WO2020008668A1 - 粒状核剤、樹脂組成物、成形品およびその製造方法 - Google Patents

粒状核剤、樹脂組成物、成形品およびその製造方法 Download PDF

Info

Publication number
WO2020008668A1
WO2020008668A1 PCT/JP2019/002781 JP2019002781W WO2020008668A1 WO 2020008668 A1 WO2020008668 A1 WO 2020008668A1 JP 2019002781 W JP2019002781 W JP 2019002781W WO 2020008668 A1 WO2020008668 A1 WO 2020008668A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleating agent
granular nucleating
resin composition
granular
aliphatic amine
Prior art date
Application number
PCT/JP2019/002781
Other languages
English (en)
French (fr)
Inventor
拓也 福田
悠里 横田
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to US16/609,832 priority Critical patent/US10982072B2/en
Priority to RU2019140841A priority patent/RU2720794C1/ru
Priority to EP19795439.9A priority patent/EP3613802B1/en
Priority to BR112019024067-5A priority patent/BR112019024067B1/pt
Priority to MX2019013599A priority patent/MX2019013599A/es
Priority to CN201980002809.9A priority patent/CN110832021B/zh
Priority to KR1020207003487A priority patent/KR102094128B1/ko
Priority to AU2019284093A priority patent/AU2019284093B2/en
Publication of WO2020008668A1 publication Critical patent/WO2020008668A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/527Cyclic esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/24Crystallisation aids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment

Definitions

  • the present invention relates to a granular nucleating agent, a resin composition, a molded article, and a method for producing the same.
  • Patent Literature 1 describes that a nucleating agent (hereinafter, a nucleating agent, a crystallization accelerator, a clarifying agent, and the like is collectively referred to as a “nucleating agent”) is added to a thermoplastic polymer. (Claim 1 of Patent Document 1, etc.).
  • a phosphate ester salt is exemplified as a nucleating agent (paragraph 0014 of Reference 1).
  • a general granular nucleating agent is added and melt-kneaded in a thermoplastic resin as a granular material, and is used for heat molding of the thermoplastic resin.
  • the feed stability may be affected by various physical properties of the powder of the granular nucleating agent. When the feed stability is reduced, the production stability of the molding process is reduced.
  • a granular nucleating agent containing a compound represented by the following general formula (1) A granular nucleating agent is provided, wherein the content of the aliphatic amine in the granular nucleating agent obtained by the measurement in the procedure A shown below is 3 ppm or more and 190 ppm or less based on the mass of the whole granular nucleating agent.
  • Process A 4 g of the granular nucleating agent is placed in a glass test tube for introducing a granular nucleating agent (outer diameter: 30 mm ⁇ length: 200 mm).
  • the test for introducing the granular nucleating agent was carried out under an argon gas atmosphere while introducing the argon gas at 37 mL / min.
  • the tube is heated at 180 ° C. for 2 hours. Vaporized matter generated by heating is collected in a 6 mL, 600 mg / L methanesulfonic acid aqueous solution in a glass collecting test tube (outer diameter 15 mm ⁇ length 150 mm).
  • This methanesulfonic acid aqueous solution is made up to 10 mL with a 600 mg / L methanesulfonic acid aqueous solution to prepare a measurement sample.
  • the concentration of the aliphatic amine in the obtained measurement sample is measured by using an ion chromatography method. Based on the obtained measurement value, the content (ppm) of the aliphatic amine based on the whole granular nucleating agent is calculated.
  • R 1 to R 4 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 9 carbon atoms, and R 5 represents a hydrogen atom or 1 to 9 carbon atoms.
  • m represents 1 or 2, when m is 1, M 1 represents a hydrogen atom or an alkali metal atom, and when m is 2, M 1 is a group 2 element, Al (OH ) Or Zn.
  • thermoplastic resin containing the granular nucleating agent in a thermoplastic resin.
  • a granular nucleating agent excellent in feed stability and low odor a resin composition using the same, a molded article, and a method for producing the same.
  • the granular nucleating agent of the present embodiment will be described.
  • the granular nucleating agent contains an aromatic phosphate metal salt.
  • aromatic phosphate metal salt a compound represented by the following general formula (1) is used. These may be used alone or in combination of two or more.
  • R 1 to R 4 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 9 carbon atoms, and R 5 represents a hydrogen atom or 1 to 4 carbon atoms.
  • M represents 1 or 2, when m is 1, M 1 represents a hydrogen atom or an alkali metal atom, and when m is 2, M 1 is a group 2 element, Al (OH) Or Zn.
  • examples of the alkyl group having 1 to 9 carbon atoms represented by R 1 , R 2 , R 3 and R 4 include a methyl group, an ethyl group, a propyl group, an isopropyl group, Butyl, sec-butyl, tert-butyl, isobutyl, amyl, isoamyl, tert-amyl, hexyl, cyclohexyl, heptyl, isoheptyl and tert-heptyl.
  • the alkali metal represented by M 1 sodium (Na), potassium (K), and lithium (Li) and the like.
  • Be beryllium
  • Mg magnesium
  • Ca calcium
  • Sr strontium
  • Ba barium
  • Ra radium
  • magnesium and calcium are preferable because the nucleating agent effect of the nucleating agent component is remarkable.
  • a compound in which m is 1 is preferable.
  • a compound in which R 1 , R 2 , R 3 and R 4 have a single group selected from the group consisting of a methyl group, an ethyl group, a sec-butyl group and a tert-butyl group is preferable.
  • Compounds in which R 5 is a hydrogen atom or a methyl group are particularly preferred.
  • the compound represented by the general formula (1) it is preferable to include one or more compounds represented by any of the following chemical formulas (2) to (13).
  • a compound represented by any one of the chemical formulas (2) to (6) is preferable from the viewpoint of improving the physical properties of the resin.
  • a compound represented by any one of the chemical formulas (7) to (13) is preferable.
  • the compound represented by the above general formula (1) for example, after reacting phosphorus trichloride (or phosphorus oxychloride) with 2,2′-alkylidenephenol, hydrolysis is performed if necessary. To form a cyclic acidic phosphate. Next, the cyclic acid phosphate ester is reacted with a metal hydroxide such as sodium hydroxide or potassium hydroxide, and the obtained reaction product is appropriately purified (eg, filtered) and dried to obtain the above compound ( Metal salt of an aromatic phosphate) is obtained. Alternatively, an aromatic phosphate metal salt may be synthesized by a conventionally known method and used as the above compound.
  • a metal hydroxide such as sodium hydroxide or potassium hydroxide
  • the obtained compound is dissolved in a solvent and reacted with another metal hydroxide such as lithium hydroxide, or reacted with a salt of any of aluminum, magnesium, and group II elements, and the obtained reactant is obtained. Is purified and dried to obtain another compound described above.
  • another metal hydroxide such as lithium hydroxide, or reacted with a salt of any of aluminum, magnesium, and group II elements
  • the granular nucleating agent of the present embodiment can be obtained by, if necessary, crushing the obtained compound by a suitable crushing means.
  • coarse particles may be excluded by sieving with a sieve having a predetermined mesh size.
  • the granular nucleating agent may include one or more powdery compounds.
  • the granular nucleating agent may be obtained by blending two or more compounds having different particle diameter distributions or two or more classified compounds in an appropriate ratio.
  • Examples of the above crushing means for example, mortar, ball mill, rod mill, tube mill, conical mill, vibrating ball mill, high swing ball mill, roller mill, pin mill, hammer mill, attrition mill, jet mill, jet miser, micronizer, nanomizer, Majac mill, micro atomizer, colloid mill, premier colloid mill, micron mill, Charlotte colloid mill, rotary cutter, dry medium stirring mill and the like.
  • These pulverizers can be used alone or in combination of two or more, and are appropriately selected depending on the type of the raw material powder to be pulverized, the pulverization time and the like.
  • the granular nucleating agent of the present embodiment may be composed of only the compound represented by the above general formula (1), and may contain other components as long as the object of the present invention is achieved.
  • the other component include a metal salt of an aromatic phosphate ester, a metal salt of a fatty acid, a silicate-based inorganic additive component, and hydrotalcites other than the compound represented by the general formula (1). These may be used alone or in combination of two or more.
  • the fatty acid metal salt preferably contains, for example, a compound represented by the following general formula (14).
  • R 6 represents a linear or branched aliphatic group having 9 to 30 carbon atoms
  • M represents a metal atom
  • n is an integer of 1 to 4
  • R 6 is a straight-chain or branched aliphatic group having 9 to 30 carbon atoms, such as an alkyl group or an alkenyl group having 9 to 30 carbon atoms, which is substituted with a hydroxyl group. It may be.
  • Examples of the aliphatic group having 9 to 30 carbon atoms include capric acid, 2-ethylhexanoic acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, and nonadecylic acid Arachidic acid, heicosylic acid, behenic acid, tricosylic acid, saturated fatty acids such as lignoceric acid, cerotic acid, montanic acid, melicic acid, 4-decenoic acid, 4-dodecenoic acid, palmitoleic acid, ⁇ -linolenic acid, linoleic acid, Examples include linear unsaturated fatty acids such as ⁇ -linolenic acid, stearidonic acid, petroselinic acid, oleic acid, elaidic acid, vaccenic acid, eicosapentaenoic acid, docosapentaen
  • the fatty acid metal salt preferably has an aliphatic group represented by R 6 having 10 to 21 carbon atoms. Particularly, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, 12- Hydroxystearic acid is preferred.
  • Examples of the metal atom represented by M include an alkali metal, magnesium, calcium, strontium, barium, titanium, manganese, iron, zinc, silicon, zirconium, yttrium, barium, and hafnium.
  • alkali metals such as sodium, lithium and potassium are preferable, and particularly sodium and lithium are preferably used because the crystallization temperature increases.
  • silicate-based inorganic additive component examples include fumed silica, fine-particle silica, silica, diatomaceous earth, clay, kaolin, silica gel, calcium silicate, sericite, kaolinite, flint, feldspar powder, vermiculite, attapulgite, Examples thereof include talc, mica, minnesotite, and pyrophyllite. Among them, those having a layered particle structure and those having a silicon content of 15% by mass or more are preferable. These preferred inorganic additives include sericite, kaolinite, talc, mica, minnesotite and pyrophyllite, with talc and mica being more preferred.
  • hydrotalcites for example, a natural product or a synthetic product may be used, and the hydrotalcite may be used regardless of the presence or absence of surface treatment or the presence or absence of water of crystallization.
  • a basic carbonate represented by the following general formula may be mentioned.
  • M x Mg y Al z CO 3 (OH) xp + 2y + 3z-2 ⁇ nH 2 O (In the above general formula, M represents an alkali metal or zinc, X represents a number from 0 to 6, y represents a number from 0 to 6, z represents a number from 0.1 to 4, and p represents M And n represents the number of waters of crystallization from 0 to 100)
  • the granular nucleating agent containing the above other components is a granular nucleating agent composition containing the compound represented by the above general formula (1), and includes other aromatic phosphate ester metal salts, fatty acid metal salts, and silicate-based compounds. It can be configured to contain at least one selected from the group consisting of inorganic additive components and hydrotalcites, preferably one or more selected from the group consisting of fatty acid metal salts, talc, mica and hydrotalcites. .
  • Such a granular nucleating agent can be obtained, for example, by subjecting the compound represented by the general formula (1) and other components to a pulverization treatment by appropriately combining the above-mentioned pulverization means. Further, the above-mentioned pulverizing means, sieving, blending method and the like can also be used.
  • the granular nucleating agent of the present embodiment functions as a nucleating agent and a clarifying agent added at the time of molding a thermoplastic resin such as a crystalline polymer.
  • a thermoplastic resin such as a crystalline polymer.
  • crystallization temperature, heat denaturation temperature, flexural modulus, hardness, transparency, and the like can be improved (modification effect).
  • the molding cycleability can be improved, and the productivity can be improved.
  • the granular nucleating agent of the present embodiment has a property that the content of the aliphatic amine in the granular nucleating agent obtained by the measurement of the procedure A described below is 3 ppm or more and 190 ppm or less based on the mass of the entire granular nucleating agent. . (Outline of procedure A) The granular nucleating agent is heated under an atmosphere of argon gas at 180 ° C. for 2 hours, and the generated vapor is collected in an aqueous methanesulfonic acid solution.
  • the concentration of the aliphatic amine in the aqueous methanesulfonic acid solution is measured, and based on the obtained measurement value, the aliphatic amine based on the mass of the entire granular nucleating agent is used. Calculate the content (ppm).
  • both the feed stability and the odor of the granular nucleating agent can be appropriately controlled. That is, by setting the content of the aliphatic amine to a predetermined value or more, the feed stability of the granular nucleating agent can be enhanced, and by setting the content of the aliphatic amine to a predetermined value or less, the odor of the granular nucleating agent can be improved. It has been found that can be reduced.
  • the allowable range of the powder physical properties of the granular nucleating agent can be widened in the application to molding and the use of the nucleating agent and the clarifying agent.
  • the workability during storage of the granular nucleating agent and molding can be improved. Thereby, the handling property of the granular nucleating agent can be enhanced throughout the production, packaging, transportation, storage, and molding of the granular nucleating agent.
  • a heating temperature higher than the boiling point of the aliphatic amine is employed, and by appropriately selecting a heating time, the fat in the granular nucleating agent is determined. It has been found that the content of the aromatic amine can be stably evaluated.
  • the measured amount of the aliphatic amine also increased, but after 2 hours, the saturated amount was shown for a while, and after 2.5 hours, the measured amount was increased again. After 2.5 hours, not only aliphatic amines but also impurities started to be measured, and it was found that the measured amount of impurities increased.
  • the impurities are assumed to be decomposition products of the aliphatic amine.
  • -Vaporized matter generated by heating is collected in a 6 mL, 600 mg / L methanesulfonic acid aqueous solution in a glass collecting test tube (outer diameter 15 mm x length 150 mm).
  • the 6 mL methanesulfonic acid aqueous solution is made up to 10 mL with a 600 mg / L methanesulfonic acid aqueous solution to prepare a measurement sample.
  • concentration and type of the aliphatic amine in the obtained measurement sample are measured using an ion chromatography method.
  • the lower limit of the aliphatic amine content is, for example, 3 ppm or more, preferably 4 ppm or more, more preferably 5 ppm or more, based on the mass of the whole granular nucleating agent.
  • the feed stability of the granular nucleating agent can be improved.
  • the aliphatic amine in the granular nucleating agent improves the sliding of the granular material, so that clogging at the time of feeding is suppressed, and the feeding stability is increased.
  • the upper limit of the aliphatic amine content is, for example, 190 ppm or less, preferably 180 ppm or less, more preferably 150 ppm or less, based on the mass of the whole granular nucleating agent. Thereby, a granular nucleating agent excellent in low odor can be realized.
  • the aliphatic amine is a compound in which one to three hydrogen atoms of ammonia are substituted with a hydrocarbon residue R, and R is a hydrocarbon group or a hydrocarbon group-substituted compound. This hydrocarbon group may be partially substituted with an oxygen atom or the like.
  • Such an aliphatic amine is a compound different from an aromatic amine in that it does not have an aromatic in all Rs.
  • the aliphatic amine may be a primary amine, a secondary amine, or a tertiary amine.
  • the aliphatic amine may include an amine compound having one or more and three or less monovalent groups having 1 to 6 carbon atoms bonded to a nitrogen atom. That is, the number of carbon atoms of the hydrocarbon residue R in the aliphatic amine is, for example, 1 to 6, preferably 2 to 5, and more preferably 2 to 4. By selecting an appropriate carbon number, feed stability can be improved.
  • Examples of the hydrocarbon residue represented by R or a substituted product thereof include an alkyl group and an alcoholic hydroxy group.
  • aliphatic amine examples include primary aliphatic amines such as methylamine, ethylamine, propylamine, isopropylamine, butylamine, isobutylamine, tert-butylamine, amylamine, hexylamine, palmitylamine, ethylenediamine and monoethanolamine.
  • primary aliphatic amines such as methylamine, ethylamine, propylamine, isopropylamine, butylamine, isobutylamine, tert-butylamine, amylamine, hexylamine, palmitylamine, ethylenediamine and monoethanolamine.
  • Aliphatic secondary amines such as dimethylamine, diethylamine, diethylamine, dipropylamine, dibutylamine, diamylamine and diethanolamine; aliphatics such as trimethylamine, triethylamine, tripropylamine, tributylamine, triamylamine, N, N-dimethylamine Tertiary amines and the like are used.
  • the aliphatic amine preferably contains, for example, an alkylamine or an alkanolamine. Thereby, low odor can be improved as well as feed stability. Among them, from the viewpoint of the production stability of the granular nucleating agent, the aliphatic amine preferably contains at least one selected from the group consisting of triethylamine, diethylamine, butylamine, and ethanolamine.
  • the content of the aliphatic amine can be controlled by appropriately selecting the type and blending amount of each component contained in the granular nucleating agent, the synthesis / preparation method of the granular nucleating agent, and the like. It is possible. Among these, for example, the use of an aliphatic amine in a filtration / washing / purification step, a pulverization / classification / blending step, a preparation step of a granular nucleating agent, and the like, the content of the aliphatic amine is in a desired numerical range. It is listed as an element to do.
  • a step of preparing the granular nucleating agent, and the step of preparing the obtained granular nucleating agent based on the above procedure A containing the aliphatic amine based on the whole granular nucleating agent by mass may include a step of obtaining the amount, and a step of selecting the aliphatic amine having a content within the above numerical range as a passable product.
  • the resin composition of the present embodiment contains the above granular nucleating agent in a thermoplastic resin.
  • the method of adding the granular nucleating agent to the thermoplastic resin is not particularly limited, and a commonly used method can be applied as it is. For example, a method of dry blending a powder or a pellet of a thermoplastic resin with a powder of the granular nucleating agent can be used.
  • the resin composition can be used in various forms, and may be, for example, any of pellets, granules, and powders. From the viewpoint of handleability, a pellet is preferable.
  • thermoplastic resin examples include polyolefin-based resins, styrene-based resins, polyester-based resins, polyether-based resins, polycarbonate-based resins, polyamide-based resins, and halogen-containing resins. Among them, it is preferable to use a crystalline polymer.
  • thermoplastic resin for example, petroleum resin, coumarone resin, polyvinyl acetate, acrylic resin, polymethyl methacrylate, polyvinyl alcohol, polyvinyl formal, polyvinyl butyral, polyphenylene sulfide, polyurethane, cellulose resin, polyimide Resins, thermoplastic resins such as polysulfone and liquid crystal polymers, and blends thereof can be used.
  • thermoplastic resin includes isoprene rubber, butadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, polyester elastomer, nitrile elastomer, nylon elastomer, vinyl chloride elastomer, polyamide elastomer, polyurethane
  • thermoplastic elastomer such as a system elastomer may be used, or may be used in combination.
  • the crystalline polymer is not particularly limited.
  • polyolefin polymers such as ⁇ -olefin polymers such as random copolymers
  • thermoplastic linear polyester polymers such as polyethylene terephthalate, polybutylene terephthalate and polyhexamethylene terephthalate
  • polysulfide polymers such as polyphenylene sulfide
  • Polylactic acid polymers such as polycaprolactone
  • linear polyamide polymers such as polyhexamethylene adipamide
  • crystalline polystyrene polymers such as syndiotactic polystyrene.
  • polystyrene resins such as a mixture of these propylene polymers and other ⁇ -olefin polymers are particularly preferable.
  • a crystalline resin such as a crystalline ⁇ -olefin polymer, especially polypropylene, an ethylene / propylene copolymer, or a mixture of these propylene polymers with other ⁇ -olefin polymers.
  • polypropylene-based resins can be used irrespective of their intrinsic viscosity, isometaic pentad fraction, density, molecular weight distribution, melt flow rate, rigidity, etc., for example, JP-A-63-37148, JP-A-63-37152, JP-A-63-90552, JP-A-63-210152, JP-A-63-213547, JP-A-63-243150, JP-A-63-243152, JP-A-63-260943, and JP-A-63-260943.
  • JP-A-63-260944, JP-A-63-264650, JP-A-1-178541, JP-A-2-49047, JP-A-2-102242, JP-A-2-251548, JP-A-2-279746, and A polypropylene-based resin such as that described in Japanese Unexamined Patent Publication No. Hei 3-195575 can be preferably used. That.
  • the content of the above granular nucleating agent is usually 0.001 to 10 parts by weight, preferably 0.005 to 8 parts by weight based on 100 parts by weight of the thermoplastic resin (for example, crystalline polymer). , More preferably in the range of 0.01 to 5 parts by weight. This makes it possible to sufficiently obtain the effect of modifying the thermoplastic resin, particularly the crystalline polymer.
  • the resin composition of the present embodiment may contain an antioxidant, a light stabilizer, an ultraviolet absorber, a pigment, a filler, an organic tin compound, a plasticizer, an epoxy compound, a foaming agent, an antistatic agent, Additives such as a flame retardant, a lubricant, a heavy metal deactivator, hydrotalcites, an organic carboxylic acid, a colorant, a silicate-based additive, and a processing aid can be contained. These may be used alone or in combination of two or more.
  • the antioxidant include a phosphorus antioxidant, a phenolic antioxidant, and a thioether antioxidant.
  • Examples of the antistatic agent include a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant.
  • Examples of the flame retardant include a halogen compound, a phosphate compound, a phosphoric amide compound, a melamine compound, a melamine salt compound of polyphosphoric acid, a fluororesin, and a metal oxide.
  • Examples of the lubricant include hydrocarbons, fatty acids, aliphatic alcohols, aliphatic esters, aliphatic amides, and metallic soaps.
  • silicate-based additives examples include fumed silica, fine-particle silica, silica, diatomaceous earth, clay, kaolin, silica gel, calcium silicate, sericite, kaolinite, flint, feldspar powder, vermiculite, attapulgite, talc, mica, and minnesotite. And pyrophyllite.
  • the content of the additive in the resin composition is preferably, for example, 0.001 to 10 parts by weight based on 100 parts by weight of the crystalline polymer. By setting the value in such a range, the effect of the additive can be improved.
  • the resin composition is an injection molded product, a fiber, a flat yarn, a biaxially stretched film, a uniaxially stretched film, a non-stretched film, a sheet, a thermoformed product, an extrusion blow molded product, an injection blow molded product, an injection stretch blow molded product, It can be used for molded products such as profile extrusion products and rotational molding products. Among these, injection molded products, films, sheets, and thermoformed products are preferable as molded products.
  • the method for producing a molded article of the present embodiment includes a step of molding a resin composition based on various molding methods, whereby the molded article can be obtained.
  • the molding method is not particularly limited, and may be injection molding, extrusion, blow molding, rotational molding, vacuum molding, inflation molding, calendar molding, slash molding, dip molding, foam molding. And the like. Among them, injection molding, extrusion molding, and blow molding are preferred.
  • the resin composition can be used for various purposes such as building materials, agricultural materials, vehicle parts such as automobiles, trains, ships, and aircraft, packaging materials, miscellaneous goods, toys, home appliances, and medical products.
  • automotive parts such as bumpers, dashboards, instrument panels, battery cases, luggage cases, door panels, door trims, fender liners, etc .
  • resin parts for home appliances such as refrigerators, washing machines, vacuum cleaners; tableware, bottles Household goods such as caps, buckets, bathing goods, etc .
  • Resin parts for connection such as connectors; miscellaneous goods such as toys, storage containers, synthetic paper; medical packs, syringes, catheters, medical tubes, syringe preparations, infusion bags, reagents Medical molded products such as containers, drink containers, individual drink packages, etc .
  • Building materials such as wall materials, floor materials, window frames, wallpapers, and windows; Wire coating materials; Agricultural materials such as houses, tunnels, and flat yarn mesh bags.
  • various post-treatments for applications where various post-treatments are performed, for example, medical applications, applications that are sterilized by radiation such as food packaging applications, or to improve surface properties such as paintability, after molding, low-temperature plasma It can be used for purposes such as processing. Among these, it is preferable to use it for automobile parts, household goods, and food packaging materials.
  • the resulting compound No. 1 was crushed in a mortar to obtain a granular nucleating agent A (amine content: 0 ppm). 50 g of the obtained granular nucleating agent A and 25 mg of triethylamine (TEA) were mixed to obtain a granular nucleating agent B (amine amount: 500 ppm).
  • a granular nucleating agent A amine content: 0 ppm
  • 50 g of the obtained granular nucleating agent A and 25 mg of triethylamine (TEA) were mixed to obtain a granular nucleating agent B (amine amount: 500 ppm).
  • 40 g of the obtained granular nucleating agent A and 10 mg of diethylamine (DEA) were mixed to obtain a mixed product (amine content: 250 ppm).
  • 5 g of the obtained mixture and 15 g of the above granular nucleating agent A were mixed to obtain a granular nucleating agent G (amine content: 50 ppm).
  • 40 g of the obtained granular nucleating agent A and 10 mg of butylamine (BA) were mixed to obtain a mixed product (amine content: 250 ppm).
  • 5 g of the obtained mixture and 15 g of the above granular nucleating agent A were mixed to obtain a granular nucleating agent H (amine content: 50 ppm).
  • the obtained compound No. A mixture (amine amount: 250 ppm) was obtained by mixing 2 to 40 g and 10 mg of triethylamine. 5 g of the obtained mixture and the above compound No. 2 to 15 g were mixed to obtain a granular nucleating agent J (amine content: 50 ppm).
  • the obtained compound No. A mixture (amine amount: 250 ppm) was obtained by mixing 3 to 40 g with 10 mg of triethylamine. 5 g of the obtained mixture and the above compound No. 3 to 15 g were mixed to obtain a granular nucleating agent K (amine content: 50 ppm).
  • a granular nucleating agent L 100 g of the obtained granular nucleating agent A and 20 mg of triethylamine were mixed to obtain a granular nucleating agent L (amine content: 200 ppm).
  • the said amine amount has shown the result obtained by the measurement of the following amine amount.
  • test tube 40 columnar test tube, outer diameter 15 mm ⁇ length 150 mm, manufactured by Niommen Kagaku Glass Co., Ltd.
  • 60 rubber stopper
  • One end of the tube 80 was located in the test tube 20, and the other end of the tube 80 was located in the aqueous methanesulfonic acid solution 50 of the test tube 40.
  • an argon gas (Ar) was introduced into the test tube 20 from the other end of the tube 70 at a flow rate of 37 mL / min for 5 minutes, and then argon gas was introduced under the same conditions.
  • the test tube 20 is heated at 180 ° C. for 2 hours in a block bath 100, and generated vapors are collected in a methanesulfonic acid aqueous solution 50 in the test tube 40 via a tube 80. A collected liquid in which vapors were collected was obtained.
  • TEA triethylamine
  • DEA diethylamine
  • BA butylamine
  • MEA ethanolamine
  • the obtained granular nucleating agents C to K were used as the granular nucleating agents of Examples 1 to 9 in Table 1, and the obtained granular nucleating agents A and L were 1 was used as the granular nucleating agent of Comparative Examples 1 and 2.
  • ⁇ Feed stability> Using a powder property evaluation device (manufactured by Seishin Enterprise Co., Ltd., multi-tester MT-02), 10 g of the obtained granular nucleating agent was filled into a feeder of the powder property evaluation device, and under the condition of a feeder vibration width of 0.3 mm. The discharge time when vibrating was measured. For each granular nucleating agent, three samples were measured, and the average value of the three measured values was defined as the discharge time (s). The measured discharge time (s) was evaluated based on the following evaluation criteria. Table 1 shows the results. -Discharge time :: The discharge time was short, and the feed stability was good. ⁇ : During the measurement of the discharge time, the operation was stopped after the elapse of a predetermined time, so that the feed stability was lowered. In Table 1, “> 60s” indicates that there was no discharge after 60 seconds and the operation was stopped.
  • ⁇ Odor> About the obtained granular nucleating agent, the odor at the time of the following storage was evaluated based on the following evaluation criteria.
  • -Storage The obtained granular nucleating agent was sealed in a container and stored at 25 ° C and a humidity of 60% for 24 hours, and then the odor of the granular nucleating agent was confirmed. :: Almost no odor was felt at the time of enclosing and after opening (after storage), and the use level was at a practical level without any problem.
  • X The odor after opening (after storage) was stronger than that at the time of enclosing, which was a level that would cause a practical problem.
  • ⁇ Transparency> A composition obtained by mixing 0.1 part by weight of the obtained granular nucleating agent of each example with 100 parts by weight of polypropylene was mixed for 1 minute with a Henschel mixer, and extruded at 230 ° C. and 150 rpm to form a pellet. Manufactured. The haze (haze value:%) of a 1 mm thick test piece obtained by injection molding this at 200 ° C. was measured according to JIS K7136.
  • the granular nucleating agents of Examples 1 to 9 were superior in feed stability as compared with Comparative Example 1, and the odor was reduced as compared with Comparative Example 2. Further, the granular nucleating agents of Examples 1 to 9 had a small haze value within a range where there was no practical problem, and the granular nucleating agents of Examples 1 to 11 were shown to have a small haze value as compared with Example 12. . Since such a granular nucleating agent can improve the transparency of the crystalline polymer, it was found that the granular nucleating agent can be suitably used as a nucleating agent and a clarifying agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の粒状核剤は、所定の芳香族リン酸エステル金属塩を含む粒状核剤であって、当該粒状核剤中の脂肪族アミンの含有量が、当該粒状核剤全体の質量基準で3ppm以上190ppm以下という特性を満たす。

Description

粒状核剤、樹脂組成物、成形品およびその製造方法
 本発明は、粒状核剤、樹脂組成物、成形品およびその製造方法に関する。
 高分子材料の改質技術として、結晶核剤や結晶化促進剤を添加する技術が知られている。この種の技術としては、たとえば、特許文献1に記載のものが知られている。特許文献1には、熱可塑性ポリマー中に核剤(以下、結晶核剤、結晶化促進剤、透明化剤等を総称して「核剤」と呼称する。)を添加することが記載されている(特許文献1の請求項1等)。同文献には、核剤としてリン酸エステル塩が例示されている(引例1の段落0014)。
特開2017-149962号公報
 しかしながら、本発明者が検討した結果、上記特許文献1に記載の核剤において、フィード安定性および臭気性の点で改善の余地があることが判明した。
 本発明者が検討した結果、以下のような知見が得られた。
 一般的な粒状核剤は、粉粒体として熱可塑性樹脂中に添加・溶融混練され、熱可塑性樹脂の加熱成形加工に使用される。しかしながら、粒状核剤の様々な粉体物性の影響を受けてフィード安定性が低下する恐れがあった。フィード安定性が低下すると、成形加工の製造安定性の低下につながる。
 このような事情を踏まえ検討を進めた結果、粒状核剤中に脂肪族アミンを含有させることで、フィード安定性を向上できることを見出した。しかしながら、過剰量の脂肪族アミンを含有させた場合、保管時に臭気が強くなり、作業が困難になることが分かった。
 このような知見に基づきさらに鋭意研究したところ、粒状核剤中の脂肪族アミンの含有量を適切な数値範囲内とすることにより、フィード安定性を高めつつも、臭気を低減できることを見出し、本発明を完成するに至った。
 本発明によれば、
 下記一般式(1)で表される化合物を含む粒状核剤であって、
 以下に示す手順Aの測定により得られる当該粒状核剤中の脂肪族アミンの含有量が、当該粒状核剤全体の質量基準で3ppm以上190ppm以下である、粒状核剤が提供される。
(手順A)
 ガラス製の粒状核剤導入用試験管(外径30mm×長さ200mm)中に、4gの当該粒状核剤を入れる。
 前記粒状核剤導入用試験管中に、37mL/minの条件でアルゴンガスを5分間導入した後、37mL/minのアルゴンガスを導入しつつ、アルゴンガス雰囲気下で、前記粒状核剤導入用試験管を180℃、2時間の条件で加熱する。
 加熱により発生した気化物を、ガラス製の捕集用試験管(外径15mm×長さ150mm)中の6mL、600mg/Lのメタンスルホン酸水溶液中に捕集する。このメタンスルホン酸水溶液を、600mg/Lのメタンスルホン酸水溶液で10mLにメスアップし、測定サンプルを作成する。
 得られた前記測定サンプル中の脂肪族アミンの濃度を、イオンクロマトグラフィー法を用いて測定する。
 得られた測定値に基づいて、当該粒状核剤全体を質量基準とする脂肪族アミンの含有量(ppm)を算出する。
Figure JPOXMLDOC01-appb-C000003
(上記一般式(1)中、R~Rは各々独立して、水素原子、直鎖又は分岐を有する炭素数1~9のアルキル基を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、mは1又は2を表し、mが1の場合、Mは水素原子又はアルカリ金属原子を表し、mが2の場合、Mは、二族元素、Al(OH)又はZnを表す。)
 また本発明によれば、上記粒状核剤を熱可塑性樹脂中に含有する、樹脂組成物が提供される。
 また本発明によれば、上記樹脂組成物を用いてなる成形品が提供される。
 また本発明によれば、上記樹脂組成物を用いて成形品を製造する製造方法が提供される。
 本発明によれば、フィード安定性および低臭気性に優れた粒状核剤、それを用いた樹脂組成物、成形品およびその製造方法が提供される。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
アミン量の測定方法の概要を説明するための図である。
 本実施形態の粒状核剤について説明する。
 上記粒状核剤は、芳香族リン酸エステル金属塩を含有するものである。当該芳香族リン酸エステル金属塩は、下記一般式(1)によって表される化合物が用いられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(1)中、R~Rは各々独立して、水素原子、直鎖又は分岐を有する炭素数1~9のアルキル基を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、mは1又は2を表し、mが1の場合、Mは水素原子又はアルカリ金属原子を表し、mが2の場合、Mは、二族元素、Al(OH)又はZnを表す。
 上記一般式(1)中の、R、R、R及びRで表される、炭素数1~9のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、イソブチル基、アミル基、イソアミル基、tert-アミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、イソヘプチル基、tert-ヘプチル基が挙げられる。
 上記一般式(1)中、Mで表されるアルカリ金属としては、ナトリウム(Na)、カリウム(K)、リチウム(Li)等が挙げられる。
 上記一般式(1)中のMで表される第二族元素としては、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)が挙げられ、これらの中でも、マグネシウム、カルシウムであるものが、核剤成分の核剤効果が顕著であるので好ましい。
 上記一般式(1)で表される化合物の中でも、mが1である化合物が好ましい。また、R、R、R及びRが、メチル基、エチル基、sec-ブチル基およびtert-ブチル基からなる群から選択される一種基を有する化合物が好ましい。また、Rが水素原子またはメチル基である化合物が特に好ましい。
 上記一般式(1)で表される化合物としては、下記の化学式(2)から化学式(13)のいずれかで表される化合物を一または二以上含むことが好ましい。この中でも、樹脂の物性向上の観点から、化学式(2)から化学式(6)のいずれかで表される化合物が好ましい。透明性向上の観点から、化学式(7)から化学式(13)のいずれかで表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(1)で表される化合物の製造方法としては、例えば、三塩化燐(またはオキシ塩化燐)と2,2’-アルキリデンフェノールとを反応させた後、必要に応じて加水分解して環状酸性リン酸エステルとする。次いで、環状酸性リン酸エステルと、水酸化ナトリウム、水酸化カリウム等の金属水酸化物とを反応させ、得られた反応物を、適宜精製(ろ過等)し、乾燥することにより、上記化合物(芳香族リン酸エステル金属塩)が得られる。また、従来公知の方法で芳香族リン酸エステル金属塩を合成し、上記化合物として使用してもよい。
 また得られた化合物を、溶剤に溶解し、水酸化リチウム等の他の金属水酸化物と反応させ、またはアルミニウム・マグネシウム・第二族元素のいずれかの塩と反応させ、得られた反応物を精製、乾燥することにより、別の上記化合物が得られる。
 本実施形態の粒状核剤は、必要に応じて、得られた化合物を適切な粉砕手段で粉砕することにより得られる。粒状核剤において、所定メッシュサイズの篩いで篩い分けして粗大粒子を除外してもよい。また上記粒状核剤は、1種または2種以上の粉末状の化合物を含むことができる。例えば、粒子径分布が異なる2種以上の化合物や、分級された2種以上の化合物を適当な比率で組み合わせてブレンドし、上記粒状核剤を得てもよい。
 上記の粉砕手段としては、例えば、乳鉢、ボールミル、ロッドミル、チューブミル、コニカルミル、振動ボールミル、ハイスイングボールミル、ローラーミル、ピンミル、ハンマーミル、アトリションミル、ジェットミル、ジェットマイザー、マイクロナイザー、ナノマイザー、マジャックミル、マイクロアトマイザー、コロイドミル、プレミアコロイドミル、ミクロンミル、シャロッテコロイドミル、ロータリーカッター、乾式媒体撹拌ミル等が挙げられる。これらの粉砕機は、単独又は2種以上組み合わせて用いることができ、粉砕する原料粉末の種類、粉砕時間等によって適宜選択される。
 本実施形態の粒状核剤は、上記一般式(1)で表される化合物のみで構成されていてもよく、本発明の目的を達成する範囲内で、他の成分を含有してもよい。上記他の成分としては、上記一般式(1)で表される化合物以外の他の芳香族リン酸エステル金属塩、脂肪酸金属塩、珪酸系無機添加剤成分、ハイドロタルサイト類等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 上記脂肪酸金属塩としては、例えば、下記一般式(14)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(14)中、Rは直鎖または分岐を有する炭素数9~30の脂肪族基を表し、Mは金属原子を表し、nは1~4の整数であって、Mの金属原子の価数と対応する整数を表す。
 上記一般式(14)において、Rは直鎖または分岐を有する炭素数9~30の脂肪族基としては、炭素数9~30のアルキル基およびアルケニル基が挙げられ、これらはヒドロキシル基で置換されていてもよい。
 上記炭素数9~30の脂肪族基としては、例えば、カプリン酸、2-エチルヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデシル酸、アラキジン酸、ヘイコシル酸、ベヘン酸、トリコシル酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸等の飽和脂肪酸、4-デセン酸、4-ドデセン酸、パルミトレイン酸、α-リノレン酸、リノール酸、γ-リノレン酸、ステアリドン酸、ペトロセリン酸、オレイン酸、エライジン酸、バクセン酸、エイコサペンタエン酸、ドコサペンタエン酸、ドコサヘキサエン酸等の直鎖不飽和脂肪酸等が挙げられる。
 上記脂肪酸金属塩は、Rで表される脂肪族基が、炭素数10~21であるものが好ましく、特に、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、オレイン酸、12-ヒドロキシステアリン酸が好ましい。
 上記Mで表される金属原子としては、例えば、アルカリ金属、マグネシウム、カルシウム、ストロンチウム、バリウム、チタニウム、マンガン、鉄、亜鉛、珪素、ジルコニウム、イットリウム、バリウムまたはハフニウム等が挙げられる。これらの中でも、ナトリウム、リチウム、カリウム等のアルカリ金属が好ましく、特に、ナトリウムおよびリチウムが、結晶化温度が高くなるので好ましく用いられる。
 上記珪酸系無機添加剤成分としては、例えば、フュームドシリカ、微粒子シリカ、けい石、珪藻土類、クレー、カオリン、シリカゲル、珪酸カルシウム、セリサイト、カオリナイト、フリント、長石粉、蛭石、アタパルジャイト、タルク、マイカ、ミネソタイト、パイロフィライト等が挙げられ、中でも、粒子構造が層状構造であるもの、珪素含有量が15質量%以上のものが好ましい。これらの好ましい無機添加剤としては、セリサイト、カオリナイト、タルク、マイカ、ミネソタイト、パイロフィライトが挙げられ、タルク、マイカがより好ましい。
 上記ハイドロタルサイト類としては、例えば、天然物でも合成品でもよく、表面処理の有無や結晶水の有無によらず用いることができる。例えば、下記一般式で表される塩基性炭酸塩が挙げられる。
MgAlCO(OH)xp+2y+3z-2・nH
(上記一般式中、Mはアルカリ金属または亜鉛を表し、Xは0~6の数を表し、yは0~6の数を表し、zは0.1~4の数を表し、pはMの価数を表し、nは0~100の結晶水の数を表す)
 上記他の成分を含有する粒状核剤は、上記一般式(1)で表される化合物を含有する粒状核剤組成物であり、他の芳香族リン酸エステル金属塩、脂肪酸金属塩、珪酸系無機添加剤成分およびハイドロタルサイト類からなる群から選択される一種以上、好ましくは脂肪酸金属塩、タルク、マイカおよびハイドロタルサイト類からなる群から選択される一種以上を含有するように構成され得る。
 このような粒状核剤のとしては、例えば、上記一般式(1)で表される化合物および他の成分の共存下、上記の粉砕手段を適切に組み合わせることにより粉砕処理することにより得られる。また、上述の粉砕手段、篩い分け、ブレンド方法などを用いることもできる。
 本実施形態の粒状核剤は、結晶性高分子等の熱可塑性樹脂の成形加工時に添加される造核剤・透明化剤として機能する。結晶性高分子において、結晶化温度、熱変性温度、曲げ弾性率、硬度、透明性などの向上(改質効果)を実現できる。また、成形サイクル性を高め、生産性を向上させることができる。
 本実施形態の粒状核剤は、以下に示す手順Aの測定により得られる当該粒状核剤中の脂肪族アミンの含有量が、当該粒状核剤全体の質量基準で3ppm以上190ppm以下という特性を有する。
(手順Aの概要)
 当該粒状核剤を、アルゴンガス雰囲気下、180℃、2時間の条件で加熱し、発生した気化物をメタンスルホン酸水溶液中に捕集する。
 続いて、イオンクロマトグラフィー法を用いて、当該メタンスルホン酸水溶液中の脂肪族アミンの濃度を測定し、得られた測定値に基づいて、当該粒状核剤全体を質量基準とする脂肪族アミンの含有量(ppm)を算出する。
 本発明者の知見によれば、粒状核剤中の脂肪族アミンの含有量を指針とすることで、粒状核剤のフィード安定性ともに臭気性を適切に制御できることを見出した。すなわち、脂肪族アミンの含有量を所定値以上とすることで、粒状核剤のフィード安定性を高めることができ、脂肪族アミンの含有量を所定値以下とすることで、粒状核剤の臭気を低減できることが判明した。
 粒状核剤のフィード安定性を高めることで、粒状核剤を用いた樹脂の成形加工の製造安定性を向上できる。これにより、成形加工への適用や核剤・透明化剤の用途において、粒状核剤の粉体物性の許容幅を広げられることが期待される。
 また、低臭気性に優れた粒状核剤を実現することにより、粒状核剤の保管や成形加工時における作業性を向上できる。これにより、粒状核剤の製造、包装、搬送、保管、成形加工に亘って、粒状核剤の取り扱い性を高められる。
 また、本発明者の知見によれば、脂肪族アミンの測定条件として、脂肪族アミンの沸点よりも高い加熱温度を採用するとともに、加熱時間を適切に選択することで、粒状核剤中の脂肪族アミンの含有量を安定的に評価できることが判明した。
 加熱時間を長くすることで、脂肪族アミンの測定量も増大するが、2時間後、しばらく飽和量を示したあと、2.5時間後から再び測定量が増大した。2.5時間後から、脂肪族アミンのみならず、不純物も測定され始めて、不純物の測定量が増大することが分かった。不純物は、脂肪族アミンの分解物と推定される。
 そこで、加熱時間を2時間に設定することで、測定非対象である不純物の検出を抑えつつも、測定対象である脂肪族アミンの飽和量に近い十分量を測定できる。また、このような測定条件とすることで、脂肪族アミンの含有量の再現性にも優れることが分かった。
 上記の手順Aの具体例を次に示す。
・ガラス製の粒状核剤導入用試験管(外径30mm×長さ200mm)中に、4gの粒状核剤を入れる。
・粒状核剤導入用試験管中に、37mL/minの条件でアルゴンガス(Ar)を5分間導入した後、37mL/minのアルゴンガスを導入しつつ(アルゴンガス雰囲気下)、当該粒状核剤導入用試験管を180℃、2時間の条件で加熱する。
・加熱により発生した気化物を、ガラス製の捕集用試験管(外径15mm×長さ150mm)中の6mL、600mg/Lのメタンスルホン酸水溶液中に捕集する。この6mLのメタンスルホン酸水溶液を、600mg/Lのメタンスルホン酸水溶液で10mLにメスアップし、測定サンプルを作成する。
・得られた測定サンプル中の脂肪族アミンの濃度や種類を、イオンクロマトグラフィー法を用いて測定する。
・得られた測定値に基づいて、当該粒状核剤全体を質量基準とする脂肪族アミンの含有量(ppm)を算出する。
 本発明者の知見よれば、試験管サイズ、粒状核剤の量、捕集溶液の種類・濃度・量を適切に選択するとともに、アルゴン流量、加熱時間・加熱温度を制御することで、これにより、脂肪族アミンの検出量のバラツキを抑制できる。この中でも、揮発物の捕集時におけるアルゴンガスの流量を所定量以上に設定することで、脂肪族アミンの捕集効率の変動が抑制されると考えられる。
 本実施形態において、上記脂肪族アミンの含有量の下限値は、粒状核剤全体の質量基準で、例えば、3ppm以上、好ましくは4ppm以上、より好ましくは5ppm以上である。これにより、粒状核剤のフィード安定性を高めることができる。詳細なメカニズムは定かでないが、粒状核剤中の脂肪族アミンが粉粒体の滑り具合をよくするため、フィード時の詰まりが抑制され、フィード安定性が高まる、と考えられる。
 上記脂肪族アミンの含有量の上限値は、粒状核剤全体の質量基準で、例えば、190ppm以下、好ましくは180ppm以下、より好ましくは150ppm以下である。これにより、低臭気性に優れた粒状核剤を実現できる。
 上記脂肪族アミンは、アンモニアの水素原子を1個~3個が炭化水素残基Rで置換された化合物で、Rが炭化水素基または炭化水素基の置換体であるものを意味する。この炭化水素基は一部が酸素原子などで置換されていてもよい。このような脂肪族アミンは、全てのR中に芳香族を有しない点で、芳香族アミンと異なる化合物である。
 上記脂肪族アミンは、第1級アミン、第2級アミン、第3級アミンのいずれでもよい。
 上記脂肪族アミンが、窒素原子に結合した炭素数1~6の1価の基を1個以上3個以下有するアミン化合物を含むことができる。すなわち、上記脂肪族アミン中の炭化水素残基Rの炭素数は、例えば、1~6、好ましくは2~5、より好ましくは2~4である。適切な炭素数を選択することで、フィード安定性を向上できる。
 また、Rが示す炭化水素残基またはその置換体としては、アルキル基、アルコール性ヒドロキシ基等が挙げられる。
 上記脂肪族アミンとして、例えば、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、イソブチルアミン、tert-ブチルアミン、アミルアミン、ヘキシルアミン、パルミチルアミン、エチレンジアミン、モノエタノールアミン等の脂肪族第1アミン類、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジアミルアミン、ジエタノールアミン等の脂肪族第2アミン類、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリアミルアミン、N,N-ジメチルアミン等の脂肪族第3アミン類等が用いられる。
 上記脂肪族アミンは、例えば、アルキルアミンまたはアルカノールアミンを含むことが好ましい。これにより、フィード安定性とともに低臭気性を向上できる。この中でも、粒状核剤の製造安定性の観点から、上記脂肪族アミンとしては、トリエチルアミン、ジエチルアミン、ブチルアミン、およびエタノールアミンからなる群から選択される一種以上を含むものが好ましい。
 本実施形態では、たとえば粒状核剤中に含まれる各成分の種類や配合量、粒状核剤の合成・調製方法等を適切に選択することにより、上記脂肪族アミンの含有量を制御することが可能である。これらの中でも、たとえば、ろ過・洗浄・精製工程、粉砕・分級・ブレンド工程、粒状核剤の準備工程で脂肪族アミンを使用すること等が、上記脂肪族アミンの含有量を所望の数値範囲とするための要素として挙げられる。
 本実施形態の粒状核剤の製造方法としては、粒状核剤を準備する工程と、得られた粒状核剤を上記手順Aに基づいて当該粒状核剤全体を質量基準とする脂肪族アミンの含有量を取得する工程と、当該脂肪族アミンの含有量が、上記数値範囲内のもの合格品として選択する工程と、を含むことができる。これにより、フィード安定性および低臭気性に優れた粒状核剤を実現できる。
 本実施形態の樹脂組成物は、上記の粒状核剤を熱可塑性樹脂中に含有してなるものである。
 上記粒状核剤を、上記熱可塑性樹脂に添加する方法は特に制限を受けず、一般に用いられる方法をそのまま適用することができる。例えば、熱可塑性樹脂の粉末物あるいはペレットと、上記粒状核剤の粉末物とをドライブレンドする方法を用いることができる。
 上記樹脂組成物は、各種形態で使用することができるが、たとえば、ペレット状、顆粒状、粉末状のいずれでもよい。取り扱い性の観点から、ペレット状が好ましい。
 上記熱可塑性樹脂としては、ポリオレフィン系樹脂、スチレン系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、含ハロゲン樹脂等が挙げられる。この中でも、結晶性高分子を用いることが好ましい。
 さらに上記熱可塑性樹脂の例を挙げると、例えば、石油樹脂、クマロン樹脂、ポリ酢酸ビニル、アクリル樹脂、ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール、ポリフェニレンサルファイド、ポリウレタン、繊維素系樹脂、ポリイミド樹脂、ポリサルフォン、液晶ポリマー等の熱可塑性樹脂およびこれらのブレンド物を用いることができる。
 また、上記熱可塑性樹脂は、イソプレンゴム、ブタジエンゴム、アクリロニトリル-ブタジエン共重合ゴム、スチレン-ブタジエン共重合ゴム、ポリエステル系エラストマー、ニトリル系エラストマー、ナイロン系エラストマー、塩化ビニル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー等の熱可塑性エラストマーであってもよく、併用してもよい。
 上記結晶性高分子としては、特に限定されないが、例えばポリプロピレン、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、ポリブテン-1、ポリ3-メチルペンテン、ポリ4-メチルペンテン、エチレン/プロピレンブロックまたはランダム共重合体などのα-オレフィン重合体等のポリオレフィン系高分子;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート等の熱可塑性直鎖ポリエステル系高分子;ポリフェニレンスルフィド等のポリスルフィド系高分子;ポリカプロラクトン等のポリ乳酸系高分子;ポリヘキサメチレンアジパミド等の直鎖ポリアミド系高分子;シンジオタクチックポリスチレン等の結晶性のポリスチレン系高分子等が挙げられる。
 この中でも、本発明の核剤の使用効果が顕著に奏されるポリオレフィン系高分子が好ましく、ポリプロピレン、エチレン/プロピレンブロック又はランダム共重合体、エチレン以外のα-オレフィン/プロピレンブロック又はランダム共重合体、これらのプロピレン系重合体と他のα-オレフィン重合体との混合物等のポリプロピレン系樹脂が特に好ましい。
 上記結晶性高分子として、結晶性α―オレフィン重合体、とりわけポリプロピレン、エチレン/プロピレン共重合体およびこれらのプロピレン重合体と他のα―オレフィン重合体との混合物などのポリプロピレン系樹脂を用いた場合に有用である。これらのポリプロピレン系樹脂は、その極限粘度、アイソメタクチックペンタッド分率、密度、分子量分布、メルトフローレート、剛性等に拘わらず使用することができ、例えば、特開昭63-37148号公報、同63-37152号公報、同63-90552号公報、同63-210152号公報、同63-213547号公報、同63-243150号公報、同63-243152号公報、同63-260943号公報、同63-260944号公報、同63-264650号公報、特開平1-178541号公報、同2-49047号公報、同2-102242号公報、同2-251548号公報、同2-279746号公報、特開平3-195751号公報などに記載されたようなポリプロピレン系樹脂も好適に使用することができる。
 上記粒状核剤の含有量は、熱可塑性樹脂(例えば、結晶性高分子)100重量部に対して、通常、0.001~10重量部であり、好ましくは0.005~8重量部であり、より好ましくは0.01~5重量部の範囲内とすることができる。これにより、熱可塑性樹脂、とくに結晶性高分子の改質効果を十分に得ることができる。
 本実施形態の樹脂組成物には、必要に応じて、抗酸化剤、光安定剤、紫外線吸収剤、顔料、充填剤、有機錫化合物、可塑剤、エポキシ化合物、発泡剤、帯電防止剤、難燃剤、滑剤、重金属不活性剤、ハイドロタルサイト類、有機カルボン酸、着色剤、珪酸系添加剤、加工助剤等の添加剤を含有させることができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 上記抗酸化剤として、リン系抗酸化剤、フェノール系抗酸化剤、チオエーテル系抗酸化剤等が挙げられる。
 上記帯電防止剤として、カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤等が挙げられる。
 上記難燃剤として、ハロゲン系化合物、リン酸エステル系化合物、リン酸アミド系化合物、メラミン系化合物、ポリリン酸のメラミン塩化合物、フッ素樹脂又は金属酸化物等が挙げられる。
 上記滑剤として、炭化水素系、脂肪酸系、脂肪族アルコール系、脂肪族エステル系、脂肪族アマイド系、金属石けん系等が挙げられる。
 上記珪酸系添加剤として、フュームドシリカ、微粒子シリカ、けい石、珪藻土類、クレー、カオリン、シリカゲル、珪酸カルシウム、セリサイト、カオリナイト、フリント、長石粉、蛭石、アタパルジャイト、タルク、マイカ、ミネソタイト、パイロフィライト等が挙げられる。
 上記樹脂組成物における添加剤の含有量は、結晶性高分子100重量部に対して、たとえば、0.001~10重量部が好ましい。このような数値範囲とすることにより、添加剤の効果の向上が得られる。
 上記樹脂組成物は、射出成形品、繊維、フラットヤーン、二軸延伸フィルム、一軸延伸フィルム、無延伸フィルム、シート、熱成形品、押出ブロー成形品、射出ブロー成形品、射出延伸ブロー成形品、異形押出成形品、回転成形品等の成形品に使用することができる。この中でも、成形品として、射出成形品、フィルム、シート、熱成形品が好ましい。
 本実施形態の成形品の製造方法は、各種の成形方法に基づいて、樹脂組成物を成形する工程を含み、これにより、上記の成形品を得ることができる。
 成形方法としては、特に限定されるものではなく、射出成形法、押出成形法、ブロー成形法、回転成形、真空成形法、インフレーション成形法、カレンダー成形法、スラッシュ成形法、ディップ成形法、発泡成形法等が挙げられる。この中でも、射出成形法、押出成形法、ブロー成型法が好ましい。
 上記樹脂組成物は、建築資材、農業用資材、自動車、列車、船、航空機など乗り物用部品、包装用資材、雑貨、玩具、家電製品、医療品など種々の用途に用いることができる。具体的には、バンパー、ダッシュボード、インスツルメントパネル、バッテリーケース、ラゲッジケース、ドアパネル、ドアトリム、フェンダーライナー等の自動車部品;冷蔵庫、洗濯機、掃除機等の家電製品用樹脂部品;食器、ボトルキャップ、バケツ、入浴用品等の家庭用品;コネクター等の接続用樹脂部品;玩具、収納容器、合成紙等の雑貨品;医療用パック、注射器、カテーテル、医療用チューブ、シリンジ製剤、輸液バッグ、試薬容器、飲み薬容器、飲み薬個包装等の医療用成形品;壁材、床材、窓枠、壁紙、窓等の建材;電線被覆材;ハウス、トンネル、フラットヤーンメッシュバッグ等の農業用資材;パレット、ペール缶、バックグラインドテープ、液晶プロテクト用テープ、パイプ、シーリング材用変性シリコーンポリマー等の工業用資材;ラップ、トレイ、カップ、フィルム、ボトル、キャップ、保存容器等の食品包装材、その他3Dプリンター材料、電池用セパレータ膜等が挙げられる。さらに各種の後処理を施される場合の用途、例えば、医療用途、食品包装用途などの放射線による滅菌を施される用途、あるいは塗装性などの表面特性の改善のために、成形後、低温プラズマ処理などが施される用途などに用いることができる。この中でも、自動車部品、家庭用品、食品包装材に用いることが好ましい。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
<化合物の合成>
(化合物No.1の合成)
 2,2’-メチレンビス[4,6-ビス(1,1-ジメチルエチル)]フェノール425g、オキシ塩化燐161g、トリエチルアミン24gを仕込み、50℃で3時間撹拌した。続いて水酸化ナトリウム40gの水溶液およびメタノールを仕込み、室温で1時間撹拌した。減圧下に乾燥して421gの白色粉末を得た。得られた白色粉末にアセトンを加え、室温で一時間撹拌した。濾過にてアセトンを除去し、減圧下に乾燥して化合物No.1を得た。
Figure JPOXMLDOC01-appb-C000007
(化合物No.2の合成)
 上記<化合物No.1の合成>で得られた白色粉末 508g(1モル)をメタノールに溶解し、水酸化リチウム24g(1モル)の水溶液を加えて室温で一時間撹拌した。析出物をろ過後、pH8になるまでろ残を水洗し、減圧下に乾燥して410gの白色粉末を得た。得られた白色粉末に対して、乾式媒体撹拌ミルにて粉砕し、化合物No.2を得た。
Figure JPOXMLDOC01-appb-C000008
(化合物No.3の合成)
 上記<化合物No.1の合成>で得られた白色粉末 10.2g(0.02モル)をメタノールに溶解し、40℃で撹拌しながら硫酸アルミニウム2.41g(0.01モル)の水溶液として滴下した。滴下終了後、メタノール還流下に4時間撹拌し室温まで冷却した。析出物をろ過後、ろ残を繰り返し水洗し、減圧下に乾燥して9.63gの白色粉末を得た。得られた白色粉末に対して、ピンミルにて粉砕し、化合物No.3を得た。
Figure JPOXMLDOC01-appb-C000009
 得られた化合物No.1を、乳鉢粉砕し、粒状核剤A(アミン量:0ppm)を得た。
 得られた粒状核剤A 50gとトリエチルアミン(TEA)25mgとを混合して、粒状核剤B(アミン量:500ppm)を得た。
 上記の粒状核剤B 6gと上記の粒状核剤A 14gとを混合して、粒状核剤C(アミン量:150ppm)を得た。
 上記の粒状核剤B 10gと上記の粒状核剤A 40gとを混合して、粒状核剤D(アミン量:100ppm)を得た。
 上記の粒状核剤D 4gと上記の粒状核剤A 36gとを混合して、粒状核剤E(アミン量:10ppm)を得た。
 上記の粒状核剤E 10gと上記の粒状核剤A 10gとを混合して、粒状核剤F(アミン量:5ppm)を得た。
 得られた粒状核剤A 40gとジエチルアミン(DEA)10mgとを混合して混合品(アミン量:250ppm)を得た。得られた混合品5gと上記の粒状核剤A 15gとを混合して粒状核剤G(アミン量:50ppm)を得た。
 得られた粒状核剤A 40gとブチルアミン(BA)10mgとを混合して混合品(アミン量:250ppm)を得た。得られた混合品5gと上記の粒状核剤A 15gとを混合して粒状核剤H(アミン量:50ppm)を得た。
 得られた粒状核剤A 40gとエタノールアミン(MEA:モノエタノールアミン)10mgとを混合して混合品(アミン量:250ppm)を得た。得られた混合品5gと上記の粒状核剤A 15gとを混合して粒状核剤I(アミン量:50ppm)を得た。
 得られた化合物No.2 40gとトリエチルアミン10mgとを混合して混合品(アミン量:250ppm)を得た。得られた混合品5gと上記の化合物No.2 15gとを混合して粒状核剤J(アミン量:50ppm)を得た。
 得られた化合物No.3 40gとトリエチルアミン10mgとを混合して混合品(アミン量:250ppm)を得た。得られた混合品5gと上記化合物No.3 15gとを混合して粒状核剤K(アミン量:50ppm)を得た。
 得られた粒状核剤A 100gとトリエチルアミン20mgとを混合して、粒状核剤L(アミン量:200ppm)を得た。
 なお、上記アミン量は、下記のアミン量の測定で得られた結果を示したものである。
<アミン量の測定>
 得られた粒状核剤A~Lについて、以下の手順(1)~(4)に従って、アミンの含有量を測定した。結果を表1に示す。
(1)図1に示すように、得られた粒状核剤10 4gを秤量し、ガラス製試験管20(粒状核剤導入用試験管、外径30mm×長さ200mm、日電理化硝子社製)内に入れ、試験管20の口をキャップ30(ゴム栓)で密封した。別のガラス製試験管40(捕集用試験管、外径15mm×長さ150mm、日電理化硝子社製)に、600mg/Lのメタンスルホン酸水溶液50を6mL入れ、試験管40の口をキャップ60(ゴム栓)で密封した。
(2)続いて、図1に示すように、試験管20をブロックバス100に設置し、試験管20のキャップ30に2本の管70,80を差し込み、試験管40のキャップ60に、管80,90を差し込んだ。管80の一端は試験管20内に位置させ、管80の他端は試験管40のメタンスルホン酸水溶液50中に位置させた。
(3)続いて、管70の他端から試験管20中に、流量:37mL/minの条件でアルゴンガス(Ar)を5分間導入した後、同じ条件のままアルゴンガスを導入しつつ、アルゴンガス雰囲気下、ブロックバス100で180℃、2時間の条件で試験管20を加熱し、発生した気化物を、管80を介して試験管40内のメタンスルホン酸水溶液50に捕集し、当該気化物を捕集した捕集液を得た。
(4)その後、得られた捕集液(メタンスルホン酸水溶液50)6mLを600mg/Lのメタンスルホン酸水溶液で10mLにメスアップし、これを測定対象とした。
 下記の測定条件のイオンクロマトグラフィー法を用いて、得られた測定対象中のアミンの種類、アミン量(濃度)を測定した。アミン量(ppm)は、3つの測定対象で測定を行い、3つの測定値の平均値とした。
 得られたアミン量の測定値に基づいて、粒状核剤全体を質量基準とするアミンの含有量(ppm)を算出した。
(測定条件)
・測定装置:イオンクロマトグラフICS-2000(サーモフィッシャーサイエンティフィック株式会社)
・カラム:Dionex IonPac CS-17(サーモフィッシャーサイエンティフィック株式会社)
・検出器:電気伝導度検出器
・溶出条件:2.0mmol/Lのメタンスルホン酸水溶液(0分)→20.0mmol/Lのメタンスルホン酸水溶液(33分)。メタンスルホン酸水溶液(溶離液)の濃度は、以下のように変化させた。
0分~9分まで:2.0mmol/Lから4.0mmol/Lまでグラジエント。
9分超~18分まで:4.0mmol/Lから9.0mmol/Lまでグラジエント。
18分超~28分まで:9.0mmol/Lで一定。
28分超~33分まで:28分超え直後に濃度を9.0mmol/Lから20.0mmol/Lに変更し、その後一定。
・流速:1.0mL/min
・試料注入量:20μL
・カラム温度:30℃
Figure JPOXMLDOC01-appb-T000010
 表1中、TEAはトリエチルアミン、DEAはジエチルアミン、BAはブチルアミン、MEAはエタノールアミンを表す。
 上記のアミン量の測定結果を踏まえ、得られた粒状核剤C~Kを、表1中の実施例1~9の粒状核剤として使用し、得られた粒状核剤A、Lを、表1中の比較例1、2の粒状核剤として使用した。
 各実施例および各比較例の粒状核剤について、下記の評価項目に基づいて評価を実施した。
<フィード安定性>
 粉体特性評価装置(セイシン企業社製、マルチテスター MT-02)を用いて、得られた粒状核剤を、粉体特性評価装置のフィーダーに10g充填し、フィーダー振動幅0.3mmの条件で振動させたときの排出時間を計測した。各粒状核剤について、3つのサンプルで測定を行い、3つの測定値の平均値を排出時間(s)とした。測定された排出時間(s)について、下記評価基準に基づいて評価した。結果を表1に示す。
・排出時間
○:排出時間が小さく、フィード安定性が良好であった。
×:排出時間の測定中、所定時間経過後に運転停止が生じたため、フィード安定性が低下した。
 表1中、「>60s」は60秒以降排出がなく、運転が停止したことを表す。
<臭気性>
 得られた粒状核剤について、下記の保管時における臭気性を下記の評価基準に基づいて評価した。
・保管:得られた粒状核剤を容器に封入し、25℃、湿度60%で24時間保管した後、当該粒状核剤の臭気を確認した。
○:封入時および開封後(保管後)に臭気を殆ど感じず、実用上問題なく使用レベルであった。
×:封入時と比べて開封後(保管後)の臭気が強く、実用上問題が生じるレベルであった。
<透明化性>
 ポリプロピレンの100重量部に、得られた各実施例の粒状核剤の0.1重量部を混合した組成物をヘンシェルミキサーで1分間混合し、230℃、150rpmの条件で押出加工してペレットを製造した。これを200℃で射出成形して得た厚さ1mmの試験片について、JIS K7136に準じてHaze(ヘイズ値:%)を測定した。
 実施例1~9の粒状核剤は、比較例1と比べてフィード安定性に優れており、比較例2と比べて臭気性が低減されることが分かった。
 また、実施例1~9の粒状核剤は、実用上問題ない範囲でヘイズ値が小さく、実施例1~11の粒状核剤は、実施例12と比べてヘイズ値が小さいことが示された。このよう粒状核剤は、結晶性高分子の透明性を向上できることから、核剤・透明化剤として好適に利用できることが分かった。
 この出願は、2018年7月4日に出願された日本出願特願2018-127626号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (12)

  1.  下記一般式(1)で表される化合物を含む粒状核剤であって、
     以下に示す手順Aの測定により得られる当該粒状核剤中の脂肪族アミンの含有量が、当該粒状核剤全体の質量基準で3ppm以上190ppm以下である、粒状核剤。
    (手順A)
     ガラス製の粒状核剤導入用試験管(外径30mm×長さ200mm)中に、4gの当該粒状核剤を入れる。
     前記粒状核剤導入用試験管中に、37mL/minの条件でアルゴンガスを5分間導入した後、37mL/minのアルゴンガスを導入しつつ、アルゴンガス雰囲気下で、前記粒状核剤導入用試験管を180℃、2時間の条件で加熱する。
     加熱により発生した気化物を、ガラス製の捕集用試験管(外径15mm×長さ150mm)中の6mL、600mg/Lのメタンスルホン酸水溶液中に捕集する。このメタンスルホン酸水溶液を、600mg/Lのメタンスルホン酸水溶液で10mLにメスアップし、測定サンプルを作成する。
     得られた前記測定サンプル中の脂肪族アミンの濃度を、イオンクロマトグラフィー法を用いて測定する。
     得られた測定値に基づいて、当該粒状核剤全体を質量基準とする脂肪族アミンの含有量(ppm)を算出する。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中、R~Rは各々独立して、水素原子、直鎖又は分岐を有する炭素数1~9のアルキル基を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、mは1又は2を表し、mが1の場合、Mは水素原子又はアルカリ金属原子を表し、mが2の場合、Mは、二族元素、Al(OH)又はZnを表す。)
  2.  請求項1に記載の粒状核剤であって、
     前記脂肪族アミンが、窒素原子に結合した炭素数1~6の1価の基を1個以上3個以下有するアミン化合物を含む、粒状核剤。
  3.  請求項1または2に記載の粒状核剤であって、
     前記脂肪族アミンが、アルキルアミンまたはアルカノールアミンを含む、粒状核剤。
  4.  請求項1から3のいずれか1項に記載の粒状核剤であって、
     前記脂肪族アミンが、トリエチルアミン、ジエチルアミン、ブチルアミン、およびエタノールアミンからなる群から選択される一種以上を含む、粒状核剤。
  5.  請求項1から4のいずれか1項に記載の粒状核剤であって、
     前記化合物が、下記の化学式(2)から化学式(13)で表される一または二以上の化合物を含む、粒状核剤。
    Figure JPOXMLDOC01-appb-C000002
  6.  請求項1から5のいずれか1項に記載の粒状核剤を熱可塑性樹脂中に含有する、樹脂組成物。
  7.  請求項6に記載の樹脂組成物であって、
     前記熱可塑性樹脂が結晶性高分子を含む、樹脂組成物。
  8.  請求項7に記載の樹脂組成物であって、
     前記結晶性高分子がポリオレフィン系高分子を含む、樹脂組成物。
  9.  請求項6から8のいずれか1項に記載の樹脂組成物であって、
     前記熱可塑性樹脂100重量部に対して、前記粒状核剤の含有量が0.001重量部以上10重量部以下である、樹脂組成物。
  10.  請求項6から9のいずれか1項に記載の樹脂組成物であって、
     ペレット状である、樹脂組成物。
  11.  請求項6から10のいずれか1項に記載の樹脂組成物を用いてなる成形品。
  12.  請求項6から10のいずれか1項に記載の樹脂組成物を用いて成形品を製造する製造方法。
PCT/JP2019/002781 2018-07-04 2019-01-28 粒状核剤、樹脂組成物、成形品およびその製造方法 WO2020008668A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US16/609,832 US10982072B2 (en) 2018-07-04 2019-01-28 Particulate nucleating agent, resin composition, molded product, and production method thereof
RU2019140841A RU2720794C1 (ru) 2018-07-04 2019-01-28 Дисперсный зародышеобразователь, смоляная композиция, формованный продукт и способ их получения
EP19795439.9A EP3613802B1 (en) 2018-07-04 2019-01-28 Particulate nucleating agent, resin composition, molded article and method for manufacturing same
BR112019024067-5A BR112019024067B1 (pt) 2018-07-04 2019-01-28 agente de nucleação particulado, composição de resina, produto moldado e método de produção dos mesmos
MX2019013599A MX2019013599A (es) 2018-07-04 2019-01-28 Agente nucleante particulado, composicion de resina, producto moldeado y metodo de produccion de los mismos.
CN201980002809.9A CN110832021B (zh) 2018-07-04 2019-01-28 颗粒状成核剂、树脂组合物、成型品及其制造方法
KR1020207003487A KR102094128B1 (ko) 2018-07-04 2019-01-28 입상 핵제, 수지 조성물, 성형품 및 그 제조 방법
AU2019284093A AU2019284093B2 (en) 2018-07-04 2019-01-28 Particulate nucleating agent, resin composition, molded product, and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018127626A JP6423982B1 (ja) 2018-07-04 2018-07-04 粒状核剤、樹脂組成物、成形品およびその製造方法
JP2018-127626 2018-07-04

Publications (1)

Publication Number Publication Date
WO2020008668A1 true WO2020008668A1 (ja) 2020-01-09

Family

ID=64269292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002781 WO2020008668A1 (ja) 2018-07-04 2019-01-28 粒状核剤、樹脂組成物、成形品およびその製造方法

Country Status (10)

Country Link
US (1) US10982072B2 (ja)
EP (1) EP3613802B1 (ja)
JP (1) JP6423982B1 (ja)
KR (1) KR102094128B1 (ja)
CN (1) CN110832021B (ja)
BR (1) BR112019024067B1 (ja)
MX (1) MX2019013599A (ja)
RU (1) RU2720794C1 (ja)
TW (1) TWI673281B (ja)
WO (1) WO2020008668A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186862A1 (ja) * 2020-03-16 2021-09-23 株式会社Adeka 粒状核剤、樹脂組成物およびその製造方法ならびに成形品
RU2793134C1 (ru) * 2020-03-16 2023-03-29 Адека Корпорейшн Дисперсный зародыш кристаллизации, полимерная композиция, способ ее получения и формованное изделие

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108384053A (zh) * 2018-02-13 2018-08-10 株式会社Adeka 成核剂、使用其的聚烯烃系树脂组合物及其成型品
CN110734463B (zh) * 2019-10-16 2021-05-25 山西省化工研究所(有限公司) 一种双酚磷酸酯羟基铝盐成核剂的制备方法

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337152A (ja) 1986-08-01 1988-02-17 Chisso Corp 高剛性エチレン−プロピレンブロツク共重合体組成物
JPS6337148A (ja) 1986-08-01 1988-02-17 Chisso Corp 高剛性プロピレン単独重合体組成物
JPS6390552A (ja) 1986-10-06 1988-04-21 Mitsubishi Petrochem Co Ltd プロピレン系樹脂組成物
JPS63210152A (ja) 1987-02-26 1988-08-31 Chisso Corp 高剛性高溶融粘弾性プロピレン単独重合体組成物
JPS63213547A (ja) 1987-03-02 1988-09-06 Chisso Corp 高剛性高溶融粘弾性エチレン−プロピレンブロツク共重合体組成物
JPS63243150A (ja) 1987-03-30 1988-10-11 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPS63243152A (ja) 1987-03-31 1988-10-11 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPS63260944A (ja) 1987-04-20 1988-10-27 Chisso Corp ポリオレフイン組成物
JPS63260943A (ja) 1987-04-20 1988-10-27 Chisso Corp ポリオレフイン組成物
JPS63264650A (ja) 1987-04-21 1988-11-01 Chisso Corp ポリオレフイン組成物
JPH01178541A (ja) 1987-12-30 1989-07-14 Mitsubishi Petrochem Co Ltd 低溶出性の医薬液剤・輸液・輸血用器具
JPH0249047A (ja) 1988-08-11 1990-02-19 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPH02102242A (ja) 1988-10-11 1990-04-13 Chisso Corp 結晶性プロピレン重合体組成物およびそれを用いた容器
JPH02251548A (ja) 1989-03-25 1990-10-09 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPH02279746A (ja) 1989-04-20 1990-11-15 Mitsubishi Petrochem Co Ltd 結晶性プロピレン重合体組成物
JPH03195751A (ja) 1989-12-22 1991-08-27 Chisso Corp ポリプロピレン組成物
JPH09176393A (ja) * 1995-12-21 1997-07-08 Showa Denko Kk 透明性に優れるポリエチレン系樹脂中空成形体
JPH11335504A (ja) * 1998-05-22 1999-12-07 Asahi Denka Kogyo Kk 水性樹脂組成物
JP2004083852A (ja) * 2002-06-24 2004-03-18 Asahi Denka Kogyo Kk 造核剤及び該造核剤を含有してなる結晶性高分子組成物
JP2005120237A (ja) * 2003-10-16 2005-05-12 Asahi Denka Kogyo Kk 結晶核剤組成物及びこれを含有してなる結晶性高分子組成物
WO2007039997A1 (ja) * 2005-09-30 2007-04-12 Adeka Corporation 結晶核剤組成物の製造方法及び結晶性高分子組成物
JP2007297465A (ja) * 2006-04-28 2007-11-15 Hiroshima Univ 高性能造核剤及び該造核剤の製造方法
JP2011219519A (ja) * 2010-04-05 2011-11-04 Japan Polypropylene Corp プロピレン系樹脂シート
JP2017149962A (ja) 2012-12-21 2017-08-31 ミリケン・アンド・カンパニーMilliken & Company 添加剤組成物およびそれを使用するための方法
JP2018127626A (ja) 2012-04-19 2018-08-16 ファイバーリーン テクノロジーズ リミテッド 塗料用組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101367833B (zh) * 2007-08-17 2011-06-15 中国石油化工股份有限公司 一种有机磷酸盐成核剂的制备方法
JP5388263B2 (ja) * 2007-09-04 2014-01-15 株式会社Adeka ポリオレフィン樹脂用造核剤マスターバッチ

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337152A (ja) 1986-08-01 1988-02-17 Chisso Corp 高剛性エチレン−プロピレンブロツク共重合体組成物
JPS6337148A (ja) 1986-08-01 1988-02-17 Chisso Corp 高剛性プロピレン単独重合体組成物
JPS6390552A (ja) 1986-10-06 1988-04-21 Mitsubishi Petrochem Co Ltd プロピレン系樹脂組成物
JPS63210152A (ja) 1987-02-26 1988-08-31 Chisso Corp 高剛性高溶融粘弾性プロピレン単独重合体組成物
JPS63213547A (ja) 1987-03-02 1988-09-06 Chisso Corp 高剛性高溶融粘弾性エチレン−プロピレンブロツク共重合体組成物
JPS63243150A (ja) 1987-03-30 1988-10-11 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPS63243152A (ja) 1987-03-31 1988-10-11 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPS63260944A (ja) 1987-04-20 1988-10-27 Chisso Corp ポリオレフイン組成物
JPS63260943A (ja) 1987-04-20 1988-10-27 Chisso Corp ポリオレフイン組成物
JPS63264650A (ja) 1987-04-21 1988-11-01 Chisso Corp ポリオレフイン組成物
JPH01178541A (ja) 1987-12-30 1989-07-14 Mitsubishi Petrochem Co Ltd 低溶出性の医薬液剤・輸液・輸血用器具
JPH0249047A (ja) 1988-08-11 1990-02-19 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPH02102242A (ja) 1988-10-11 1990-04-13 Chisso Corp 結晶性プロピレン重合体組成物およびそれを用いた容器
JPH02251548A (ja) 1989-03-25 1990-10-09 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPH02279746A (ja) 1989-04-20 1990-11-15 Mitsubishi Petrochem Co Ltd 結晶性プロピレン重合体組成物
JPH03195751A (ja) 1989-12-22 1991-08-27 Chisso Corp ポリプロピレン組成物
JPH09176393A (ja) * 1995-12-21 1997-07-08 Showa Denko Kk 透明性に優れるポリエチレン系樹脂中空成形体
JPH11335504A (ja) * 1998-05-22 1999-12-07 Asahi Denka Kogyo Kk 水性樹脂組成物
JP2004083852A (ja) * 2002-06-24 2004-03-18 Asahi Denka Kogyo Kk 造核剤及び該造核剤を含有してなる結晶性高分子組成物
JP2005120237A (ja) * 2003-10-16 2005-05-12 Asahi Denka Kogyo Kk 結晶核剤組成物及びこれを含有してなる結晶性高分子組成物
WO2007039997A1 (ja) * 2005-09-30 2007-04-12 Adeka Corporation 結晶核剤組成物の製造方法及び結晶性高分子組成物
JP2007297465A (ja) * 2006-04-28 2007-11-15 Hiroshima Univ 高性能造核剤及び該造核剤の製造方法
JP2011219519A (ja) * 2010-04-05 2011-11-04 Japan Polypropylene Corp プロピレン系樹脂シート
JP2018127626A (ja) 2012-04-19 2018-08-16 ファイバーリーン テクノロジーズ リミテッド 塗料用組成物
JP2017149962A (ja) 2012-12-21 2017-08-31 ミリケン・アンド・カンパニーMilliken & Company 添加剤組成物およびそれを使用するための方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3613802A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186862A1 (ja) * 2020-03-16 2021-09-23 株式会社Adeka 粒状核剤、樹脂組成物およびその製造方法ならびに成形品
CN114026163A (zh) * 2020-03-16 2022-02-08 株式会社艾迪科 颗粒状成核剂、树脂组合物及其制造方法以及成型品
CN114026163B (zh) * 2020-03-16 2022-06-10 株式会社艾迪科 颗粒状成核剂、树脂组合物及其制造方法以及成型品
RU2793134C1 (ru) * 2020-03-16 2023-03-29 Адека Корпорейшн Дисперсный зародыш кристаллизации, полимерная композиция, способ ее получения и формованное изделие
US11795296B2 (en) 2020-03-16 2023-10-24 Adeka Corporation Particulate nucleating agent, resin composition, production method thereof, and molded product

Also Published As

Publication number Publication date
MX2019013599A (es) 2020-02-05
TWI673281B (zh) 2019-10-01
EP3613802B1 (en) 2022-02-23
US10982072B2 (en) 2021-04-20
US20200207950A1 (en) 2020-07-02
JP6423982B1 (ja) 2018-11-14
EP3613802A1 (en) 2020-02-26
TW202005976A (zh) 2020-02-01
KR20200018705A (ko) 2020-02-19
AU2019284093A1 (en) 2020-01-23
EP3613802A4 (en) 2021-03-24
JP2020007414A (ja) 2020-01-16
KR102094128B1 (ko) 2020-03-27
CN110832021A (zh) 2020-02-21
RU2720794C1 (ru) 2020-05-13
BR112019024067B1 (pt) 2021-02-09
BR112019024067A2 (pt) 2020-04-07
CN110832021B (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
JP6397153B1 (ja) 粒状核剤、樹脂組成物、成形品およびその製造方法
WO2020008668A1 (ja) 粒状核剤、樹脂組成物、成形品およびその製造方法
CN114026163B (zh) 颗粒状成核剂、树脂组合物及其制造方法以及成型品
CN111727216B (zh) 颗粒状成核剂、树脂组合物、成型品及其制造方法
CN110023393B (zh) 粒状成核剂、树脂组合物、成型品及其制造方法
JP2020007521A (ja) 粒状核剤、樹脂組成物、成形品およびその製造方法
JP2019199460A (ja) 粒状核剤、樹脂組成物、成形品およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019795439

Country of ref document: EP

Effective date: 20191114

ENP Entry into the national phase

Ref document number: 2019284093

Country of ref document: AU

Date of ref document: 20190128

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019024067

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207003487

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019024067

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191114

NENP Non-entry into the national phase

Ref country code: DE