WO2021039111A1 - 樹脂組成物及びそれを用いた半導体封止材料、含侵基材、回路基板、ビルドアップフィルム、プリプレグ、炭素繊維複合材料、ソルダーレジスト、ドライフィルム、プリント配線板 - Google Patents

樹脂組成物及びそれを用いた半導体封止材料、含侵基材、回路基板、ビルドアップフィルム、プリプレグ、炭素繊維複合材料、ソルダーレジスト、ドライフィルム、プリント配線板 Download PDF

Info

Publication number
WO2021039111A1
WO2021039111A1 PCT/JP2020/025947 JP2020025947W WO2021039111A1 WO 2021039111 A1 WO2021039111 A1 WO 2021039111A1 JP 2020025947 W JP2020025947 W JP 2020025947W WO 2021039111 A1 WO2021039111 A1 WO 2021039111A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
polymer
mass
resin composition
bis
Prior art date
Application number
PCT/JP2020/025947
Other languages
English (en)
French (fr)
Inventor
優佑 松村
昭文 中村
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2021521542A priority Critical patent/JP7024915B2/ja
Priority to CN202080052143.0A priority patent/CN114174422B/zh
Priority to KR1020227000326A priority patent/KR102638920B1/ko
Publication of WO2021039111A1 publication Critical patent/WO2021039111A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements

Definitions

  • the present invention relates to a resin composition and a semiconductor encapsulating material using the same, an impregnated base material, a circuit board, a build-up film, a prepreg, a carbon fiber composite material, a solder resist, a dry film, and a printed wiring board.
  • the adhesiveness between the metal layer and the resin is mainly the unevenness of the roughened metal foil, the physical roughening of the resin surface such as plasma treatment, and the chemical roughening such as permanganate etching.
  • a photocurable resin composition is widely used for solder resists for printed wiring boards, and has many required performances such as high heat resistance in cured products, excellent copper foil adhesion, and excellent dielectric properties. There is. In particular, with the miniaturization, weight reduction, and high performance of electronic devices, heat resistance, low elastic modulus, and copper foil adhesion become important characteristics due to the miniaturization of wiring by increasing the density and pitch.
  • the cured product formed from the conventional thermosetting resin composition has sufficient compatibility between peel strength and low elastic modulus even if the heat resistance is improved. I wasn't satisfied.
  • the present invention has been made in view of the above circumstances, and depending on the intended purpose, an epoxy resin composition capable of lowering the elastic modulus while maintaining heat resistance and improving copper foil adhesion, or heat resistance. It is an object of the present invention to provide an epoxy resin composition capable of toughening while maintaining it.
  • An object of the present invention is to provide an epoxy composition having improved copper foil adhesion and capable of achieving both heat resistance and a low elastic modulus.
  • the resin composition of the present invention contains a resin and a modified resin, wherein the resin contains a thermosetting resin; or a combination of an alkali-soluble resin and an epoxy curing agent, and the modified resin contains n pieces.
  • the polymer A block and the n-valent polymer B block are bonded to each other, and the n is an integer of 2 or more.
  • an epoxy resin composition capable of lowering the elastic modulus while maintaining heat resistance and improving copper foil adhesion or an epoxy resin composition capable of improving heat resistance, while maintaining heat resistance, can be used. It is possible to provide an epoxy resin composition capable of toughening, or to produce a cured product capable of achieving both heat resistance and a low elastic modulus and having excellent copper foil adhesion.
  • the resin composition of the present invention contains a resin (A) and a modified resin (B).
  • the resin contains a thermosetting resin (A1); or a combination of an alkali-soluble resin (A2) and an epoxy curing agent (A3).
  • the thermosetting resin (A1) By containing the thermosetting resin (A1), the resin composition becomes a thermosetting resin composition that can be cured by heating, and the combination of the alkali-soluble resin (A2) and the epoxy curing agent (A3) can be combined.
  • the resin composition becomes an active energy ray-curable resin composition that can be cured by irradiation with active energy rays. It may contain an inorganic filler (D), a reinforcing fiber (E), a flame retardant material (F), and the like.
  • the active energy ray means ionizing radiation such as ultraviolet rays; electron beams; ⁇ rays, ⁇ rays, and ⁇ rays.
  • the active energy ray-curable resin composition of the present invention preferably contains a photopolymerization initiator (e), and may further contain a photosensitizer (f).
  • the active energy ray-curable resin composition of the present invention does not have to contain the photopolymerization initiator (e) and the photosensitizer (f). ..
  • thermosetting resin (A1) examples include epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin, and dicyclopentadiene resin.
  • Silicone resin, triazine resin and melamine resin are preferably contained, and at least one selected from the group consisting of these resins is preferably contained.
  • the thermosetting resin (A1) preferably contains at least one of an epoxy resin and a cyanate resin.
  • epoxy resin one type or two or more types can be used, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, tetra.
  • Methylbiphenyl type epoxy resin diglycidyloxynaphthalene compound (1,6-diglycidyloxynaphthalene, 2,7-diglycidyloxynaphthalene, etc.), phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin , Bisphenol F novolac type epoxy resin, triphenylmethane type epoxy resin, stillben type epoxy resin, dicyclopentadiene type epoxy resin, alicyclic epoxy resin, triazine skeleton-containing epoxy resin, fluorene skeleton-containing epoxy resin, triphenolphenol methane type Epoxy resin, xylylene type epoxy resin, naphthalene type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolac type epoxy resin, naphthol aralkyl type epoxy resin, naphthol
  • the epoxy resins include cresol novolac type epoxy resin, phenol aralkyl type epoxy resin, biphenyl novolac type epoxy resin, naphthol novolac type epoxy resin containing a naphthalene skeleton, naphthol aralkyl type epoxy resin, and naphthol-phenol co-condensation novolac.
  • a group-containing aromatic ring and a compound in which an epoxy group-containing aromatic ring is linked are particularly preferable because a cured product having excellent heat resistance can be obtained.
  • the content of the epoxy resin in the thermosetting resin (A1) is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and the upper limit is 100% by mass.
  • a bisphenol type cyanate resin such as a novolak type cyanate resin
  • a bisphenol A type cyanate resin such as a bisphenol A type cyanate resin
  • a bisphenol E type cyanate resin such as a bisphenol E type cyanate resin
  • a tetramethylbisphenol F type cyanate resin examples thereof include a prepolymer obtained by triazinizing all or part of the novolak type cyanate resin and / or the bisphenol type cyanate resin.
  • novolak type cyanate resin is preferable.
  • the unsaturated imide resin examples include bismaleimide resin, which is a compound having two or more N-maleimide groups in one molecule, and examples thereof include bis (4-maleimidephenyl) methane and 3,3'-dimethyl-. Examples thereof include 5,5'-diethyl-4,4'-diphenylmethanebismaleimide, 2,2'-bis [4- (4-maleimidephenoxy) phenyl] propane and polyphenylmethanemaleimide.
  • Examples of the triazine resin include a trifunctional epoxy compound having a triazine skeleton, and specifically, a bonding group (hydrocarbon group) to three nitrogen atoms of 1,3,5-triazine-2,4,6-dione. Examples thereof include compounds in which an epoxy group is bonded via a group in which a hydrocarbon group is combined with an ether bond and / or an ester bond). Examples of the triazine resin include BT2060 manufactured by Mitsubishi Gas Chemical Company, Ltd., TEPIC-G, TEPIC-P, TEPIC-L, TEPIC-S, TEPIC-H and the like manufactured by Nissan Chemical Industries, Ltd.
  • the content of the thermosetting resin (A1) is preferably 20% by mass or more, more preferably 40% by mass or more, still more preferably 50% by mass or more, still more preferably 50% by mass or more, in the non-volatile content of the thermosetting composition. It is 60% by mass or more, preferably 99% by mass or less, more preferably 80% by mass or less, and further preferably 75% by mass or less.
  • the modified resin (B) contains a block polymer in which n polymer A blocks and an n-valent polymer B block are bonded (where n represents an integer of 2 or more).
  • the modified resin (B) by using the modified resin (B), heat resistance can be improved by changing the type of the thermosetting resin (A) and the curing agent (C) used as needed according to the purpose. It is possible to provide an epoxy resin composition capable of lowering the elasticity while maintaining it and improving the adhesion to copper foil, or an epoxy resin composition capable of strengthening the copper foil while maintaining heat resistance.
  • the modified resin (B) of the present invention phase separation is likely to be induced, and since the minority phase derived from the modified resin (B) is contained in this phase separation structure in a specific ratio, this minority phase It is considered that the above-mentioned characteristics can be more easily achieved by exhibiting mechanical properties different from those of the matrix phase.
  • the alkali-soluble resin (A2) has one or more phenolic hydroxyl groups and carboxy groups, and is soluble (developable) in an alkaline solution. Specifically, the phenolic hydroxyl groups and carboxy groups.
  • the resins having one or more groups one or more selected from polyimide resin, polyamide resin, polyamideimide resin, and epoxy resin can be used.
  • the alkali-soluble resin preferably has at least a carboxyl group, and may have a carboxyl group and a phenolic hydroxyl group.
  • the polyimide resin is a resin having an imide ring, and is preferably a reaction product of a polycarboxylic acid anhydride and a polyamine and / or a polyisocyanate.
  • a polyimide resin having a phenolic hydroxyl group and / or a carboxyl group can be obtained by using a compound having a phenolic hydroxyl group and / or a carboxyl group as at least one of the polycarboxylic acid anhydride, polyamine and polyisocyanate. it can.
  • polycarboxylic acid anhydride one type or two or more types can be used, and examples thereof include tetracarboxylic acid anhydride (preferably tetracarboxylic acid dianhydride) and tricarboxylic acid anhydride.
  • tetracarboxylic dianhydride examples include pyromellitic dianhydride, 3-fluoropyromellitic dianhydride, 3,6-difluoropyromellitic dianhydride, and 3,6-bis (trifluoromethyl).
  • tricarboxylic acid anhydride examples include trimellitic acid anhydride and hydrogenated trimellitic acid anhydride.
  • polyamine one kind or two or more kinds can be used.
  • an aliphatic polyamine or a polyamine having an alicyclic structure (hereinafter, having an alicyclic structure may be simply referred to as an "alicyclic type”. ), Aromatic polyamines, polyamines having a carboxy group, and polyamines having a phenolic hydroxyl group.
  • Examples of the aliphatic polyamine include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, and 1, , 8-Diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, diamine diamine and the like.
  • Examples of the alicyclic polyamine include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, and 1,4-diamino-2-n-propyl.
  • Cyclohexane 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, Examples thereof include 1,4-diamino-2-tert-butylcyclohexane and 1,2-diaminocyclohexane.
  • aromatic polyamine examples include polyaminophenyl compounds such as p-phenylenediamine (PPD), 1,3-diaminobenzene, 2,4-toluenediamine, 2,5-toluenediamine, and 2,6-toluenediamine; Polyaminobenzophenone compounds such as 3'-diaminobenzophenone, 3,3'-diamino-4,4'-dichlorobenzophenone, 3,3'-diamino-4,4'-dimethoxybenzophenone; 3,3'-dimethyl-4, Diaminobiphenyl compounds such as 4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl; 3,3' Diaminodiphenyl ether compounds such as -diaminodiphenyl ether, 3,4'-di
  • Ndidin compound 1,3-bis (3-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (3-aminophenyl) benzene, 1,4-bis (4-) Aminophenyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis ( 3-Aminophenoxy) -4-trifluoromethylbenzene, 3,3'-diamino-4- (4-phenyl) phenoxybenzophenone, 3,3'-diamino-4,4'-di (4-phenylphenoxy) benzophenone , 1,3-bis (3-aminophenyl sulfide) benzene, 1,3-bis (4-aminophenyl sulfide) benzene, 1,
  • Examples of the polyamine having a carboxy group include diaminobenzoic acid compounds such as 3,5-diaminobenzoic acid, 2,5-diaminobenzoic acid, and 3,4-diaminobenzoic acid; 3,5-bis (3-aminophenoxy).
  • Aminophenoxy benzoic acid compounds such as benzoic acid, 3,5-bis (4-aminophenoxy) benzoic acid; 3,3'-diamino-4,4'-dicarboxybiphenyl, 4,4'-diamino-3,3 Carboxybiphenyl compounds such as'-dicarboxybiphenyl, 4,4'-diamino-2,2'-dicarboxybiphenyl, 4,4'-diamino-2,2', 5,5'-tetracarboxybiphenyl; 3, 3'-diamino-4,4'-dicarboxydiphenylmethane, 3,3'-dicarboxy-4,4'-diaminodiphenylmethane, 2,2-bis [3-amino-4-carboxyphenyl] propane, 2,2 -Bis [4-amino-3-carboxyphenyl] propane, 2,2-bis [3-amino-4-carbox
  • polyamine having a phenolic hydroxyl group examples include 3,3'-dihydroxybenzidine, 3,3'-diamino-4,4'-dihydroxybiphenyl, 4,4'-diamino-3,3'-dihydroxybiphenyl, 3, 3'-diamino-4,4'-dihydroxydiphenylsulfone, 4,4′-diamino-3,3′-dihydroxydiphenylsulfone, bis (3-amino-4-hydroxyphenyl) methane, 2,2-bis- ( 3-Amino-4-hydroxyphenyl) propane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis (4-amino-3-hydroxyphenyl) hexafluoropropane, bis (4-Amino-3-hydroxyphenyl) methane, 2,2-bis (4-amino-3-hydroxyphenyl) propane, 4,4'-diamino-3
  • polyisocyanate one type or two or more types can be used, and examples thereof include aliphatic polyisocyanates, alicyclic polyisocyanates, and aromatic polyisocyanates.
  • aliphatic polyisocyanate examples include trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, 2-methyl-1,5-pentane diisocyanate, 3-methyl-1,5-pentane diisocyanate, and polyisocyanate dimerate. And so on.
  • alicyclic polyisocyanate examples include cyclohexane diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate and the like.
  • aromatic polyisocyanate examples include tolylene diisocyanate, xylylene diisocyanate, biphenyl diisocyanate, diphenyl sulfone diisocyanate, diphenyl ether diisocyanate, diphenylmethane diisocyanate and the like.
  • the polyamide resin is a resin having an amide bond, and is preferably a reaction product of a polyamine and a polycarboxylic acid; a ring-opening polymer of lactam; or a copolymer thereof.
  • a polyamine having a carboxy group as the polyamine, a polyamide resin having a carboxy group can be obtained.
  • the same compound as the polyamine described as the raw material of the polyimide resin can be used.
  • polycarboxylic acid one kind or two or more kinds can be used, and examples thereof include an aliphatic polycarboxylic acid, an alicyclic polycarboxylic acid, and an aromatic polycarboxylic acid.
  • aliphatic polycarboxylic acid examples include adipic acid, sebacic acid, azelaic acid, decamethylenedicarboxylic acid and the like.
  • Examples of the alicyclic polycarboxylic acid include cyclohexanedicarboxylic acid and cyclopentanedicarboxylic acid.
  • aromatic polycarboxylic acid examples include orthophthalic acid, phthalic anhydride, terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, naphthalene-1,5-dicarboxylic acid and the like. These esterified products or halides may be used.
  • the polyamideimide resin is a resin having an imide ring and an amide bond, and is a polycarboxylic acid having at least two anhydrous carboxy groups and a non-anhydrous carboxy group in one molecule, and polyisocyanate.
  • the reaction product of polycarboxylic acid having at least two anhydrous carboxy groups and a non-anhydrous carboxy group in one molecule and a polyamine having a carboxy group is further reacted with polyisocyanate. Examples thereof include compounds obtained from the above.
  • Examples of the compound having at least two anhydrous carboxy groups and a non-anhydrous carboxy group include trimellitic anhydride, 4,4'-oxydiphthalic anhydride, hydrogenated trimellitic anhydride and the like. ..
  • the compound exemplified as the polycarboxylic acid anhydride may be used in combination.
  • the polyamine having a carboxy group and the polyisocyanate As the polyamine having a carboxy group and the polyisocyanate, the polyamine having a carboxy group and the compounds exemplified as the polyisocyanate can be used.
  • polyamide-imide resin for example, a resin having a unit represented by the following formula (1) is preferable.
  • R 1 represents a residue of polyisocyanate
  • R 2 and R 4 are a compound having two carboxy groups that have been anhydrated in one molecule and a carboxy that has not been anhydrated, respectively.
  • R 3 represents a residue of a polyamine having a carboxy group.
  • the epoxy resin is preferably an epoxy (meth) acrylate resin having an acid group (preferably a carboxy group), and is an epoxy resin having two or more epoxy groups in one molecule (hereinafter referred to as "specific epoxy resin”).
  • a resin (A1) having a structure in which (meth) acrylic acid is added to the epoxy group of (1) and one or more divalent organic acids are further added; or the carboxy of the resin (A1).
  • a resin (A2) in which an acid-reactive (meth) acrylate compound such as glycidyl (meth) acrylate is further added to a part of the group is preferable.
  • the specific epoxy resin one kind or two or more kinds can be used, and bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated epoxy resin, phenylene ether type epoxy resin, Naftylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol-phenol co-condensation novolac type Epoxy resin, naphthol-cresol co-condensed novolak type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, glycidylamine type epoxy resin, hidden in type epoxy resin, alicyclic type Epoxy resin, trihydroxyphenylmethane type epoxy resin, bixilenol type / biphenol type epoxy resin,
  • phenol novolac type epoxy resin cresol novolac type epoxy resin, bisphenol novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol-phenol co-shrink novolak type epoxy resin, naphthol-cresol co-shrink novolak type epoxy
  • a novolak type epoxy resin such as a resin is preferable.
  • the total content of the novolak type epoxy resin and the cresol novolak type epoxy resin contained in the specific epoxy resin is preferably 90% by mass or more, more preferably 95% by mass or more, based on 100% by mass of the specific epoxy resin.
  • the upper limit is 100% by mass.
  • organic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, and tetrahydrophthalic acid.
  • organic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, and tetrahydrophthalic acid.
  • dicarboxylic acids such as acid, hexahydrophthalic acid and methylhexahydrophthalic acid.
  • the dicarboxylic acid anhydride is anhydrous dicarboxylic acid having a cyclic structure such as fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, and methylhexahydrophthalic acid from the viewpoint of heat resistance.
  • the thing is preferable.
  • Examples of the acid-reactive (meth) acrylate compound include compounds having a glycidyl group and a (meth) acryloyl group such as glycidyl (meth) acrylate.
  • the acid value of the alkali-soluble resin (A2) is preferably 30 mgKOH / g or more, more preferably 40 mgKOH / g or more, preferably 150 mgKOH / g or less, more preferably 100 mgKOH / g or less, still more preferably 90 mgKOH / g. It is as follows.
  • the weight average molecular weight of the alkali-soluble resin (A2) is preferably 1,000 or more, more preferably 3,000 or more, still more preferably 5,000 or more, preferably 100,000 or less, more preferably 50, It is 000 or less, more preferably 12,000 or less, and even more preferably 10,000 or less.
  • the molecular weight dispersion of the alkali-soluble resin (a) is preferably 1.5 or more and 4 or less.
  • the weight average molecular weight shall mean a value measured by gel permeation chromatography.
  • the content of the alkali-soluble resin (A2) is preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 18% by mass or more in the non-volatile content of the active energy ray-curable resin composition. It is preferably 90% by mass or less, more preferably 85% by mass or less, and further preferably 80% by mass or less.
  • the curing agent (A3) preferably has a functional group (preferably an epoxy group) capable of reacting with an acid group (preferably a carboxy group) contained in the alkali-soluble resin (A2).
  • a functional group preferably an epoxy group
  • an acid group preferably a carboxy group
  • the curing agent one kind or two or more kinds can be used, and for example, the epoxy resin exemplified as the specific epoxy resin can be used.
  • phenol novolac type epoxy resin cresol novolac type epoxy resin, bisphenol novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol-phenol co-shrink novolak type epoxy resin, naphthol-cresol co-shrink novolak type epoxy
  • a novolak type epoxy resin such as a resin is preferable, and one having a softening point of 50 ° C. or higher and 120 ° C. or lower is preferable.
  • the epoxy group equivalent of the curing agent (A3) is preferably 5 or more, more preferably 30 or more, still more preferably 50 or more, preferably 500 or less, more preferably 400 or less, still more preferably 300 or less.
  • the content of the curing agent (A3) is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and further preferably 25 parts by mass with respect to 100 parts by mass of the acid group-containing epoxy (meth) clear resin (A2). It is 5 parts by mass or more, preferably 70 parts by mass or less, more preferably 60 parts by mass or less, and further preferably 50 parts by mass or less.
  • a curing accelerator (A4) may be used in combination with the curing agent (A3).
  • the curing accelerator (A4) one kind or two or more kinds can be used, and for example, a phosphorus compound such as triphenylphosphine; dicyanamide; benzyldimethylamine, 4- (dimethylamino) -N, N- Amine compounds such as dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzylamine, 4-methyl-N, N-dimethylbenzylamine; imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4- Cyclic amine compounds such as methyl imidazole, 2-phenyl imidazole, 4-phenyl imidazole, 1-cyanoethyl-2-phenyl imidazole, 1- (2-cyanoethyl) -2-ethyl-4-methyl imidazole; dihydrazide adipate, sebacic acid Hydra
  • the content of the resin (A) is preferably 11% by mass or more, more preferably 16% by mass or more, still more preferably 19% by mass or more, and preferably 99% by mass or less in the non-volatile content of the resin composition. , More preferably 95% by mass or less, still more preferably 90% by mass or less.
  • the block polymer may be, for example, a block polymer represented by the formula (2) (a block polymer in which two polymer A blocks and a divalent polymer B block are bonded), and is represented by the formula (3). It may be a block polymer represented by a block polymer (a block polymer in which three polymer A blocks and a trivalent polymer B block are bonded), or a block polymer represented by the formula (4) (four polymer A blocks). And a block polymer in which four polymer B blocks are bonded).
  • the polymer A block preferably contains a polyester unit.
  • the polyester unit is, for example, a polyester unit obtained by esterifying a low molecular weight polyol (for example, a polyol having a molecular weight of 50 or more and 300 or less) and a polycarboxylic acid; a cyclic ester compound obtained by a ring-opening polymerization reaction. Polyester unit; Examples thereof include these copolymerized polyester units.
  • a polyol having a molecular weight of about 50 or more and 300 or less can be used.
  • ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol can be used.
  • 3-Methyl-1,5-pentanediol diethylene glycol, dipropylene glycol, neopentyl glycol, 1,3-butanediol and other aliphatic polyols with 2 to 6 carbon atoms; 1,4-cyclohexanediol, cyclohexane Aliphatic structure-containing polyols such as dimethanol; bisphenol compounds such as bisphenol A and bisphenol F, and aromatic structure-containing polyols such as alkylene oxide adducts thereof can be mentioned.
  • polycarboxylic acid examples include aliphatic polycarboxylic acids such as succinic acid, adipic acid, sebacic acid and dodecandicarboxylic acid; aromatic polycarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid and naphthalenedicarboxylic acid; and the fat. Examples thereof include anhydrides or ester-forming derivatives of group polycarboxylic acids and aromatic polycarboxylic acids.
  • cyclic ester compound examples include ⁇ -acetolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -caprolactone.
  • the glass transition temperature of the polymer A block is preferably ⁇ 80 ° C. or higher, more preferably ⁇ 75 ° C. or higher, further preferably ⁇ 70 ° C. or higher, preferably 50 ° C. or lower, more preferably 40 ° C. or lower, still more preferably. It is 30 ° C. or lower.
  • the end (free end) of the polymer A block may be either a carboxyl group or a hydroxyl group, and is preferably a hydroxyl group.
  • the number average molecular weight of the polymer A block is preferably 500 or more, more preferably 750 or more, still more preferably 1,000 or more, preferably 20,000 or less, more preferably 10,000 or less, still more preferably 5. It is less than 000.
  • the content of the polyester unit is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and the upper limit is 100% by mass in the polymer A block.
  • the glass transition temperature of the polymer B block is preferably 0 ° C. or lower.
  • the glass transition temperature is preferably ⁇ 10 ° C. or lower, more preferably ⁇ 20 ° C. or lower, further preferably ⁇ 30 ° C. or lower, preferably ⁇ 150 ° C. or higher, more preferably ⁇ 140 ° C. or higher, still more preferably ⁇ . It is 130 ° C. or higher.
  • the polymer B block is one or more selected from the group consisting of a polyether unit, a conjugated diene polymer unit, a hydrogenated conjugated diene polymer unit and a polysiloxane unit (hereinafter, may be referred to as a "specific polymer unit"). It is preferable to include it.
  • the polyether unit means a polymer unit having an oxyalkylene unit as a repeating unit.
  • the oxyalkylene unit include an oxyalkylene unit having an oxy group such as an oxyethylene unit, an oxypropylene unit, and an oxybutylene unit and an alkylene unit having 2 to 4 carbon atoms. Of these, oxypropylene units and oxybutylene units are preferable from the viewpoint of water resistance.
  • the number average molecular weight of the polyether unit is preferably 500 or more, more preferably 750 or more, still more preferably 1,000 or more, preferably 20,000 or less, more preferably 15,000 or less, still more preferably 10. It is less than 000.
  • the conjugated diene polymer unit means a polymer unit of a monomer containing at least a conjugated diene compound.
  • the conjugated diene compound include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene, and 2,3. -Dimethyl butadiene, 2-phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, 2-chlor-1,3-butadiene and the like can be mentioned, with 1,3-butadiene and isoprene being preferred.
  • the content of the conjugated diene compound in the monomer is, for example, 30% by mass or more, preferably 50% by mass or more, more preferably 70% by mass or more, and the upper limit is 100% by mass.
  • the monomer includes methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, and pentyl.
  • the hydrogenated conjugated diene polymer unit represents a polymer unit obtained by hydrogenating a polymer of a monomer containing at least a conjugated diene compound, and the above-exemplified compound can be used as the conjugated diene compound and the monomer.
  • the number average molecular weight of the conjugated diene polymer unit is preferably 500 or more, more preferably 750 or more, still more preferably 1,000 or more, preferably 20,000 or less, more preferably 15,000 or less, still more preferably. Is less than 10,000.
  • the content of the conjugated diene compound in the monomer forming the hydrogenated conjugated diene polymer unit is preferably 30% by mass or more, more preferably 50% by mass or more, still more preferably 70% by mass or more, and the upper limit is It is 100% by mass.
  • the polysiloxane unit means a unit in which silicon atoms substituted with two hydrocarbon groups and oxygen atoms are alternately arranged.
  • the hydrocarbon group include an aliphatic hydrocarbon group having 1 to 5 carbon atoms (preferably a methyl group), an alicyclic hydrocarbon group having 3 to 10 carbon atoms, and an aromatic hydrocarbon having 6 to 10 carbon atoms.
  • examples thereof include a hydrogen group, and the hydrocarbon group may have a substituent such as a hydroxyl group, a carboxy group or a sulfonic acid group.
  • the number average molecular weight of the siloxane unit is preferably 500 or more, more preferably 750 or more, still more preferably 1,000 or more, and preferably 20,000 or less. It is preferably 15,000 or less, more preferably 10,000 or less.
  • the number average molecular weight of the polymer B block is preferably 500 or more, more preferably 750 or more, still more preferably 1,000 or more, preferably 20,000 or less, more preferably 15,000 or less, still more preferably 10. It is less than 000.
  • the content of the specific polymer unit is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more in the polymer B block.
  • the upper limit is 100% by mass.
  • the content ratio (A / B) of the polymer A block to the polymer B block is preferably 0.1 or more, more preferably 0.3 or more, still more preferably 0.4 or more, and preferably 0.4 or more, based on the mass. Is 10 or less, more preferably 8 or less, still more preferably 6 or less.
  • the number average molecular weight of the block polymer is preferably 1,500 or more, more preferably 2,000 or more, still more preferably 3,000 or more, preferably 20,000 or less, more preferably 17,000 or less, and further. It is preferably 15,000 or less.
  • the block polymer can be produced, for example, by reacting a compound having a hydroxyl group at the end of the polymer B block with a raw material of the polymer A block (for example, a polyol, a polycarboxylic acid, a lactone compound, etc.).
  • a raw material of the polymer A block for example, a polyol, a polycarboxylic acid, a lactone compound, etc.
  • the modified resin (B) is a block polymer and other modified resins (polyether resin, polyester resin, polyurethane resin, silicone resin, fluororesin, cellulose resin, phenoxy resin, polyvinyl acetal resin, polyvinyl butyral resin). , Polyamide resin, polyamideimide resin, elastomer, etc.) may be included.
  • the content of the block polymer in the modified resin (B) is preferably 30% by mass or more, more preferably 50% by mass or more, still more preferably 70% by mass or more, and the upper limit is 100% by mass.
  • the content of the modified resin (B) is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, and further preferably 1 part by mass or more with respect to 100 parts by mass of the resin (A). It is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and further preferably 10 parts by mass or less.
  • the resin composition contains a thermosetting resin (A1) as the resin (A), it is preferable that the resin composition further contains a curing agent (C).
  • a curing agent (C) By including the curing agent (C), it is easy to cure the resin composition even when the resin (A) does not have a self-reactive group.
  • the curing agent (C) one type or two or more types can be used, and examples thereof include phenolic resins, amine compounds, amide compounds, active ester resins, acid anhydrides, and cyanate ester resins.
  • the thermosetting agent (B) preferably contains at least one selected from an active ester resin, a phenol resin and a cyanate resin.
  • phenol resin examples include phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadienephenol-added resin, phenol aralkyl resin (Zyroc resin), naphthol aralkyl resin, and triphenylol methane resin.
  • biphenyl compounds such as biphenyl and tetramethylbiphenyl; triphenylolmethane, tetraphenylol ethane; dicyclopentadiene-phenol addition reaction type resins, phosphorus-modified phenol compounds in which a phosphorus atom is introduced into these various phenol hydroxyl group-containing compounds, etc. Can be mentioned.
  • amine compound examples include dicyanamide, diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, guanidine derivative and the like.
  • amide compound examples include a polyamide resin synthesized from a dimer of polyamide, dicyandiamide, and linolenic acid and ethylenediamine.
  • the active ester resin is not particularly limited, but contains 2 ester groups with high reactive activity such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds in one molecule. Compounds having more than one are preferably used.
  • the active ester resin is preferably obtained by a condensation reaction of a carboxylic acid compound and / or a thiocarboxylic acid compound with a hydroxy compound and / or a thiol compound.
  • an active ester resin obtained from a carboxylic acid compound or a halide thereof and a hydroxy compound is preferable, and an active ester resin obtained from a carboxylic acid compound or a halide thereof and a phenol compound and / or a naphthol compound is preferable.
  • the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, pyromellitic acid and the like, or halides thereof.
  • phenol compound or naphthol compound examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, dihydroxydiphenyl ether, phenol phthalein, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m.
  • -Cresol p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenol, trihydroxybenzophenone, tetrahydroxybenzophenone, fluoroglusin , Benzintriol, dicyclopentadiene-phenol-added resin and the like.
  • acid anhydrides examples include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride. Acids, copolymers thereof and the like can be mentioned.
  • cyanate ester resin one type or two or more types can be used, for example, bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, bisphenol E type cyanate ester resin, bisphenol S type cyanate ester resin, bisphenol.
  • cyanate ester resins bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, bisphenol E type cyanate ester resin, and polyhydroxynaphthalene type cyanate ester resin can be obtained as a cured product having particularly excellent heat resistance.
  • Naftylene ether type cyanate ester resin and novolak type cyanate ester resin are preferably used, and dicyclopentadiene-phenol addition reaction type cyanate ester resin is preferable in that a cured product having excellent dielectric properties can be obtained.
  • the curing accelerator (C1) may be contained.
  • the curing accelerator (C1) one kind or two or more kinds can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazole compounds, organic acid metal salts, Lewis acids, amine complex salts and the like. ..
  • triphenylphosphine is used as a phosphorus compound and 1,8-diazabicyclo- is used as a tertiary amine because of its excellent curability, heat resistance, electrical properties, moisture resistance and reliability.
  • DBU -Undesen
  • the composition of the present invention may further contain a maleimide compound (C2).
  • the maleimide compound (C2) is different from the maleimide resin.
  • the maleimide compound (C2) one type or two or more types can be used, for example, N-cyclohexylmaleimide, N-methylmaleimide, Nn-butylmaleimide, N-hexylmaleimide, N-tert-butyl.
  • N-aliphatic maleimide such as maleimide
  • N-aromatic maleimide such as N-phenylmaleimide, N- (P-methylphenyl) maleimide, N-benzylmaleimide
  • 4,4'-diphenylmethanebismaleimide 4,4'- Diphenylsulfone bismaleimide
  • m-phenylene bismaleimide bis (3-methyl-4-maleimidephenyl) methane, bis (3-ethyl-4-maleimidephenyl) methane, bis (3,5-dimethyl-4-maleimidephenyl)
  • bismaleimides such as methane, bis (3-ethyl-5-methyl-4-maleimidephenyl) methane and bis (3,5-diethyl-4-maleimidephenyl) methane.
  • maleimide compound (C2) bismaleimides are preferable from the viewpoint of improving the heat resistance of the cured product, and particularly 4,4'-diphenylmethane bismaleimide and bis (3,5-dimethyl-4-maleimide).
  • phenyl) methane bis (3-ethyl-5-methyl-4-maleimidephenyl) methane and bis (3,5-diethyl-4-maleimidephenyl) methane.
  • the maleimide compound (C2) when used, it may contain the amine compound, the phenol compound, the acid anhydride compound, the imidazole compound, the organic metal salt and the like, if necessary.
  • the resin composition contains a combination of an alkali-soluble resin (A2) and an epoxy curing agent (A3) as the resin (A), the polymerizable compound (D), the photopolymerization initiator (E), and the photosensitizer (F), the heat-reactive compound (G) may be contained.
  • A2 alkali-soluble resin
  • A3 epoxy curing agent
  • the polymerizable compound (D) is a compound having a group (preferably a polymerizable double bond) that can be polymerized by an active radical, and is preferably a compound having a (meth) acryloyl group.
  • Examples of the polymerizable compound (D) include monofunctional compounds such as phenoxy (meth) acrylate; 1,6-hexanediol di (meth) acrylate, ethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and the like.
  • Bifunctional compounds such as acrylates and polyethylene glycol di (meth) acrylates and their ethylene oxide modified products, propylene oxide modified products and caprolactone modified products; trimethylolpropantri (meth) acrylate, pentaerythritol tri (meth) acrylate, tris ( Trifunctional compounds such as 2- (meth) acryloyloxyethyl) isocyanurate and their ethylene oxide modified products, propylene oxide modified products and caprolactone modified products; tetrafunctional compounds such as pentaerythritol tetra (meth) acrylate and their ethylene oxide modified products.
  • Pentafunctional compounds such as dipentaerythritol penta (meth) acrylate and their ethylene oxide modified product, propylene oxide modified product and caprolactone modified product; dipentaerythritol hexa (meth) acrylate and the like.
  • Examples thereof include compounds having 7 or more functionalities such as (meth) acrylate, and their ethylene oxide-modified products, propylene oxide-modified products and caprolactone-modified products.
  • the number average molecular weight of the polymerizable compound (D) is preferably 150 or more and 2,900 or less, and more preferably 250 or more and 1,500 or less.
  • the content thereof is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and further preferably 3 parts by mass with respect to 100 parts by mass of the alkali-soluble resin.
  • the above is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 7 parts by mass or less.
  • photopolymerization initiator (E) one kind or two or more kinds can be used, for example, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, oligo ⁇ 2- Hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone ⁇ , benzyldimethylketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-Hydroxyethoxy) Phenyl- (2-Hydroxy-2-propyl) Ketone, 1-Hydroxycyclohexylphenylketone, 2-Methyl-2-morpholino (4-thiomethylphenyl) Propan-1-one, 2-benzyl- 2-Dimethylamino-1- (4-morpholinophenyl) -butanone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1- [4- (4-hydroxyethoxy) -
  • Phenyl compounds benzophenone, methyl-4-phenylbenzophenone o-benzoylbenzoate, 4,4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-methyl-diphenylsulfide, acrylicized benzophenone, 3,3', Benzophenone compounds such as 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 3,3'-dimethyl-4-methoxybenzophenone, 2,4,6-trimethylbenzophenone, 4-methylbenzophenone; 2-isopropylthioxanthone, Thioxanths such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, and 2,4-dichlorothioxanthone.
  • the photopolymerization initiator (E) When the photopolymerization initiator (E) is used, its content is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and further preferably 5 parts by mass or more with respect to 100 parts by mass of the alkali-soluble resin. It is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and further preferably 12 parts by mass or less.
  • the photosensitizer (F) one kind or two or more kinds can be used, for example, a tertiary amine compound such as diethanolamine, N-methyldiethanolamine, tributylamine, a urea compound such as o-tolylthiourea, and the like.
  • examples thereof include sulfur compounds such as sodium diethyldithiophosphate and s-benzylisothiuronium-p-toluenesulfonate.
  • the content thereof is preferably 1 part by mass or more, more preferably 3 parts by mass or more, still more preferably 3 parts by mass, based on 100 parts by mass of the photopolymerization initiator (E). It is 5 parts by mass or more, preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and further preferably 12 parts by mass or less.
  • the resin composition contains a thermosetting resin (A1) as the resin (A), it may further contain an inorganic filler (G).
  • an inorganic filler G
  • the coefficient of thermal expansion of the insulating layer can be further reduced.
  • the inorganic filler one type or two or more types can be used, for example, silica (molten silica, crystalline silica, etc.), silicon nitride, alumina, clay minerals (talc, clay, etc.), mica powder, hydroxide.
  • silica molten silica, crystalline silica, etc.
  • silicon nitride nitride
  • alumina alumina
  • clay minerals talc, clay, etc.
  • mica powder hydroxide
  • examples thereof include aluminum, magnesium hydroxide, magnesium oxide, aluminum titanate, barium titanate, calcium titanate, titanium oxide and the like, and silica is preferable, and molten silica is more preferable.
  • the shape of the silica may be either crushed or spherical, and is preferably spherical from the viewpoint of suppressing the melt viscosity of the composition while increasing the blending amount.
  • a semiconductor encapsulant preferably a power transistor or a high thermal conductive semiconductor encapsulant for a power IC
  • silica molten silica, crystalline silica is preferable, crystalline silica is preferable
  • alumina preferably a power transistor or a high thermal conductive semiconductor encapsulant for a power IC
  • Silicon nitride is preferred.
  • the content of the inorganic filler (G) in the resin composition is preferably 0.2% by mass or more, more preferably 30% by mass or more, still more preferably 50% by mass or more, and even more preferably 70% by mass or more. It is particularly preferably 80% by mass or more, preferably 95% by mass or less, and more preferably 90% by mass or less.
  • the resin composition of the present invention may further contain reinforcing fibers (H).
  • the reinforcing fiber include a fiber material such as glass fiber and carbon fiber, and a fiber base material formed from the fiber material.
  • the glass fiber and carbon fiber may be short fibers or long fibers.
  • a prepreg can be obtained by impregnating the resin composition with the fiber material and the fiber base material to form a sheet, and the prepreg and the carbon fiber composite material which is a cured product of the prepreg are also within the technical scope of the present invention. include.
  • the resin composition of the present invention may further contain a flame retardant (I).
  • the flame retardant (I) is preferably a non-halogen type that does not substantially contain a halogen atom.
  • the flame retardant (I) one type or two or more types can be used, for example, a phosphorus-based flame retardant, a nitrogen-based flame retardant, a silicone-based flame retardant, an inorganic flame retardant, an organometallic salt-based flame retardant, and the like. Can be mentioned.
  • ammonium phosphates such as red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate.
  • Inorganic nitrogen-containing phosphorus compounds such as phosphoric acid amides and other inorganic nitrogen-containing phosphorus compounds;
  • 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide
  • 10- (2,5-dihydrooxyphenyl) -10H-9-oxa-10-phosphaphenanthrene 10-Oxide
  • 10- (2,7-dihydrooxynaphthyl) -10H-9-Oxa-10-phosphaphenanthrene 10-oxide and other cyclic organophosphorus compounds, and compounds such as epoxy resins and phenolic resins
  • Examples thereof include organic phosphorus compounds such as reacted derivatives.
  • hydrotalcite magnesium hydroxide
  • boring compound zirconium oxide
  • black dye calcium carbonate
  • zeolite zinc molybdate
  • activated charcoal activated charcoal
  • the red phosphorus is preferably surface-treated, and examples of the surface treatment method include (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide, bismuth oxide, and bismuth hydroxide.
  • Method of coating with an inorganic compound such as bismuth nitrate or a mixture thereof (ii) a mixture of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide, and a thermosetting resin such as a phenol resin.
  • a thermosetting resin such as phenol resin
  • nitrogen-based flame retardant examples include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, phenothiazine compounds, and the like, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.
  • a metal hydroxide, a molybdenum compound, or the like may be used in combination.
  • triazine compound examples include, for example, melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylenedimelamine, polyphosphate melamine, triguanamine and the like, and for example, (i) guanyl melamine sulfate, melem sulfate, sulfuric acid.
  • a cocondensate of aminotriazine sulfate compounds such as melam, (ii) phenols, cresols, xylenols, butylphenols, nonylphenols and other phenols with melamines such as melamine, benzoguanamine, acetguanamine and formguanamine and formaldehyde, (iii).
  • melam phenols, cresols, xylenols, butylphenols, nonylphenols and other phenols with melamines such as melamine, benzoguanamine, acetguanamine and formguanamine and formaldehyde, (iii).
  • phenols, cresols, xylenols, butylphenols, nonylphenols and other phenols with melamines such as melamine, benzoguanamine, acetguanamine and formguanamine and formaldehyde, (iii).
  • cyanuric acid compound examples include cyanuric acid, melamine cyanuric acid, and the like.
  • the blending amount of the nitrogen-based flame retardant is appropriately selected depending on the type of the nitrogen-based flame retardant, other components of the thermosetting composition, and the desired degree of flame retardancy, and is, for example, an epoxy resin. It is preferable to blend in the range of 0.05 to 10 parts by mass in 100 parts by mass of the thermosetting composition containing all of the curing agent, non-halogen flame retardant and other fillers and additives, and particularly 0. It is preferable to blend in the range of 1 to 5 parts by mass.
  • any organic compound containing a silicon atom can be used without particular limitation, and examples thereof include silicone oil, silicone rubber, and silicone resin.
  • inorganic flame retardant one kind or two or more kinds can be used, for example, metals such as aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, zirconium hydroxide and the like.
  • organometallic salt-based flame retardant examples include ferrocene, an acetylacetonate metal complex, an organometallic carbonyl compound, an organocobalt salt compound, an organosulfonic acid metal salt, a metal atom and an aromatic compound, or a heterocyclic compound.
  • organometallic salt-based flame retardant examples include ferrocene, an acetylacetonate metal complex, an organometallic carbonyl compound, an organocobalt salt compound, an organosulfonic acid metal salt, a metal atom and an aromatic compound, or a heterocyclic compound.
  • examples thereof include compounds having a coordination bond.
  • the resin composition of the present invention may further contain an organic solvent (J).
  • the resin composition contains the organic solvent (J)
  • the viscosity can be lowered, which makes it particularly suitable for manufacturing a printed circuit board.
  • organic solvent (J) one kind or two or more kinds can be used, for example, a ketone solvent, an ether solvent, an ester solvent, a glycol ether acetate solvent, a glycol ether solvent, an aromatic hydrocarbon solvent, an alcohol solvent, and a fat.
  • a ketone solvent an ether solvent, an ester solvent, a glycol ether acetate solvent, a glycol ether solvent, an aromatic hydrocarbon solvent, an alcohol solvent, and a fat.
  • a ketone solvent for example, a ketone solvent, an ether solvent, an ester solvent, a glycol ether acetate solvent, a glycol ether solvent, an aromatic hydrocarbon solvent, an alcohol solvent, and a fat.
  • group hydrocarbon solvents petroleum solvents, amide solvents and the like.
  • a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone
  • an ether solvent such as propylene glycol monomethyl ether
  • an ester solvent such as ethyl acetate and butyl acetate
  • Glycol ether acetate solvents such as propylene glycol monomethyl ether acetate, ethyl diglycol acetate, diethylene glycol monoethyl ether acetate (carbitol acetate), diethylene glycol monobutyl ether acetate
  • cellosolve, methylcellosolve, butylcellosolve, carbitol, methylcarbitol, butylcarbi Glycol ether solvents such as tall, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene
  • the organic solvent (J) includes a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; an ether solvent such as propylene glycol monomethyl ether; propylene.
  • a ketone solvent such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • an ether solvent such as propylene glycol monomethyl ether
  • propylene propylene.
  • Acetic acid ester solvents such as glycol monomethyl ether acetate and ethyl diglycol acetate
  • carbitol solvents such as methyl cellosolve
  • amide solvents such as dimethylformamide are preferable.
  • the organic solvent (J) is a ketone solvent such as acetone, methyl ethyl ketone, cyclohexanone; ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbi.
  • Acetic acid ester solvents such as tall acetate; carbitol solvents such as cellosolve and butyl carbitol; aromatic hydrocarbon solvents such as toluene and xylene; amide solvents such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone are preferable.
  • the content thereof in the resin composition is preferably 10% by mass or more, more preferably 20% by mass or more, still more preferably 25% by mass or more, and preferably 90% by mass. % Or less, more preferably 80% by mass or less, still more preferably 70% by mass or less.
  • the content of the organic solvent (J) is preferably 30% by mass or more, more preferably 40% by mass or more in the resin composition. It is preferably 90% by mass or less, more preferably 80% by mass or less, and further preferably 70% by mass or less.
  • the content of the solvent (J) is preferably 10% by mass or more in the resin composition. It is more preferably 20% by mass or more, further preferably 25% by mass or more, preferably 80% by mass or less, more preferably 60% by mass or less, still more preferably 50% by mass or less.
  • the resin composition of the present invention may further contain conductive particles.
  • conductive particles By containing the conductive particles, it can be used as a conductive paste and is suitable for an anisotropic conductive material.
  • the resin composition of the present invention may further contain rubber, a filler and the like.
  • rubber By including rubber, filler, etc., it becomes suitable for build-up film.
  • the filler one kind or two or more kinds can be used, for example, organic filler; barium sulfate, amorphous silica, molten silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, hydroxide.
  • examples thereof include inorganic fillers such as aluminum, silicon nitride, aluminum nitride, boron nitride, and Neubble Greek Earth.
  • the resin composition of the present invention further comprises a thermal polymerization inhibitor, an adhesion accelerator, a silane coupling agent, a mold release agent, a pigment, an emulsifier, etc., a curing accelerator, an antioxidant, a defoaming agent, an ultraviolet absorber, and an extinguishing agent. It may contain various additives such as foaming agents, rust preventives, abrasive grains, thickeners, surfactants, flame retardants, plasticizers, lubricants, antistatic agents, heat stabilizers, and blending resins.
  • the resin and the modified resin are uniformly compatible before curing, while after curing, a phase mainly containing the resin and the polymer A and a phase mainly containing the polymer B are used. It is preferable that the phase is separated between the two. While a uniform phase is formed before curing, the cause of phase separation being induced after curing is not clear, but as the resin cures, the degree of freedom (mobility) of the resin is limited and the compatibility decreases. Conceivable.
  • composition of the present invention is obtained by mixing each of the above components, and can be made into a cured product by irradiation with active energy rays or thermosetting.
  • shape of the cured product include a laminate, a cast product, an adhesive layer, a coating film, and a film.
  • the resin composition can be used as the solder resist of the present invention.
  • the dry film formed from the solder resist of the present invention is also included in the technical scope of the present invention.
  • the dry film can be produced, for example, by applying the solder resist on a base material and, if necessary, removing the solvent (J) contained therein by drying or the like to form a resin layer.
  • a blade coater, a lip coater, a comma coater, a film coater, or the like can be used for the coating.
  • the drying temperature is preferably 60 ° C. or higher and 100 ° C. or lower.
  • the thickness of the dry film is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • a printed wiring board having a cured product of a resin layer formed from the active energy ray-curable resin composition as an insulating resin layer is also included in the technical scope of the present invention.
  • the printed wiring board can be manufactured, for example, by forming a resin layer of the active energy ray-curable resin composition on a base material and curing the resin layer.
  • the curing is preferably performed by thermosetting, and the curing temperature is preferably 140 ° C. or higher and 180 ° C. or lower.
  • the curable resin layer or dry coating formed on the base material (subject) is used.
  • the film is selectively exposed to active energy rays or directly patterned by a laser direct exposure machine through a photomask in which a pattern is formed by a contact method (or a non-contact method).
  • the exposed portion is cured.
  • the drying temperature is preferably, for example, 60 ° C. or higher and 120 ° C. or lower.
  • a direct drawing device for example, a laser direct imaging device that directly draws an image with a laser based on CAD data from a computer
  • an exposure machine equipped with a metal halide lamp for example, an exposure machine equipped with a metal halide lamp
  • an (ultra) high pressure mercury lamp for example, an on-board exposure machine, an exposure machine equipped with an LED, and an exposure device equipped with a mercury short arc lamp can be used.
  • the active energy ray it is preferable to use light having a maximum wavelength in the range of 350 to 410 nm. By setting the maximum wavelength in this range, radicals can be efficiently generated from the photopolymerization initiator.
  • the exposure amount varies depending on the film thickness and the like, but can be generally in the range of 5 to 500 mJ / cm 2 , preferably in the range of 10 to 300 mJ / cm 2.
  • the direct drawing device for example, one manufactured by Nippon Orbotech Co., Ltd., Pentax Co., Ltd., Oak Co., Ltd., Dainippon Screen Co., Ltd., etc. can be used, and an active energy ray having a maximum wavelength of 350 to 410 nm can be used. Any device may be used as long as it is a device for irradiating.
  • the exposed portion (the portion irradiated with the active energy rays) is cured, and then the unexposed portion is subjected to a dilute alkaline aqueous solution (for example, 0. It is developed with a 3 to 3 wt% sodium carbonate aqueous solution) to form a pattern on the curable resin layer and the dry coating film.
  • a dilute alkaline aqueous solution for example, 0. It is developed with a 3 to 3 wt% sodium carbonate aqueous solution
  • the developing method can be a dipping method, a shower method, a spray method, a brush method, or the like.
  • an alkaline aqueous solution such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia and amines can be used.
  • the carboxy group of the alkali-soluble resin (A2) reacts with the epoxy curing agent (A3), resulting in heat resistance. It is possible to form a resin insulating layer (pattern) having excellent various characteristics such as chemical resistance, moisture absorption resistance, adhesion, and insulation reliability.
  • the total film thickness of the resin insulating layer in the printed wiring board of the present invention is preferably 100 ⁇ m or less, and more preferably 5 to 50 ⁇ m.
  • the base material includes a pre-circuit-formed printed wiring board and a flexible printed wiring board, as well as paper-phenol resin, paper-epoxy resin, glass cloth-epoxy resin, glass-polyimide, and glass cloth / non-woven cloth-epoxy resin.
  • paper-phenol resin paper-epoxy resin
  • glass cloth-epoxy resin glass cloth-epoxy resin
  • glass-polyimide glass cloth / non-woven cloth-epoxy resin.
  • Polyimide film, PET film, glass substrate, ceramic substrate, wafer plate and the like can be used.
  • the resin insulating layer of the printed wiring board of the present invention is suitable as a permanent coating, and particularly suitable as a solder resist.
  • inventions include semiconductor encapsulation materials, printed wiring board materials, resin casting materials, adhesives, interlayer insulating materials for build-up substrates, adhesive films for build-up, and the like.
  • passive components such as capacitors and active components such as IC chips are embedded in the substrate, so-called substrates for built-in electronic components. It can be used as an insulating material.
  • the carbon fiber composite material can be used for aerospace applications (structural materials for aircraft and rockets, etc.) and automobile applications (racing cars, body skeletons, etc.) including structural materials for aircraft and automobiles, as well as tennis rackets and golf shafts. It can be used in a wide range of leisure applications such as.
  • Example 1 50 parts by mass of bisphenol A type epoxy resin (manufactured by DIC Corporation, "EPICLON (registered trademark) 850-S”) as an epoxy resin in the flask, and active ester resin (manufactured by DIC Corporation, "EPICLON (registered trademark)) as a curing agent.
  • HPC-8000-65T 90.8 parts by mass was blended and dried under reduced pressure at 130 ° C. for 1 hour to distill off the solvent.
  • 10.9 parts by mass of the block polymer A obtained in Synthesis Example 1 was added thereto, and the mixture was stirred at an internal temperature of 130 ° C. until they were compatible.
  • the epoxy resin composition which is the resin composition (thermosetting composition) of the present invention is obtained by adding 0.6 parts by mass of N, N-dimethylaminopyridine as a curing accelerator, stirring for 20 seconds, and then vacuum defoaming. I got the thing (X1). When the fracture surface of the obtained cured product was observed with an atomic force microscope (AFM), it was confirmed that two phases having different elastic moduli formed a sea part and an island part.
  • AFM atomic force microscope
  • Example 2 An epoxy resin composition which is a resin composition (thermosetting composition) of the present invention in the same manner as in Example 1 except that the block polymer B is used instead of the block polymer A obtained in Synthesis Example 1. (X2) was obtained. When the fracture surface of the obtained cured product was observed with an atomic force microscope (AFM), it was confirmed that two phases having different elastic moduli formed a sea part and an island part.
  • AFM atomic force microscope
  • Example 3 An epoxy resin composition which is a resin composition (thermosetting composition) of the present invention in the same manner as in Example 1 except that the block polymer C is used instead of the block polymer A obtained in Synthesis Example 1. (X3) was obtained. When the fracture surface of the obtained cured product was observed with an atomic force microscope (AFM), it was confirmed that two phases having different elastic moduli formed a sea part and an island part.
  • AFM atomic force microscope
  • Example 4 An epoxy resin composition which is a resin composition (thermosetting composition) of the present invention in the same manner as in Example 1 except that the block polymer D is used instead of the block polymer A obtained in Synthesis Example 1. (X4) was obtained. When the fracture surface of the obtained cured product was observed with an atomic force microscope (AFM), it was confirmed that two phases having different elastic moduli formed a sea part and an island part.
  • AFM atomic force microscope
  • the epoxy resin composition (X5) which is the thermosetting composition of the present invention, is obtained by adding 0.6 parts by mass of N, N-dimethylaminopyridine as a curing accelerator, stirring for 20 seconds, and then vacuum defoaming. Obtained. The fracture surface of the obtained cured product was observed with an atomic force microscope (AFM), but no phase-separated structure was observed.
  • AFM atomic force microscope
  • the evaluation criteria for the storage elastic modulus were as follows. ⁇ : 4,100 MPa or less ⁇ : 4,100 MPa or more 4,500 MPa or less ⁇ : 4,500 MPa or more
  • the evaluation criteria for heat resistance are as follows. ⁇ : Glass transition temperature 160 ° C or higher ⁇ : Glass transition temperature 150 ° C or higher and lower than 160 ° C ⁇ : Glass transition temperature less than 150 ° C
  • the evaluation criteria for copper foil adhesion were as follows. ⁇ : Peel strength 8.0 N / cm or more ⁇ : Peel strength 7.0 N / cm or more and less than 8.0 N / cm ⁇ : Peel strength less than 7.0 N / cm
  • Examples 1 to 4 are examples of the present invention, in which both heat resistance and low elastic modulus are compatible, and the copper foil adhesion is good.
  • Comparative Example 1 was an example in which the modified resin was not contained, and the low elastic modulus was not sufficient, and the copper foil adhesion was also inferior.
  • Example 5 50 parts by mass of bisphenol A type epoxy resin (manufactured by DIC Corporation, "EPICLON (registered trademark) 850-S”) as an epoxy resin in a mixing container, and novolak type phenol resin (manufactured by DIC Corporation, "Phenolite (Phenolite)” as a curing agent. 27.7 parts by mass of registered trademark) TD-2131 ”) and 7.8 parts by mass of the block polymer obtained in Synthesis Example 1 were blended, and the mixture was stirred at an internal temperature of 130 ° C. until they were compatible.
  • Example 6 An epoxy resin composition (Y2), which is a thermosetting composition of the present invention, is obtained in the same manner as in Example 1 except that the block polymer B is used instead of the block polymer A obtained in Synthesis Example 1. It was. When the fracture surface of the obtained cured product was observed with an atomic force microscope (AFM), it was confirmed that two phases having different elastic moduli formed a sea part and an island part.
  • AFM atomic force microscope
  • Example 7 An epoxy resin composition (Y3), which is a thermosetting composition of the present invention, is obtained in the same manner as in Example 1 except that the block polymer C is used instead of the block polymer A obtained in Synthesis Example 1. It was. When the fracture surface of the obtained cured product was observed with an atomic force microscope (AFM), it was confirmed that two phases having different elastic moduli formed a sea part and an island part.
  • AFM atomic force microscope
  • Example 8 An epoxy resin composition (Y4), which is a thermosetting composition of the present invention, is obtained in the same manner as in Example 1 except that the block polymer D is used instead of the block polymer A obtained in Synthesis Example 1. It was. When the fracture surface of the obtained cured product was observed with an atomic force microscope (AFM), it was confirmed that two phases having different elastic moduli formed a sea part and an island part.
  • AFM atomic force microscope
  • the temperature at which tan ⁇ is maximized is defined as the glass transition temperature (Tg, unit; ° C.), and the measurement is performed.
  • Measuring device Dynamic viscoelasticity measuring machine (SI Nanotechnology Co., Ltd.) Made) Model: DMA6100 Measurement temperature range: 0 ° C to 300 ° C Temperature rise rate: 5 ° C / min Frequency: 1Hz Measurement mode: Bending
  • the evaluation criteria for heat resistance are as follows. ⁇ : Glass transition temperature 140 ° C or higher ⁇ : Glass transition temperature 130 ° C or higher and lower than 140 ° C ⁇ : Glass transition temperature less than 130 ° C
  • the evaluation criteria for fracture toughness are as follows. ⁇ : 1.50 MPa ⁇ m 0.5 or more ⁇ : 1.00 MPa ⁇ m 0.5 or more and 1.50 MPa ⁇ m less than 0.5 ⁇ : 1.00 MPa ⁇ m less than 0.5
  • Examples 5 to 8 are examples of the present invention, and it was possible to achieve toughness while maintaining heat resistance.
  • Comparative Example 2 was an example in which the modified resin (B) was not contained and was inferior in toughness.
  • Example 9 100 parts by mass of an orthocresol type epoxy acrylate resin (manufactured by DIC Co., Ltd., "DICLITE (registered trademark) UE-9000", non-volatile content 63.4% by mass) as an acid-modified vinyl group-containing epoxy resin in a mixing container, Synthesis Example 1 3.2 parts by mass of the block polymer A obtained in the above, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (manufactured by BASF, "Irgacure (registered)” as a photopolymerization initiator.
  • an orthocresol type epoxy acrylate resin manufactured by DIC Co., Ltd., "DICLITE (registered trademark) UE-9000", non-volatile content 63.4% by mass
  • Synthesis Example 1 3.2 parts by mass of the block polymer A obtained in the above, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (manu
  • the epoxy resin composition (X9) was applied with a 76 ⁇ m applicator and dried at 80 ° C. for 30 minutes. It was irradiated with ultraviolet rays of 1,000 mJ / cm 2 using a metal halide lamp, and further thermoset at 160 ° C. for 1 hour.
  • Example 10 to 12 Examples except that 3.2 parts by mass of the block polymer B, C, or D obtained in Synthesis Examples 2 to 4 is used instead of 3.2 parts by mass of the block polymer A obtained in Synthesis Example 1. Epoxy resin compositions (X10) to (X12) were obtained in the same manner as in 1.
  • the epoxy resin compositions (X10) to (X12) were applied with a 76 ⁇ m applicator and dried at 80 ° C. for 30 minutes. It was irradiated with ultraviolet rays of 1,000 mJ / cm 2 using a metal halide lamp, and further thermoset at 160 ° C. for 1 hour.
  • the epoxy resin composition (Y3) was applied with a 76 ⁇ m applicator and dried at 80 ° C. for 30 minutes. It was irradiated with ultraviolet rays of 1,000 mJ / cm 2 using a metal halide lamp, and further thermoset at 160 ° C. for 1 hour.
  • the epoxy resin composition (Y4) was applied with a 76 ⁇ m applicator and dried at 80 ° C. for 30 minutes. It was irradiated with ultraviolet rays of 1,000 mJ / cm 2 using a metal halide lamp, and further thermoset at 160 ° C. for 1 hour.
  • the temperature at which tan ⁇ was maximized was defined as the glass transition temperature (Tg, unit; ° C.) and measured.
  • the storage elastic modulus (E') at 25 ° C. was measured.
  • Measuring equipment Dynamic viscoelasticity measuring machine (manufactured by SII Nanotechnology Co., Ltd.) Model: DMA6100 Measurement temperature range: -100 ° C to 250 ° C Temperature rise rate: 5 ° C / min Frequency: 1Hz Measurement mode: Tensile mode
  • the evaluation criteria for the storage elastic modulus were as follows. ⁇ : 3,000 MPa or less ⁇ : 3,000 MPa or more 4,000 MPa or less ⁇ : 4,000 MPa or more
  • the evaluation criteria for heat resistance are as follows. ⁇ : Glass transition temperature 130 ° C or higher ⁇ : Glass transition temperature 125 ° C or higher and lower than 130 ° C ⁇ : Glass transition temperature less than 125 ° C
  • the evaluation criteria for copper foil adhesion were as follows. ⁇ : Peel strength 0.5 N / cm or more ⁇ : Peel strength 0.2 N / cm or more and less than 0.5 N / cm ⁇ : Peel strength less than 0.2 N / cm
  • Examples 9 to 12 are examples of the present invention, and the copper foil adhesion was good, and both heat resistance and low elastic modulus could be achieved.
  • Comparative Example 3 was an example in which the modified resin was not contained, and was inferior in copper foil adhesion.
  • Comparative Example 4 is an example in which a hydrogenated butadiene polyol was used as a modified resin not corresponding to the modified resin of the present invention, and was inferior in copper foil adhesion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

【課題】本発明は、目的に応じ、耐熱性と低弾性率化の両立又は耐熱性と強靭化の両立を可能とし、かつ銅箔密着性に優れたエポキシ樹脂組成物を提供することを課題とする。 【解決手段】本発明の熱硬化性樹脂組成物は、熱硬化性樹脂及び改質樹脂を含み、前記改質樹脂が、n個のポリマーAブロックと、n価のポリマーBブロックとが結合したものであるブロックポリマーを含み、前記ポリマーBブロック中、ポリエーテル単位、共役ジエン重合体単位、水添共役ジエン重合体単位及びポリシロキサン単位の合計の含有率が、70質量%以上であり、前記nが、2以上の整数であることを特徴とする。

Description

樹脂組成物及びそれを用いた半導体封止材料、含侵基材、回路基板、ビルドアップフィルム、プリプレグ、炭素繊維複合材料、ソルダーレジスト、ドライフィルム、プリント配線板
 本発明は、樹脂組成物及びそれを用いた半導体封止材料、含侵基材、回路基板、ビルドアップフィルム、プリプレグ、炭素繊維複合材料、ソルダーレジスト、ドライフィルム、プリント配線板に関する。
 近年、電子機器の小型化・軽量化・高速化の要求が高まり、プリント配線板の高密度化が進んでいる。そのため、配線幅や配線間隔をさらに小さくすることが求められおり、配線幅を小さく保つためには配線となる金属層(金属膜)と樹脂基材とが十分な接着性を備えている必要がある。しかし、従来のプリント配線板では、主に金属層と樹脂との接着性は、粗化した金属箔の凹凸や、樹脂表面をプラズマ処理等の物理粗化や過マンガン酸エッチング等の化学粗化によって得られる表面の凹凸によるアンカー効果にその大半を頼っており、大型サーバーやアンテナ等高周波用途のプリント配線板用途では、高周波信号を扱うことによる信号の減衰(伝送損失)の原因となるため、アンカー効果に頼らずに接着性を向上することが求められている。
 また、部品実装時及びパッケージ組み立て時において、チップと基板との熱膨張率の差に起因する反りや、基板との間で生じる界面剥離による信頼性の低下が問題となっている。これらを解決するために多官能のエポキシ樹脂を用いる方法などが提案されているが、耐熱性が不十分であったり、耐衝撃性や強靱性が低下する問題があった。また、耐衝撃性や強靱性の改良のために、シリコーンエラストマーを添加する方法、カルボキシル基末端ポリブタジエンゴムを添加する方法などが提案されているが、耐衝撃性や強靱性が改良される反面、耐熱性が低下する問題があった。
 プリント配線基板用のソルダーレジストには、光硬化性樹脂組成物が広く用いられており、硬化物における耐熱性が高いこと、銅箔密着性に優れること、誘電特性に優れるなど、数多くの要求性能がある。特に電子機器の小型化、軽量化、高性能化に伴い、高密度化,狭ピッチ化による配線の微細化によって、耐熱性、低弾性率化、銅箔密着性が重要な特性となる
 硬化物の特性を改善するための試みとして、前記光硬化性樹脂組成物にエラストマーを添加する試みがなされている(特許文献4、5参照)。
特開2009-269999号公報 特開平2-107659号公報 特開昭63-120719号公報 特開2019-015913号公報 国際公開第2012/173242号
 しかし、本発明者らの検討によれば、従来の熱硬化性樹脂組成物から形成される硬化物では、耐熱性は向上しても、ピール強度と低弾性率との両立性が、十分に満足できるものではなかった。本発明は、前記事情に鑑みてなされたものであり、目的に応じ、耐熱性を維持しつつ低弾性率化を可能とし、銅箔密着性を向上できるエポキシ樹脂組成物、あるいは、耐熱性を維持しつつ、強靭化を可能とするエポキシ樹脂組成物を提供することを課題とする。
 また、従来の光硬化性樹脂組成物から形成される硬化物では、耐熱性、屈曲性については改善がみられたものの、銅箔密着性の点で十分に満足できるものとはいえない場合があった。本発明は、銅箔密着性を向上し、耐熱性と低弾性率化の両立を可能としたエポキシ組成物の提供を課題とする。
 本発明の樹脂組成物は、樹脂及び改質樹脂を含み、前記樹脂が、熱硬化性樹脂;又はアルカリ可溶性樹脂とエポキシ硬化剤との組合せを含むものであり、前記改質樹脂が、n個のポリマーAブロックと、n価のポリマーBブロックとが結合したものであるブロックポリマーを含むものであり、前記nが、2以上の整数であることを特徴とする。
 本発明の樹脂組成物を用いることで、目的に応じ、耐熱性を維持しつつ低弾性率化を可能とし、銅箔密着性を向上できるエポキシ樹脂組成物、あるいは、耐熱性を維持しつつ、強靭化を可能とするエポキシ樹脂組成物を提供すること、あるいは、耐熱性と低弾性率化の両立を可能とし、かつ銅箔密着性に優れた硬化物を製造可能である。
 本発明の樹脂組成物は、樹脂(A)及び改質樹脂(B)を含む。前記樹脂は、熱硬化性樹脂(A1);又はアルカリ可溶性樹脂(A2)とエポキシ硬化剤(A3)との組合せを含む。前記熱硬化性樹脂(A1)を含むことで、前記樹脂組成物は、加熱により硬化しうる熱硬化性樹脂組成物となり、前記アルカリ可溶性樹脂(A2)とエポキシ硬化剤(A3)との組合せを含むことで、前記樹脂組成物は、活性エネルギー線照射により硬化しうる活性エネルギー線硬化性樹脂組成物となる。無機充填材(D)、強化繊維(E)、難燃材(F)等を含んでいてもよい。
 本明細書において活性エネルギー線とは、紫外線;電子線;α線、β線、γ線等の電離放射線を意味する。前記活性エネルギー線が紫外線である場合、本発明の活性エネルギー線硬化性樹脂組成物は、光重合開始剤(e)を含むことが好ましく、さらに光増感剤(f)を含んでもよい。他方、前記活性エネルギー線が電子線、電離放射線である場合、本発明の活性エネルギー線硬化性樹脂組成物は、前記光重合開始剤(e)及び光増感剤(f)を含まなくともよい。
 前記熱硬化性樹脂(A1)としては、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂及びメラミン樹脂を含むことが好ましく、これらの樹脂からなる群より選ばれる少なくとも1種を含むことが好ましい。中でも、前記熱硬化性樹脂(A1)は、エポキシ樹脂及びシアネート樹脂の少なくとも1種を含むことが好ましい。
 前記エポキシ樹脂としては、1種又は2種以上を用いることができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、ジグリシジルオキシナフタレン化合物(1,6-ジグリシジルオキシナフタレン、2,7-ジグリシジルオキシナフタレン等)、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、スチルベン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、トリアジン骨格含有エポキシ樹脂、フルオレン骨格含有エポキシ樹脂、トリフェノールフェノールメタン型エポキシ樹脂、キシリレン型エポキシ樹脂、ナフタレン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、1,1-ビス(2,7-ジグリシジルオキシ-1-ナフチル)アルカン等のナフタレン骨格含有エポキシ樹脂、多官能フェノール化合物と多環芳香族化合物のジグリシジルエーテルとの化合物、これら各種のエポキシ樹脂にリン原子を導入したリン変性エポキシ樹脂等が挙げられる。
 中でも、前記エポキシ樹脂としては、クレゾールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂や、ナフタレン骨格を含有するナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂や、結晶性のビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、キサンテン型エポキシ樹脂や、アルコキシ基含有芳香環変性ノボラック型エポキシ樹脂(ホルムアルデヒドでグリシジル基含有芳香環及びアルコキシ基含有芳香環が連結された化合物)等が耐熱性に優れる硬化物が得られる点から特に好ましい。
 前記熱硬化性樹脂(A1)中、エポキシ樹脂の含有率は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上であり、上限は100質量%である。
 前記シアネート樹脂としては、1種又は2種以上を用いることができ、例えば、ノボラック型シアネート樹脂;ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂;前記ノボラック型シアネート樹脂及び/又は前記ビスフェノール型シアネート樹脂の全部又は一部をトリアジン化したプレポリマーなどが挙げられる。中でも、ノボラック型シアネート樹脂が好ましい。
 前記不飽和イミド樹脂としては、1分子中にN-マレイミド基を2個以上有する化合物であるビスマレイミド樹脂などが挙げられ、例えば、ビス(4-マレイミドフェニル)メタン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、2,2’-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン及びポリフェニルメタンマレイミド等が挙げられる。
 前記トリアジン樹脂としては、トリアジン骨格を有する3官能エポキシ化合物が挙げられ、具体的には、1,3,5-トリアジン-2,4,6-ジオンの3つの窒素原子に結合基(炭化水素基;炭化水素基とエーテル結合及び/又はエステル結合とを組み合わせた基)を介してエポキシ基が結合している化合物が挙げられる。前記トリアジン樹脂としては、三菱ガス化学株式会社製のBT2060、日産化学株式会社製のTEPIC-G、TEPIC-P、TEPIC-L、TEPIC-S、TEPIC-H等が挙げられる。
 前記熱硬化性樹脂(A1)の含有率は、前記熱硬化性組成物の不揮発分中、好ましくは20質量%以上、より好ましくは40質量%以上、さらに好ましくは50質量%以上、いっそう好ましくは60質量%以上であり、好ましくは99質量%以下、より好ましくは80質量%以下、さらに好ましくは75質量%以下である。
 前記改質樹脂(B)は、n個のポリマーAブロックと、n価のポリマーBブロックとが結合したものであるブロックポリマーを含む(ただし、nは2以上の整数を表す)。
 本発明では、前記改質樹脂(B)を用いることで、目的に応じ、例えば熱硬化性樹脂(A)及び必要に応じて用いる硬化剤(C)の種類を変更することで、耐熱性を維持しつつ低弾性率化を可能とし、銅箔密着性を向上できるエポキシ樹脂組成物、あるいは、耐熱性を維持しつつ、強靭化を可能とするエポキシ樹脂組成物を提供することができる。本発明の改質樹脂(B)を用いることで相分離が誘起されやすくなり、この相分離構造において前記改質樹脂(B)に由来する少数相が特定の割合で含まれるため、この少数相がマトリックス相と異なる力学物性を示すことで、上記のような特性がいっそう達成されやすくなると考えられる。
 前記アルカリ可溶性樹脂(A2)は、フェノール性水酸基及びカルボキシ基の1種以上を有するものであって、アルカリ溶液に可溶(現像可能)な樹脂であり、具体的には、フェノール性水酸基及びカルボキシ基の1種以上を有する樹脂のうち、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、エポキシ樹脂から選ばれる1種以上を用いることができる。前記アルカリ可溶性樹脂は、少なくとも、カルボキシル基を有することが好ましく、カルボキシル基とフェノール性水酸基とを有していてもよい。
 前記ポリイミド樹脂は、イミド環を有する樹脂であり、ポリカルボン酸無水物と、ポリアミン及び/又はポリイソシアネートとの反応物であることが好ましい。前記ポリカルボン酸無水物、ポリアミン、ポリイソシアネートのうち少なくとも1種として、フェノール性水酸基及び/又はカルボキシル基を有する化合物を用いることで、フェノール性水酸基及び/又はカルボキシル基を有するポリイミド樹脂を得ることができる。
 前記ポリカルボン酸無水物としては、1種又は2種以上を用いることができ、例えば、テトラカルボン酸無水物(好ましくはテトラカルボン酸2無水物)、トリカルボン酸無水物等が挙げられる。
 前記テトラカルボン酸無水物としては、例えば、ピロメリット酸二無水物、3-フルオロピロメリット酸二無水物、3,6-ジフルオロピロメリット酸二無水物、3,6-ビス(トリフルオロメチル)ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、2,2’-ジフルオロ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、5,5’-ジフルオロ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、6,6’-ジフルオロ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,5,5’,6,6’-ヘキサフルオロ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’-ビス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、5,5’-ビス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、6,6’-ビス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,5,5’-テトラキス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,6,6’-テトラキス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、および2,2’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,3’,4,4’-テルフェニルテトラカルボン酸二無水物、3,3'”,4,4'”-クァテルフェニルテトラカルボン酸二無水物、3,3””,4,4””-キンクフェニルテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチニリデン-4,4’-ジフタル酸二無水物、2,2-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-へキサフルオロプロパン二無水物、ジフルオロメチレン-4,4’-ジフタル酸二無水物、1,1,2,2-テトラフルオロ-1,2-エチレン-4,4’-ジフタル酸二無水物、1,1,2,2,3,3-ヘキサフルオロ-1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,1,2,2,3,3,4,4-オクタフルオロ-1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,1,2,2,3,3,4,4,5,5-デカフルオロ-1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルシロキサン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス〔2-(3,4-ジカルボキシフェニル)-2-プロピル〕ベンゼン二無水物、1,4-ビス〔2-(3,4-ジカルボキシフェニル)-2-プロピル〕ベンゼン二無水物、ビス〔3-(3,4-ジカルボキシフェノキシ)フェニル〕メタン二無水物、ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕メタン二無水物、2,2-ビス〔3-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,2-ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,2-ビス〔3-(3,4-ジカルボキシフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,3,4-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、カルボニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、メチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,2-エチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,1-エチニリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、2,2-プロピリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-プロピリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、オキシ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、チオ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、スルホニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、3,3’-ジフルオロオキシ-4,4’-ジフタル酸二無水物、5,5’-ジフルオロオキシ-4,4’-ジフタル酸二無水物、6,6’-ジフルオロオキシ-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサフルオロオキシ-4,4’-ジフタル酸二無水物、3,3’-ビス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、5,5’-ビス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、6,6’-ビス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’,5,5’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’,6,6’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、5,5’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、6,6’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサフルオロスルホニル-4,4’-ジフタル酸二無水物、3,3’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、5,5’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、6,6’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,6,6’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、5,5’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、6,6’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’-ビス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、5,5’-ビス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、6,6’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’,5,5’-テトラキス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’,6,6’-テトラキス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、9-フェニル-9-(トリフルオロメチル)キサンテン-2,3,6,7-テトラカルボン酸二無水物、9,9-ビス(トリフルオロメチル)キサンテン-2,3,6,7-テトラカルボン酸二無水物、ビシクロ〔2,2,2〕オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシ)フェニル〕フルオレン二無水物、9,9-ビス〔4-(2,3-ジカルボキシ)フェニル〕フルオレン二無水物、エチレングリコールビストリメリテート二無水物、1,2-(エチレン)ビス(トリメリテート無水物)、1,3-(トリメチレン)ビス(トリメリテート無水物)、1,4-(テトラメチレン)ビス(トリメリテート無水物)、1,5-(ペンタメチレン)ビス(トリメリテート無水物)、1,6-(ヘキサメチレン)ビス(トリメリテート無水物)、1,7-(ヘプタメチレン)ビス(トリメリテート無水物)、1,8-(オクタメチレン)ビス(トリメリテート無水物)、1,9-(ノナメチレン)ビス(トリメリテート無水物)、1,10-(デカメチレン)ビス(トリメリテート無水物)、1,12-(ドデカメチレン)ビス(トリメリテート無水物)、1,16-(ヘキサデカメチレン)ビス(トリメリテート無水物)、1,18-(オクタデカメチレン)ビス(トリメリテート無水物)などが挙げられる。
 トリカルボン酸無水物としては、例えば、トリメリット酸無水物、水添トリメリット酸無水物などが挙げられる。
 前記ポリアミンとしては、1種又は2種以上を用いることができ、例えば、脂肪族ポリアミン、脂環構造を有するポリアミン(以下、脂環構造を有することを、単に「脂環式」という場合がある。)、芳香族ポリアミン、カルボキシ基を有するポリアミン、フェノール性水酸基を有するポリアミンが挙げられる。
 前記脂肪族ポリアミンとしては、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、ダイマー酸ジアミン等が挙げられる。
 前記脂環式ポリアミンとしては、1,4-ジアミノシクロへキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、1,2-ジアミノシクロへキサン等が挙げられる。
 前記芳香族ポリアミンとしては、p-フェニレンジアミン(PPD)、1,3-ジアミノベンゼン、2,4-トルエンジアミン、2,5-トルエンジアミン、2,6-トルエンジアミン等のポリアミノフェニル化合物;3,3’-ジアミノベンゾフェノン、3,3’-ジアミノ-4,4’-ジクロロベンゾフェノン、3,3’-ジアミノ-4,4’-ジメトキシベンゾフェノン等のポリアミノベンゾフェノン化合物;3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル等のジアミノビフェニル化合物;3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル等のジアミノジフェニルエーテル化合物;3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド等のジアミノジフェニルスルフィド化合物;3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシド等のジアミノジフェニルスルホキシド化合物;3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン等のジアミノジフェニルスルホン化合物;3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン等のジアミノジフェニルアルカン;4,4’-ジアミノベンズアニリド;3,3’-ジクロロベンジジン、3,3’-ジメチルベンジジン(o-トリジン)、2,2’-ジメチルベンジジン(m-トリジン)、3,3’-ジメトキシベンジジン、2,2’-ジメトキシベンジジン等のベンジジン化合物;1,3-ビス(3-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(3-アミノフェニル)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)-4-トリフルオロメチルベンゼン、3,3’-ジアミノ-4-(4-フェニル)フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジ(4-フェニルフェノキシ)ベンゾフェノン、1,3-ビス(3-アミノフェニルスルフィド)ベンゼン、1,3-ビス(4-アミノフェニルスルフィド)ベンゼン、1,4-ビス(4-アミノフェニルスルフィド)ベンゼン、1,3-ビス(3-アミノフェニルスルホン)ベンゼン、1,3-ビス(4-アミノフェニルスルホン)ベンゼン、1,4-ビス(4-アミノフェニルスルホン)ベンゼン、1,3-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(3-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼン、3,3’-ビス(3-アミノフェノキシ)ビフェニル、3,3’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス〔3-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(3-アミノフェノキシ)フェニル〕メタン、ビス〔3-(4-アミノフェノキシ)フェニル〕メタン、ビス〔4-(3-アミノフェノキシ)フェニル〕メタン、ビス〔4-(4-アミノフェノキシ)フェニル〕メタン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン等のベンゼン環を3個以上有するポリアミン化合物などが挙げられる。
 前記カルボキシ基を有するポリアミンとしては、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,4-ジアミノ安息香酸等のジアミノ安息香酸化合物;3,5-ビス(3-アミノフェノキシ)安息香酸、3,5-ビス(4-アミノフェノキシ)安息香酸等のアミノフェノキシ安息香酸化合物;3,3’-ジアミノ-4,4’-ジカルボキシビフェニル、4,4’-ジアミノ-3,3’-ジカルボキシビフェニル、4,4’-ジアミノ-2,2’-ジカルボキシビフェニル、4,4’-ジアミノ-2,2’,5,5’-テトラカルボキシビフェニル等のカルボキシビフェニル化合物;3,3’-ジアミノ-4,4’-ジカルボキシジフェニルメタン、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン、2,2-ビス[3-アミノ-4-カルボキシフェニル]プロパン、2,2-ビス[4-アミノ-3-カルボキシフェニル]プロパン、2,2-ビス[3-アミノ-4-カルボキシフェニル]ヘキサフルオロプロパン、4,4’-ジアミノ-2,2’,5,5’-テトラカルボキシジフェニルメタン等のカルボキシジフェニルメタン等のカルボキシジフェニルアルカン;3,3’-ジアミノ-4,4’-ジカルボキシジフェニルエーテル、4,4’-ジアミノ-3,3’-ジカルボキシジフェニルエーテル、4,4’-ジアミノ-2,2’-ジカルボキシジフェニルエーテル、4,4’-ジアミノ-2,2’,5,5’-テトラカルボキシジフェニルエーテル等のカルボキシジフェニルエーテル化合物;3,3’-ジアミノ-4,4’-ジカルボキシジフェニルスルフォン、4,4’-ジアミノ-3,3’-ジカルボキシジフェニルスルフォン、4,4’-ジアミノ-2,2’-ジカルボキシジフェニルスルフォン、4,4’-ジアミノ-2,2’,5,5’-テトラカルボキシジフェニルスルフォン等のジフェニルスルフォン化合物;2,2-ビス[4-(4-アミノ-3-カルボキシフェノキシ)フェニル]プロパン等のビス[(カルボキシフェニル)フェニル]アルカン化合物;2,2-ビス[4-(4-アミノ-3-カルボキシフェノキシ)フェニル]スルフォン等のビス[(カルボキシフェノキシ)フェニル]スルフォン化合物などが挙げられる。
 前記フェノール性水酸基を有するポリアミンとしては、3,3’-ジヒドロキシベンジジン、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジアミノ-3,3’-ジヒドロキシジフェニルスルホン、ビス(3-アミノ-4-ヒドロキシフェニル)メタン、2,2-ビス-(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノ-3-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-アミノ-3-ヒドロキシフェニル)メタン、2,2-ビス(4-アミノ-3-ヒドロキシフェニル)プロパン、4,4’-ジアミノ-3,3’-ジヒドロキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジヒドロキシベンゾフェノン、4,4’-ジアミノ-3,3’-ジヒドロキシジフェニルエーテル、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルエーテル、1,4-ジアミノ-2,5-ジヒドロキシベンゼン、1,3-ジアミノ-2,4-ジヒドロキシベンゼン、1,3-ジアミノ-4,6-ジヒドロキシベンゼン等が挙げられる。
 前記ポリイソシアネートとしては、1種又は2種以上を用いることができ、脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香族ポリイソシアネート等が挙げられる。
 前記脂肪族ポリイソシアネートとしては、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2-メチル-1,5-ペンタンジイソシアネート、3-メチル-1,5-ペンタンジイソシアネート、ダイマー酸ポリイソシアネート等が挙げられる。
 前記脂環式ポリイソシアネートとしては、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、水添キシリレンジイソシアネート等が挙げられる。
 前記芳香族ポリイソシアネートとしては、トリレンジイソシアネート、キシリレンジイソシアネート、ビフェニルジイソシアネート、ジフェニルスルホンジイソシアネート、ジフェニルエーテルジイソシアネート、ジフェニルメタンジイソシアネート等が挙げられる。
 前記ポリアミド樹脂は、アミド結合を有する樹脂であり、ポリアミンとポリカルボン酸との反応物;ラクタムの開環重合物;又はこれらの共重合体であることが好ましい。前記ポリアミンとして、カルボキシ基を有するポリアミンを用いることで、カルボキシ基を有するポリアミド樹脂を得ることができる。
 前記ポリアミンとしては、前記ポリイミド樹脂の原料として説明したポリアミンと同様の化合物を用いることができる。
 前記ポリカルボン酸としては、1種又は2種以上を用いることができ、脂肪族ポリカルボン酸、脂環式ポリカルボン酸、芳香族ポリカルボン酸が挙げられる。
 前記脂肪族ポリカルボン酸としては、アジピン酸、セバシン酸、アゼライン酸、デカメチレンジカルボン酸等が挙げられる。
 前記脂環式ポリカルボン酸としては、シクロヘキサンジカルボンさん、シクロペンタンジカルボン酸等が挙げられる。
 前記芳香族ポリカルボン酸としては、オルトフタル酸、無水フタル酸、テレフタル酸、イソフタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、ナフタレン-1,5-ジカルボン酸等が挙げられ、これらのエステル化物あるいはハロゲン化物を用いてもよい。
 前記ポリアミドイミド樹脂は、イミド環とアミド結合とを有する樹脂であり、1分子中に、無水化した2個のカルボキシ基と無水化していないカルボキシ基とを少なくとも有するポリカルボン酸と、ポリイソシアネートとの反応物;1分子中に、無水化した2個のカルボキシ基と無水化していないカルボキシ基とを少なくとも有するポリカルボン酸と、カルボキシ基を有するポリアミンとの反応物に、さらにポリイソシアネートを反応させて得られる化合物などが挙げられる。
 前記無水化した2個のカルボキシ基と無水化していないカルボキシ基とを少なくとも有する化合物としては、無水トリメリット酸、4,4’-オキシジフタル酸無水物、水添トリメリット酸無水物等が挙げられる。該無水化した2個のカルボキシ基と無水化していないカルボキシ基とを少なくとも有する化合物に加えて、上記ポリカルボン酸無水物として例示した化合物を併用してもよい。
 前記カルボキシ基を有するポリアミン、前記ポリイソシアネートとしては、上記カルボキシ基を有するポリアミン、上記ポリイソシアネートとして例示した化合物を用いることができる。
 前記ポリアミドイミド樹脂としては、例えば、以下の式(1)で表される単位を有する樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000001
[式(1)中、R1は、ポリイソシアネートの残基を表し、R2、R4は、それぞれ、1分子中に、無水化した2個のカルボキシ基を有する化合物と無水化していないカルボキシ基とを少なくとも有するポリカルボン酸の残基を表し、R3は、カルボキシ基を有するポリアミンの残基を表す。]
 前記エポキシ樹脂は、好ましくは、酸基(好ましくはカルボキシ基)を有するエポキシ(メタ)アクリレート樹脂であり、1分子中にエポキシ基を2個以上有するエポキシ樹脂(以下、「特定エポキシ樹脂」という場合がある。)のエポキシ基に(メタ)アクリル酸を付加させ、さらに1種又は2種以上の2価の有機酸を付加させた構造を有する樹脂(A1);又は前記樹脂(A1)のカルボキシ基の一部に、さらにグリシジル(メタ)アクリレート等の酸反応性(メタ)アクリレート化合物を付加させた樹脂(A2)であることが好ましい。
 前記特定エポキシ樹脂としては、1種又は2種以上を用いることができ、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビキシレノール型/ビフェノール型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、複素環式エポキシ樹脂、ジグリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂、グリシジルメタアクリレート共重合系エポキシ樹脂、シクロヘキシルマレイミドとグリシジルメタアクリレートの共重合エポキシ樹脂、CTBN変性エポキシ樹脂等が挙げられる。
 中でも、耐熱性の観点から、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂が好ましい。
 前記特定エポキシ樹脂に含まれるノボラック型エポキシ樹脂及びクレゾールノボラック型エポキシ樹脂の合計の含有率は、前記特定エポキシ樹脂100質量%中、好ましくは90質量%以上、より好ましくは95質量%以上であり、上限は100質量%である。
 前記有機酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸等のジカルボン酸の無水物等が挙げられる。前記ジカルボン酸無水物としては、耐熱性の観点から、フマル酸、フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸等の環状構造を有するジカルボン酸の無水物が好ましい。
 前記酸反応性(メタ)アクリレート化合物としては、グリシジル(メタ)アクリレート等のグリシジル基と(メタ)アクリロイル基を有する化合物が挙げられる。
 前記アルカリ可溶性樹脂(A2)の酸価は、好ましくは30mgKOH/g以上、より好ましくは40mgKOH/g以上であり、好ましくは150mgKOH/g以下、より好ましくは100mgKOH/g以下、さらに好ましくは90mgKOH/g以下である。
 前記アルカリ可溶性樹脂(A2)の重量平均分子量は、好ましくは1,000以上、より好ましくは3,000以上、さらに好ましくは5,000以上であり、好ましくは100,000以下、より好ましくは50,000以下、さらに好ましくは12,000以下、いっそう好ましくは10,000以下である。また、前記アルカリ可溶性樹脂(a)の分子量分散度は、好ましくは1.5以上4以下である。
 本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィにより測定した値を意味するものとする。
 前記アルカリ可溶性樹脂(A2)の含有率は、前記活性エネルギー線硬化性樹脂組成物の不揮発分中、好ましくは10質量%以上、より好ましくは15質量%以上、さらに好ましくは18質量%以上であり、好ましくは90質量%以下、より好ましくは85質量%以下、さらに好ましくは80質量%以下である。
 前記硬化剤(A3)は、前記アルカリ可溶性樹脂(A2)に含まれる酸基(好ましくはカルボキシ基)と反応しうる官能基(好ましくはエポキシ基)を有するものであることが好ましい。前記硬化剤としては、1種又は2種以上を用いることができ、例えば、前記特定エポキシ樹脂として例示したエポキシ樹脂を用いることができる。中でも、耐熱性の観点から、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂が好ましく、軟化点が50℃以上120℃以下であるものが好ましい。
 前記硬化剤(A3)のエポキシ基当量は、好ましくは5以上、より好ましくは30以上、さらに好ましくは50以上であり、好ましくは500以下、より好ましくは400以下、さらに好ましくは300以下である。
 前記硬化剤(A3)の含有量は、前記酸基含有エポキシ(メタ)クリレート樹脂(A2)100質量部に対して、好ましくは10質量部以上、より好ましくは20質量部以上、さらに好ましくは25質量部以上であり、好ましくは70質量部以下、より好ましくは60質量部以下、さらに好ましくは50質量部以下である。
 前記硬化剤(A3)と併せて、硬化促進剤(A4)を使用してもよい。前記硬化促進剤(A4)としては、1種又は2種以上を用いることができ、例えば、トリフェニルホスフィン等のリン系化合物;ジシアンアミド;ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物;イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等の環状アミン化合物;アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;有機酸金属塩;ルイス酸;アミン錯塩等が挙げられる。
 前記硬化促進剤(A4)の含有量は、前記硬化剤(A3)100質量部に対して、好ましくは1質量部以上10質量部以下である。
 前記樹脂(A)の含有率は、前記樹脂組成物の不揮発分中、好ましくは11質量%以上、より好ましくは16質量%以上、さらに好ましくは19質量%以上であり、好ましくは99質量%以下、より好ましくは95質量%以下、さらに好ましくは90質量%以下である。
 前記ブロックポリマーは、例えば、式(2)で表されるブロックポリマー(2個のポリマーAブロックと、2価のポリマーBブロックとが結合したブロックポリマー)であってもよく、式(3)で表されるブロックポリマー(3個のポリマーAブロックと、3価のポリマーBブロックとが結合したブロックポリマー)であってもよく、式(4)で表されるブロックポリマー(4個のポリマーAブロックと、4個のポリマーBブロックとが結合したブロックポリマー)であってもよい。
Figure JPOXMLDOC01-appb-C000002
 前記ポリマーAブロックは、ポリエステル単位を含むことが好ましい。前記ポリエステル単位としては、例えば、低分子量ポリオール(例えば、分子量50以上300以下のポリオール)とポリカルボン酸とをエステル化反応して得られるポリエステル単位;環状エステル化合物を開環重合反応して得られるポリエステル単位;これらの共重合ポリエステル単位等が挙げられる。
 前記低分子量ポリオールとしては、分子量が50以上300以下程度のポリオールを用いることができ、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、1,3-ブタンジオール等の炭素原子数2以上6以下の脂肪族ポリオール;1,4-シクロヘキサンジオール、シクロヘキサンジメタノール等の脂環式構造含有ポリオール;ビスフェノールA、ビスフェノールF等のビスフェノール化合物及びそれらのアルキレンオキシド付加物等の芳香族構造含有ポリオールなどが挙げられる。
 前記ポリカルボン酸としては、コハク酸、アジピン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族ポリカルボン酸;テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ポリカルボン酸;並びに前記脂肪族ポリカルボン酸及び芳香族ポリカルボン酸の無水物又はエステル形成性誘導体などが挙げられる。
 前記環状エステル化合物としては、α-アセトラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトン等が挙げられる。
 前記ポリマーAブロックのガラス転移温度は、好ましくは-80℃以上、より好ましくは-75℃以上、さらに好ましく-70℃以上であり、好ましくは50℃以下、より好ましくは40℃以下、さらに好ましくは30℃以下である。
 ポリマーAブロックの末端(自由末端)は、カルボキシル基又は水酸基のいずれであってもよく、水酸基であることが好ましい。
 前記ポリマーAブロックの数平均分子量は、好ましくは500以上、より好ましくは750以上、さらに好ましくは1,000以上であり、好ましくは20,000以下、より好ましくは10,000以下、さらに好ましくは5,000以下である。
 前記ポリエステル単位の含有率は、前記ポリマーAブロック中、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上であり、上限は100質量%である。
 前記ポリマーBブロックのガラス転移温度0℃以下であることが好ましい。前記ガラス転移温度は、好ましくは-10℃以下、より好ましくは-20℃以下、さらに好ましくは-30℃以下であり、好ましくは-150℃以上、より好ましくは-140℃以上、さらに好ましくは-130℃以上である。
 前記ポリマーBブロックは、ポリエーテル単位、共役ジエン重合体単位、水添共役ジエン重合体単位及びポリシロキサン単位からなる群より選ばれる1種以上(以下、「特定ポリマー単位」という場合がある)を含むものであることが好ましい。
 前記ポリエーテル単位は、オキシアルキレン単位を繰り返し単位とするポリマー単位を意味する。前記オキシアルキレン単位としては、オキシエチレン単位、オキシプロピレン単位、オキシブチレン単位等のオキシ基と炭素原子数2~4のアルキレン単位とを有するオキシアルキレン単位が挙げられる。中でも、耐水性の観点から、オキシプロピレン単位、オキシブチレン単位が好ましい。
 前記ポリエーテル単位の数平均分子量は、好ましくは500以上、より好ましくは750以上、さらに好ましくは1,000以上であり、好ましくは20,000以下、より好ましくは15,000以下、さらに好ましくは10,000以下である。
 前記共役ジエン重合体単位は、少なくとも共役ジエン化合物を含むモノマーの重合体単位を意味する。前記共役ジエン化合物としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2,3-ジメチルブタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロル-1,3-ブタジエン等が挙げられ、1,3-ブタジエン、イソプレンが好ましい。
 前記共役ジエン化合物の含有率は、前記モノマー中、例えば30質量%以上、好ましくは50質量%以上、より好ましくは70質量%以上であり、上限は100質量%である。
 前記モノマーは、共役ジエン化合物に加えて、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、3-メチルブチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、イソアミル(メタ)アクリレート炭素原子数4~10のアルキル(メタ)アクリレート;シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の炭素原子数6~20のシクロアルキル(メタ)アクリレート;(メタ)アクリロニトリル、クロトノニトリル、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物;スチレン、p-tert-ブチルスチレン、α-メチルスチレン、ビニルトルエン、ビニルピリジン、クロロスチレン、クロロメチルスチレン等の芳香族ビニルモノマーなどを含んでいてもよい。
 前記水添共役ジエン重合体単位としては、少なくとも共役ジエン化合物を含むモノマーの重合体に水素添加した重合体単位を表し、前記共役ジエン化合物及びモノマーとしては、前記例示した化合物を用いることができる。
 前記共役ジエン重合体単位の数平均分子量は、好ましくは500以上、より好ましくは750以上、さらに好ましくは1,000以上であり、好ましくは20,000以下、より好ましくは15,000以下、さらに好ましくは10,000以下である。
 前記水添共役ジエン重合体単位を形成するモノマー中、前記共役ジエン化合物の含有率は、好ましくは30質量%以上、より好ましくは50質量%以上、さらに好ましくは70質量%以上であり、上限は100質量%である。
 前記ポリシロキサン単位は、2個の炭化水素基に置換されたケイ素原子と、酸素原子とが交互に配列した単位を意味する。前記炭化水素基としては、炭素原子数1~5の脂肪族炭化水素基(好ましくはメチル基)、炭素原子数3~10の脂環式炭化水素基、炭素原子数6~10の芳香族炭化水素基が挙げられ、該炭化水素基は、水酸基、カルボキシ基、スルホン酸基等の置換基を有していてもよい。
 前記ポリシロキサン単位中、シロキサン単位(-Si-O-)の数平均分子量は、好ましくは500以上、より好ましくは750以上、さらに好ましくは1,000以上であり、好ましくは20,000以下、より好ましくは15,000以下、さらに好ましくは10,000以下である。
 前記ポリマーBブロックの数平均分子量は、好ましくは500以上、より好ましくは750以上、さらに好ましくは1,000以上であり、好ましくは20,000以下、より好ましくは15,000以下、さらに好ましくは10,000以下である。
 前記特定ポリマー単位の含有率は、前記ポリマーBブロック中、好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上であり、
上限は100質量%である。
 前記ポリマーAブロックとポリマーBブロックとの含有率比(A/B)は、質量基準で、好ましくは0.1以上、より好ましくは0.3以上、さらに好ましくは0.4以上であり、好ましくは10以下、より好ましくは8以下、さらに好ましくは6以下である。
 前記ブロックポリマーの数平均分子量は、好ましくは1,500以上、より好ましくは2,000以上、さらに好ましくは3,000以上であり、好ましくは20,000以下、より好ましくは17,000以下、さらに好ましくは15,000以下である。
 前記ブロックポリマーは、例えば、ポリマーBブロックの末端を水酸基とした化合物に、ポリマーAブロックの原料(例えば、ポリオール、ポリカルボン酸、ラクトン化合物等)を反応させることにより製造することができる。
 前記改質樹脂(B)は、ブロックポリマーと併せて、他の改質樹脂(ポリエーテル樹脂、ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂、フッ素樹脂、セルロース樹脂、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、エラストマー等)を含んでいてもよい。前記ブロックポリマーの含有率は、前記改質樹脂(B)中、好ましくは30質量%以上、より好ましくは50質量%以上、さらに好ましくは70質量%以上であり、上限は100質量%である。
 前記改質樹脂(B)の含有量は、前記樹脂(A)100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、さらに好ましくは1質量部以上であり、好ましくは20質量部以下、より好ましくは15質量部以下、さらに好ましくは10質量部以下である。
 前記樹脂組成物は、前記樹脂(A)として熱硬化性樹脂(A1)を含む場合、さらに、硬化剤(C)を含むことが好ましい。前記硬化剤(C)を含むことで、前記樹脂(A)が自己反応性の基を有するものでない場合であっても、前記樹脂組成物を硬化することが容易である。前記硬化剤(C)としては、1種又は2種以上を用いることができ、フェノ-ル樹脂、アミン化合物、アミド化合物、活性エステル樹脂、酸無水物、シアネートエステル樹脂等が挙げられる。中でも、熱硬化剤(B)としては、活性エステル樹脂、フェノール樹脂及びシアネート樹脂から選ばれる少なくとも1種を含むことが好ましい。
 前記フェノール樹脂としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリフェニロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール性水酸基含有化合物)、ナフタレン骨格含有フェノール樹脂、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール性水酸基含有化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール性水酸基含有化合物)等の多価フェノール性水酸基含有樹脂、ビスフェノールA、ビスフェノールF等のビスフェノール化合物、ビフェニル、テトラメチルビフェニル等のビフェニル化合物;トリフェニロールメタン、テトラフェニロールエタン;ジシクロペンタジエン-フェノール付加反応型樹脂、これら各種のフェノール水酸基含有化合物にリン原子を導入したリン変性フェノール化合物などが挙げられる。
 前記アミン化合物としては、ジシアンアミド、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル、BF3-アミン錯体、グアニジン誘導体等が挙げられる。
 前記アミド化合物としては、ポリアミド、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。
 前記活性エステル樹脂としては、特に制限はないが、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。前記活性エステル樹脂は、カルボン酸化合物及び/又はチオカルボン酸化合物と、ヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物又はそのハライドとヒドロキシ化合物とから得られる活性エステル樹脂が好ましく、カルボン酸化合物又はそのハライドと、フェノール化合物及び/又はナフトール化合物とから得られる活性エステル樹脂がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等、又はそのハライドが挙げられる。フェノール化合物又はナフトール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシジフェニルエーテル、フェノールフタレイン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン-フェノール付加型樹脂等が挙げられる。
 酸無水物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、これらの共重合体等が挙げられる。
 前記シアネートエステル樹脂としては、1種又は2種以上を用いることができ、例えば、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ビスフェノールS型シアネートエステル樹脂、ビスフェノールスルフィド型シアネートエステル樹脂、フェニレンエーテル型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ビフェニル型シアネートエステル樹脂、テトラメチルビフェニル型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、フェノールノボラック型シアネートエステル樹脂、クレゾールノボラック型シアネートエステル樹脂、トリフェニルメタン型シアネートエステル樹脂、テトラフェニルエタン型シアネートエステル樹脂、ジシクロペンタジエン-フェノール付加反応型シアネートエステル樹脂、フェノールアラルキル型シアネートエステル樹脂、ナフトールノボラック型シアネートエステル樹脂、ナフトールアラルキル型シアネートエステル樹脂、ナフトール-フェノール共縮ノボラック型シアネートエステル樹脂、ナフトール-クレゾール共縮ノボラック型シアネートエステル樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型シアネートエステル樹脂、ビフェニル変性ノボラック型シアネートエステル樹脂、アントラセン型シアネートエステル樹脂等が挙げられる。
 これらのシアネートエステル樹脂の中でも、特に耐熱性に優れる硬化物が得られる点においては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、ポリヒドロキシナフタレン型シアネートエステル樹脂、ナフチレンエーテル型シアネートエステル樹脂、ノボラック型シアネートエステル樹脂を用いることが好ましく、誘電特性に優れる硬化物が得られる点においては、ジシクロペンタジエン-フェノール付加反応型シアネートエステル樹脂が好ましい。
 前記樹脂組成物に前記硬化剤(C)を含む場合、硬化促進剤(C1)を含んでいてもよい。前記硬化促進剤(C1)としては、1種又は2種以上を用いることができ、例えば、リン系化合物、第3級アミン、イミダゾール化合物、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルホスフィン、第3級アミンでは1,8-ジアザビシクロ-[5.4.0]-ウンデセン(DBU)が好ましい。
 前記樹脂(A)として、熱硬化性樹脂(A1)を含む場合、本発明の組成物は、さらに、マレイミド化合物(C2)を含んでいてもよい。ただし、マレイミド化合物(C2)は、前記マレイミド樹脂とは異なる。前記マレイミド化合物(C2)としては、1種又は2種以上を用いることができ、例えば、N-シクロヘキシルマレイミド、N-メチルマレイミド、N-n-ブチルマレイミド、N-ヘキシルマレイミド、N-tert-ブチルマレイミド等のN-脂肪族マレイミド;N-フェニルマレイミド、N-(P-メチルフェニル)マレイミド、N-ベンジルマレイミド等のN-芳香族マレイミド;4,4’-ジフェニルメタンビスマレイミド、4,4’-ジフェニルスルホンビスマレイミド、m-フェニレンビスマレイミド、ビス(3-メチル-4-マレイミドフェニル)メタン、ビス(3-エチル-4-マレイミドフェニル)メタン、ビス(3、5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン等のビスマレイミド類が挙げられる。
 中でも、マレイミド化合物(C2)としては、硬化物の耐熱性が良好なものとなる点からビスマレイミド類が好ましく、特に4,4’-ジフェニルメタンビスマレイミド、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3、5-ジエチル-4-マレイミドフェニル)メタンが好ましい。
 前記マレイミド化合物(C2)を用いる場合、必要に応じて、前記アミン化合物、前記フェノール化合物、前記酸無水物系化合物、イミダゾール化合物、有機金属塩等を含んでいてもよい。
 前記樹脂組成物は、樹脂(A)としてアルカリ可溶性樹脂(A2)とエポキシ硬化剤(A3)との組合せを含む場合、重合性化合物(D)、光重合開始剤(E)、光増感剤(F)、熱反応性化合物(G)を含んでいてもよい。
 前記重合性化合物(D)は、活性ラジカルによって重合しうる基(好ましくは重合性二重結合)を有する化合物であり、(メタ)アクリロイル基を有する化合物であることが好ましい。
 前記重合性化合物(D)としては、フェノキシ(メタ)アクリレート等の単官能化合物;1,6-ヘキサンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールAのビス((メタ)アクリロイロキシエチル)エーテル及び3-メチルペンタンジオールジ(メタ)アクリレート、メトキシテトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等の2官能化合物並びにそれらのエチレンオキシド変性物、プロピレンオキシド変性物及びカプロラクトン変性物;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート等の3官能化合物並びにそれらのエチレンオキシド変性物、プロピレンオキシド変性物及びカプロラクトン変性物;ペンタエリスリトールテトラ(メタ)アクリレート等の4官能化合物並びにそれらのエチレンオキシド変性物、プロピレンオキシド変性物及びカプロラクトン変性物;ジペンタエリスリトールペンタ(メタ)アクリレート等の5官能有する化合物並びにそれらのエチレンオキシド変性物、プロピレンオキシド変性物及びカプロラクトン変性物;ジペンタエリスリトールヘキサ(メタ)アクリレート等の6官能化合物並びにそれらのエチレンオキシド変性物、プロピレンオキシド変性物及びカプロラクトン変性物;トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールノナ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート等の7官能以上の化合物並びにそれらのエチレンオキシド変性物、プロピレンオキシド変性物及びカプロラクトン変性物などが挙げられる。
 前記重合性化合物(D)の数平均分子量は、好ましくは150以上2,900以下、より好ましくは250以上1,500以下である。
 前記重合性化合物(D)を含む場合、その含有量は、前記アルカリ可溶性樹脂100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上、さらに好ましくは3質量部以上であり、好ましくは15質量部以下、より好ましくは10質量部以下、さらに好ましくは7質量部以下である。
 前記光重合開始剤(E)としては、1種又は2種以上を用いることができ、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、オリゴ{2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン}、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-[4-(4-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシー2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン等のアセトフェノン化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン化合物;2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド、等のアシルホスフィンオキシド化合物;ベンジル(ジベンゾイル)、メチルフェニルグリオキシエステル、オキシフェニル酢酸2-(2-ヒドロキシエトキシ)エチルエステル、オキシフェニル酢酸2-(2-オキソ-2-フェニルアセトキシエトキシ)エチルエステル等のベンジル化合物;ベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-メチルベンゾフェノン等のベンゾフェノン化合物;2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン等のチオキサントン化合物;2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン等のアミノアルキルフェノン化合物;ミヒラ-ケトン、4,4’-ジエチルアミノベンゾフェノン等のアミノベンゾフェノン化合物;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル化合物;10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、9,10-フェナンスレンキノン、カンファーキノン、1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-(4-メチルフェニルスルフォニル)プロパン-1-オン等が挙げられる。
 前記光重合開始剤(E)を用いる場合、その含有量は、前記アルカリ可溶性樹脂100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、さらに好ましくは5質量部以上であり、好ましくは20質量部以下、より好ましくは15質量部以下、さらに好ましくは12質量部以下である。
 前記光増感剤(F)としては、1種又は2種以上を用いることができ、例えば、ジエタノールアミン、N-メチルジエタノールアミン、トリブチルアミン等の3級アミン化合物、o-トリルチオ尿素等の尿素化合物、ナトリウムジエチルジチオホスフェート、s-ベンジルイソチウロニウム-p-トルエンスルホネート等の硫黄化合物などが挙げられる。
 前記光増感剤(F)を用いる場合、その含有量は、前記光重合開始剤(E)100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、さらに好ましくは5質量部以上であり、好ましくは20質量部以下、より好ましくは15質量部以下、さらに好ましくは12質量部以下である。
 前記樹脂組成物は、樹脂(A)として熱硬化性樹脂(A1)を含む場合、さらに、無機充填材(G)を含んでいてもよい。無機充填材(G)を含むことで、絶縁層の熱膨張率をいっそう低下することができる。前記無機充填材としては、1種又は2種以上を用いることができ、例えば、シリカ(溶融シリカ、結晶シリカ等)、窒化ケイ素、アルミナ、粘土鉱物(タルク、クレー等)、雲母粉、水酸化アルミニウム、水酸化マグネシウム、酸化マグネシウム、チタン酸アルミニウム、チタン酸バリウム、チタン酸カルシウム、酸化チタン等が挙げられ、シリカが好ましく、溶融シリカがより好ましい。また、前記シリカの形状は、破砕状及び球状のいずれでもよく、配合量を高めつつ組成物の溶融粘度を抑制する観点から、球状であることが好ましい。
 特に、本発明の組成物を半導体封止材(好ましくはパワートランジスタ、パワーIC用高熱伝導半導体封止材)に用いる場合、シリカ(溶融シリカ、結晶シリカが挙げられ、好ましくは結晶シリカ)、アルミナ、窒化ケイ素が好ましい。
 前記無機充填材(G)の含有率は、樹脂組成物中、好ましくは0.2質量%以上、より好ましくは30質量%以上、さらに好ましくは50質量%以上、よりいっそう好ましくは70質量%以上、特に好ましくは80質量%以上であり、好ましくは95質量%以下、より好ましくは90質量%以下である。無機充填材の含有率を高めると、難燃性や耐湿熱性、耐ハンダクラック性を高め、熱膨張率を低くすることが容易である。
 本発明の樹脂組成物は、さらに、強化繊維(H)を含んでいてもよい。前記強化繊維としては、ガラス繊維、炭素繊維等の繊維材料や該繊維材料から形成される繊維基材等が挙げられる。前記ガラス繊維、炭素繊維は、短繊維であってもよく、長繊維であってもよい。前記樹脂組成物に前記繊維材料、繊維基材を含侵させ、シートとすることでプリプレグを得ることができ、該プリプレグ、該プリプレグの硬化物である炭素繊維複合材料も本発明の技術的範囲に含まれる。
 本発明の樹脂組成物は、さらに、難燃剤(I)を含んでいてもよい。前記難燃剤(I)は、実質的にハロゲン原子を含有しない非ハロゲン系であることが好ましい。前記難燃剤(I)としては、1種又は2種以上を用いることができ、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられる。
 前記リン系難燃剤としては、1種又は2種以上を用いることができ、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物等の無機系含窒素リン化合物;リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン=10-オキシド、10-(2,5-ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン=10-オキシド、10-(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン=10-オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等の有機リン化合物などが挙げられる。
 前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。
 前記赤リンは、表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。
 前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン化合物等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。
 前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(i)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(ii)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール類と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類およびホルムアルデヒドとの共縮合物、(iii)前記(ii)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(iv)前記(ii)、(iii)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。
 前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。
 前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、熱硬化性組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した熱硬化性組成物100質量部中、0.05~10質量部の範囲で配合することが好ましく、特に0.1~5質量部の範囲で配合することが好ましい。
 前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。
 前記無機系難燃剤としては、1種又は2種以上を用いることができ、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等の金属水酸化物;モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等の金属酸化物;炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等の金属炭酸塩化合物;アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等の金属粉;ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等のホウ素化合物;シープリー(ボクスイ・ブラウン社)、水和ガラスSiO2-MgO-H2O、PbO-B23系、ZnO-P25-MgO系、P25-B23-PbO-MgO系、P-Sn-O-F系、PbO-V25-TeO2系、Al23-H2O系、ホウ珪酸鉛系等低融点ガラスなどが挙げられる。
 前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。
 本発明の樹脂組成物は、さらに、有機溶剤(J)を含んでいてもよい。樹脂組成物が有機溶剤(J)を含むことで、粘度を下げることができ、特にプリント回線基板の製造に適したものとなる。
 有機溶剤(J)としては、1種又は2種以上を用いることができ、例えば、ケトン溶剤、エーテル溶剤、エステル溶剤、グリコールエーテルアセテート溶剤、グリコールエーテル溶剤、芳香族炭化水素溶剤、アルコール溶剤、脂肪族炭化水素溶剤、石油系溶剤、アミド溶剤などを挙げることができる。具体的には、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン溶剤;プロピレングリコールモノメチルエーテル等のエーテル溶剤;酢酸エチル、酢酸ブチル等のエステル溶剤;セロソルブアセテート、ジプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチルジグリコールアセテート、ジエチレングリコールモノエチルエーテルアセテート(カルビトールアセテート)等、ジエチレングリコールモノブチルエーテルアセテート等のグリコールエーテルアセテート溶剤;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル溶剤;トルエン、キシレン、テトラメチルベンゼン、ソルベッソ150等の芳香族炭化水素溶剤;エタノール、プロパノール、エチレングリコール、プロピレングリコール等のアルコール溶剤;オクタン、デカン等の脂肪族炭化水素溶剤;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド溶剤などが挙げられる。
 特に、本発明の樹脂組成物をプリント配線基板用に用いる場合、前記有機溶剤(J)としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン溶剤;プロピレングリコールモノメチルエーテル等のエーテル溶剤;プロピレングリコールモノメチルエーテルアセテート、エチルジグリコールアセテート等の酢酸エステル溶剤;メチルセロソルブ等のカルビトール溶剤;ジメチルホルムアミド等のアミド溶剤などが好ましい。
 また本発明の樹脂組成物をビルドアップフィルムに用いる場合、前記有機溶剤(J)としては、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶剤;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル溶剤;セロソルブ、ブチルカルビトール等のカルビトール溶剤;トルエン、キシレン等の芳香族炭化水素溶剤;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド溶剤などが好ましい
 前記有機溶剤(J)を含む場合、その含有率は、前記樹脂組成物中、好ましくは10質量%以上、より好ましくは20質量%以上、さらに好ましくは25質量%以上であり、好ましくは90質量%以下、より好ましくは80質量%以下、さらに好ましくは70質量%以下である。
 前記樹脂(A)として、熱硬化性樹脂(A1)を含む場合、前記有機溶剤(J)の含有率は、樹脂組成物中、好ましくは30質量%以上、より好ましくは40質量%以上であり、好ましくは90質量%以下、より好ましくは80質量%以下、さらに好ましくは70質量%以下である。
 前記樹脂(A)として、アルカリ可溶性樹脂(A2)とエポキシ硬化剤(A3)との組合せを含む場合、前記溶剤(J)の含有量は、前記樹脂組成物中、好ましくは10質量%以上、より好ましくは20質量%以上、さらに好ましくは25質量%以上であり、好ましくは80質量%以下、より好ましくは60質量%以下、さらに好ましくは50質量%以下である。
 本発明の樹脂組成物は、さらに導電性粒子を含んでいてもよい。導電性粒子を含むことで、導電ペーストとして用いることができ、異方性導電材料に適したものとなる。
 本発明の樹脂組成物は、さらにゴム、フィラー等を含んでいてもよい。ゴム、フィラー等を含むことで、ビルドアップフィルムに適したものとなる。前記フィラーとしては、1種又は2種以上を用いることができ、例えば、有機フィラー;硫酸バリウム、無定形シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、窒化ケイ素、窒化アルミニウム、窒化ホウ素、ノイブルグリシャスアース等の無機フィラーなどが挙げられる。
 本発明の樹脂組成物は、さらに、熱重合禁止剤、密着促進剤、シランカップリング剤、離型剤、顔料、乳化剤等、硬化促進剤、酸化防止剤、脱泡剤、紫外線吸収剤、消泡剤、防錆剤、砥粒、増粘剤、界面活性剤、難燃剤、可塑剤、滑剤、帯電防止剤、耐熱安定剤、ブレンド用樹脂等の種々の添加剤を含んでいてもよい。
 本発明の樹脂組成物は、硬化前は、樹脂及び改質樹脂が均一に相溶している一方、硬化後は、樹脂とポリマーAを主に含む相と、ポリマーBを主に含む相との間で相分離するものであることが好ましい。硬化前は均一相を形成する一方、硬化後は相分離が誘起される原因は明らかではないが、樹脂が硬化するにつれて樹脂の自由度(移動度)が制限され、相溶性が低下するためと考えられる。
 本発明の組成物は、上記各成分を混合することにより得られ、活性エネルギー線照射又は熱硬化により硬化物とすることができる。硬化物の形状としては、積層物、注型物、接着層、塗膜、フィルム等が挙げられる。
 前記樹脂(A)として、アルカリ可溶性樹脂(A2)とエポキシ硬化剤(A3)との組合せを含む場合、該樹脂組成物を本発明のソルダーレジストとすることができる。
 本発明のソルダーレジストから形成されるドライフィルムも本発明の技術的範囲に包含される。前記ドライフィルムは、例えば、前記ソルダーレジストを基材上に塗布し、必要に応じて含まれる溶剤(J)を乾燥等により除去して樹脂層とすることにより製造することができる。前記塗布には、ブレードコーター、リップコーター、コンマコーター、フィルムコーター等を用いることができる。前記乾燥温度は、好ましくは60℃以上100℃以下である。
 前記ドライフィルムの厚みは、好ましくは1μm以上、より好ましくは5μm以上であり、好ましくは200μm以下、より好ましくは100μm以下である。
 前記活性エネルギー線硬化性樹脂組成物から形成される樹脂層の硬化物を絶縁樹脂層として有するプリント配線板も本発明の技術的範囲に包含される。前記プリント配線板は、例えば、基材上に前記活性エネルギー線硬化性樹脂組成物の樹脂層を形成し、硬化させることで製造することができる。前記硬化は熱硬化により行うことが好ましく、硬化温度は好ましくは140℃以上180℃以下である。
 また、樹脂絶縁層を、感光性の硬化性樹脂層や硬化性樹脂組成物を塗布・乾燥した乾燥塗膜により形成する場合、基材(基板)上に形成された硬化性樹脂層や乾燥塗膜を、接触式(または非接触方式)により、パターンを形成したフォトマスクを通して、選択的に活性エネルギー線により露光もしくはレーザーダイレクト露光機により直接パターン露光する。硬化性樹脂層や乾燥塗膜は、露光部(活性エネルギー線により照射された部分)が硬化する。前記乾燥温度は、例えば、60℃以上120℃以下であることが好ましい。
 活性エネルギー線照射に用いられる露光機としては、直接描画装置(例えばコンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)、メタルハライドランプを搭載した露光機、(超)高圧水銀ランプを搭載した露光機、LEDを搭載した露光機、水銀ショートアークランプを搭載した露光装置を用いることができる。
 活性エネルギー線としては、最大波長が350~410nmの範囲にある光を用いることが好ましい。最大波長をこの範囲とすることにより、光重合開始剤から効率よくラジカルを生成することができる。また、その露光量は膜厚等によって異なるが、一般には5~500mJ/cm2、好ましくは10~300mJ/cm2の範囲内とすることができる。
 直接描画装置としては、例えば、日本オルボテック株式会社製、ペンタックス株式会社製、オーク株式会社製、大日本スクリーン株式会社製等のものを使用することができ、最大波長が350~410nmの活性エネルギー線を照射する装置であればいずれの装置を用いてもよい。
 そして、このようにして硬化性樹脂層や乾燥塗膜を露光することにより、露光部(活性エネルギー線により照射された部分)を硬化させた後、未露光部を希アルカリ水溶液(例えば、0.3~3wt%炭酸ソーダ水溶液)により現像して、硬化性樹脂層や乾燥塗膜にパターンが形成される。
 このとき、現像方法としては、ディッピング法、シャワー法、スプレー法、ブラシ法等によることができる。また、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類等のアルカリ水溶液を用いることができる。
さらに、硬化性樹脂層を、例えば140℃以上200℃の温度に加熱して熱硬化させることにより、アルカリ可溶性樹脂(A2)のカルボキシ基と、エポキシ硬化剤(A3)が反応し、耐熱性、耐薬品性、耐吸湿性、密着性、絶縁信頼性等の諸特性に優れた樹脂絶縁層(パターン)を形成することができる。
 本発明のプリント配線板中の樹脂絶縁層の全膜厚は、100μm以下が好ましく、5~50μmの範囲がより好ましい。
 前記基材としては、予め回路形成されたプリント配線板やフレキシブルプリント配線板の他、紙-フェノール樹脂、紙-エポキシ樹脂、ガラス布-エポキシ樹脂、ガラス-ポリイミド、ガラス布/不繊布-エポキシ樹脂、ガラス布/紙-エポキシ樹脂、合成繊維-エポキシ樹脂、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル,ポリフェニレンオキシド・シアネートエステル等の複合材を用いた全てのグレード(FR-4等)の銅張積層板、ポリイミドフィルム、PETフィルム、ガラス基板、セラミック基板、ウエハ板等を用いることができる。
 本発明のプリント配線板が有する樹脂絶縁層は、永久被膜として好適であり、中でもソルダーレジストとして好適である。
 本発明の樹脂組成物の用途としては、半導体封止材料、プリント配線板材料、樹脂注型材料、接着剤、ビルドアップ基板用層間絶縁材料、ビルドアップ用接着フィルム等が挙げられる。前記用途のうち、プリント配線板や電子回路基板用絶縁材料、ビルドアップ用接着フィルム用途では、コンデンサ等の受動部品やICチップ等の能動部品を基板内に埋め込んだ所謂電子部品内蔵用基板用の絶縁材料として用いることができる。これらの中でも、高耐熱性、低熱膨張性、及び溶剤溶解性といった特性からプリント配線板材料やビルドアップ用接着フィルムに用いることが好ましい。さらに、前記炭素繊維複合材料は、航空機や自動車などの構造材料をはじめとする航空宇宙用途(航空機やロケットの構造材料など)や自動車用途(レーシングカーやボディ骨格など)から、テニスラケットやゴルフシャフトなどのレジャー用途まで広範囲で利用できる。
 以下、実施例を挙げて本発明をより具体的に説明する。
〔合成例1〕ブロックポリマーAの合成
 反応装置に、ポリプロピレングリコール(AGC株式会社製、『EXCENOL(登録商標) 3020』)を300質量部と、ε-カプロラクトン(ダイセル株式会社製、『プラクセル(登録商標) M』)を600質量部仕込み、昇温と撹拌を開始した。次いで、内温を190℃に上昇した後、TiPTを0.009質量部仕込み、190℃で10時間反応させブロックポリマーAを合成した。
 得られたブロックポリマーAの水酸基価は12.7、数平均分子量は8,840であった。
〔合成例2〕ブロックポリマーBの合成
 反応装置に、ポリテトラメチレングリコール(三菱ケミカル株式会社、『PTMG3000』)を300質量部と、ε-カプロラクトン(ダイセル株式会社製、『プラクセル(登録商標) M』)を600質量部仕込み、昇温と撹拌を開始した。次いで、内温を190℃に上昇した後、TiPTを0.009質量部仕込み、190℃で10時間反応させブロックポリマーBを合成した。
 得られたブロックポリマーBの水酸基価は13.8、数平均分子量は8,130であった。
 〔合成例3〕ブロックポリマーCの合成
 反応装置に、ポリブタジエンポリオール(日本曹達株式会社、『G-3000』)を300質量部と、ε-カプロラクトン(ダイセル株式会社製、『プラクセル(登録商標) M』)を600質量部仕込み、昇温と撹拌を開始した。次いで、内温を150℃に上昇した後、TiPTを0.045質量部仕込み、150℃で10時間反応させ樹脂Cを合成した。
 得られたブロックポリマーCの水酸基価は11.4、数平均分子量は9,840であった。
 〔合成例4〕ブロックポリマーDの合成
 反応装置に、水添ポリブタジエンポリオール(日本曹達株式会社、『GI-1000』)を250質量部と、ε-カプロラクトン(ダイセル株式会社製、『プラクセル(登録商標) M』)を750質量部仕込み、昇温と撹拌を開始した。次いで、内温を190℃に上昇した後、TiPTを0.009質量部仕込み、190℃で10時間反応させ樹脂Dを合成した。
 得られたブロックポリマーDの水酸基価は17.2、数平均分子量は6,520であった。
〔実施例1〕
 フラスコにエポキシ樹脂としてビスフェノールA型エポキシ樹脂(DIC株式会社製、『EPICLON(登録商標) 850-S』)を50質量部、硬化剤として活性エステル樹脂(DIC株式会社製、『EPICLON(登録商標) HPC-8000-65T』)90.8質量部を配合し、130℃で1時間、減圧乾燥することで溶剤を留去した。そこに合成例1で得られたブロックポリマーA10.9質量部配合し、内温130℃で相溶するまで撹拌した。硬化促進剤としてN,N-ジメチルアミノピリジンを0.6質量部添加し、20秒撹拌したあと、真空脱泡することで本発明の樹脂組成物(熱硬化性組成物)であるエポキシ樹脂組成物(X1)を得た。得られた硬化物の破断面を原子間力顕微鏡(AFM)により観察したところ、弾性率の異なる2相が、海部と島部とを形成していることが確認された。
〔実施例2〕
 合成例1で得られたブロックポリマーAの代わりに、ブロックポリマーBを用いること以外は、実施例1と同様にして、本発明の樹脂組成物(熱硬化性組成物)であるエポキシ樹脂組成物(X2)を得た。得られた硬化物の破断面を原子間力顕微鏡(AFM)により観察したところ、弾性率の異なる2相が、海部と島部とを形成していることが確認された。
〔実施例3〕
 合成例1で得られたブロックポリマーAの代わりに、ブロックポリマーCを用いること以外は、実施例1と同様にして、本発明の樹脂組成物(熱硬化性組成物)であるエポキシ樹脂組成物(X3)を得た。得られた硬化物の破断面を原子間力顕微鏡(AFM)により観察したところ、弾性率の異なる2相が、海部と島部とを形成していることが確認された。
〔実施例4〕
 合成例1で得られたブロックポリマーAの代わりに、ブロックポリマーDを用いること以外は、実施例1と同様にして、本発明の樹脂組成物(熱硬化性組成物)であるエポキシ樹脂組成物(X4)を得た。得られた硬化物の破断面を原子間力顕微鏡(AFM)により観察したところ、弾性率の異なる2相が、海部と島部とを形成していることが確認された。
〔比較例1〕
 フラスコにエポキシ樹脂としてビスフェノールA型エポキシ樹脂(DIC株式会社製、『EPICLON(商標) 850-S』)を50質量部、硬化剤として活性エステル樹脂(DIC株式会社製、『EPICLON(登録商標) HPC-8000-65T』)90.8質量部を配合し、130℃で1時間減圧乾燥することで溶剤を留去した。硬化促進剤としてN,N-ジメチルアミノピリジンを0.6質量部添加し、20秒撹拌したあと、真空脱泡することで本発明の熱硬化性組成物であるエポキシ樹脂組成物(X5)を得た。得られた硬化物の破断面を原子間力顕微鏡(AFM)により観察したが、相分離構造は観察されなかった。
 得られたエポキシ樹脂組成物(X1)~(X4)、(Y1)について、以下の測定を行った。
〔ガラス転移温度(Tg)、貯蔵弾性率(E')の評価方法〕
 実施例及び比較例で得たエポキシ樹脂組成物を130℃で2mm厚のゴム製スペーサーをガラス板で挟んだ注型板に流し込み、175℃で5時間熱硬化させた。得られた硬化物を幅5mm×長さ55mmの大きさに切り出し、下記の条件にて、貯蔵弾性率(E')及び損失弾性率(E”)を測定した。
 E'/E”をtanδとした場合、tanδが最大となる温度をガラス転移温度(Tg、単位;℃)とし、測定した。
また、25℃での貯蔵弾性率(E')を測定した。
 測定機器  :動的粘弾性測定機(エスアイアイ・ナノテクノロジー株式会社製)
 型式    :DMA6100
 測定温度範囲:0℃~300℃
 昇温速度  :5℃/分
 周波数   :1Hz
 測定モード :曲げ
 貯蔵弾性率に関する評価基準は、以下の通りとした。
  ◎:4,100MPa以下
  ○:4,100MPa超4,500MPa以下
  ×:4,500MPa超
 耐熱性に関する評価基準は、以下の通りとした。
  ◎:ガラス転移温度160℃以上
  ○:ガラス転移温度150℃以上160℃未満
  ×:ガラス転移温度150℃未満
〔銅箔密着性の評価方法〕
 実施例及び比較例で得たエポキシ樹脂組成物を130℃で2mm厚のゴム製スペーサーを片面に銅箔を張ったガラス板で挟んだ注型板に流し込み、175℃で5時間熱硬化させた。得られた硬化物を幅10mm×長さ60mmの大きさに切り出し、剥離試験機を用いて90°ピール強度を測定した。
 測定機器  :島津オートグラフ(株式会社島津製作所製)
 型式    :AG-1
 試験速度  :50mm/m
 銅箔密着性に関する評価基準は、以下の通りとした。
  ◎:ピール強度8.0N/cm以上
  ○:ピール強度7.0N/cm以上8.0N/cm未満
  ×:ピール強度7.0N/cm未満
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例1~4は、本発明の実施例であり、耐熱性と低弾性率化を両立し、かつ、銅箔密着性が良好であった。
 比較例1は、改質樹脂を含まない例であり、低弾性率化が十分でなく、また、銅箔密着性にも劣るものであった。
〔実施例5〕
 混合容器にエポキシ樹脂としてビスフェノールA型エポキシ樹脂(DIC株式会社製、『EPICLON(登録商標) 850-S』)を50質量部、硬化剤としてノボラック型フェノール樹脂(DIC株式会社製、『フェノライト(登録商標) TD-2131』)を27.7質量部、合成例1で得られたブロックポリマー7.8質量部配合し、内温130℃で相溶するまで撹拌した。硬化促進剤としてトリフェニルホスフィンを0.8質量部添加し、20秒撹拌したあと、真空脱泡することで本発明の熱硬化性組成物であるエポキシ樹脂組成物(Y1)を得た。得られた硬化物の破断面を原子間力顕微鏡(AFM)により観察したところ、弾性率の異なる2相が、海部と島部とを形成していることが確認された。
〔実施例6〕
 合成例1で得られたブロックポリマーAの代わりに、ブロックポリマーBを用いること以外は、実施例1と同様にして、本発明の熱硬化性組成物であるエポキシ樹脂組成物(Y2)を得た。得られた硬化物の破断面を原子間力顕微鏡(AFM)により観察したところ、弾性率の異なる2相が、海部と島部とを形成していることが確認された。
〔実施例7〕
 合成例1で得られたブロックポリマーAの代わりに、ブロックポリマーCを用いること以外は、実施例1と同様にして、本発明の熱硬化性組成物であるエポキシ樹脂組成物(Y3)を得た。得られた硬化物の破断面を原子間力顕微鏡(AFM)により観察したところ、弾性率の異なる2相が、海部と島部とを形成していることが確認された。
〔実施例8〕
 合成例1で得られたブロックポリマーAの代わりに、ブロックポリマーDを用いること以外は、実施例1と同様にして、本発明の熱硬化性組成物であるエポキシ樹脂組成物(Y4)を得た。得られた硬化物の破断面を原子間力顕微鏡(AFM)により観察したところ、弾性率の異なる2相が、海部と島部とを形成していることが確認された。
〔比較例2〕
 混合容器にエポキシ樹脂としてビスフェノールA型エポキシ樹脂(DIC株式会社製、『EPICLON(登録商標) 850-S』)を50質量部、硬化剤としてノボラック型フェノール樹脂(DIC株式会社製、『フェノライト(登録商標) TD-2131』)を27.7質量部配合し、内温130℃で相溶するまで撹拌した。硬化促進剤としてトリフェニルホスフィンを0.8質量部添加し、20秒撹拌したあと、真空脱泡することで本発明の熱硬化性組成物であるエポキシ樹脂組成物(Y5)を得た。得られた硬化物の破断面を原子間力顕微鏡(AFM)により観察したが、相分離構造は観察されなかった。
〔ガラス転移温度(Tg)の評価方法〕
 実施例及び比較例で得たエポキシ樹脂組成物を130℃で2mm厚のゴム製スペーサーをガラス板で挟んだ注型板に流し込み、175℃で5時間熱硬化させた。得られた硬化物を幅5mm×長さ55mmの大きさに切り出し、下記の条件にて、貯蔵弾性率(E')及び損失弾性率(E”)を測定した。
 E'/E”をtanδとした場合、tanδが最大となる温度をガラス転移温度(Tg、単位;℃)とし、測定した。 測定機器  :動的粘弾性測定機(エスアイアイ・ナノテクノロジー株式会社製)
 型式    :DMA6100
 測定温度範囲:0℃~300℃
 昇温速度  :5℃/分
 周波数   :1Hz
 測定モード :曲げ
 耐熱性に関する評価基準は、以下の通りとした。
  ◎:ガラス転移温度140℃以上
  ○:ガラス転移温度130℃以上140℃未満
  ×:ガラス転移温度130℃未満
〔破壊靱性の評価方法〕
 実施例及び比較例で得たエポキシ樹脂組成物を130℃で4mm厚のゴム製スペーサー
をガラス板で挟んだ注型板に流し込み、175℃で5時間熱硬化させた。
 得られた硬化物を幅13mm×長さ80mm×厚さ4mmの大きさに切削し試験片とし
て、ASTM D5045-93(ISO 13586)に従い加工し、破壊靱性(単位
;MPa・m0.5)の測定を行った。
 試験前における試験片へのノッチ(刻み目)の作成は、剃刀の刃を試験片にあて、ハン
マーで剃刀の刃に衝撃を与えることで行った。
 測定機器  :島津オートグラフ(株式会社島津製作所製)
 型式    :AG-X plus
 試験速度  :10mm/分
 標線間距離 :50mm
 破壊靭性に関する評価基準は、以下の通りとした。
  ◎:1.50MPa・m0.5以上
  〇:1.00MPa・m0.5以上1.50MPa・m0.5未満
  ×:1.00MPa・m0.5未満
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例5~8は、本発明の実施例であり、耐熱性を維持しつつ、強靭化を達成することができていた。
 比較例2は、改質樹脂(B)を含まない例であり、靭性に劣るものであった。
〔実施例9〕
 混合容器に酸変性ビニル基含有エポキシ樹脂としてオルソクレゾール型エポキシアクリレート樹脂(DIC株式会社製、『DICLITE(登録商標) UE-9000』、不揮発分63.4質量%)を100質量部、合成例1で得られたブロックポリマーAを3.2質量部、光重合開始剤として2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(BASF社製、『イルガキュア(登録商標)907』)を3.2質量部、多官能アクリレートとしてジペンタエリスリトールヘキサアクリレート(新中村化学工業株式会社製、『A-DPH(登録商標)』)を1.9質量部、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製、『EPICLON(登録商標) N-680』を24.4質量部、硬化促進剤として2-エチル-4-メチルイミダゾール0.3質量部、有機溶剤としてジエチレングリコールモノエチルエーテルアセテート13.3質量部を配合し、攪拌することで本発明のエポキシ樹脂組成物(X9)を得た。
 前記エポキシ樹脂組成物(X9)を76μmのアプリケーターで塗布し、80℃で30分乾燥させた。メタルハライドランプを用いて1,000mJ/cm2の紫外線を照射し、更に160℃で1時間熱硬化させた。
〔実施例10~12〕
 合成例1で得られたブロックポリマーAを3.2質量部用いる代わりに、合成例2~4で得られたブロックポリマーB,C,又はDを3.2質量部用いること以外は、実施例1と同様にして、エポキシ樹脂組成物(X10)~(X12)を得た。
 前記エポキシ樹脂組成物(X10)~(X12)を76μmのアプリケーターで塗布し、80℃で30分乾燥させた。メタルハライドランプを用いて1,000mJ/cm2の紫外線を照射し、更に160℃で1時間熱硬化させた。
〔比較例3〕
 混合容器に酸変性ビニル基含有エポキシ樹脂としてオルソクレゾール型エポキシアクリレート樹脂(DIC株式会社製、『DICLITE(登録商標) UE-9000』)を100質量部、(他社添加剤等添加)、光重合開始剤として2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(BASF社製、『イルガキュア(登録商標)907』)を3.2質量部、多官能アクリレートとしてジペンタエリスリトールヘキサアクリレート(新中村化学工業株式会社製、『A-DPH(登録商標)』)を1.9質量部、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製、『EPICLON(登録商標) N-680』)を37.7質量部、硬化促進剤として2-エチル-4-メチルイミダゾール0.3質量部配合し、相溶するまで攪拌することで本発明のエポキシ樹脂組成物(Y3)を得た。
 前記エポキシ樹脂組成物(Y3)を76μmのアプリケーターで塗布し、80℃で30分乾燥させた。メタルハライドランプを用いて1,000mJ/cm2の紫外線を照射し、更に160℃で1時間熱硬化させた。
〔比較例4〕
 合成例1で得られたブロックポリマーAを3.2質量部用いる代わりに、水添ブタジエンポリオール(日本曹達株式会社製、『GI-3000』)3.2質量部を用いること以外は、実施例1と同様にして、エポキシ樹脂組成物(Y4)を得た。
 前記エポキシ樹脂組成物(Y4)を76μmのアプリケーターで塗布し、80℃で30分乾燥させた。メタルハライドランプを用いて1,000mJ/cm2の紫外線を照射し、更に160℃で1時間熱硬化させた。
 得られたエポキシ樹脂組成物(X9)~(X12)、(Y3)~(Y4)について、以下の測定を行った。
〔ガラス転移温度(Tg)、貯蔵弾性率(E’)の評価方法〕
 実施例及び比較例で得たエポキシ樹脂組成物を76μmのアプリケーターで塗布し、80℃で30分乾燥させた。メタルハライドランプを用いて1,000mJ/cm2の紫外線を照射し、更に160℃で1時間熱硬化させた。得られた硬化物を幅10mm×長さ50mmの大きさに切り出し、下記の条件にて、貯蔵弾性率(E')及び損失弾性率(E”)を測定した。E'/E”をtanδとした場合、tanδが最大となる温度をガラス転移温度(Tg、単位;℃)とし、測定した。また、25℃での貯蔵弾性率(E')を測定した。
 測定機器  :動的粘弾性測定機(エスアイアイ・ナノテクノロジー株式会社製)
 型式    :DMA6100
 測定温度範囲:-100℃~250℃
 昇温速度  :5℃/分
 周波数   :1Hz
 測定モード :引張モード
 貯蔵弾性率に関する評価基準は、以下の通りとした。
  ◎:3,000MPa以下
  〇:3,000MPa超4,000MPa以下
  ×:4,000MPa超
 また、耐熱性に関する評価基準は、以下の通りとした。
  ◎:ガラス転移温度130℃以上
  ○:ガラス転移温度125℃以上130℃未満
  ×:ガラス転移温度125℃未満
〔銅箔密着性の評価方法〕
 実施例及び比較例で得たエポキシ樹脂組成物を銅箔上に76μmのアプリケーターで塗布し、80℃で30分乾燥させた。メタルハライドランプを用いて1,000mJ/cm2の紫外線を照射し、更に160℃で1時間熱硬化させた。得られた硬化物を幅10mm×長さ100mmの大きさに切り出し、剥離試験機を用いて90°ピール強度を測定した。
 測定機器  :島津オートグラフ(株式会社島津製作所製)
 型式    :AG-1
 試験速度  :50mm/min
 銅箔密着性に関する評価基準は、以下の通りとした。
  ◎:ピール強度0.5N/cm以上
  ○:ピール強度0.2N/cm以上0.5N/cm未満
  ×:ピール強度0.2N/cm未満
Figure JPOXMLDOC01-appb-T000005
 実施例9~12は、本発明の実施例であり、銅箔密着性が良好であり、耐熱性と低弾性率化を両立できていた。
 比較例3は、改質樹脂を含まない例であり、銅箔密着性に劣っていた。比較例4は、本発明の改質樹脂に該当しない改質樹脂として水添ブタジエンポリオールを用いた例であり、銅箔密着性に劣っていた。

Claims (15)

  1.  樹脂及び改質樹脂を含み、前記樹脂が、熱硬化性樹脂;又はアルカリ可溶性樹脂とエポキシ硬化剤との組合せを含むものであり、前記改質樹脂が、n個のポリマーAブロックと、n価のポリマーBブロックとが結合したものであるブロックポリマーを含むものであり、前記nが、2以上の整数である樹脂組成物。
  2.  前記ポリマーAブロックが、ポリエステル単位を含むものである請求項1記載の樹脂組成物。
  3.  前記ポリマーBブロックが、ポリエーテル単位、共役ジエン重合体単位、水添共役ジエン重合体単位及びポリシロキサン単位からなる群より選ばれる1種以上を含むものである請求項1又は2記載の樹脂組成物。
  4.  前記ブロックポリマーの数平均分子量が、1,500以上20,000以下である請求項1~3のいずれか1項記載の樹脂組成物。
  5.  前記樹脂が、熱硬化性樹脂を含むものであり、
     前記ポリマーBブロック中、ポリエーテル単位、共役ジエン重合体単位、水添共役ジエン重合体単位及びポリシロキサン単位の合計の含有率が、70質量%以上である請求項1~4のいずれか1項記載の樹脂組成物。
  6.  前記樹脂が、アルカリ可溶性樹脂とエポキシ硬化剤との組合せを含むものであり、
     前記ポリマーAブロックが、ポリエステル単位を含むものであり、
     前記ポリマーBブロックが、ガラス転移温度0℃以下のポリマーブロックである請求項1~4のいずれか1項記載の樹脂組成物。
  7.  請求項5記載の樹脂組成物からなる半導体封止材料。
  8.  請求項5記載の樹脂組成物と補強基材とを有する含浸基材の半硬化物であるプリプレグ。
  9.  請求項5記載の樹脂組成物の板状賦形物と銅箔とを含む回路基板。
  10.  請求項5記載の樹脂組成物の硬化物と基材フィルムとを含むビルドアップフィルム。
  11.  請求項5記載の樹脂組成物と、炭素繊維とを有するプリプレグ。
  12.  請求項11記載のプリプレグの硬化物である炭素繊維複合材料。
  13.  請求項6記載の活性エネルギー線硬化性組成物からなるソルダーレジスト。
  14.  請求項6記載の活性エネルギー線硬化性組成物からなるドライフィルム。
  15.  請求項13記載のソルダーレジストから形成される樹脂層の硬化物を有するプリント配線板。
PCT/JP2020/025947 2019-08-23 2020-07-02 樹脂組成物及びそれを用いた半導体封止材料、含侵基材、回路基板、ビルドアップフィルム、プリプレグ、炭素繊維複合材料、ソルダーレジスト、ドライフィルム、プリント配線板 WO2021039111A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021521542A JP7024915B2 (ja) 2019-08-23 2020-07-02 樹脂組成物及びそれを用いた半導体封止材料、含侵基材、回路基板、ビルドアップフィルム、プリプレグ、炭素繊維複合材料、ソルダーレジスト、ドライフィルム、プリント配線板
CN202080052143.0A CN114174422B (zh) 2019-08-23 2020-07-02 树脂组合物及其应用
KR1020227000326A KR102638920B1 (ko) 2019-08-23 2020-07-02 수지 조성물 및 그것을 사용한 반도체 봉지 재료, 함침 기재, 회로 기판, 빌드업 필름, 프리프레그, 탄소 섬유 복합 재료, 솔더 레지스트, 드라이 필름, 프린트 배선판

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-152877 2019-08-23
JP2019152877 2019-08-23
JP2019-152878 2019-08-23
JP2019152878 2019-08-23

Publications (1)

Publication Number Publication Date
WO2021039111A1 true WO2021039111A1 (ja) 2021-03-04

Family

ID=74683666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025947 WO2021039111A1 (ja) 2019-08-23 2020-07-02 樹脂組成物及びそれを用いた半導体封止材料、含侵基材、回路基板、ビルドアップフィルム、プリプレグ、炭素繊維複合材料、ソルダーレジスト、ドライフィルム、プリント配線板

Country Status (5)

Country Link
JP (1) JP7024915B2 (ja)
KR (1) KR102638920B1 (ja)
CN (1) CN114174422B (ja)
TW (1) TWI843869B (ja)
WO (1) WO2021039111A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174422A (zh) * 2019-08-23 2022-03-11 Dic株式会社 树脂组合物及使用其的半导体密封材料、含侵基材、电路基板、增层膜、预浸体、碳纤维复合材料、阻焊剂、干膜、印刷配线板
JP7474592B2 (ja) 2019-12-27 2024-04-25 太陽ホールディングス株式会社 硬化性樹脂組成物、ドライフィルム、樹脂付き銅箔、硬化物、および電子部品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102553221B1 (ko) * 2022-10-13 2023-07-06 김태영 전도성이 향상된 면상발열체

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199712A (ja) * 1983-04-27 1984-11-12 Mitsui Toatsu Chem Inc 硬化性樹脂組成物
JPH02107659A (ja) * 1988-09-06 1990-04-19 Ciba Geigy Ag ブロックポリマーにより改質されたエポキシ樹脂
JPH04216855A (ja) * 1990-02-27 1992-08-06 Shell Internatl Res Maatschappij Bv ポリシロキサン改質の熱硬化性組成物
JP2000344716A (ja) * 1999-06-02 2000-12-12 Nippon Kayaku Co Ltd (メタ)アクリル酸エステル、樹脂組成物及びその硬化物
JP2001310989A (ja) * 2000-04-28 2001-11-06 Dainippon Ink & Chem Inc エポキシ樹脂組成物及び電気積層板
JP2005213374A (ja) * 2004-01-29 2005-08-11 Daicel Chem Ind Ltd ポリエステルエラストマー組成物
JP2008156392A (ja) * 2006-12-21 2008-07-10 Wintech Polymer Ltd 難燃性樹脂組成物
JP2008195875A (ja) * 2007-02-14 2008-08-28 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2009269999A (ja) * 2008-05-07 2009-11-19 Nitto Denko Corp 半導体封止用エポキシ樹脂組成物およびそれを用いて得られる半導体装置
JP2017082213A (ja) * 2015-10-29 2017-05-18 日本化薬株式会社 エポキシ樹脂組成物、硬化物、半導体素子、樹脂シート、プリプレグ及び炭素繊維強化複合材料
JP2017095691A (ja) * 2012-08-29 2017-06-01 東洋紡株式会社 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627188B2 (ja) 1986-11-07 1994-04-13 竹本油脂株式会社 合成樹脂材料用改質剤
JP3201776B2 (ja) 1991-03-20 2001-08-27 ダイセル化学工業株式会社 ラクトンポリオール組成物およびその製造方法
JP3231094B2 (ja) * 1992-10-09 2001-11-19 ハリマ化成株式会社 親水性ポリエステルジオールおよびその製造方法
JPH07206925A (ja) * 1994-01-10 1995-08-08 Daicel Chem Ind Ltd 水添ジエン系−ラクトンブロック共重合体および製造方法
JPWO2007032326A1 (ja) * 2005-09-15 2009-03-19 日本化薬株式会社 感光性樹脂組成物並びにその硬化物
JP4216855B2 (ja) * 2006-02-20 2009-01-28 株式会社日本総合研究所 データ表示装置、データ表示方法およびデータ表示プログラム
WO2009002984A2 (en) * 2007-06-26 2008-12-31 Aegis Biosciences Llp Stable and compatible polymer blends
CN102046727B (zh) * 2008-06-02 2013-02-13 株式会社钟化 树脂组合物及其利用
JP2011094037A (ja) * 2009-10-30 2011-05-12 Toyo Ink Mfg Co Ltd 難燃性接着剤組成物、難燃性接着剤シート、及びフレキシブルプリント配線板
WO2012173242A1 (ja) 2011-06-17 2012-12-20 太陽インキ製造株式会社 光硬化性熱硬化性樹脂組成物
JP6387444B1 (ja) 2017-07-10 2018-09-05 太陽インキ製造株式会社 積層構造体、ドライフィルムおよびフレキシブルプリント配線板
TWI766134B (zh) * 2017-12-26 2022-06-01 日商迪愛生股份有限公司 熱硬化性組成物、其硬化物、半導體封裝材料、預浸漬物、電路基板及增層膜
KR102638920B1 (ko) * 2019-08-23 2024-02-23 디아이씨 가부시끼가이샤 수지 조성물 및 그것을 사용한 반도체 봉지 재료, 함침 기재, 회로 기판, 빌드업 필름, 프리프레그, 탄소 섬유 복합 재료, 솔더 레지스트, 드라이 필름, 프린트 배선판

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199712A (ja) * 1983-04-27 1984-11-12 Mitsui Toatsu Chem Inc 硬化性樹脂組成物
JPH02107659A (ja) * 1988-09-06 1990-04-19 Ciba Geigy Ag ブロックポリマーにより改質されたエポキシ樹脂
JPH04216855A (ja) * 1990-02-27 1992-08-06 Shell Internatl Res Maatschappij Bv ポリシロキサン改質の熱硬化性組成物
JP2000344716A (ja) * 1999-06-02 2000-12-12 Nippon Kayaku Co Ltd (メタ)アクリル酸エステル、樹脂組成物及びその硬化物
JP2001310989A (ja) * 2000-04-28 2001-11-06 Dainippon Ink & Chem Inc エポキシ樹脂組成物及び電気積層板
JP2005213374A (ja) * 2004-01-29 2005-08-11 Daicel Chem Ind Ltd ポリエステルエラストマー組成物
JP2008156392A (ja) * 2006-12-21 2008-07-10 Wintech Polymer Ltd 難燃性樹脂組成物
JP2008195875A (ja) * 2007-02-14 2008-08-28 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP2009269999A (ja) * 2008-05-07 2009-11-19 Nitto Denko Corp 半導体封止用エポキシ樹脂組成物およびそれを用いて得られる半導体装置
JP2017095691A (ja) * 2012-08-29 2017-06-01 東洋紡株式会社 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体
JP2017082213A (ja) * 2015-10-29 2017-05-18 日本化薬株式会社 エポキシ樹脂組成物、硬化物、半導体素子、樹脂シート、プリプレグ及び炭素繊維強化複合材料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174422A (zh) * 2019-08-23 2022-03-11 Dic株式会社 树脂组合物及使用其的半导体密封材料、含侵基材、电路基板、增层膜、预浸体、碳纤维复合材料、阻焊剂、干膜、印刷配线板
CN114174422B (zh) * 2019-08-23 2024-04-30 Dic株式会社 树脂组合物及其应用
JP7474592B2 (ja) 2019-12-27 2024-04-25 太陽ホールディングス株式会社 硬化性樹脂組成物、ドライフィルム、樹脂付き銅箔、硬化物、および電子部品

Also Published As

Publication number Publication date
TWI843869B (zh) 2024-06-01
KR102638920B1 (ko) 2024-02-23
TW202112957A (zh) 2021-04-01
JP7024915B2 (ja) 2022-02-24
CN114174422A (zh) 2022-03-11
JPWO2021039111A1 (ja) 2021-09-13
KR20220019265A (ko) 2022-02-16
CN114174422B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
JP7024915B2 (ja) 樹脂組成物及びそれを用いた半導体封止材料、含侵基材、回路基板、ビルドアップフィルム、プリプレグ、炭素繊維複合材料、ソルダーレジスト、ドライフィルム、プリント配線板
JP4686750B2 (ja) 硬化体及び積層体
JP6162775B2 (ja) 光硬化性および熱硬化性を有する樹脂組成物と、ドライフィルムソルダレジスト
JP6854505B2 (ja) 樹脂組成物、それを用いた熱硬化性フィルム
JP6917636B2 (ja) 樹脂組成物、それを用いた熱硬化性フィルム、樹脂硬化物、積層板、プリント配線板、および半導体装置
EP2412743A1 (en) Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
JP7474064B2 (ja) 樹脂材料及び多層プリント配線板
JP7547109B2 (ja) 樹脂材料及び多層プリント配線板
JP6897008B2 (ja) 層間絶縁層用熱硬化性樹脂組成物、層間絶縁層用樹脂フィルム、多層樹脂フィルム、多層プリント配線板及びその製造方法
WO2021020563A1 (ja) 樹脂材料及び多層プリント配線板
JP5097349B2 (ja) エポキシ樹脂組成物及びこれを用いたエポキシ樹脂ワニス、ボンディングシート、カバーレイフィルム
JP7563912B2 (ja) 樹脂材料及び多層プリント配線板
JP2015205983A (ja) 樹脂組成物
JP2001081282A (ja) エポキシ樹脂組成物及びそれを用いたフレキシブル印刷配線板材料
JP2022176199A (ja) 樹脂シート、及び樹脂組成物
JP7563913B2 (ja) 樹脂材料及び多層プリント配線板
TWI851753B (zh) 樹脂組成物、半導體密封材料、預浸體、電路基板、增層膜、阻焊劑、乾膜及印刷配線板
JP7010413B2 (ja) 樹脂組成物、半導体封止材料、プリプレグ、回路基板、ビルドアップフィルム、ソルダーレジスト、ドライフィルム及びプリント配線板
JP4042886B2 (ja) エポキシ樹脂組成物及びそれを用いたフレキシブル印刷配線板材料
JPWO2018105662A1 (ja) 半導体装置の製造方法
JP7367891B2 (ja) 樹脂シート
JP7506486B2 (ja) 樹脂材料及び多層プリント配線板
JP2024116733A (ja) 回路基板の製造方法
JP2020019951A (ja) 樹脂材料、積層構造体及び多層プリント配線板
TW202216895A (zh) 樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521542

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227000326

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858031

Country of ref document: EP

Kind code of ref document: A1