JP4686750B2 - 硬化体及び積層体 - Google Patents

硬化体及び積層体 Download PDF

Info

Publication number
JP4686750B2
JP4686750B2 JP2009540540A JP2009540540A JP4686750B2 JP 4686750 B2 JP4686750 B2 JP 4686750B2 JP 2009540540 A JP2009540540 A JP 2009540540A JP 2009540540 A JP2009540540 A JP 2009540540A JP 4686750 B2 JP4686750 B2 JP 4686750B2
Authority
JP
Japan
Prior art keywords
silica component
epoxy resin
silica
cured body
cured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009540540A
Other languages
English (en)
Other versions
JPWO2010035452A1 (ja
Inventor
信弘 後藤
克 瓶子
淳之介 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2009540540A priority Critical patent/JP4686750B2/ja
Application granted granted Critical
Publication of JP4686750B2 publication Critical patent/JP4686750B2/ja
Publication of JPWO2010035452A1 publication Critical patent/JPWO2010035452A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/02Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/44Number of layers variable across the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0239Coupling agent for particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/2438Coated
    • Y10T428/24388Silicon containing coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、エポキシ樹脂、硬化剤及びシリカ成分を含有する樹脂組成物に関し、より詳細には、例えば、銅めっき層等が表面に形成される硬化体を得るために用いられる樹脂組成物、並びに該樹脂組成物を用いた硬化体及び積層体に関する。
従来、多層基板又は半導体装置等を形成するために、様々な熱硬化性樹脂組成物が用いられている。
例えば、下記の特許文献1には、ビスフェノールA型エポキシ樹脂と、分子中にホスファフェナントレン類構造を有する変性フェノールノボラック型エポキシ樹脂と、分子中にトリアジン環を有するフェノールノボラック硬化剤と、無機充填材とを含有するエポキシ樹脂組成物が開示されている。ここでは、エポキシ樹脂組成物100質量%中、無機充填材の含有量は10〜50質量%程度が好ましいことが記載されている。さらに、平均粒径1μm以下の無機充填材が好ましく、平均粒径0.5μm以下の無機充填材が特に好ましいことが記載されている。
特開2008−074929号公報
しかしながら、特許文献1では、粗化処理された樹脂絶縁層の表面の表面粗さが、十分に小さくならないことがあった。さらに、樹脂絶縁層の表面にめっき処理により金属層を形成した場合に、樹脂絶縁層と金属層との接着強度が低いことがあった。
本発明の目的は、粗化処理された硬化体の表面の表面粗さを小さくすることができ、さらに、粗化処理された硬化体の表面に金属層が形成された場合に、硬化体と金属層との接着強度を高めることができる樹脂組成物、並びに該樹脂組成物を用いた硬化体及び積層体を提供することにある。
本発明によれば、樹脂組成物を反応させることにより得られた反応物が粗化処理されている硬化体であって、粗化処理された表面の算術平均粗さRaが0.3μm以下であり、かつ十点平均粗さRzが3.0μm以下であり、前記樹脂組成物が、エポキシ樹脂(A)と、硬化剤(B)と、シリカ粒子がシランカップリング剤により表面処理されたシリカ成分(C)とを含有し、上記シリカ成分(C)が、粒子径0.2〜1.0μmのシリカ成分(C1)を含み、上記シリカ成分(C)100体積%中、上記シリカ成分(C1)の含有量が65体積%以上であり、上記シリカ成分(C)が、粒子径が0.2μm未満のシリカ成分(C3)をさらに含み、上記シリカ成分(C)100体積%中、上記シリカ成分(C3)の含有量が35体積%以下であり、樹脂組成物100体積%中、上記シリカ成分(C)の含有量が11〜68体積%の範囲内である、硬化体が提供される。
本発明に係る硬化体の他の特定の局面では、上記シリカ成分(C)は、粒子径が1.0μmを超えるシリカ成分(C2)を含まないか、又は該シリカ成分(C2)をさらに含み、上記シリカ成分(C)100体積%中、上記シリカ成分(C2)の含有量は0〜15体積%の範囲内である。
本発明に係る硬化体のさらに他の特定の局面では、上記シリカ成分(C)の最大粒子径は5μm以下である。
本発明に係る硬化体のさらに他の特定の局面では、上記シリカ成分(C)は、上記シリカ粒子100重量部が上記シランカップリング剤0.5〜4.0重量部により表面処理されたシリカ成分である。
本発明に係る硬化体の別の特定の局面では、上記エポキシ樹脂(A)は、ナフタレン構造を有するエポキシ樹脂、ジシクロペンタジエン構造を有するエポキシ樹脂、ビフェニル構造を有するエポキシ樹脂、アントラセン構造を有するエポキシ樹脂、トリアジン骨格を有するエポキシ樹脂、ビスフェノールA構造を有するエポキシ樹脂及びビスフェノールF構造を有するエポキシ樹脂からなる群から選択された少なくとも1種を含む。
本発明に係る硬化体のさらに別の特定の局面では、上記硬化剤(B)は、ナフタレン構造を有するフェノール化合物、ジシクロペンタジエン構造を有するフェノール化合物、ビフェニル構造を有するフェノール化合物、アミノトリアジン構造を有するフェノール化合物、活性エステル化合物及びシアネートエステル樹脂からなる群から選択された少なくとも1種である。
本発明に係る硬化体の他の特定の局面では、上記エポキシ樹脂(A)及び上記硬化剤(B)の合計100重量部に対して、イミダゾールシラン化合物が0.01〜3重量部の範囲内でさらに含有される。
本発明に係る硬化体のある特定の局面では、上記反応物は、50〜80℃で5〜30分粗化処理されている。
本発明に係る硬化体の他の特定の局面では、上記粗化処理の前に、上記反応物は膨潤処理されている。
本発明に係る硬化体のさらに他の特定の局面では、上記反応物は、50〜80℃で5〜30分膨潤処理されている。
本発明に係る積層体は、本発明に従って構成された硬化体と、該硬化体の表面にめっき処理により形成された金属層とを備えており、上記硬化体と上記金属層との接着強度が4.9N/cm以上である。
本発明に係る樹脂組成物は、エポキシ樹脂(A)と、硬化剤(B)と、シリカ粒子がシランカップリング剤により表面処理されたシリカ成分(C)とを含有し、シリカ成分(C)100体積%中に粒子径0.2〜1.0μmのシリカ成分(C1)が30〜100体積%の範囲内で含まれており、かつ樹脂組成物100体積%中のシリカ成分(C)の含有量が11〜68体積%の範囲内であるため、粗化処理された硬化体の表面の表面粗さを小さくすることができる。さらに、粗化処理された硬化体の表面に、銅めっき層などの金属層が形成された場合に、硬化体と金属層との接着強度を高めることができる。
図1は、本発明の一実施形態に係る硬化体を模式的に示す部分切欠正面断面図である。 図2は、硬化体の表面に金属層が形成された積層体の一例を示す部分切欠正面断面図である。 図3は、本発明の一実施形態に係る樹脂組成物を用いた多層積層板の一例を模式的に示す部分切欠正面断面図である。
本願発明者らは、エポキシ樹脂(A)と、硬化剤(B)と、シリカ粒子がシランカップリング剤により表面処理されたシリカ成分(C)とを含有し、シリカ成分(C)100体積%中に、粒子径0.2〜1.0μmのシリカ成分(C1)が30〜100体積%の範囲内で含まれており、かつ樹脂組成物100体積%中のシリカ成分(C)の含有量が11〜68体積%の範囲内である組成を採用することにより、粗化処理された硬化体の表面の表面粗さを小さくすることができ、かつ硬化体と金属層との接着強度を高めることができることを見出し、本発明を完成させるに至った。
本発明に係る樹脂組成物は、エポキシ樹脂(A)と、硬化剤(B)と、シリカ粒子がシランカップリング剤により表面処理されたシリカ成分(C)とを含有する。シリカ成分(C)は、粒子径0.2〜1.0μmのシリカ成分(C1)を含む。シリカ成分(C)100体積%中、シリカ成分(C1)の含有量は30〜100体積%の範囲内である。上記樹脂組成物100体積%中、シリカ成分(C)の含有量は11〜68体積%の範囲内である。
本発明の特徴は、特に、シリカ成分(C)に上記特定の粒子径のシリカ成分(C1)が上記特定の体積分率で含有されており、かつ樹脂組成物にシリカ成分(C)が上記特定の体積分率で含有されていることにある。
従来、粗化処理された硬化体の表面の表面粗さを小さくすること、並びに硬化体と金属層との接着強度を高くすることの2つの要求を満足することは困難であった。
本発明では、シリカ成分(C)に上記特定の粒子径のシリカ成分(C1)が上記特定の体積分率で含有されており、かつ樹脂組成物にシリカ成分(C)が上記特定の体積分率で含有されているため、粗化処理された硬化体の表面の表面粗さを小さくすることができ、しかも硬化体と金属層との接着強度を高くすることができる。また、粗化処理された表面の算術平均粗さRaが0.3μm以下であり、かつ十点平均粗さRzが3.0μm以下である硬化体を得ることができる。
先ず、本発明に係る樹脂組成物に含まれる各成分を以下説明する。
(エポキシ樹脂(A))
本発明に係る樹脂組成物に含まれているエポキシ樹脂(A)は、少なくとも1個のエポキシ基(オキシラン環)を有する有機化合物である。エポキシ樹脂(A)の1分子当たりのエポキシ基の数は、1以上である。該エポキシ基の数は、2以上であることがより好ましい。
エポキシ樹脂(A)として、従来公知のエポキシ樹脂を用いることができる。エポキシ樹脂(A)は、1種のみが用いられてもよく、2種以上が併用されてもよい。また、エポキシ樹脂(A)には、エポキシ樹脂の誘導体又はエポキシ樹脂の水添物も含まれる。
エポキシ樹脂(A)としては、例えば、芳香族エポキシ樹脂、脂環族エポキシ樹脂、脂肪族エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルアクリル型エポキシ樹脂又はポリエステル型エポキシ樹脂等が挙げられる。
エポキシ樹脂(A)として、上記エポキシ樹脂の他に、以下に示すエポキシ樹脂を用いてもよい。
エポキシ樹脂(A)としては、例えば、エポキシ化ポリブタジエン、エポキシ化ジシクロペンタジエンもしくはエポキシ化SBSのような共役ジエン化合物を主体とする(共)重合体の炭素−炭素二重結合をエポキシ化した化合物、又は共役ジエン化合物を主体とする(共)重合体の部分水添物の炭素−炭素二重結合をエポキシ化した化合物等が挙げられる。
エポキシ樹脂(A)として、可撓性を有するエポキシ樹脂が好適に用いられる。可撓性エポキシ樹脂の使用により、硬化体の柔軟性を高めることができる。
上記可撓性エポキシ樹脂としては、ポリエチレングリコールのジグリシジルエーテル、ポリプロピレングリコールのジグリシジルエーテル、長鎖ポリオールのポリグリシジルエーテル、グリシジル(メタ)アクリレートとラジカル重合性モノマーとの共重合体、エポキシ基を有するポリエステル樹脂、共役ジエン化合物を主体とする(共)重合体の炭素−炭素二重結合をエポキシ化した化合物、共役ジエン化合物を主体とする(共)重合体の部分水添物の炭素−炭素二重結合をエポキシ化した化合物、ウレタン変性エポキシ樹脂、又はポリカプロラクトン変性エポキシ樹脂等が挙げられる。
さらに、上記可撓性エポキシ樹脂としては、ダイマー酸もしくはダイマー酸の誘導体の分子内にエポキシ基が導入されたダイマー酸変性エポキシ樹脂、又はゴム成分の分子内にエポキシ基が導入されたゴム変性エポキシ樹脂等が挙げられる。
上記ゴム成分としては、NBR、CTBN、ポリブタジエン又はアクリルゴム等が挙げられる。
上記可撓性エポキシ樹脂は、ブタジエン骨格を有することが好ましい。ブタジエン骨格を有する可撓性エポキシ樹脂の使用により、硬化体の柔軟性をより一層高めることができる。また、低温域から高温域までの広い温度範囲にわたり、硬化体の伸度を高めることができる。
エポキシ樹脂(A)として、ビフェニル型エポキシ樹脂を用いてもよい。該ビフェニル型エポキシ樹脂としては、フェノール化合物の水酸基の一部をエポキシ基含有基で置換し、残りの水酸基を水酸基以外の水素などの置換基で置換した化合物等が挙げられる。
エポキシ樹脂(A)は、ナフタレン構造を有するエポキシ樹脂(ナフタレン型エポキシ樹脂)、ジシクロペンタジエン構造を有するエポキシ樹脂(ジシクロペンタジエン型エポキシ樹脂)、ビフェニル構造を有するエポキシ樹脂(ビフェニル型エポキシ樹脂)、アントラセン構造を有するエポキシ樹脂(アントラセン型エポキシ樹脂)、トリアジン骨格を有するエポキシ樹脂(トリアジン骨格エポキシ樹脂)、ビスフェノールA構造を有するエポキシ樹脂(ビスフェノールA型エポキシ樹脂)及びビスフェノールF構造を有するエポキシ樹脂(ビスフェノールF型エポキシ樹脂)からなる群から選択された少なくとも1種の成分(A1)を含むことが好ましい。エポキシ樹脂(A)100重量%中、成分(A1)の含有量の好ましい下限は1重量部、より好ましい下限は10重量部、さらに好ましい下限は20重量部、さらに好ましい下限は50重量部、特に好まし下限80重量部、好ましい上限は100重量部である。エポキシ樹脂(A)は、成分(A1)であることが好ましい。成分(A1)の使用により、半硬化体及び硬化体の表面の表面粗さをより一層小さくすることができる。
上記ビフェニル型エポキシ樹脂は、下記式(8)で表されるビフェニル型エポキシ樹脂であることが好ましい。この好ましいビフェニル型エポキシ樹脂の使用により、硬化体の線膨張率をより一層低くすることができる。
Figure 0004686750
上記式(8)中、tは1〜11の整数を示す。
エポキシ樹脂(A)は、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂又はジシクロペンタジエン型エポキシ樹脂であることが好ましい。この好ましいエポキシ樹脂の使用により、硬化体の線膨張率を低くすることができる。硬化体の線膨張率をより一層低くすることができるので、エポキシ樹脂(A)は、アントラセン型エポキシ樹脂又はトリアジン骨格エポキシ樹脂であることがより好ましい。
(硬化剤(B))
本発明に係る樹脂組成物に含まれる硬化剤(B)は、エポキシ樹脂(A)を硬化させることができれば特に限定されない。硬化剤(B)として、従来公知の硬化剤を用いることができる。
硬化剤(B)としては、例えば、ジシアンジアミド、アミン化合物、アミン化合物の誘導体、ヒドラジド化合物、メラミン化合物、酸無水物、フェノール化合物(フェノール硬化剤)、活性エステル化合物、ベンゾオキサジン化合物、マレイミド化合物、熱潜在性カチオン重合触媒、光潜在性カチオン重合開始剤又はシアネートエステル樹脂等が挙げられる。これらの硬化剤の誘導体を用いてもよい。硬化剤(B)は、1種のみが用いられてもよく、2種以上が併用されてもよい。また、硬化剤(B)とともに、アセチルアセトン鉄等の硬化触媒を用いてもよい。
上記アミン化合物としては、例えば、鎖状脂肪族アミン化合物、環状脂肪族アミン化合物又は芳香族アミン化合物等が挙げられる。
上記アミン化合物の誘導体の具体例としては、ポリアミノアミド化合物、ポリアミノイミド化合物又はケチミン化合物等が挙げられる。
上記ポリアミノアミド化合物としては、例えば、上記アミン化合物とカルボン酸とから合成される化合物等が挙げられる。上記カルボン酸としては、例えば、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカ二酸、イソフタル酸、テレフタル酸、ジヒドロイソフタル酸、テトラヒドロイソフタル酸又はヘキサヒドロイソフタル酸等が挙げられる。
上記ポリアミノイミド化合物としては、例えば、上記アミン化合物とマレイミド化合物とから合成される化合物等が挙げられる。上記マレイミド化合物としては、例えば、ジアミノジフェニルメタンビスマレイミド等が挙げられる。
また、上記ケチミン化合物としては、例えば、上記アミン化合物とケトン化合物とから合成される化合物等が挙げられる。
上記酸無水物としては、例えば、フタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビスアンヒドロトリメリテート、グリセロールトリスアンヒドロトリメリテート、メチルテトラヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ナジック酸無水物、メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、トリアルキルテトラヒドロ無水フタル酸−無水マレイン酸付加物、ドデセニル無水コハク酸、ポリアゼライン酸無水物、ポリドデカン二酸無水物又はクロレンド酸無水物等が挙げられる。
上記光潜在性カチオン重合触媒としては、例えば、イオン性光潜在性カチオン重合開始剤又は非イオン性光潜在性カチオン重合開始剤が挙げられる。
上記イオン性光潜在性カチオン重合開始剤の具体例としては、オニウム塩類又は有機金属錯体類等が挙げられる。上記オニウム塩類としては、例えば、6フッ化アンチモン、6フッ化リン又は4フッ化ホウ素等を対アニオンとする、芳香族ジアゾニウム塩、芳香族ハロニウム塩又は芳香族スルホニウム塩等が挙げられる。上記有機金属錯体類として、例えば、鉄−アレン錯体、チタノセン錯体又はアリールシラノール−アルミニウム錯体等が挙げられる。
上記非イオン性光潜在性カチオン重合開始剤の具体例としては、ニトロベンジルエステル、スルホン酸誘導体、リン酸エステル、フェノールスルホン酸エステル、ジアゾナフトキノン又はN−ヒドロキシイミドスルホナート等が挙げられる。
上記フェノール化合物としては、例えば、フェノールノボラック、o−クレゾールノボラック、p−クレゾールノボラック、t−ブチルフェノールノボラック、ジシクロペンタジエンクレゾール、フェノールアラルキル樹脂、α−ナフトールアラルキル樹脂、β−ナフトールアラルキル樹脂又はアミノトリアジンノボラック樹脂等が挙げられる。フェノール化合物として、これらの誘導体を用いてもよい。フェノール化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
硬化剤(B)として上記フェノール化合物が好適に用いられる。上記フェノール化合物の使用により、硬化体の耐熱性及び寸法安定性を高めることができ、さらに硬化体の吸水性を低くすることができる。さらに、樹脂組成物の反応物が粗化処理された硬化体の表面の表面粗さをより一層小さくすることができる。具体的には、硬化体の表面の算術平均粗さRa及び十点平均粗さRzをより一層小さくすることができる。
硬化剤(B)として、下記式(1)、下記式(2)及び下記式(3)の内のいずれかで表されるフェノール化合物がより好適に用いられる。この場合には、粗化処理された硬化体の表面の表面粗さをさらに一層小さくすることができる。
Figure 0004686750
上記式(1)中、R1はメチル基又はエチル基を示し、R2は水素又は炭化水素基を示し、nは2〜4の整数を示す。
Figure 0004686750
上記式(2)中、mは0〜5の整数を示す。
Figure 0004686750
上記式(3)中、R3は下記式(4a)又は下記式(4b)で表される基を示し、R4は下記式(5a)、下記式(5b)又は下記式(5c)で表される基を示し、R5は下記式(6a)又は下記式(6b)で表される基を示し、R6は水素又は炭素数1〜20の有機基を示し、pは1〜6の整数を示し、qは1〜6の整数を示し、rは1〜11の整数を示す。
Figure 0004686750
Figure 0004686750
Figure 0004686750
なかでも、上記式(3)で表されるフェノール化合物であって、上記式(3)中のR4が上記式(5c)で表される基である、ビフェニル構造を有するフェノール化合物が好ましい。この好ましい硬化剤の使用により、硬化体の電気特性及び耐熱性をより一層高くすることができ、かつ、硬化体の線膨張率及び吸水性をより一層低くすることができる。さらに、熱履歴が与えられた場合の硬化体の寸法安定性をより一層高めることができる。
硬化剤(B)は、下記式(7)で示される構造を有するフェノール化合物であることが特に好ましい。この場合には、硬化体の電気特性及び耐熱性をより一層高くすることができ、かつ硬化体の線膨張率及び吸水性をより一層低くすることができる。さらに、熱履歴が与えられた場合の硬化体の寸法安定性をさらに一層高めることができる。
Figure 0004686750
上記式(7)中、sは1〜11の整数を示す。
上記活性エステル化合物としては、例えば、芳香族多価エステル化合物等が挙げられる。活性エステル化合物を用いた場合には、活性エステル基とエポキシ樹脂との反応時にOH基が生成されないため、誘電率及び誘電正接に優れた硬化体を得ることができる。上記活性エステル化合物の具体例は、例えば、特開2002−12650号公報に開示されている。
上記活性エステル化合物の市販品としては、例えば、DIC社製の商品名「EPICLON EXB9451−65T」及び「EPICLON EXB9460S−65T」等が挙げられる。
上記ベンゾオキサジン化合物としては、脂肪族ベンゾオキサジン樹脂又は芳香族系ベンゾオキサジン樹脂が挙げられる。
上記ベンゾオキサジン化合物の市販品としては、例えば、四国化成学工業社製の商品名「P−d型ベンゾオキサジン」及び「F−a型ベンゾオキサジン」等が挙げられる。
上記シアネートエステル樹脂として、例えばノボラック型シーネートエステル樹脂、ビスフェノール型シアネートエステル樹脂及び一部がトリアジン化されたプレポリマーなどを用いることができる。シアネートエステル樹脂の使用により、硬化体の線膨張率をより一層低くすることができる。
上記マレイミド化合物は、N,N’−4,4−ジフェニルメタンビスマレイミド、N,N’−1,3−フェニレンジマレイミド、N,N’−1,4−フェニレンジマレイミド、1,2−ビス(マレイミド)エタン、1,6−ビスマレイミドヘキサン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、4−メチル−1,3−フェニレンビスマレイミド、1,6−ビスマレイミド−(2,2,4−トリメチル)ヘキサン及びこれらのオリゴマー、並びにマレイミド骨格含有ジアミン縮合物からなる群から選択された少なくとも1種であることが好ましい。これらの好ましいマレイミド化合物の使用により、硬化体の線膨張率をより一層低くすることができ、かつ硬化体のガラス転移温度をより一層高くすることができる。上記オリゴマーは、上述したマレイミド化合物の内のモノマーであるマレイミド化合物を縮合させることにより得られたオリゴマーである。
なかでも、上記マレイミド化合物は、ポリフェニルメタンマレイミド及びビスマレイミドオリゴマーの内の少なくとも一方であることがより好ましい。上記ビスマレイミドオリゴマーは、フェニルメタンビスマレイミドと、4,4−ジアミノジフェニルメタンとの縮合により得られたオリゴマーであることが好ましい。これらの好ましいマレイミド化合物の使用により、硬化体の線膨張率をさらに一層低くすることができ、かつ硬化体のガラス転移温度をさらに一層高くすることができる。
上記マレイミド化合物の市販品としては、ポリフェニルメタンマレイミド(大和化成社製、商品名「BMI−2300」)及びビスマレイミドオリゴマー(大和化成社製、商品名「DAIMAID−100H」)等が挙げられる。
硬化剤(B)は、フェノール化合物、活性エステル化合物、シアネートエステル樹脂及びベンゾオキサジン化合物からなる群から選択された少なくとも1種であることが好ましい。硬化剤(B)は、フェノール化合物、活性エステル化合物及びシアネートエステル樹脂からなる群から選択された少なくとも1種であることがより好ましい。これらの好ましい硬化剤を用いた場合、樹脂組成物を反応させた反応物を粗化処理する際に、粗化処理により樹脂成分が悪影響を受け難い。
硬化剤(B)として活性エステル化合物を用いた場合には、誘電率及び誘電正接にさらに一層優れ、かつ微細配線形成性に優れているという効果が得られる。このため、例えば、樹脂組成物をビルドアップ用絶縁材料として用いたときに、特に高周波領域での信号伝送に優れるという効果が期待できる。
硬化剤(B)として、活性エステル化合物又はベンゾオキサジン化合物を用いた場合には、誘電率及び誘電正接により一層優れた硬化体を得ることができる。活性エステル化合物は、芳香族多価エステル化合物であることが好ましい。芳香族多価エステル化合物の使用により、誘電率及び誘電正接にさらに一層優れた硬化体を得ることができる。
硬化剤(B)は、ナフタレン構造を有するフェノール化合物、ジシクロペンタジエン構造を有するフェノール化合物、ビフェニル構造を有するフェノール化合物及びアミノトリアジン構造を有するフェノール化合物、活性エステル化合物及びシアネートエステル樹脂からなる群から選択された少なくとも1種の成分(B1)であることが特に好ましい。これらの好ましい硬化剤の使用により、上記反応物を粗化処理する際に、粗化処理により樹脂成分が悪影響をより一層受け難い。具体的には、粗化処理の際に、上記反応物の表面が粗くなりすぎることなく、シリカ成分を選択的に脱離させて、微細な孔を形成できる。このため、硬化体の表面に、表面粗さが非常に小さい微細な凹凸を形成できる。なかでも、ビフェニル構造を有するフェノール化合物が好ましい。
ビフェニル構造を有するフェノール化合物、ナフタレン構造を有するフェノール化合物又はシアネートエステル樹脂の使用により、電気特性、特に誘電正接に優れており、かつ強度及び線膨張率にも優れており、しかも吸水率が低い硬化体を得ることができる。
上記エポキシ樹脂及び上記硬化剤の分子量が大きいと、硬化体の表面に、微細な粗面を形成しやすい。エポキシ樹脂の重量平均分子量は、微細な粗面を形成するのに影響することがある。ただし、硬化剤の重量平均分子量の方が、エポキシ樹脂の重量平均分子量よりも、微細な粗面を形成するのに大きく影響することがある。硬化剤の重量平均分子量は、500以上であることが好ましく、1800以上であることがより好ましい。硬化剤の重量平均分子量の好ましい上限は、15000である。
上記エポキシ樹脂のエポキシ当量及び上記硬化剤の当量が大きいと、硬化体の表面に微細な粗面を形成しやすい。さらに、硬化剤が固体であり、かつ硬化剤の軟化温度が60℃以上であると、硬化体の表面に微細な粗面を形成しやすい。
エポキシ樹脂(A)100重量部に対して、硬化剤(B)の含有量は1〜200重量部の範囲内であることが好ましい。硬化剤(B)の含有量が少なすぎると、樹脂組成物が充分に硬化しないことがある。硬化剤(B)の含有量が多すぎると、エポキシ樹脂を硬化させる効果が飽和することがある。エポキシ樹脂(A)100重量部に対して、硬化剤(B)の含有量の好ましい下限は30重量部であり、好ましい上限は140重量部である。
(硬化促進剤)
本発明に係る樹脂組成物は硬化促進剤を含有することが好ましい。本発明では、硬化促進剤は任意成分である。硬化促進剤は特に限定されない。
上記硬化促進剤は、イミダゾール硬化促進剤であることが好ましい。該イミダゾール硬化促進剤は、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1,2−ジメチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−メチルイミダゾールイソシアヌル酸付加物、2−フェニル−4,5−ジヒドロキシメチルイミダゾール及び2−フェニル−4−メチル−5−ジヒドロキシメチルイミダゾールからなる群から選択された少なくとも1種であることが好ましい。
さらに、上記硬化促進剤としては、トリフェノルホスフィンなどのホスフィン化合物、ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)、DBUのフェノール塩、DBNのフェノール塩、オクチル酸塩、p−トルエンスルホン酸塩、ギ酸塩、オルソフタル酸塩又はフェノールノボラック樹脂塩等が挙げられる。
エポキシ樹脂(A)100重量部に対して、上記硬化促進剤の含有量は0.01〜3重量部の範囲内であることが好ましい。硬化促進剤の含有量が少なすぎると、樹脂組成物が充分に硬化しないことがある。
本発明では、硬化促進剤を添加しなくても、粗化処理された硬化体の表面の表面粗さを小さくすることができる。ただし、硬化促進剤を添加しない場合には、樹脂組成物の硬化が十分に進行せずにガラス転移温度Tgが低くなったり、硬化体の強度が充分に高くならなかったりすることがある。従って、樹脂組成物は、硬化促進剤を含有することがより好ましい。
上記硬化促進剤の含有量が多すぎると、反応開始点が多くなることから、樹脂組成物を半硬化又は硬化させても、分子量が十分に大きくならなかったり、エポキシ樹脂の架橋が不均一になったりすることがある。また、樹脂組成物の保存安定性が悪くなるという問題もある。エポキシ樹脂(A)100重量部に対して、上記硬化促進剤の含有量の好ましい下限は0.5重量部であり、好ましい上限は2.0重量部である。
(シリカ成分(C))
本発明に係る樹脂組成物は、シリカ粒子がシランカップリング剤により表面よりされているシリカ成分(C)を含有する。シリカ成分(C)は1種のみが用いられてもよく、2種以上が併用されてもよい。また、シリカ成分(C)は、例えば粒度分布の異なる2種以上が併用されてもよい。
本発明に係る樹脂組成物では、シリカ成分(C)は、シリカ粒子がシランカップリング剤により表面処理されており、かつ粒子径0.2〜1.0μmのシリカ成分(C1)を含む。シリカ成分(C)100体積%中、シリカ成分(C1)の含有量は30〜100体積%の範囲内である。これにより、粗化処理された硬化体に微細な粗面を形成でき、かつ硬化体と金属層との接着強度を高めることができる。
シリカ成分(C)100体積%中のシリカ成分(C1)の含有量が30体積%未満であると、硬化体の表面の表面粗さが大きくなったり、上記接着強度が低くなったりする。粒子径0.2μm未満のシリカ成分(C3)の含有量が相対的に多くなると、硬化体の表面粗さは小さくなるものの、上記接着強度が低くなる。また、粒子径が1μmを超えるシリカ成分(C2)の含有量が相対的に多くなると、硬化体の表面の表面粗さが大きくなりやすい。
シリカ成分(C)100体積%中、粒子径0.2〜1.0μmのシリカ成分(C1)の含有量は50〜100体積%の範囲内であることが好ましく、65〜100体積%の範囲内であることがより好ましい。この場合には、硬化体の表面の表面粗さをより一層小さくすることができ、かつ硬化体と金属層との接着強度をより一層高くすることができる。
シリカ成分(C)は、シリカ粒子がシランカップリング剤により表面処理されており、かつ粒子径が1.0μmを超えるシリカ成分(C2)を含まないか、又は該シリカ成分(C2)を含む。シリカ成分(C)100体積%中、シリカ成分(C2)の含有量は0〜15体積%の範囲内であることが好ましい。シリカ成分(C2)の含有量が上記好ましい上限を満たすと、樹脂組成物を反応させた反応物を粗化処理する際に、シリカ成分(C)が脱離しやすくなり、硬化体と金属層との接着強度をより一層高めることができる。さらに、脱離しなかったシリカ成分と樹脂成分との間の空隙に、めっきが潜り込み難くなり、硬化体の表面の表面粗さをより一層小さくすることができる。
シリカ成分(C)は、シリカ粒子がシランカップリング剤により表面処理されており、かつ粒子径が0.2μm未満のシリカ成分(C3)を含まないか、又は該シリカ成分(C3)を含む。シリカ成分(C)100体積%中、シリカ成分(C3)の含有量は0〜50体積%の範囲内であることが好ましい。シリカ成分(C3)の含有量が上記好ましい上限を満たすと、粒子径の大きいシリカ成分の含有量が相対的に多くなり、従って硬化体の表面にシリカ成分(C)の脱離により形成された穴の深さが深くなる。このため、硬化体と金属層との接着強度をより一層高めることができる。さらに、粒子径の大きいシリカ成分の含有量が相対的に多くなるため、粒子径の大きいシリカは比表面積が小さいので、シリカ成分(C)と樹脂成分とによって形成される界面の界面積が小さくなり、膨潤処理及び粗化処理が短時間であっても、粗化処理された硬化体の表面の表面粗さをより一層小さくすることができる。さらに、シリカ成分(C)と樹脂成分によって形成される界面の界面積が小さくなることで、硬化体の吸水率が低くなる。このため、硬化体の絶縁性能が低下し難くなり、吸湿条件下での電気特性の変化率が小さくなる。
シリカ成分(C)の最大粒子径は、5μm以下であることが好ましい。最大粒子径が5μm以下であると、上記反応物を粗化処理する際に、シリカ成分(C)がより一層脱離しやすくなる。さらに、粗化処理された硬化体の表面に比較的大きな孔が生じ難く、均一かつ微細な凹凸を形成できる。最大粒子径が5μmを超えると、硬化体の表面に金属層が回路として形成されている場合、めっきの潜り込みが発生して、回路に不具合が生じるおそれがある。例えば、ファインパターンでの配線間又は層間の絶縁信頼性を確保することが困難になることがある。
シリカ成分(C)の平均粒子径として、50%となるメディアン径(d50)の値を採用できる。上記平均粒子径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定できる。この平均粒子径の測定結果から、特定の粒子径のシリカ成分の含有量を算出できる。シリカ成分の粒子径は、具体的には、例えば、レーザー回折/散乱式粒度分布測定装置(型番「LA−750」、堀場製作所社製)を用いて測定できる。
ナフタレン構造、ジシクロペンタジエン構造、ビフェニル構造及びアミノトリアジン構造の内のいずれかの構造を有するフェノール化合物、芳香族多価エステル化合物又はベンゾオキサジン化合物を硬化剤(B)として用いた場合、粗化処理によりシリカ成分(C)の周辺の樹脂成分は削れにくくなる。また、これらの硬化剤を用いた場合、シリカ成分(C)100体積%中のシリカ成分(C2)の含有量が15体積%を超えると、シリカ成分(C)がより一層脱離し難くなるため、硬化体と金属層との接着強度が低下しやすくなる傾向がある。このため、ナフタレン構造、ジシクロペンタジエン構造、ビフェニル構造及びアミノトリアジン構造の内のいずれかの構造を有するフェノール化合物、芳香族多価エステル化合物又はベンゾオキサジン化合物を硬化剤(B)として用いた場合、シリカ成分(C)100体積%中に、シリカ成分(C2)は含まれないか又は15体積%以下で含まれることが好ましい。
平均粒子径の異なる複数種類のシリカ粒子が用いられてもよい。細密充填を考慮して、粒度分布の異なる複数種類のシリカ粒子を用いることが好ましい。この場合には、例えば部品内蔵基板のような流動性の要求される用途に、上記樹脂組成物を好適に使用できる。また、平均粒子径が数10nmのシリカ粒子の使用により、樹脂組成物の粘度を高くしたり、チクソトロピー性を制御したりすることができる。
ナフタレン構造、ジシクロペンタジエン構造、ビフェニル構造及びアミノトリアジン構造の内のいずれかの構造を有するフェノール化合物、芳香族多価エステル化合物又はベンゾオキサジン化合物を硬化剤(B)として用いた場合には、樹脂組成物を反応させた反応物の表面から上記反応物内に粗化液が浸透し難く、シリカ成分(C)が比較的脱離し難い。しかし、シリカ成分(C1)を上記特定の体積分率で用いることにより、シリカ成分(C)を無理なく脱離させることができる。さらに、硬化体の表面の表面粗さを小さくでき、かつ硬化体と金属層との接着強度を高めることができる。
硬化体の表面にL/Sが15μm/15μm以下の微細配線を形成する場合、シリカ成分(C)100体積%中に、上記シリカ成分(C2)が含まれないか又は15体積%以下で含まれており、かつシリカ成分(C)の最大粒子径が5μm以下であることが好ましい。この場合には、めっきの潜り込みが発生せず、実質的な絶縁距離の長さを確保できるので、絶縁信頼性を高めることができる。なお、「L/S」とは、配線の幅方向の寸法(L)/配線が形成されていない部分の幅方向の寸法(S)を示す。
シリカ粒子の形状は特に限定されない。シリカ粒子の形状としては、例えば球状又は不定形状等が挙げられる。上記反応物を粗化処理する際に、シリカ成分がより一層脱離しやすいため、シリカ粒子は球状であることが好ましく、真球状であることがより好ましい。
上記シリカ粒子としては、天然シリカ原料を粉砕して得られる結晶性シリカ、天然シリカ原料を火炎溶融し、粉砕して得られる破砕溶融シリカ、天然シリカ原料を火炎溶融、粉砕及び火炎溶融して得られる球状溶融シリカ、フュームドシリカ(アエロジル)、又はゾルゲル法シリカなどの合成シリカ等が挙げられる。
純度が高いことから、上記シリカ粒子として、溶融シリカが好適に用いられる。シリカ粒子は、溶剤に分散された状態でシリカスラリーとして用いられてよい。シリカスラリーを用いた場合には、樹脂組成物の製造の際に、作業性及び生産性を高めることができる。
上記シランカップリング剤として、一般的なシラン化合物を使用できる。上記シランカップリング剤は、エポキシシラン、アミノシラン、イソシアネートシラン、アクリロキシシラン、メタクリロキシシラン、ビニルシラン、スチリルシラン、ウレイドシラン、スルフィドシラン及びイミダゾールシランからなる群から選択された少なくとも1種であることが好ましい。また、シラザンのようなアルコキシシランにより、シリカ粒子が表面処理されてもよい。シランカップリング剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記シリカ粒子を上記シランカップリング剤により表面処理し、シリカ成分(C)を得た後、該シリカ成分(C)を樹脂組成物に添加することが好ましい。この場合には、シリカ成分(C)の分散性をより一層高めることができる。
上記シリカ粒子をシランカップリング剤により表面処理する方法としては、例えば、以下の第1〜第3の方法が挙げられる。
第1の方法としては、乾式法が挙げられる。乾式法としては、例えば、シリカ粒子にシランカップリング剤を直接付着させる方法等が挙げられる。乾式法では、ミキサーにシリカ粒子を仕込んで、攪拌しながらシランカップリング剤のアルコール溶液又は水溶液を滴下又は噴霧した後、さらに攪拌し、ふるいにより分級する。その後、加熱によりシランカップリング剤とシリカ粒子とを脱水縮合させることにより、シリカ成分(C)を得ることができる。得られたシリカ成分(C)は、溶剤に分散された状態でシリカスラリーとして使用されてもよい。
第2の方法としては、湿式法が挙げられる。湿式法では、シリカ粒子を含むシリカスラリーを攪拌しながらシランカップリング剤を添加し、攪拌した後、濾過、乾燥及びふるいによる分級を行う。次に、加熱によりシラン化合物とシリカ粒子とを脱水縮合させることにより、シリカ成分(C)を得ることができる。
第3の方法としては、シリカ粒子を含むシリカスラリーを攪拌しながら、シランカップリング剤を添加した後、加熱還流処理により脱水縮合を進行させる方法が挙げられる。得られたシリカ成分(C)は、溶剤に分散された状態でシリカスラリーとして使用されてもよい。
未処理のシリカ粒子を用いた場合、樹脂組成物を硬化させると、シリカ粒子とエポキシ樹脂(A)とが充分になじまない状態で複合化される。上記シリカ粒子がシランカップリング剤により表面処理されているシリカ成分(C)を用いた場合、樹脂組成物を反応させると、シリカ成分(C)とエポキシ樹脂(A)とが、両者の界面で充分になじんだ状態で複合化される。このため、硬化体のガラス転移温度Tgが高くなる。すなわち、未処理のシリカ粒子ではなく、上記シリカ粒子がシランカップリング剤により表面処理されているシリカ成分(C)を樹脂組成物に含有させることにより、硬化体のガラス転移温度Tgを高くすることができる。また、シリカ成分(C)の分散性を高めることができるため、より一層均一な樹脂組成物を得ることができる。さらに、シリカ成分(C)の分散性を高めることにより、粗化処理された硬化体の表面の表面粗さのばらつきを小さくすることができる。
さらに、シリカ成分(C)の使用により、硬化体のリフロー耐性を高めることができる。また、硬化体の吸水性を低くすることができ、かつ絶縁信頼性を高くすることができる。
本発明に係る樹脂組成物100体積%中、シリカ成分(C)の含有量は11〜68体積%の範囲内である。シリカ成分(C)の含有量が11体積%よりも少ないと、樹脂組成物を反応させた反応物を粗化処理した際に、シリカ成分(C)の脱離により形成される孔の総表面積が小さくなる。このため、硬化体と金属層との接着強度を充分に高めることができないことがある。シリカ成分(C)の含有量が68体積%を超えると、粗化処理された硬化体が脆くなりやすく、かつ硬化体と金属層との接着強度が低下することがある。
本発明に係る樹脂組成物100体積%中、シリカ成分(C)の含有量の好ましい下限は12体積%、より好ましい下限は18体積%、好ましい上限は56体積%、より好ましい上限は36体積%である。シリカ成分(C)の含有量がこの好ましい範囲内にあると、硬化体と金属層との接着強度をより一層高めることができる。
(添加され得る他の成分)
上記樹脂組成物は、イミダゾールシラン化合物を含有することが好ましい。イミダゾールシラン化合物の使用により、粗化処理された硬化体の表面の表面粗さをより一層小さくすることができる。
エポキシ樹脂(A)及び硬化剤(B)の合計100重量部に対して、上記イミダゾールシラン化合物の含有量は0.01〜3重量部の範囲内であることが好ましい。上記イミダゾールシラン化合物の含有量が上記範囲内であると、粗化処理された硬化体の表面の表面粗さをより一層小さくすることができ、硬化体と金属層との粗化接着強度をより一層高くすることができる。エポキシ樹脂(A)及び硬化剤(B)の合計100重量部に対して、上記イミダゾールシラン化合物の含有量のより好ましい下限は0.03重量部、より好ましい上限は2重量部、更に好ましい上限は1重量部である。エポキシ樹脂(A)100重量部に対する硬化剤(B)の含有量が30重量部を超える場合には、エポキシ樹脂(A)及び硬化剤(B)の合計100重量部に対して、上記イミダゾールシラン化合物は0.01〜2重量部の範囲内で含有されることが特に好ましい。
本発明に係る樹脂組成物は、有機化層状珪酸塩を含有していてもよい。
有機化層状珪酸塩を含む樹脂組成物では、シリカ成分(C)の周囲に、有機化層状珪酸塩が存在する。このため、上記反応物を膨潤処理及び粗化処理する際に、上記反応物の表面に存在するシリカ成分(C)がより一層脱離しやすくなる。これは、有機化層状珪酸塩の層間又は有機化層状珪酸塩と樹脂成分との間のナノオーダーの無数の界面に、膨潤液又は粗化液が浸透するとともに、エポキシ樹脂(A)とシリカ成分(C)との界面にも、膨潤液又は粗化液が浸透するためと推定される。ただし、シリカ成分(C)が脱離しやすくなするメカニズムは、明らかではない。
上記有機化層状珪酸塩としては、例えば、スメクタイト系粘土鉱物、膨潤性マイカ、バーミキュライト又はハロイサイト等の層状珪酸塩が有機化処理された有機化層状珪酸塩が挙げられる。有機化層状珪酸塩は、1種のみが用いられてもよく、2種以上が併用されてもよい。
上記スメクタイト系粘土鉱物としては、モンモリロナイト、ヘクトライト、サポナイト、バイデライト、スティブンサイト又はノントロナイト等が挙げられる。
上記有機化層状珪酸塩として、モンモリロナイト、ヘクトライト及び膨潤性マイカからなる群より選択される少なくとも1種の層状珪酸塩が有機化処理された有機化層状珪酸塩が好適に用いられる。
上記有機化層状珪酸塩の平均粒子径は、500nm以下であることが好ましい。有機化層状珪酸塩の平均粒子径が500nmを超えると、樹脂組成物中での有機化層状珪酸塩の分散性が低下することがある。上記有機化層状珪酸塩の平均粒子径は、100nm以上であることが好ましい。
上記有機化層状珪酸塩の平均粒子径として、50%となるメディアン径(d50)の値を採用できる。上記平均粒子径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定できる。
エポキシ樹脂(A)及び硬化剤(B)の合計100重量部に対して、上記有機化層状珪酸塩の含有量は0.01〜3重量部の範囲内であることが好ましい。上記有機化層状珪酸塩の含有量が少なすぎると、シリカ成分(C)を脱離しやすくする効果が不足することがある。上記有機化層状珪酸塩の含有量が多すぎると、膨潤液又は粗化液の浸透する界面が多くなりすぎて、硬化体の表面の表面粗さが比較的大きくなりやすい。特に、樹脂組成物が封止剤用途に用いられる場合には、有機化層状珪酸塩の含有量が多すぎると、膨潤液又は粗化液の浸透速度が早くなるため、粗化処理により硬化体の表面の表面粗さが変化する速度が速すぎて、膨潤処理又は粗化処理の処理時間を充分に確保できないことがある。
なお、エポキシ樹脂(A)及び硬化剤(B)の合計100重量部に対して、有機化層状珪酸塩の含有量が3重量部を超える場合には、粗化処理された硬化体の表面の表面粗さが比較的大きくなりやすくなる傾向がある。
なお、有機化層状珪酸塩を用いなかった場合には、粗化処理された硬化体の表面の表面粗さはより一層小さくなる。シリカ成分(C)と有機化層状珪酸塩との配合比率の調整により、粗化処理された硬化体の表面の表面粗さを制御できる。具体的には、シリカ成分(C)の含有量が少ない場合、有機化層状珪酸塩を比較的多く配合し、シリカ成分(C)の含有量が多い場合、有機化層状珪酸塩を配合しないか、又は比較的少なく配合することにより、硬化体の表面の表面粗さを小さく制御できる。
上記樹脂組成物は、エポキシ樹脂(A)に加えて、必要に応じて、エポキシ樹脂(A)と共重合可能な樹脂を含有していてもよい。
上記共重合可能な樹脂は特に限定されない。上記共重合可能な樹脂としては、例えば、フェノキシ樹脂、熱硬化型変性ポリフェニレンエーテル樹脂又はベンゾオキサジン樹脂等が挙げられる。上記共重合可能な樹脂は、1種のみが用いられてもよく、2種類以上が併用されてもよい。
上記熱硬化型変性ポリフェニレンエーテル樹脂の具体例としては、エポキシ基、イソシアネート基又はアミノ基などの官能基により、ポリフェニレンエーテル樹脂を変性させた樹脂等が挙げられる。上記熱硬化型変性ポリフェニレンエーテル樹脂は、1種のみが用いられてもよく、2種類以上が併用されてもよい。
エポキシ基によりポリフェニレンエーテル樹脂を変性させた硬化型変性ポリフェニレンエーテル樹脂の市販品としては、例えば、三菱ガス化学社製の商品名「OPE−2Gly」等が挙げられる。
上記ベンゾオキサジン樹脂は特に限定されない。上記ベンゾオキサジン樹脂の具体例としては、メチル基、エチル基、フェニル基、ビフェニル基もしくはシクロヘキシル基などのアリール基骨格を有する置換基がオキサジン環の窒素に結合された樹脂、又はメチレン基、エチレン基、フェニレン基、ビフェニレン基、ナフタレン基もしくはシクロヘキシレン基などのアリーレン基骨格を有する置換基が2つのオキサジン環の窒素間に結合された樹脂等が挙げられる。上記ベンゾオキサジン樹脂は、1種のみが用いられてもよく、2種類以上が併用されてもよい。ベンゾオキサジン樹脂とエポキシ樹脂(A)との反応により、硬化体の耐熱性を高くしたり、硬化体の吸水性及び線膨張率を低くしたりすることができる。
なお、ベンゾオキサジンモノマーもしくはオリゴマー、又はベンゾオキサジンモノマーもしくはオリゴマーがオキサジン環の開環重合によって高分子量化された樹脂は、上記ベンゾオキサジン樹脂に含まれる。
上記樹脂組成物には、必要に応じて、熱可塑性樹脂類、エポキシ樹脂(A)以外の熱硬化性樹脂類、熱可塑性エラストマー類、架橋ゴム、オリゴマー類、無機化合物、造核剤、酸化防止剤、老化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、難燃助剤、帯電防止剤、防曇剤、充填剤、軟化剤、可塑剤又は着色剤等の添加剤が添加されてもよい。これらの添加剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
上記熱可塑性樹脂類の具体例としては、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂又はフェノキシ樹脂等が挙げられる。上記熱可塑性樹脂類は、1種のみが用いられてもよく、2種類以上が併用されてもよい。
上記熱硬化性樹脂類としては、ポリビニルベンジルエーテル樹脂、又は二官能ポリフェニレンエーテルオリゴマーとクロロメチルスチレンとの反応により得られる反応生成物等が挙げられる。上記二官能ポリフェニレンエーテルオリゴマーとクロロメチルスチレンとの反応により得られる反応生成物の市販品としては、三菱ガス化学社製の商品名「OPE−2St」等が挙げられる。上記熱硬化性樹脂類は、1種のみが用いられてもよく、2種類以上が併用されてもよい。
上記熱可塑性樹脂類又は上記熱硬化性樹脂類を用いる場合、エポキシ樹脂(A)100重量部に対して、上記熱可塑性樹脂類又は上記熱硬化性樹脂類の含有量は0.5〜50重量部の範囲内であることが好ましく、1〜20重量部の範囲内であることがより好ましい。熱可塑性樹脂類又は熱硬化性樹脂類の含有量が少なすぎると、硬化体の伸びや靭性が充分に高められないことがあり、多すぎると、硬化体の強度が低下することがある。
(樹脂組成物)
本発明に係る樹脂組成物の製造方法は特に限定されない。樹脂組成物の製造方法としては、例えば、エポキシ樹脂(A)と、硬化剤(B)と、シリカ成分(C)と、必要に応じて配合される成分とを、溶剤に添加した後、乾燥し、溶剤を除去する方法等が挙げられる。
本発明に係る樹脂組成物は、例えば適当な溶媒に溶解された後、用いられてもよい。
本発明に係る樹脂組成物の用途は、特に限定されない。上記樹脂組成物は、例えば、多層基板のコア層又はビルドアップ層等を形成する基板用材料、接着シート、積層板、樹脂付き銅箔、銅張積層板、TAB用テープ、プリント基板、プリプレグ又はワニス等に好適に用いられる。
また、本発明に係る樹脂組成物の使用により、硬化体の表面に微細な孔を形成できる。このため、硬化体の表面に微細な配線を形成でき、かつ該配線における信号伝送速度を速くすることができる。従って、上記樹脂組成物は、樹脂付き銅箔、銅張積層板、プリント基板、プリプレグ、接着シート又はTAB用テープなどの絶縁性を要求される用途に好適に用いられる。
硬化体の表面に導電性めっき層を形成した後に回路を形成するアディティブ法、及びセミアディティブ法などによって硬化体と導電性めっき層とを複数積層するビルドアップ基板等に、上記樹脂組成物はより好適に用いられる。この場合には、硬化体と導電性めっき層との接合信頼性を高めることができる。また、硬化体の表面に形成されたシリカ成分(C)の抜けた穴が小さいため、パターン間の絶縁信頼性を高めることができる。さらに、シリカ成分(C)の抜けた穴の深さが浅いため、層間の絶縁信頼性を高めることができる。よって、信頼性の高い微細な配線を形成できる。
上記樹脂組成物は、封止用材料又はソルダーレジスト等にも用いることができる。また、硬化体の表面に形成された配線の高速信号伝送性能を高めることができるため、高い高周波特性が要求される、パッシブ部品又はアクティブ部品が内蔵される部品内蔵基板等にも、上記樹脂組成物を用いることができる。
本発明に係る樹脂組成物は、多孔質基材に含浸され、プリプレグとして用いられてもよい。
上記多孔質基材は、上記樹脂組成物を含浸させることができれば、特に限定されない。上記多孔質基材としては、有機繊維又はガラス繊維等が挙げられる。上記有機繊維としては、カーボン繊維、ポリアミド繊維、ポリアラミド繊維又はポリエステル繊維等が挙げられる。また、多孔質基材の形態としては、平織りもしくは綾織りなどの織物の形態、又は不織布の形態等が挙げられる。上記多孔質基材は、ガラス繊維不織布であることが好ましい。
(硬化体及び積層体)
本発明に係る樹脂組成物を反応させることにより、反応物を得ることができる。得られた反応物を粗化処理することにより、硬化体を得ることができる。
得られた硬化体は、一般に、Bステージと呼ばれる半硬化状態である。本明細書において、硬化体は、半硬化体から、完全な硬化状態である硬化体までの範囲を意味する。半硬化体とは、完全に硬化していないものである。半硬化体は、硬化がさらに進行され得るものである。
本発明に係る硬化体は、具体的には、以下のようにして得られる。
上記樹脂組成物を反応(予備硬化又は半硬化)させて、反応物を得る。上記樹脂組成物を適度に反応させるために、上記樹脂組成物を加熱又は光の照射等により反応させることが好ましい。
上記樹脂組成物を反応させる際の加熱温度は特に限定されない。加熱温度は、130〜190℃の範囲内にあることが好ましい。加熱温度が130℃よりも低いと、樹脂組成物が充分に硬化されないため、粗化処理された硬化体の表面の凹凸が大きくなりやすい。加熱温度が190℃よりも高いと、樹脂組成物の硬化反応が急速に進行しやすい。このため、硬化度が部分的に異なりやすく、粗い部分と密な部分とが形成されやすい。この結果、硬化体の表面の凹凸が大きくなる。
上記樹脂組成物を反応させる際の加熱時間は特に限定されない。加熱時間は、30分以上であることが好ましい。加熱時間が30分よりも短いと、樹脂組成物が充分に硬化されないため、粗化処理された硬化体の表面の凹凸が大きくなる。生産性を高める観点からは、加熱時間は1時間以下であることが好ましい。
硬化体の表面に微細な凹凸を形成するために、上記反応物は粗化処理される。該粗化処理の前に、反応物は膨潤処理されることが好ましい。ただし、上記反応物は、必ずしも膨潤処理されなくてもよい。
上記膨潤処理の方法として、例えば、エチレングリコールなどを主成分とする化合物の水溶液又は有機溶媒分散溶液などにより、上記反応物を処理する方法が用いられる。上記膨潤処理には、40重量%エチレングリコール水溶液が好適に用いられる。
上記粗化処理には、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。
上記マンガン化合物としては、過マンガン酸カリウム又は過マンガン酸ナトリウム等が挙げられる。上記クロム化合物としては、重クロム酸カリウム又は無水クロム酸カリウム等が挙げられる。上記過硫酸化合物としては、過硫酸ナトリウム、過硫酸カリウム又は過硫酸アンモニウム等が挙げられる。
上記粗化処理の方法は特に限定されない。上記粗化処理には、例えば、30〜90g/L過マンガン酸もしくは過マンガン酸塩溶液、又は30〜90g/L水酸化ナトリウム溶液が好適に用いられる。
粗化処理の回数が多いと粗化効果も大きい。しかしながら、粗化処理の回数が3回を超えると、粗化効果が飽和することがあり、又は硬化体の表面の樹脂成分が必要以上に削られて、硬化体の表面にシリカ成分が脱離した形状の孔が形成されにくくなる。このため、粗化処理は、1回又は2回行われることが好ましい。
上記反応物は、50〜80℃で5〜30分粗化処理されることが好ましい。上記反応物が上記膨潤処理される場合、上記反応物は、50〜80℃で5〜30分膨潤処理されることが好ましい。粗化処理又は膨潤処理が複数回行われる場合、上記粗化処理又は膨潤処理の時間は、合計の時間を示す。上記特定の樹脂組成物を反応させた反応物を上記条件で粗化処理又は膨潤処理することにより、硬化体の表面の表面粗さをより一層小さくすることができる。具体的には、粗化処理された表面の算術平均粗さRaが0.3μm以下であり、かつ十点平均粗さRzが3.0μm以下である硬化体をより一層容易に得ることができる。
シリカ成分(C)中にシリカ成分(C1)を上記特定の体積分率が含有し、かつ樹脂組成物中にシリカ成分(C)を上記特定の体積分率で含有する樹脂組成物を反応させた反応物の使用により、粗化処理された硬化体の表面の表面粗さを小さくすることができる。
さらに、本願発明者らは、粒子径が0.2μm未満のシリカ成分(C3)と、粒子径が0.2〜1.0μmのシリカ成分(C1)と、粒子径が1.0μmを超えるシリカ成分(C3)との体積分率が特定の範囲内であることで、粗化処理された硬化体の表面の表面粗さをより一層小さくすることができ、かつ硬化体と金属層との接着強度をより一層高くすることができることを見出した。また、エポキシ樹脂(A)として特定の上記成分(A1)を用いたり、硬化剤(B)として特定の上記成分(B1)を用いたりすることで、さらに一層小さい表面粗さと、さらに一層高い接着強度とを両立できることを見出した。
図1に、本発明の一実施形態に係る硬化体を模式的に部分切欠正面断面図で示す。
図1に示すように、硬化体1の表面1aに、シリカ成分(C)の脱離により形成された孔1bが形成されている。
本発明に係る樹脂組成物では、上記シリカ粒子がシランカップリング剤により表面処理されているシリカ成分(C)が含有されているため、シリカ成分(C)の分散性に優れている。従って、硬化体1には、シリカ成分(C)の凝集物の脱離による大きな孔が形成され難い。よって、硬化体1の強度が局所的に低下し難く、硬化体1と金属層との接着強度を高めることができる。また、硬化体の線膨張率を低くするために、シリカ成分(C)を樹脂組成物に多く配合できる。シリカ成分(C)を多く配合しても、硬化体1の表面に微細な複数の孔1bを形成できる。孔1bは、シリカ成分(C)が数個程度、例えば2〜10個程度まとまって脱離した孔であってもよい。
シリカ成分(C)の脱離により形成された孔1bの近傍では、図1に矢印Aを付して示す部分の樹脂成分が必要以上に多く削られていない。特に、ナフタレン構造、ジシクロペンタジエン構造、ビフェニル構造又はアミノトリアジン構造の内のいずれかの構造を有するフェノール化合物、芳香族多価エステル化合物又はベンゾオキサジン構造を有する化合物を硬化剤(B)として用いた場合、シリカ成分(C)の脱離により形成された孔1bの表面では、樹脂成分が比較的多く削られやすい。しかし、シリカ成分(C)を用いた場合には、ナフタレン構造、ジシクロペンタジエン構造、ビフェニル構造及びアミノトリアジン構造の内のいずれかの構造を有するフェノール化合物、芳香族多価エステル化合物又はベンゾオキサジン構造を有する化合物を硬化剤(B)として用いても、樹脂成分が必要以上に多く削られない。このため、硬化体の強度を高めることができる。
上記のようにして得られた硬化体1の粗化処理された表面の算術平均粗さRaは0.3μm以下であり、かつ十点平均粗さRzは3.0μm以下であることが好ましい。上記粗化処理された表面の算術平均粗さRaは、0.2μm以下であることがより好ましく、0.15μm以下であることがさらに好ましい。上記粗化処理された表面の十点平均粗さRzは、2μm以下であることがより好ましく、1.5μm以下であることがさらに好ましい。上記算術平均粗さRaが大きすぎたり、上記十点平均粗さRzが大きすぎたりすると、硬化体の表面に形成された配線における電気信号の伝送速度を高速化できないことがある。算術平均粗さRa及び十点平均粗さRzは、JIS B0601−1994に準拠した測定法により求めることができる。
硬化体1の表面に形成された複数の孔の平均径は、5μm以下であることが好ましい。複数の孔の平均径が5μmより大きいと、硬化体の表面にL/Sが小さい配線を形成することが困難なことがあり、かつ形成された配線間が短絡しやすくなる。
硬化体1には、必要に応じて、公知のめっき用触媒を施したり、無電解めっきを施したりした後、電解めっきを施すことができる。硬化体1の表面をめっき処理することにより、硬化体1と金属層2とを備える積層体10を得ることができる。硬化体1が半硬化状態である場合、硬化体1は必要に応じて硬化される。
図2に、硬化体1の上面1aに、めっき処理により金属層2が形成された積層体10を部分切欠正面断面図で示す。図2に示す積層体10では、金属層2は、硬化体1の上面1aに形成された微細な孔1b内に至っている。従って、物理的なアンカー効果により、硬化体1と金属層2との接着強度を高めることができる。また、シリカ成分(C)の脱離により形成された孔1bの近傍では、樹脂成分が必要以上に多く削られていないため、硬化体1と金属層2との接着強度を高めることができる。
シリカ成分(C)の平均粒子径が小さいほど、硬化体1の表面に微細な凹凸を形成できる。シリカ成分(C)100体積%中に、粒子径が比較的小さいシリカ成分(C1)が上記特定の体積分率で含有されているため、孔1bを小さくすることができ、従って、硬化体1の表面に微細な凹凸を形成できる。このため、回路の配線の微細度合いを示すL/Sを小さくすることができる。
L/Sが小さい銅等の配線を硬化体1の表面1aに形成した場合、配線の信号処理速度を高めることができる。例えば、信号が5GHz以上の高周波であっても、硬化体1の表面粗さが小さいので、硬化体1と金属層2との界面での電気信号の損失を小さくすることができる。
L/Sが45μm/45μmよりも小さい場合、シリカ成分(C)100体積%中のシリカ成分(C1)の含有量が30〜100体積%の範囲内である樹脂組成物の使用により、粗化処理された硬化体の表面の表面粗さを小さくすることができる。
L/Sが13μm/13μmよりも小さい場合、シリカ成分(C)100体積%中のシリカ成分(C1)の含有量が65〜100体積%の範囲内である樹脂組成物を用いることが好ましい。また、L/Sが13μm/13μmよりも小さい場合、シリカ成分(C)100体積%中に、シリカ成分(C2)が含まれないか又は15体積%以下で含まれる樹脂組成物を用いることが好ましい。さらに、L/Sが13μm/13μmよりも小さい場合、シリカ成分(C)の最大粒子径は5μm以下であることが好ましい。これらの場合には、粗化処理された硬化体の表面の表面粗さを小さくすることができる。
本発明に係る樹脂組成物を用いて硬化体を形成することにより、表面粗さのばらつきが小さく、例えば、L/Sが13μm/13μm程度の微細な配線を、硬化体の表面に形成できる。さらに、配線間の短絡を生じることなく、L/Sが10μm/10μm以下の微細な配線を、硬化体1の表面に形成できる。このような配線が形成された硬化体1では、安定的にかつ小さい損失で、電気信号を伝送できる。
上記金属層2を形成する材料として、シールド用もしくは回路形成用などに用いられる金属箔もしくは金属めっき、又は回路保護用に用いるめっき用材料を使用できる。
上記めっき材料としては、例えば、金、銀、銅、ロジウム、パラジウム、ニッケル又は錫などが挙げられる。これらの2種類以上の合金を用いてもよく、また、2種類以上のめっき材料により複数層の金属層を形成してもよい。さらに、目的に応じて、めっき材料には、上記金属以外の他の金属又は物質が含有されてもよい。金属層2は、銅めっき処理により形成された銅めっき層であることが好ましい。
積層体10では、硬化体1と金属層2との接着強度は4.9N/cm以上であることが好ましい。積層体10は、積層板として用いることができる。
(シート状成形体及び多層積層板)
上記樹脂組成物、上記プリプレグ、又は上記樹脂組成物もしくは上記プリプレグを硬化させた硬化体をシート状に成形することにより、シート状成形体を得ることができる。
なお、本明細書において、シートにはフィルムも含まれる。また、シートは、自立性を有していてもよく、自立性を有していなくてもよい。シート状成形体には、接着性シートが含まれる。
上記樹脂組成物をシート状に成形する方法としては、例えば、押出機を用いて、樹脂組成物を溶融混練し、押出した後、Tダイ又はサーキュラーダイ等により、フィルム状に成形する押出成形法、樹脂組成物を有機溶剤等の溶媒に溶解又は分散させた後、キャスティングしてフィルム状に成形するキャスティング成形法、又は従来公知のその他のシート成形法等が挙げられる。なかでも、薄型化を進めることができるので、押出成形法又はキャスティング成形法が好ましい。
多層積層板は、積層された上記シート状成形体と、該シート状成形体の間に配置された少なくとも1つの金属層とを備える。多層積層板では、最表層のシート状成形体の外側の表面に積層された金属層がさらに備えられていてもよい。
上記多層積層板のシート状成形体には、少なくとも一部の領域に接着層が配置されていてもよい。また、多層積層板の積層されたシート状成形体には、少なくとも一部の領域に接着層が配置されていてもよい。
上記多層積層板の金属層は、回路として形成されていることが好ましい。この場合には、シート状成形体と金属層との接着強度が高いため、回路の信頼性を高めることができる。
図3に本発明の一実施形態に係る樹脂組成物を用いた多層積層板の一例を模式的に部分切欠正面断面図で示す。
図3に示す多層積層板11では、基板12の上面12aに、複数の硬化体13〜16が積層されている。最上層の硬化体16以外の硬化体13〜15には、上面の一部の領域に金属層17が形成されている。すなわち、積層された硬化体13〜16の各層間に、金属層17がそれぞれ配置されている。下方の金属層17と上方の金属層17とは、図示しないビアホール接続及びスルーホール接続の内の少なくとも一方により互いに接続されている。
多層積層板11では、硬化体13〜16が、本発明の一実施形態に係る樹脂組成物をシート状に成形することにより得られたシート状成形体を、硬化させることにより形成されている。このため、硬化体13〜16の表面には、図示しない微細な孔が形成されている。また、微細な孔の内部に金属層17が至っている。従って、硬化体13〜16と金属層17との接着強度を高めることができる。また、多層積層板11では、金属層17の幅方向寸法(L)と、金属層17が形成されていない部分の幅方向寸法(S)とを小さくすることができる。
なお、搬送の補助、ごみの付着又は傷の防止等を目的として、上述したシート状成形体又は積層板の表面には、フィルムが積層されてもよい。
上記フィルムとしては、樹脂コート紙、ポリエステルフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリブチレンテレフタレート(PBT)フィルム又はポリプロピレン(PP)フィルム等が挙げられる。これらのフィルムは、必要に応じて、離型性を高めるために離型処理されていてもよい。
上記離型処理の方法としては、シリコン化合物、フッ素化合物もしくは界面活性剤等を上記フィルム中に含有させる方法、上記フィルムの表面に凹凸を付与する方法、又はシリコン化合物、フッ素化合物もしくは界面活性剤等の離型性を有する物質を上記フィルムの表面に塗布する方法等が挙げられる。上記フィルムの表面に凹凸を付与する方法としては、上記フィルムの表面にエンボス加工などを施す方法等が挙げられる。
上記フィルムを保護するために、樹脂コート紙、ポリエステルフィルム、PETフィルム、PPフィルムなどの保護フィルムが上記フィルムに積層されていてもよい。
上記体積分率を求めるに当たり、真比重を測定する必要がある。真比重を測定する際には、測定原理がアルキメデス法に従った測定装置を使用すればよい。
以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。
実施例及び比較例では、以下に示す材料を用いた。
(エポキシ樹脂)
ビフェニル型エポキシ樹脂(日本化薬社製、商品名「NC−3000−H」、比重:1.17)
ビスフェノールA型エポキシ樹脂(日本化薬社製、商品名「RE−310S」、比重:1.17)
アントラセン型エポキシ樹脂(ジャパンエポキシレジン社製、商品名「YX8800」、比重:1.17)
ナフタレン型エポキシ樹脂(日本化薬社製、商品名「NC−7300L」、比重:1.17)
トリアジン骨格含有エポキシ樹脂(日産化学工業社製、商品名「TEPIC−SP」、比重:1.45)
(硬化剤)
ビフェニル構造を有するフェノール硬化剤(明和化成社製、商品名「MEH7851−4H」、上記式(7)で表されるフェノール化合物に相当する、比重1.17)
α−ナフトール型フェノール硬化剤(東都化成社製、商品名「SN−485」、比重1.20)
活性エステル化合物(DIC社製、商品名「EPICLON EXB9460S−65T」、固形分65重量%のトルエン溶液、比重:1.22)
シアネートエステル樹脂(Lonza社製、商品名「PRIMASET BA−230S」、固形分75重量%のメチルエチルケトン溶液、溶液の比重:1.09、シアネートエステル樹脂単体の比重:1.18)
(硬化促進剤)
イミダゾール硬化促進剤(四国化成工業社製、商品名「2PN−CN」、1−シアノエチル−2−メチルイミダゾール、比重1.26)
(シリカスラリー)
シリカ成分(1)50重量%含有スラリー:
シリカ粒子(アドマテックス社製、商品名「SOC1」)100重量部がアミノシラン(信越化学工業社製、商品名「KBM−573」)2重量部により表面処理されたシリカ成分(1)(比重2.20)50重量%と、DMF(N,N−ジメチルホルムアミド)50重量%とを含むシリカ成分(1)50重量%含有スラリー
シリカ成分(2)50重量%含有スラリー:
シリカ粒子(龍森社製、商品名「1−Fx」)100重量部が、アミノシラン(信越化学工業社製、商品名「KBM−573」)2重量部により表面処理されたシリカ成分(2)(比重2.20)50重量%と、DMF50重量%とを含むシリカ成分(2)50重量%含有スラリー
シリカ成分(3)30重量%含有スラリー:
シリカ粒子(電気化学工業社製、商品名「UFP−80」)100重量部が、アミノシラン(信越化学工業社製、商品名「KBM−573」)2重量部により表面処理されたシリカ成分(3)(比重2.20)30重量%と、DMF70重量%とを含むシリカ成分(3)30重量%含有スラリー
シリカ成分(4)50重量%含有スラリー:
シリカ粒子(電気化学工業社製、商品名「B−21」)100重量部が、アミノシラン(信越化学工業社製、商品名「KBM−573」)2重量部により表面処理されたシリカ成分(4)(比重2.20)50重量%と、DMF50重量%とを含むシリカ成分(2)50重量%含有スラリー
上記シリカ成分(1)〜(4)含有スラリーの粒度分布を測定した。上記シリカ成分(1)〜(4)含有スラリーに含まれるシリカ成分100体積%中の、粒子径0.2μm未満のシリカ成分と、粒子径0.2〜1.0μmのシリカ成分と、粒子径1.0μmを超えるシリカ成分との含有量を下記の表1に示した。さらに、上記シリカ成分(1)〜(4)含有スラリーに含まれるシリカ成分の最大粒子径を下記の表1に示した。なお、シリカ成分の粒子径は、レーザー回折/散乱式粒度分布測定装置(型番「LA−750」、堀場製作所製)を用いて測定した。
Figure 0004686750
(溶剤)
N,N−ジメチルホルムアミド(DMF、特級、和光純薬社製)
(実施例1)
(1)樹脂組成物の調製
上記シリカ成分(1)50重量%含有スラリー53.08gと、DMF7.00gとを混合し、均一な溶液となるまで、常温で攪拌した。その後、上記イミダゾール硬化促進剤(四国化成工業社製、商品名「2PN−CN」)0.20gをさらに添加し、均一な溶液となるまで、常温で攪拌した。
次に、エポキシ樹脂としてのビスフェノールA型エポキシ樹脂(日本化薬社製、商品名「RE−310S」)18.61gを添加し、均一な溶液となるまで常温で攪拌し、溶液を得た。得られた溶液に、硬化剤としてのビフェニル構造を有するフェノール硬化剤(明和化成社製、商品名「MEH7851−4H」)21.00gを添加し、均一な溶液となるまで常温で攪拌して、樹脂組成物を調製した。
(2)樹脂組成物の未硬化物の作製
離型処理された透明なポリエチレンテレフタレート(PET)フィルム(商品名「PET5011 550」、厚み50μm、リンテック社製)を用意した。このPETフィルム上にアプリケーターを用いて、乾燥後の厚みが50μmとなるように、得られた樹脂組成物を塗工した。次に、100℃のギアオーブン内で12分間乾燥することにより、縦200mm×横200mm×厚み50μmの大きさのシート状の樹脂組成物の未硬化物を作製した。
(3)硬化体の作製
得られたシート状の樹脂組成物の未硬化物を、ガラスエポキシ基板(FR−4、品番「CS−3665」、利昌工業社製)に真空ラミネートし、150℃で60分反応させた。このようにして、ガラスエポキシ基板上に反応物を形成し、ガラスエポキシ基板と反応物との積層サンプルを得た。その後、下記の膨潤処理をした後、下記の粗化処理(過マンガン酸塩処理)をした。
膨潤処理:
80℃の膨潤液(スウェリングディップセキュリガントP、アトテックジャパン社製)に、上記積層サンプルを入れて、膨潤温度80℃で15分間揺動させた。その後、純水で洗浄した。
粗化処理(過マンガン酸塩処理):
80℃の過マンガン酸カリウム(コンセントレートコンパクトCP、アトテックジャパン社製)粗化水溶液に、膨潤処理された上記積層サンプルを入れて、粗化温度80℃で15分間揺動させた。その後、25℃の洗浄液(リダクションセキュリガントP、アトテックジャパン社製)により2分間洗浄した後、純水でさらに洗浄した。このようにして、ガラスエポキシ基板上に、粗化処理された硬化体Aを形成した。
(4)積層体の作製
上記粗化処理の後に、下記の銅めっき処理をした。
銅めっき処理:
ガラスエポキシ基板上に形成された硬化体に、以下の手順で無電解銅めっき及び電解銅めっき処理を施した。
粗化処理された硬化体Aの表面を、60℃のアルカリクリーナ(クリーナーセキュリガント902)で5分間処理し、脱脂洗浄した。洗浄後、上記硬化体を25℃のプリディップ液(プリディップネオガントB)で2分間処理した。その後、上記硬化体を40℃のアクチベーター液(アクチベーターネオガント834)で5分間処理し、パラジウム触媒を付けた。次に、30℃の還元液(リデューサーネオガントWA)により、硬化体を5分間処理した。
次に、上記硬化体を化学銅液(ベーシックプリントガントMSK−DK、カッパープリントガントMSK、スタビライザープリントガントMSK)に入れ、無電解めっきをめっき厚さが0.5μm程度になるまで実施した。無電解めっき後に、残留している水素ガスを除去するため、120℃の温度で30分間アニールをかけた。無電解めっきの工程までのすべての工程は、ビーカースケールで処理液を1Lとし、硬化体を揺動させながら実施した。
次に、無電解めっき処理された硬化体に、電解めっきをめっき厚さが25μmとなるまで実施した。電気銅めっきとして硫酸銅(リデューサーCu)を用いて、0.6A/cmの電流を流した。その後、硬化体を180℃で1時間加熱し、硬化体をさらに硬化させた。このようにして、硬化体上に銅めっき層が形成された積層体を得た。
(実施例3〜4,6〜14、参考例2,5及び比較例1〜10)実施例2,5は欠番とする
使用した材料の種類及び配合量を下記の表2〜4に示すように変更したこと以外は実施例1と同様にして、樹脂組成物を調製し、シート状の樹脂組成物の未硬化物、硬化体及び積層体を作製した。なお、樹脂組成物がイミダゾールシランを含有する場合には、該イミダゾールシランは硬化剤とともに添加した。
(評価)
(硬化体Bの作製)
実施例及び比較例で得られたシート状の樹脂組成物の未硬化物を、170℃で1時間加熱した後、180℃で1時間硬化させ、硬化体Bを得た。
(1)誘電率及び誘電正接
得られた上記硬化体Bを15mm×15mmの大きさに裁断した。裁断された硬化体を8枚重ね合わせて、厚み400μmの積層物を得た。誘電率測定装置(品番「HP4291B」、HEWLETT PACKARD社製)を用いて、周波数1GHzにおける常温(23℃)での積層物の誘電率及び誘電正接を測定した。
(2)平均線膨張率
得られた上記硬化体Bを、3mm×25mmの大きさに裁断した。線膨張率計(品番「TMA/SS120C」、セイコーインスツルメンツ社製)を用いて、引張り荷重2.94×10−2N、昇温速度5℃/分の条件で、裁断された硬化体の23〜100℃における平均線膨張率(α1)、及び150〜260℃における平均線膨張率(α2)を測定した。
(3)ガラス転移温度(Tg)
得られた上記硬化体Bを5mm×3mmの大きさに裁断した。粘弾性スペクトロレオメーター(品番「RSA−II」、レオメトリック・サイエンティフィックエフ・イー社製)を用いて、昇温速度5℃/分の条件で、30から250℃まで裁断された硬化体の損失率tanδを測定し、損失率tanδが最大値になる温度(ガラス転移温度Tg)を求めた。
(4)破断強度及び破断点伸度
得られた上記硬化体Bを10×80mmの大きさに裁断した。裁断された硬化体Bを2つ積層し、厚み100μmの試験サンプルを得た。引張試験機(商品名「テンシロン」、オリエンテック社製)を用いて、チャック間距離60mm、クロスヘッド速度5mm/分の条件で引張試験を行い、試験サンプルの破断強度(MPa)及び破断点伸度(%)を測定した。
(5)粗化接着強度
硬化体上に上記銅めっき層が形成された上記積層体の銅めっき層の表面に、10mm幅に切り欠きを入れた。その後、引張試験機(商品名「オートグラフ」、島津製作所社製)を用いて、クロスヘッド速度5mm/分の条件で、硬化体と銅めっき層との接着強度を測定した。得られた測定値を粗化接着強度とした。
(6)表面粗さ(算術平均粗さRa及び十点平均粗さRz)
非接触式の表面粗さ計(商品名「WYKO」、ビーコ社製)を用いて、粗化処理された硬化体Aの表面の算術平均粗さRa及び十点平均粗さRzを測定した。
(7)銅接着強度
CZ処理銅箔(CZ−8301、メック社製)に、実施例及び比較例で得られたシート状の樹脂組成物の未硬化物を真空中でラミネートし、170℃で1時間加熱し、180℃で1時間さらに加熱し、硬化させ、銅箔付き硬化体を得た。その後、銅箔の表面に10mm幅に切り欠きを入れた。引張試験機(商品名「オートグラフ」、島津製作所社製)を用いて、クロスヘッド速度5mm/分の条件で、銅箔と硬化体との接着強度を測定し、測定された接着強度を銅接着強度とした。
結果を下記の表2〜4に示す。
Figure 0004686750
Figure 0004686750
Figure 0004686750
1…硬化体
1a…上面
1b…孔
2…金属層
10…積層体
11…多層積層板
12…基板
12a…上面
13〜16…硬化体
17…金属層

Claims (11)

  1. 樹脂組成物を反応させることにより得られた反応物が粗化処理されている硬化体であって、
    粗化処理された表面の算術平均粗さRaが0.3μm以下であり、かつ十点平均粗さRzが3.0μm以下であり、
    前記樹脂組成物が、エポキシ樹脂(A)と、硬化剤(B)と、シリカ粒子がシランカップリング剤により表面処理されたシリカ成分(C)とを含有し、
    前記シリカ成分(C)が、粒子径0.2〜1.0μmのシリカ成分(C1)を含み、
    前記シリカ成分(C)100体積%中、前記シリカ成分(C1)の含有量が65体積%以上であり、
    前記シリカ成分(C)が、粒子径が0.2μm未満のシリカ成分(C3)をさらに含み、
    前記シリカ成分(C)100体積%中、前記シリカ成分(C3)の含有量が35体積%以下であり、
    樹脂組成物100体積%中、前記シリカ成分(C)の含有量が11〜68体積%の範囲内である、硬化体
  2. 前記シリカ成分(C)が、粒子径が1.0μmを超えるシリカ成分(C2)を含まないか、又は前記シリカ成分(C2)をさらに含み、
    前記シリカ成分(C)100体積%中、前記シリカ成分(C2)の含有量が0〜15体積%の範囲内である、請求項1に記載の硬化体
  3. 前記シリカ成分(C)の最大粒子径が5μm以下である、請求項1又は2に記載の硬化体
  4. 前記シリカ成分(C)は、前記シリカ粒子100重量部が前記シランカップリング剤0.5〜4.0重量部により表面処理されたシリカ成分である、請求項1〜のいずれか1項に記載の硬化体
  5. 前記エポキシ樹脂(A)が、ナフタレン構造を有するエポキシ樹脂、ジシクロペンタジエン構造を有するエポキシ樹脂、ビフェニル構造を有するエポキシ樹脂、アントラセン構造を有するエポキシ樹脂、トリアジン骨格を有するエポキシ樹脂、ビスフェノールA構造を有するエポキシ樹脂及びビスフェノールF構造を有するエポキシ樹脂からなる群から選択された少なくとも1種を含む、請求項1〜のいずれか1項に記載の硬化体
  6. 前記硬化剤(B)が、ナフタレン構造を有するフェノール化合物、ジシクロペンタジエン構造を有するフェノール化合物、ビフェニル構造を有するフェノール化合物、アミノトリアジン構造を有するフェノール化合物、活性エステル化合物及びシアネートエステル樹脂からなる群から選択された少なくとも1種である、請求項1〜のいずれか1項に記載の硬化体
  7. 前記樹脂組成物が、前記エポキシ樹脂(A)及び前記硬化剤(B)の合計100重量部に対して、イミダゾールシラン化合物を0.01〜3重量部の範囲内でさらに含有する、請求項1〜のいずれか1項に記載の硬化体
  8. 前記反応物が、50〜80℃で5〜30分粗化処理されている、請求項1〜7のいずれか1項に記載の硬化体。
  9. 前記粗化処理の前に、前記反応物が膨潤処理されている、請求項1〜8のいずれか1項に記載の硬化体。
  10. 前記反応物が、50〜80℃で5〜30分膨潤処理されている、請求項に記載の硬化体。
  11. 請求項10のいずれか1項に記載の硬化体と、該硬化体の表面にめっき処理により形成された金属層とを備え、
    前記硬化体と前記金属層との接着強度が4.9N/cm以上である、積層体。
JP2009540540A 2008-09-24 2009-09-18 硬化体及び積層体 Active JP4686750B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009540540A JP4686750B2 (ja) 2008-09-24 2009-09-18 硬化体及び積層体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008244555 2008-09-24
JP2008244555 2008-09-24
PCT/JP2009/004742 WO2010035452A1 (ja) 2008-09-24 2009-09-18 樹脂組成物、硬化体及び積層体
JP2009540540A JP4686750B2 (ja) 2008-09-24 2009-09-18 硬化体及び積層体

Publications (2)

Publication Number Publication Date
JP4686750B2 true JP4686750B2 (ja) 2011-05-25
JPWO2010035452A1 JPWO2010035452A1 (ja) 2012-02-16

Family

ID=42059465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009540540A Active JP4686750B2 (ja) 2008-09-24 2009-09-18 硬化体及び積層体

Country Status (6)

Country Link
US (1) US20110244183A1 (ja)
JP (1) JP4686750B2 (ja)
KR (1) KR101051873B1 (ja)
CN (1) CN102159616B (ja)
TW (1) TW201022319A (ja)
WO (1) WO2010035452A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275511A (ja) * 2009-06-01 2010-12-09 Sekisui Chem Co Ltd エポキシ樹脂組成物、bステージフィルム、積層フィルム、銅張り積層板及び多層基板
KR20140124792A (ko) 2012-01-23 2014-10-27 아지노모토 가부시키가이샤 수지 조성물
WO2014196501A1 (ja) 2013-06-03 2014-12-11 三菱瓦斯化学株式会社 プリント配線板材料用樹脂組成物、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110217512A1 (en) * 2008-09-01 2011-09-08 Sekisui Chemical Co., Ltd. Laminated body and method for producing laminated body
JP2011060887A (ja) * 2009-09-08 2011-03-24 Renesas Electronics Corp 電子装置、電子装置の製造方法
KR20120079402A (ko) * 2011-01-04 2012-07-12 주식회사 두산 프리프레그 및 이를 포함하는 프린트 배선판
SG10201509881VA (en) * 2011-01-20 2016-01-28 Mitsubishi Gas Chemical Co Resin composition, prepreg, and laminate
WO2012108320A1 (ja) * 2011-02-10 2012-08-16 住友ベークライト株式会社 プリアプライド用封止樹脂組成物、半導体チップおよび半導体装置
US9318402B2 (en) 2011-03-24 2016-04-19 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and resin sheet and metal foil-clad laminate
JP2012211269A (ja) * 2011-03-31 2012-11-01 Sekisui Chem Co Ltd 予備硬化物、粗化予備硬化物及び積層体
KR101298368B1 (ko) 2011-03-31 2013-08-20 세키스이가가쿠 고교가부시키가이샤 예비 경화물, 조화 예비 경화물 및 적층체
TWI401271B (zh) * 2011-04-01 2013-07-11 Sekisui Chemical Co Ltd Pre-hardened, coarsened pre-hardened and laminated
JP5914988B2 (ja) * 2011-05-27 2016-05-11 日立化成株式会社 熱硬化性樹脂組成物を用いたプリプレグ、積層板、及びプリント配線板
WO2012165012A1 (ja) 2011-05-27 2012-12-06 味の素株式会社 樹脂組成物
JP6144003B2 (ja) * 2011-08-29 2017-06-07 富士通株式会社 配線構造及びその製造方法並びに電子装置及びその製造方法
US8404764B1 (en) * 2011-09-22 2013-03-26 Elite Material Co., Ltd. Resin composition and prepreg, laminate and circuit board thereof
KR101321302B1 (ko) * 2011-11-15 2013-10-28 삼성전기주식회사 인쇄회로기판 형성용 에폭시 수지 조성물, 이로 제조된 인쇄회로기판, 및 상기 인쇄회로기판의 제조 방법
JP6263835B2 (ja) * 2012-12-13 2018-01-24 日立化成株式会社 熱硬化性樹脂成形材料及び電子部品装置
CN103408904A (zh) * 2013-07-04 2013-11-27 东莞上海大学纳米技术研究院 改性纳米二氧化硅填充环氧树脂组合物、制备方法及制品
CN203690294U (zh) * 2013-11-07 2014-07-02 新科实业有限公司 电子元件组件
US9205455B2 (en) * 2014-01-09 2015-12-08 Nano And Advanced Materials Institute Limited Surface treatment of mirror finish
JP6408847B2 (ja) * 2014-09-30 2018-10-17 積水化学工業株式会社 樹脂組成物
JP2016079195A (ja) * 2014-10-10 2016-05-16 株式会社日立製作所 電気絶縁樹脂
TWI650371B (zh) * 2014-10-29 2019-02-11 日本瑞翁股份有限公司 硬化性環氧組成物、薄膜、積層薄膜、預浸材、積層體、硬化物及複合體
KR102378992B1 (ko) * 2015-02-03 2022-03-24 쇼와덴코머티리얼즈가부시끼가이샤 에폭시 수지 조성물, 필름형 에폭시 수지 조성물, 경화물 및 전자 장치
TWI688971B (zh) * 2015-03-30 2020-03-21 日商則武股份有限公司 加熱硬化型導電性糊
JP6715472B2 (ja) 2015-09-15 2020-07-01 パナソニックIpマネジメント株式会社 プリプレグ、金属張積層板及びプリント配線板
US10015879B2 (en) 2016-01-27 2018-07-03 Corning Incorporated Silica content substrate such as for use harsh environment circuits and high frequency antennas
JP7058074B2 (ja) * 2017-02-16 2022-04-21 藤森工業株式会社 積層体及び積層体の製造方法
JP6934637B2 (ja) 2017-06-08 2021-09-15 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、金属張積層板、プリント配線板、及び金属張積層板の製造方法
JP7005092B2 (ja) 2018-03-14 2022-01-21 エルジー・ケム・リミテッド 埋め込み型透明電極基板およびその製造方法
WO2019216247A1 (ja) * 2018-05-09 2019-11-14 日立化成株式会社 支持体付き層間絶縁層用樹脂フィルム、多層プリント配線板及び多層プリント配線板の製造方法
CN113307541A (zh) * 2021-06-03 2021-08-27 中国振华集团云科电子有限公司 一种碳氢树脂陶瓷粘结片及其批量化生产工艺
CN118475632A (zh) * 2022-11-07 2024-08-09 株式会社Lg化学 树脂组合物和包含其的印刷电路板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146233A (ja) * 2000-11-07 2002-05-22 Denki Kagaku Kogyo Kk 表面処理された微細球状シリカ粉末および樹脂組成物
JP2003318499A (ja) * 2002-04-23 2003-11-07 Matsushita Electric Works Ltd 内層回路用プリプレグ、内層回路用金属張積層板及び多層プリント配線板
JP2005298740A (ja) * 2004-04-14 2005-10-27 Admatechs Co Ltd 金属酸化物表面処理粒子および樹脂組成物
JP2006036916A (ja) * 2004-07-27 2006-02-09 Admatechs Co Ltd スラリー組成物、ワニス組成物、およびそれを用いた絶縁フィルム、プリプレグ
WO2007032424A1 (ja) * 2005-09-15 2007-03-22 Sekisui Chemical Co., Ltd. 樹脂組成物、シート状成形体、プリプレグ、硬化体、積層板、および多層積層板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476884A (en) * 1989-02-20 1995-12-19 Toray Industries, Inc. Semiconductor device-encapsulating epoxy resin composition containing secondary amino functional coupling agents
JP2002128872A (ja) * 2000-10-25 2002-05-09 Matsushita Electric Works Ltd エポキシ樹脂組成物およびその用途
KR20050085331A (ko) * 2002-12-05 2005-08-29 가부시키가이샤 가네카 적층체, 인쇄 배선판 및 이들의 제조 방법
JP4459845B2 (ja) * 2005-03-15 2010-04-28 電気化学工業株式会社 シリカスラリー、その製造方法及び用途
JP4830748B2 (ja) * 2006-09-20 2011-12-07 パナソニック電工株式会社 難燃性エポキシ樹脂組成物、樹脂フィルム、プリプレグ及び多層プリント配線板
WO2009040921A1 (ja) * 2007-09-27 2009-04-02 Panasonic Electric Works Co., Ltd. エポキシ樹脂組成物、そのエポキシ樹脂組成物を用いたプリプレグ及び金属張積層板
JP5363841B2 (ja) * 2008-03-28 2013-12-11 積水化学工業株式会社 エポキシ系樹脂組成物、プリプレグ、硬化体、シート状成形体、積層板および多層積層板
JP4782870B2 (ja) * 2008-07-31 2011-09-28 積水化学工業株式会社 硬化体、シート状成形体、積層板及び多層積層板
WO2010035451A1 (ja) * 2008-09-24 2010-04-01 積水化学工業株式会社 半硬化体、硬化体、積層体、半硬化体の製造方法及び硬化体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146233A (ja) * 2000-11-07 2002-05-22 Denki Kagaku Kogyo Kk 表面処理された微細球状シリカ粉末および樹脂組成物
JP2003318499A (ja) * 2002-04-23 2003-11-07 Matsushita Electric Works Ltd 内層回路用プリプレグ、内層回路用金属張積層板及び多層プリント配線板
JP2005298740A (ja) * 2004-04-14 2005-10-27 Admatechs Co Ltd 金属酸化物表面処理粒子および樹脂組成物
JP2006036916A (ja) * 2004-07-27 2006-02-09 Admatechs Co Ltd スラリー組成物、ワニス組成物、およびそれを用いた絶縁フィルム、プリプレグ
WO2007032424A1 (ja) * 2005-09-15 2007-03-22 Sekisui Chemical Co., Ltd. 樹脂組成物、シート状成形体、プリプレグ、硬化体、積層板、および多層積層板

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275511A (ja) * 2009-06-01 2010-12-09 Sekisui Chem Co Ltd エポキシ樹脂組成物、bステージフィルム、積層フィルム、銅張り積層板及び多層基板
KR20140124792A (ko) 2012-01-23 2014-10-27 아지노모토 가부시키가이샤 수지 조성물
WO2014196501A1 (ja) 2013-06-03 2014-12-11 三菱瓦斯化学株式会社 プリント配線板材料用樹脂組成物、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板
KR20160014643A (ko) 2013-06-03 2016-02-11 미츠비시 가스 가가쿠 가부시키가이샤 프린트 배선판 재료용 수지 조성물, 그리고 그것을 사용한 프리프레그, 수지 시트, 금속박 피복 적층판, 및 프린트 배선판
US9905328B2 (en) 2013-06-03 2018-02-27 Mitsubishi Gas Chemical Company, Inc. Resin composition for printed wiring board material and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the same

Also Published As

Publication number Publication date
KR20110054072A (ko) 2011-05-24
US20110244183A1 (en) 2011-10-06
TW201022319A (en) 2010-06-16
JPWO2010035452A1 (ja) 2012-02-16
KR101051873B1 (ko) 2011-07-25
CN102159616B (zh) 2014-08-06
CN102159616A (zh) 2011-08-17
TWI363065B (ja) 2012-05-01
WO2010035452A1 (ja) 2010-04-01

Similar Documents

Publication Publication Date Title
JP4686750B2 (ja) 硬化体及び積層体
JP4782870B2 (ja) 硬化体、シート状成形体、積層板及び多層積層板
JP4674730B2 (ja) 半硬化体、硬化体、積層体、半硬化体の製造方法及び硬化体の製造方法
JP4911795B2 (ja) 積層体の製造方法
JP4107394B2 (ja) 樹脂組成物、シート状成形体、プリプレグ、硬化体、積層板、および多層積層板
JP2010053334A (ja) エポキシ系樹脂組成物、プリプレグ、硬化体、シート状成形体、積層板及び多層積層板
JP5363841B2 (ja) エポキシ系樹脂組成物、プリプレグ、硬化体、シート状成形体、積層板および多層積層板
JP2010100803A (ja) エポキシ系樹脂組成物、シート状成形体、プリプレグ、硬化体、積層板及び多層積層板
KR20120012782A (ko) 열경화성 수지 조성물, 및 이를 이용한 프리프레그, 지지체 부착 절연 필름, 적층판 및 인쇄 배선판
KR20190059872A (ko) 층간 절연 재료 및 다층 프린트 배선판
JP2010229227A (ja) エポキシ樹脂組成物、シート状成形体、プリプレグ、硬化体及び積層板
JP2010215858A (ja) エポキシ樹脂組成物、シート状成形体、積層板、プリプレグ、硬化体及び多層積層板
JP2010083966A (ja) 樹脂組成物、硬化体及び積層体
JP2010229313A (ja) エポキシ樹脂組成物、シート状成形体、プリプレグ、硬化体、積層板及び多層積層板
KR20190059873A (ko) 경화체 및 다층 기판
JP2010083965A (ja) 樹脂組成物、硬化体及び積層体
JP2013075440A (ja) 積層体の製造方法及び積層構造体
JP2010222391A (ja) エポキシ樹脂組成物、シート状成形体、プリプレグ、硬化体、積層板及び多層積層板
JP2010229226A (ja) エポキシ樹脂組成物、シート状成形体、プリプレグ、硬化体及び積層板

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4686750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250