WO2019220658A1 - 粒状核剤、樹脂組成物、成形品およびその製造方法 - Google Patents

粒状核剤、樹脂組成物、成形品およびその製造方法 Download PDF

Info

Publication number
WO2019220658A1
WO2019220658A1 PCT/JP2018/037535 JP2018037535W WO2019220658A1 WO 2019220658 A1 WO2019220658 A1 WO 2019220658A1 JP 2018037535 W JP2018037535 W JP 2018037535W WO 2019220658 A1 WO2019220658 A1 WO 2019220658A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleating agent
granular nucleating
particle size
resin composition
granular
Prior art date
Application number
PCT/JP2018/037535
Other languages
English (en)
French (fr)
Inventor
拓也 福田
悠里 横田
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to CN201880003968.6A priority Critical patent/CN110023393B/zh
Priority to EP18839511.5A priority patent/EP3587485B1/en
Priority to KR1020197011890A priority patent/KR102031524B1/ko
Priority to RU2019110822A priority patent/RU2707033C1/ru
Priority to AU2018346901A priority patent/AU2018346901B2/en
Priority to US16/332,158 priority patent/US10882974B2/en
Priority to BR112019005221A priority patent/BR112019005221B1/pt
Priority to MX2019004252A priority patent/MX2019004252A/es
Publication of WO2019220658A1 publication Critical patent/WO2019220658A1/ja
Priority to SA520420575A priority patent/SA520420575B1/ar

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/527Cyclic esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/24Crystallisation aids

Definitions

  • the present invention relates to a granular nucleating agent, a resin composition, a molded product, and a method for producing the same.
  • Patent Document 1 describes that a nucleating agent (hereinafter, a crystal nucleating agent, a crystallization accelerator, a clarifying agent, etc. are collectively referred to as “nucleating agent”) is added to a thermoplastic polymer. (Claim 1 of Patent Document 1). This document exemplifies a phosphate salt as a nucleating agent (paragraph 0014 of Reference 1).
  • a general granular nucleating agent is added and melt-kneaded into a thermoplastic resin as a granular material, and is used for a thermoforming process of the thermoplastic resin.
  • the granular nucleating agent before use is transported and stored in a packaged state after production.
  • the powder characteristics of the granular nucleating agent may fluctuate, and the workability and manufacturing stability during the heat processing may be reduced.
  • the present inventor further examined that the powder characteristics of the aromatic phosphate ester metal salt-based granular nucleating agent can be appropriately controlled by using the difference in particle size distribution before and after environmental load (WA / WB) as a guide. I found. As a result of further diligent research based on such knowledge, since the change in properties after storage for a predetermined period is suppressed by setting WA / WB within a predetermined numerical range, the aromatic phosphate metal salt-based granular nucleating agent As a result, the present inventors have found that the powder characteristics are improved.
  • WA / WB difference in particle size distribution before and after environmental load
  • a granular nucleating agent containing a compound represented by the following general formula (1) The particle size distribution spread WA measured according to the following procedure A;
  • the spread WB of the particle size distribution measured according to the following procedure B is
  • a particulate nucleating agent is provided that satisfies the following formula (I): 0.3 ⁇ WA / WB ⁇ 13.5
  • Formula (I) (Procedure A) Using a laser diffraction particle size measuring device, dispersed air with a dispersion pressure of 30 psi is jetted onto the granular nucleating agent, and the granular nucleating agent dispersed in the air is used as a measurement target, and the particle size distribution of the granular nucleating agent Measure dry.
  • a pressurization process is performed as follows. Pressurization treatment: Putting the granular nucleating agent in a tray made of aluminum foil, and applying a load of 60 g / cm 2 to the granular nucleating agent in the tray, in a constant temperature oven at 40 ° C. and relative humidity 80% The tray is left for 24 hours.
  • the granular nucleating agent after the pressure treatment in which dispersed air is dispersed in the air without being jetted to the granular nucleating agent is measured.
  • the particle size distribution of is measured dry.
  • the volume average particle size MvB and the number average particle size MnB of the granular nucleating agent are obtained.
  • WB MvB / MnB, the spread WB of the particle size distribution is calculated.
  • R 1 to R 4 each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 9 carbon atoms, and R 5 represents a hydrogen atom or carbon number 1 Represents an alkyl group of ⁇ 4, m represents 1 or 2, when m is 1, M 1 represents a hydrogen atom or an alkali metal atom, and when m is 2, M 1 represents a group 2 element, Al ( OH) or Zn.
  • thermoplastic resin a resin composition comprising the above granular nucleating agent in a thermoplastic resin.
  • a production method for producing a molded product using the resin composition is provided.
  • a granular nucleating agent having excellent powder characteristics, a resin composition using the same, a molded product, and a method for producing the same are provided.
  • (A) and (b) are the figures for demonstrating the outline
  • the granular nucleating agent of this embodiment will be described.
  • the particulate nucleating agent contains an aromatic phosphate metal salt.
  • aromatic phosphate metal salt a compound represented by the following general formula (1) is used. These may be used alone or in combination of two or more.
  • R 1 to R 4 each independently represents a hydrogen atom, a linear or branched alkyl group having 1 to 9 carbon atoms, and R 5 represents a hydrogen atom or 1 to carbon atoms.
  • 4 represents an alkyl group
  • m represents 1 or 2
  • M 1 represents a hydrogen atom or an alkali metal atom
  • M 1 represents a group II element, Al (OH ) Or Zn.
  • Examples of the alkyl group having 1 to 9 carbon atoms represented by R 1 , R 2 , R 3 and R 4 in the general formula (1) include, for example, a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • examples of the alkali metal represented by M 1 include sodium (Na), potassium (K), and lithium (Li).
  • Be beryllium
  • Mg magnesium
  • Ca calcium
  • strontium Sr
  • Ba barium
  • Ra radium
  • those which are magnesium and calcium are preferred because the nucleating agent effect of the nucleating agent component is remarkable.
  • a compound in which m is 1 is preferable.
  • a compound in which R 1 , R 2 , R 3 and R 4 have a single group selected from the group consisting of a methyl group, an ethyl group, a sec-butyl group and a tert-butyl group is preferable.
  • a compound in which R 5 is a hydrogen atom or a methyl group is particularly preferable.
  • the compound represented by the general formula (1) preferably includes one or more compounds represented by any one of the following chemical formulas (2) to (13).
  • a compound represented by any one of the chemical formulas (2) to (6) is preferable.
  • a compound represented by any one of chemical formula (7) to chemical formula (13) is preferable.
  • phosphorus trichloride or phosphorus oxychloride
  • 2,2′-alkylidenephenol is hydrolyzed as necessary.
  • a cyclic acidic phosphate ester is reacted with a metal hydroxide such as sodium hydroxide or potassium hydroxide, and the resulting reaction product is appropriately purified (filtered, etc.) and dried to obtain the above compound.
  • Aromatic phosphate metal salt may be synthesized by a conventionally known method and used as the above compound.
  • the obtained compound is dissolved in a solvent and reacted with another metal hydroxide such as lithium hydroxide, or reacted with a salt of any one of aluminum, magnesium and group II elements, and the obtained reaction product. Is purified and dried to obtain another compound described above.
  • another metal hydroxide such as lithium hydroxide
  • a salt of any one of aluminum, magnesium and group II elements Is purified and dried to obtain another compound described above.
  • the granular nucleating agent of the present embodiment can be obtained by pulverizing the obtained compound with an appropriate pulverizing means, if necessary.
  • coarse particles may be excluded by sieving with a sieve having a predetermined mesh size.
  • the said granular nucleating agent can contain 1 type, or 2 or more types of powdery compounds.
  • the above-described granular nucleating agent may be obtained by blending two or more compounds having different particle size distributions or combining two or more classified compounds at an appropriate ratio.
  • Examples of the pulverizing means include mortar, ball mill, rod mill, tube mill, conical mill, vibration ball mill, high swing ball mill, roller mill, pin mill, hammer mill, attrition mill, jet mill, jet mizer, micronizer, nanomizer, Examples include a Macjack mill, a micro atomizer, a colloid mill, a premier colloid mill, a micron mill, a Charlotte colloid mill, a rotary cutter, and a dry medium agitation mill. These pulverizers can be used alone or in combination of two or more, and are appropriately selected depending on the type of raw material powder to be pulverized, the pulverization time, and the like.
  • the granular nucleating agent of the present embodiment may be composed only of the compound represented by the general formula (1), and may contain other components within the scope of achieving the object of the present invention.
  • the other components include aromatic phosphate metal salts, fatty acid metal salts, silicic acid-based inorganic additive components, hydrotalcites, and the like other than the compound represented by the general formula (1). These may be used alone or in combination of two or more.
  • the fatty acid metal salt preferably contains a compound represented by the following general formula (14).
  • R 6 represents a linear or branched aliphatic group having 9 to 30 carbon atoms
  • M represents a metal atom
  • n represents an integer of 1 to 4
  • It represents an integer corresponding to the valence of the metal atom.
  • R 6 represents a linear or branched aliphatic group having 9 to 30 carbon atoms, such as an alkyl group or alkenyl group having 9 to 30 carbon atoms, which is a hydroxyl group. May be substituted.
  • Examples of the aliphatic group having 9 to 30 carbon atoms include capric acid, 2-ethylhexanoic acid, undecyl acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, and nonadecyl.
  • Acids arachidic acid, heicosyl acid, behenic acid, tricosyl acid, lignoceric acid, serotic acid, montanic acid, melicic acid and other saturated fatty acids, 4-decenoic acid, 4-dodecenoic acid, palmitoleic acid, ⁇ -linolenic acid, linoleic acid And linear unsaturated fatty acids such as ⁇ -linolenic acid, stearidonic acid, petrothelic acid, oleic acid, elaidic acid, vaccenic acid, eicosapentaenoic acid, docosapentaenoic acid, docosahexaenoic acid, and the like.
  • the fatty acid metal salt preferably has an aliphatic group represented by R 6 having 10 to 21 carbon atoms, and in particular, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, 12 -Hydroxystearic acid is preferred.
  • Examples of the metal atom represented by M include alkali metal, magnesium, calcium, strontium, barium, titanium, manganese, iron, zinc, silicon, zirconium, yttrium, barium or hafnium.
  • alkali metals such as sodium, lithium and potassium are preferable, and sodium and lithium are particularly preferably used since the crystallization temperature becomes high.
  • silicate-based inorganic additive component examples include fumed silica, fine particle silica, silica, diatomaceous earth, clay, kaolin, silica gel, calcium silicate, sericite, kaolinite, flint, feldspar powder, meteorite, attapulgite, Examples include talc, mica, minnesite, and pyrophyllite. Among them, those having a particle structure of a layered structure and those having a silicon content of 15% by mass or more are preferable. Examples of these preferable inorganic additives include sericite, kaolinite, talc, mica, minnesotite, and pyrophyllite, and talc and mica are more preferable.
  • the hydrotalcites may be, for example, natural products or synthetic products, and can be used regardless of the presence or absence of surface treatment or the presence or absence of crystal water.
  • the basic carbonate represented by the following general formula is mentioned.
  • M x Mg y Al z CO 3 (OH) xp + 2y + 3z-2 ⁇ nH 2 O (In the above general formula, M represents an alkali metal or zinc, X represents a number from 0 to 6, y represents a number from 0 to 6, z represents a number from 0.1 to 4, and p represents M Where n represents the number of water of crystallization from 0 to 100)
  • the granular nucleating agent containing the other component is a granular nucleating agent composition containing the compound represented by the general formula (1), and other aromatic phosphate metal salt, fatty acid metal salt, silicic acid type One or more selected from the group consisting of inorganic additive components and hydrotalcites, preferably one or more selected from the group consisting of fatty acid metal salts, talc, mica and hydrotalcites .
  • Such a granular nucleating agent can be obtained, for example, by pulverizing by appropriately combining the above pulverizing means in the presence of the compound represented by the general formula (1) and other components.
  • pulverization means, sieving, the blending method etc. can also be used.
  • the granular nucleating agent of the present embodiment functions as a nucleating agent / translucent agent added at the time of molding a thermoplastic resin such as a crystalline polymer.
  • a thermoplastic resin such as a crystalline polymer.
  • improvement (modification effect) such as crystallization temperature, heat denaturation temperature, flexural modulus, hardness, and transparency can be realized. Further, the molding cycle property can be improved and the productivity can be improved.
  • the particle size distribution spread WA measured according to the following procedure A and the particle size distribution spread WB measured according to the following procedure B satisfy the following formula (I). . 0.3 ⁇ WA / WB ⁇ 13.5 Formula (I)
  • Such an environmental load can be used as a condition for an accelerated test, and how this accelerated test changes the powder characteristics of the granular nucleating agent after a certain period of time has passed since manufacture, transportation, storage, etc. Can be evaluated.
  • the above-described pressure treatment is used as an environmental load, and the degree of change in the particle size distribution before and after the pressure treatment, that is, WA / WB is used as a guideline to appropriately determine the powder characteristics of the granular nucleating agent. It was found that it can be controlled.
  • WA / WB within the numerical range of the above formula (I)
  • the change in the properties of the powder after environmental load is suppressed, and the powder after storage for a predetermined period of time. It was found that the powder characteristics of the granular nucleating agent are improved because the change in characteristics is suppressed.
  • the particle size distribution is stabilized for a wide range of powders from fine powder to coarse powder immediately after production. It was found that it can be measured automatically.
  • the particles of the granular nucleating agent that are affected by the environmental load such as agglomeration after the environmental load, that is, the powder after the pressure treatment, It was found that the diameter distribution can be measured stably.
  • measurement stability can be improved because there are no problems such as bubbles as compared with wet conditions.
  • the lower limit value of the WA / WB is 0.3 or more, preferably 0.5 or more, more preferably 0.7 or more. Thereby, changes with time in properties such as dustiness and feed stability can be suppressed.
  • the upper limit of the WA / WB is 13.5 or less, preferably 13.0 or less, more preferably 12.7 or less. Thereby, the time-dependent change of dustiness can be suppressed.
  • the lower limit value of WA is not particularly limited, but is, for example, 3 or more, preferably 4 or more, more preferably 5 or more. Thereby, the time-dependent change of a powder characteristic can be suppressed.
  • the upper limit of the WA is, for example, 45 or less, and is preferably 35 or less, more preferably 30 or less, from the viewpoint of further improving transparency.
  • the WA is 30 or less, when a resin composition containing a granular nucleating agent is formed into a film, it is possible to suppress the generation of fish eyes and the like, and thus it is possible to improve the production stability of a molded product. .
  • the lower limit value may be, for example, 2 ⁇ m or more, preferably 3 ⁇ m, more preferably 5 ⁇ m or more.
  • the upper limit value is, for example, 55 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 45 ⁇ m or less. Also good.
  • the lower limit value may be, for example, 0.5 ⁇ m or more, preferably 0.9 ⁇ m, more preferably 1.0 ⁇ m or more.
  • One upper limit value is, for example, 2.5 ⁇ m or less, preferably May be 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less.
  • the above-mentioned WA / WB and WA can be controlled by appropriately selecting the type and blending amount of each component contained in the granular nucleating agent, the method for preparing the granular nucleating agent, and the like. .
  • appropriate selection of pulverization conditions such as pulverization method and pulverization time, classification conditions such as cutting of coarse particles, blending conditions, etc., makes the above-mentioned WA / WB and WA within the desired numerical ranges.
  • pulverization conditions such as pulverization method and pulverization time
  • classification conditions such as cutting of coarse particles, blending conditions, etc.
  • the resin composition of this embodiment contains the above-described granular nucleating agent in a thermoplastic resin.
  • the method of adding the granular nucleating agent to the thermoplastic resin is not particularly limited, and a generally used method can be applied as it is. For example, a method of dry blending a powder or pellets of a thermoplastic resin and a powder of the granular nucleating agent can be used.
  • the resin composition can be used in various forms.
  • the resin composition may be in the form of pellets, granules, or powders. From the viewpoint of handleability, a pellet shape is preferable.
  • thermoplastic resin examples include polyolefin resins, styrene resins, polyester resins, polyether resins, polycarbonate resins, polyamide resins, and halogen-containing resins. Among these, it is preferable to use a crystalline polymer.
  • thermoplastic resin examples include, for example, petroleum resin, coumarone resin, polyvinyl acetate, acrylic resin, polymethyl methacrylate, polyvinyl alcohol, polyvinyl formal, polyvinyl butyral, polyphenylene sulfide, polyurethane, fiber-based resin, polyimide Resins, polysulfone, thermoplastic resins such as liquid crystal polymers, and blends thereof can be used.
  • thermoplastic resins include isoprene rubber, butadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, polyester elastomer, nitrile elastomer, nylon elastomer, vinyl chloride elastomer, polyamide elastomer, polyurethane. May be a thermoplastic elastomer such as a base elastomer, or may be used in combination.
  • the crystalline polymer is not particularly limited, but for example, polypropylene, high density polyethylene, low density polyethylene, linear low density polyethylene, polybutene-1, poly-3-methylpentene, poly-4-methylpentene, ethylene / propylene block Or polyolefin polymers such as ⁇ -olefin polymers such as random copolymers; thermoplastic linear polyester polymers such as polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate; polysulfide polymers such as polyphenylene sulfide; Examples thereof include polylactic acid polymers such as polycaprolactone; linear polyamide polymers such as polyhexamethylene adipamide; crystalline polystyrene polymers such as syndiotactic polystyrene.
  • polyolefin-based polymers in which the effect of using the nucleating agent of the present invention is remarkably exhibited are preferable.
  • Polypropylene resins such as a mixture of these propylene polymers and other ⁇ -olefin polymers are particularly preferable.
  • a crystalline ⁇ -olefin polymer particularly polypropylene resin such as polypropylene, ethylene / propylene copolymer and a mixture of these propylene polymer and other ⁇ -olefin polymer is used as the crystalline polymer.
  • polypropylene resin such as polypropylene, ethylene / propylene copolymer and a mixture of these propylene polymer and other ⁇ -olefin polymer is used as the crystalline polymer.
  • polypropylene resins can be used regardless of their intrinsic viscosity, isometatic pentad fraction, density, molecular weight distribution, melt flow rate, rigidity, etc., for example, JP-A-63-37148, 63-37152, 63-90552, 63-210152, 63-213547, 63-243150, 63-243152, 63-260943, 63-260944, 63-264650, JP-A-1-178541, 2-49047, 2-102242, 2-251548, 2-279746, Polypropylene resins such as those described in Kaihei 3-195551 are also suitable. That.
  • the content of the particulate nucleating agent is usually 0.001 to 10 parts by weight, preferably 0.005 to 8 parts by weight, with respect to 100 parts by weight of the thermoplastic resin (eg, crystalline polymer). More preferably, it can be in the range of 0.01 to 5 parts by weight. Thereby, the modification effect of the thermoplastic resin, particularly the crystalline polymer can be sufficiently obtained.
  • the thermoplastic resin eg, crystalline polymer
  • the resin composition of the present embodiment includes an antioxidant, a light stabilizer, an ultraviolet absorber, a pigment, a filler, an organic tin compound, a plasticizer, an epoxy compound, a foaming agent, an antistatic agent, a difficult agent.
  • Additives such as flame retardants, lubricants, heavy metal deactivators, hydrotalcites, organic carboxylic acids, colorants, silicic acid-based additives and processing aids can be included. These may be used alone or in combination of two or more.
  • the antioxidant include phosphorus antioxidants, phenolic antioxidants, thioether antioxidants, and phosphite antioxidants.
  • Examples of the antistatic agent include a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant.
  • Examples of the flame retardant include halogen compounds, phosphate ester compounds, phosphate amide compounds, melamine compounds, melamine salt compounds of polyphosphoric acid, fluororesins or metal oxides.
  • Examples of the lubricant include hydrocarbons, fatty acids, aliphatic alcohols, aliphatic esters, aliphatic amides, metal soaps, and the like.
  • Fumed silica fine particle silica, silica, diatomaceous earth, clay, kaolin, silica gel, calcium silicate, sericite, kaolinite, flint, feldspar powder, meteorite, attapulgite, talc, mica, minnesite And pyrophyllite.
  • the content of the additive in the resin composition is preferably 0.001 to 10 parts by weight with respect to 100 parts by weight of the crystalline polymer. By setting it as such a numerical range, the improvement of the effect of an additive is acquired.
  • the resin composition is an injection molded product, fiber, flat yarn, biaxially stretched film, uniaxially stretched film, unstretched film, sheet, thermoformed product, extrusion blow molded product, injection blow molded product, injection stretch blow molded product, It can be used for molded products such as profile extrusion molded products and rotational molded products.
  • a molded product an injection molded product, a film, a sheet, and a thermoformed product are preferable.
  • the manufacturing method of the molded article of this embodiment includes the process of shape
  • the molding method is not particularly limited, and is an injection molding method, extrusion molding method, blow molding method, rotational molding, vacuum molding method, inflation molding method, calendar molding method, slush molding method, dip molding method, foam molding method. Law. Among these, the injection molding method, the extrusion molding method, and the blow molding method are preferable.
  • the resin composition can be used for various applications such as building materials, agricultural materials, automobile parts, trains, ships, aircrafts and other vehicle parts, packaging materials, sundries, toys, home appliances, and medical products.
  • automotive parts such as bumpers, dashboards, instrument panels, battery cases, luggage cases, door panels, door trims, fender liners; resin parts for household appliances such as refrigerators, washing machines, vacuum cleaners; tableware, bottles Household goods such as caps, buckets, bathing goods, etc .; resin parts for connection such as connectors; miscellaneous goods such as toys, storage containers, synthetic papers; medical packs, syringes, catheters, medical tubes, syringe preparations, infusion bags, reagents Medical molded products such as containers, drink containers, and individual packs; wall materials, floor materials, window frames, wallpaper, windows and other building materials; wire covering materials; agricultural materials such as houses, tunnels, flat yarn mesh bags, etc.
  • low temperature plasma after molding to improve surface properties such as application for various post-treatments, for example, medical applications, food packaging applications, sterilization by radiation, or paintability. It can be used for purposes such as processing. Among these, it is preferable to use for automobile parts, household goods, and food packaging materials.
  • Compound No. obtained 1 was sieved with a sieve having a mesh size of 57 ⁇ m without pulverization to obtain a granular nucleating agent A.
  • Compound No. obtained 1 was pulverized with a ball mill for 30 minutes and sieved with a sieve having a mesh size of 57 ⁇ m to obtain a granular nucleating agent B.
  • Compound No. obtained 1 was pulverized with a ball mill for 4 hours, and further pulverized with a jet mill to obtain a granular nucleating agent C.
  • Procedure A particle size distribution before pressure treatment: First, the obtained granular nucleating agent (sample) was set in the sample holder 130 shown in FIG. 1A, and the inside of the measuring unit 150 was sucked by the suction nozzle 120. Subsequently, the compressed air supplied from the compressor 140 (dispersing machine) was adjusted and injected into the distributed air supply unit 110 via the injection nozzle 142. At this time, the granular nucleating agent passes through the laser beam 170 irradiated from the light source 160 by ejecting the dispersed air 144 to the granular nucleating agent passing through the dispersed air supply unit 110 under the condition of the following dispersion pressure.
  • the dispersion pressure air pressure of the dispersion air 144 ejected to the sample was set to 30 psi (2.1 kgf / cm 2 ).
  • Procedure B particle size distribution after pressure treatment: A pressure treatment was performed on the granular nucleating agent to be measured in Procedure A based on the procedure shown in FIG. First, an aluminum foil tray 10 (width: 50 mm, depth: 60 mm, height: 20 mm) was prepared, and 13 g of a granular nucleating agent (sample 20) was filled inside the tray 10. A lead weight 30 (mass: 1.8 kg, ground contact area: 30 cm 2 ) is placed on the sample 20, and a constant temperature of 40 ° C. and a relative humidity of 80% is applied to the sample 20 with a load of 60 g / cm 2. The tray 10 was left in the oven for 24 hours (pressure treatment).
  • the pressure-treated sample 20 taken out from the tray 10 was set in the sample holder 130 shown in FIG. 1B, and the inside of the measurement unit 150 was sucked by the suction nozzle 120.
  • the granular nucleating agent 154 (measurement target) scattered from the dispersed air supply unit 110 by the suction pressure (negative pressure) of the suction nozzle 120 is passed through the laser beam 170 irradiated from the light source 160 into the air. Dispersed. At this time, the compressed air was not supplied from the compressor 140 (dispersing machine). Thereafter, the granular nucleating agent 154 was collected in the suction nozzle 120.
  • the measurement unit 150 the light scattered by the granular nucleating agent 154 dispersed in the air was measured by the detector 190 through the condenser lens 180. Based on the measurement results, a particle size distribution of the granular nucleating agent 154 was obtained (non-dispersive dry measurement).
  • the compressor 140 dispenser machine
  • the dispersion pressure air pressure of the dispersed air 144 ejected to the sample
  • two laser beams 170 having the same wavelength were used as the light source, and conditions for increasing the resolution were adopted.
  • the suction pressure of the suction nozzle 120 was the same as in Procedure A.
  • the volume average particle size was MvB
  • the number average particle size was MnB
  • the obtained granular nucleating agents D to G of Test Examples 1 to 4 were used as the granular nucleating agents of Examples 1 to 4, and obtained.
  • the obtained granular nucleating agents H and C of Test Examples 5 and 6 were used as the granular nucleating agents of Comparative Examples 1 and 2.
  • evaluation was implemented based on the following evaluation items.
  • the degree of dispersion (%) of the obtained granular nucleating agent was measured using a powder property evaluation apparatus (manufactured by Seishin Enterprise Co., Ltd., Multitester MT-02).
  • Samples a prepared in accordance with the following procedure a and samples b prepared in accordance with the following procedure b were used as granular nucleating agents to be measured in the above-described compression degree, dispersion degree, and discharge rate.
  • the degree of compression, the degree of dispersion, and the discharge speed were measured using the three samples a prepared in the procedure a, and the average of the three values was used as the measurement value.
  • the granular nucleating agent immediately after the preparation was used as a measurement target (sample a).
  • -Compression degree change rate A The change rate was small and there was little change in fluidity. ⁇ : Although the rate of change was relatively large, the change in fluidity was within a practically acceptable range. X: The rate of change was large, and the change in fluidity was large. -Dispersion rate change rate A: The change rate was small and there was little change in dusty properties. ⁇ : The rate of change was relatively large, but the change in dusty properties was in a range that had no practical problems. X: The rate of change was large and the change in dusty properties was large. -Discharge time (double-circle): The discharge time a and the discharge time b were small, and feed stability was favorable.
  • Although the discharge time a is small and the discharge time b is relatively large, the operation does not stop, so that the feed stability is in a range where there is no practical problem.
  • X During the measurement of the discharge time a or the discharge time b, the operation was stopped after the lapse of a predetermined time, so that the feed stability was lowered.
  • ⁇ Transparency> A composition obtained by mixing 100 parts by weight of polypropylene with 0.1 part by weight of the obtained granular nucleating agent of each example was mixed with a Henschel mixer for 1 minute, and extruded at 230 ° C. and 150 rpm to obtain pellets. Manufactured. A haze (haze value:%) was measured according to JIS K7136 for a test piece having a thickness of 1 mm obtained by injection molding at 200 ° C.
  • the granular nucleating agents of Examples 1 to 4 have superior dust characteristics compared to Comparative Example 1, and superior dust characteristics and feed stability compared to Comparative Example 2, thereby suppressing changes in powder properties. It was found that the powder exhibited good powder characteristics. Therefore, it is possible to realize a granular nucleating agent in which changes in powder characteristics are suppressed even after long-term storage after packaging.
  • the granular nucleating agents of Examples 1 to 4 have excellent flow characteristics, have a low haze value within a practically acceptable range, and can improve the transparency of the crystalline polymer. It turned out that it can utilize suitably.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本発明の粒状核剤は、所定の式で表される芳香族リン酸エステル金属塩を含む粒状核剤であって、加圧処理前の粒子径分布の広がりWAと、加圧処理後の粒子径分布の広がりWBが、式:0.3≦WA/WB≦13.5以下を満たすものである。

Description

粒状核剤、樹脂組成物、成形品およびその製造方法
 本発明は、粒状核剤、樹脂組成物、成形品およびその製造方法に関する。
 高分子材料の改質技術として、結晶核剤や結晶化促進剤を添加する技術が知られている。この種の技術としては、たとえば、特許文献1に記載のものが知られている。特許文献1には、熱可塑性ポリマー中に核剤(以下、結晶核剤、結晶化促進剤、透明化剤等を総称して「核剤」と呼称する。)を添加することが記載されている(特許文献1の請求項1等)。同文献には、核剤としてリン酸エステル塩が例示されている(引例1の段落0014)。
特開2017-149962号公報
 しかしながら、本発明者が検討した結果、上記特許文献1に記載の核剤において、粉体特性の点で改善の余地があることが判明した。
 本発明者が検討した結果、以下のような知見が得られた。
 一般的な粒状核剤は、粉粒体として熱可塑性樹脂中に添加・溶融混練され、熱可塑性樹脂の加熱成形加工に使用される。使用前の粒状核剤は、製造後、包装された状態で搬送・保管されることになる。しかしながら、包装後に長期間保管された場合、粒状核剤において粉体特性が変動し、上記加熱加工時の作業性や製造安定性が低下する恐れがあった。
 本発明者はさらに検討したところ、芳香族リン酸エステル金属塩系粒状核剤の粉体特性について、環境負荷前後の粒子径分布の差分(WA/WB)を指針とすることにより適切に制御できることを見出した。このような知見に基づきさらに鋭意研究したところ、WA/WBを所定の数値範囲内とすることにより、所定期間保管後における性状変化が抑制されるため、芳香族リン酸エステル金属塩系粒状核剤の粉体特性が改善されることを見出し、本発明を完成するに至った。
 本発明によれば、
 下記一般式(1)で表される化合物を含む粒状核剤であって、
 下記手順Aに従って測定される粒子径分布の広がりWAと、
 下記手順Bに従って測定される粒子径分布の広がりWBが、
 以下の式(I)を満たす、粒状核剤が提供される。
0.3≦WA/WB≦13.5  ・・式(I)
(手順A)
 レーザー回折式粒子径測定装置を用い、30psiの分散圧の分散エアーを当該粒状核剤に噴出して、空気中に分散させた当該粒状核剤を測定対象として、その粒状核剤の粒子径分布を乾式測定する。
 前記粒子径分布として、当該粒状核剤の体積平均粒子径MvA、個数平均粒子径MnAを得る。
 WA=MvA/MnAに基づいて、上記粒子径分布の広がりWAを算出する。
(手順B)
 上記手順Aの測定対象とした当該粒状核剤について、次のように加圧処理を行う。
 加圧処理:アルミニウム箔製のトレイに当該粒状核剤を入れ、前記トレイ中の当該粒状核剤に60g/cmの荷重を加えた状態で、40℃、相対湿度80%の恒温オーブン内に、前記トレイを24時間静置する。
 続いて、レーザー回折式粒子径測定装置を用い、分散エアーを当該粒状核剤に噴出せずに、空気中に分散させた加圧処理後の当該粒状核剤を測定対象として、その粒状核剤の粒子径分布を乾式測定する。
 前記粒子径分布として、当該粒状核剤の体積平均粒子径MvB、個数平均粒子径MnBを得る。
 WB=MvB/MnBに基づいて、上記粒子径分布の広がりWBを算出する。
Figure JPOXMLDOC01-appb-C000003
(上記一般式(1)中、R~Rは各々独立して、水素原子、直鎖又は分岐を有する炭素原子数1~9のアルキル基を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、mは1又は2を表し、mが1の場合、Mは水素原子又はアルカリ金属原子を表し、mが2の場合、Mは、二族元素、Al(OH)又はZnを表す。)
 また本発明によれば、上記粒状核剤を熱可塑性樹脂中に含有してなる、樹脂組成物が提供される。
 また本発明によれば、上記樹脂組成物を用いてなる成形品が提供される。
 また本発明によれば、上記樹脂組成物を用いて成形品を製造する製造方法が提供される。
 本発明によれば、粉体特性に優れた粒状核剤、それを用いた樹脂組成物、成形品およびその製造方法が提供される。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
(a)(b)は、レーザー回折式粒子径測定装置の測定原理の概要を説明するための図である。 加圧処理の手順を説明するための図である。
 本実施形態の粒状核剤について説明する。
 上記粒状核剤は、芳香族リン酸エステル金属塩を含有するものである。当該芳香族リン酸エステル金属塩は、下記一般式(1)によって表される化合物が用いられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(1)中、R~Rは各々独立して、水素原子、直鎖又は分岐を有する炭素原子数1~9のアルキル基を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、mは1又は2を表し、mが1の場合、Mは水素原子又はアルカリ金属原子を表し、mが2の場合、Mは、二族元素、Al(OH)又はZnを表す。
 上記一般式(1)中の、R、R、R及びRで表される、炭素原子数1~9のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、イソブチル基、アミル基、イソアミル基、tert-アミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、イソヘプチル基、tert-ヘプチル基が挙げられる。
 上記一般式(1)中、Mで表されるアルカリ金属としては、ナトリウム(Na)、カリウム(K)、リチウム(Li)等が挙げられる。
 上記一般式(1)中のMで表される第二族元素としては、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)が挙げられ、これらの中でも、マグネシウム、カルシウムであるものが、核剤成分の核剤効果が顕著であるので好ましい。
 上記一般式(1)で表される化合物の中でも、mが1である化合物が好ましい。また、R、R、R及びRが、メチル基、エチル基、sec-ブチル基およびtert-ブチル基からなる群から選択される一種基を有する化合物が好ましい。また、Rが水素原子またはメチル基である化合物が特に好ましい。
 上記一般式(1)で表される化合物としては、下記の化学式(2)から化学式(13)のいずれかで表される化合物を一または二以上含むことが好ましい。この中でも、樹脂の物性向上の観点から、化学式(2)から化学式(6)のいずれかで表される化合物が好ましい。透明性向上の観点から、化学式(7)から化学式(13)のいずれかで表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(1)で表される化合物の製造方法としては、例えば、三塩化燐(またはオキシ塩化燐)と2,2’-アルキリデンフェノールとを反応させた後、必要に応じて加水分解して環状酸性リン酸エステルとする。次いで、環状酸性リン酸エステルと、水酸化ナトリウム、水酸化カリウム等の金属水酸化物とを反応させ、得られた反応物を、適宜精製(ろ過等)し、乾燥することにより、上記化合物(芳香族リン酸エステル金属塩)が得られる。また、従来公知の方法で芳香族リン酸エステル金属塩を合成し、上記化合物として使用してもよい。
 また得られた化合物を、溶剤に溶解し、水酸化リチウム等の他の金属水酸化物と反応させ、またはアルミニウム・マグネシウム・第二族元素のいずれかの塩と反応させ、得られた反応物を精製、乾燥することにより、別の上記化合物が得られる。
 本実施形態の粒状核剤は、必要に応じて、得られた化合物を適切な粉砕手段で粉砕することにより得られる。粒状核剤において、所定メッシュサイズの篩いで篩い分けして粗大粒子を除外してもよい。また上記粒状核剤は、1種または2種以上の粉末状の化合物を含むことができる。例えば、粒子径分布が異なる2種以上の化合物や、分級された2種以上の化合物を適当な比率で組み合わせてブレンドし、上記粒状核剤を得てもよい。
 上記の粉砕手段としては、例えば、乳鉢、ボールミル、ロッドミル、チューブミル、コニカルミル、振動ボールミル、ハイスイングボールミル、ローラーミル、ピンミル、ハンマーミル、アトリションミル、ジェットミル、ジェットマイザー、マイクロナイザー、ナノマイザー、マジャックミル、マイクロアトマイザー、コロイドミル、プレミアコロイドミル、ミクロンミル、シャロッテコロイドミル、ロータリーカッター、乾式媒体撹拌ミル等が挙げられる。これらの粉砕機は、単独又は2種以上組み合わせて用いることができ、粉砕する原料粉末の種類、粉砕時間等によって適宜選択される。
 本実施形態の粒状核剤は、上記一般式(1)で表される化合物のみで構成されていてもよく、本発明の目的を達成する範囲内で、他の成分を含有してもよい。上記他の成分としては、上記一般式(1)で表される化合物以外の他の芳香族リン酸エステル金属塩、脂肪酸金属塩、珪酸系無機添加剤成分、ハイドロタルサイト類等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 上記脂肪酸金属塩としては、例えば、下記一般式(14)で表される化合物を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(14)中、Rは直鎖または分岐を有する炭素原子数9~30の脂肪族基を表し、Mは金属原子を表し、nは1~4の整数であって、Mの金属原子の価数と対応する整数を表す。
 上記一般式(14)において、Rは直鎖または分岐を有する炭素原子数9~30の脂肪族基としては、炭素原子数9~30のアルキル基およびアルケニル基が挙げられ、これらはヒドロキシル基で置換されていてもよい。
 上記炭素原子数9~30の脂肪族基としては、例えば、カプリン酸、2-エチルヘキサン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデシル酸、アラキジン酸、ヘイコシル酸、ベヘン酸、トリコシル酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸等の飽和脂肪酸、4-デセン酸、4-ドデセン酸、パルミトレイン酸、α-リノレン酸、リノール酸、γ-リノレン酸、ステアリドン酸、ペトロセリン酸、オレイン酸、エライジン酸、バクセン酸、エイコサペンタエン酸、ドコサペンタエン酸、ドコサヘキサエン酸等の直鎖不飽和脂肪酸等が挙げられる。
 上記脂肪酸金属塩は、Rで表される脂肪族基が、炭素原子数10~21であるものが好ましく、特に、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、オレイン酸、12-ヒドロキシステアリン酸が好ましい。
 上記Mで表される金属原子としては、例えば、アルカリ金属、マグネシウム、カルシウム、ストロンチウム、バリウム、チタニウム、マンガン、鉄、亜鉛、珪素、ジルコニウム、イットリウム、バリウムまたはハフニウム等が挙げられる。これらの中でも、ナトリウム、リチウム、カリウム等のアルカリ金属が好ましく、特に、ナトリウムおよびリチウムが、結晶化温度が高くなるので好ましく用いられる。
 上記珪酸系無機添加剤成分としては、例えば、フュームドシリカ、微粒子シリカ、けい石、珪藻土類、クレー、カオリン、シリカゲル、珪酸カルシウム、セリサイト、カオリナイト、フリント、長石粉、蛭石、アタパルジャイト、タルク、マイカ、ミネソタイト、パイロフィライト等が挙げられ、中でも、粒子構造が層状構造であるもの、珪素含有量が15質量%以上のものが好ましい。これらの好ましい無機添加剤としては、セリサイト、カオリナイト、タルク、マイカ、ミネソタイト、パイロフィライトが挙げられ、タルク、マイカがより好ましい。
 上記ハイドロタルサイト類としては、例えば、天然物でも合成品でもよく、表面処理の有無や結晶水の有無によらず用いることができる。例えば、下記一般式で表される塩基性炭酸塩が挙げられる。
MgAlCO(OH)xp+2y+3z-2・nH
(上記一般式中、Mはアルカリ金属または亜鉛を表し、Xは0~6の数を表し、yは0~6の数を表し、zは0.1~4の数を表し、pはMの価数を表し、nは0~100の結晶水の数を表す)
 上記他の成分を含有する粒状核剤は、上記一般式(1)で表される化合物を含有する粒状核剤組成物であり、他の芳香族リン酸エステル金属塩、脂肪酸金属塩、珪酸系無機添加剤成分およびハイドロタルサイト類からなる群から選択される一種以上、好ましくは脂肪酸金属塩、タルク、マイカおよびハイドロタルサイト類からなる群から選択される一種以上を含有するように構成され得る。
 このような粒状核剤のとしては、例えば、上記一般式(1)で表される化合物および他の成分の共存下、上記の粉砕手段を適切に組み合わせることにより粉砕処理することにより得られる。また、上述の粉砕手段、篩い分け、ブレンド方法などを用いることもできる。
 本実施形態の粒状核剤は、結晶性高分子等の熱可塑性樹脂の成形加工時に添加される造核剤・透明化剤として機能する。結晶性高分子において、結晶化温度、熱変性温度、曲げ弾性率、硬度、透明性などの向上(改質効果)を実現できる。また、成形サイクル性を高め、生産性を向上させることができる。
 本実施形態の粒状核剤は、下記手順Aに従って測定される粒子径分布の広がりWAと、下記手順Bに従って測定される粒子径分布の広がりWBが、以下の式(I)を満たすものである。
0.3≦WA/WB≦13.5  ・・式(I)
(手順A)
 レーザー回折式粒子径測定装置を用い、30psiの分散圧の分散エアーを当該粒状核剤に噴出して、空気中に分散させた当該粒状核剤を測定対象として、その粒状核剤の粒子径分布を乾式測定する。
 前記粒子径分布として、当該粒状核剤の体積平均粒子径MvA、個数平均粒子径MnAを得る。
 WA=MvA/MnAに基づいて、上記粒子径分布の広がりWAを算出する。
(手順B)
 上記手順Aの測定対象とした当該粒状核剤について、次のように加圧処理を行う。
 加圧処理:アルミニウム箔製のトレイに当該粒状核剤を入れ、前記トレイ中の当該粒状核剤に60g/cmの荷重を加えた状態で、40℃、相対湿度80%の恒温オーブン内に、前記トレイを24時間静置する。
 続いて、レーザー回折式粒子径測定装置を用い、分散エアーを当該粒状核剤に噴出せずに、空気中に分散させた加圧処理後の当該粒状核剤を測定対象として、その粒状核剤の粒子径分布を乾式測定する。
 前記粒子径分布として、当該粒状核剤の体積平均粒子径MvB、個数平均粒子径MnBを得る。
 WB=MvB/MnBに基づいて、上記粒子径分布の広がりWBを算出する。
 本発明者の知見によれば、加重(圧力)、加温(温度)、加湿(湿度)を適切に選択した環境負荷を粒状核剤に対して所定時間付与することにより、製造直後から使用前までに所定期間が経過したときの、粒状核剤の粉体特性を評価できることが判明した。
 このような環境負荷は加速試験の条件として利用することができ、かかる加速試験によって、製造後、搬送や保管などで所定期間経過した後の粒状核剤の粉体特性がどのように変化するかの評価が可能になる。
 さらに検討した結果、環境負荷として上記加圧処理を用い、加圧処理前後の粒子径分布の広がりの変化度合い、すなわち、WA/WBを指針とすることにより、粒状核剤の粉体特性を適切に制御できることを見出した。このような知見に基づきさらに鋭意研究したところ、WA/WBを上記式(I)の数値範囲内とすることにより、環境負荷後における粉体の性状変化が抑制され、所定期間保管後における粉体特性の変化が抑制されるため、粒状核剤の粉体特性が改善されるとの知見を得た。
 また、本発明者の知見によれば、適切な分散圧を粒状核剤に付与する測定条件を採用することにより、製造直後の、微粉から粗粉までの幅広い粉体について、粒子径分布を安定的に測定できることが分かった。また、分散圧を粒状核剤に付与しない測定条件を採用することにより、環境負荷後、すなわち、上記加圧処理後の粉体について、凝集などの環境負荷の影響を受けた粒状核剤の粒子径分布を安定的に測定できることが分かった。
 また、乾式条件を採用することにより、湿式条件と比べて、気泡など問題がないため、測定安定性を高めることができる。
 本実施形態において、上記WA/WBの下限値は、0.3以上、好ましくは0.5以上、より好ましくは0.7以上である。これにより、粉塵性やフィード安定性などの性状の経時変化を抑制できる。一方、上記WA/WBの上限値は、13.5以下、好ましくは13.0以下、より好ましくは12.7以下である。これにより、粉塵性の経時変化を抑制できる。また、このような数値範囲内とすることにより、流動性の経時変化を抑制でき、結晶性高分子の透明性を高めることができる。
 また、本実施形態の粒状核剤は、以下の式(II)を満たすものを用いることができる。
3≦WA≦45  ・・式(II)
 上記式(II)中、WAの下限値は、特に限定されないが、例えば、3以上、好ましくは4以上、より好ましくは5以上である。これにより、粉体特性の経時変化を抑制できる。一方、上記WAの上限値は、例えば、45以下であり、より透明化性を高める観点から、好ましくは35以下、より好ましくは30以下である。また、上記WAを30以下とすることにより、粒状核剤を含有する樹脂組成物をフィルム化したとき、フィッシュアイの発生等を抑制できるため、成形品の製造安定性を高めることが可能である。
 上記体積平均粒子径MvAにおいて、下限値は、例えば2μm以上、好ましくは3μm、より好ましくは5μm以上としてもよく、一方の上限値は、例えば55μm以下、好ましくは50μm以下、より好ましくは45μm以下としてもよい。
 また、上記個数平均粒子径MnAにおいて、下限値は、例えば0.5μm以上、好ましくは0.9μm、より好ましくは1.0μm以上としてもよく、一方の上限値は、例えば2.5μm以下、好ましくは2.0μm以下、より好ましくは1.5μm以下としてもよい。
 本実施形態では、たとえば粒状核剤中に含まれる各成分の種類や配合量、粒状核剤の調製方法等を適切に選択することにより、上記WA/WB、WAを制御することが可能である。これらの中でも、たとえば、粉砕方法や粉砕時間等の粉砕条件、粗大粒子のカット等の分級条件、ブレンド条件などを適切に選択すること等が、上記WA/WB、WAを所望の数値範囲とするための要素として挙げられる。
 本実施形態の樹脂組成物は、上記の粒状核剤を熱可塑性樹脂中に含有してなるものである。
 上記粒状核剤を、上記熱可塑性樹脂に添加する方法は特に制限を受けず、一般に用いられる方法をそのまま適用することができる。例えば、熱可塑性樹脂の粉末物あるいはペレットと、上記粒状核剤の粉末物とをドライブレンドする方法を用いることができる。
 上記樹脂組成物は、各種形態で使用することができるが、たとえば、ペレット状、顆粒状、粉末状のいずれでもよい。取り扱い性の観点から、ペレット状が好ましい。
 上記熱可塑性樹脂としては、ポリオレフィン系樹脂、スチレン系樹脂、ポリエステル系樹脂、ポリエーテル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、含ハロゲン樹脂等が挙げられる。この中でも、結晶性高分子を用いることが好ましい。
 さらに上記熱可塑性樹脂の例を挙げると、例えば、石油樹脂、クマロン樹脂、ポリ酢酸ビニル、アクリル樹脂、ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール、ポリフェニレンサルファイド、ポリウレタン、繊維素系樹脂、ポリイミド樹脂、ポリサルフォン、液晶ポリマー等の熱可塑性樹脂およびこれらのブレンド物を用いることができる。
 また、上記熱可塑性樹脂は、イソプレンゴム、ブタジエンゴム、アクリロニトリル-ブタジエン共重合ゴム、スチレン-ブタジエン共重合ゴム、ポリエステル系エラストマー、ニトリル系エラストマー、ナイロン系エラストマー、塩化ビニル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー等の熱可塑性エラストマーであってもよく、併用してもよい。
 上記結晶性高分子としては、特に限定されないが、例えばポリプロピレン、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、ポリブテン-1、ポリ3-メチルペンテン、ポリ4-メチルペンテン、エチレン/プロピレンブロックまたはランダム共重合体などのα-オレフィン重合体等のポリオレフィン系高分子;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート等の熱可塑性直鎖ポリエステル系高分子;ポリフェニレンスルフィド等のポリスルフィド系高分子;ポリカプロラクトン等のポリ乳酸系高分子;ポリヘキサメチレンアジパミド等の直鎖ポリアミド系高分子;シンジオタクチックポリスチレン等の結晶性のポリスチレン系高分子等が挙げられる。
 この中でも、本発明の核剤の使用効果が顕著に奏されるポリオレフィン系高分子が好ましく、ポリプロピレン、エチレン/プロピレンブロック又はランダム共重合体、エチレン以外のα-オレフィン/プロピレンブロック又はランダム共重合体、これらのプロピレン系重合体と他のα-オレフィン重合体との混合物等のポリプロピレン系樹脂が特に好ましい。
 上記結晶性高分子として、結晶性α―オレフィン重合体、とりわけポリプロピレン、エチレン/プロピレン共重合体およびこれらのプロピレン重合体と他のα―オレフィン重合体との混合物などのポリプロピレン系樹脂を用いた場合に有用である。これらのポリプロピレン系樹脂は、その極限粘度、アイソメタクチックペンタッド分率、密度、分子量分布、メルトフローレート、剛性等に拘わらず使用することができ、例えば、特開昭63-37148号公報、同63-37152号公報、同63-90552号公報、同63-210152号公報、同63-213547号公報、同63-243150号公報、同63-243152号公報、同63-260943号公報、同63-260944号公報、同63-264650号公報、特開平1-178541号公報、同2-49047号公報、同2-102242号公報、同2-251548号公報、同2-279746号公報、特開平3-195751号公報などに記載されたようなポリプロピレン系樹脂も好適に使用することができる。
 上記粒状核剤の含有量は、熱可塑性樹脂(例えば、結晶性高分子)100重量部に対して、通常、0.001~10重量部であり、好ましくは0.005~8重量部であり、より好ましくは0.01~5重量部の範囲内とすることができる。これにより、熱可塑性樹脂、とくに結晶性高分子の改質効果を十分に得ることができる。
 本実施形態の樹脂組成物には、必要に応じて、抗酸化剤、光安定剤、紫外線吸収剤、顔料、充填剤、有機錫化合物、可塑剤、エポキシ化合物、発泡剤、帯電防止剤、難燃剤、滑剤、重金属不活性剤、ハイドロタルサイト類、有機カルボン酸、着色剤、珪酸系添加剤、加工助剤等の添加剤を含有させることができる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 上記抗酸化剤として、リン系抗酸化剤、フェノール系抗酸化剤、チオエーテル系抗酸化剤、ホスファイト系抗酸化剤等が挙げられる。
 上記帯電防止剤として、カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤等が挙げられる。
 上記難燃剤として、ハロゲン系化合物、リン酸エステル系化合物、リン酸アミド系化合物、メラミン系化合物、ポリリン酸のメラミン塩化合物、フッ素樹脂又は金属酸化物等が挙げられる。
 上記滑剤として、炭化水素系、脂肪酸系、脂肪族アルコール系、脂肪族エステル系、脂肪族アマイド系、金属石けん系等が挙げられる。
 上記珪酸系添加剤として、フュームドシリカ、微粒子シリカ、けい石、珪藻土類、クレー、カオリン、シリカゲル、珪酸カルシウム、セリサイト、カオリナイト、フリント、長石粉、蛭石、アタパルジャイト、タルク、マイカ、ミネソタイト、パイロフィライト等が挙げられる。
 上記樹脂組成物における添加剤の含有量は、結晶性高分子100重量部に対して、たとえば、0.001~10重量部が好ましい。このような数値範囲とすることにより、添加剤の効果の向上が得られる。
 上記樹脂組成物は、射出成形品、繊維、フラットヤーン、二軸延伸フィルム、一軸延伸フィルム、無延伸フィルム、シート、熱成形品、押出ブロー成形品、射出ブロー成形品、射出延伸ブロー成形品、異形押出成形品、回転成形品等の成形品に使用することができる。この中でも、成形品として、射出成形品、フィルム、シート、熱成形品が好ましい。
 本実施形態の成形品の製造方法は、各種の成形方法に基づいて、樹脂組成物を成形する工程を含み、これにより、上記の成形品を得ることができる。
 成形方法としては、特に限定されるものではなく、射出成形法、押出成形法、ブロー成形法、回転成形、真空成形法、インフレーション成形法、カレンダー成形法、スラッシュ成形法、ディップ成形法、発泡成形法等が挙げられる。この中でも、射出成形法、押出成形法、ブロー成型法が好ましい。
 上記樹脂組成物は、建築資材、農業用資材、自動車、列車、船、航空機など乗り物用部品、包装用資材、雑貨、玩具、家電製品、医療品など種々の用途に用いることができる。具体的には、バンパー、ダッシュボード、インスツルメントパネル、バッテリーケース、ラゲッジケース、ドアパネル、ドアトリム、フェンダーライナー等の自動車部品;冷蔵庫、洗濯機、掃除機等の家電製品用樹脂部品;食器、ボトルキャップ、バケツ、入浴用品等の家庭用品;コネクター等の接続用樹脂部品;玩具、収納容器、合成紙等の雑貨品;医療用パック、注射器、カテーテル、医療用チューブ、シリンジ製剤、輸液バッグ、試薬容器、飲み薬容器、飲み薬個包装等の医療用成形品;壁材、床材、窓枠、壁紙、窓等の建材;電線被覆材;ハウス、トンネル、フラットヤーンメッシュバッグ等の農業用資材;パレット、ペール缶、バックグラインドテープ、液晶プロテクト用テープ、パイプ、シーリング材用変性シリコーンポリマー等の工業用資材;ラップ、トレイ、カップ、フィルム、ボトル、キャップ、保存容器等の食品包装材、その他3Dプリンター材料、電池用セパレータ膜等が挙げられる。さらに各種の後処理を施される場合の用途、例えば、医療用途、食品包装用途などの放射線による滅菌を施される用途、あるいは塗装性などの表面特性の改善のために、成形後、低温プラズマ処理などが施される用途などに用いることができる。この中でも、自動車部品、家庭用品、食品包装材に用いることが好ましい。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
<化合物の合成>
(化合物No.1の合成)
 ヒドロキシ-2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)ホスフェート486g(1モル)、水酸化ナトリウム40g(1モル)の水溶液およびメタノールを仕込み、室温で一時間撹拌した。減圧下に乾燥して421gの白色粉末の化合物No.1を得た。
Figure JPOXMLDOC01-appb-C000007
 得られた化合物No.1を、粉砕処理なく、メッシュサイズ:57μmの篩で篩別して粒状核剤Aを得た。
 得られた化合物No.1に対して、ボールミルで30分間粉砕し、メッシュサイズ:57μmの篩で篩別して粒状核剤Bを得た。
 得られた化合物No.1に対して、ボールミルで4時間粉砕し、さらにジェットミルで粉砕して粒状核剤Cを得た。
<粒状核剤の製造>
(試験例1)
 上記の粒状核剤Aと、上記の粒状核剤Cとを質量比:8.5/1で混合し、粒状核剤Dを得た。
(試験例2)
 上記の粒状核剤Aと、上記の粒状核剤Cとを質量比:4/1で混合し、粒状核剤Eを得た。
(試験例3)
 上記の粒状核剤Aと、上記の粒状核剤Cとを質量比:1/1で混合し、粒状核剤Fを得た。
(試験例4)
 上記の粒状核剤Bと、上記の粒状核剤Cとを質量比:1/1で混合し、粒状核剤Gを得た。
(試験例5)
 上記の粒状核剤Aと、上記の粒状核剤Cとを質量比:9/1で混合し、粒状核剤Hを得た。
(試験例6)
 上記の粒状核剤Cをそのまま使用した。
<粒度分布測定>
 得られた各試験例の粒状核剤について、以下の手順A、手順Bに従って粒子径分布を測定した。粒子径の測定には、レーザー回折式粒子径測定装置として、Microtrac MT3000II(マイクロトラック・ベル社製)を用いた。図1(a)(b)に、レーザー回折式粒子径測定装置100の測定原理の概要を示す。
・手順A(加圧処理前の粒子径分布):
 まず、得られた粒状核剤(試料)を、図1(a)に示すサンプルホルダー130にセットし、測定部150内を吸引ノズル120に吸引させた。続いて、コンプレッサ140(分散機)から供給された圧縮空気を調整し、噴射ノズル142を介して分散エアー供給部110に噴射した。このとき、分散エアー供給部110を通過する粒状核剤に対して、下記の分散圧の条件で分散エアー144を噴出して、光源160から照射されたレーザービーム170を通過するように粒状核剤152(測定対象)を測定部150内の空気中に分散させた。その後、粒状核剤152は吸引ノズル120内に吸引させた。
 測定部150内において、空気中に分散した粒状核剤152により散乱された光を、集光レンズ180を介して検出器190で測定した。その測定結果に基づいて、粒状核剤152の粒子径分布を得た(高分散型乾式測定)。
 手順Aにおいて、分散圧(試料に噴出される分散エアー144のエアー圧)を30psi(2.1kgf/cm)に設定した。また、光源として、同一波長のレーザービーム170を2本使用し、分解能を高める条件を採用した。
 得られた粒状核剤152の粒子径分布のうち、体積平均粒子径をMvA、個数平均粒子径をMnAとし、式:WA=MvA/MnAに基づいて、粒子径分布の広がりWAを算出した。結果を表1に示す。
・手順B(加圧処理後の粒子径分布):
 手順Aの測定対象とした粒状核剤に対して、図2に示す手順に基づいて加圧処理を実施した。
 まず、アルミニウム箔製のトレイ10(幅:50mm、奥行き:60mm、高さ:20mm)を準備し、トレイ10の内部に、13gの粒状核剤(試料20)を充填した。試料20上に鉛製のおもり30(質量:1.8kg、接地面積:30cm)を配置し、60g/cmの荷重を試料20に付与した状態で、40℃、相対湿度80%の恒温オーブン内に、トレイ10を24時間静置した(加圧処理)。
 続いて、トレイ10から取り出した加圧処理後の試料20を、図1(b)に示すサンプルホルダー130にセットし、測定部150内を吸引ノズル120に吸引させた。続いて、吸引ノズル120の吸引圧(負圧)によって、分散エアー供給部110から飛散した粒状核剤154(測定対象)を、光源160から照射されたレーザービーム170を通過するように空気中に分散させた。このとき、続いて、コンプレッサ140(分散機)から圧縮空気を供給しなかった。その後、粒状核剤154は吸引ノズル120内に回収された。
 測定部150内において、空気中に分散した粒状核剤154により散乱された光を、集光レンズ180を介して検出器190で測定した。その測定結果に基づいて、粒状核剤154の粒子径分布を得た(非分散型乾式測定)。
 手順Bにおいて、コンプレッサ140(分散機)を使用せず、分散圧(試料に噴出される分散エアー144のエアー圧)を0psiに設定した。また、光源として、同一波長のレーザービーム170を2本使用し、分解能を高める条件を採用した。吸引ノズル120の吸引圧は、手順Aと同一とした。
 得られた粒状核剤154の粒子径分布のうち、体積平均粒子径をMvB、個数平均粒子径をMnBとし、式:WB=MvB/MnBに基づいて、粒子径分布の広がりWBを算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008
 上記の粒子径分布の結果を踏まえ、「WA/WB」に基づいて、得られた試験例1~4の粒状核剤D~Gを、実施例1~4の粒状核剤として使用し、得られた試験例5、6の粒状核剤H、Cを、比較例1、2の粒状核剤として使用した。
 各実施例および各比較例の粒状核剤について、下記の評価項目に基づいて評価を実施した。
(圧縮度測定)
 粉体特性評価装置(セイシン企業社製、マルチテスター MT-02)を用いて、得られた粒状核剤のゆるめかさ密度(g/cm)、固めかさ密度(g/cm)を用いて測定した。得られた結果から、圧縮度(%)=[(「固めかさ密度」-「ゆるめかさ密度」)/「固めかさ密度」]×100に基づいて、圧縮度(%)を算出した。
(分散度)
 粉体特性評価装置(セイシン企業社製、マルチテスター MT-02)を用いて、得られた粒状核剤の分散度(%)を測定した。
(排出時間)
 粉体特性評価装置(セイシン企業社製、マルチテスター MT-02)を用いて、得られた粒状核剤を、粉体特性評価装置のフィーダーに10g充填し、フィーダー振動幅0.3mmの条件で振動させたときの排出時間(s)を計測した。
 上記の圧縮度、分散度、排出速度において、測定対象である粒状核剤として、下記の手順aに従って準備したサンプルa、下記の手順bに従って準備したサンプルbを使用した。圧縮度、分散度、排出速度については、手順aで準備した3つのサンプルaで測定し、3つの平均値を測定値とした。手順bで準備したサンプルbについても同様とした。
(手順a)
 作製された直後の粒状核剤を測定対象(サンプルa)とした。ただし、圧縮度を測定する場合、710μmの試験ふるいを通した粒状核剤を測定対象(サンプルa)とした。
(手順b)
 手順aの測定対象とした粒状核剤について、上記手順Bに記載の加圧処理と同様の加圧処理したものを測定対象(サンプルb)とした。
<流動特性>
 測定された圧縮度から上記手順aと手順bとの間での圧縮度変化率=|(サンプルbの圧縮度-サンプルaの圧縮度)/サンプルaの圧縮度|×100(%)を算出し、得られた加圧処理前後の圧縮度変化率を下記評価基準に基づいて評価した。結果を表3に示す。
<粉塵特性>
 測定された分散度から上記手順aと手順bとの間での分散度変化率=|(サンプルbの分散度-サンプルaの分散度)/サンプルaの分散度|×100(%)を算出し、得られた加圧処理前後の分散度変化率を下記評価基準に基づいて評価した。結果を表2に示す。
<フィード安定性>
 測定されたサンプルaの排出時間a(s)、サンプルbの排出時間b(s)のそれぞれについて、下記評価基準に基づいて評価した。結果を表2に示す。
 上記の圧縮度変化率、分散度変化率、および排出時間について、下記の評価基準に基づいて評価を行った。結果を表2に示す。
・圧縮度変化率
◎:変化率が小さく、流動性の性状変化が少なかった。
○:変化率が比較的大きいが、流動性の性状変化が実用上問題ない範囲であった。
×:変化率が大きく、流動性の性状変化が大きかった。
・分散度変化率
◎:変化率が小さく、粉塵性の性状変化が少なかった。
○:変化率が比較的大きいが、粉塵性の性状変化が実用上問題ない範囲であった。
×:変化率が大きく、粉塵性の性状変化が大きかった。
・排出時間
◎:排出時間aおよび排出時間bが小さく、フィード安定性が良好であった。
○:排出時間aは小さく、排出時間bが比較的大きいが、運転停止は生じないため、フィード安定性は実用上問題ない範囲であった。
×:排出時間aまたは排出時間bの測定中、所定時間経過後に運転停止が生じたため、フィード安定性が低下した。
Figure JPOXMLDOC01-appb-T000009
 表2中、「>30」は30秒以降排出がなく、運転が停止したことを表す。
Figure JPOXMLDOC01-appb-T000010
<透明化性>
 ポリプロピレンの100重量部に、得られた各実施例の粒状核剤の0.1重量部を混合した組成物をヘンシェルミキサーで1分間混合し、230℃、150rpmの条件で押出加工してペレットを製造した。これを200℃で射出成形して得た厚さ1mmの試験片について、JIS K7136に準じてHaze(ヘイズ値:%)を測定した。
 実施例1~4の粒状核剤は、比較例1と比べて、粉塵特性に優れており、比較例2と比べて、粉塵特性およびフィード安定性に優れることから、粉体性状変化が抑制された良好な粉体特性を示すことが分かった。したがって、包装後に長期保管された後でも、粉体特性の変化が抑制された粒状核剤を実現できる。
 また、実施例1~4の粒状核剤は、流動特性に優れており、実用上問題ない範囲でヘイズ値が小さく、結晶性高分子の透明性を向上できることから、核剤・透明化剤として好適に利用できることが分かった。
 この出願は、2018年5月18日に出願された日本出願特願2018-096303号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (10)

  1.  下記一般式(1)で表される化合物を含む粒状核剤であって、
     下記手順Aに従って測定される粒子径分布の広がりWAと、
     下記手順Bに従って測定される粒子径分布の広がりWBが、
     以下の式(I)を満たす、粒状核剤。
    0.3≦WA/WB≦13.5  ・・式(I)
    (手順A)
     レーザー回折式粒子径測定装置を用い、30psiの分散圧の分散エアーを当該粒状核剤に噴出して、空気中に分散させた当該粒状核剤を測定対象として、その粒状核剤の粒子径分布を乾式測定する。
     前記粒子径分布として、当該粒状核剤の体積平均粒子径MvA、個数平均粒子径MnAを得る。
     WA=MvA/MnAに基づいて、上記粒子径分布の広がりWAを算出する。
    (手順B)
     上記手順Aの測定対象とした当該粒状核剤について、次のように加圧処理を行う。
     加圧処理:アルミニウム箔製のトレイに当該粒状核剤を入れ、前記トレイ中の当該粒状核剤に60g/cmの荷重を加えた状態で、40℃、相対湿度80%の恒温オーブン内に、前記トレイを24時間静置する。
     続いて、レーザー回折式粒子径測定装置を用い、分散エアーを当該粒状核剤に噴出せずに、空気中に分散させた加圧処理後の当該粒状核剤を測定対象として、その粒状核剤の粒子径分布を乾式測定する。
     前記粒子径分布として、当該粒状核剤の体積平均粒子径MvB、個数平均粒子径MnBを得る。
     WB=MvB/MnBに基づいて、上記粒子径分布の広がりWBを算出する。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)中、R~Rは各々独立して、水素原子、直鎖又は分岐を有する炭素原子数1~9のアルキル基を表し、Rは水素原子又は炭素数1~4のアルキル基を表し、mは1又は2を表し、mが1の場合、Mは水素原子又はアルカリ金属原子を表し、mが2の場合、Mは、二族元素、Al(OH)又はZnを表す。)
  2.  請求項1に記載の粒状核剤であって、
     以下の式(II)を満たす、粒状核剤。
     3≦WA≦45  ・・式(II)
  3.  請求項1または2に記載の粒状核剤であって、
     前記化合物が、下記の化学式(2)から化学式(13)で表される一または二以上の化合物を含む、粒状核剤。
    Figure JPOXMLDOC01-appb-C000002
  4.  請求項1から3のいずれか1項に記載の粒状核剤を熱可塑性樹脂中に含有してなる、樹脂組成物。
  5.  請求項4に記載の樹脂組成物であって、
     前記熱可塑性樹脂が結晶性高分子を含む、樹脂組成物。
  6.  請求項5に記載の樹脂組成物であって、
     前記結晶性高分子がポリオレフィン系高分子を含む、樹脂組成物。
  7.  請求項4から6のいずれか1項に記載の樹脂組成物であって、
     前記熱可塑性樹脂100重量部に対して、前記粒状核剤の含有量が0.001重量部以上10重量部以下である、樹脂組成物。
  8.  請求項4から7のいずれか1項に記載の樹脂組成物であって、
     ペレット状である、樹脂組成物。
  9.  請求項4から8のいずれか1項に記載の樹脂組成物を用いてなる成形品。
  10.  請求項4から8のいずれか1項に記載の樹脂組成物を用いて成形品を製造する製造方法。
PCT/JP2018/037535 2018-05-18 2018-10-09 粒状核剤、樹脂組成物、成形品およびその製造方法 WO2019220658A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201880003968.6A CN110023393B (zh) 2018-05-18 2018-10-09 粒状成核剂、树脂组合物、成型品及其制造方法
EP18839511.5A EP3587485B1 (en) 2018-05-18 2018-10-09 Particulate nucleating agent, resin composition and method for manufacturing same
KR1020197011890A KR102031524B1 (ko) 2018-05-18 2018-10-09 입상 핵제, 수지 조성물, 성형품 및 그 제조 방법
RU2019110822A RU2707033C1 (ru) 2018-05-18 2018-10-09 Дисперсный зародышеобразователь, полимерная композиция, формованное изделие и способ их получения
AU2018346901A AU2018346901B2 (en) 2018-05-18 2018-10-09 Particulate nucleating agent, resin composition, molded product, and production method thereof
US16/332,158 US10882974B2 (en) 2018-05-18 2018-10-09 Particulate nucleating agent, resin composition, molded product, and production method thereof
BR112019005221A BR112019005221B1 (pt) 2018-05-18 2018-10-09 agente de nucleação em partículas, composição de resina, produto moldado, e seu processo de produção
MX2019004252A MX2019004252A (es) 2018-05-18 2018-10-09 Agente nucleante particulado, composicion de resina, producto moldeado y metodo de fabricacion de los mismos.
SA520420575A SA520420575B1 (ar) 2018-05-18 2020-11-17 عامل تنوية دقائقي وتركيبة راتنج ومنتج مقولب وطريقة لإنتاجها

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018096303A JP6397153B1 (ja) 2018-05-18 2018-05-18 粒状核剤、樹脂組成物、成形品およびその製造方法
JP2018-096303 2018-05-18

Publications (1)

Publication Number Publication Date
WO2019220658A1 true WO2019220658A1 (ja) 2019-11-21

Family

ID=63668545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037535 WO2019220658A1 (ja) 2018-05-18 2018-10-09 粒状核剤、樹脂組成物、成形品およびその製造方法

Country Status (10)

Country Link
US (1) US10882974B2 (ja)
EP (1) EP3587485B1 (ja)
JP (1) JP6397153B1 (ja)
AU (1) AU2018346901B2 (ja)
BR (1) BR112019005221B1 (ja)
MX (1) MX2019004252A (ja)
RU (1) RU2707033C1 (ja)
SA (1) SA520420575B1 (ja)
TW (1) TWI659993B (ja)
WO (1) WO2019220658A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186862A1 (ja) * 2020-03-16 2021-09-23 株式会社Adeka 粒状核剤、樹脂組成物およびその製造方法ならびに成形品
EP3753979A4 (en) * 2018-02-15 2021-10-27 Adeka Corporation GRANULAR NUCLEATING AGENT, RESIN COMPOSITION, MOLDED ARTICLE, AND PRODUCTION PROCESS
EP4079802A4 (en) * 2019-12-18 2024-01-03 Adeka Corp RESIN COMPOSITION, CORRESPONDING MOLDED ARTICLE AND METHOD FOR PRODUCING SAID RESIN COMPOSITION

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108384053A (zh) * 2018-02-13 2018-08-10 株式会社Adeka 成核剂、使用其的聚烯烃系树脂组合物及其成型品
US11634559B2 (en) * 2020-01-20 2023-04-25 Adeka Corporation Method for producing resin composition and method for producing molded article

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337148A (ja) 1986-08-01 1988-02-17 Chisso Corp 高剛性プロピレン単独重合体組成物
JPS6337152A (ja) 1986-08-01 1988-02-17 Chisso Corp 高剛性エチレン−プロピレンブロツク共重合体組成物
JPS6390552A (ja) 1986-10-06 1988-04-21 Mitsubishi Petrochem Co Ltd プロピレン系樹脂組成物
JPS63210152A (ja) 1987-02-26 1988-08-31 Chisso Corp 高剛性高溶融粘弾性プロピレン単独重合体組成物
JPS63213547A (ja) 1987-03-02 1988-09-06 Chisso Corp 高剛性高溶融粘弾性エチレン−プロピレンブロツク共重合体組成物
JPS63243152A (ja) 1987-03-31 1988-10-11 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPS63243150A (ja) 1987-03-30 1988-10-11 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPS63260944A (ja) 1987-04-20 1988-10-27 Chisso Corp ポリオレフイン組成物
JPS63260943A (ja) 1987-04-20 1988-10-27 Chisso Corp ポリオレフイン組成物
JPS63264650A (ja) 1987-04-21 1988-11-01 Chisso Corp ポリオレフイン組成物
JPH01178541A (ja) 1987-12-30 1989-07-14 Mitsubishi Petrochem Co Ltd 低溶出性の医薬液剤・輸液・輸血用器具
JPH0249047A (ja) 1988-08-11 1990-02-19 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPH02102242A (ja) 1988-10-11 1990-04-13 Chisso Corp 結晶性プロピレン重合体組成物およびそれを用いた容器
JPH02251548A (ja) 1989-03-25 1990-10-09 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPH02279746A (ja) 1989-04-20 1990-11-15 Mitsubishi Petrochem Co Ltd 結晶性プロピレン重合体組成物
JPH03195751A (ja) 1989-12-22 1991-08-27 Chisso Corp ポリプロピレン組成物
JP2001059040A (ja) * 1999-06-15 2001-03-06 Asahi Denka Kogyo Kk 造核剤
JP2003313444A (ja) * 2002-04-19 2003-11-06 Asahi Denka Kogyo Kk 粒子状結晶核剤組成物及びこれを含有してなる結晶性高分子組成物
JP2004083852A (ja) * 2002-06-24 2004-03-18 Asahi Denka Kogyo Kk 造核剤及び該造核剤を含有してなる結晶性高分子組成物
JP2005054036A (ja) * 2003-08-01 2005-03-03 Asahi Denka Kogyo Kk 結晶核剤組成物及びこれを含有してなる結晶性高分子組成物
JP2005120237A (ja) * 2003-10-16 2005-05-12 Asahi Denka Kogyo Kk 結晶核剤組成物及びこれを含有してなる結晶性高分子組成物
JP2007297465A (ja) * 2006-04-28 2007-11-15 Hiroshima Univ 高性能造核剤及び該造核剤の製造方法
JP2017149962A (ja) 2012-12-21 2017-08-31 ミリケン・アンド・カンパニーMilliken & Company 添加剤組成物およびそれを使用するための方法
JP2018096303A (ja) 2016-12-14 2018-06-21 三菱重工コンプレッサ株式会社 回転機械

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2261207T3 (es) * 1999-06-15 2006-11-16 Asahi Denka Kogyo Kabushiki Kaisha Agente de nucleacion.
US8246918B2 (en) 2008-10-21 2012-08-21 Fina Technology, Inc. Propylene polymers for lab/medical devices
US11136446B2 (en) 2013-06-20 2021-10-05 Saudi Basic Industries Corporation Nucleating composition and thermoplastic polymer composition comprising such nucleating composition
US9200144B2 (en) * 2013-09-23 2015-12-01 Milliken & Company Thermoplastic polymer composition
WO2017116767A1 (en) * 2015-12-31 2017-07-06 Milliken & Company Polyolefin composition

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337148A (ja) 1986-08-01 1988-02-17 Chisso Corp 高剛性プロピレン単独重合体組成物
JPS6337152A (ja) 1986-08-01 1988-02-17 Chisso Corp 高剛性エチレン−プロピレンブロツク共重合体組成物
JPS6390552A (ja) 1986-10-06 1988-04-21 Mitsubishi Petrochem Co Ltd プロピレン系樹脂組成物
JPS63210152A (ja) 1987-02-26 1988-08-31 Chisso Corp 高剛性高溶融粘弾性プロピレン単独重合体組成物
JPS63213547A (ja) 1987-03-02 1988-09-06 Chisso Corp 高剛性高溶融粘弾性エチレン−プロピレンブロツク共重合体組成物
JPS63243150A (ja) 1987-03-30 1988-10-11 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPS63243152A (ja) 1987-03-31 1988-10-11 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPS63260944A (ja) 1987-04-20 1988-10-27 Chisso Corp ポリオレフイン組成物
JPS63260943A (ja) 1987-04-20 1988-10-27 Chisso Corp ポリオレフイン組成物
JPS63264650A (ja) 1987-04-21 1988-11-01 Chisso Corp ポリオレフイン組成物
JPH01178541A (ja) 1987-12-30 1989-07-14 Mitsubishi Petrochem Co Ltd 低溶出性の医薬液剤・輸液・輸血用器具
JPH0249047A (ja) 1988-08-11 1990-02-19 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPH02102242A (ja) 1988-10-11 1990-04-13 Chisso Corp 結晶性プロピレン重合体組成物およびそれを用いた容器
JPH02251548A (ja) 1989-03-25 1990-10-09 Idemitsu Petrochem Co Ltd プロピレン重合体組成物
JPH02279746A (ja) 1989-04-20 1990-11-15 Mitsubishi Petrochem Co Ltd 結晶性プロピレン重合体組成物
JPH03195751A (ja) 1989-12-22 1991-08-27 Chisso Corp ポリプロピレン組成物
JP2001059040A (ja) * 1999-06-15 2001-03-06 Asahi Denka Kogyo Kk 造核剤
JP2003313444A (ja) * 2002-04-19 2003-11-06 Asahi Denka Kogyo Kk 粒子状結晶核剤組成物及びこれを含有してなる結晶性高分子組成物
JP2004083852A (ja) * 2002-06-24 2004-03-18 Asahi Denka Kogyo Kk 造核剤及び該造核剤を含有してなる結晶性高分子組成物
JP2005054036A (ja) * 2003-08-01 2005-03-03 Asahi Denka Kogyo Kk 結晶核剤組成物及びこれを含有してなる結晶性高分子組成物
JP2005120237A (ja) * 2003-10-16 2005-05-12 Asahi Denka Kogyo Kk 結晶核剤組成物及びこれを含有してなる結晶性高分子組成物
JP2007297465A (ja) * 2006-04-28 2007-11-15 Hiroshima Univ 高性能造核剤及び該造核剤の製造方法
JP2017149962A (ja) 2012-12-21 2017-08-31 ミリケン・アンド・カンパニーMilliken & Company 添加剤組成物およびそれを使用するための方法
JP2018096303A (ja) 2016-12-14 2018-06-21 三菱重工コンプレッサ株式会社 回転機械

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3753979A4 (en) * 2018-02-15 2021-10-27 Adeka Corporation GRANULAR NUCLEATING AGENT, RESIN COMPOSITION, MOLDED ARTICLE, AND PRODUCTION PROCESS
EP4079802A4 (en) * 2019-12-18 2024-01-03 Adeka Corp RESIN COMPOSITION, CORRESPONDING MOLDED ARTICLE AND METHOD FOR PRODUCING SAID RESIN COMPOSITION
WO2021186862A1 (ja) * 2020-03-16 2021-09-23 株式会社Adeka 粒状核剤、樹脂組成物およびその製造方法ならびに成形品
TWI741936B (zh) * 2020-03-16 2021-10-01 日商Adeka股份有限公司 粒狀成核劑、樹脂組成物及其製造方法以及成形品
US11795296B2 (en) 2020-03-16 2023-10-24 Adeka Corporation Particulate nucleating agent, resin composition, production method thereof, and molded product

Also Published As

Publication number Publication date
AU2018346901A1 (en) 2019-12-05
EP3587485B1 (en) 2021-04-14
JP2019199577A (ja) 2019-11-21
US10882974B2 (en) 2021-01-05
TWI659993B (zh) 2019-05-21
SA520420575B1 (ar) 2023-02-19
JP6397153B1 (ja) 2018-09-26
TW202003660A (zh) 2020-01-16
US20200239664A1 (en) 2020-07-30
AU2018346901B2 (en) 2020-03-12
BR112019005221B1 (pt) 2020-04-28
EP3587485A4 (en) 2020-05-06
BR112019005221A2 (pt) 2019-12-31
EP3587485A1 (en) 2020-01-01
RU2707033C1 (ru) 2019-11-21
MX2019004252A (es) 2020-02-05

Similar Documents

Publication Publication Date Title
JP6397153B1 (ja) 粒状核剤、樹脂組成物、成形品およびその製造方法
JP6423982B1 (ja) 粒状核剤、樹脂組成物、成形品およびその製造方法
KR102031524B1 (ko) 입상 핵제, 수지 조성물, 성형품 및 그 제조 방법
KR102472825B1 (ko) 입상 핵제, 수지 조성물 및 그의 제조 방법 및 성형품
JP6767600B2 (ja) 粒状核剤、樹脂組成物、成形品およびその製造方法
JP2019199460A (ja) 粒状核剤、樹脂組成物、成形品およびその製造方法
JP2022173217A (ja) 樹脂組成物の製造方法、および成形品の製造方法
RU2793134C1 (ru) Дисперсный зародыш кристаллизации, полимерная композиция, способ ее получения и формованное изделие
JP2020007521A (ja) 粒状核剤、樹脂組成物、成形品およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018839511

Country of ref document: EP

Effective date: 20190207

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019005221

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018346901

Country of ref document: AU

Date of ref document: 20181009

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019005221

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190318

NENP Non-entry into the national phase

Ref country code: DE