WO2021186862A1 - 粒状核剤、樹脂組成物およびその製造方法ならびに成形品 - Google Patents

粒状核剤、樹脂組成物およびその製造方法ならびに成形品 Download PDF

Info

Publication number
WO2021186862A1
WO2021186862A1 PCT/JP2021/000817 JP2021000817W WO2021186862A1 WO 2021186862 A1 WO2021186862 A1 WO 2021186862A1 JP 2021000817 W JP2021000817 W JP 2021000817W WO 2021186862 A1 WO2021186862 A1 WO 2021186862A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleating agent
granular nucleating
general formula
granular
mass
Prior art date
Application number
PCT/JP2021/000817
Other languages
English (en)
French (fr)
Inventor
亘 杉山
悠里 横田
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to CN202180004180.9A priority Critical patent/CN114026163B/zh
Priority to US17/613,689 priority patent/US11795296B2/en
Priority to BR112021023557-4A priority patent/BR112021023557B1/pt
Priority to EP21771414.6A priority patent/EP3964547A4/en
Priority to KR1020227004345A priority patent/KR102472825B1/ko
Publication of WO2021186862A1 publication Critical patent/WO2021186862A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/527Cyclic esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/24Crystallisation aids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene

Definitions

  • the present invention relates to a granular nucleating agent, a resin composition, a method for producing the same, and a molded product.
  • Patent Document 1 describes that a nucleating agent (hereinafter, a crystal nucleating agent, a crystallization accelerator, a clearing agent, etc. are collectively referred to as a "nucleating agent”) is added to a polyolefin-based resin. (Claim 1 of Patent Document 1 etc.).
  • a phosphate ester salt is exemplified as a nucleating agent (paragraph 0014 of Reference 1).
  • a general granular nucleating agent is added to and melt-kneaded in a thermoplastic resin as a powder or granular material, and is used for heat molding processing of the thermoplastic resin.
  • the feed stability may be lowered due to the influence of various powder physical properties of the granular nucleating agent. Decreased feed stability leads to reduced manufacturing stability of the molding process.
  • the feed stability can be improved by containing phosphate ions in the granular nucleating agent.
  • the additives other than the granular nucleating agent contained in the polyolefin resin react with the phosphate ions.
  • the molded product obtained by molding the polyolefin-based resin was colored.
  • a granular nucleating agent containing at least one of the compounds represented by the following general formula (1) is provided is a granular nucleating agent in which the content of phosphate ions in the granular nucleating agent, which is determined according to the following measurement procedure, is 5 ppm or more and 8000 ppm or less based on the mass of the compound represented by the following general formula (1).
  • NS. Measurement procedure 1. 1. Measure the granular nucleating agent. 2. To the granular nucleating agent, 100 parts by mass of xylene, 18 parts by mass of isopropyl alcohol and 20 parts by mass of pure water are added to 3 parts by mass of the compound represented by the general formula (1) to obtain a mixed solution in a container.
  • the liquid in the container is filtered using a membrane filter having a pore size of 0.45 ⁇ m to obtain a filtrate, and then the phosphate ion concentration in the filtrate is quantified by ion chromatography. 8. Based on the phosphate ion concentration in the filtrate, the phosphate ion content (ppm) based on the mass of the compound represented by the general formula (1) is calculated.
  • R 1 to R 4 independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 9 carbon atoms
  • R 5 is a hydrogen atom or 1 to 9 carbon atoms.
  • a resin composition containing the above granular nucleating agent in a polyolefin-based resin.
  • a method for producing a resin composition which comprises a step of adding the above-mentioned granular nucleating agent to a polyolefin-based resin.
  • a granular nucleating agent having excellent feed stability and capable of sufficiently suppressing coloring of a molded product obtained by molding a polyolefin-based resin when added to a polyolefin-based resin, and a resin composition using the same.
  • a product, a method for producing the product, and a molded product are provided.
  • the granular nucleating agent of this embodiment will be described.
  • the granular nucleating agent contains an aromatic phosphate metal salt.
  • aromatic phosphate metal salt a compound represented by the following general formula (1) is used. These may be used alone or in combination of two or more.
  • R 1 to R 4 independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 9 carbon atoms, and R 5 is a hydrogen atom or 1 to 4 carbon atoms.
  • M 1 is a hydrogen atom, an alkali metal atom or Al (OH) 2
  • M 1 is an alkaline soil. Represents a metal atom, Al (OH) or Zn.
  • Examples of the alkyl group having 1 to 9 carbon atoms represented by R 1 , R 2 , R 3 and R 4 in the above general formula (1) include a methyl group, an ethyl group, a propyl group and an isopropyl group. Examples thereof include butyl group, sec-butyl group, tert-butyl group, isobutyl group, amyl group, isoamyl group, tert-amyl group, hexyl group, cyclohexyl group, heptyl group, isoheptyl group and tert-heptyl group.
  • examples of the alkali metal atom represented by M 1 include sodium (Na), potassium (K), lithium (Li) and the like.
  • sodium and lithium are preferable because the nuclear agent effect of the nuclear agent component is remarkable, and sodium is particularly preferable.
  • Examples of the alkaline earth metal atom represented by M 1 in the general formula (1) include beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra). ), And among these, magnesium and calcium are preferable because the nuclear agent effect of the nuclear agent component is remarkable.
  • a compound having m of 1 is preferable.
  • a compound in which R 1 , R 2 , R 3 and R 4 have a kind of group selected from the group consisting of a methyl group, an ethyl group, a sec-butyl group and a tert-butyl group is preferable, and a methyl group and a tert are preferable.
  • a compound having a kind of group selected from the group consisting of a butyl group is more preferable, and a compound having a tert-butyl group is particularly preferable.
  • compounds wherein R 5 is hydrogen atom or a methyl group are preferred, compounds wherein a hydrogen atom is particularly preferred.
  • the compound represented by the general formula (1) preferably contains one or more compounds represented by any of the following chemical formulas (2) to (15).
  • the compound represented by any of the chemical formulas (2) to (8) is preferable, and the compound represented by any of the chemical formulas (5) to (8) is more preferable.
  • the compound represented by either the chemical formula (5) or the chemical formula (7) is more preferable, and the compound represented by the chemical formula (5) is particularly preferable.
  • the compound represented by any of the chemical formulas (9) to (15) is preferable, and the compound represented by any of the chemical formulas (9) to (12) is more preferable.
  • the compound represented by either 9) or the chemical formula (12) is more preferable, and the compound represented by the chemical formula (12) is particularly preferable.
  • phosphorus trichloride or phosphorus oxychloride
  • 2,2'-alkylidenephenol hydrolyzed as necessary.
  • the cyclic acidic phosphoric acid ester is used.
  • the cyclic acidic phosphoric acid ester is reacted with a metal hydroxide such as sodium hydroxide or potassium hydroxide, and the obtained reaction product is appropriately purified (filtered or the like) and dried to obtain the above compound
  • Aromatic phosphate ester metal salt is obtained.
  • an aromatic phosphate metal salt may be synthesized by a conventionally known method and used as the above compound.
  • the obtained compound is dissolved in a solvent and reacted with another metal hydroxide such as lithium hydroxide, or with any salt of aluminum, zinc, or alkaline earth metal atom, and the obtained reaction is carried out.
  • another metal hydroxide such as lithium hydroxide, or with any salt of aluminum, zinc, or alkaline earth metal atom
  • the obtained reaction is carried out.
  • another compound described above can be obtained.
  • the granular nucleating agent of the present embodiment can be obtained by pulverizing the obtained compound by an appropriate pulverizing means, if necessary.
  • coarse particles may be excluded by sieving with a sieve having a predetermined mesh size.
  • the granular nucleating agent may contain one kind or two or more kinds of powdery compounds.
  • the above granular nucleating agent may be obtained by blending two or more kinds of compounds having different particle size distributions or two or more kinds of classified compounds in an appropriate ratio.
  • Examples of the above-mentioned crushing means include a mortar, a ball mill, a rod mill, a tube mill, a conical mill, a vibrating ball mill, a high swing ball mill, a roller mill, a pin mill, a hammer mill, an attrition mill, a jet mill, a jet mizer, a micronizer, and a nanomizer. Examples thereof include a majak mill, a microatomizer, a colloid mill, a premier colloid mill, a micron mill, a charlotte colloid mill, a rotary cutter, and a dry medium stirring mill. These crushers can be used alone or in combination of two or more, and are appropriately selected depending on the type of raw material powder to be crushed, the crushing time, and the like.
  • the granular nucleating agent of the present embodiment may be composed of only the compound represented by the above general formula (1), or may contain other components as long as the object of the present invention is achieved.
  • the other components include nucleating agents other than the compounds represented by the general formula (1), fatty acid metal salts, silicic acid-based inorganic additive components, hydrotalcites, and the like. These may be used alone or in combination of two or more.
  • the granular nucleating agent of the present embodiment preferably contains a fatty acid metal salt in addition to the compound represented by the above general formula (1). In this case, the dispersibility of the granular nucleating agent in the polyolefin resin becomes excellent.
  • the granular nucleating agent of the present embodiment preferably contains a silicic acid-based inorganic additive component in addition to the compound represented by the general formula (1). In this case, the nucleation action of the granular nucleating agent becomes further excellent.
  • nucleating agent other than the compound represented by the general formula (1) examples include sodium benzoate, 4-tert-butyl benzoate aluminum salt, sodium adipate and disodium bicyclo [2.2.1] heptane-.
  • Carboxylic acid metal salts such as 2,3-dicarboxylate and 1,2-dicarboxylate of calcium cyclohexane, dibenzylidene sorbitol, bis (methylbenzylidene) sorbitol, bis (3,4-dimethylbenzylidene) sorbitol, bis (p-) Polypoly derivatives such as ethylbenzylene) sorbitol and bis (dimethylbenzylene) sorbitol, 1,2,3-trideoxy-4,6: 5,7-o-bis (4-propylbenzylidene) nonitol, N, N', N "-Tris [2-methylcyclohexyl] -1,2,3-propanetricarboxamide, N, N
  • the fatty acid metal salt preferably contains, for example, a compound represented by the following general formula (16).
  • R 6 represents an aliphatic group having 9 to 30 carbon atoms having a straight chain or a branch
  • M represents a metal atom
  • n is an integer of 1 to 4
  • the metal of M Represents an integer corresponding to the valence of an atom.
  • examples of the aliphatic group having 9 to 30 carbon atoms having a linear or branched structure in R 6 include an alkyl group and an alkenyl group having 9 to 30 carbon atoms, and these are substituted with a hydroxyl group. It may have been done.
  • fatty acids constituting the fatty acid metal salt examples include capric acid, 2-ethylhexanoic acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, nonadesilic acid and arachidin.
  • Saturated fatty acids such as acids, heicosyl acid, bechenic acid, tricosyl acid, lignoseric acid, cellotic acid, montanic acid, melicic acid, 4-decenoic acid, 4-dodecenoic acid, palmitoleic acid, ⁇ -linolenic acid, linoleic acid, ⁇ - Examples thereof include linear unsaturated fatty acids such as linolenic acid, stearidonic acid, petroseric acid, oleic acid, ellaic acid, baxenoic acid, eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid.
  • the fatty acid metal salt preferably has an aliphatic group represented by R 6 having 10 to 21 carbon atoms, and the fatty acids constituting the fatty acid metal salt are particularly lauric acid, myristic acid, palmitic acid, and the like. Stearic acid, behenic acid, oleic acid and 12-hydroxystearic acid are preferred.
  • Examples of the metal atom represented by M include alkali metal, magnesium, calcium, strontium, barium, titanium, manganese, iron, zinc, silicon, zirconium, yttrium, barium or hafnium.
  • alkali metals such as sodium, lithium and potassium are preferable, sodium and lithium are more preferable, and lithium is particularly preferably used because the crystallization temperature is high.
  • Examples of the silicic acid-based inorganic additive component include fumed silica, fine particle silica, diatomaceous earth, clay, kaolin, silica gel, calcium silicate, sericite, kaolinite, flint, pebbles, sardine, and attapulsite.
  • Examples thereof include talc, mica, minesotite, and pyrophyllite. Among them, those having a layered particle structure and those having a silicon content of 15% by mass or more are preferable.
  • Examples of these preferable inorganic additives include sericite, kaolinite, talc, mica, minesotite, and pyrophyllite, and talc and mica are more preferable, and talc is particularly preferable.
  • the hydrotalcites may be, for example, natural products or synthetic products, and can be used regardless of the presence or absence of surface treatment and the presence or absence of water of crystallization.
  • a basic carbonate represented by the following general formula can be mentioned.
  • M represents an alkali metal or zinc
  • X represents a number of 0 to 6
  • y represents a number of 0 to 6
  • z represents a number of 0.1 to 4
  • p represents a number of M. It represents a valence and n represents the number of crystalline waters from 0 to 100.
  • the granular nucleating agent containing the other components is a granular nucleating agent composition containing the compound represented by the above general formula (1), and is another aromatic phosphoric acid ester metal salt, fatty acid metal salt, or silicic acid type. It may be configured to contain one or more selected from the group consisting of inorganic additive components and hydrotalcites, preferably one or more selected from the group consisting of fatty acid metal salts, talc, mica and hydrotalcites. ..
  • Such a granular nucleating agent can be obtained, for example, by subjecting it to a pulverization treatment in the coexistence of the compound represented by the general formula (1) and other components by appropriately combining the above pulverizing means. Further, the above-mentioned pulverizing means, sieving, blending method and the like can also be used.
  • the granular nucleating agent of the present embodiment functions as a nucleating agent / clearing agent added during the molding process of the polyolefin resin, and improves the crystallization temperature, heat denaturation temperature, flexural modulus, hardness, transparency, etc. ( (Modification effect) can be realized.
  • the molding cycle property can be improved and the productivity can be improved.
  • Particulate nucleating agent of the present embodiment is determined according to the measurement procedure described below, based on the weight of the content of phosphate ion in the granular nucleating agent (PO 4 3-) is the compound represented by the general formula (1) It has a characteristic of 5 ppm or more and 8000 ppm. (Measurement procedure) 1. 1. Measure the granular nucleating agent. 2. To the granular nucleating agent, 100 parts by mass of xylene, 18 parts by mass of isopropyl alcohol and 20 g by mass of pure water are added to 3 parts by mass of the compound represented by the general formula (1) to obtain a mixed solution in a container. 3. 3. The obtained mixed solution is stirred at room temperature for 15 minutes while applying ultrasonic waves. 4.
  • the container is allowed to stand for 30 minutes to separate the organic layer and the aqueous layer. 5. Separate the aqueous layer in the container and distill off the water completely. 6. To the residue in the container, add 10 parts by mass of a 30 mmol / L potassium hydroxide aqueous solution to 3 parts by mass of the compound represented by the general formula (1), and stir for 15 minutes while applying ultrasonic waves. 7. Subsequently, the liquid in the container, the pore size is filtered through a membrane filter of 0.45 [mu] m, after obtaining the filtrate by ion chromatography, phosphate ion in the filtrate of (PO 4 3-) Quantify the concentration. 8. Based on the phosphate ion concentration in the filtrate, the phosphate ion content (ppm) based on the mass of the compound represented by the above general formula (1) is calculated.
  • the content of the compound represented by the general formula (1) in the granular nucleating agent may be calculated from the amount of the compound represented by the general formula (1) used in producing the granular nucleating agent.
  • the organic component in the nucleating agent is analyzed by a known method such as HPLC or GC, the inorganic component is analyzed by a known method such as ICP emission analysis, and the analysis result of the organic component and the analysis result of the inorganic component are combined. You can also decide.
  • the amount of the granular nucleating agent to be measured may be appropriately determined according to the content of the compound represented by the general formula (1) in the granular nucleating agent.
  • the general formula (1) in 1 g of the granular nucleating agent When the content of the compound represented by is A (g), the measured amount of the granular nucleating agent may be 2 ⁇ A (g) to 4 ⁇ A (g).
  • the above measurement procedure 3 If an insoluble matter is present after stirring the mixed solution, the insoluble matter may be removed by a method such as filtration.
  • both the feed stability of the granular nucleating agent and the polyolefin-based resin to which the granular nucleating agent is added can be molded. It has been found that the color tone of the molded product can be appropriately controlled. That is, by setting the phosphate ion content to a predetermined value or more, the feed stability of the granular nucleating agent can be enhanced, and by setting the phosphate ion content to a predetermined value or less, the granular nucleating agent can be made into a polyolefin. It was found that when added to the based resin, the coloring of the molded product obtained by molding the polyolefin resin can be suppressed.
  • the granular nucleating agent By increasing the feed stability of the granular nucleating agent, it is possible to improve the manufacturing stability of the resin molding process using the granular nucleating agent. This is expected to widen the permissible range of powder physical properties of granular nucleating agents in applications such as molding processing and applications of nucleating agents and clearing agents.
  • the molded product has an excellent color tone. Can be realized.
  • the lower limit of the phosphate ion content is 5 ppm or more, preferably 10 ppm or more, more preferably 15 ppm or more, based on the mass of the compound represented by the general formula (1). This makes it possible to improve the feed stability of the granular nucleating agent.
  • the upper limit of the phosphate ion content is 8000 ppm or less, preferably 1000 ppm or less, more preferably 500 ppm or less, still more preferably 200 ppm or less, still more preferably 200 ppm or less, based on the mass of the compound represented by the general formula (1). Is 100 ppm or less.
  • the content of the fat phosphate ion is controlled by appropriately selecting the type and blending amount of each component contained in the granular nucleating agent, the method for synthesizing and preparing the granular nucleating agent, and the like.
  • the use of anhydrous trisodium phosphate in the filtration / cleaning / purification step, the pulverization / classification / blending step, and the preparation step of the granular nucleating agent is the desired value for the content of the phosphate ion. It is mentioned as an element to make a range.
  • the granular nucleating agent may contain an aliphatic amine.
  • the aliphatic amine is a compound in which one to three hydrogen atoms of ammonia are substituted with a hydrocarbon group.
  • the hydrocarbon group may be partially substituted with an oxygen atom or the like. Examples of the hydrocarbon group include an alkyl group and an alcoholic hydroxy group.
  • the aliphatic amine may be any of a primary amine, a secondary amine, and a tertiary amine.
  • the number of carbon atoms of the hydrocarbon group in the aliphatic amine is, for example, 1 to 6, preferably 2 to 5, and more preferably 2 to 4. Feed stability can be improved by selecting an appropriate number of carbon atoms.
  • aliphatic amine examples include aliphatic primary amines such as methylamine, ethylamine, propylamine, isopropylamine, butylamine, isobutylamine, tert-butylamine, amylamine, hexylamine, palmitylamine, ethylenediamine and monoethanolamine.
  • Dimethylamine, diethylamine, dipropylamine, dibutylamine, diamylamine, diethanolamine and other aliphatic secondary amines trimethylamine, triethylamine, tripropylamine, tributylamine, triamylamine, N, N-dimethylamine and other aliphatic Tertiary amines are used.
  • one or more selected from the group consisting of triethylamine, diethylamine, butylamine, and ethanolamine are preferable from the viewpoint of production stability of the granular nucleating agent.
  • the resin composition of the present embodiment contains the above-mentioned granular nucleating agent in a polyolefin-based resin.
  • the method of adding the granular nucleating agent to the polyolefin resin is not particularly limited, and a generally used method can be applied as it is.
  • a method of dry-blending the powder or pellet of the polyolefin resin and the powder of the granular nucleating agent can be used.
  • the above resin composition can be used in various forms, and may be in the form of pellets, granules, or powder, for example. From the viewpoint of handleability, pellets are preferable.
  • polystyrene-based resin examples include polypropylene, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, polybutene-1, poly3-methylpentene, poly4-methylpentene, ethylene / propylene block, and random copolymers.
  • polypropylene high-density polyethylene
  • low-density polyethylene low-density polyethylene
  • linear low-density polyethylene polybutene-1
  • poly3-methylpentene poly4-methylpentene
  • ethylene / propylene block examples include random copolymers.
  • random copolymers examples include polypropylene, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, polybutene-1, poly3-methylpentene, poly4-methylpentene, ethylene / propylene block, and random copolymers.
  • ⁇ -Olefin polymer and the like examples include polypropylene
  • the resin composition of the present embodiment may contain a rubber component such as isoprene rubber, butadiene rubber, and thermoplastic elastomer.
  • the resin composition of the present embodiment preferably contains a polypropylene-based resin in which the effect of using the granular nucleating agent of the present embodiment is remarkably exhibited.
  • the polypropylene-based resin include polypropylene, ethylene / propylene block or random copolymer, ⁇ -olefin / propylene block other than ethylene, random copolymer and the like.
  • Polypropylene-based resins can be used regardless of their extreme viscosity, isometric pentad fraction, density, molecular weight distribution, melt flow rate, rigidity, etc.
  • a polypropylene-based resin as described in Japanese Patent Application Laid-Open No. 195751 can also be preferably used.
  • the content of the granular nucleating agent is usually 0.001 to 10 parts by weight, preferably 0.005 to 8 parts by weight, and more preferably 0.01 to 0.01 parts by weight with respect to 100 parts by weight of the polyolefin resin. It can be within the range of 5 parts by weight. Thereby, the modifying effect of the polyolefin resin can be sufficiently obtained.
  • the resin composition of the present embodiment contains, if necessary, an antioxidant, a light stabilizer, an ultraviolet absorber, a pigment, a filler, a plasticizer, an epoxy compound, a foaming agent, an antistatic agent, a flame retardant, a lubricant, and the like.
  • Additives such as heavy metal deactivators, hydrotalcites, organic carboxylic acids, colorants, siliceous additives, and processing aids can be contained. These may be used alone or in combination of two or more.
  • the antioxidant include phosphorus-based antioxidants, phenol-based antioxidants, thioether-based antioxidants, and the like.
  • the antistatic agent examples include a low molecular weight antistatic agent containing a cationic surfactant, an anionic surfactant, a nonionic surfactant, an amphoteric surfactant, etc., a block polymer having an ionomer or polyethylene glycol as a hydrophilic portion, and the like.
  • examples thereof include polymer-type antistatic agents containing.
  • the flame retardant include halogen-based compounds, phosphoric acid ester-based compounds, phosphoric acid amide-based compounds, melamine-based compounds, polyphosphoric acid melamine salt compounds, fluororesins, metal oxides, and the like.
  • the lubricant examples include hydrocarbon-based, fatty acid-based, aliphatic alcohol-based, aliphatic ester-based, aliphatic amide-based, and metal soap-based lubricants.
  • silicic acid-based additives fumed silica, fine particle silica, talc, diatomaceous earth, clay, kaolin, silica gel, calcium silicate, cericite, kaolinite, flint, pebbles powder, corn, attapargit, talc, mica, minesotite. , Pyrophyllite and the like.
  • the content of the additive in the resin composition is preferably 0.001 to 10 parts by weight, for example, with respect to 100 parts by weight of the polyolefin resin. By setting such a numerical range, the effect of the additive can be improved.
  • the resin composition includes injection-molded products, fibers, flat yarns, biaxially stretched films, uniaxially stretched films, non-stretched films, sheets, heat-molded products, extrusion blow-molded products, injection blow-molded products, injection-stretched blow-molded products, and the like. It can be used for molded products such as deformed extrusion molded products and rotary molded products. Among these, as the molded product, an injection molded product, a film, a sheet, and a thermoformed product are preferable.
  • the method for producing a molded product of the present embodiment includes a step of molding a resin composition based on various molding methods, whereby the above-mentioned molded product can be obtained.
  • the molding method is not particularly limited, and is an injection molding method, an extrusion molding method, a blow molding method, a rotary molding, a vacuum molding method, an inflation molding method, a calendar molding method, a slash molding method, a dip molding method, and a foam molding method. Law etc. can be mentioned.
  • an injection molding method, an extrusion molding method, and a blow molding method are preferable.
  • the resin composition can be used for various purposes such as building materials, agricultural materials, vehicle parts such as automobiles, trains, ships, and aircraft, packaging materials, miscellaneous goods, toys, home appliances, and medical products.
  • automobile parts such as bumpers, dashboards, instrument panels, battery cases, luggage cases, door panels, door trims, and fender liners
  • resin parts for home appliances such as refrigerators, washing machines, and vacuum cleaners
  • tableware bottles Household products such as caps, buckets, bath products
  • Resin parts for connection such as connectors
  • Miscellaneous goods such as toys, storage containers, synthetic paper
  • Medical packs, injectors, catheters, medical tubes, syringe preparations, infusion bags, reagents Medical molded products such as containers, medicine containers, individual packaging of medicines; building materials such as wall materials, flooring materials, window frames, wallpaper, windows; wire coating materials; agricultural materials such as houses, tunnels, flat yarn mesh bags, etc.
  • Industrial materials such as pallets, pail cans, back grind tapes, LCD protective tapes, pipes, modified silicone polymers for sealing materials; food packaging materials such as wraps, trays, cups, films, bottles, caps, storage containers, etc. Examples thereof include 3D printer materials and battery separator films.
  • low-temperature plasma is used for various post-treatment applications, such as medical applications, food packaging applications, and other applications that are sterilized by radiation, or for improving surface properties such as paintability. It can be used for applications such as processing. Among these, it is preferably used for automobile parts, household products, and food packaging materials.
  • Granular nucleating agent 7 135 g of granular nucleating agent 1 and 15 g of talc (trade name: Microace P-4 manufactured by Nippon Talc Co., Ltd.) were uniformly mixed to obtain 150 g of granular nucleating agent 4.
  • Examples 1 to 16, Comparative Examples 1 to 2 Granular nuclei of Examples 4 to 16 and Comparative Example 2 having the phosphate ion content shown in Table 1 by adding a predetermined amount of trisodium anhydrous phosphate to the granular nucleating agents 1 to 7 obtained above. I got the agent. Then, by mixing a predetermined amount of the granular nucleating agent 1 and the granular nucleating agent of Example 4, the granular nucleating agents of Examples 1 to 3 and Comparative Example 1 having the phosphate ion contents shown in Table 1 were obtained. ..
  • the content of phosphate ions (PO 4 3-) in the Examples 1-16, the particulate nucleating agents of Comparative Examples 1 and 2 was determined according to the following measurement procedure.
  • the obtained granular nucleating agent was measured in a 250 mL plastic bottle.
  • the measured amount of the granular nucleating agent was set so that the charged amount of the compound represented by the general formula (1) was 3 g. 2.
  • 100 g of xylene, 18 g of isopropyl alcohol and 20 g of pure water were added to a plastic bottle to obtain a mixed solution in a container.
  • 3. 3 The obtained mixed solution was stirred at room temperature for 15 minutes while applying ultrasonic waves, the mixed solution was filtered, and only the filtrate was returned to the container. 4.
  • the container was allowed to stand for 30 minutes to separate the organic layer and the aqueous layer. 5.
  • the aqueous layer in the vessel was separated and transferred to a 500 mL eggplant flask, and the water was completely distilled off using a rotary evaporator. 6. After adding 10 mL of a 30 mmol / L potassium hydroxide aqueous solution to the residue in the 500 mL eggplant flask, the eggplant flask was sealed with a ball stopper and stirred for 15 minutes while applying ultrasonic waves. 7. The solution in the 500 mL eggplant flask is filtered using a membrane filter having a pore size of 0.45 ⁇ m to obtain a filtrate, and then phosphorus in the filtrate is obtained by ion chromatography based on the following measurement conditions. The acid ion concentration was quantified.
  • the phosphate ion concentration (ppm) was measured with three measurement targets and used as the average value of the three measured values. 8. Based on the phosphate ion concentration in the filtrate, the phosphate ion content (ppm) based on the mass of the compound represented by the general formula (1) was calculated.
  • the phosphate ion content of the granular nucleating agents 1 to 7 measured based on the above ⁇ measurement of phosphate ion content> was less than 0.5 ppm.
  • the granular nucleating agents of each example and each comparative example were evaluated based on the following evaluation items.
  • the heat coloring amount ⁇ T was calculated by the following method and used as an index for evaluating the coloring degree of the molded product obtained by molding the thermoplastic resin when the granular nucleating agent was added to the polyolefin resin.
  • 1 g of the obtained granular nucleating agent and 1 g of a phenolic antioxidant manufactured by ADEKA: ADEKA STUB AO-60 were measured and mixed while being ground using a mortar.
  • 1 g of the obtained mixture was weighed, transferred to a glass test tube, and heated at 230 ° C. for 5 minutes in an air atmosphere using a block bath.
  • the heated mixture was allowed to cool to room temperature, 5 mL of solvent was added, and the mixture was stirred for 15 minutes while adding ultrasonic waves.
  • a solvent was further added to the solution after allowing to cool to obtain a 10 mL solution, and then the solution was filtered to obtain a filtrate. This filtrate was used as a test solution.
  • the following solvent was used as the solvent.
  • ⁇ T (%) was calculated from the following formula and evaluated based on the following evaluation criteria.
  • the measurement results of ⁇ T are shown in Table 1.
  • Example 6-Formula of heat coloring amount: ⁇ T (%) transmittance (%) of sample solution at wavelength 450 nm-transmittance (%) of sample solution of granular nucleating agent 3 at wavelength 450 nm
  • Example 13-Formula of heat coloring amount: ⁇ T (%) transmittance (%) of sample solution at wavelength 450 nm-transmittance (%) of sample solution of granular nucleating agent 4 at wavelength 450 nm
  • Example 14-Formula of heat coloring amount: ⁇ T (%) transmittance (%) of sample solution at wavelength 450 nm-transmittance (%) of sample solution of granular nucleating agent 5 at wavelength 450 nm
  • Example 15-Formula of heat coloring amount: ⁇ T (%) transmittance (%) of sample solution at wavelength 450 nm-transmittance (%) of sample solution of granular nucleating agent 6 at wavelength 450 nm
  • Example 16-Formula of heat coloring amount: ⁇ T (%) transmittance
  • the pass / fail criteria for the degree of coloring of the molded product obtained by molding the polyolefin-based resin when the granular nucleating agent was added to the polyolefin-based resin were as follows. Pass: ⁇ T is 1.0% or less Fail: ⁇ T is more than 1.0%
  • ⁇ Transparency> The composition obtained by mixing 0.1 part by weight of the obtained granular nucleating agent of each example with 100 parts by weight of polypropylene was mixed with a Henschel mixer for 1 minute and extruded at 230 ° C. and 150 rpm to prepare pellets. Manufactured. Haze (haze value:%) was measured for a test piece having a thickness of 1 mm obtained by injection molding this at 200 ° C. according to JIS K7136.
  • the granular nucleating agents of Examples 1 to 16 were superior in feed stability as compared with the granular nucleating agents of Comparative Example 1. Further, the granular nucleating agents of Examples 1 to 16 have a sufficiently smaller heat coloring amount ⁇ T than the granular nucleating agents of Comparative Example 2, and when the granular nucleating agents of Examples 1 to 16 are added to the polyolefin resin, It was found that the coloring of the molded product obtained by molding the thermoplastic resin can be sufficiently suppressed. Further, the granular nucleating agents of Examples 1 to 16 had a small haze value within a range where there was no problem in practical use. As described above, it was found that the granular nucleating agent of the example can be suitably used as a nucleating agent / clearing agent because the transparency of the polyolefin resin can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本発明の粒状核剤は、所定の一般式で表される化合物を含み、所定の測定手順に従って求められる、当該粒状核剤中のリン酸イオンの含有量が、所定の一般式で表される化合物の質量基準で5ppm以上8000ppm以下である。

Description

粒状核剤、樹脂組成物およびその製造方法ならびに成形品
 本発明は、粒状核剤、樹脂組成物およびその製造方法ならびに成形品に関する。
 高分子材料の改質技術として、結晶核剤や結晶化促進剤を添加する技術が知られている。この種の技術としては、たとえば、特許文献1に記載のものが知られている。特許文献1には、ポリオレフィン系樹脂中に核剤(以下、結晶核剤、結晶化促進剤、透明化剤等を総称して「核剤」と呼称する。)を添加することが記載されている(特許文献1の請求項1等)。同文献には、核剤としてリン酸エステル塩が例示されている(引例1の段落0014)。
特開2017-149962号公報
 しかしながら、本発明者が検討した結果、上記特許文献1に記載の核剤において、フィード安定性および核剤をポリオレフィン系樹脂に添加した際に、ポリオレフィン系樹脂を成形して得られる成形品の色調の点で改善の余地があることが判明した。
 本発明者が検討した結果、以下のような知見が得られた。
 一般的な粒状核剤は、粉粒体として熱可塑性樹脂中に添加・溶融混練され、熱可塑性樹脂の加熱成形加工に使用される。しかしながら、粒状核剤の様々な粉体物性の影響を受けてフィード安定性が低下する恐れがあった。フィード安定性が低下すると、成形加工の製造安定性の低下につながる。
 このような事情を踏まえ検討を進めた結果、粒状核剤中にリン酸イオンを含有させることで、フィード安定性を向上できることを見出した。しかしながら、粒状核剤中に過剰量のリン酸イオンを含有させると、粒状核剤を熱可塑性樹脂に添加した際、ポリオレフィン系樹脂に含まれる粒状核剤以外の添加剤とリン酸イオンとが反応し、その結果、ポリオレフィン系樹脂を成形して得られる成形品が着色してしまうことが分かった。
 このような知見に基づきさらに鋭意研究したところ、粒状核剤中のリン酸イオンの含有量を適切な数値範囲内とすることにより、フィード安定性を高めつつも、ポリオレフィン系樹脂に添加した際に、ポリオレフィン系樹脂を成形して得られる成形品の着色を抑制できることを見出し、本発明を完成するに至った。
 本発明によれば、
 下記一般式(1)で表される化合物のうち少なくとも一種を含む粒状核剤であって、
 下記の測定手順に従って求められる、当該粒状核剤中のリン酸イオンの含有量が、下記一般式(1)で表される化合物の質量基準で5ppm以上8000ppm以下である、粒状核剤が提供される。
(測定手順)
1.当該粒状核剤を測り取る。
2.当該粒状核剤に、前記一般式(1)で表される化合物3質量部に対しキシレン100質量部、イソプロピルアルコール18質量部および純水20質量部を加え、容器中に混合液を得る。
3.得られた混合液を、室温にて超音波をかけながら15分撹拌する。
4.続いて、容器を30分静置して有機層と水層を分離させる。
5.容器中の水層を分取し、水を完全に留去する。
6.容器中の残渣に前記一般式(1)で表される化合物3質量部に対し10質量部の30mmol/L水酸化カリウム水溶液を加え、超音波をかけながら15分撹拌する。
7.続いて、容器中の液を、ポアサイズが0.45μmのメンブランフィルターを用いてろ過して、ろ液を得た後、イオンクロマトグラフィーにより、ろ液中のリン酸イオン濃度を定量する。
8.ろ液中のリン酸イオン濃度に基づき、前記一般式(1)で表される化合物を質量基準とするリン酸イオン含有量(ppm)を算出する。
Figure JPOXMLDOC01-appb-C000003
(上記一般式(1)中、R~Rは各々独立して、水素原子、直鎖又は分岐を有する炭素数1~9のアルキル基を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、mは1又は2を表し、mが1の場合、Mは水素原子、アルカリ金属原子又はAl(OH)を表し、mが2の場合、Mは、アルカリ土類金属原子、Al(OH)又はZnを表す。)
 また本発明によれば、上記粒状核剤をポリオレフィン系樹脂中に含有する、樹脂組成物が提供される。
 また本発明によれば、上記粒状核剤をポリオレフィン系樹脂に添加する工程を含む、樹脂組成物の製造方法が提供される。
 また本発明によれば、上記樹脂組成物を用いてなる成形品が提供される。
 本発明によれば、フィード安定性に優れ、かつポリオレフィン系樹脂に添加した際に、ポリオレフィン系樹脂を成形して得られる成形品の着色を十分に抑制できる粒状核剤、それを用いた樹脂組成物およびその製造方法ならびに成形品が提供される。
 本実施形態の粒状核剤について説明する。
 上記粒状核剤は、芳香族リン酸エステル金属塩を含有するものである。当該芳香族リン酸エステル金属塩は、下記一般式(1)によって表される化合物が用いられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(1)中、R~Rは各々独立して、水素原子、直鎖又は分岐を有する炭素数1~9のアルキル基を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、mは1又は2を表し、mが1の場合、Mは水素原子、アルカリ金属原子又はAl(OH)を表し、mが2の場合、Mは、アルカリ土類金属原子、Al(OH)又はZnを表す。
 上記一般式(1)中の、R、R、R及びRで表される、炭素数1~9のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、イソブチル基、アミル基、イソアミル基、tert-アミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、イソヘプチル基、tert-ヘプチル基が挙げられる。
 上記一般式(1)中、Mで表されるアルカリ金属原子としては、ナトリウム(Na)、カリウム(K)、リチウム(Li)等が挙げられる。これらの中でも、ナトリウム、リチウムであるものが、核剤成分の核剤効果が顕著であるので好ましく、ナトリウムであるものが特に好ましい。
 上記一般式(1)中のMで表されるアルカリ土類金属原子としては、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)が挙げられ、これらの中でも、マグネシウム、カルシウムであるものが、核剤成分の核剤効果が顕著であるので好ましい。
 上記一般式(1)で表される化合物の中でも、mが1である化合物が好ましい。また、R、R、R及びRが、メチル基、エチル基、sec-ブチル基およびtert-ブチル基からなる群から選択される一種の基を有する化合物が好ましく、メチル基およびtert-ブチル基からなる群から選択される一種の基を有する化合物がより好ましく、tert-ブチル基を有する化合物が特に好ましい。また、Rが水素原子またはメチル基である化合物が好ましく、水素原子である化合物が特に好ましい。
 上記一般式(1)で表される化合物としては、下記の化学式(2)から化学式(15)のいずれかで表される化合物を一または二以上含むことが好ましい。この中でも、樹脂の物性向上の観点から、化学式(2)から化学式(8)のいずれかで表される化合物が好ましく、化学式(5)から化学式(8)のいずれかで表される化合物がより好ましく、化学式(5)または化学式(7)のいずれかで表される化合物がさらに好ましく、化学式(5)で表される化合物が特に好ましい。透明性向上の観点から、化学式(9)から化学式(15)のいずれかで表される化合物が好ましく、化学式(9)から化学式(12)のいずれかで表される化合物がより好ましく、化学式(9)または化学式(12)のいずれかで表される化合物がさらに好ましく、化学式(12)で表される化合物が特に好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(1)で表される化合物の製造方法としては、例えば、三塩化燐(またはオキシ塩化燐)と2,2'-アルキリデンフェノールとを反応させた後、必要に応じて加水分解して環状酸性リン酸エステルとする。次いで、環状酸性リン酸エステルと、水酸化ナトリウム、水酸化カリウム等の金属水酸化物とを反応させ、得られた反応物を、適宜精製(ろ過等)し、乾燥することにより、上記化合物(芳香族リン酸エステル金属塩)が得られる。また、従来公知の方法で芳香族リン酸エステル金属塩を合成し、上記化合物として使用してもよい。
 また得られた化合物を、溶剤に溶解し、水酸化リチウム等の他の金属水酸化物と反応させ、またはアルミニウム・亜鉛・アルカリ土類金属原子のいずれかの塩と反応させ、得られた反応物を精製、乾燥することにより、別の上記化合物が得られる。
 本実施形態の粒状核剤は、必要に応じて、得られた化合物を適切な粉砕手段で粉砕することにより得られる。粒状核剤において、所定メッシュサイズの篩いで篩い分けして粗大粒子を除外してもよい。また上記粒状核剤は、1種または2種以上の粉末状の化合物を含むことができる。例えば、粒子径分布が異なる2種以上の化合物や、分級された2種以上の化合物を適当な比率で組み合わせてブレンドし、上記粒状核剤を得てもよい。
 上記の粉砕手段としては、例えば、乳鉢、ボールミル、ロッドミル、チューブミル、コニカルミル、振動ボールミル、ハイスイングボールミル、ローラーミル、ピンミル、ハンマーミル、アトリションミル、ジェットミル、ジェットマイザー、マイクロナイザー、ナノマイザー、マジャックミル、マイクロアトマイザー、コロイドミル、プレミアコロイドミル、ミクロンミル、シャロッテコロイドミル、ロータリーカッター、乾式媒体撹拌ミル等が挙げられる。これらの粉砕機は、単独又は2種以上組み合わせて用いることができ、粉砕する原料粉末の種類、粉砕時間等によって適宜選択される。
 本実施形態の粒状核剤は、上記一般式(1)で表される化合物のみで構成されていてもよく、本発明の目的を達成する範囲内で、他の成分を含有してもよい。上記他の成分としては、上記一般式(1)で表される化合物以外の核剤、脂肪酸金属塩、珪酸系無機添加剤成分、ハイドロタルサイト類等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 本実施形態の粒状核剤は、上記一般式(1)で表される化合物に加えて、さらに脂肪酸金属塩を含有するものであることが好ましい。この場合、ポリオレフィン系樹脂中における粒状核剤の分散性が優れたものになる。また、本実施形態の粒状核剤は、上記一般式(1)で表される化合物に加えて、さらに珪酸系無機添加剤成分を含有するものであることが好ましい。この場合、粒状核剤の造核作用がさらに優れたものとなる。
 上記一般式(1)で表される化合物以外の核剤としては、例えば、安息香酸ナトリウム、4-tert-ブチル安息香酸アルミニウム塩、アジピン酸ナトリウムおよび2ナトリウムビシクロ[2.2.1]ヘプタン-2,3-ジカルボキシレート、カルシウムシクロヘキサン1,2-ジカルボキシレート等のカルボン酸金属塩、ジベンジリデンソルビトール、ビス(メチルベンジリデン)ソルビトール、ビス(3,4-ジメチルベンジリデン)ソルビトール、ビス(p-エチルベンジリデン)ソルビトール、およびビス(ジメチルベンジリデン)ソルビトール、1,2,3-トリデオキシ-4,6:5,7-o-ビス(4-プロピルベンジリデン)ノニトール等のポリオール誘導体、N,N',N"-トリス[2-メチルシクロヘキシル]-1,2,3-プロパントリカルボキサミド、N,N',N"-トリシクロヘキシル-1,3,5-ベンゼントリカルボキサミド、N,N'-ジシクロヘキシルナフタレンジカルボキサミド、1,3,5-トリ(ジメチルイソプロポイルアミノ)ベンゼン等のアミド化合物等が挙げられる。これらの中では、カルボン酸金属塩が特に好ましい。また、カルボン酸金属塩の中では安息香酸ナトリウム、4-tert-ブチル安息香酸アルミニウム塩が好ましく、安息香酸ナトリウムが特に好ましい。
 上記脂肪酸金属塩としては、例えば、下記一般式(16)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(16)中、Rは直鎖または分岐を有する炭素数9~30の脂肪族基を表し、Mは金属原子を表し、nは1~4の整数であって、Mの金属原子の価数と対応する整数を表す。
 上記一般式(16)において、Rは直鎖または分岐を有する炭素数9~30の脂肪族基としては、炭素数9~30のアルキル基およびアルケニル基が挙げられ、これらはヒドロキシル基で置換されていてもよい。
 上記脂肪酸金属塩を構成する脂肪酸としては、例えば、カプリン酸、2-エチルヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデシル酸、アラキジン酸、ヘイコシル酸、ベヘン酸、トリコシル酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸等の飽和脂肪酸、4-デセン酸、4-ドデセン酸、パルミトレイン酸、α-リノレン酸、リノール酸、γ-リノレン酸、ステアリドン酸、ペトロセリン酸、オレイン酸、エライジン酸、バクセン酸、エイコサペンタエン酸、ドコサペンタエン酸、ドコサヘキサエン酸等の直鎖不飽和脂肪酸等が挙げられる。
 上記脂肪酸金属塩は、Rで表される脂肪族基が、炭素数10~21であるものが好ましく、上記脂肪酸金属塩を構成する脂肪酸としては、特に、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、オレイン酸、12-ヒドロキシステアリン酸が好ましい。
 上記Mで表される金属原子としては、例えば、アルカリ金属、マグネシウム、カルシウム、ストロンチウム、バリウム、チタニウム、マンガン、鉄、亜鉛、珪素、ジルコニウム、イットリウム、バリウムまたはハフニウム等が挙げられる。これらの中でも、ナトリウム、リチウム、カリウム等のアルカリ金属が好ましく、ナトリウムおよびリチウムがより好ましく、特に、リチウムが、結晶化温度が高くなるので好ましく用いられる。
 上記珪酸系無機添加剤成分としては、例えば、フュームドシリカ、微粒子シリカ、けい石、珪藻土類、クレー、カオリン、シリカゲル、珪酸カルシウム、セリサイト、カオリナイト、フリント、長石粉、蛭石、アタパルジャイト、タルク、マイカ、ミネソタイト、パイロフィライト等が挙げられ、中でも、粒子構造が層状構造であるもの、珪素含有量が15質量%以上のものが好ましい。これらの好ましい無機添加剤としては、セリサイト、カオリナイト、タルク、マイカ、ミネソタイト、パイロフィライトが挙げられ、タルク、マイカがより好ましく、タルクが特に好ましい。
 上記ハイドロタルサイト類としては、例えば、天然物でも合成品でもよく、表面処理の有無や結晶水の有無によらず用いることができる。例えば、下記一般式で表される塩基性炭酸塩が挙げられる。
 MMgAlCO(OH)xp+2y+3z-2・nH
 上記一般式中、Mはアルカリ金属または亜鉛を表し、Xは0~6の数を表し、yは0~6の数を表し、zは0.1~4の数を表し、pはMの価数を表し、nは0~100の結晶水の数を表す。
 上記他の成分を含有する粒状核剤は、上記一般式(1)で表される化合物を含有する粒状核剤組成物であり、他の芳香族リン酸エステル金属塩、脂肪酸金属塩、珪酸系無機添加剤成分およびハイドロタルサイト類からなる群から選択される一種以上、好ましくは脂肪酸金属塩、タルク、マイカおよびハイドロタルサイト類からなる群から選択される一種以上を含有するように構成され得る。
 このような粒状核剤としては、例えば、上記一般式(1)で表される化合物および他の成分の共存下、上記の粉砕手段を適切に組み合わせることにより粉砕処理することにより得られる。また、上述の粉砕手段、篩い分け、ブレンド方法などを用いることもできる。
 本実施形態の粒状核剤は、ポリオレフィン系樹脂の成形加工時に添加される造核剤・透明化剤として機能し、結晶化温度、熱変性温度、曲げ弾性率、硬度、透明性などの向上(改質効果)を実現できる。また、成形サイクル性を高め、生産性を向上させることができる。
 本実施形態の粒状核剤は、下記の測定手順に従って求められる、当該粒状核剤中のリン酸イオン(PO 3-)の含有量が、一般式(1)で表される化合物の質量基準で5ppm以上8000ppmという特性を有する。
(測定手順)
1.当該粒状核剤を測り取る。
2.当該粒状核剤に、一般式(1)で表される化合物3質量部に対しキシレン100質量部、イソプロピルアルコール18質量部および純水20g質量部を加え、容器中に混合液を得る。
3.得られた混合液を、室温にて超音波をかけながら15分撹拌する。
4.続いて、容器を30分静置して有機層と水層を分離させる。
5.容器中の水層を分取し、水を完全に留去する。
6.容器中の残渣に前記一般式(1)で表される化合物3質量部に対し10質量部の30mmol/L水酸化カリウム水溶液を加え、超音波をかけながら15分撹拌する。
7.続いて、容器中の液を、ポアサイズが0.45μmのメンブランフィルターを用いてろ過して、ろ液を得た後、イオンクロマトグラフィーにより、ろ液中のリン酸イオン(PO 3-)の濃度を定量する。
8.ろ液中のリン酸イオン濃度に基づき、上記一般式(1)で表される化合物を質量基準とするリン酸イオン含有量(ppm)を算出する。
 なお、粒状核剤中の一般式(1)で表される化合物の含有量は、粒状核剤を製造する際の一般式(1)で表される化合物の使用量から算出すればよく、粒状核剤中の有機成分をHPLC、GCなどの公知の方法で分析し、無機成分をICP発光分析などの公知の方法で分析し、有機成分の分析結果と無機成分の分析結果を組み合わせる方法などによって決定することもできる。
 上記測定手順1.において、粒状核剤を測り取る量は、粒状核剤中の一般式(1)で表される化合物の含有量に応じて適宜定めればよく、例えば粒状核剤1g中の一般式(1)で表される化合物の含有量
をA(g)である場合、粒状核剤を測り取る量は、2×A(g)~4×A(g)とすればよい。
 また、上記測定手順3.において、混合液を撹拌後した後に不溶物が存在する場合、この不溶物をろ過などの方法により除去してもよい。
 本発明者の知見によれば、粒状核剤中のリン酸イオンの含有量を指針とすることで、粒状核剤のフィード安定性ともに、粒状核剤を添加したポリオレフィン系樹脂を成形して得られる成形品の色調を適切に制御できることを見出した。すなわち、リン酸イオンの含有量を所定値以上とすることで、粒状核剤のフィード安定性を高めることができ、リン酸イオンの含有量を所定値以下とすることで、粒状核剤をポリオレフィン系樹脂に添加した際に、ポリオレフィン系樹脂を成形して得られる成形品の着色を抑制できることが判明した。
 粒状核剤のフィード安定性を高めることで、粒状核剤を用いた樹脂の成形加工の製造安定性を向上できる。これにより、成形加工への適用や核剤・透明化剤の用途において、粒状核剤の粉体物性の許容幅を広げられることが期待される。
 また、粒状核剤をポリオレフィン系樹脂に添加した際に、ポリオレフィン系樹脂を成形して得られる成形品の着色を十分に抑制できる粒状核剤を実現することにより、優れた色調を備えた成形品を実現できる。
 本実施形態において、上記リン酸イオンの含有量の下限値は、一般式(1)で表される化合物の質量基準で、5ppm以上、好ましくは10ppm以上、より好ましくは15ppm以上である。これにより、粒状核剤のフィード安定性を高めることができる。
 上記リン酸イオンの含有量の上限値は、一般式(1)で表される化合物の質量基準で、8000ppm以下、好ましくは1000ppm以下、より好ましくは500ppm以下、さらに好ましくは200ppm以下、さらに一層好ましくは100ppm以下である。これにより、粒状核剤を熱可塑性樹脂に添加した際に、熱可塑性樹脂を成形して得られる成形品の着色を抑制できる。
 本実施形態では、たとえば粒状核剤中に含まれる各成分の種類や配合量、粒状核剤の合成・調製方法等を適切に選択することにより、上記脂リン酸イオンの含有量を制御することが可能である。これらの中でも、たとえば、ろ過・洗浄・精製工程、粉砕・分級・ブレンド工程、粒状核剤の準備工程で無水リン酸三ナトリウムを使用すること等が、上記リン酸イオンの含有量を所望の数値範囲とするための要素として挙げられる。
 粒状核剤は脂肪族アミンを含有してもよい。
 上記脂肪族アミンは、アンモニアの水素原子1個~3個が炭化水素基で置換された化合物である。炭化水素基は一部が酸素原子などで置換されたものであってもよい。炭化水素基としては、アルキル基、アルコール性ヒドロキシ基等が挙げられる。
 上記脂肪族アミンは、第1級アミン、第2級アミン、第3級アミンのいずれでもよい。
 上記脂肪族アミン中の炭化水素基の炭素数は、例えば、1~6、好ましくは2~5、より好ましくは2~4である。適切な炭素数を選択することで、フィード安定性を向上できる。
 上記脂肪族アミンとして、例えば、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、イソブチルアミン、tert-ブチルアミン、アミルアミン、ヘキシルアミン、パルミチルアミン、エチレンジアミン、モノエタノールアミン等の脂肪族第1級アミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジアミルアミン、ジエタノールアミン等の脂肪族第2級アミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリアミルアミン、N,N-ジメチルアミン等の脂肪族第3級アミン類が用いられる。この中でも、粒状核剤の製造安定性の観点から、トリエチルアミン、ジエチルアミン、ブチルアミン、およびエタノールアミンからなる群から選択される一種以上が好ましい。
 本実施形態の樹脂組成物は、上記の粒状核剤をポリオレフィン系樹脂中に含有してなるものである。
 上記粒状核剤を、上記ポリオレフィン系樹脂に添加する方法は特に制限を受けず、一般に用いられる方法をそのまま適用することができる。例えば、ポリオレフィン系樹脂の粉末物あるいはペレットと、上記粒状核剤の粉末物とをドライブレンドする方法を用いることができる。
 上記樹脂組成物は、各種形態で使用することができるが、たとえば、ペレット状、顆粒状、粉末状のいずれでもよい。取り扱い性の観点から、ペレット状が好ましい。
 上記ポリオレフィン系樹脂としては、例えばポリプロピレン、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、ポリブテン-1、ポリ3-メチルペンテン、ポリ4-メチルペンテン、エチレン/プロピレンブロックまたはランダム共重合体などのα-オレフィン重合体等が挙げられる。
 また、本実施形態の樹脂組成物は、イソプレンゴム、ブタジエンゴム、熱可塑性エラストマーなどのゴム成分を含むであってもよい。
 本実施形態の樹脂組成物は、本実施形態の粒状核剤の使用効果が顕著に奏されるポリプロピレン系樹脂を含むことが好ましい。ポリプロピレン系樹脂としては、ポリプロピレン、エチレン/プロピレンブロック又はランダム共重合体、エチレン以外のα-オレフィン/プロピレンブロック又はランダム共重合体等が挙げられる。
 ポリプロピレン系樹脂は、その極限粘度、アイソメタクチックペンタッド分率、密度、分子量分布、メルトフローレート、剛性等に拘わらず使用することができ、例えば、特開昭63-37148号公報、同63-37152号公報、同63-90552号公報、同63-210152号公報、同63-213547号公報、同63-243150号公報、同63-243152号公報、同63-260943号公報、同63-260944号公報、同63-264650号公報、特開平1-178541号公報、同2-49047号公報、同2-102242号公報、同2-251548号公報、同2-279746号公報、特開平3-195751号公報などに記載されたようなポリプロピレン系樹脂も好適に使用することができる。
 上記粒状核剤の含有量は、ポリオレフィン系樹脂100重量部に対して、通常、0.001~10重量部であり、好ましくは0.005~8重量部であり、より好ましくは0.01~5重量部の範囲内とすることができる。これにより、ポリオレフィン系樹脂の改質効果を十分に得ることができる。
 本実施形態の樹脂組成物には、必要に応じて、抗酸化剤、光安定剤、紫外線吸収剤、顔料、充填剤、可塑剤、エポキシ化合物、発泡剤、帯電防止剤、難燃剤、滑剤、重金属不活性剤、ハイドロタルサイト類、有機カルボン酸、着色剤、珪酸系添加剤、加工助剤等の添加剤を含有させることができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 上記抗酸化剤として、リン系抗酸化剤、フェノール系抗酸化剤、チオエーテル系抗酸化剤等が挙げられる。
 上記帯電防止剤として、カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤等を含む低分子型帯電防止剤、アイオノマーやポリエチレングリコールを親水部とするブロックポリマー等を含む高分子型帯電防止剤が挙げられる。
 上記難燃剤として、ハロゲン系化合物、リン酸エステル系化合物、リン酸アミド系化合物、メラミン系化合物、ポリリン酸のメラミン塩化合物、フッ素樹脂又は金属酸化物等が挙げられる。
 上記滑剤として、炭化水素系、脂肪酸系、脂肪族アルコール系、脂肪族エステル系、脂肪族アマイド系、金属石けん系等が挙げられる。
 上記珪酸系添加剤として、フュームドシリカ、微粒子シリカ、けい石、珪藻土類、クレー、カオリン、シリカゲル、珪酸カルシウム、セリサイト、カオリナイト、フリント、長石粉、蛭石、アタパルジャイト、タルク、マイカ、ミネソタイト、パイロフィライト等が挙げられる。
 上記樹脂組成物における添加剤の含有量は、ポリオレフィン系樹脂100重量部に対して、たとえば、0.001~10重量部が好ましい。このような数値範囲とすることにより、添加剤の効果の向上が得られる。
 上記樹脂組成物は、射出成形品、繊維、フラットヤーン、二軸延伸フィルム、一軸延伸フィルム、無延伸フィルム、シート、熱成形品、押出ブロー成形品、射出ブロー成形品、射出延伸ブロー成形品、異形押出成形品、回転成形品等の成形品に使用することができる。この中でも、成形品として、射出成形品、フィルム、シート、熱成形品が好ましい。
 本実施形態の成形品の製造方法は、各種の成形方法に基づいて、樹脂組成物を成形する工程を含み、これにより、上記の成形品を得ることができる。
 成形方法としては、特に限定されるものではなく、射出成形法、押出成形法、ブロー成形法、回転成形、真空成形法、インフレーション成形法、カレンダー成形法、スラッシュ成形法、ディップ成形法、発泡成形法等が挙げられる。この中でも、射出成形法、押出成形法、ブロー成型法が好ましい。
 上記樹脂組成物は、建築資材、農業用資材、自動車、列車、船、航空機など乗り物用部品、包装用資材、雑貨、玩具、家電製品、医療品など種々の用途に用いることができる。具体的には、バンパー、ダッシュボード、インスツルメントパネル、バッテリーケース、ラゲッジケース、ドアパネル、ドアトリム、フェンダーライナー等の自動車部品;冷蔵庫、洗濯機、掃除機等の家電製品用樹脂部品;食器、ボトルキャップ、バケツ、入浴用品等の家庭用品;コネクター等の接続用樹脂部品;玩具、収納容器、合成紙等の雑貨品;医療用パック、注射器、カテーテル、医療用チューブ、シリンジ製剤、輸液バッグ、試薬容器、飲み薬容器、飲み薬個包装等の医療用成形品;壁材、床材、窓枠、壁紙、窓等の建材;電線被覆材;ハウス、トンネル、フラットヤーンメッシュバッグ等の農業用資材;パレット、ペール缶、バックグラインドテープ、液晶プロテクト用テープ、パイプ、シーリング材用変性シリコーンポリマー等の工業用資材;ラップ、トレイ、カップ、フィルム、ボトル、キャップ、保存容器等の食品包装材、その他3Dプリンター材料、電池用セパレータ膜等が挙げられる。さらに各種の後処理を施される場合の用途、例えば、医療用途、食品包装用途などの放射線による滅菌を施される用途、あるいは塗装性などの表面特性の改善のために、成形後、低温プラズマ処理などが施される用途などに用いることができる。この中でも、自動車部品、家庭用品、食品包装材に用いることが好ましい。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
<化合物の合成>
(粒状核剤1)
 2,2'-メチレンビス[4,6-ビス(1,1-ジメチルエチル)]フェノール42.5g、オキシ塩化燐16.1g、トリエチルアミン2.4gを仕込み、50℃で3時間撹拌した。続いて水酸化ナトリウム4gの水溶液およびメタノールを仕込み、室温で1時間撹拌してスラリーを得た。得られたスラリーを濾過し、ろ残を水洗して、白色固体を得た。得られた白色固体に純水500mLと分散剤(ADEKA社製、アデカコールEC-8600)50mgを加え、室温で1時間撹拌してスラリーを得た。得られたスラリーを濾過し、ろ残を水洗して、白色固体を得た。得られた白色固体を、減圧下に乾燥して、化合物No.1で表される白色粒状物を42.1g得た。この白色粒状物を粒状核剤1とした。
Figure JPOXMLDOC01-appb-C000007
(粒状核剤2)
 上記<化合物No.1の合成>で得られた白色粉末25.4g(0.05モル)をメタノールに溶解し、水酸化リチウム1.2g(0.05モル)の水溶液を加えて室温で一時間撹拌してスラリーを得た。得られたスラリーをろ過後、ろ残をpH8になるまで水洗し、白色固体を得た。得られた白色固体を減圧下に乾燥した後、乾式媒体撹拌ミルにて粉砕し、化合物No.2で表される白色粒状物を20.5g得た。この白色粒状物を粒状核剤2とした。
Figure JPOXMLDOC01-appb-C000008
(粒状核剤3)
 上記<化合物No.1の合成>で得られた白色粉末10.2g(0.02モル)をメタノールに溶解し、40℃で撹拌しながら硫酸アルミニウム2.41g(0.01モル)の水溶液を滴下した。滴下終了後、反応混合物をメタノール還流下に4時間加熱撹拌した。加熱撹拌が終了した後、反応混合物を室温まで冷却してスラリーを得た。得られたスラリーをろ過後、ろ残を繰り返し水洗し、白色固体を得た。得られた白色固体を減圧下に乾燥した後、ピンミルにて粉砕し、化合物No.3で表される白色粒状物を9.63g得た。この白色粒状物を粒状核剤3とした。
Figure JPOXMLDOC01-appb-C000009
(粒状核剤4)
 135gの粒状核剤1と、15gの粒状核剤2とを均一に混合し、150gの粒状核剤4を得た。
(粒状核剤5)
 135gの粒状核剤1と、15gの安息香酸ナトリウム(ADEKA POLYMER ADDITVES EUROPE社製 商品名 ORGATER MI.NA.08)とを均一に混合し、150gの粒状核剤4を得た。
(粒状核剤6)
 135gの粒状核剤1と、15gのミリスチン酸リチウムとを均一に混合し、150gの粒状核剤4を得た。
(粒状核剤7)
 135gの粒状核剤1と、15gのタルク(日本タルク社製 商品名 ミクロエースP-4)とを均一に混合し、150gの粒状核剤4を得た。
(実施例1~16、比較例1~2)
 上記で得られた粒状核剤1~7に対して、無水リン酸三ナトリウムを所定量添加し、表1に示すリン酸イオン含有量を有する、実施例4~16、比較例2の粒状核剤を得た。そして粒状核剤1と実施例4の粒状核剤とを所定量混合することにより、表1に示すリン酸イオン含有量を有する、実施例1~3および比較例1の粒状核剤を得た。
 実施例1~16、比較例1~2の粒状核剤中におけるリン酸イオン(PO 3-)の含有量は以下の測定手順に従って求めた。
<リン酸イオン含有量の測定>
1.試料として、得られた粒状核剤を250mLプラボトルに測り取った。ここで、粒状核剤の測り取り量は、一般式(1)で表される化合物の仕込み量が3gとなるような量とした。
2.プラボトルにキシレン100g、イソプロピルアルコール18g、純水20gを加え、容器中に混合液を得た。
3.得られた混合液を、室温にて超音波をかけながら15分撹拌した後、混合液をろ過し、ろ液のみを容器に戻した。
4.容器を30分静置して有機層と水層を分離させた。
5.容器中の水層を分取して500mLナスフラスコに移し、ロータリーエバポレーターを使用して水を完全に留去した。
6.500mLナスフラスコ中の残渣に30mmol/Lの水酸化カリウム水溶液10mLを加えた後、玉栓を用いてナスフラスコを密栓し、超音波をかけながら15分撹拌した。
7.500mLナスフラスコ中の液を、ポアサイズが0.45μmのメンブランフィルターを用いてろ過して、ろ液を得た後、下記の測定条件に基づいて、イオンクロマトグラフィーにより、ろ液中のリン酸イオン濃度を定量した。測定対象としたリン酸イオンの種は、PO 3-とした。リン酸イオン濃度(ppm)は、3つの測定対象で測定を行い、3つの測定値の平均値とした。
8.ろ液中のリン酸イオン濃度に基づき、一般式(1)で表される化合物を質量基準とするリン酸イオン含有量(ppm)を算出した。
(測定条件)
・測定装置:イオンクロマトグラフICS-2100(サーモフィッシャーサイエンティフィック社製)
・カラム:Dionex IonPac AS19(サーモフィッシャーサイエンティフィック社製)
・検出器:電気伝導度検出器
・溶出条件:1.0mmol/Lの水酸化カリウム水溶液(0分)→60.0mmol/Lの水酸化カリウム水溶液(35分)。水酸化カリウム水溶液の濃度は、以下のように変化させた。
0分~1分まで:1.0mmol/Lから10.0mmol/Lまでグラジエント。
1分超~10分まで:10.0mmol/Lで一定。
10分超~15分まで:10.0mmol/Lから60.0mmol/Lまでグラジエント。
15分超~35分まで:60.0mmol/Lで一定。
・流速:1.0mL/min
・試料注入量:25μL
・カラム温度:35℃
 なお、上記<リン酸イオン含有量の測定>に基づいて測定した、粒状核剤1~7のリン酸イオン含有量は、いずれも0.5ppm未満であった。
Figure JPOXMLDOC01-appb-T000010
 各実施例および各比較例の粒状核剤について、下記の評価項目に基づいて評価を実施した。
<フィード安定性>
 粉体特性評価装置(セイシン企業社製、マルチテスター MT-02)を用いて、得られた粒状核剤を、粉体特性評価装置のフィーダーに10g充填し、フィーダー振動幅1.0mmの条件で振動させたときの排出時間を計測した。各粒状核剤について、3つのサンプルで測定を行い、3つの測定値の平均値を排出時間t(s)として、フィード安定性の指標とした。結果を表1に示す。なお、フィード安定性についての合否基準は以下の通りとした。
合格:tが30s以下
不合格:tが30s超
<成形品の着色度>
 以下の方法により加熱着色量ΔTを算出し、粒状核剤をポリオレフィン系樹脂に添加した際の熱可塑性樹脂を成形して得られる成形品の着色度合いを評価する指標とした。
 得られた粒状核剤1g、フェノール系酸化防止剤(ADEKA社製:アデカスタブAO-60)1gを測りとり、乳鉢を用いてすりつぶしながら混合した。
 得られた混合物を1g測りとり、ガラス試験管に移し、ブロックバスを用いて空気雰囲気下、230℃で5分間加熱した。
 加熱後の混合物を室温まで放冷し、溶剤5mLを加えて超音波を加えながら15分撹拌した。放冷後の溶液に対し、さらに溶剤を加えて10mLの溶液とした後、溶液をろ過してろ液を得た。このろ液を試験溶液とした。
 ここで溶剤としては、下記のものを使用した。
・粒状核剤1、4~7、実施例1~4、7~16、比較例1~2:メタノール/トルエン=1/4(質量比)の混合溶剤
・粒状核剤2、実施例5:メタノール/トルエン=1/1(質量比)の混合溶剤
・粒状核剤3、実施例6:トルエン
 得られた試験溶液について、ポアサイズが0.45μmのメンブランフィルターを用いてろ過した後、紫外可視分光光度計(日本分光社製 V-750)用いて、波長450mnにおける透過率(%)を測定した。
 下記式からΔT(%)を算出し、下記の評価基準に基づいて評価を行った。ΔTの測定結果を表1に示す。
実施例1~4、7~12、比較例1~2について
・加熱着色量の式:ΔT(%)=各試料溶液の波長450nmにおける透過率(%)-粒状核剤1の試料溶液の波長450nmにおける透過率(%)
実施例5について
・加熱着色量の式:ΔT(%)=試料溶液の波長450nmにおける透過率(%)-粒状核剤2の試料溶液の波長450nmにおける透過率(%)
実施例6について
・加熱着色量の式:ΔT(%)=試料溶液の波長450nmにおける透過率(%)-粒状核剤3の試料溶液の波長450nmにおける透過率(%)
実施例13について
・加熱着色量の式:ΔT(%)=試料溶液の波長450nmにおける透過率(%)-粒状核剤4の試料溶液の波長450nmにおける透過率(%)
実施例14について
・加熱着色量の式:ΔT(%)=試料溶液の波長450nmにおける透過率(%)-粒状核剤5の試料溶液の波長450nmにおける透過率(%)
実施例15について
・加熱着色量の式:ΔT(%)=試料溶液の波長450nmにおける透過率(%)-粒状核剤6の試料溶液の波長450nmにおける透過率(%)
実施例16について
・加熱着色量の式:ΔT(%)=試料溶液の波長450nmにおける透過率(%)-粒状核剤7の試料溶液の波長450nmにおける透過率(%)
 粒状核剤をポリオレフィン系樹脂に添加した際のポリオレフィン系樹脂を成形して得られる成形品の着色度合いについての合否基準は以下の通りとした。
合格:ΔTが1.0%以下
不合格:ΔTが1.0%超
<透明化性>
 ポリプロピレンの100重量部に、得られた各実施例の粒状核剤の0.1重量部を混合した組成物をヘンシェルミキサーで1分間混合し、230℃、150rpmの条件で押出加工してペレットを製造した。これを200℃で射出成形して得た厚さ1mmの試験片について、JIS K7136に準じてHaze(ヘイズ値:%)を測定した。
 実施例1~16の粒状核剤は、比較例1の粒状核剤と比べてフィード安定性に優れていた。また、実施例1~16の粒状核剤は、比較例2の粒状核剤と比べて加熱着色量ΔTが十分に小さく、実施例1~16の粒状核剤をポリオレフィン系樹脂に添加した際に、熱可塑性樹脂を成形して得られる成形品の着色が十分に抑制できることが分かった。
 また、実施例1~16の粒状核剤は、実用上問題ない範囲でヘイズ値が小さいものであった。
 このように実施例の粒状核剤は、ポリオレフィン系樹脂の透明性を向上できることから、核剤・透明化剤として好適に利用できることが分かった。
 この出願は、2020年3月16日に出願された日本出願特願2020-045090号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (9)

  1.  下記一般式(1)で表される化合物のうち少なくとも一種を含む粒状核剤であって、
     下記の測定手順に従って求められる、当該粒状核剤中のリン酸イオンの含有量が、下記一般式(1)で表される化合物の質量基準で5ppm以上8000ppm以下である、粒状核剤。
    (測定手順)
    1.当該粒状核剤を測り取る。
    2.当該粒状核剤に、前記一般式(1)で表される化合物3質量部に対しキシレン100質量部、イソプロピルアルコール18質量部および純水20質量部を加え、容器中に混合液を得る。
    3.得られた混合液を、室温にて超音波をかけながら15分撹拌する。
    4.続いて、容器を30分静置して有機層と水層を分離させる。
    5.容器中の水層を分取し、水を完全に留去する。
    6.容器中の残渣に前記一般式(1)で表される化合物3質量部に対し10質量部の30mmol/L水酸化カリウム水溶液を加え、超音波をかけながら15分撹拌する。
    7.続いて、容器中の液を、ポアサイズが0.45μmのメンブランフィルターを用いてろ過して、ろ液を得た後、イオンクロマトグラフィーにより、ろ液中のリン酸イオン濃度を定量する。
    8.ろ液中のリン酸イオン濃度に基づき、前記一般式(1)で表される化合物を質量基準とするリン酸イオン含有量(ppm)を算出する。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中、R~Rは各々独立して、水素原子、直鎖又は分岐を有する炭素数1~9のアルキル基を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、mは1又は2を表し、mが1の場合、Mは水素原子、アルカリ金属原子又はAl(OH)を表し、mが2の場合、Mは、アルカリ土類金属原子、Al(OH)又はZnを表す。)
  2.  請求項1に記載の粒状核剤であって、
     前記化合物が、下記の化学式(2)から化学式(15)で表される一または二以上の化合物を含む、粒状核剤。
    Figure JPOXMLDOC01-appb-C000002
  3.  請求項1または2に記載の粒状核剤であって、
     脂肪族アミンを含む、粒状核剤。
  4.  請求項1から3のいずれか1項に記載の粒状核剤であって、
     さらに、前記一般式(1)で表される化合物以外の核剤、脂肪酸金属塩および珪酸系無機添加剤成分からなる群より選ばれる少なくとも一種を含む、粒状核剤。
  5.  請求項1から4のいずれか1項に記載の粒状核剤をポリオレフィン系樹脂中に含有する、樹脂組成物。
  6.  請求項5に記載の樹脂組成物であって、
     前記ポリオレフィン系樹脂が、ポリプロピレン系樹脂を含む、樹脂組成物。
  7.  請求項5または6に記載の樹脂組成物であって、
     前記ポリオレフィン系樹脂100重量部に対して、前記粒状核剤の含有量が0.001重量部以上10重量部以下である、樹脂組成物。
  8.  請求項1から4のいずれか1項に記載の粒状核剤をポリオレフィン系樹脂に添加する工程を含む、樹脂組成物の製造方法。
  9.  請求項5から7のいずれか1項に記載の樹脂組成物を用いてなる成形品。
PCT/JP2021/000817 2020-03-16 2021-01-13 粒状核剤、樹脂組成物およびその製造方法ならびに成形品 WO2021186862A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180004180.9A CN114026163B (zh) 2020-03-16 2021-01-13 颗粒状成核剂、树脂组合物及其制造方法以及成型品
US17/613,689 US11795296B2 (en) 2020-03-16 2021-01-13 Particulate nucleating agent, resin composition, production method thereof, and molded product
BR112021023557-4A BR112021023557B1 (pt) 2020-03-16 2021-01-13 Gerador de núcleo particulado, composição de resina e método de produção do mesmo e artigo moldado
EP21771414.6A EP3964547A4 (en) 2020-03-16 2021-01-13 PARTICULATE NUCLEATOR, RESIN COMPOSITION AND METHOD FOR PRODUCTION THEREOF, AND MOLDED ARTICLE
KR1020227004345A KR102472825B1 (ko) 2020-03-16 2021-01-13 입상 핵제, 수지 조성물 및 그의 제조 방법 및 성형품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-045090 2020-03-16
JP2020045090A JP6731128B1 (ja) 2020-03-16 2020-03-16 粒状核剤、樹脂組成物およびその製造方法ならびに成形品

Publications (1)

Publication Number Publication Date
WO2021186862A1 true WO2021186862A1 (ja) 2021-09-23

Family

ID=71738563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000817 WO2021186862A1 (ja) 2020-03-16 2021-01-13 粒状核剤、樹脂組成物およびその製造方法ならびに成形品

Country Status (8)

Country Link
US (1) US11795296B2 (ja)
EP (1) EP3964547A4 (ja)
JP (1) JP6731128B1 (ja)
KR (1) KR102472825B1 (ja)
CN (1) CN114026163B (ja)
BR (1) BR112021023557B1 (ja)
TW (1) TWI741936B (ja)
WO (1) WO2021186862A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896993B (zh) * 2021-09-29 2023-08-08 雷诺丽特恒迅包装科技(北京)有限公司 一种液体包装用聚丙烯拉链及其制备方法
CN113861567B (zh) * 2021-09-29 2023-08-08 雷诺丽特恒迅包装科技(北京)有限公司 一种液体包装用改性聚丙烯拉链材料及其制备方法

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337148A (ja) 1986-08-01 1988-02-17 Chisso Corp 高剛性プロピレン単独重合体組成物
JPS6337152A (ja) 1986-08-01 1988-02-17 Chisso Corp 高剛性エチレン−プロピレンブロツク共重合体組成物
JPS6390552A (ja) 1986-10-06 1988-04-21 Mitsubishi Petrochem Co Ltd プロピレン系樹脂組成物
JPS63210152A (ja) 1987-02-26 1988-08-31 Chisso Corp 高剛性高溶融粘弾性プロピレン単独重合体組成物
JPS63213547A (ja) 1987-03-02 1988-09-06 Chisso Corp 高剛性高溶融粘弾性エチレン−プロピレンブロツク共重合体組成物
JPS63243150A (ja) 1987-03-30 1988-10-11 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPS63243152A (ja) 1987-03-31 1988-10-11 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPS63260944A (ja) 1987-04-20 1988-10-27 Chisso Corp ポリオレフイン組成物
JPS63260943A (ja) 1987-04-20 1988-10-27 Chisso Corp ポリオレフイン組成物
JPS63264650A (ja) 1987-04-21 1988-11-01 Chisso Corp ポリオレフイン組成物
JPH01178541A (ja) 1987-12-30 1989-07-14 Mitsubishi Petrochem Co Ltd 低溶出性の医薬液剤・輸液・輸血用器具
JPH0249047A (ja) 1988-08-11 1990-02-19 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPH02102242A (ja) 1988-10-11 1990-04-13 Chisso Corp 結晶性プロピレン重合体組成物およびそれを用いた容器
JPH02251548A (ja) 1989-03-25 1990-10-09 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPH02279746A (ja) 1989-04-20 1990-11-15 Mitsubishi Petrochem Co Ltd 結晶性プロピレン重合体組成物
JPH03195751A (ja) 1989-12-22 1991-08-27 Chisso Corp ポリプロピレン組成物
JPH11310670A (ja) * 1998-04-28 1999-11-09 Chisso Corp 結晶性ポリオレフィン組成物
WO2007039997A1 (ja) * 2005-09-30 2007-04-12 Adeka Corporation 結晶核剤組成物の製造方法及び結晶性高分子組成物
JP2011213808A (ja) * 2010-03-31 2011-10-27 Adeka Corp 顆粒状樹脂添加剤組成物
JP2017149962A (ja) 2012-12-21 2017-08-31 ミリケン・アンド・カンパニーMilliken & Company 添加剤組成物およびそれを使用するための方法
JP2018520257A (ja) * 2015-07-22 2018-07-26 アルケマ フランス ポリ(アリーレン−エーテル−ケトン)(paek)から製造された組成物を安定化させる方法
WO2019220658A1 (ja) * 2018-05-18 2019-11-21 株式会社Adeka 粒状核剤、樹脂組成物、成形品およびその製造方法
WO2020008668A1 (ja) * 2018-07-04 2020-01-09 株式会社Adeka 粒状核剤、樹脂組成物、成形品およびその製造方法
JP2020045090A (ja) 2018-09-19 2020-03-26 バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド 車両の自動運転制御補助方法、車両の自動運転制御補助装置、機器、コンピュータ読み取り可能な記憶媒体及び車路連携システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100258316B1 (ko) * 1993-03-09 2000-06-01 이와시타 마사히로 결정성 합성 수지 조성물
KR0163664B1 (en) * 1994-06-09 1999-01-15 Mitsui Chemicals Inc Crystal nucleating agent for crystalline thermoplastic resin
KR970006902A (ko) * 1995-07-21 1997-02-21 배순훈 압축기의 프레임과 실린더와의 결합구조
JP2002105257A (ja) * 2000-02-28 2002-04-10 Grand Polymer Co Ltd ポリプロピレン系樹脂組成物並びにその組成物からなる容器および医療用器具
JP3921410B2 (ja) * 2002-04-19 2007-05-30 株式会社Adeka 粒子状結晶核剤組成物及びこれを含有してなる結晶性高分子組成物
US20110160364A1 (en) * 2006-07-28 2011-06-30 Teijin Limited Resin composition, manufacturing method thereof, and molded article
JP5388263B2 (ja) * 2007-09-04 2014-01-15 株式会社Adeka ポリオレフィン樹脂用造核剤マスターバッチ
CN102027060B (zh) * 2008-05-16 2014-04-02 株式会社Adeka 聚烯烃系树脂组合物
KR101588343B1 (ko) * 2008-08-28 2016-01-25 가부시키가이샤 아데카 폴리올레핀계 수지 조성물
CZ306740B6 (cs) * 2010-10-05 2017-06-07 Basf Se Způsob přípravy nukleovaného semikrystalického polyolefinu
US20210171732A1 (en) 2015-07-22 2021-06-10 Arkema France Composition made from poly(arylene-ether-ketone) (paek) which is stable in the molten state and method for stabilizing such a composition
JP6885667B2 (ja) * 2015-08-20 2021-06-16 株式会社Adeka 樹脂添加剤組成物およびこれを用いた合成樹脂組成物
JP2018024824A (ja) * 2016-08-01 2018-02-15 日本ポリプロ株式会社 ポリオレフィン系樹脂組成物の製造法および該ポリオレフィン系樹脂組成物を用いたフィルム
US10844162B2 (en) * 2016-08-08 2020-11-24 Zeon Corporation Resin composition and molded resin object
CN110023393B (zh) * 2018-05-18 2020-02-21 株式会社艾迪科 粒状成核剂、树脂组合物、成型品及其制造方法
CN112449647A (zh) * 2018-07-27 2021-03-05 株式会社Adeka 添加剂组合物、含有其的聚烯烃系树脂组合物、聚烯烃系树脂组合物的制造方法和其成型品
JP6513278B1 (ja) * 2018-08-30 2019-05-15 株式会社Adeka 組成物、これを含有する熱可塑性樹脂組成物およびその成形品

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337148A (ja) 1986-08-01 1988-02-17 Chisso Corp 高剛性プロピレン単独重合体組成物
JPS6337152A (ja) 1986-08-01 1988-02-17 Chisso Corp 高剛性エチレン−プロピレンブロツク共重合体組成物
JPS6390552A (ja) 1986-10-06 1988-04-21 Mitsubishi Petrochem Co Ltd プロピレン系樹脂組成物
JPS63210152A (ja) 1987-02-26 1988-08-31 Chisso Corp 高剛性高溶融粘弾性プロピレン単独重合体組成物
JPS63213547A (ja) 1987-03-02 1988-09-06 Chisso Corp 高剛性高溶融粘弾性エチレン−プロピレンブロツク共重合体組成物
JPS63243150A (ja) 1987-03-30 1988-10-11 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPS63243152A (ja) 1987-03-31 1988-10-11 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPS63260944A (ja) 1987-04-20 1988-10-27 Chisso Corp ポリオレフイン組成物
JPS63260943A (ja) 1987-04-20 1988-10-27 Chisso Corp ポリオレフイン組成物
JPS63264650A (ja) 1987-04-21 1988-11-01 Chisso Corp ポリオレフイン組成物
JPH01178541A (ja) 1987-12-30 1989-07-14 Mitsubishi Petrochem Co Ltd 低溶出性の医薬液剤・輸液・輸血用器具
JPH0249047A (ja) 1988-08-11 1990-02-19 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPH02102242A (ja) 1988-10-11 1990-04-13 Chisso Corp 結晶性プロピレン重合体組成物およびそれを用いた容器
JPH02251548A (ja) 1989-03-25 1990-10-09 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPH02279746A (ja) 1989-04-20 1990-11-15 Mitsubishi Petrochem Co Ltd 結晶性プロピレン重合体組成物
JPH03195751A (ja) 1989-12-22 1991-08-27 Chisso Corp ポリプロピレン組成物
JPH11310670A (ja) * 1998-04-28 1999-11-09 Chisso Corp 結晶性ポリオレフィン組成物
WO2007039997A1 (ja) * 2005-09-30 2007-04-12 Adeka Corporation 結晶核剤組成物の製造方法及び結晶性高分子組成物
JP2011213808A (ja) * 2010-03-31 2011-10-27 Adeka Corp 顆粒状樹脂添加剤組成物
JP2017149962A (ja) 2012-12-21 2017-08-31 ミリケン・アンド・カンパニーMilliken & Company 添加剤組成物およびそれを使用するための方法
JP2018520257A (ja) * 2015-07-22 2018-07-26 アルケマ フランス ポリ(アリーレン−エーテル−ケトン)(paek)から製造された組成物を安定化させる方法
WO2019220658A1 (ja) * 2018-05-18 2019-11-21 株式会社Adeka 粒状核剤、樹脂組成物、成形品およびその製造方法
WO2020008668A1 (ja) * 2018-07-04 2020-01-09 株式会社Adeka 粒状核剤、樹脂組成物、成形品およびその製造方法
JP2020045090A (ja) 2018-09-19 2020-03-26 バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド 車両の自動運転制御補助方法、車両の自動運転制御補助装置、機器、コンピュータ読み取り可能な記憶媒体及び車路連携システム

Also Published As

Publication number Publication date
KR102472825B1 (ko) 2022-12-02
TW202136280A (zh) 2021-10-01
BR112021023557B1 (pt) 2022-08-09
US11795296B2 (en) 2023-10-24
JP6731128B1 (ja) 2020-07-29
US20220289941A1 (en) 2022-09-15
TWI741936B (zh) 2021-10-01
KR20220025170A (ko) 2022-03-03
CN114026163A (zh) 2022-02-08
JP2021147403A (ja) 2021-09-27
EP3964547A4 (en) 2023-01-18
CN114026163B (zh) 2022-06-10
BR112021023557A2 (pt) 2022-01-04
EP3964547A1 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
EP3587485B1 (en) Particulate nucleating agent, resin composition and method for manufacturing same
WO2021186862A1 (ja) 粒状核剤、樹脂組成物およびその製造方法ならびに成形品
JP6423982B1 (ja) 粒状核剤、樹脂組成物、成形品およびその製造方法
JP6767600B2 (ja) 粒状核剤、樹脂組成物、成形品およびその製造方法
KR102031524B1 (ko) 입상 핵제, 수지 조성물, 성형품 및 그 제조 방법
WO2022215629A1 (ja) 樹脂添加剤組成物、樹脂組成物、および成形品
WO2022215632A1 (ja) 樹脂添加剤組成物、樹脂組成物、および成形品
RU2793134C1 (ru) Дисперсный зародыш кристаллизации, полимерная композиция, способ ее получения и формованное изделие
JP2019199460A (ja) 粒状核剤、樹脂組成物、成形品およびその製造方法
JP2020007521A (ja) 粒状核剤、樹脂組成物、成形品およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771414

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021023557

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021771414

Country of ref document: EP

Effective date: 20211202

ENP Entry into the national phase

Ref document number: 112021023557

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211123

ENP Entry into the national phase

Ref document number: 20227004345

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE