WO2021103633A1 - 一种用于规则的长条形物料的送料切割一体设备 - Google Patents
一种用于规则的长条形物料的送料切割一体设备 Download PDFInfo
- Publication number
- WO2021103633A1 WO2021103633A1 PCT/CN2020/106194 CN2020106194W WO2021103633A1 WO 2021103633 A1 WO2021103633 A1 WO 2021103633A1 CN 2020106194 W CN2020106194 W CN 2020106194W WO 2021103633 A1 WO2021103633 A1 WO 2021103633A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conveying
- module
- feeding
- cutting
- clamping
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B27/00—Other grinding machines or devices
- B24B27/06—Grinders for cutting-off
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B27/00—Other grinding machines or devices
- B24B27/06—Grinders for cutting-off
- B24B27/0683—Accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B41/00—Component parts such as frames, beds, carriages, headstocks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B41/00—Component parts such as frames, beds, carriages, headstocks
- B24B41/005—Feeding or manipulating devices specially adapted to grinding machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B41/00—Component parts such as frames, beds, carriages, headstocks
- B24B41/06—Work supports, e.g. adjustable steadies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Definitions
- the invention relates to long strip material processing equipment, in particular to an integrated equipment for feeding and cutting regular long strip materials.
- the long-shaped materials such as pipes such as round tubes
- the pipes are generally manually placed one by one in a specific position on the processing machinery and equipment, and one at a time After the pipe material, the second pipe material can be put in after the processing is completed, which will greatly waste manpower and material resources, high production cost, and it is difficult to obtain high production efficiency.
- the purpose of the present invention is to overcome the above-mentioned problems and provide an integrated feeding and cutting equipment for regular long strip materials.
- the integrated feeding and cutting equipment can realize fully automatic feeding, conveying, cutting and unloading operations, reducing Manual labor intensity can effectively improve production efficiency.
- An integrated device for feeding and cutting regular long strip materials It includes a loading module for sending out stacked materials, an intermediate conveying module for conveying the materials sent by the loading module, and The cutting module for cutting the material and the unloading module for conveying the cut material downward, the loading module is arranged on one side of the conveying channel of the middle conveying module, along the conveying direction perpendicular to the middle conveying module Send the material to the conveying channel of the intermediate conveying module in the direction; the intermediate conveying module pushes the material to the cutting module along the extending direction of the material;
- the loading module includes a storage belt for storing materials and a feeding driving mechanism for driving and changing the posture of the storage belt, and one end of the storage belt near the intermediate conveying module bypasses the first supporting point. After being fixed on the frame, the other end is fixedly connected with the feeding drive mechanism after bypassing the second supporting point.
- the position of the second supporting point is higher than that of the first supporting point, and the material is placed in
- the storage belt is located on the storage part between the first support point and the second support point;
- the loading drive mechanism includes a loading drive motor and at least two auxiliary drive swing arms, the bottom of the auxiliary drive swing arm The end is hinged on the frame, and the top end is fixedly connected to the storage belt;
- the feeding drive motor is connected to the hinge shaft at the bottom end of the auxiliary drive swing arm through a rotating connection structure;
- the intermediate conveying module includes a pushing mechanism and a conveying channel.
- the material slides down onto the conveying channel after passing the first supporting point.
- the pushing mechanism acts on the end of the material away from the cutting module and pushes it into the cutting module;
- the cutting module includes a cutting machine and a clamping mechanism.
- the clamping mechanism includes a fixed clamping mechanism for clamping the material for stable cutting by the cutting machine and a fixed length for conveying the material under the grinding wheel of the cutting machine
- the fixed clamping mechanism is located in front of the dynamic clamping mechanism along the material conveying direction; both the fixed clamping mechanism and the dynamic clamping mechanism are provided with clamps located on the same line as the conveying channel Tight groove
- a downwardly inclined intermediate material passage is provided between the blanking module and the cutting module, and the material falls into the intermediate material passage after being cut by the cutting machine;
- the blanking module includes a blanking channel and a material conveying
- the ejection mechanism and the discharging channel are respectively arranged on both sides of the blanking conveying mechanism, and the discharging mechanism pushes the material on the blanking conveying mechanism to the next station along a direction perpendicular to the material.
- the staff When working, the staff first store the materials (materials with regular sides, such as round tubes or polygonal prism tubes, etc.) on the storage belt, and then the feeding drive motor drives the auxiliary drive swing arm away from the middle conveying module , So that the auxiliary drive swing arm swings outwards around the hinged shaft, thereby pulling the storage belt to extend beyond the second support point, where, as the storage belt stretches out, the storage section gradually lifts upward and is stacked on the storage belt
- the material on the upper side also rises; when the height of the material rises above the first supporting point, the material will slide (roll) across the first supporting point in the direction of the middle conveying module until it moves into the conveying channel in the middle conveying module .
- the pushing mechanism is placed on the end of the material away from the cutting module and pushes toward the cutting module so that the front end of the material passes through the clamping grooves on the movable clamping mechanism and the fixed clamping mechanism successively; then the movable clamping mechanism Clamp the material and move to the direction of the fixed clamping mechanism, so that the front end of the material continues to move relative to the clamping groove of the fixed clamping mechanism until the length of the material extending outside reaches the predetermined length.
- the cutting machine drives the high-speed rotating grinding wheel close to the material, so that the grinding wheel cuts the material; the cut and separated small pieces of material fall into the intermediate material passage, and then slide down from the downwardly inclined intermediate material passage to the unloading conveying mechanism ,
- the separated materials are transported forward by the feeding and conveying mechanism.
- the ejection mechanism pushes the material on the feeding mechanism along the direction perpendicular to the material, so that the material is transferred to the next station through the feeding channel.
- the movable clamping mechanism continues to clamp the material and push forward, repeating the above-mentioned cutting and blanking process. Repeat the above process until all the materials on the storage belt of this round have been processed.
- the storage part gradually straightens from an arc to a straight shape.
- the storage between the first support point and the second support point The material part is stretched to a straight line, and the auxiliary drive swing arm swings outward to the farthest point, and its top rotates to the lowest position, thereby avoiding the placing mechanism, which can reduce the height of the placing, which greatly facilitates the next round of placing the material to the storage belt on.
- the gravity of the material directly acts on the storage section of the storage belt, prompting the storage section to move toward The sagging causes the storage belt to recycle inward, thereby exerting a resetting force on the auxiliary drive swing arm, which can effectively reduce the resetting driving force of the feeding drive motor.
- the feeding drive motor only needs to provide part of the driving force. Conducive to saving power.
- the loading drive motor drives the auxiliary drive swing arm to swing outward to lift the material
- the auxiliary drive swing arm rotates outwards and downwards from a vertical or close to vertical state, and its own center of gravity gradually changes, so that the auxiliary drive swing arm can be moved.
- the own gravity is converted into the driving force used to drive the storage belt, which can also reduce the power output of the feeding driving motor, thereby saving electric energy.
- adjusting the gravity of the auxiliary transmission swing arm can completely realize the lifting of the material or the resetting of the auxiliary transmission swing arm without the help of external force.
- the second support point is the connection point between the auxiliary drive swing arm and the storage belt
- the first support point is the connection point between the frame and the storage belt.
- the frame is provided with at least two support columns arranged along the arrangement direction of the auxiliary transmission swing arm at one end of the frame close to the auxiliary transmission swing arm, and the upper end of the support column is transversely provided with a support
- the storage belt is fixedly connected to the auxiliary transmission swing arm after passing over the supporting rod; the part where the supporting rod contacts the storage belt constitutes the second supporting point.
- multiple sets of single-row height-limiting mechanisms for restricting the passage of single-row materials are provided between the first support point and the conveying channel, and the single-row height-limiting mechanism includes an upper limit plate and a lower limit plate , Between the upper limit plate and the lower limit plate is provided a height limit channel that slopes downward from the first support point to the conveying channel.
- the end of the height-limiting channel is provided with a limiting boss protruding in the channel, and one side of the limiting boss is provided with a jacking mechanism, the jacking mechanism including a jacking member and a jacking drive mechanism.
- the jacking mechanism including a jacking member and a jacking drive mechanism.
- the jacking drive mechanism drives the jacking piece out of the limit channel and reaches the conveying channel. This can be done one by one. Complete the conveying work to prevent multiple materials from entering the conveying channel at the same time.
- the jacking drive mechanism is composed of a jacking drive cylinder, and the jacking member is vertically fixed on a telescopic rod of the jacking drive cylinder.
- the intermediate conveying module further includes at least two sets of supporting sliding mechanisms, the supporting sliding mechanism includes two rotatably arranged pulleys, the two pulleys are symmetrically inclined and arranged in a V-shaped structure, and the supporting The V-shaped structure of the sliding mechanism is arranged in a straight line to jointly form the conveying channel; when the material of the pushing mechanism is pushed, the pulley can be slidingly supported, which greatly reduces the friction of the material movement.
- the push mechanism includes a push arm and a push drive mechanism, the push drive mechanism includes a push drive motor and a push drive assembly, and the push drive assembly includes a timing belt assembly and a screw drive assembly;
- the screw drive assembly includes a screw rod and a screw nut, the screw rod is arranged in parallel on one side of the conveying channel, and both ends are rotatably connected to the frame; the push arm is fixedly connected to the screw nut;
- the timing belt assembly includes a driving pulley, a driven pulley, and a timing belt surrounding the driving pulley and the driven pulley.
- the driving pulley is arranged on the output shaft of the pushing drive motor.
- the wheel is fixedly provided with one end of the screw rod.
- a transverse guide structure is provided between the screw nut and the frame, and the transverse guide structure includes a guide rail and a sliding block.
- the dynamic clamping mechanism includes a dynamic clamping assembly and a transverse drive mechanism for driving the clamping assembly to move closer to or away from the fixed clamping mechanism
- the dynamic clamping assembly includes a first mounting frame , A first clamping plate and a first clamping driving member, the top surface of the first mounting frame is provided with a V-shaped clamping groove, and the first clamping driving member drives the first clamping plate to approach or move away from the clamping groove.
- the first clamping plate is connected to the driving end of the first clamping driving member through the first guide column downward through the first mounting frame.
- the lateral drive mechanism includes a lateral drive motor and a lateral drive assembly
- the lateral drive assembly is a screw drive assembly
- a nut of the screw drive assembly is fixedly connected to the mounting frame.
- the fixed clamping mechanism includes a fixed clamping assembly
- the fixed clamping assembly includes a second mounting frame, a second clamping plate, and a second clamping drive member
- the top of the second mounting frame The surface is also provided with a V-shaped clamping groove
- the second clamping driving member drives the second clamping plate to approach or move away from the clamping groove.
- the first clamping driving member and the second clamping driving member are both driving hydraulic cylinders
- the first guide post and the second guide post are connected to the telescopic rod of the driving hydraulic cylinder.
- the fixed clamping components are in two groups, and they are arranged in a straight line in front of the conveying channel.
- the blanking conveying mechanism includes a conveyor belt and a blanking drive motor, and a baffle for blocking the cut flow is provided above the upper surface of the conveyor belt.
- the ejection mechanism includes a push plate and an ejection drive member, the push plate is connected to the drive end of the ejection drive member, and the drive defense line of the ejection drive member and the conveyance of the unloading conveying mechanism The direction is vertical.
- the pushing-out driving member may be a driving air cylinder, and the push plate can be fixed on the telescopic rod of the driving air cylinder.
- the blanking channel is composed of two blanking plates arranged obliquely, and the two blanking plates can move relative to each other to change the width of the blanking channel.
- the present invention has the following beneficial effects:
- the feeding and cutting integrated equipment in the present invention can realize fully automatic feeding, conveying, cutting and unloading operations, reduce manual labor intensity, and effectively improve production efficiency.
- the feeding drive motor drives the auxiliary drive swing arm to swing outward to lift the material, that is, the auxiliary drive swing arm rotates from a vertical state or close to a vertical state, and its own center of gravity gradually changes. Therefore, the gravity of the auxiliary drive swing arm can be converted into the driving force for driving the storage belt, which can also reduce the power output of the feeding drive motor, reduce the load of the feeding drive motor, and save electric energy.
- the gravity of the material directly acts on the storage section of the storage belt, prompting the storage section to move toward The sagging causes the storage belt to recycle inward, thereby exerting a resetting force on the auxiliary drive swing arm, which can effectively reduce the resetting driving force of the feeding drive motor.
- the feeding drive motor only needs to provide part of the driving force. Conducive to saving power.
- adjusting the gravity of the auxiliary drive swing arm can completely realize the lifting of materials or the resetting of the auxiliary drive swing arm without the help of external force.
- Figures 1-2 are three-dimensional schematic diagrams of two different perspectives of one embodiment of the integrated device for feeding and cutting long strip materials in the present invention.
- Fig. 3 is a schematic diagram of the three-dimensional structure of the loading module and the intermediate conveying module in the present invention.
- Figure 4-6 is the side view of the loading module and the intermediate conveying module in the present invention, where Figure 4 is the side view when preparing for loading, Figure 5 is the side view of the storage belt lifting upwards, and Figure 6 is the side view of the material from Side view of the transfer out on the storage belt.
- Fig. 7 is a partial view of the intermediate conveying module in the present invention.
- FIG. 8 is a schematic diagram of the three-dimensional structure of the cutting module in the present invention.
- Figures 9-11 are side views of the cutting module in the present invention, wherein Figure 9-10 is a side view of the material being transported forward, and Figure 11 is a side view of the cutting machine cutting the material.
- Fig. 12 is a schematic diagram of the three-dimensional structure of the blanking module in the present invention.
- Figure 13 is a side view of another embodiment of the loading module and the intermediate conveying module in the present invention.
- the integrated feeding and cutting equipment for regular long strip materials in this embodiment includes a loading module for sending stacked materials a, and materials used for sending out the loading module a: an intermediate conveying module for conveying, a cutting module for cutting material a, and a blanking module for conveying the cut material a downwards; the loading module is arranged on one of the conveying channels of the intermediate conveying module Side, the material a is sent to the conveying channel of the intermediate conveying module along a direction perpendicular to the conveying direction of the intermediate conveying module; the intermediate conveying module pushes the material a to the cutting module along the extending direction of the material a.
- the loading module includes a storage belt 1 for storing material a and a loading drive mechanism for driving and changing the posture of the storage belt 1.
- the storage belt 1 is close to the intermediate conveying module
- One end of the second supporting point b is fixed on the frame 2 after bypassing the second supporting point c, and the other end is fixedly connected to the feeding driving mechanism after bypassing the second supporting point c.
- the second supporting point c is located higher than the first The position of the supporting point b, the material a is placed on the storage part of the storage belt 1 between the first supporting point b and the second supporting point c;
- the feeding driving mechanism includes a feeding driving motor 3 and at least two auxiliary transmission swing arms 4 (the number of auxiliary transmission swing arms 4 in this embodiment is three, of course, it can also be two, four or more), the bottom end of the auxiliary transmission swing arm 4 is hinged on On the frame 2, the top end is fixedly connected to the storage belt 1; the feeding drive motor 3 is connected to the hinged shaft at the bottom end of the auxiliary drive swing arm 4 through a rotating connection structure.
- the rotating connection structure can be a synchronous gear structure or a synchronous With structure.
- the intermediate conveying module includes a pushing mechanism and a conveying channel.
- the material a slides down onto the conveying channel after passing the first support point b.
- the pushing mechanism acts on the end of the material a away from the cutting module. And push it into the cutting module.
- the cutting module includes a cutting machine 5 and a clamping mechanism.
- the clamping mechanism includes a fixed clamping mechanism 7 for clamping the material a so that the cutting machine 5 performs stable cutting and a fixed clamping mechanism 7 for stable cutting.
- the fixed clamping mechanism 7 is located in front of the dynamic clamping mechanism 6 along the direction of conveying the material a to the movable clamping mechanism 6 under the grinding wheel of the cutting machine 5; the fixed clamping mechanism 7 and
- the movable clamping mechanism 6 is provided with clamping grooves located on the same straight line as the conveying channel.
- a downwardly inclined intermediate material passage 8 is provided between the unloading module and the cutting module, and the material a falls into the intermediate material passage 8 after being cut by the cutting machine 5;
- the material module includes a blanking channel 9, a blanking conveying mechanism, and an ejecting mechanism.
- the pushing mechanism and the blanking channel 9 are respectively arranged on both sides of the blanking conveying mechanism, and the ejecting mechanism discharges the material along a direction perpendicular to the material a. The material a on the conveying mechanism is pushed to the next station.
- one end of the frame 2 close to the auxiliary drive swing arm 4 is provided with support uprights 10 arranged along the arrangement direction of the auxiliary drive swing arms 4, and the number of the support uprights 10 is the same as the number of the auxiliary drive swing arms 4
- the upper end of the support rod 11 is set across the support rod 11, and the storage belt 1 is fixedly connected to the auxiliary transmission swing arm 4 after crossing the support rod 11; the contact part of the support rod 11 and the storage belt 1 constitutes the Mentioned second support point c.
- the supporting rod 11 is one, which penetrates through a plurality of supporting uprights 10 at the same time. By setting the supporting rod 11, the position of the second supporting point c is fixed, so as to ensure that the material storage belt 1 lifts the material a relatively stably, and the length of the auxiliary transmission swing arm 4 can be shortened.
- the single-row height-limiting mechanisms in this embodiment are three groups, Of course, it can also be two groups, four groups or even more
- the single-row height limiting mechanism includes an upper limit plate 12 and a lower limit plate 13, and the upper limit plate 12 and the lower limit plate 13 are provided between the upper limit plate 12 and the lower limit plate 13 for conveying from the first supporting point b
- the end of the height-limiting channel 14 is provided with a limiting boss 15 protruding in the channel, and one side of the limiting boss 15 is provided with a lifting mechanism, which includes a lifting member 16 and Lifting drive mechanism.
- a lifting mechanism which includes a lifting member 16 and Lifting drive mechanism.
- the jacking driving mechanism is composed of a jacking driving cylinder 17, and the jacking member 16 is vertically fixed on a telescopic rod of the jacking driving cylinder 17.
- the jacking drive mechanism can also be constituted by other drive mechanisms that can achieve vertical drive.
- the intermediate conveying module also includes at least two groups of supporting sliding mechanisms (the supporting sliding mechanisms in this embodiment are three groups, of course, there can also be two, four or more groups), the supporting sliding mechanisms It includes two rotatably arranged pulleys 18, the two pulleys 18 are symmetrically inclined and arranged in a V-shaped structure.
- the V-shaped structures of the supporting sliding mechanism are arranged in a straight line to form the conveying channel; when the material a of the pushing mechanism is pushed , The pulley 18 can carry out sliding support, which greatly reduces the frictional force of the movement of the material a.
- the push mechanism includes a push arm 20 and a push drive mechanism
- the push drive mechanism includes a push drive motor 21 and a push drive assembly
- the push drive assembly includes a timing belt assembly and a screw drive assembly
- the screw drive assembly includes a screw rod and a screw nut, the screw rod is arranged in parallel on one side of the conveying channel, and both ends are rotatably connected to the frame 2;
- the push arm 20 is fixedly connected to the screw nut;
- the timing belt assembly includes a driving pulley, a driven pulley, and a timing belt surrounding the driving pulley and the driven pulley.
- the driving pulley is arranged on the output shaft of the pushing drive motor 21, and the driven belt
- the wheel is fixedly provided with one end of the screw rod.
- the pushing transmission assembly can also be composed of a rack and pinion structure.
- a transverse guide structure is provided between the screw nut and the frame 2, and the transverse guide structure includes a guide rail and a sliding block.
- the dynamic clamping mechanism 6 includes a dynamic clamping assembly and a transverse drive mechanism for driving the clamping assembly close to or away from the fixed clamping mechanism 7.
- the dynamic clamping assembly includes a first mounting frame 6 -1.
- the first clamping plate 6-2 and the first clamping driving member 6-3, the top surface of the first mounting frame 6-1 is provided with a V-shaped clamping groove, and the first clamping driving member 6 -3 Drive the first clamping plate 6-2 close to or away from the clamping groove.
- first clamping plate 6-2 is connected to the driving end of the first clamping driving member 6-3 through the first mounting frame 6-1 through the first guide post.
- the lateral drive mechanism includes a lateral drive motor 22 and a lateral drive assembly.
- the lateral drive assembly is a screw drive assembly, and the nut of the screw drive assembly is fixedly connected to the mounting frame.
- the transverse transmission assembly can also be composed of a rack and pinion structure.
- the fixed clamping components are in two groups and are arranged in a straight line in front of the conveying channel;
- the fixed clamping mechanism 7 includes a fixed clamping component, and the fixed clamping component includes a second mounting frame 7-1 ,
- the second clamping plate 7-2 and the second clamping driving member 7-3, the top surface of the second mounting frame 7-1 is also provided with a V-shaped clamping groove, the second clamping driving member 7- 3 Drive the second clamping plate 7-2 close to or away from the clamping groove.
- first clamping driving member 6-3 and the second clamping driving member 7-3 are both driving hydraulic cylinders, and the first guiding column and the second guiding column are connected to the telescopic rod of the driving hydraulic cylinder.
- it can also be constituted by a drive cylinder.
- the feeding and conveying mechanism includes a conveyor belt 23 and a feeding drive motor 24, and the upper surface of the conveyor belt 23 is provided with a device for blocking the flow after cutting. Baffle 25.
- the ejection mechanism includes a push plate 26 and an ejection drive member 27, the push plate 26 is connected to the drive end of the ejection drive member 27, the drive defense line of the ejection drive member 27 and the conveying of the unloading conveying mechanism
- the direction is vertical.
- the pushing-out driving member 27 may be a driving air cylinder, and the push plate 26 can be fixed on the telescopic rod of the driving air cylinder.
- the blanking channel 9 is composed of two blanking plates 28 arranged obliquely, and the two blanking plates 28 can move relative to each other to change the width of the blanking channel 9.
- the staff When working, the staff first stores the material a (such as round pipes, etc.) on the storage belt 1, and the loading drive motor 3 drives the auxiliary drive swing arm 4 in a direction away from the intermediate conveying module, so that the auxiliary drive swing arm 4 Swing outwards around the hinged shaft, thereby pulling the storage belt 1 to extend beyond the second support point c. As the storage belt 1 is stretched outward, the storage part gradually rises upward, and the storage belt 1 is stacked on the storage belt 1.
- material a such as round pipes, etc.
- Material a also rises, as shown in Figure 4-5; when the height of material a rises above the first support point b, material a will cross the first support point b and slide (roll) in the direction of the middle conveying module until it moves To the conveying channel in the intermediate conveying module, as shown in Figure 6.
- the pushing mechanism is pushed against the end of the material a away from the cutting module, and pushes toward the cutting module, so that the front end of the material a passes through the clamping grooves on the movable clamping mechanism 6 and the fixed clamping mechanism 7 successively;
- the movable clamping mechanism 6 clamps the material a and moves in the direction of the fixed clamping mechanism 7, so that when the front end of the material a continues to move relative to the clamping groove of the fixed clamping mechanism 7, until the length of the material a extends outside Reach the predetermined length, as shown in Figure 9-11.
- the cutting machine 5 drives the high-speed rotating grinding wheel close to the material a, so that the grinding wheel cuts the material a; the cut and separated small pieces of material a fall into the intermediate material passage 8, and then slide down from the downwardly inclined intermediate material passage 8
- the separated material a is conveyed forward by the unloading conveying mechanism.
- the ejection mechanism pushes the material a on the feeding conveying mechanism along a direction perpendicular to the material a, so that the material a is transferred to the next station through the feeding channel 9.
- the movable clamping mechanism 6 continues to clamp the material a and push forward, repeating the above-mentioned cutting and blanking process. Repeat the above process until all the materials a on the material storage belt 1 of this round have been processed.
- the storage part gradually straightens from an arc to a linear shape.
- the first support point b and the second support The storage part between point c is stretched to a straight line, and the auxiliary drive swing arm 4 swings outward to the farthest point, and its top end rotates to the lowest position, thereby avoiding the placing mechanism, which can reduce the height of the placing, which greatly facilitates the next step.
- the wheel material a is put on the storage belt 1.
- the loading drive motor 3 drives the auxiliary drive swing arm 4 to swing outward to lift the material a
- the auxiliary drive swing arm 4 rotates outwards and downwards from a vertical state or a nearly vertical state, and its own center of gravity gradually changes, so that the The gravity of the auxiliary drive swing arm 4 itself is converted into a driving force for driving the storage belt 1, so that the power output of the feeding driving motor 3 can also be reduced, thereby saving electric energy.
- adjusting the gravity of the auxiliary transmission swing arm 4 can completely realize the lifting of the material a or the resetting of the auxiliary transmission swing arm 4 without resorting to external force.
- the difference from Embodiment 1 is that the second supporting point c in this embodiment is the connection point between the auxiliary drive swing arm 4 and the storage belt 1, and the first supporting point b is the frame 2 and the storage belt.
- the connection point of strip 1. In this way, the two ends of the storage belt 1 are directly fixed between the frame 2 and the top end of the auxiliary drive swing arm 4, and the structure is simple.
- Embodiment 1 The difference from Embodiment 1 is that there are multiple support rods 11, which are the same as the number of support posts 10. In this embodiment, the support rods 11 are three separately arranged.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sawing (AREA)
Abstract
Description
Claims (10)
- 一种用于规则的长条形物料的送料切割一体设备,其特征在于,包括用于将堆放的物料发送出去的上料模块、用于将上料模块发送出来的物料进行输送的中间输送模块、用于对物料进行切割的切割模块和用于将切割好的物料往下传送的下料模块,所述上料模块设置在中间输送模块的输送通道的一侧,沿着与中间输送模块的输送方向垂直的方向将物料发送至中间输送模块的输送通道上;所述中间输送模块沿着物料的延伸方向将物料推送至切割模块处;其中,所述上料模块包括用于储放物料的储料带和用于驱动改变储料带的姿态的上料驱动机构,所述储料带靠近中间输送模块的一端绕过第一支撑点后固定在机架上,另一端绕过第二支撑点后与上料驱动机构固定连接,所述第二支撑点所处的位置高于第一支撑点所处的位置,所述物料放置在储料带的位于第一支撑点和第二支撑点之间的储料部上;所述上料驱动机构包括上料驱动电机和至少两个辅助传动摆臂,所述辅助传动摆臂的底端铰接在机架上,顶端与所述储料带固定连接;所述上料驱动电机通过转动连接结构与辅助传动摆臂底端的铰接轴连接;所述中间输送模块包括推送机构和输送通道,所述物料越过第一支撑点后,滑落至输送通道上,所述推送机构作用在物料远离切割模块的一端,并将其进行推送切割模块中;所述切割模块包括切割机和夹紧机构,所述夹紧机构包括用于对物料进行夹紧以便切割机进行稳定切割的定夹紧机构和用于定长将物料输送至切割机的砂轮下方的动夹紧机构,沿着物料输送的方向,所述定夹紧机构位于动夹紧机构之前;所述定夹紧机构和动夹紧机构上均设有与输送通道位于同一直线上的夹紧槽;所述下料模块与切割模块之间设有往下倾斜的中间过料通道,所述物料经过切割机切割后落到中间过料通道中;所述下料模块包括下料通道、下料输送机构和推出机构,所述推出机构和下料通道分别设置在下料输送机构的两侧,所述推出机构沿着与物料垂直的方向将下料输送机构上的物料推送至下一个工位。
- 根据权利要求2所述的用于规则的长条形物料的送料切割一体设备,其特征在于,所述机架靠近辅助传动摆臂的一端设有至少两个沿着辅助传动摆臂的排列方向排列的支撑立柱,所述支撑立柱的上端横穿设置有支撑杆,所述储料带越过支撑杆后固定连接在辅助传动摆臂上;所述支撑杆与储料带接触的部位构成所述第二支撑点。
- 根据权利要求1所述的用于规则的长条形物料的送料切割一体设备,其特征在于,所述第一支撑点与输送通道之间设有多组用于限制单排物料通过的单排限高机构,该单排限高机构包括上限板和下限板,所述上限板和下限板之间设有自第一支撑点往输送通道往下倾斜的限高通道。
- 根据权利要求3所述的用于规则的长条形物料的送料切割一体设备,其特征在于,所述限高通道的末端设有凸起在通道中的限位凸台,所述限位凸台的一侧设有顶升机构,该顶升机构包括顶升件和顶升驱动机构。
- 根据权利要求1所述的用于规则的长条形物料的送料切割一体设备,其特征在于,所述中间输送模块还包括至少两组支承滑动机构,所述支承滑动机构包括两个转动设置的滑轮,两个滑轮对称倾斜设置为V形结构,所述支承滑动机构的V形结构直线排列,共同构成所述输送通道;所述推送机构地物料进行推送时,滑轮进行滑动支撑。
- 根据权利要求1-5任一项所述的用于规则的长条形物料的送料切割一体设备,其特征在于,所述推送机构包括推送臂和推送驱动机构,所述推送驱动机构包括推送驱动电机和推送传动组件,所述推送传动组件包括同步带组件和丝杆传动组件;所述丝杆传动组件包括丝杆和丝杆螺母,所述丝杆平行设置在输送通道的一侧,两端转动连接在机架上;所述推送臂固定连接在丝杆螺母上;所述同步带组件包括主动带轮、从动带轮以及环绕在主动带轮和从动带轮上的同步带,所述主动带轮设置在推送驱动电机的输出轴上,所述从动带轮固定设置丝杆的一端。
- 根据权利要求1-5任一项所述的用于规则的长条形物料的送料切割一体设备,其特征在于,所述动夹紧机构包括动夹紧组件以及用于驱动夹紧组件靠近或远离定夹紧机构的横向驱动机构,所述动夹紧组件包括第一安装架、第一夹板以及第一夹紧驱动件,所述第一安装架的顶部表面设有V形的夹紧槽,所述第一夹紧驱动件驱动第一夹板靠近或远离夹紧槽;所述第一夹板通过第一导向柱往下穿过第一安装架连接在第一夹紧驱动件的驱动端上。
- 根据权利要求1-5任一项所述的用于规则的长条形物料的送料切割一体设备,其特征在于,所述定夹紧机构包括定夹紧组件,该定夹组件包括第二安装架、第二夹板以及第二夹紧驱动件,所述第二安装架的顶部表面也设有V形的夹紧槽,所述第二夹紧驱动件驱动第二夹板靠近或远离夹紧槽。
- 根据权利要求1-5任一项所述的用于规则的长条形物料的送料切割一体设备,其特征在于,所述下料输送机构包括输送带和下料驱动电机,所述输送带的上表面上方设有用于对切割后的物流进行阻挡的挡板。
- 根据权利要求1-5任一项所述的用于规则的长条形物料的送料切割一体设备,其特征在于,所述下料通道由两个倾斜设置的下料板构成,两个下料板可相对彼此移动,改变下料通道的宽度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2020389903A AU2020389903B2 (en) | 2019-11-28 | 2020-07-31 | Integrated feeding and cutting device for regular long strip-shaped materials |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911199164.0 | 2019-11-28 | ||
CN201911199164.0A CN110936277B (zh) | 2019-11-28 | 2019-11-28 | 一种用于规则的长条形物料的送料切割一体设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021103633A1 true WO2021103633A1 (zh) | 2021-06-03 |
Family
ID=69909278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/106194 WO2021103633A1 (zh) | 2019-11-28 | 2020-07-31 | 一种用于规则的长条形物料的送料切割一体设备 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN110936277B (zh) |
AU (1) | AU2020389903B2 (zh) |
WO (1) | WO2021103633A1 (zh) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113290112A (zh) * | 2021-07-01 | 2021-08-24 | 北京吉盛机电设备有限公司 | 一种风阀叶片轴的全自动下料加工设备 |
CN113458836A (zh) * | 2021-06-29 | 2021-10-01 | 东莞盛翔精密金属有限公司 | 多方向加工落料设备 |
CN113600684A (zh) * | 2021-09-09 | 2021-11-05 | 佛山市莱诺自动化设备有限公司 | 开料管端弯管一体加工设备 |
CN113732647A (zh) * | 2021-09-13 | 2021-12-03 | 深圳市伊欧乐科技有限公司 | 一种脚垫安装装置 |
CN113753559A (zh) * | 2021-09-30 | 2021-12-07 | 广州大学 | 一种沙柳苗的运输装置 |
CN113787384A (zh) * | 2021-09-23 | 2021-12-14 | 怀化市恒裕竹木开发有限公司 | 一种具有自动上料机构的开刃设备 |
CN113991946A (zh) * | 2021-11-22 | 2022-01-28 | 广州城市理工学院 | 一种电机转子芯夹具自动安装设备 |
CN114043234A (zh) * | 2021-12-01 | 2022-02-15 | 云南善硕建筑安装工程有限公司 | 一种集成管道下料、套丝及管件装配全自动一体组装装置 |
CN114042988A (zh) * | 2021-10-31 | 2022-02-15 | 朱福生 | 一种管道安装用金属钢管口切平设备 |
CN114055549A (zh) * | 2021-11-22 | 2022-02-18 | 邬亨山 | 一种便于自动上下料的纸管横切机 |
CN114083147A (zh) * | 2021-11-01 | 2022-02-25 | 佛山汇百盛激光科技有限公司 | 一种自动定位送料切割机 |
CN114194727A (zh) * | 2022-01-10 | 2022-03-18 | 广州容联建筑科技有限公司 | 一种u型钢筋柔性装夹设备 |
CN114290118A (zh) * | 2021-11-30 | 2022-04-08 | 凯德自控武汉智能装备有限公司 | 一种上料装置 |
CN114289612A (zh) * | 2022-01-10 | 2022-04-08 | 赣州基盛精密机械有限公司 | 一种汽车螺栓簧片生产用矫形设备 |
CN114309830A (zh) * | 2021-12-22 | 2022-04-12 | 禤带珍 | 一种高端装备制造用金属杆双头攻丝设备 |
CN114407409A (zh) * | 2022-01-19 | 2022-04-29 | 浙江中禾机械有限公司 | 一种千张循环压制机 |
CN114714165A (zh) * | 2022-03-10 | 2022-07-08 | 成都联鑫机械有限公司 | 一种棉签生产用棉棒打磨抛光设备 |
CN114769700A (zh) * | 2022-02-11 | 2022-07-22 | 王梦辉 | 一种全自动数控铝材加工系统 |
CN114769913A (zh) * | 2022-04-27 | 2022-07-22 | 深圳市大德激光技术有限公司 | 一种超快激光加工自动上下料装置 |
CN114800111A (zh) * | 2022-05-27 | 2022-07-29 | 李文强 | 一种木质压力板的自动砂光设备及方法 |
CN114919935A (zh) * | 2022-05-27 | 2022-08-19 | 博众精工科技股份有限公司 | 一种料带输送装置 |
CN114986842A (zh) * | 2022-04-20 | 2022-09-02 | 上海伊川水塑料制品有限公司 | 一种用于聚全氟乙丙烯管材的上料装置 |
CN114986296A (zh) * | 2022-05-23 | 2022-09-02 | 浙江三信智能机械股份有限公司 | 一种用于筒形物料的自动化整形系统 |
CN115229673A (zh) * | 2022-07-18 | 2022-10-25 | 海盐猛凌汽车配件有限公司 | 一种自动化上下料装置 |
CN115464425A (zh) * | 2021-06-11 | 2022-12-13 | 麒盛科技股份有限公司 | 一种自动切割机 |
CN115488847A (zh) * | 2022-09-01 | 2022-12-20 | 湖北晨升汽车零部件科技有限公司 | 一种全自动tpe排水管划线设备 |
CN115818197A (zh) * | 2022-12-09 | 2023-03-21 | 娄底市中兴液压件有限公司 | 上料装置及校直设备 |
CN115922428A (zh) * | 2023-02-01 | 2023-04-07 | 江苏江海机床集团有限公司 | 一种具有除尘结构的框锯机及使用方法 |
CN116532995A (zh) * | 2023-05-26 | 2023-08-04 | 深圳市思捷创科技有限公司 | 一种u型管加工设备 |
CN116788813A (zh) * | 2023-07-10 | 2023-09-22 | 江苏易实精密科技股份有限公司 | 一种新能源汽车的连接件上料装置及其使用方法 |
CN117104823A (zh) * | 2023-08-09 | 2023-11-24 | 温州泰昌铁塔制造有限公司 | 角钢自动生产流水线 |
CN117142096A (zh) * | 2023-09-05 | 2023-12-01 | 沧州创拓管件有限公司 | 一种管材加工推制机用上料装置及上料方法 |
CN117400090A (zh) * | 2023-12-15 | 2024-01-16 | 淄博职业学院 | 一种管件加工磨削装置 |
CN117428502A (zh) * | 2023-11-28 | 2024-01-23 | 湖南响箭重工科技股份有限公司 | 一种高压储氢罐瓦片式包扎的钢板冲压设备 |
CN117464426A (zh) * | 2023-12-26 | 2024-01-30 | 常州润来科技有限公司 | 一种自检定位式铜管上料系统及方法 |
CN117549125A (zh) * | 2023-12-15 | 2024-02-13 | 博兴中科宜达新材料有限公司 | 一种冷轧板定位裁切设备及其使用方法 |
CN118123107A (zh) * | 2024-04-16 | 2024-06-04 | 浙江金泰实业发展有限公司 | 一种用于轴承钢管的切割机 |
CN118218665A (zh) * | 2024-05-10 | 2024-06-21 | 长沙和捷实业有限公司 | 一种管道连接环管坯自动切管系统 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110936277B (zh) * | 2019-11-28 | 2021-08-31 | 广州大学 | 一种用于规则的长条形物料的送料切割一体设备 |
CN111673599B (zh) * | 2020-05-22 | 2022-01-04 | 济宁华宇金属制品有限公司 | 一种铝合金方管定长切段装置 |
CN111805391A (zh) * | 2020-06-29 | 2020-10-23 | 浙江佛尔泰智能设备有限公司 | 一种全自动切管线 |
CN114012488B (zh) * | 2021-10-20 | 2022-08-30 | 淮阴医疗器械有限公司 | 一种医用缝合针制造用不间断高效送料机构 |
CN114571278B (zh) * | 2022-05-05 | 2022-10-11 | 歌尔股份有限公司 | 物料加工装置及方法 |
CN115555901A (zh) * | 2022-11-17 | 2023-01-03 | 朗快智能科技(杭州)有限公司 | 一种用于棒料的自动化上料系统及上料方法 |
CN115846910B (zh) * | 2023-02-16 | 2023-06-06 | 深圳市华龙新力激光科技有限公司 | 一种自动进料切割一体机 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5045148A (en) * | 1986-10-15 | 1991-09-03 | Ga-Vehren Engineering Co. | Article attaching apparatus |
CN205183908U (zh) * | 2015-12-16 | 2016-04-27 | 萍乡市伟达工业有限公司 | 自动切管机 |
CN105834507A (zh) * | 2016-06-07 | 2016-08-10 | 黄明桂 | 一种自动切管机 |
CN107303642A (zh) * | 2016-04-19 | 2017-10-31 | 欢颜自动化设备(上海)有限公司 | 自动锯管机上料机构 |
CN207494667U (zh) * | 2017-11-29 | 2018-06-15 | 张家港汉升机械科技有限公司 | 一种全自动切管机 |
CN108500377A (zh) * | 2018-05-17 | 2018-09-07 | 嘉兴市亚庆机械制造有限公司 | 一种高精度全自动多头锯管设备 |
CN110936277A (zh) * | 2019-11-28 | 2020-03-31 | 广州大学 | 一种用于规则的长条形物料的送料切割一体设备 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3944045A (en) * | 1973-08-31 | 1976-03-16 | Comptex, Inc. | Device for centering a load in a bagging machine |
CN208516431U (zh) * | 2018-07-05 | 2019-02-19 | 无锡庆源激光科技有限公司 | 管材自动上料装置 |
CN209427639U (zh) * | 2018-12-29 | 2019-09-24 | 河南寅兴牧业设备有限公司 | 一种圆管自动上料装置 |
-
2019
- 2019-11-28 CN CN201911199164.0A patent/CN110936277B/zh active Active
-
2020
- 2020-07-31 WO PCT/CN2020/106194 patent/WO2021103633A1/zh active Application Filing
- 2020-07-31 AU AU2020389903A patent/AU2020389903B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5045148A (en) * | 1986-10-15 | 1991-09-03 | Ga-Vehren Engineering Co. | Article attaching apparatus |
CN205183908U (zh) * | 2015-12-16 | 2016-04-27 | 萍乡市伟达工业有限公司 | 自动切管机 |
CN107303642A (zh) * | 2016-04-19 | 2017-10-31 | 欢颜自动化设备(上海)有限公司 | 自动锯管机上料机构 |
CN105834507A (zh) * | 2016-06-07 | 2016-08-10 | 黄明桂 | 一种自动切管机 |
CN207494667U (zh) * | 2017-11-29 | 2018-06-15 | 张家港汉升机械科技有限公司 | 一种全自动切管机 |
CN108500377A (zh) * | 2018-05-17 | 2018-09-07 | 嘉兴市亚庆机械制造有限公司 | 一种高精度全自动多头锯管设备 |
CN110936277A (zh) * | 2019-11-28 | 2020-03-31 | 广州大学 | 一种用于规则的长条形物料的送料切割一体设备 |
Cited By (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115464425A (zh) * | 2021-06-11 | 2022-12-13 | 麒盛科技股份有限公司 | 一种自动切割机 |
CN113458836A (zh) * | 2021-06-29 | 2021-10-01 | 东莞盛翔精密金属有限公司 | 多方向加工落料设备 |
CN113290112B (zh) * | 2021-07-01 | 2024-04-09 | 北京吉盛机电设备有限公司 | 一种风阀叶片轴的全自动下料加工设备 |
CN113290112A (zh) * | 2021-07-01 | 2021-08-24 | 北京吉盛机电设备有限公司 | 一种风阀叶片轴的全自动下料加工设备 |
CN113600684A (zh) * | 2021-09-09 | 2021-11-05 | 佛山市莱诺自动化设备有限公司 | 开料管端弯管一体加工设备 |
CN113732647A (zh) * | 2021-09-13 | 2021-12-03 | 深圳市伊欧乐科技有限公司 | 一种脚垫安装装置 |
CN113732647B (zh) * | 2021-09-13 | 2023-06-09 | 深圳市伊欧乐科技有限公司 | 一种脚垫安装装置 |
CN113787384B (zh) * | 2021-09-23 | 2023-12-05 | 怀化市恒裕竹木开发有限公司 | 一种具有自动上料机构的开刃设备 |
CN113787384A (zh) * | 2021-09-23 | 2021-12-14 | 怀化市恒裕竹木开发有限公司 | 一种具有自动上料机构的开刃设备 |
CN113753559A (zh) * | 2021-09-30 | 2021-12-07 | 广州大学 | 一种沙柳苗的运输装置 |
CN113753559B (zh) * | 2021-09-30 | 2022-11-15 | 广州大学 | 一种沙柳苗的运输装置 |
CN114042988B (zh) * | 2021-10-31 | 2023-08-25 | 信宜市汇美电器有限公司 | 一种管道安装用金属钢管口切平设备 |
CN114042988A (zh) * | 2021-10-31 | 2022-02-15 | 朱福生 | 一种管道安装用金属钢管口切平设备 |
CN114083147A (zh) * | 2021-11-01 | 2022-02-25 | 佛山汇百盛激光科技有限公司 | 一种自动定位送料切割机 |
CN114055549B (zh) * | 2021-11-22 | 2024-02-20 | 泗阳恒达纸业有限公司 | 一种便于自动上下料的纸管横切机 |
CN113991946B (zh) * | 2021-11-22 | 2023-09-01 | 广州城市理工学院 | 一种电机转子芯夹具自动安装设备 |
CN113991946A (zh) * | 2021-11-22 | 2022-01-28 | 广州城市理工学院 | 一种电机转子芯夹具自动安装设备 |
CN114055549A (zh) * | 2021-11-22 | 2022-02-18 | 邬亨山 | 一种便于自动上下料的纸管横切机 |
CN114290118A (zh) * | 2021-11-30 | 2022-04-08 | 凯德自控武汉智能装备有限公司 | 一种上料装置 |
CN114043234A (zh) * | 2021-12-01 | 2022-02-15 | 云南善硕建筑安装工程有限公司 | 一种集成管道下料、套丝及管件装配全自动一体组装装置 |
CN114043234B (zh) * | 2021-12-01 | 2024-02-20 | 云南善硕建筑安装工程有限公司 | 一种集成管道下料、套丝及管件装配全自动一体组装装置 |
CN114309830A (zh) * | 2021-12-22 | 2022-04-12 | 禤带珍 | 一种高端装备制造用金属杆双头攻丝设备 |
CN114194727A (zh) * | 2022-01-10 | 2022-03-18 | 广州容联建筑科技有限公司 | 一种u型钢筋柔性装夹设备 |
CN114289612A (zh) * | 2022-01-10 | 2022-04-08 | 赣州基盛精密机械有限公司 | 一种汽车螺栓簧片生产用矫形设备 |
CN114289612B (zh) * | 2022-01-10 | 2023-10-27 | 赣州基盛精密机械有限公司 | 一种汽车螺栓簧片生产用矫形设备 |
CN114407409A (zh) * | 2022-01-19 | 2022-04-29 | 浙江中禾机械有限公司 | 一种千张循环压制机 |
CN114769700A (zh) * | 2022-02-11 | 2022-07-22 | 王梦辉 | 一种全自动数控铝材加工系统 |
CN114714165A (zh) * | 2022-03-10 | 2022-07-08 | 成都联鑫机械有限公司 | 一种棉签生产用棉棒打磨抛光设备 |
CN114714165B (zh) * | 2022-03-10 | 2024-01-12 | 东莞市大伟卫生用品有限公司 | 一种棉签生产用棉棒打磨抛光设备 |
CN114986842A (zh) * | 2022-04-20 | 2022-09-02 | 上海伊川水塑料制品有限公司 | 一种用于聚全氟乙丙烯管材的上料装置 |
CN114986842B (zh) * | 2022-04-20 | 2024-01-26 | 上海伊川水塑料制品有限公司 | 一种用于聚全氟乙丙烯管材的上料装置 |
CN114769913A (zh) * | 2022-04-27 | 2022-07-22 | 深圳市大德激光技术有限公司 | 一种超快激光加工自动上下料装置 |
CN114986296A (zh) * | 2022-05-23 | 2022-09-02 | 浙江三信智能机械股份有限公司 | 一种用于筒形物料的自动化整形系统 |
CN114919935A (zh) * | 2022-05-27 | 2022-08-19 | 博众精工科技股份有限公司 | 一种料带输送装置 |
CN114800111B (zh) * | 2022-05-27 | 2024-05-28 | 嘉善康达自动化机械股份有限公司 | 一种木质压力板的自动砂光设备及方法 |
CN114919935B (zh) * | 2022-05-27 | 2023-11-10 | 博众精工科技股份有限公司 | 一种料带输送装置 |
CN114800111A (zh) * | 2022-05-27 | 2022-07-29 | 李文强 | 一种木质压力板的自动砂光设备及方法 |
CN115229673B (zh) * | 2022-07-18 | 2024-02-13 | 海盐猛凌汽车配件有限公司 | 一种自动化上下料装置 |
CN115229673A (zh) * | 2022-07-18 | 2022-10-25 | 海盐猛凌汽车配件有限公司 | 一种自动化上下料装置 |
CN115488847B (zh) * | 2022-09-01 | 2023-04-04 | 湖北晨升汽车零部件科技有限公司 | 一种全自动tpe排水管划线设备 |
CN115488847A (zh) * | 2022-09-01 | 2022-12-20 | 湖北晨升汽车零部件科技有限公司 | 一种全自动tpe排水管划线设备 |
CN115818197A (zh) * | 2022-12-09 | 2023-03-21 | 娄底市中兴液压件有限公司 | 上料装置及校直设备 |
CN115922428A (zh) * | 2023-02-01 | 2023-04-07 | 江苏江海机床集团有限公司 | 一种具有除尘结构的框锯机及使用方法 |
CN116532995A (zh) * | 2023-05-26 | 2023-08-04 | 深圳市思捷创科技有限公司 | 一种u型管加工设备 |
CN116788813B (zh) * | 2023-07-10 | 2023-12-22 | 江苏易实精密科技股份有限公司 | 一种新能源汽车的连接件上料装置及其使用方法 |
CN116788813A (zh) * | 2023-07-10 | 2023-09-22 | 江苏易实精密科技股份有限公司 | 一种新能源汽车的连接件上料装置及其使用方法 |
CN117104823A (zh) * | 2023-08-09 | 2023-11-24 | 温州泰昌铁塔制造有限公司 | 角钢自动生产流水线 |
CN117142096B (zh) * | 2023-09-05 | 2024-02-23 | 沧州创拓管件有限公司 | 一种管材加工推制机用上料装置及上料方法 |
CN117142096A (zh) * | 2023-09-05 | 2023-12-01 | 沧州创拓管件有限公司 | 一种管材加工推制机用上料装置及上料方法 |
CN117428502A (zh) * | 2023-11-28 | 2024-01-23 | 湖南响箭重工科技股份有限公司 | 一种高压储氢罐瓦片式包扎的钢板冲压设备 |
CN117549125A (zh) * | 2023-12-15 | 2024-02-13 | 博兴中科宜达新材料有限公司 | 一种冷轧板定位裁切设备及其使用方法 |
CN117400090A (zh) * | 2023-12-15 | 2024-01-16 | 淄博职业学院 | 一种管件加工磨削装置 |
CN117400090B (zh) * | 2023-12-15 | 2024-03-01 | 淄博职业学院 | 一种管件加工磨削装置 |
CN117549125B (zh) * | 2023-12-15 | 2024-05-14 | 博兴中科宜达新材料有限公司 | 一种冷轧板定位裁切设备及其使用方法 |
CN117464426B (zh) * | 2023-12-26 | 2024-03-05 | 常州润来科技有限公司 | 一种自检定位式铜管上料系统及方法 |
CN117464426A (zh) * | 2023-12-26 | 2024-01-30 | 常州润来科技有限公司 | 一种自检定位式铜管上料系统及方法 |
CN118123107A (zh) * | 2024-04-16 | 2024-06-04 | 浙江金泰实业发展有限公司 | 一种用于轴承钢管的切割机 |
CN118218665A (zh) * | 2024-05-10 | 2024-06-21 | 长沙和捷实业有限公司 | 一种管道连接环管坯自动切管系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110936277B (zh) | 2021-08-31 |
CN110936277A (zh) | 2020-03-31 |
AU2020389903A1 (en) | 2022-07-21 |
AU2020389903B2 (en) | 2024-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021103633A1 (zh) | 一种用于规则的长条形物料的送料切割一体设备 | |
CN107877006B (zh) | 一种全自动数控激光切管机 | |
CN109319203B (zh) | 钢管码垛缠绕打包生产线 | |
CN109531701A (zh) | 一种料带自动裁切摆盘机 | |
KR101387004B1 (ko) | 대형 프레스 자동화 생산라인의 고효율 소재 이송장치 | |
CN112103219B (zh) | 一种硅片插片机用的供片机构 | |
CN111776712B (zh) | 一种自动分料送料设备 | |
TW201803794A (zh) | 自動疊料機及自動疊料方法 | |
CN105108357A (zh) | 一种用于切管机自动上料装置 | |
CN208516231U (zh) | 一种自动拆叠盘机托盘停位装置 | |
CN211719568U (zh) | 丝网上下料装置 | |
CN115741199A (zh) | 一种圆柱形棒料上下料装置 | |
CN107900539B (zh) | 一种全自动数控激光切管机用输料系统 | |
CN220030365U (zh) | 一种菌菇切根机构、自动菌菇采收切根机及全自动菌菇处理线 | |
CN110636714B (zh) | 一种pcb板包边机 | |
CN115611015B (zh) | 一种mpp电力管加工用码垛设备 | |
CN116394323A (zh) | 一种菌菇切根机构、自动菌菇采收切根机及全自动菌菇处理线 | |
CN113199544B (zh) | 高精度的石膏板分切机构 | |
CN215973912U (zh) | 一种托盘连续搬运机构 | |
CN215973958U (zh) | 自动输送入框装置 | |
CN215556487U (zh) | 一种用于棒料槽分料兼垂直上料机构 | |
CN212023900U (zh) | 一种流水线 | |
CN210848769U (zh) | 一种用于钢格板压焊机的扁钢供料装置 | |
CN112010052A (zh) | 龙门式移行拆盘机 | |
CN221140259U (zh) | 简易堆叠收料机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20892433 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020389903 Country of ref document: AU Date of ref document: 20200731 Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20892433 Country of ref document: EP Kind code of ref document: A1 |