部的上述第二開口端被釋放。 根據這樣的凍結真空乾燥方法,原料液在非直線狀的管部內藉由加熱部在短時間被凍結真空乾燥,且乾燥粒子被收集到收集部。以凍結真空乾燥裝置而言,裝置變得小型,不需要大型的排氣機構,實現低成本化。 [發明功效]
如以上所述般,根據本發明,能提供一種能夠在短時間進行凍結真空乾燥且謀求成本降低的凍結真空乾燥裝置以及凍結真空乾燥方法。
以下,一邊參照圖式一邊說明本發明的實施形態。在各圖式中,有導入有XYZ軸座標的情形。又,對相同構件或具有相同功能之構件係附上相同的符號,且有在已說明該構件後適度省略說明的情形。
圖1係表示本實施形態之凍結真空乾燥裝置的示意性側視圖。在本實施形態中,將凍結真空乾燥裝置100的上下方向當作Z軸方向,將凍結真空乾燥裝置100的橫方向當作X軸方向,將凍結真空乾燥裝置100的前後方向當作Y軸方向。
圖1所示的凍結真空乾燥裝置100係具備真空容器10、噴霧部20、管部30A、加熱部40、收集部50、冷卻阱(cold trap)60、排氣機構70及原料容器201。在凍結真空乾燥裝置100中,於噴霧部20與收集部50之間配置有管部30A及加熱部40。在本實施形態中,將噴霧部20側當作上側,將收集部50側當作下側。
真空容器10係藉由排氣機構70而被維持在500Pa以下的減壓環境氣體下,較佳為被維持在100Pa以下的減壓環境氣體下。在被維持於這樣的減壓環境氣體下的真空容器10內,水成為依據水的相位平衡狀態圖為溫度70K(Kelvin;克耳文)以上的固體(冰)或氣體(水蒸氣)中任一方的相位。亦即,在本實施形態的真空容器10內係成為液體(水)不易存在而固體(冰)或氣體(水蒸氣)存在的環境。
噴霧部20係具有本體部21與噴嘴(nozzle)部22。噴霧部20係將貯留於原料容器201的原料液200作為液滴210對真空容器10內噴霧。例如,貯留於原料容器201的原料液200係經由管202被供給到本體部21。被供給到本體部21的原料液200係從噴嘴部22成為液滴210而對著真空容器10內被噴霧。噴嘴部22的噴射口之孔徑是例如50μm以上至400μm以下。又,噴霧壓係0.3MPa以下。作為原料液200而言,使粉末食品、粉末飲料、醫藥品等於水等之溶劑中分散的液體是符合的。
噴嘴部22與管部30A之開口端301(第一開口端)的距離係至少300mm。液滴210係例如在從噴霧部20朝向管部30A的方向成為列狀而落下,在管部30A的開口端301落下前會自我凍結。亦即,液體從噴霧部20被柱狀地噴出後,因液體之表面張力的效果變化成列狀的液滴210,該液滴210藉由被除去氣化熱而自我凍結。例如,液滴210在噴嘴部22的前端下方300mm的位置自我凍結而成為凍結粒子220。液滴210自我凍結所形成之凍結粒子220係在管部30A的開口端301落下。液滴210在開口端301掉落前自我凍結所形成之凍結粒子220係成為列狀而從噴霧部20朝向管部30A落下。凍結粒子220的平均粒徑係100μm以上至600μm以下。
管部30A係被配置在噴霧部20與收集部50之間。管部30A並非是在Z軸方向上直線狀地構成,而是非直線狀地構成。例如,如圖1所示,管部30A係在從噴霧部20朝向收集部50的方向具有螺旋軸30r,且在噴霧部20與收集部50之間迴旋成螺旋狀。管部30A只要是非直線狀即可,例如可以是蛇行狀。
螺旋狀的管部30A係具有本體部310,且在本體部310的兩端具有開口端301與開口端302(第二開口端)。開口端301係位於噴嘴部22的正下方。管部30A係將液滴210自我凍結所形成的凍結粒子220從開口端301捕捉。如圖所示,開口端301附近的入口係具有愈向噴霧部20內徑就愈擴張的楔形(taper)構造。藉此,朝向開口端301落下的凍結粒子220會確實地在管部30A內被捕捉。
在管部30A內被捕捉的凍結粒子220係藉由液滴210被噴霧時得到的動能而在管部30A內從開口端301朝向開口端302移動,不往管部30A外飛散。進一步地,在噴霧部20被配置在上側且收集部50被配置在下側的本構成中,重力也對凍結粒子220作用。亦即,凍結粒子220係藉由液滴210被噴霧時得到的動能或重力而在管部30A內從開口端301朝向開口端302移動。
因此,凍結粒子220並非是從開口端301的位置到開口端302的位置直線狀地落下,而是藉由螺旋狀的本體部310的存在從開口端301的位置迂迴地到達開口端302的位置。
加熱部40係在管部30A內加熱藉由噴霧時得到的動能而在管部30A內從開口端301朝向開口端302移動的凍結粒子220,藉此將凍結粒子220昇華乾燥。在圖1的例子中,加熱部40係具有用高頻率加熱凍結粒子220的加熱機構。例如,加熱部40係具有內部電極411、外部電極412及高頻率電源420。
內部電極411例如是圓筒狀的網狀電極(mesh electrode),且被配置在管部30A的內側。內部電極411的中心軸係與管部30A的螺旋軸30r一致。外部電極412例如是圓筒狀的網狀電極,且被配置在管部30A的外側。外部電極412的中心軸係與管部30A的螺旋軸30r一致。
高頻率電源420係在內部電極411與外部電極412之間施加高頻率電場。例如,於內部電極411藉由高頻率電源420施加有正電位的情形下,於外部電極412係施加有接地電位(或負電位);於外部電極412施加有正電位的情形下,於內部電極411係施加有接地電位(或負電位)。由於管部30A的本體部310係被內部電極411與外部電極412包夾,故於本體部310係均勻地分布有高頻率電場。
例如,在原料液200之溶劑為水的情形下,作為從高頻率電源420所釋放之高頻頻率,例如可從200kHz到13.56MHz間選擇。此種頻率之高頻率電場係有效率地被凍結粒子220的冰(水結晶)所吸收。藉此,凍結粒子220的冰部分被選擇性地暖化。因此,在管部30A內,凍結粒子220的冰部分成為水蒸氣而昇華乾燥,在管部30A內形成有已從凍結粒子220去除冰的乾燥粒子230。進一步地,根據對移動中的微粒子賦予交變電場的情形,比起處理堆積在容器、盤等之塊(bulk)狀的微粒子,能夠實現均勻的加熱。特別是,在利用浸透深度低的高頻率電源的情形下,能得到顯著的功效。
已在管部30A內產生的水蒸氣係從開口端301或開口端302被釋放,在真空容器10內被冷卻阱60所捕獲。又,由於內部電極411與外部電極412為網狀電極,水蒸氣係能夠分別通過內部電極411及外部電極412,抑制在電極內部的滯留。另外,在圖1的例子中,雖然冷卻阱60係被設在開口端301的附近,但也可以配置在開口端302的附近。冷卻阱60也可以分別被配置在開口端301及開口端302的附近。
因昇華乾燥而已在管部30A內形成之乾燥粒子230係藉由自帶的動能或重力的影響,從管部30A的開口端301被釋放。從開口端301被釋放的乾燥粒子230係落下到被配置於開口端301之下方的收集部50,被該收集部50所收集。
收集部50係例如具有收集容器51與運送機構52。運送機構52係能夠將位於開口端302下方的收集容器51交換成其他的收集容器51。例如,在一個收集容器51已收集有預定量的乾燥粒子230的情形下,新的收集容器51藉由運送機構52而被配置到開口端301的下方。藉由該新的收集容器51來重新收集乾燥粒子230。亦即,在凍結真空乾燥裝置100中,能夠大量且經長時間地進行乾燥粒子230的收集作業。
作為管部30A材料而言,較佳為與接觸的凍結粉體之摩擦係數為最小的樹脂製。進一步地,較佳為應用乾燥中的氣體(蒸氣)容易透過之氣體透過性的樹脂。樹脂對冰的附著力是金屬對冰的附著力之1/10左右,藉著使用樹脂製的管部30A,凍結粒子220會變得不易附著於管部30A的內壁。又,以冰而言,有著冰的溫度愈高則對樹脂的附著力愈減少的傾向。因此,藉著藉由加熱部40來加熱凍結粒子220,凍結粒子220會變得不易附著於管部30A的內壁。進一步地,在水分子從凍結粒子220被釋放時,凍結粒子220會從水分子受到與水分子釋放的方向相反的反彈力,變得難以附著於管部30A的內壁。另外,在管部30A中,為了確實地抑制凍結粒子220對管部30A的附著,也可以施加超音波等的振動。
圖2中的(a)係表示凍結粒子的移動時間(橫軸)與凍結粒子的溫度(左縱軸)之關係以及表示凍結粒子的移動時間與凍結粒子的重量(右縱軸)之關係的模擬圖。圖2中的(b)係表示凍結粒子的移動時間(橫軸)與凍結粒子的速度(左縱軸)之關係以及表示凍結粒子的移動時間與凍結粒子的迴旋次數(右縱軸)之關係的模擬圖。在這裡,凍結粒子220的粒徑係設為300μm,管部30A的螺旋徑係設為0.4m,被供給至管部30A的電力係設為38W。又,橫軸的左端係相當於內部電極411(或外部電極412)之上端的位置。
如圖2中的(a)所示,當被收集到管部30A內之凍結粒子220一邊在管部30A內移動一邊開始被加熱部40加熱時,凍結粒子220的溫度與凍結粒子220的移動時間一起上升。然後,加熱部40的重量在移動時間成為1.3秒的時間點急遽地減少。這意味著冰部分從凍結粒子220被去除而凍結粒子220成為乾燥粒子230且重量急遽地減少的情形。
另一方面,如圖2中的(b)所示,雖然凍結粒子220的速度當初是20m/秒,不過隨著移動時間的經過逐漸地變慢,在重量急遽地減少的時間點下降到6.5m/秒。這是因為隨著凍結粒子220在螺旋狀的管部30A內移動凍結粒子220受到來自管部30A之摩擦的負荷的緣故。但是,就算是在凍結粒子220的重量急遽地減少的時間點,也表示著凍結粒子220的速度依然維持在6.5m/秒且凍結粒子220不在管部30A的內部停止的情形。
又,凍結粒子220的迴旋次數因應凍結粒子220的移動時間經過而增加。此與凍結粒子220之移動距離變長的情形對應。例如,可知要凍結粒子220的重量急遽地減少,亦即要凍結粒子220成為乾燥粒子230,則需要10次的迴旋。換言之,可知在將管部30A的螺旋徑設定成0.4m時,使管部30A的本體部310迴旋10次以上的話,凍結粒子220會確實地成為乾燥粒子230。
在過去的凍結真空乾燥裝置中,例如採用以下方式:使原料液200在真空容器10內凍結乾燥,不經由管部30A地將凍結粒子直接回收到收集容器51,以熱傳導方式從支撐收集容器51的支撐台將該凍結粒子予以乾燥。在此方式中,例如要在真空容器10(壓力:維持10Pa)內使10公升的原料液200(濃度:10 vol %)凍結乾燥且將凍結粒子收集在收集容器51後製作乾燥粒子,可知要1小時的乾燥,產生9公升的氣體,且需要6.4kW作為電力。
相對於此,使用凍結真空乾燥裝置100的話,由於直徑200μm的凍結粒子以20m/秒的落下速度被噴霧且於1秒左右被乾燥,故可知為6.3×10-7 (m3 /sec)的氣體產生量,所需電力係1.6kW左右。
如此,根據凍結真空乾燥裝置100,對真空容器10內噴霧的液滴210自我凍結而形成的凍結粒子220被誘導到非直線狀的管部30A內,藉由加熱部40而在管部30A內昇華乾燥。然後,凍結粒子220在管部30A內成為乾燥粒子230,乾燥粒子230被收集到收集部50。
也就是說,在凍結真空乾燥裝置100中,凍結粒子220並非直接地落下到收集部50,而是在被收集到收集部50之前藉由非直線狀的管部30A而迂迴,在長距離的移動中藉由加熱部40所加熱。然後,由於使用會被冰吸收之頻帶的高頻率電場作為加熱手法,故有效率地將凍結粒子220昇華乾燥。凍結粒子220的乾燥時間係數秒以內。又,加熱電力也被抑制得低。
因此,在凍結真空乾燥裝置100中,原料液200在短時間被凍結真空乾燥且照順序替換收集容器51,藉此能夠得到大量的乾燥粒子230。又,在凍結真空乾燥裝置100中,裝置的小型化變為可能,不需要大型的排氣機構70。藉此實現低成本化。
例如,螺旋徑為0.4m且迴旋10次之管部30A的長度係大約10m。不使用非直線狀的管部30A而要與凍結真空乾燥裝置100同樣地作用,則需要使噴霧部20與收集部50之間的距離隔開10m左右。原因是,藉著凍結粒子220移動10m會成為乾燥粒子230。因此,在這樣的裝置構成中,裝置會變成大型並且需要大型的排氣機構,招致成本上升。
又,在凍結真空乾燥裝置100中,由於凍結粒子220係於昇華乾燥中在管部30A內移動,故抑制凍結粒子220在真空容器10內的飛散。又,由於凍結粒子220乾燥後的乾燥粒子230被收集到收集容器51,不易發生乾燥粒子230從收集容器51的飛散。藉此,乾燥粒子230的回收率提升。例如,若將凍結粒子220收容於盤並以熱傳導方式從支撐盤的支撐台將凍結粒子220乾燥的話,凍結粒子220係受到從凍結粒子220飛出來的水蒸氣之反彈與氣體的流動而有從盤向真空容器10內飛散的可能性。
接下來,說明凍結真空乾燥裝置的變形例。
(變形例1)
圖3係表示本實施形態之凍結真空乾燥裝置的變形例1之示意圖。於圖3係例示有變形例1之凍結真空乾燥裝置101的管部30B。管部30B以外的凍結真空乾燥裝置101之構成係與凍結真空乾燥裝置100為相同。
在管部30B中,於開口端301與開口端302之間至少設有一個開口部320。開口部320係藉由在第一接頭部321插入有第二接頭部322而構成,該第一接頭部321係被設在管部30B的一部分且內徑比管部30B的外徑更大,該第二接頭部322係被設在管部30B的一部分且與第一接頭部321對向。第一接頭部321係被設得比第二接頭部322更下游。
在第一接頭部321與第二接頭部322之間設有間隙,藉此形成開口部320。從開口部320係釋放藉由凍結粒子220在管部30B內移動中昇華乾燥而產生的氣體(例如水蒸氣)。
又,於第一接頭部321與第二接頭部322之間也可以設置有過濾(filter)構件,該過濾構件係僅將氣體(水蒸氣)向管部30B外釋放,不將凍結粒子220向管部30B外釋放。過濾構件係由例如金屬網、多孔材料(porous material)等所構成。
根據凍結真空乾燥裝置101,由於管部30B至少具有一個將氣體向管部30B外釋放的開口部320,故藉由凍結粒子220在管部30B內昇華乾燥而釋放的水蒸氣被有效率地向管部30B外釋放。藉此,乾燥時間進一步地變短。又,由於管部30B內的水蒸氣壓比管部30A內的水蒸氣壓變得低,故變得不易產生水蒸氣在管部30B藉由高頻率電場而電離所形成的電漿(plasma)。
(變形例2)
圖4係表示本實施形態之凍結真空乾燥裝置的變形例2之示意性側視圖。
在圖4所示的凍結真空乾燥裝置102中,加熱部43具有用熱輻射將凍結粒子220加熱的加熱機構。例如,加熱部43係具有內部加熱器(internal heater)431與外部加熱器(external heater)432。管部30A可以換成管部30B。
內部加熱器431例如為圓筒狀,且被配置在管部30A的內側。內部加熱器431的中心軸係與管部30A的螺旋軸30r一致。外部加熱器432例如為圓筒狀,且被配置在管部30A的外側。外部加熱器432的中心軸係與管部30A的螺旋軸30r一致。內部加熱器431及外部加熱器432例如是碳製的加熱器。又,在凍結真空乾燥裝置102中,管部30A係藉由玻璃、石英等所構成。藉此,從內部加熱器431及外部加熱器432所發出的輻射熱傳導到管部30A的內部。
根據凍結真空乾燥裝置102,在管部30A內移動的凍結粒子220係藉由從內部加熱器431及外部加熱器432所發出的輻射熱(例如紅外線)而被加熱,凍結粒子220在管部30A內昇華乾燥。然後,在凍結真空乾燥裝置102中也是藉由收集部50來收集乾燥粒子230。
(變形例3)
圖5係表示本實施形態之凍結真空乾燥裝置的變形例3之示意性側視圖。
在圖5所示的凍結真空乾燥裝置103中,加熱部40係由複數個單元所構成,複數個單元能夠各自獨立地加熱凍結粒子220。例如,加熱部40係具有上部加熱部40A與下部加熱部40B。另外,複數個單元並不限於兩個,也可以是三個以上。另外,管部30A可以換成管部30B。
上部加熱部40A係具有上部內部電極411A、上部外部電極412A及上部高頻率電源420A。下部加熱部40B係具有下部內部電極411B、下部外部電極412B及下部高頻率電源420B。上部加熱部40A係在Z軸方向上與下部加熱部40B隔離開。
上部內部電極411A例如是圓筒狀的網狀電極,且被配置在管部30A的上部內側。在這裡,所謂的上部係當作管部30A的上半部分。上部內部電極411A的中心軸係與管部30A的螺旋軸30r一致。上部外部電極412A例如是圓筒狀的網狀電極,且被配置在管部30A的上部外側。上部外部電極412A的中心軸係與管部30A的螺旋軸30r一致。上部高頻率電源420A係在上部內部電極411A與上部外部電極412A之間施加高頻率電場(200kHz或13.56MHz)。
下部內部電極411B例如是圓筒狀的網狀電極,且被配置在管部30A的下部內側。在這裡,所謂的下部係當作管部30A的下半部分。下部內部電極411B的中心軸係與管部30A的螺旋軸30r一致。下部外部電極412B例如是圓筒狀的網狀電極,且被配置在管部30A的下部外側。下部外部電極412B的中心軸係與管部30A的螺旋軸30r一致。下部高頻率電源420B係在下部內部電極411B與下部外部電極412B之間施加高頻率電場(200kHz或13.56MHz)。
若為此種構成,則能夠針對管部30A部分地改變從加熱部40對管部30A投入的電力。
例如,藉由將上部加熱部40A所造成的投入電力設得比下部加熱部40B更大,能夠將在管部30A之上部的加熱溫度設定得比在管部30A之下部的加熱溫度更高。例如,在凍結粒子220含有很多冰之初期到中期的昇華乾燥中,藉由上部加熱部40A以高的投入電力使凍結粒子220乾燥,而在凍結粒子220的冰已減少之中期以後的昇華乾燥中,藉由下部加熱部40B以低的投入電力使凍結粒子220昇華乾燥。
根據此種手法,在凍結粒子220含有很多冰之初期到中期階段的昇華乾燥的時間變短,並且在冰已減少之中期以後的階段裡不易將電力所造成的傷害給予凍結粒子220所含之水以外的物質。因此,能夠得到更高品質的乾燥粒子230。
以上,對本發明的實施形態進行了說明,不過本發明並非限定於上述實施形態,當然可以施加各種變更。各實施形態並不限於獨立的形態,只要技術上可能的話能夠進行複合。
10‧‧‧真空容器 20‧‧‧噴霧部 21、310‧‧‧本體部 22‧‧‧噴嘴部 30A、30B‧‧‧管部 30r‧‧‧螺旋軸 40、43‧‧‧加熱部 40A‧‧‧上部加熱部 40B‧‧‧下部加熱部 50‧‧‧收集部 51‧‧‧收集容器 52、80‧‧‧運送機構 60‧‧‧冷卻阱 70‧‧‧排氣機構 100、101、102、103‧‧‧凍結真空乾燥裝置 200‧‧‧原料液 201‧‧‧原料容器 202‧‧‧管 210‧‧‧液滴 220‧‧‧凍結粒子 230‧‧‧乾燥粒子 301‧‧‧開口端(第一開口端) 302‧‧‧開口端(第二開口端) 320‧‧‧開口部 321‧‧‧接頭部(第一接頭部) 322‧‧‧接頭部(第二接頭部) 411‧‧‧內部電極 412‧‧‧外部電極 411A‧‧‧上部內部電極 411B‧‧‧下部內部電極 412A‧‧‧上部外部電極 412B‧‧‧下部外部電極 420‧‧‧高頻率電源 420A‧‧‧上部高頻率電源 420B‧‧‧下部高頻率電源 431‧‧‧內部加熱器 432‧‧‧外部加熱器
圖1係表示本實施形態之凍結真空乾燥裝置的示意性側視圖。 圖2中的(a)係表示凍結粒子的移動時間(橫軸)與凍結粒子的溫度(左縱軸)之關係以及表示凍結粒子的移動時間與凍結粒子的重量(右縱軸)之關係的模擬圖(simulation graph)。圖2中的(b)係表示凍結粒子的移動時間(橫軸)與凍結粒子的速度(左縱軸)之關係以及表示凍結粒子的移動時間與凍結粒子的迴旋次數(右縱軸)之關係的模擬圖。 圖3係表示本實施形態之凍結真空乾燥裝置的變形例1之示意圖。 圖4係表示本實施形態之凍結真空乾燥裝置的變形例2之示意性側視圖。 圖5係表示本實施形態之凍結真空乾燥裝置的變形例3之示意性側視圖。
10‧‧‧真空容器
20‧‧‧噴霧部
21、310‧‧‧本體部
22‧‧‧噴嘴部
30A‧‧‧管部
30r‧‧‧螺旋軸
40‧‧‧加熱部
50‧‧‧收集部
51‧‧‧收集容器
52‧‧‧運送機構
60‧‧‧冷卻阱
70‧‧‧排氣機構
100‧‧‧凍結真空乾燥裝置
200‧‧‧原料液
201‧‧‧原料容器
202‧‧‧管
210‧‧‧液滴
220‧‧‧凍結粒子
230‧‧‧乾燥粒子
301‧‧‧開口端(第一開口端)
302‧‧‧開口端(第二開口端)
411‧‧‧內部電極
412‧‧‧外部電極
420‧‧‧高頻率電源

Claims (9)

  1. 一種凍結真空乾燥裝置,係具備: 噴霧部,係將原料液對真空容器內噴霧; 非直線狀的管部,係具有第一開口端與第二開口端,且從前述第一開口端捕捉凍結粒子,前述凍結粒子係前述原料液向前述真空容器內噴霧而形成之液滴自我凍結所形成; 加熱部,係將藉由噴霧時得到的動能在前述管部內從前述第一開口端朝向前述第二開口端移動的前述凍結粒子於前述管部內加熱,藉此昇華乾燥前述凍結粒子;以及 收集部,係收集乾燥粒子,前述乾燥粒子係藉由前述凍結粒子在前述管部內昇華乾燥所形成且從前述管部的前述第二開口端被釋放。
  2. 如請求項1所記載之凍結真空乾燥裝置,其中前述管部係在從前述噴霧部朝向前述收集部的方向具有迴旋軸,且在前述噴霧部與前述收集部之間迴旋成螺旋狀。
  3. 如請求項1或2所記載之凍結真空乾燥裝置,其中前述管部係至少具有一個開口部,前述開口部係能夠在前述第一開口端與前述第二開口端之間將藉由前述凍結粒子在前述管部內移動中昇華乾燥而產生的氣體往前述管部外釋放。
  4. 如請求項1或2所記載之凍結真空乾燥裝置,其中前述管部係由氣體透過性的樹脂所構成。
  5. 如請求項1或2所記載之凍結真空乾燥裝置,其中前述加熱部係具有用高頻率將前述凍結粒子加熱的加熱機構。
  6. 如請求項1或2所記載之凍結真空乾燥裝置,其中前述加熱部係具有用熱輻射將前述凍結粒子加熱的加熱機構。
  7. 如請求項1或2所記載之凍結真空乾燥裝置,其中前述加熱部係由複數個單元所構成,且複數個前述單元能夠各自獨立地加熱前述凍結粒子。
  8. 如請求項1或2所記載之凍結真空乾燥裝置,其中更具備能夠將前述收集部交換成其他收集部的運送機構。
  9. 一種凍結真空乾燥方法,係包含以下步驟: 將原料液對真空容器內噴霧; 使用具有第一開口端與第二開口端之非直線狀的管部,從前述第一開口端捕捉凍結粒子,前述凍結粒子係前述原料液向前述真空容器內噴霧而形成之液滴自我凍結所形成; 將藉由噴霧時得到的動能在前述管部內從前述第一開口端朝向前述第二開口端移動的前述凍結粒子於前述管部內加熱,藉此昇華乾燥前述凍結粒子;以及 收集乾燥粒子,前述乾燥粒子係藉由前述凍結粒子在前述管部內昇華乾燥所形成且從前述管部的前述第二開口端被釋放。
TW108118301A 2018-06-08 2019-05-28 凍結真空乾燥裝置以及凍結真空乾燥方法 TW202001172A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-110092 2018-06-08
JP2018110092 2018-06-08

Publications (1)

Publication Number Publication Date
TW202001172A true TW202001172A (zh) 2020-01-01

Family

ID=68770168

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108118301A TW202001172A (zh) 2018-06-08 2019-05-28 凍結真空乾燥裝置以及凍結真空乾燥方法

Country Status (4)

Country Link
US (1) US11112176B2 (zh)
CN (1) CN111065874B (zh)
TW (1) TW202001172A (zh)
WO (1) WO2019235036A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202202792A (zh) 2020-05-18 2022-01-16 日商Mii股份有限公司 真空凍結乾燥裝置及真空凍結乾燥方法
JP6777350B1 (ja) 2020-05-18 2020-10-28 株式会社エムアイアイ 真空凍結乾燥装置及び真空凍結乾燥方法
JP6887050B1 (ja) * 2020-08-07 2021-06-16 株式会社アルバック 真空凍結乾燥方法および真空凍結乾燥装置
CA3173146C (en) * 2020-11-16 2023-10-31 Joel Peter LENNON-MEYER Continuous throughput lyophilizer/powder filler within a sterile boundary
CN112611166B (zh) * 2020-12-09 2022-06-03 赤水市信天中药产业开发有限公司 一种石斛饮片制备用冷冻干燥装置及干燥方法
JP7085088B1 (ja) 2021-08-03 2022-06-16 株式会社エムアイアイ 凍結乾燥物
CN113847783B (zh) * 2021-09-13 2022-08-23 常州大学 一种适用于六安瓜片的多能耦合旋风式茶叶干燥系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228838A (en) * 1959-04-23 1966-01-11 Union Carbide Corp Preservation of biological substances
US3731392A (en) * 1971-02-25 1973-05-08 H Gottfried Continuous freeze dryer
US4033048A (en) * 1976-01-12 1977-07-05 Clayton Van Ike Freeze drying apparatus
JPH0615001B2 (ja) 1984-09-04 1994-03-02 株式会社クメタ製作所 噴霧乾燥装置
US6223455B1 (en) 1999-05-03 2001-05-01 Acusphere, Inc. Spray drying apparatus and methods of use
JP3741361B2 (ja) * 2001-04-04 2006-02-01 共和真空技術株式会社 食品・薬品等の凍結乾燥装置および凍結乾燥方法
JP4180551B2 (ja) * 2004-09-27 2008-11-12 株式会社アルバック 凍結真空乾燥装置および凍結真空乾燥方法
JP2006177640A (ja) * 2004-12-24 2006-07-06 Ulvac Japan Ltd 凍結真空乾燥装置
NZ550563A (en) * 2006-10-16 2009-01-31 Agres Ltd Improvements in spray freeze drying
CN101464091B (zh) 2008-12-31 2011-01-26 张文华 尾气循环式螺旋管气流干燥器及其干燥方法
WO2012063678A1 (ja) * 2010-11-12 2012-05-18 株式会社アルバック 凍結真空乾燥装置
EP2578974A1 (en) * 2011-10-05 2013-04-10 Sanofi Pasteur Sa Process line for the production of freeze-dried particles
JP6138477B2 (ja) 2012-12-13 2017-05-31 中部電力株式会社 真空凍結乾燥装置及び真空凍結乾燥方法
CN203443286U (zh) * 2013-07-05 2014-02-19 山东新华医疗器械股份有限公司 一种连续生产型冻干机
CN206390193U (zh) * 2016-12-29 2017-08-11 粉嫩公主生物科技有限公司耒阳分公司 一种食品干燥灭菌用冻干装置

Also Published As

Publication number Publication date
CN111065874B (zh) 2020-12-29
CN111065874A (zh) 2020-04-24
WO2019235036A1 (ja) 2019-12-12
US11112176B2 (en) 2021-09-07
US20210080179A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
TW202001172A (zh) 凍結真空乾燥裝置以及凍結真空乾燥方法
JP5230034B2 (ja) 凍結乾燥装置
US10617974B2 (en) Method and apparatus for extracting botanical oils
TWI528909B (zh) Vacuum spray drying method and vacuum spray drying device
JP7038435B2 (ja) 噴霧凍結造粒乾燥粉体製造装置及び噴霧凍結造粒乾燥粉体製造システム
US8365432B2 (en) Freeze-drying method and freeze-drying apparatus
CN106268503B (zh) 一种液氮喷雾冷冻造粒真空干燥装置和工作方法
WO2010005021A1 (ja) 凍結乾燥装置及び凍結乾燥方法
JP2003524142A (ja) 粒子状の物品の製造方法
JPS59210291A (ja) 加熱乾燥方法及び装置
JP4180551B2 (ja) 凍結真空乾燥装置および凍結真空乾燥方法
JP2006177640A (ja) 凍結真空乾燥装置
RU2484397C2 (ru) Способ образования технологического пара
JP6616053B1 (ja) 凍結真空乾燥装置及び凍結真空乾燥方法
KR100795347B1 (ko) 진공발생분사기와 스핀관건조유닛과 이들이 구비되는슬러지 건조시스템 및 그 건조방법
KR100801562B1 (ko) 복합 가열형 분무식 동결건조기
CN103237604A (zh) 粉体的粉碎方法
RU2570536C1 (ru) Установка для сушки и агломерации пищевых сред
RU2710070C1 (ru) Распылительная сушилка для флотационной пульпы
JP5204804B2 (ja) 乾燥庫を直立円筒形のチューブとした凍結乾燥機におけるチューブ内の被乾燥材料中の残存水分の除去装置及び残存水分の除去方法
JP6402309B2 (ja) 乾燥粉体の生成方法及び装置並びに噴霧装置組立体
JPH01167580A (ja) マイクロ波加熱処理装置
RU2341740C1 (ru) Сушильная установка с инертной насадкой
JPWO2008004407A1 (ja) 粉砕乾燥方法および粉砕乾燥装置
RU2353351C1 (ru) Способ выделения из жидкой среды термочувствительных лекарственных препаратов и установка для его осуществления