WO2012165012A1 - 樹脂組成物 - Google Patents

樹脂組成物 Download PDF

Info

Publication number
WO2012165012A1
WO2012165012A1 PCT/JP2012/058005 JP2012058005W WO2012165012A1 WO 2012165012 A1 WO2012165012 A1 WO 2012165012A1 JP 2012058005 W JP2012058005 W JP 2012058005W WO 2012165012 A1 WO2012165012 A1 WO 2012165012A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
group
resin composition
composition according
manufactured
Prior art date
Application number
PCT/JP2012/058005
Other languages
English (en)
French (fr)
Inventor
中村 茂雄
一彦 鶴井
正応 依田
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2012537257A priority Critical patent/JP5234229B1/ja
Priority to KR1020137033148A priority patent/KR101433556B1/ko
Publication of WO2012165012A1 publication Critical patent/WO2012165012A1/ja
Priority to US14/087,113 priority patent/US8912279B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Definitions

  • the present invention relates to a resin composition. Furthermore, it is related with the adhesive film, prepreg, multilayer printed wiring board, and semiconductor device containing the said resin composition.
  • Patent Document 1 discloses a resin composition containing a silicone alkoxy oligomer. It is described that the insulating material formed by these compositions can have adhesiveness.
  • Patent Documents 2 to 4 general compounding studies are also conducted. However, its performance was not always satisfactory, such as a special resin system.
  • JP 2006-117826 A Japanese Patent No. 46747730 Japanese Patent No. 4686750 Japanese Patent No. 4782870
  • the problem to be solved by the present invention is that not only the arithmetic average roughness of the insulating layer surface is low in the wet roughening step but also the root mean square roughness is small while maintaining the glass transition temperature and the coefficient of thermal expansion. It is to provide a resin composition capable of forming a plated conductor layer having sufficient peel strength.
  • the inventors of the present invention provide a resin composition comprising (A) an epoxy resin, (B) an alkoxy oligomer, and (C) an inorganic filler. It came to complete.
  • a resin composition comprising (A) an epoxy resin, (B) an alkoxy oligomer, and (C) an inorganic filler.
  • a resin composition comprising (A) an epoxy resin, (B) an alkoxy oligomer, and (C) an inorganic filler.
  • a resin composition as described in [1] above, wherein (B) at least a part of the alkoxy oligomer reacts with (C) an inorganic filler to form a reaction product.
  • (B) The alkoxy oligomer is a methyl group-containing alkoxysilyl resin, a phenyl group-containing alkoxysilyl resin, an epoxy group-containing alkoxysilyl resin, a mercapto group-containing alkoxysilyl resin, an amino group-containing alkoxysilyl resin, an acrylic group-containing alkoxysilyl.
  • the above [1] which is at least one selected from the group consisting of a resin, a methacryl group-containing alkoxysilyl resin, a ureido group-containing alkoxysilyl resin, an isocyanate group-containing alkoxysilyl resin, and a vinyl group-containing alkoxysilyl resin -The resin composition in any one of [8].
  • the alkoxy oligomer is a glycidoxypropyl group-containing alkoxysilyl resin, an aminopropyl group-containing alkoxysilyl resin, an N-2- (aminoethyl) -3-aminopropyl group-containing alkoxysilyl resin, or N-phenyl.
  • the alkoxy oligomer is a glycidoxypropyl group-containing methoxysilyl resin, an aminopropyl group-containing methoxysilyl resin, an aminopropyl group-containing ethoxysilyl resin, or an N-2- (aminoethyl) -3-aminopropyl group.
  • R 1 , R 2 and R 3 are each independently a linear or branched alkyl group having 1 to 10 carbon atoms
  • X is a lower alkyl group, glycidoxyalkyl group, aminoalkyl A group, a mercaptoalkyl group, an acryloxyalkyl group, a methacryloxyalkyl group, a ureidoalkyl group, an isocyanatealkyl group or a vinylalkyl group
  • n is an integer of 2 to 10.
  • a plurality of Xs may be the same or different from each other, and a plurality of R 3 may be the same or different from each other.
  • the resin composition is cured to form an insulating layer, the surface of the insulating layer is roughened, and the peel strength between the conductor layer and the insulating layer obtained by plating is 0.4 kgf / cm to 1.0 kgf. / Cm, the resin composition is cured to form an insulating layer, the arithmetic average roughness after roughening the surface of the insulating layer is 10 nm to 300 nm, and the root mean square roughness is 10 to 520 nm.
  • the present invention is a resin composition
  • a resin composition comprising (A) an epoxy resin, (B) an alkoxy oligomer, and (C) an inorganic filler.
  • the epoxy resin used in the present invention is not particularly limited, but is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol.
  • Type epoxy resin naphthol type epoxy resin, naphthalene type epoxy resin, naphthylene ether type epoxy resin, glycidylamine type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, anthracene type epoxy resin, linear aliphatic epoxy resin, Epoxy resin having butadiene structure, alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring-containing epoxy resin, cyclohexanedimethanol type epoxy resin, trimethylol type epoxy resin Resins, and halogenated epoxy resins. These may be used alone or in combination of two or more.
  • bisphenol A type epoxy resin bisphenol A type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, naphthylene ether type epoxy from the viewpoint of improving heat resistance, insulation reliability, and adhesion to metal foil.
  • Resins, anthracene type epoxy resins, and epoxy resins having a butadiene structure are preferred.
  • bisphenol A type epoxy resin (“Epicoat 828EL”, “YL980” manufactured by Mitsubishi Chemical Corporation), bisphenol F type epoxy resin (“jER806H”, “YL983U” manufactured by Mitsubishi Chemical Corporation), Naphthalene type bifunctional epoxy resin (“HP4032”, “HP4032D”, “HP4032SS”, “EXA4032SS” manufactured by DIC Corporation), naphthalene type tetrafunctional epoxy resin (“HP4700”, “HP4710” manufactured by DIC Corporation), Naphthol type epoxy resin (“ESN-475V” manufactured by Toto Kasei Co., Ltd.), epoxy resin having a butadiene structure (“PB-3600” manufactured by Daicel Chemical Industries, Ltd.), epoxy resin having a biphenyl structure (Nippon Kayaku ( "NC3000H”, “NC3000L”, “NC310” 0 ”,“ YX4000 ”,“ YX4000H ”,“ YX4000HK ”,“ YL6121 ”) manufactured
  • Two or more epoxy resins may be used in combination, but it is preferable to contain an epoxy resin having two or more epoxy groups in one molecule.
  • an aromatic epoxy resin having two or more epoxy groups in one molecule and being liquid at a temperature of 20 ° C. (hereinafter referred to as “liquid epoxy resin”) and three or more epoxy groups in one molecule.
  • a solid aromatic epoxy resin (hereinafter referred to as “solid epoxy resin”) at a temperature of 20 ° C. is more preferable.
  • the aromatic epoxy resin as used in the field of this invention means the epoxy resin which has an aromatic ring structure in the molecule
  • the resin composition When using a liquid epoxy resin and a solid epoxy resin together as an epoxy resin, when using the resin composition in the form of an adhesive film, the resin composition has an appropriate flexibility and the cured product of the resin composition has an appropriate breaking strength. Therefore, the blending ratio (liquid epoxy resin: solid epoxy resin) is preferably in the range of 1: 0.1 to 1: 2 by mass ratio, more preferably in the range of 1: 0.3 to 1: 1.8. The range of 1: 0.6 to 1: 1.5 is more preferable.
  • liquid epoxy resin bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, or naphthalene type epoxy resin are preferable, and naphthalene type epoxy resin is more preferable. You may use these 1 type or in combination of 2 or more types.
  • solid epoxy resins include tetrafunctional naphthalene type epoxy resins, cresol novolac type epoxy resins, dicyclopentadiene type epoxy resins, trisphenol epoxy resins, naphthol novolac epoxy resins, biphenyl type epoxy resins, and naphthylene ether type epoxy resins.
  • a tetrafunctional naphthalene type epoxy resin, a biphenyl type epoxy resin, or a naphthylene ether type epoxy resin is more preferable. You may use these 1 type or in combination of 2 or more types.
  • the content of the epoxy resin is 3 to It is preferably 40% by mass, more preferably 5 to 35% by mass, and even more preferably 10 to 30% by mass.
  • the (B) alkoxy oligomer used in the present invention is not particularly limited, but refers to a low molecular resin having both an organic group and an alkoxysilyl group, and includes a methyl group-containing alkoxysilyl resin, a phenyl group-containing alkoxysilyl resin, and an epoxy group.
  • alkoxysilyl resin Containing alkoxysilyl resin, mercapto group containing alkoxysilyl resin, amino group containing alkoxysilyl resin, acrylic group containing alkoxysilyl resin, methacryl group containing alkoxysilyl resin, ureido group containing alkoxysilyl resin, isocyanate group containing alkoxysilyl resin, vinyl group containing Examples thereof include alkoxysilyl resins. Among these, an epoxy group-containing alkoxysilyl resin, a mercapto group-containing alkoxysilyl resin, and an amino group-containing alkoxysilyl resin are preferable, and an amino group-containing alkoxysilyl resin is more preferable. You may use these 1 type or in combination of 2 or more types. In the alkoxy oligomer, the organic group may have one type or two or more types.
  • glycidoxypropyl group-containing alkoxysilyl resin aminopropyl group-containing alkoxysilyl resin, N-2- (aminoethyl) -3-aminopropyl group-containing alkoxysilyl resin, N-phenyl-3-aminopropyl Group-containing alkoxysilyl resins, methacryloxypropyl group-containing alkoxysilyl resins, acryloxypropyl group-containing alkoxysilyl resins, mercaptopropyl group-containing alkoxysilyl resins, ureidopropyl group-containing alkoxysilyl resins, isocyanatepropyl group-containing alkoxysilyl resins, etc.
  • a glycidoxypropyl group-containing alkoxysilyl resin an aminopropyl group-containing alkoxysilyl resin, an N-2- (aminoethyl) -3-aminopropyl group-containing alkoxysilyl resin, 3-aminopropyl group-containing alkoxysilyl resin, mercaptopropyl group-containing alkoxysilyl resin, more preferably 3-aminopropyl group-containing alkoxysilyl resin, N-2- (aminoethyl) -3-aminopropyl group-containing An alkoxysilyl resin and an N-phenyl-3-aminopropyl group-containing alkoxysilyl resin are preferred, and an N-phenyl-3-aminopropyl group-containing alkoxysilyl resin is more preferred.
  • glycidoxypropyl group-containing methoxysilyl resin aminopropyl group-containing methoxysilyl resin, aminopropyl group-containing ethoxysilyl resin, N-2- (aminoethyl) -3-aminopropyl group-containing methoxysilyl resin N-phenyl-3-aminopropyl group-containing methoxysilyl resin, methacryloxypropyl group-containing methoxysilyl resin, acryloxypropyl group-containing methoxysilyl resin, mercaptopropyl group-containing methoxysilyl resin, ureidopropyl group-containing ethoxysilyl resin, isocyanate Propyl group-containing ethoxysilyl resin and the like, preferably glycidoxypropyl group-containing methoxysilyl resin, aminopropyl group-containing methoxysilyl resin, aminopropyl group-containing ethoxysilyl resin,
  • the (B) alkoxy oligomer can be represented by the structure of the following general formula (1).
  • R 1 , R 2 and R 3 are each independently a linear or branched alkyl group having 1 to 10 carbon atoms, preferably a linear or branched alkyl group having 1 to 5 carbon atoms.
  • a butyl group still more preferably a methyl group, an ethyl group, a propyl group or an isopropyl group, and even more preferably a methyl group or an ethyl group.
  • a plurality of R 3 may be the same as or different from each other.
  • X is a lower alkyl group, glycidoxyalkyl group, aminoalkyl group, mercaptoalkyl group, acryloxyalkyl group, methacryloxyalkyl group, ureidoalkyl group, isocyanatealkyl group, vinylalkyl group, Glycidoxypropyl group, aminopropyl group, N-2- (aminoethyl) -3-aminopropyl group, N-phenyl-3-aminopropyl group, methacryloxypropyl group, acryloxypropyl group, mercaptopropyl group, ureido A propyl group and an isocyanate propyl group are preferable, and a glycidoxypropyl group, an aminopropyl group, an N-2- (aminoethyl) -3-aminopropyl group, an N-phenyl-3-aminopropyl group, and a mercaptopropyl group, vinyl
  • X may be one type or two or more types. That is, a plurality of Xs may be the same or different from each other.
  • n is an integer of 2 to 10, preferably an integer of 2 to 8, more preferably an integer of 2 to 6, and further preferably an integer of 3 to 5.
  • the weight average molecular weight of the (B) alkoxy oligomer is preferably 350 to 10,000, preferably 400 to 5,000, from the viewpoints of reducing volatility and improving handleability, improving dispersibility, and reducing the amount of alcohol by-product. Is more preferable, and 500 to 3000 is even more preferable.
  • the weight average molecular weight in the present invention is measured by a gel permeation chromatography (GPC) method (polystyrene conversion).
  • GPC gel permeation chromatography
  • the weight average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K manufactured by Showa Denko KK as a column. -804L can be measured using chloroform or the like as a mobile phase at a column temperature of 40 ° C. and calculated using a standard polystyrene calibration curve.
  • the viscosity (25 ° C.) of the alkoxy oligomer is preferably 10 mm 2 / s or more, more preferably 20 mm 2 / s or more, and more preferably 30 mm 2 / s or more from the viewpoint of preventing volatilization and improving handleability. More preferably, 40 mm 2 / s or more is even more preferable, 50 mm 2 / s or more is particularly preferable, 100 mm 2 / s or more is particularly preferable, 150 mm 2 / s or more is particularly preferable, and 200 mm 2 / s or more is even more preferable.
  • the inorganic filler from the viewpoint of efficiently coating preferably not more than 2000 mm 2 / s, more preferably less 1800 mm 2 / s, more preferably less 1600 mm 2 / s, even more is 1500 mm 2 / s or less It is preferably 1400 mm 2 / s or less, particularly preferably 1300 mm 2 / s or less, and particularly preferably 1200 mm 2 / s or less.
  • the viscosity (25 ° C.) is about 0 with the use of a syringe in an apparatus adjusted to 25 ° C. using an E-type viscometer (RE-80 manufactured by Toki Sangyo Co., Ltd.). Measure 2 ml and measure at a rotation speed set to 5-20 rpm.
  • the production method of the alkoxy oligomer is not particularly limited, and can be produced by a known method such as Japanese Patent No. 3474007, and obtained by a reaction in which the alkoxy group of the silane coupling agent as a monomer is partially hydrolyzed and polycondensed. Can do.
  • a silane coupling agent and an organic solvent are placed in a reaction vessel, and a hydrolysis and condensation reaction is performed at 20 to 80 ° C. for 0.1 to 10 hours.
  • an aqueous hydrochloric acid solution or a fluorine-containing compound can also be used as a catalyst.
  • the catalyst used is removed, but the by-produced alcohol is distilled off and then filtered or changed to a highly hydrophobic organic solvent system and then washed with water.
  • a trace amount of water in the product can be removed by a desiccant or azeotropic dehydration, and then a known post-treatment method such as volatilization of the solvent can be employed.
  • alkoxy oligomers may be used.
  • examples of commercially available alkoxy oligomers include epoxy group-containing alkoxysilyl resins (“X-41-1053”, “X-41-1059A” manufactured by Shin-Etsu Chemical Co., Ltd.).
  • Methyl group and epoxy group-containing alkoxysilyl resin (“X-41-1056” manufactured by Shin-Etsu Chemical Co., Ltd.), primary amino group-containing alkoxysilyl resin (“X-40-2651 manufactured by Shin-Etsu Chemical Co., Ltd.) )), Aminophenyl group-containing alkoxysilyl resin (“X-40-9281” manufactured by Shin-Etsu Chemical Co., Ltd.), mercapto group-containing alkoxysilyl resin (“X-40-1805” manufactured by Shin-Etsu Chemical Co., Ltd.), “ X-41-1818 "), an alkoxysilyl resin containing a methyl group and a mercapto group (“ X-41-1810 "manufactured by Shin-Etsu Chemical Co., Ltd.) Methyl group and amino group-containing alkoxysilyl resin (“X-40-2651” manufactured by Shin-Etsu Chemical Co., Ltd.), methyl group and methacryl
  • the inorganic filler (C) used in the present invention is not particularly limited.
  • silica is preferable.
  • silica such as amorphous silica, pulverized silica, fused silica, crystalline silica, synthetic silica, and hollow silica is preferable, and fused silica is more preferable. Further, the silica is preferably spherical. You may use these 1 type or in combination of 2 or more types.
  • the average particle diameter of the inorganic filler is not particularly limited, but the upper limit value of the average particle diameter of the inorganic filler is preferably 5 ⁇ m or less from the viewpoint of forming fine wiring on the insulating layer, and 3 ⁇ m or less. Is more preferably 1 ⁇ m or less, still more preferably 0.7 ⁇ m or less, particularly preferably 0.5 ⁇ m or less, particularly preferably 0.4 ⁇ m or less, and particularly preferably 0.3 ⁇ m or less.
  • the lower limit of the average particle size of the inorganic filler is set to 0. 0 from the viewpoint of preventing the viscosity of the varnish from increasing and handling properties from being lowered when the epoxy resin composition is used as a resin composition varnish.
  • the average particle diameter of the inorganic filler can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis with a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter. As the measurement sample, an inorganic filler dispersed in water by ultrasonic waves can be preferably used. As a laser diffraction type particle size distribution measuring device, LA-500, 750, 950 manufactured by Horiba, Ltd. can be used.
  • the content varies depending on the properties required of the resin composition when the nonvolatile component in the resin composition is 100 mass%, but is preferably 20 to 85 mass%. 30 to 80% by mass is more preferable, 40 to 75% by mass is still more preferable, and 50 to 70% by mass is even more preferable. If the content of the inorganic filler is too small, the coefficient of thermal expansion of the cured product tends to increase, and if the content is too large, the cured product tends to become brittle and the peel strength tends to decrease.
  • At least a part of (B) alkoxy oligomer may react with (C) inorganic filler to form a reaction product.
  • reaction between (B) alkoxy oligomer and (C) inorganic filler means a condensation reaction between (B) alkoxy group of alkoxy oligomer and (C) surface hydroxyl group of inorganic filler. Specifically, it represents a hydrolysis / dehydration condensation reaction and a dealcoholization condensation reaction. Therefore, the “reactant” formed by reacting (B) the alkoxy oligomer with (C) the inorganic filler represents a condensate of (B) the alkoxy oligomer and (C) the inorganic filler. In such a condensate, the (B) alkoxy oligomer is covalently bonded to the surface of the (C) inorganic filler.
  • reaction product ie, a condensate
  • C an inorganic filler
  • the degree of reaction between (B) alkoxy oligomer and (C) inorganic filler is determined by using a two-component system of (B) alkoxy oligomer and (C) inorganic filler as a model reaction system, and using the model reaction system as a solvent ( For example, the amount of carbon per unit surface area of the (C) inorganic filler after washing with methyl ethyl ketone (MEK)) can be quantified. Specifically, it can be carried out by the following procedure.
  • a sufficient amount of MEK as a solvent is added to a model reaction system based on a two-component system of (B) an alkoxy oligomer and (C) an inorganic filler, followed by ultrasonic cleaning at 25 ° C. for 5 minutes. After removing the supernatant and drying the solid content, the carbon amount per unit surface area of the (C) inorganic filler is measured using a carbon analyzer.
  • the measured value of the carbon amount is (C) the amount of carbon atoms of the (B) alkoxy oligomer reacted with the inorganic filler (forming a condensate) per unit surface area of the inorganic filler, that is, [ (C) Amount of carbon atoms (mg) of (B) alkoxy oligomer reacted with inorganic filler / (C) Surface area of inorganic filler (m 2 )]. Therefore, when having a measured value of the carbon amount, it corresponds to “(B) At least a part of the alkoxy oligomer has reacted with the inorganic filler (C) to form a reactant”.
  • the amount of carbon per unit surface area of the inorganic filler varies depending on the kind of the alkoxy oligomer and the (C) inorganic filler and the amount ratio thereof. Is preferably 0.05 mg / m 2 or more, more preferably 0.10 mg / m 2 or more, and more preferably 0.15 mg / m 2 in terms of stabilizing the arithmetic average roughness and root mean square roughness after the wet roughening step. Two or more are more preferable.
  • melt viscosity at the melt viscosity and the adhesive film forms of the resin varnish is preferably 1.00 mg / m 2 or less, more preferably 0.75 mg / m 2 or less, 0.50 mg / m 2 or less is more preferable.
  • the reaction rate of the reaction product (that is, the condensate) of (B) the alkoxy oligomer and (C) the inorganic filler is determined by FT-IR (Fourier transform infrared analyzer). For example, when (C) silica is used as the inorganic filler, paying attention to (silanol group having an intrinsic peak at 3747 to 3750 cm ⁇ 1 ), [(quantitative value before reaction ⁇ quantitative value after reaction) / quantitative value before reaction ⁇ 100].
  • the lower limit of the reaction rate between (B) alkoxy oligomer and (C) inorganic filler is preferably 10%, more preferably 30%, still more preferably 50%, still more preferably 70%, and even more preferably 80%. Preferably, 90% is particularly preferable.
  • the upper limit of the reaction rate between (B) alkoxy oligomer and (C) inorganic filler is preferably 98%, more preferably 99%, and particularly preferably 100%.
  • the (C) inorganic filler of the present invention or the (B) inorganic filler formed by the reaction of at least a part of the (B) alkoxy oligomer is an epoxy within a range that does not impair the effects of the present invention.
  • a silane coupling agent, an aminosilane coupling agent, a mercaptosilane coupling agent, a silane coupling agent, an organosilazane compound, a titanate coupling agent or the like may be used. You may use these 1 type or in combination of 2 or more types.
  • the surface treatment agent include aminopropylmethoxysilane, aminopropyltriethoxysilane, ureidopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-2 (aminoethyl) aminopropyltrimethoxysilane.
  • Aminosilane coupling agents such as glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropylmethyldiethoxysilane, glycidylbutyltrimethoxysilane, (3,4-epoxycyclohexyl) ethyltrimethoxy Epoxysilane coupling agents such as silane, mercaptosilane coupling agents such as mercaptopropyltrimethoxysilane, mercaptopropyltriethoxysilane, methyltrimethoxysilane, octade Silane coupling agents such as siltrimethoxysilane, phenyltrimethoxysilane, methacroxypropyltrimethoxysilane, imidazolesilane, triazinesilane, hexamethyldisilazane, hexaphenyldisilazane
  • KBM403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM803 (3-mercaptopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., Shin-Etsu Chemical Co., Ltd.
  • KBE903 (3-aminopropyltriethoxysilane) manufactured by Co., Ltd.
  • KBM573 N-phenyl-3-aminopropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., and the like.
  • the use of (C) inorganic filler surface-treated with an organosilazane compound is advantageous from the viewpoint of improving the dispersibility of the resin varnish and improving the coverage of the inorganic filler with the alkoxy oligomer.
  • hexamethyldisilazane is preferable.
  • the (B) alkoxy oligomer may be covalently bonded to the surface of the (C) inorganic filler via the surface treatment agent.
  • the insulating layer formed by curing the resin composition of the present invention containing (A) an epoxy resin, (B) an alkoxy oligomer and (C) an inorganic filler is subjected to a wet roughening treatment. Even when the surface roughness is low, a plated conductor layer exhibiting sufficient peel strength can be formed on the surface of the insulating layer. Such an effect can be more enjoyed by using a resin composition in which at least a part of (B) the alkoxy oligomer reacts with (C) the inorganic filler to form a reaction product.
  • the resin composition in which at least a part of (B) alkoxy oligomer reacts with (C) inorganic filler to form a reaction product, (B) alkoxy oligomer and (C) inorganic filler as described later. can be suitably obtained by adding them to (A) the epoxy resin (and other components used as necessary).
  • (B) alkoxy oligomer and (C) inorganic filler may be added as they are to the resin composition, or (B) alkoxy oligomer and (C) inorganic filler are previously added. You may add after making it react. From the viewpoint of improving dispersibility in the resin composition, it is preferable that (B) the alkoxy oligomer and (C) the inorganic filler are reacted in advance and then added to the resin composition.
  • (B) the alkoxy oligomer and (C) the inorganic filler are reacted in advance and then added to the resin composition, so that at least a part of the (B) alkoxy oligomer as described above becomes (C) the inorganic filler.
  • the resin composition which reacts with and forms the reaction material can be obtained suitably. Examples of the method of reacting (B) the alkoxy oligomer and (C) the inorganic filler in advance include the following methods.
  • the inorganic filler is put into a rotary mixer, and (B) the inorganic filler is agitated for 5 to 30 minutes while spraying a mixture of the alkoxy oligomer previously mixed with methyl ethyl ketone (MEK). Stir at 150 ° C. for 0.5-3 hours to react in advance. More preferably, the mixture is stirred at 55 to 130 ° C. for 0.5 to 3 hours, more preferably at 60 to 110 ° C. for 0.5 to 3 hours, and still more preferably at 70 to 80 ° C. for 1 to 3 hours. Then, the method of distilling a volatile component off is mentioned.
  • MEK methyl ethyl ketone
  • a drum mixer In addition to the rotating mixer, a drum mixer, a rocking mixer, a vibrating fluidized bed, a powder dryer, and the like can be used, but a rotating mixer is preferable because it can be easily performed.
  • a Henschel-type powder mixer can be used as the rotary mixer.
  • the content of the (B) alkoxy oligomer is preferably 5% by mass or less, more preferably 4% by mass or less, more preferably 3% by mass with respect to 100% by mass of the (C) inorganic filler, from the viewpoint of preventing an increase in melt viscosity. % Or less is more preferable, and 2 mass% or less is still more preferable. Further, from the viewpoint of improving the dispersibility of the resin varnish and improving the coverage of the inorganic filler, it is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, still more preferably 0.3% by mass or more, 0 More preferably 4% by mass or more. In addition, said content is based on the preparation amount of (B) alkoxy oligomer and (C) inorganic filler which are used for manufacture of a resin composition.
  • the resin composition of the present invention is cured to form an insulating layer, the surface of the insulating layer is roughened, and the peel strength between the conductor layer and the insulating layer obtained by plating is described in ⁇ Plating conductor layer pulling> It can be grasped by the measurement method described in Measurement of Peel Strength (Peel Strength)>.
  • the upper limit of the peel strength is preferably 0.8 kgf / cm or less, more preferably 0.9 kgf / cm or less, and still more preferably 1.0 kgf / cm or less.
  • the lower limit value of the peel strength is preferably 0.4 kgf / cm or more, and more preferably 0.5 kgf / cm or more.
  • the arithmetic average roughness (Ra value) and the root mean square roughness (Rq value) after curing the resin composition of the present invention to form an insulating layer and roughening the surface of the insulating layer will be described later. It can be grasped by the measuring method described in the section “Measurement of arithmetic average roughness (Ra value) and root mean square roughness (Rq value) after roughening>.
  • the upper limit of the arithmetic average roughness (Ra value) is preferably 300 nm or less, more preferably 260 nm or less, still more preferably 240 nm or less, even more preferably 220 nm or less, even more preferably 200 nm or less in order to reduce transmission loss of electrical signals. Is particularly preferably 170 nm or less, particularly preferably 160 m or less, and even more preferably 150 nm or less.
  • the lower limit of the arithmetic average roughness (Ra value) is preferably 10 nm or more, more preferably 20 nm or more, still more preferably 30 nm or more, still more preferably 40 nm or more, and even more preferably 50 nm or more from the viewpoint of improving peel strength. preferable.
  • the upper limit of the root mean square roughness (Rq value) is preferably 520 nm or less, more preferably 480 nm or less, still more preferably 440 nm or less, still more preferably 400 nm or less, in order to obtain a dense and smooth insulating layer surface. 360 nm or less is particularly preferred, 320 nm or less is particularly preferred, 280 nm or less is particularly preferred, and 240 nm or less is even more preferred.
  • the lower limit of the root mean square roughness (Rq value) is preferably 10 nm or more, more preferably 30 nm or more, still more preferably 40 nm or more, still more preferably 50 nm or more, and more preferably 60 nm or more. Particularly preferred.
  • the resin composition of the present invention comprises a conductor layer and an insulating layer obtained by curing the resin composition to form an insulating layer, roughening the surface of the insulating layer, and plating.
  • the peel strength is 0.4 kgf / cm to 1.0 kgf / cm
  • the arithmetic average roughness after curing the resin composition to form an insulating layer and roughening the surface of the insulating layer is 10 nm to 300 nm.
  • the root mean square roughness is 10 to 520 nm.
  • the resin composition of the present invention comprises a conductive layer and an insulating layer obtained by curing the resin composition to form an insulating layer, roughening the surface of the insulating layer, and plating.
  • the peel strength is 0.5 kgf / cm to 1.0 kgf / cm
  • the arithmetic average roughness after curing the resin composition to form an insulating layer and roughening the surface of the insulating layer is 10 nm to 150 nm.
  • the root mean square roughness is 10 to 240 nm.
  • the resin composition of this invention can harden an epoxy resin and a hardening
  • a hardening accelerator An amine hardening accelerator, a guanidine hardening accelerator, an imidazole hardening accelerator, a phosphonium hardening accelerator, a metal hardening accelerator, etc. are mentioned. These may be used alone or in combination of two or more.
  • the amine curing accelerator is not particularly limited, but trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) And amine compounds such as phenol and 1,8-diazabicyclo (5,4,0) -undecene (hereinafter abbreviated as DBU). You may use these 1 type or in combination of 2 or more types.
  • trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl)
  • amine compounds such as phenol and 1,8-diazabicyclo (5,4,0) -undecene (hereinafter abbreviated as DBU). You may use these 1 type or in combination of 2 or more types.
  • the guanidine curing accelerator is not particularly limited, but dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine.
  • Diphenylguanidine trimethylguanidine, tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] Deca-5-ene, 1-methyl biguanide, 1-ethyl biguanide, 1-n-butyl biguanide, 1-n-octadecyl biguanide, 1,1-dimethyl biguanide, 1,1-diethyl biguanide 1-cyclohexyl biguanide, 1-allyl biguanide, 1-fur Nirubiguanido, 1-(o-tolyl) biguanide, and the like. You may use these 1 type or in combination of 2 or more types.
  • the imidazole curing accelerator is not particularly limited, but 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1- Cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimer Retail 1-cyanoethyl-2-phenylim
  • the phosphonium curing accelerator is not particularly limited, but triphenylphosphine, phosphonium borate compound, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, (4- Methylphenyl) triphenylphosphonium thiocyanate, tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate, and the like. You may use these 1 type or in combination of 2 or more types.
  • the content of the curing accelerator (excluding the metal-based curing accelerator) is in the range of 0.005 to 1% by mass when the nonvolatile component in the resin composition is 100% by mass.
  • the range of 0.01 to 0.5% by mass is more preferable. If it is less than 0.005% by mass, curing tends to be slow and a long thermosetting time is required, and if it exceeds 1% by mass, the storage stability of the resin composition tends to decrease.
  • the metal-based curing accelerator is not particularly limited, and examples thereof include an organometallic complex or an organometallic salt of a metal such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organometallic complex include organic cobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • Organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate. These may be used alone or in combination of two or more.
  • the addition amount of the metal-based curing accelerator is such that the metal content based on the metal-based curing catalyst is in the range of 25 to 500 ppm when the nonvolatile component in the resin composition is 100% by mass.
  • the range of 40 to 200 ppm is more preferable. If it is less than 25 ppm, it tends to be difficult to form a conductor layer excellent in adhesion to the surface of the insulating layer having a low arithmetic average roughness. If it exceeds 500 ppm, the storage stability and insulation of the resin composition are lowered. Tend to.
  • the resin composition of the present invention can improve insulation and mechanical properties by further containing a curing agent.
  • curing agent A phenol type hardening
  • phenol-based curing agents From the viewpoint of further reducing the arithmetic average roughness (Ra value) and the root mean square roughness (Rq value), phenol-based curing agents, naphthol-based curing agents, and active ester-based curing agents are preferred. These may be used alone or in combination of two or more.
  • the phenolic curing agent and the naphtholic curing agent are not particularly limited, and examples thereof include a phenolic curing agent having a novolak structure and a naphtholic curing agent having a novolac structure, such as a phenol novolac resin, a triazine skeleton-containing phenol novolac resin, Naphthol novolac resins, naphthol aralkyl type resins, triazine skeleton-containing naphthol resins, and biphenyl aralkyl type phenol resins are preferred.
  • a phenolic curing agent having a novolak structure such as a phenol novolac resin, a triazine skeleton-containing phenol novolac resin, Naphthol novolac resins, naphthol aralkyl type resins, triazine skeleton-containing naphthol resins, and biphenyl aralkyl type phenol resins are preferred.
  • biphenyl aralkyl type phenol resins such as “MEH-7700”, “MEH-7810”, “MEH-7785”, “MEH7851-4H” (Maywa Kasei Co., Ltd.), “GPH” (Nippon Kasei).
  • the active ester curing agent is not particularly limited, but generally an ester group having high reaction activity such as phenol ester, thiophenol ester, N-hydroxyamine ester, heterocyclic hydroxy compound ester in one molecule.
  • a compound having two or more in the above is preferably used.
  • the active ester curing agent is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound.
  • an active ester curing agent obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester curing agent obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferable.
  • the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • phenol compound or naphthol compound examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol , Dicyclopentadienyl diphenol, phenol novolac and the like.
  • an active ester curing agent an active ester curing agent disclosed in JP-A-2004-277460 may be used, or a commercially available one may be used.
  • Commercially available active ester curing agents include those containing a dicyclopentadienyl diphenol structure, acetylated phenol novolacs, benzoylated phenol novolacs, etc. Among them, dicyclopentadienyl diphenol structures are preferred. The inclusion is more preferable.
  • EXB9451, EXB9460, EXB9460S-65T, HPC-8000-65T manufactured by DIC Corporation, active group equivalent of about 223 as an acetylated product of phenol novolak as a dicyclopentadienyl diphenol structure.
  • DC808 (manufactured by Japan Epoxy Resin Co., Ltd., active group equivalent of about 149), YLH1026 (manufactured by Japan Epoxy Resin Co., Ltd., active group equivalent of about 200) as a benzoylated phenol novolak, YLH1030 (manufactured by Japan Epoxy Resin Co., Ltd.) Active group equivalent of about 201), YLH1048 (manufactured by Japan Epoxy Resin Co., Ltd., active group equivalent of about 245), and the like.
  • EXB9460S is preferable from the viewpoint of the storage stability of the varnish and the thermal expansion coefficient of the cured product.
  • examples of the active ester curing agent containing a dicyclopentadienyl diphenol structure include a compound represented by the following formula (2).
  • R is a phenyl group or a naphthyl group
  • k represents 0 or 1
  • n is 0.05 to 2.5 on the average of repeating units.
  • R is preferably a naphthyl group
  • k is preferably 0, and n is preferably 0.25 to 1.5.
  • the benzoxazine-based curing agent is not particularly limited, and specific examples include Fa, Pd (manufactured by Shikoku Kasei Co., Ltd.), HFB2006M (manufactured by Showa Polymer Co., Ltd.), and the like.
  • cyanate ester type hardening curing agent, Novolac type (phenol novolak type, alkylphenol novolak type, etc.) cyanate ester type hardening agent, dicyclopentadiene type cyanate ester type hardening agent, bisphenol type (bisphenol A type, bisphenol) Fate, bisphenol S type, etc.) cyanate ester curing agents, and prepolymers in which these are partially triazines.
  • the weight average molecular weight of the cyanate ester curing agent is not particularly limited, but is preferably 500 to 4500, more preferably 600 to 3000.
  • cyanate ester curing agent examples include, for example, bisphenol A dicyanate, polyphenol cyanate (oligo (3-methylene-1,5-phenylene cyanate), 4,4′-methylenebis (2,6-dimethylphenyl cyanate), 4,4′-ethylidenediphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanatephenylmethane), bis (4-cyanate-3, Bifunctional cyanate resins such as 5-dimethylphenyl) methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, bis (4-cyanatephenyl) ether , Phenol novolac, Examples thereof include polyfunctional cyanate resins derived from resole novolac, dicyclopentadiene structure-containing phenol resins
  • cyanate ester resins examples include phenol novolac polyfunctional cyanate ester resins represented by the following formula (3) (manufactured by Lonza Japan Co., Ltd., PT30, cyanate equivalent 124), and the following formula (4): Prepolymer (part Lona Japan Co., Ltd., BA230, cyanate equivalent 232), dicyclopentadiene represented by the following formula (5): Structure-containing cyanate ester resin (Lonza Japan Co., Ltd., T-4000, DT-7000), and the like.
  • formula (3) manufactured by Lonza Japan Co., Ltd., PT30, cyanate equivalent 124
  • Prepolymer part Lona Japan Co., Ltd., BA230, cyanate equivalent 232
  • dicyclopentadiene represented by the following formula (5): Structure-containing cyanate ester resin (Lonza Japan Co., Ltd., T-4000, DT-7000), and the like.
  • n represents an arbitrary number (preferably 0 to 20) as an average value.
  • n represents a number of 0 to 5 as an average value.
  • the acid anhydride curing agent is not particularly limited, but phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic acid anhydride Hydrogenated methyl nadic anhydride, trialkyltetrahydrophthalic anhydride, dodecenyl succinic anhydride, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid Acid anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic dianhydride, biphenyl tetracarboxylic dianhydride, naphthalene tetracarboxylic dianhydride, oxydiphthalic dianhydride, 3,3 ' -4
  • the total number of epoxy groups of the epoxy resin and (E) the total of reactive groups of the curing agent is preferably 1: 0.2 to 1: 2, more preferably 1: 0.3 to 1: 1.5, still more preferably 1: 0.4 to 1: 1.
  • the total number of epoxy groups of the epoxy resin present in the resin composition is a value obtained by dividing the solid content mass of each epoxy resin by the epoxy equivalent for all epoxy resins, and the reactive group of the curing agent.
  • the total number of is a value obtained by adding the values obtained by dividing the solid mass of each curing agent by the reactive group equivalent for all curing agents.
  • the resin composition of the present invention can further improve the mechanical strength of the cured product by further including (F) a thermoplastic resin, and further improve the film molding ability when used in the form of an adhesive film.
  • a thermoplastic resin examples include phenoxy resin, polyimide resin, polyamideimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyphenylene ether resin, polycarbonate resin, polyetheretherketone resin, and polyester resin. Can do.
  • These thermoplastic resins may be used alone or in combination of two or more.
  • the weight average molecular weight of the thermoplastic resin is preferably in the range of 5,000 to 200,000.
  • the weight average molecular weight in this invention is measured by the gel permeation chromatography (GPC) method (polystyrene conversion).
  • the weight average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K manufactured by Showa Denko KK as a column. -804L can be measured using chloroform or the like as a mobile phase at a column temperature of 40 ° C. and calculated using a standard polystyrene calibration curve.
  • the content of the thermoplastic resin in the resin composition is not particularly limited, but the nonvolatile content in the resin composition is not limited. 0.1 to 10% by mass is preferable with respect to 100% by mass, and 1 to 5% by mass is more preferable. If the content of the thermoplastic resin is too small, the effect of improving the film forming ability and mechanical strength tends to not be exhibited. If the content is too large, the melt viscosity increases and the arithmetic average roughness of the insulating layer surface after the wet roughening process is low. It tends to increase.
  • the resin composition of the present invention can further improve the plating peel strength by further containing (G) rubber particles, and can also improve drill workability, decrease dielectric loss tangent, and obtain a stress relaxation effect.
  • the rubber particles that can be used in the present invention are, for example, those that do not dissolve in the organic solvent used when preparing the varnish of the resin composition, and are incompatible with the essential components such as cyanate ester resin and epoxy resin. is there. Accordingly, the rubber particles exist in a dispersed state in the varnish of the resin composition of the present invention.
  • Such rubber particles are generally prepared by increasing the molecular weight of the rubber component to a level at which it does not dissolve in an organic solvent or resin and making it into particles.
  • Preferred examples of rubber particles that can be used in the present invention include core-shell type rubber particles, crosslinked acrylonitrile butadiene rubber particles, crosslinked styrene butadiene rubber particles, and acrylic rubber particles.
  • the core-shell type rubber particles are rubber particles having a core layer and a shell layer.
  • a two-layer structure in which an outer shell layer is made of a glassy polymer and an inner core layer is made of a rubbery polymer or Examples include a three-layer structure in which the outer shell layer is made of a glassy polymer, the intermediate layer is made of a rubbery polymer, and the core layer is made of a glassy polymer.
  • the glassy polymer layer is made of, for example, a polymer of methyl methacrylate
  • the rubbery polymer layer is made of, for example, a butyl acrylate polymer (butyl rubber).
  • Two or more rubber particles may be used in combination.
  • Specific examples of the core-shell type rubber particles include Staphyloid AC3832, AC3816N, IM-401 modified 1, IM-401 modified 7-17 (trade name, manufactured by Ganz Kasei Co., Ltd.), Metabrene KW-4426 (trade name, Mitsubishi) Rayon Co., Ltd.).
  • Specific examples of the crosslinked acrylonitrile butadiene rubber (NBR) particles include XER-91 (average particle size: 0.5 ⁇ m, manufactured by JSR Corporation).
  • SBR crosslinked styrene butadiene rubber
  • acrylic rubber particles include Methbrene W300A (average particle size 0.1 ⁇ m) and W450A (average particle size 0.2 ⁇ m) (manufactured by Mitsubishi Rayon Co., Ltd.).
  • the average particle size of the rubber particles to be blended is preferably in the range of 0.005 to 1 ⁇ m, more preferably in the range of 0.2 to 0.6 ⁇ m.
  • the average particle diameter of the rubber particles used in the present invention can be measured using a dynamic light scattering method. For example, rubber particles are uniformly dispersed in an appropriate organic solvent by ultrasonic waves, etc., and a particle size distribution of rubber particles is created on a mass basis using a concentrated particle size analyzer (FPAR-1000; manufactured by Otsuka Electronics Co., Ltd.). And it can measure by making the median diameter into an average particle diameter.
  • FPAR-1000 concentrated particle size analyzer
  • the content of the rubber particles is preferably 0.05 to 10% by mass and more preferably 0.5 to 5% by mass with respect to 100% by mass of the nonvolatile content in the resin composition.
  • the resin composition of the present invention can impart flame retardancy by further containing (H) a flame retardant.
  • a flame retardant examples include an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a silicone flame retardant, and a metal hydroxide.
  • Organic phosphorus flame retardants include phenanthrene-type phosphorus compounds such as HCA, HCA-HQ, and HCA-NQ manufactured by Sanko Co., Ltd., phosphorus-containing benzoxazine compounds such as HFB-2006M manufactured by Showa High Polymer Co., Ltd., and Ajinomoto Co., Inc.
  • Phosphoric ester compounds such as OP930 manufactured by Clariant Co., Ltd., PX200 manufactured by Daihachi Chemical Co., Ltd., phosphorus-containing epoxy resins such as FX289, FX305, TX0712 manufactured by Toto Kasei Co., Ltd., manufactured by Toto Kasei Co., Ltd.
  • Phosphorus-containing phenoxy resins such as ERF001 and phosphorus-containing epoxies such as YL7613 manufactured by Japan Epoxy Resin Co., Ltd. Shi resins.
  • organic nitrogen-containing phosphorus compounds include phosphoric ester amide compounds such as SP670 and SP703 manufactured by Shikoku Kasei Kogyo Co., Ltd., SPB100 and SPE100 manufactured by Otsuka Chemical Co., Ltd., and FP-series manufactured by Fushimi Pharmaceutical Co., Ltd.
  • Phosphazene compounds such as As the metal hydroxide, magnesium hydroxide such as UD65, UD650, UD653 manufactured by Ube Materials Co., Ltd., B-30, B-325, B-315, B-308 manufactured by Sakai Kogyo Co., Ltd. Examples thereof include aluminum hydroxide such as B-303 and UFH-20.
  • the content of the flame retardant is preferably 0.5 to 10% by mass, more preferably 1 to 5% by mass with respect to 100% by mass of the nonvolatile content in the resin composition.
  • ⁇ Other ingredients> In the resin composition of the present invention, other components can be blended as necessary within a range not inhibiting the effects of the present invention.
  • Other components include vinyl benzyl compounds, acrylic compounds, maleimide compounds, thermosetting resins such as blocked isocyanate compounds, organic fillers such as silicon powder, nylon powder and fluorine powder, thickeners such as Orben and Benton, Silicone-based, fluorine-based, polymer-based antifoaming or leveling agents, imidazole-based, thiazole-based, triazole-based, silane-based coupling agents, etc., phthalocyanine blue, phthalocyanine green, iodin green, Examples thereof include colorants such as disazo yellow and carbon black.
  • the method for preparing the resin composition of the present invention is not particularly limited, and examples thereof include a method in which the components are added with a solvent or the like as necessary and mixed using a rotary mixer or the like.
  • the use of the resin composition of the present invention is not particularly limited, however, insulating resin sheets such as adhesive films and prepregs, circuit boards (for laminated boards, multilayer printed wiring boards, etc.), solder resists, underfill materials, die bonding It can be used in a wide range of applications where a resin composition is required, such as materials, semiconductor sealing materials, hole-filling resins, and component-filling resins. Especially, in manufacture of a multilayer printed wiring board, it can use suitably as a resin composition (resin composition for insulating layers of a multilayer printed wiring board) for forming an insulating layer, and forms a conductor layer by plating.
  • a resin composition resin composition for insulating layers of a multilayer printed wiring board
  • the resin composition of the present invention can be applied to a circuit board in a varnish state to form an insulating layer, but in general, it is preferably used in the form of a sheet-like laminated material such as an adhesive film or a prepreg. .
  • the softening point of the resin composition is preferably 40 to 150 ° C. from the viewpoint of the laminate property of the sheet-like laminated material.
  • the adhesive film of the present invention is prepared by a method known to those skilled in the art, for example, by preparing a resin varnish in which a resin composition is dissolved in an organic solvent, and applying the resin varnish to a support using a die coater or the like. It can be produced by drying the organic solvent by heating or blowing hot air to form the resin composition layer.
  • organic solvent examples include ketones such as acetone, methyl ethyl ketone and cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitols such as cellosolve and butyl carbitol.
  • ketones such as acetone, methyl ethyl ketone and cyclohexanone
  • acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate, and carbitols such as cellosolve and butyl carbitol.
  • Aromatic hydrocarbons such as toluene and xylene
  • amide solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. Two
  • Drying conditions are not particularly limited, but drying is performed so that the content of the organic solvent in the resin composition layer is 10% by mass or less, preferably 5% by mass or less.
  • a resin composition layer is formed by drying a varnish containing 30 to 60% by mass of an organic solvent at 50 to 150 ° C. for about 3 to 10 minutes. can do.
  • the thickness of the resin composition layer formed in the adhesive film is preferably equal to or greater than the thickness of the conductor layer. Since the thickness of the conductor layer of the circuit board is usually in the range of 5 to 70 ⁇ m, the resin composition layer preferably has a thickness of 10 to 100 ⁇ m.
  • the support examples include polyolefin films such as polyethylene, polypropylene, and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyester films such as polyethylene naphthalate, polycarbonate films, and polyimide films.
  • PET polyethylene terephthalate
  • polyester films such as polyethylene naphthalate, polycarbonate films, and polyimide films.
  • release foil metal foil, such as copper foil and aluminum foil.
  • the support and a protective film described later may be subjected to surface treatment such as mud treatment or corona treatment.
  • the release treatment may be performed with a release agent such as a silicone resin release agent, an alkyd resin release agent, or a fluororesin release agent.
  • the thickness of the support is not particularly limited, but is preferably 10 to 150 ⁇ m, more preferably 25 to 50 ⁇ m.
  • a protective film according to the support can be further laminated on the surface of the resin composition layer on which the support is not in close contact.
  • the thickness of the protective film is not particularly limited, but is, for example, 1 to 40 ⁇ m. By laminating the protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches.
  • the adhesive film can also be stored in a roll.
  • the adhesive film is laminated on one or both sides of the circuit board using a vacuum laminator.
  • the substrate used for the circuit substrate include a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, and the like.
  • a circuit board means here that the conductor layer (circuit) patterned was formed in the one or both surfaces of the above boards.
  • one of the outermost layers of the multilayer printed wiring board is a conductor layer (circuit) in which one or both sides are patterned. It is included in the circuit board.
  • the surface of the conductor layer may be previously roughened by blackening, copper etching, or the like.
  • the adhesive film when the adhesive film has a protective film, after removing the protective film, the adhesive film and the circuit board are preheated as necessary, and the adhesive film is pressed and heated to the circuit board. Crimp.
  • a method of laminating on a circuit board under reduced pressure by a vacuum laminating method is preferably used.
  • the laminating conditions are not particularly limited.
  • the pressure bonding temperature is preferably 70 to 140 ° C.
  • the pressure bonding pressure is preferably 1 to 11 kgf / cm 2 (9.8 ⁇ 10 4 to 107 9.9 ⁇ 10 4 N / m 2 ), and lamination is preferably performed under reduced pressure with an air pressure of 20 mmHg (26.7 hPa) or less.
  • the laminating method may be a batch method or a continuous method using a roll.
  • the vacuum lamination can be performed using a commercially available vacuum laminator.
  • vacuum laminators include, for example, a vacuum applicator manufactured by Nichigo-Morton Co., Ltd., a vacuum pressurizing laminator manufactured by Meiki Seisakusho Co., Ltd., a roll dry coater manufactured by Hitachi Industries, Ltd., and Hitachi AIC Co., Ltd. ) Made vacuum laminator and the like.
  • the lamination process which heats and pressurizes under reduced pressure can also be performed using a general vacuum hot press machine.
  • a general vacuum hot press machine For example, it can be performed by pressing a metal plate such as a heated SUS plate from the support layer side.
  • the pressing condition is that the degree of vacuum is usually 1 ⁇ 10 ⁇ 2 MPa or less, preferably 1 ⁇ 10 ⁇ 3 MPa or less.
  • heating and pressurization can be carried out in one stage, it is preferable to carry out the conditions separately in two or more stages from the viewpoint of controlling the oozing of the resin.
  • the first stage press has a temperature of 70 to 150 ° C.
  • the second stage press has a temperature of 150 to 200 ° C. and a pressure of 1 to 40 kgf / cm 2 It is preferable to carry out within a range.
  • the time for each stage is preferably 30 to 120 minutes.
  • Examples of commercially available vacuum hot presses include MNPC-V-750-5-200 (manufactured by Meiki Seisakusho), VH1-1603 (manufactured by Kitagawa Seiki Co., Ltd.), and the like.
  • thermosetting conditions may be appropriately selected according to the type and content of the resin component in the resin composition, but are preferably 150 to 220 ° C. for 20 to 180 minutes, more preferably 160 to 210 ° C. It is selected in the range of 30 to 120 minutes at ° C.
  • Drilling can be performed, for example, by a known method such as drilling, laser, or plasma, or by combining these methods as necessary. However, drilling by a laser such as a carbon dioxide gas laser or a YAG laser is the most common method. is there.
  • a conductor layer is formed on the insulating layer by dry plating or wet plating.
  • dry plating a known method such as vapor deposition, sputtering, or ion plating can be used.
  • wet plating the surface of the insulating layer is subjected to a swelling treatment with a swelling solution, a roughening treatment with an oxidizing agent, and a neutralization treatment with a neutralizing solution in this order to form an uneven anchor.
  • the swelling treatment with the swelling liquid is performed by immersing the insulating layer in the swelling liquid at 50 to 80 ° C. for 5 to 20 minutes.
  • the swelling liquid include an alkaline solution and a surfactant solution, and an alkaline solution is preferable.
  • Examples of the alkaline solution include a sodium hydroxide solution and a potassium hydroxide solution.
  • Examples of commercially available swelling liquids include Swelling Dip Securiganth P (Swelling Dip Securiganth P), Swelling Dip Securiganth SBU (Swelling Dip Securiganth SBU) manufactured by Atotech Japan Co., Ltd. be able to.
  • the roughening treatment with an oxidizing agent is performed by immersing the insulating layer in an oxidizing agent solution at 60 to 80 ° C. for 10 to 30 minutes.
  • the oxidizing agent examples include alkaline permanganate solution in which potassium permanganate and sodium permanganate are dissolved in an aqueous solution of sodium hydroxide, dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and the like. it can.
  • the concentration of permanganate in the alkaline permanganate solution is preferably 5 to 10% by weight.
  • Examples of commercially available oxidizing agents include alkaline permanganate solutions such as Concentrate Compact CP and Dosing Solution Securigans P manufactured by Atotech Japan Co., Ltd.
  • the neutralization treatment with the neutralizing solution is performed by immersing in the neutralizing solution at 30 to 50 ° C. for 3 to 10 minutes.
  • an acidic aqueous solution is preferable, and as a commercially available product, Reduction Solution / Secligant P manufactured by Atotech Japan Co., Ltd. may be mentioned.
  • a conductor layer is formed by combining electroless plating and electrolytic plating.
  • a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating.
  • a subsequent pattern formation method for example, a subtractive method or a semi-additive method known to those skilled in the art can be used.
  • the prepreg of the present invention can be produced by impregnating the resin composition of the present invention into a sheet-like reinforcing base material made of fibers by a hot melt method or a solvent method, and heating and semi-curing. That is, it can be set as the prepreg which will be in the state which the resin composition of this invention impregnated the sheet-like reinforcement base material which consists of fibers.
  • the sheet-like reinforcing substrate made of fibers for example, those made of fibers that are commonly used as prepreg fibers such as glass cloth and aramid fibers can be used.
  • the resin is once coated on a coated paper having good releasability from the resin without dissolving it in an organic solvent, and then laminated on a sheet-like reinforcing substrate, or the resin is used in an organic solvent.
  • This is a method for producing a prepreg by directly coating a sheet-like reinforcing substrate with a die coater without dissolving it.
  • a resin varnish is prepared by dissolving a resin in an organic solvent in the same manner as the adhesive film, and a sheet-like reinforcing base material is immersed in the varnish, and then the resin-like varnish is impregnated into the sheet-like reinforcing base material. It is a method of drying.
  • ⁇ Multilayer printed wiring board using prepreg> an example of a method for producing a multilayer printed wiring board using the prepreg produced as described above will be described.
  • One or several prepregs of the present invention are stacked on a circuit board, sandwiched between metal plates through a release film, and vacuum press laminated under pressure and heating conditions.
  • the pressurizing and heating conditions are preferably a pressure of 5 to 40 kgf / cm 2 (49 ⁇ 10 4 to 392 ⁇ 10 4 N / m 2 ) and a temperature of 120 to 200 ° C. for 20 to 100 minutes.
  • the prepreg can be laminated on a circuit board by a vacuum laminating method and then cured by heating. Thereafter, in the same manner as described above, the surface of the cured prepreg is roughened, and then a conductor layer is formed by plating to produce a multilayer printed wiring board.
  • a semiconductor device can be manufactured by using the multilayer printed wiring board of the present invention.
  • a semiconductor device can be manufactured by mounting a semiconductor chip in a conductive portion of the multilayer printed wiring board of the present invention.
  • the “conduction location” is a “location where an electrical signal is transmitted in a multilayer printed wiring board”, and the location may be a surface or an embedded location.
  • the semiconductor chip is not particularly limited as long as it is an electric circuit element made of a semiconductor.
  • the semiconductor chip mounting method for manufacturing the semiconductor device of the present invention is not particularly limited as long as the semiconductor chip functions effectively, but specifically, a wire bonding mounting method, a flip chip mounting method, and no bumps.
  • Examples include a mounting method using a build-up layer (BBUL), a mounting method using an anisotropic conductive film (ACF), and a mounting method using a non-conductive film (NCF).
  • “Mounting method by buildup layer without bump (BBUL)” means “a mounting method in which a semiconductor chip is directly embedded in a recess of a multilayer printed wiring board and the semiconductor chip and wiring on the printed wiring board are connected”. Furthermore, the method is roughly divided into the following BBUL method 1) and BBUL method 2). BBUL method 1) Mounting method in which semiconductor chip is mounted in recess of multilayer printed wiring board using underfill agent BBUL method 2) Mounting method in which semiconductor chip is mounted in recess of multilayer printed wiring board using adhesive film or prepreg
  • the BBUL method 1) specifically includes the following steps.
  • Step 1) A multi-layer printed wiring board with a conductor layer removed from both sides is provided, and a through hole is formed by a laser or a mechanical drill.
  • Step 2) Adhesive tape is attached to one side of the multilayer printed wiring board, and the bottom surface of the semiconductor chip is disposed in the through hole so as to be fixed on the adhesive tape.
  • the semiconductor chip at this time is preferably lower than the height of the through hole.
  • Step 3) The semiconductor chip is fixed to the through hole by injecting and filling an underfill agent into the gap between the through hole and the semiconductor chip.
  • Step 4) The adhesive tape is then peeled off to expose the bottom surface of the semiconductor chip.
  • Step 5) The adhesive film or prepreg of the present invention is laminated on the bottom surface side of the semiconductor chip to cover the semiconductor chip.
  • Step 6) After curing the adhesive film or prepreg, drill with a laser to expose the bonding pad on the bottom surface of the semiconductor chip, and connect with wiring by performing the roughening treatment, electroless plating, and electrolytic plating described above To do. You may laminate
  • the BBUL method 2) specifically includes the following steps.
  • Step 1) A photoresist film is formed on the conductor layers on both sides of the multilayer printed wiring board, and an opening is formed only on one side of the photoresist film by a photolithography method.
  • Step 2) The conductor layer exposed in the opening is removed with an etching solution to expose the insulating layer, and then the resist films on both sides are removed.
  • Step 3) Using a laser or a drill, all of the exposed insulating layer is removed and drilled to form a recess.
  • the laser energy is preferably a laser whose energy can be adjusted so as to lower the laser absorption rate of copper and increase the laser absorption rate of the insulating layer, and more preferably a carbon dioxide laser.
  • Step 4) The bottom surface of the semiconductor chip is placed in the recess with the opening side facing, the adhesive film or prepreg of the present invention is laminated from the opening side, the semiconductor chip is covered, and the gap between the semiconductor chip and the recess is formed. Embed.
  • the semiconductor chip at this time is preferably lower than the height of the recess.
  • Step 5) After the adhesive film or prepreg is cured, holes are formed with a laser to expose the bonding pad on the bottom surface of the semiconductor chip.
  • Step 6) By performing the roughening treatment, electroless plating, and electrolytic plating described above, the wiring is connected, and if necessary, an adhesive film or a prepreg is further laminated.
  • the semiconductor device is miniaturized and transmission loss is reduced, and since no solder is used, the semiconductor chip does not have its thermal history, and solder and resin distortion may occur in the future.
  • a mounting method using a bumpless build-up layer (BBUL) is preferable, the BBUL method 1) and the BBUL method 2) are more preferable, and the BBUL method 2) is more preferable.
  • the inner layer circuit board on which the insulating layer is formed is a swelling liquid, diethylene glycol monobutyl ether-containing swelling dip securigant P (glycol ethers, aqueous solution of sodium hydroxide) of Atotech Japan Co., Ltd.
  • Examples 1 to 9 were immersed at 60 ° C. for 5 minutes, and Example 10 was immersed at 60 ° C. for 10 minutes.
  • Concentrate Compact P (KMnO 4: 60 g) manufactured by Atotech Japan Co., Ltd. / L, NaOH: 40 g / L aqueous solution) for Examples 1 to 9 at 80 ° C.
  • Example 10 for 15 minutes, Example 10 for 20 minutes at 80 ° C., and finally as a neutralizing solution, Atotech Japan Co., Ltd. No. 5 reduction solubilin securigant P (glyoxal, sulfuric acid aqueous solution) at 40 ° C. for 5 minutes .
  • the arithmetic average roughness (Ra value) of the surface of the insulating layer after the roughening treatment was measured.
  • the inner layer circuit board is immersed in an electroless plating solution containing PdCl 2 at 40 ° C. for 5 minutes, and then in an electroless copper plating solution. It was immersed for 20 minutes at 25 ° C. After annealing for 30 minutes at 150 ° C., an etching resist was formed, and after pattern formation by etching, copper sulfate electrolytic plating was performed to form a conductor layer with a thickness of 35 ⁇ 5 ⁇ m. Next, annealing was performed at 200 ° C. for 60 minutes. The circuit board was measured for peel strength (peel strength) of the plated conductor layer.
  • peel strength peel strength of plated conductor layer
  • a gripping tool TSE Co., Ltd., Autocom type testing machine AC-50C-SL
  • Ra value and Rq value were obtained from numerical values obtained with a measurement range of 121 ⁇ m ⁇ 92 ⁇ m using a VSI contact mode and a 50 ⁇ lens. And it measured by calculating
  • the adhesive films obtained in the examples and comparative examples were thermally cured by heating at 200 ° C. for 90 minutes, and a sheet-like cured product was obtained by peeling the PET film.
  • the cured product was cut into a test piece having a width of about 5 mm and a length of about 15 mm, and thermomechanical analysis was performed by a tensile load method using a thermomechanical analyzer Thermo Plus TMA8310 (manufactured by Rigaku Corporation). After mounting the test piece on the apparatus, the test piece was measured twice continuously under the measurement conditions of a load of 1 g and a heating rate of 5 ° C./min.
  • the average coefficient of thermal expansion (ppm) from 25 ° C. to 150 ° C. in the second measurement was calculated.
  • the glass transition temperature (° C.) was calculated from the point at which the slope of the dimensional change signal in the second measurement changed.
  • 0.3 g of this dried sample was accurately weighed in a measuring crucible, and a combustion aid (3.0 g of tungsten and 0.3 g of tin) was further placed in the measuring crucible.
  • the measurement crucible was set in a carbon analyzer (“EMIA-320V” manufactured by Horiba, Ltd.), and the amount of carbon was measured.
  • the amount of carbon per unit surface area was calculated by dividing the measured amount of carbon by the specific surface area of the inorganic filler used.
  • SOC2 spherical silica
  • X- manufactured by Shin-Etsu Chemical Co., Ltd.
  • SOC2 spherical silica manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m
  • X- manufactured by Shin-Etsu Chemical Co., Ltd.
  • ⁇ Production Example 4 100 parts by weight of spherical silica (“SOC2” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m) was put into a Henschel-type powder mixer, and methoxysilyl resin containing N-phenyl-3-aminopropyl group (Shin-Etsu Chemical Co., Ltd.) "KBM573" manufactured by Co., Ltd.
  • SOC2 spherical silica
  • Admatechs Co., Ltd. average particle size 0.5 ⁇ m
  • ⁇ Production Example 5 100 parts by weight of spherical silica (“SOC2” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m) was put into a Henschel-type powder mixer, and methoxysilyl resin containing N-phenyl-3-aminopropyl group (Shin-Etsu Chemical Co., Ltd.) partially hydrolyzing an alkoxy group, Ltd.
  • SOC2 spherical silica
  • methoxysilyl resin containing N-phenyl-3-aminopropyl group Shin-Etsu Chemical Co., Ltd.
  • SOC2 spherical silica
  • SOC2 spherical silica
  • KBM403 manufactured by Shin-Etsu Chemical Co., Ltd.
  • SOC2 spherical silica
  • KBM803 manufactured by Shin-Etsu Chemical Co., Ltd.
  • SOC2 spherical silica
  • KBE903 amino group-containing silane coupling agent
  • SOC2 spherical silica
  • KF-857 manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 1 5 parts by mass of a naphthalene type epoxy resin (epoxy equivalent 144, “HP4700” manufactured by DIC Corporation), 14 parts by mass of liquid bisphenol A type epoxy resin (epoxy equivalent 180, “jER828EL” manufactured by Mitsubishi Chemical Corporation), biphenyl type epoxy 14 parts by mass of a resin (epoxy equivalent 269, “NC3000H” manufactured by Nippon Kayaku Co., Ltd.) was dissolved in 30 parts by mass of solvent naphtha with stirring, and then cooled to room temperature to prepare a mixture 1.
  • a naphthalene type epoxy resin epoxy equivalent 144, “HP4700” manufactured by DIC Corporation
  • liquid bisphenol A type epoxy resin epoxy equivalent 180, “jER828EL” manufactured by Mitsubishi Chemical Corporation
  • biphenyl type epoxy 14 parts by mass of a resin epoxy equivalent 269, “NC3000H” manufactured by Nippon Kayaku Co., Ltd.
  • a phenol novolac-based curing agent (“LA-7054” manufactured by DIC Corporation, methyl ethyl ketone (hereinafter abbreviated as “MEK”) solution of phenolic hydroxyl group equivalent 124 having a nonvolatile content of 60% by mass, naphthalene-based) Phenol resin (phenolic hydroxyl group equivalent 215, “SN485” manufactured by Nippon Steel Chemical Co., Ltd., MEK solution having a nonvolatile content of 60% by mass), 10 parts by mass, phenoxy resin (weight average molecular weight 35000, manufactured by Mitsubishi Chemical Co., Ltd.
  • LA-7054 DIC Corporation, methyl ethyl ketone
  • the resin varnish was prepared by uniformly dispersing with a rotary mixer. Next, the resin varnish is uniformly applied by a die coater on the release surface of a polyethylene terephthalate film with a alkyd release treatment (thickness 38 ⁇ m) so that the thickness of the resin composition layer after drying is 40 ⁇ m. And dried at 80 to 110 ° C.
  • Example 2 0.6 part by mass of the epoxy group-containing alkoxysilyl resin of Example 1 (“X-41-1056” manufactured by Shin-Etsu Chemical Co., Ltd.) was added to the mercapto group-containing alkoxysilyl resin (“X-- manufactured by Shin-Etsu Chemical Co., Ltd.). 41-1805 ”, mercapto equivalent 800), except for changing to 0.6 parts by mass, a resin varnish was prepared in exactly the same manner. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • Example 3 0.6 parts by mass of the epoxy group-containing alkoxysilyl resin of Example 1 (“X-41-1056” manufactured by Shin-Etsu Chemical Co., Ltd.) was added to the amino group-containing alkoxysilyl resin (“X-- manufactured by Shin-Etsu Chemical Co., Ltd.). 40-2651 ”) A resin varnish was prepared in exactly the same manner except that the content was changed to 0.6 parts by mass. Next, using this resin varnish, an adhesive film was obtained in exactly the same manner as in Example 1.
  • Example 4 100 parts by weight of spherical silica of Example 1 (“SOC2” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m) and epoxy group-containing methoxysilyl resin (“X-41-1056” manufactured by Shin-Etsu Chemical Co., Ltd.) )
  • SOC2 spherical silica of Example 1
  • X-41-1056 epoxy group-containing methoxysilyl resin manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 5 100 parts by weight of spherical silica of Example 1 (“SOC2” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m) and an epoxy group-containing alkoxysilyl resin (“X-41-1056” manufactured by Shin-Etsu Chemical Co., Ltd.) )
  • SOC2 spherical silica of Example 1
  • X-41-1056 an epoxy group-containing alkoxysilyl resin manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 6 100 parts by weight of spherical silica of Example 1 (“SOC2” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m) and an epoxy group-containing alkoxysilyl resin (“X-41-1056” manufactured by Shin-Etsu Chemical Co., Ltd.) )
  • SOC2 spherical silica of Example 1
  • X-41-1056 an epoxy group-containing alkoxysilyl resin manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 7 100 parts by weight of spherical silica of Example 1 (“SOC2” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m) and an epoxy group-containing alkoxysilyl resin (“X-41-1056” manufactured by Shin-Etsu Chemical Co., Ltd.) )
  • SOC2 spherical silica of Example 1
  • X-41-1056 an epoxy group-containing alkoxysilyl resin manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 8 100 parts by weight of spherical silica of Example 1 (“SOC2” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m) and an epoxy group-containing alkoxysilyl resin (“X-41-1056” manufactured by Shin-Etsu Chemical Co., Ltd.) )
  • SOC2 spherical silica of Example 1
  • X-41-1056 an epoxy group-containing alkoxysilyl resin manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 9 100 parts by weight of spherical silica of Example 1 (“SOC2” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m) and an epoxy group-containing alkoxysilyl resin (“X-41-1056” manufactured by Shin-Etsu Chemical Co., Ltd.) )
  • SOC2 spherical silica of Example 1
  • X-41-1056 an epoxy group-containing alkoxysilyl resin manufactured by Shin-Etsu Chemical Co., Ltd.
  • naphthalene type epoxy resin epoxy equivalent 144, “EXA4032SS” manufactured by DIC Corporation
  • bixylenol type epoxy resin epoxy equivalent 190, “YX4000HK” manufactured by Mitsubishi Chemical Corporation
  • modified naphthalene type 9 parts by mass of an epoxy resin epoxy equivalent: about 330, “ESN475V” manufactured by Nippon Steel Chemical Co., Ltd.
  • HPC-8000-65T active ester curing agent manufactured by DIC Corporation, a toluene solution having a non-volatile content of 65% by mass with an active group equivalent of about 223
  • a phenoxy resin weight average molecular weight 35000, Mitsubishi Chemical
  • ⁇ Comparative Example 5 100 parts by weight of spherical silica of Example 1 (“SOC2” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m) and an epoxy group-containing alkoxysilyl resin (“X-41-1056” manufactured by Shin-Etsu Chemical Co., Ltd.) )
  • SOC2 spherical silica of Example 1
  • X-41-1056 an epoxy group-containing alkoxysilyl resin manufactured by Shin-Etsu Chemical Co., Ltd.
  • SOC2 spherical silica of Example 1
  • X-41-1056 an epoxy group-containing alkoxysilyl resin manufactured by Shin-Etsu Chemical Co., Ltd.
  • ⁇ Comparative Example 7 100 parts by weight of spherical silica of Example 1 (“SOC2” manufactured by Admatechs Co., Ltd., average particle size 0.5 ⁇ m) and an epoxy group-containing alkoxysilyl resin (“X-41-1056” manufactured by Shin-Etsu Chemical Co., Ltd.) )
  • SOC2 spherical silica of Example 1
  • X-41-1056 an epoxy group-containing alkoxysilyl resin manufactured by Shin-Etsu Chemical Co., Ltd.
  • SOC2 spherical silica of Example 1
  • X-41-1056 epoxy group-containing methoxysilyl resin manufactured by Shin-Etsu Chemical Co., Ltd.
  • Table 1 shows the results of Examples 1 to 3, 10 and Comparative Examples 1 to 4. The results of Examples 4 to 9 and Comparative Examples 5 to 8 are shown in Table 2.
  • the plating conductor layer While maintaining the glass transition temperature and the coefficient of thermal expansion, the plating conductor layer has not only a low arithmetic average roughness on the surface of the insulating layer in the wet roughening process, but also a small root mean square roughness and a sufficient peel strength thereon. It is now possible to provide a resin composition capable of forming Furthermore, an adhesive film, a prepreg, a multilayer printed wiring board, and a semiconductor device using the same can be provided. Furthermore, electric products such as computers, mobile phones, digital cameras, and televisions, and vehicles such as motorcycles, automobiles, trains, ships, and airplanes equipped with these can be provided.

Abstract

 エポキシ樹脂、アルコキシオリゴマー及び無機充填剤を含有する樹脂組成物。該樹脂組成物は、ガラス転移温度、熱膨張率を維持しながら、湿式粗化工程において絶縁層表面の算術平均粗さが低いのみならず、二乗平均平方根粗さも小さく、その上に十分なピール強度を有するメッキ導体層を形成することができる。

Description

樹脂組成物
 本発明は、樹脂組成物に関する。さらに当該樹脂組成物を含有する、接着フィルム、プリプレグ、多層プリント配線板、半導体装置に関する。
 近年、電子機器の小型化、高性能化が進み、多層プリント配線板においては、ビルドアップ層が複層化され、配線の微細化及び高密度化が求められている。
 これに対して様々な取組みがなされてきた。例えば、特許文献1には、シリコーンアルコキシオリゴマーを含む樹脂組成物が開示されている。これらの組成物により形成される絶縁材料は、接着性を具備しうることが記載されている。また、特許文献2~4では一般的な配合検討もされている。しかし、特殊な樹脂系であるなど、その性能は必ずしも満足いくものではなかった。
特開2006-117826号公報 特許第4674730号 特許第4686750号 特許第4782870号
 本発明が解決しようとする課題は、ガラス転移温度、熱膨張率を維持しながら、湿式粗化工程において絶縁層表面の算術平均粗さが低いのみならず、二乗平均平方根粗さも小さく、その上に十分なピール強度を有するメッキ導体層を形成することができる樹脂組成物を提供することである。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、(A)エポキシ樹脂、(B)アルコキシオリゴマー及び(C)無機充填剤を含有することを特徴とする樹脂組成物において、本発明を完成するに至った。
 すなわち、本発明は以下の内容を含むものである。
[1] (A)エポキシ樹脂、(B)アルコキシオリゴマー及び(C)無機充填剤を含有することを特徴とする樹脂組成物。
[2] (B)アルコキシオリゴマーの少なくとも一部が(C)無機充填剤と反応して反応物を形成していることを特徴とする上記[1]に記載の樹脂組成物。
[3] (B)アルコキシオリゴマーと(C)無機充填剤とを予め反応させてから、(A)エポキシ樹脂に添加してなることを特徴とする上記[2]に記載の樹脂組成物。
[4] (B)アルコキシオリゴマーと(C)無機充填剤とを、50~150℃で、0.5~3時間予め反応させてから、(A)エポキシ樹脂に添加してなることを特徴とする上記[3]に記載の樹脂組成物。
[5] (C)無機充填剤の単位表面積当たりのカーボン量が0.05mg/m以上であることを特徴とする上記[2]~[4]のいずれかに記載の樹脂組成物。
[6] [(C)無機充填剤と反応した(B)アルコキシオリゴマーが有する炭素原子の量(mg)/(C)無機充填剤の表面積(m)]の値が、0.05mg/m以上である、上記[5]に記載の樹脂組成物。
[7] (C)無機充填剤を100質量%とした場合、(B)アルコキシオリゴマーが0.1~5質量%であることを特徴とする上記[1]~[6]のいずれかに記載の樹脂組成物。
[8] (B)アルコキシオリゴマーの粘度(25℃)が10mm/s~2000mm/sであることを特徴とする上記[1]~[7]のいずれかに記載の樹脂組成物。
[9] (B)アルコキシオリゴマーが、メチル基含有アルコキシシリル樹脂、フェニル基含有アルコキシシリル樹脂、エポキシ基含有アルコキシシリル樹脂、メルカプト基含有アルコキシシリル樹脂、アミノ基含有アルコキシシリル樹脂、アクリル基含有アルコキシシリル樹脂、メタクリル基含有アルコキシシリル樹脂、ウレイド基含有アルコキシシリル樹脂、イソシアネート基含有アルコキシシリル樹脂、ビニル基含有アルコキシシリル樹脂からなる群より選択される1種以上であることを特徴とする上記[1]~[8]のいずれかに記載の樹脂組成物。
[10] (B)アルコキシオリゴマーが、グリシドキシプロピル基含有アルコキシシリル樹脂、アミノプロピル基含有アルコキシシリル樹脂、N-2-(アミノエチル)-3-アミノプロピル基含有アルコキシシリル樹脂、N-フェニル-3-アミノプロピル基含有アルコキシシリル樹脂、メタクリロキシプロピル基含有アルコキシシリル樹脂、アクリロキシプロピル基含有アルコキシシリル樹脂、メルカプトプロピル基含有アルコキシシリル樹脂、ウレイドプロピル基含有アルコキシシリル樹脂、イソシアネートプロピル基含有アルコキシシリル樹脂からなる群より選択される1種以上であることを特徴とする上記[1]~[8]のいずれかに記載の樹脂組成物。
[11] (B)アルコキシオリゴマーが、グリシドキシプロピル基含有メトキシシリル樹脂、アミノプロピル基含有メトキシシリル樹脂、アミノプロピル基含有エトキシシリル樹脂、N-2-(アミノエチル)-3-アミノプロピル基含有メトキシシリル樹脂、N-フェニル-3-アミノプロピル基含有メトキシシリル樹脂、メタクリロキシプロピル基含有メトキシシリル樹脂、アクリロキシプロピル基含有メトキシシリル樹脂、メルカプトプロピル基含有メトキシシリル樹脂、ウレイドプロピル基含有エトキシシリル樹脂、イソシアネートプロピル基含有エトキシシリル樹脂からなる群より選択される1種以上であることを特徴とする上記[1]~[8]のいずれかに記載の樹脂組成物。
[12] (B)アルコキシオリゴマーが、下記一般式(1)の構造で表されることを特徴とする上記[1]~[8]のいずれかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
式(1)中、R、R、Rはそれぞれ独立に、炭素数1~10の直鎖または分岐鎖のアルキル基であり、Xは低級アルキル基、グリシドキシアルキル基、アミノアルキル基、メルカプトアルキル基、アクリロキシアルキル基、メタクリロキシアルキル基、ウレイドアルキル基、イソシアネートアルキル基又はビニルアルキル基であり、nは2~10の整数である。複数存在するXは互いに同じでも異なっていてもよく、複数存在するRは互いに同じでも異なっていてもよい。
[13] 更に(D)硬化促進剤を含有することを特徴とする、上記[1]~[12]のいずれかに記載の樹脂組成物。
[14] 更に(E)硬化剤を含有することを特徴とする、上記[1]~[13]のいずれかに記載の樹脂組成物。
[15] 更に(F)熱可塑性樹脂を含有することを特徴とする、上記[1]~[14]のいずれかに記載の樹脂組成物。
[16] 更に(G)ゴム粒子を含有することを特徴とする、上記[1]~[15]のいずれかに記載の樹脂組成物。
[17] 更に(H)難燃剤を含有することを特徴とする、上記[1]~[16]のいずれかに記載の樹脂組成物。
[18] 樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理し、メッキして得られる導体層と絶縁層とのピール強度が0.4kgf/cm~1.0kgf/cmであり、樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理した後の算術平均粗さが10nm~300nmであり、二乗平均平方根粗さが10~520nmであることを特徴とする上記[1]~[17]のいずれかに記載の樹脂組成物。
[19] 上記[1]~[18]のいずれかに記載の樹脂組成物が支持体上に層形成された接着フィルム。
[20] 上記[1]~[18]のいずれかに記載の樹脂組成物がシート状補強基材中に含浸されたプリプレグ。
[21] 上記[1]~[18]のいずれかに記載の樹脂組成物の硬化物により絶縁層が形成された多層プリント配線板。
[22] 上記[21]に記載の多層プリント配線板を用いることを特徴とする、半導体装置。
 (A)エポキシ樹脂、(B)アルコキシオリゴマー及び(C)無機充填剤を含有する樹脂組成物を用いることにより、ガラス転移温度、熱膨張率を維持しながら、湿式粗化工程において絶縁層表面の算術平均粗さが低いのみならず、二乗平均平方根粗さも小さく、その上に十分なピール強度を有するメッキ導体層を形成することができる樹脂組成物を提供できるようになった。
 本発明は、(A)エポキシ樹脂、(B)アルコキシオリゴマー及び(C)無機充填剤を含有することを特徴とする樹脂組成物である。
 <(A)エポキシ樹脂>
 本発明に使用するエポキシ樹脂としては、特に限定されないが、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、アントラセン型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、トリメチロール型エポキシ樹脂、ハロゲン化エポキシ樹脂等が挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。
 これらの中でも、耐熱性向上、絶縁信頼性向上、金属箔との密着性向上の観点から、ビスフェノールA型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂が好ましい。具体的には、例えば、ビスフェノールA型エポキシ樹脂(三菱化学(株)製「エピコート828EL」、「YL980」)、ビスフェノールF型エポキシ樹脂(三菱化学(株)製「jER806H」、「YL983U」)、ナフタレン型2官能エポキシ樹脂(DIC(株)製「HP4032」、「HP4032D」、「HP4032SS」、「EXA4032SS」)、ナフタレン型4官能エポキシ樹脂(DIC(株)製「HP4700」、「HP4710」)、ナフトール型エポキシ樹脂(東都化成(株)製「ESN-475V」)、ブタジエン構造を有するエポキシ樹脂(ダイセル化学工業(株)製「PB-3600」)、ビフェニル構造を有するエポキシ樹脂(日本化薬(株)製「NC3000H」、「NC3000L」、「NC3100」、三菱化学(株)製「YX4000」、「YX4000H」、「YX4000HK」、「YL6121」)、アントラセン型エポキシ樹脂(三菱化学(株)製「YX8800」)、ナフチレンエーテル型エポキシ樹脂(DIC(株)製「EXA-7310」、「EXA-7311」、「EXA-7311L」、「EXA7311-G3」)などが挙げられる。
 エポキシ樹脂は2種以上を併用してもよいが、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含有するのが好ましい。中でも、1分子中に2個以上のエポキシ基を有し、温度20℃で液状の芳香族系エポキシ樹脂(以下、「液状エポキシ樹脂」という。)と、1分子中に3個以上のエポキシ基を有し、温度20℃で固体状の芳香族系エポキシ樹脂(以下、「固体状エポキシ樹脂」という。)とを含有する態様がより好ましい。なお、本発明でいう芳香族系エポキシ樹脂とは、その分子内に芳香環構造を有するエポキシ樹脂を意味する。エポキシ樹脂として、液状エポキシ樹脂と固体状エポキシ樹脂を併用する場合、樹脂組成物を接着フィルム形態で使用する場合に適度な可撓性を有する点や樹脂組成物の硬化物が適度な破断強度を有する点から、その配合割合(液状エポキシ樹脂:固体状エポキシ樹脂)は質量比で1:0.1~1:2の範囲が好ましく、1:0.3~1:1.8の範囲がより好ましく、1:0.6~1:1.5の範囲が更に好ましい。
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、又はナフタレン型エポキシ樹脂が好ましく、ナフタレン型エポキシ樹脂がより好ましい。これらは1種または2種以上組み合わせて使用してもよい。
 固体状エポキシ樹脂としては、4官能ナフタレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノールエポキシ樹脂、ナフトールノボラックエポキシ樹脂、ビフェニル型エポキシ樹脂、又はナフチレンエーテル型エポキシ樹脂が好ましく、4官能ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、又はナフチレンエーテル型エポキシ樹脂がより好ましい。これらは1種または2種以上組み合わせて使用してもよい。
 本発明の樹脂組成物において、樹脂組成物の硬化物の機械強度や耐水性を向上させるという観点から、樹脂組成物中の不揮発成分を100質量%とした場合、エポキシ樹脂の含有量は3~40質量%であるのが好ましく、5~35質量%であるのがより好ましく、10~30質量%であるのが更に好ましい。
 <(B)アルコキシオリゴマー>
 本発明に使用する(B)アルコキシオリゴマーとしては、特に限定されないが、有機基とアルコキシシリル基を併せ持つ低分子樹脂のことを言い、メチル基含有アルコキシシリル樹脂、フェニル基含有アルコキシシリル樹脂、エポキシ基含有アルコキシシリル樹脂、メルカプト基含有アルコキシシリル樹脂、アミノ基含有アルコキシシリル樹脂、アクリル基含有アルコキシシリル樹脂、メタクリル基含有アルコキシシリル樹脂、ウレイド基含有アルコキシシリル樹脂、イソシアネート基含有アルコキシシリル樹脂、ビニル基含有アルコキシシリル樹脂等が挙げられる。なかでも、エポキシ基含有アルコキシシリル樹脂、メルカプト基含有アルコキシシリル樹脂、アミノ基含有アルコキシシリル樹脂が好ましく、アミノ基含有アルコキシシリル樹脂がより好ましい。これらは1種または2種以上組み合わせて使用してもよい。アルコキシオリゴマー中に、有機基は1種または2種以上を有していても良い。
 具体的には、グリシドキシプロピル基含有アルコキシシリル樹脂、アミノプロピル基含有アルコキシシリル樹脂、N-2-(アミノエチル)-3-アミノプロピル基含有アルコキシシリル樹脂、N-フェニル-3-アミノプロピル基含有アルコキシシリル樹脂、メタクリロキシプロピル基含有アルコキシシリル樹脂、アクリロキシプロピル基含有アルコキシシリル樹脂、メルカプトプロピル基含有アルコキシシリル樹脂、ウレイドプロピル基含有アルコキシシリル樹脂、イソシアネートプロピル基含有アルコキシシリル樹脂等が挙げられ、好ましくはグリシドキシプロピル基含有アルコキシシリル樹脂、アミノプロピル基含有アルコキシシリル樹脂、N-2-(アミノエチル)-3-アミノプロピル基含有アルコキシシリル樹脂、N-フェニル-3-アミノプロピル基含有アルコキシシリル樹脂、メルカプトプロピル基含有アルコキシシリル樹脂であり、より好ましくは3-アミノプロピル基含有アルコキシシリル樹脂、N-2-(アミノエチル)-3-アミノプロピル基含有アルコキシシリル樹脂、N-フェニル-3-アミノプロピル基含有アルコキシシリル樹脂であり、更に好ましくはN-フェニル-3-アミノプロピル基含有アルコキシシリル樹脂である。
 より具体的には、グリシドキシプロピル基含有メトキシシリル樹脂、アミノプロピル基含有メトキシシリル樹脂、アミノプロピル基含有エトキシシリル樹脂、N-2-(アミノエチル)-3-アミノプロピル基含有メトキシシリル樹脂、N-フェニル-3-アミノプロピル基含有メトキシシリル樹脂、メタクリロキシプロピル基含有メトキシシリル樹脂、アクリロキシプロピル基含有メトキシシリル樹脂、メルカプトプロピル基含有メトキシシリル樹脂、ウレイドプロピル基含有エトキシシリル樹脂、イソシアネートプロピル基含有エトキシシリル樹脂等が挙げられ、好ましくはグリシドキシプロピル基含有メトキシシリル樹脂、アミノプロピル基含有メトキシシリル樹脂、アミノプロピル基含有エトキシシリル樹脂、N-2-(アミノエチル)-3-アミノプロピル基含有メトキシシリル樹脂、N-フェニル-3-アミノプロピル基含有メトキシシリル樹脂、メルカプトプロピル基含有メトキシシリル樹脂であり、より好ましくは3-アミノプロピル基含有メトキシシリル樹脂、3-アミノプロピル基含有エトキシシリル樹脂、N-2-(アミノエチル)-3-アミノプロピル基含有メトキシシリル樹脂、N-フェニル-3-アミノプロピル基含有メトキシシリル樹脂であり、更に好ましくはN-フェニル-3-アミノプロピル基含有メトキシシリル樹脂である。
 更に具体的には、(B)アルコキシオリゴマーは、下記一般式(1)の構造で表すことができる。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、R、R、Rはそれぞれ独立に、炭素数1~10の直鎖または分岐鎖のアルキル基であり、好ましくは炭素数1~5の直鎖または分岐鎖のアルキル基であり、より好ましくは炭素数1~4の直鎖または分岐鎖であり、更に好ましくはメチル基、エチル基、プロピル基、イソプロピル基、1-メチルプロピル基、ブチル基、イソブチル基またはtert-ブチル基であり、更に一層好ましくはメチル基、エチル基、プロピル基またはイソプロピル基であり、殊更好ましくはメチル基またはエチル基である。複数存在するRは互いに同じでも異なっていてもよい。
 式(1)中、Xは低級アルキル基、グリシドキシアルキル基、アミノアルキル基、メルカプトアルキル基、アクリロキシアルキル基、メタクリロキシアルキル基、ウレイドアルキル基、イソシアネートアルキル基、ビニルアルキル基であり、グリシドキシプロピル基、アミノプロピル基、N-2-(アミノエチル)-3-アミノプロピル基、N-フェニル-3-アミノプロピル基、メタクリロキシプロピル基、アクリロキシプロピル基、メルカプトプロピル基、ウレイドプロピル基、イソシアネートプロピル基が好ましく、グリシドキシプロピル基、アミノプロピル基、N-2-(アミノエチル)-3-アミノプロピル基、N-フェニル-3-アミノプロピル基、メルカプトプロピル基がより好ましく、3-アミノプロピル基、N-2-(アミノエチル)-3-アミノプロピル基、N-フェニル-3-アミノプロピル基が更に好ましく、N-フェニル-3-アミノプロピル基が更に一層好ましい。Xは1種または2種以上であっても良い。すなわち複数存在するXは、互いに同じでも異なっていてもよい。
 式(1)中、nは2~10の整数であり、好ましくは2~8の整数であり、より好ましくは2~6の整数であり、更に好ましくは3~5の整数である。
 (B)アルコキシオリゴマーの重量平均分子量は、揮発性を低減させて取り扱い性を向上させるという観点や分散性向上という観点やアルコールの副生量低減という観点から、350~10000が好ましく、400~5000がより好ましく、500~3000が更に好ましい。本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレンン換算)で測定される。GPC法による重量平均分子量は、具体的には、測定装置として(株)島津製作所製LC-9A/RID-6Aを、カラムとして昭和電工(株)社製Shodex K-800P/K-804L/K-804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。
 (B)アルコキシオリゴマーの粘度(25℃)は、揮発を防止し、取り扱い性を向上させるという観点から、10mm/s以上が好ましく、20mm/s以上がより好ましく、30mm/s以上が更に好ましく、40mm/s以上が更に一層好ましく、50mm/s以上が殊更好ましく、100mm/s以上が特に好ましく、150mm/s以上がとりわけ好ましく、200mm/s以上がなおさら好ましい。一方で、無機充填剤を効率的に被覆するという観点から、2000mm/s以下が好ましく、1800mm/s以下がより好ましく、1600mm/s以下が更に好ましく、1500mm/s以下が更に一層好ましく、1400mm/s以下が殊更好ましく、1300mm/s以下が特に好ましく、1200mm/s以下がとりわけ好ましい。本発明における粘度(25℃)は、E型粘度計(東機産業(株)社製 RE-80)を用いて、25℃に調整した装置内に、シリンジを用いて該アルコキシオリゴマーを約0.2ml計りとり、5~20rpmに設定した回転数にて測定できる。
 アルコキシオリゴマーの製造方法は特に制限はなく、特許第3474007号等の公知の方法により製造することができ、モノマーであるシランカップリング剤のアルコキシ基を部分加水分解し、重縮合させる反応によって得ることができる。例えば、反応容器にシランカップリング剤と有機溶媒を入れ、20~80℃で、0.1~10時間加水分解、縮合反応を行う。その際、塩酸水溶液や含フッ素化合物などを触媒として使用することもできる。反応後、使用した触媒は除去するが、副生したアルコールを溜去した後濾別するか、疎水性の高い有機溶媒系に変更した後、水洗すればよい。生成物中の微量水分は、乾燥剤或いは共沸脱水等で除去した後、溶媒を揮発させる等、公知の後処理法を採用できる。
 アルコキシオリゴマーは市販品を使用してもよく、市販されているアルコキシオリゴマーとしては、エポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1053」、「X-41-1059A」)、メチル基及びエポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」)、1級アミノ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-40-2651」)、アミノフェニル基含有アルコキシシリル樹脂(信越化学工業(株)製「X-40-9281」)、メルカプト基含有アルコキシシリル樹脂(信越化学工業(株)製「X-40-1805」、「X-41-1818」)、メチル基及びメルカプト基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1810」)、メチル基及びアミノ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-40-2651」)、メチル基及びメタクリル基含有アルコキシシリル樹脂(信越化学工業(株)製「X-40-2655A」)、メチル基及びアクリル基含有アルコキシシリル樹脂(信越化学工業(株)製「KR-513」)、メチル基含有アルコキシシリル樹脂(信越化学工業(株)製「KC-89S」、「KR-500」、「X-40-9225」、「X-40-9246」、「X-40-9250」)、メチル基及びフェニル基含有アルコキシシリル樹脂(信越化学工業(株)製「KR-401N」、「X-40-9227」、「X-40-9247」、「KR-510」、「KR-9218」、「KR-213」)等が挙げられる。
 <(C)無機充填剤>
 本発明に使用する(C)無機充填剤としては、特に限定されないが、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられる。なかでも、シリカが好ましい。また、無定形シリカ、粉砕シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等のシリカが好ましく、溶融シリカがより好ましい。また、シリカとしては球状のものが好ましい。これらは1種または2種以上組み合わせて使用してもよい。
 無機充填剤の平均粒径は、特に限定されるものではないが、無機充填剤の平均粒径の上限値は、絶縁層上へ微細配線形成を行うという観点から、5μm以下が好ましく、3μm以下がより好ましく、1μm以下が更に好ましく、0.7μm以下が更に一層好ましく、0.5μm以下が殊更好ましく、0.4μm以下が特に好ましく、0.3μm以下がとりわけ好ましい。一方、無機充填剤の平均粒径の下限値は、エポキシ樹脂組成物を樹脂組成物ワニスとした場合に、ワニスの粘度が上昇し、取り扱い性が低下するのを防止するという観点から、0.01μm以上が好ましく、0.03μm以上がより好ましく、0.05μm以上が更に好ましく、0.07μm以上が殊更好ましく、0.1μm以上が特に好ましい。上記無機充填剤の平均粒径はミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填剤の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填剤を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、(株)堀場製作所製 LA-500、750、950等を使用することができる。
 無機充填剤を配合する場合の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、樹脂組成物に要求される特性によっても異なるが、20~85質量%であるのが好ましく、30~80質量%がより好ましく、40~75質量%が更に好ましく、50~70質量%が更に一層好ましい。無機充填剤の含有量が少なすぎると、硬化物の熱膨張率が高くなる傾向にあり、含有量が大きすぎると硬化物が脆くなるという傾向やピール強度が低下する傾向にある。
 本発明の樹脂組成物において、(B)アルコキシオリゴマーの少なくとも一部は(C)無機充填剤と反応して反応物を形成していてもよい。
 本明細書において、(B)アルコキシオリゴマーと(C)無機充填剤との「反応」とは、(B)アルコキシオリゴマーのアルコキシ基と(C)無機充填剤の表面水酸基との間の縮合反応を表し、具体的には加水分解・脱水縮合反応、脱アルコール縮合反応を表す。よって、(B)アルコキシオリゴマーが(C)無機充填剤と反応して形成される「反応物」とは、(B)アルコキシオリゴマーと(C)無機充填剤との縮合物を表す。斯かる縮合物において、(B)アルコキシオリゴマーは(C)無機充填剤の表面に共有結合している。 
 (B)アルコキシオリゴマーと(C)無機充填剤との反応物(すなわち縮合物)の形成は、例えば、カーボン分析計を用いて無機充填剤の表面組成を分析することによって、炭素原子の存在から確認することができる。カーボン分析計としては、堀場製作所製「EMIA-320V」等を使用することができる。
 また、(B)アルコキシオリゴマーと(C)無機充填剤との反応の程度は、(B)アルコキシオリゴマー及び(C)無機充填剤の2成分系をモデル反応系として、該モデル反応系を溶剤(例えば、メチルエチルケトン(MEK))により洗浄処理した後の(C)無機充填剤の単位表面積当たりのカーボン量をもって定量化できる。 具体的には、以下の手順で実施することができる。溶剤として十分な量のMEKを(B)アルコキシオリゴマー及び(C)無機充填剤の2成分系によるモデル反応系に加えて、25℃で5分間超音波洗浄する。上澄液を除去し、固形分を乾燥させた後、カーボン分析計を用いて(C)無機充填剤の単位表面積当たりのカーボン量を測定する。斯かるカーボン量の測定値は、(C)無機充填剤の単位表面積当たりにおける、(C)無機充填剤と反応(縮合物を形成)した(B)アルコキシオリゴマーが有する炭素原子の量、すなわち[(C)無機充填剤と反応した(B)アルコキシオリゴマーが有する炭素原子の量(mg)/(C)無機充填剤の表面積(m)]の値を表す。よって、カーボン量の測定値を有する場合は、「(B)アルコキシオリゴマーの少なくとも一部は(C)無機充填剤と反応して反応物を形成されたこと」に相当する。
 (B)アルコキシオリゴマー及び(C)無機充填剤の種類やそれらの量比によっても変化するが、(C)無機充填剤の単位表面積当たりのカーボン量は、無機充填剤の分散性向上や硬化物の湿式粗化工程後の算術平均粗さ、二乗平均平方根粗さを安定させるという点で、0.05mg/m以上が好ましく、0.10mg/m以上がより好ましく、0.15mg/m以上が更に好ましい。一方、樹脂ワニスの溶融粘度や接着フィルム形態での溶融粘度の上昇を防止するという点で、1.00mg/m以下が好ましく、0.75mg/m以下がより好ましく、0.50mg/m以下が更に好ましい。
 また、(B)アルコキシオリゴマーと(C)無機充填剤との反応物(すなわち縮合物)の反応率は、FT-IR(フーリエ変換赤外線分析装置)によって、(C)無機充填剤の表面水酸基(例えば(C)無機充填剤としてシリカを用いた場合は3747~3750cm-1に固有ピークを示すシラノール基)に着目して、[(反応前定量値-反応後定量値)/反応前定量値×100]として示すこともできる。(B)アルコキシオリゴマーと(C)無機充填剤との反応率の下限値としては、10%が好ましく、30%がより好ましく、50%が更に好ましく、70%が更に一層好ましく、80%が殊更好ましく、90%が特に好ましい。(B)アルコキシオリゴマーと(C)無機充填剤との反応率の上限値としては、98%が好ましく、99%がより好ましく、100%が特に好ましい。
 本発明の(C)無機充填剤、または、(B)アルコキシオリゴマーの少なくとも一部が反応して反応物を形成された(C)無機充填剤は、本発明の効果を阻害しない範囲において、エポキシシラン系カップリング剤、アミノシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、オルガノシラザン化合物、チタネート系カップリング剤等の表面処理剤で表面処理したものを用いることができる。これらは1種または2種以上組み合わせて使用してもよい。具体的に表面処理剤としては、アミノプロピルメトキシシラン、アミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-2(アミノエチル)アミノプロピルトリメトキシシラン等のアミノシラン系カップリング剤、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン、グリシドキシプロピルメチルジエトキシシラン、グリシジルブチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン系カップリング剤、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン等のメルカプトシラン系カップリング剤、メチルトリメトキシシラン、オクタデシルトリメトキシシラン、フェニルトリメトキシシラン、メタクロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等のシラン系カップリング剤、ヘキサメチルジシラザン、ヘキサフェニルジシラザン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5-ヘキサメチルシクロトリシラザン等のオルガノシラザン化合物、ブチルチタネートダイマー、チタンオクチレングリコレート、ジイソプロポキシチタンビス(トリエタノールアミネート)、ジヒドロキシチタンビスラクテート、ジヒドロキシビス(アンモニウムラクテート)チタニウム、ビス(ジオクチルパイロホスフェート)エチレンチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、トリ-n-ブトキシチタンモノステアレート、テトラ-n-ブチルチタネート、テトラ(2-エチルヘキシル)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミドエチル・アミノエチル)チタネート等のチタネート系カップリング剤等が挙げられる。市販品としては、信越化学工業(株)製「KBM403」(3-グリシドキシプロピルトリメトキシシラン)、信越化学工業(株)製「KBM803」(3-メルカプトプロピルトリメトキシシラン)、信越化学工業(株)製「KBE903」(3-アミノプロピルトリエトキシシラン)、信越化学工業(株)製「KBM573」(N-フェニル-3-アミノプロピルトリメトキシシラン)等が挙げられる。
 これらの中でも、(C)無機充填剤をオルガノシラザン化合物で表面処理したものを用いると、樹脂ワニスの分散性向上、アルコキシオリゴマーによる無機充填剤の被覆率向上の観点から有利となる。特に、ヘキサメチルジシラザンが好ましい。なお、表面処理剤で表面処理した(C)無機充填剤を用いる場合には、(B)アルコキシオリゴマーは該表面処理剤を介して(C)無機充填剤の表面に共有結合してもよい。
 後述するように、(A)エポキシ樹脂、(B)アルコキシオリゴマー及び(C)無機充填剤を含有してなる本発明の樹脂組成物を硬化して形成される絶縁層は、湿式粗化処理後の表面粗さが低い場合にも該絶縁層表面に十分なピール強度を呈するメッキ導体層を形成することができる。斯かる効果は、(B)アルコキシオリゴマーの少なくとも一部が(C)無機充填剤と反応して反応物を形成している樹脂組成物を用いることによって、より享受することができる。なお、(B)アルコキシオリゴマーの少なくとも一部が(C)無機充填剤と反応して反応物を形成している樹脂組成物は、後述するように(B)アルコキシオリゴマーと(C)無機充填剤とを予め反応させてから、(A)エポキシ樹脂(及び必要に応じて用いられる他の成分)に添加することによって好適に得ることができる。
 本発明の樹脂組成物において、(B)アルコキシオリゴマーと(C)無機充填剤とを樹脂組成物中にそのまま添加しても良いし、(B)アルコキシオリゴマーと(C)無機充填剤とを予め反応させてから添加してもよい。樹脂組成物中での分散性向上の点から、(B)アルコキシオリゴマーと(C)無機充填剤とを予め反応させてから樹脂組成物中に添加することが好ましい。また(B)アルコキシオリゴマーと(C)無機充填剤とを予め反応させてから樹脂組成物中に添加することにより、上述のような(B)アルコキシオリゴマーの少なくとも一部が(C)無機充填剤と反応して反応物を形成している樹脂組成物を好適に得ることができる。(B)アルコキシオリゴマーと(C)無機充填剤とを予め反応させる方法は、例えば以下の方法が挙げられる。
 (C)無機充填剤を回転ミキサーに投入し、(B)アルコキシオリゴマーを予めメチルエチルケトン(MEK)と混合したものを噴霧しながら、(C)無機充填剤を5~30分間攪拌し、さらに50~150℃で0.5~3時間攪拌して、予め反応させる。より好ましくは55~130℃で0.5~3時間攪拌し、更に好ましくは60~110℃で0.5~3時間攪拌し、更に一層好ましくは70~80℃で1~3時間攪拌する。その後、揮発成分を留去する方法が挙げられる。回転ミキサーの他にも、ドラムミキサー、ロッキングミキサー、振動流動層、粉体乾燥機などを用いることができるが、簡便に行えるという点で回転ミキサーが好ましい。回転ミキサーとしてはヘンシェル型混粉機が挙げられる。
 (B)アルコキシオリゴマーの含有量は、溶融粘度の上昇を防止するという観点から、(C)無機充填剤100質量%に対し、5質量%以下が好ましく、4質量%以下がより好ましく、3質量%以下が更に好ましく、2質量%以下が更に一層好ましい。また、樹脂ワニスの分散性向上、無機充填剤の被覆率向上という観点から、0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.3質量%以上が更に好ましく、0.4質量%以上が更に一層好ましい。
 なお、上記の含有量は、樹脂組成物の製造に使用される(B)アルコキシオリゴマー及び(C)無機充填剤の仕込み量を基準とする。
 本発明の樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理し、メッキして得られる導体層と絶縁層とのピール強度は、後述する<メッキ導体層の引き剥がし強さ(ピール強度)の測定>に記載の測定方法により把握することができる。
 ピール強度の上限値は、0.8kgf/cm以下が好ましく、0.9kgf/cm以下がより好ましく、1.0kgf/cm以下が更に好ましい。ピール強度の下限値は、0.4kgf/cm以上が好ましく、0.5kgf/cm以上がより好ましい。
 本発明の樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理した後の算術平均粗さ(Ra値)、二乗平均平方根粗さ(Rq値)は、後述する<粗化後の算術平均粗さ(Ra値)、二乗平均平方根粗さ(Rq値)の測定>に記載の測定方法により把握することができる。
 算術平均粗さ(Ra値)の上限値は、電気信号の伝送ロスを軽減するために、300nm以下が好ましく、260nm以下がより好ましく、240nm以下が更に好ましく、220nm以下が更に一層好ましく、200nm以下が殊更好ましく、170nm以下が特に好ましく、160m以下がとりわけ好ましく、150nm以下がなおさら好ましい。算術平均粗さ(Ra値)の下限値は、ピール強度を向上させるという観点から、10nm以上が好ましく、20nm以上がより好ましく、30nm以上が更に好ましく、40nm以上が更に一層好ましく、50nm以上が殊更好ましい。
 二乗平均平方根粗さ(Rq値)は絶縁層表面の局所的な状態が反映されるため、Rq値により緻密で平滑な絶縁層表面になっていることが確認できることを見出した。二乗平均平方根粗さ(Rq値)の上限値は、緻密で平滑な絶縁層表面とするために、520nm以下が好ましく、480nm以下がより好ましく、440nm以下が更に好ましく、400nm以下が更に一層好ましく、360nm以下が殊更好ましく、320nm以下が特に好ましく、280nm以下がとりわけ好ましく、240nm以下がなおさら好ましい。二乗平均平方根粗さ(Rq値)の下限値は、ピール強度を向上させるという観点から、10nm以上が好ましく、30nm以上がより好ましく、40nm以上が更に好ましく、50nm以上が更に一層好ましく、60nm以上が殊更好ましい。
 好適な一実施形態において、本発明の樹脂組成物は、樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理し、メッキして得られる導体層と絶縁層とのピール強度が0.4kgf/cm~1.0kgf/cmであり、樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理した後の算術平均粗さが10nm~300nmであり、二乗平均平方根粗さが10~520nmである。
 より好適な実施形態において、本発明の樹脂組成物は、樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理し、メッキして得られる導体層と絶縁層とのピール強度が0.5kgf/cm~1.0kgf/cmであり、樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理した後の算術平均粗さが10nm~150nmであり、二乗平均平方根粗さが10~240nmである。
 <(D)硬化促進剤>
 本発明の樹脂組成物は、さらに硬化促進剤を含有させることにより、エポキシ樹脂と硬化剤を効率的に硬化させることができる。硬化促進剤としては、特に限定されないが、アミン系硬化促進剤、グアニジン系硬化促進剤、イミダゾール系硬化促進剤、ホスホニウム系硬化促進剤、金属系硬化促進剤等が挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。
 アミン系硬化促進剤としては、特に限定されるものではないが、トリエチルアミン、トリブチルアミンなどのトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン(以下、DBUと略記する。)などのアミン化合物などが挙げられる。これらは1種または2種以上組み合わせて使用してもよい。
 グアニジン系硬化促進剤としては、特に限定されるものではないが、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。
 イミダゾール系硬化促進剤としては、特に限定されるものではないが、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。
 ホスホニウム系硬化促進剤としては、特に限定されるものではないが、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられる。これらは1種または2種以上組み合わせて使用してもよい。
 本発明の樹脂組成物において、硬化促進剤(金属系硬化促進剤を除く)の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、0.005~1質量%の範囲が好ましく、0.01~0.5質量%の範囲がより好ましい。0.005質量%未満であると、硬化が遅くなり熱硬化時間が長く必要となる傾向にあり、1質量%を超えると樹脂組成物の保存安定性が低下する傾向となる。
 金属系硬化促進剤としては、特に限定されるものではないが、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体などが挙げられる。有機金属塩としては、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛などが挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。
 本発明の樹脂組成物において、金属系硬化促進剤の添加量は、樹脂組成物中の不揮発成分を100質量%とした場合、金属系硬化触媒に基づく金属の含有量が25~500ppmの範囲が好ましく、40~200ppmの範囲がより好ましい。25ppm未満であると、低算術平均粗さの絶縁層表面への密着性に優れる導体層の形成が困難となる傾向にあり、500ppmを超えると、樹脂組成物の保存安定性、絶縁性が低下する傾向となる。
 <(E)硬化剤>
 本発明の樹脂組成物は、さらに硬化剤を含有させることにより、絶縁性や機械特性を向上させることができる。(E)硬化剤としては、特に限定されないが、フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤、酸無水物系硬化剤等が挙げられ、算術平均粗さ(Ra値)、二乗平均平方根粗さ(Rq値)をより低下させるという観点から、フェノール系硬化剤、ナフトール系硬化剤、活性エステル系硬化剤が好ましい。これらは1種又は2種以上組み合わせて使用してもよい。
 フェノール系硬化剤、ナフトール系硬化剤としては、特に制限はないが、ノボラック構造を有するフェノール系硬化剤やノボラック構造を有するナフトール系硬化剤が挙げられ、フェノールノボラック樹脂、トリアジン骨格含有フェノールノボラック樹脂、ナフトールノボラック樹脂、ナフトールアラルキル型樹脂、トリアジン骨格含有ナフトール樹脂、ビフェニルアラルキル型フェノール樹脂が好ましい。市販品としては、ビフェニルアラルキル型フェノール樹脂として、「MEH-7700」、「MEH-7810」、「MEH-7851」、「MEH7851-4H」(明和化成(株)製)、「GPH」(日本化薬(株)製)、ナフトールノボラック樹脂として、「NHN」、「CBN」(日本化薬(株)製)、ナフトールアラルキル型樹脂として、「SN170」、「SN180」、「SN190」、「SN475」、「SN485」、「SN495」、「SN395」、「SN375」(東都化成(株)製)、フェノールノボラック樹脂として「TD2090」(DIC(株)製)、トリアジン骨格含有フェノールノボラック樹脂「LA3018」、「LA7052」、「LA7054」、「LA1356」(DIC(株)製)等が挙げられる。これらは1種又は2種以上を併用してもよい。
 活性エステル系硬化剤としては、特に制限はないが、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル系硬化剤は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系硬化剤がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。活性エステル系硬化剤は1種又は2種以上を使用することができる。活性エステル系硬化剤としては、特開2004-277460号公報に開示されている活性エステル系硬化剤を用いてもよく、また市販のものを用いることもできる。市販されている活性エステル系硬化剤としては、ジシクロペンタジエニルジフェノール構造を含むもの、フェノールノボラックのアセチル化物、フェノールノボラックのベンゾイル化物等が好ましく、なかでもジシクロペンタジエニルジフェノール構造を含むものがより好ましい。具体的には、ジシクロペンタジエニルジフェノール構造を含むものとしてEXB9451、EXB9460、EXB9460S-65T、HPC-8000-65T(DIC(株)製、活性基当量約223)、フェノールノボラックのアセチル化物としてDC808(ジャパンエポキシレジン(株)製、活性基当量約149)、フェノールノボラックのベンゾイル化物としてYLH1026(ジャパンエポキシレジン(株)製、活性基当量約200)、YLH1030(ジャパンエポキシレジン(株)製、活性基当量約201)、YLH1048(ジャパンエポキシレジン(株)製、活性基当量約245)、等が挙げられ、中でもEXB9460Sがワニスの保存安定性、硬化物の熱膨張率の観点から好ましい。
 ジシクロペンタジエニルジフェノール構造を含む活性エステル系硬化剤として、より具体的には下式(2)の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
(式中、Rはフェニル基、ナフチル基であり、kは0又は1を表し、nは繰り返し単位の平均で0.05~2.5である。)
 誘電正接を低下させ、耐熱性を向上させるという観点から、Rはナフチル基が好ましく、一方、kは0が好ましく、また、nは0.25~1.5が好ましい。
 ベンゾオキサジン系硬化剤としては、特に制限はないが、具体例としては、F-a、P-d(四国化成(株)製)、HFB2006M(昭和高分子(株)製)などが挙げられる。
 シアネートエステル系硬化剤としては、特に制限はないが、ノボラック型(フェノールノボラック型、アルキルフェノールノボラック型など)シアネートエステル系硬化剤、ジシクロペンタジエン型シアネートエステル系硬化剤、ビスフェノール型(ビスフェノールA型、ビスフェノールF型、ビスフェノールS型など)シアネートエステル系硬化剤、及びこれらが一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル系硬化剤の重量平均分子量は、特に限定されるものではないが、500~4500が好ましく、600~3000がより好ましい。シアネートエステル系硬化剤の具体例としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3-メチレン-1,5-フェニレンシアネート)、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、ビス(4-シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック、クレゾールノボラック、ジシクロペンタジエン構造含有フェノール樹脂等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。市販されているシアネートエステル樹脂としては、下式(3)で表されるフェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン(株)製、PT30、シアネート当量124)、下式(4)で表されるビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー(ロンザジャパン(株)製、BA230、シアネート当量232)、下式(5)で表されるジシクロペンタジエン構造含有シアネートエステル樹脂(ロンザジャパン(株)製、DT-4000、DT-7000)等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
[式中、nは平均値として任意の数(好ましくは0~20)を示す。]
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(式中、nは平均値として0~5の数を表す。)
 酸無水物系硬化剤としては、特に限定されるものではないが、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、オキシジフタル酸二無水物、3,3’-4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-C]フラン-1,3-ジオン、エチレングリコールビス(アンヒドロトリメリテート)、スチレンとマレイン酸が共重合したスチレン・マレイン酸樹脂などのポリマー型の酸無水物などが挙げられる。
 本発明の樹脂組成物において、樹脂組成物の硬化物の機械強度や耐水性を向上させるという観点から、(A)エポキシ樹脂のエポキシ基の合計数と、(E)硬化剤の反応基の合計数との比が、1:0.2~1:2が好ましく、1:0.3~1:1.5がより好ましく、1:0.4~1:1が更に好ましい。なお樹脂組成物中に存在するエポキシ樹脂のエポキシ基の合計数とは、各エポキシ樹脂の固形分質量をエポキシ当量で除した値をすべてのエポキシ樹脂について合計した値であり、硬化剤の反応基の合計数とは、各硬化剤の固形分質量を反応基当量で除した値をすべての硬化剤について合計した値である。
 <(F)熱可塑性樹脂>
 本発明の樹脂組成物には、更に(F)熱可塑性樹脂を含有させる事により硬化物の機械強度を向上させることができ、更に接着フィルムの形態で使用する場合のフィルム成型能を向上させることもできる。このような熱可塑性樹脂としては、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂を挙げることができる。これらの熱可塑性樹脂は各々単独で用いてもよく、2種以上を組み合わせて使用してもよい。熱可塑性樹脂の重量平均分子量は5000~200000の範囲であるのが好ましい。この範囲よりも小さいとフィルム成型能や機械強度向上の効果が十分発揮されない傾向にあり、この範囲よりも大きいとシアネートエステル樹脂およびナフトール型エポキシ樹脂との相溶性が十分でなく、硬化後の表面凹凸が大きくなり、高密度微細配線の形成が困難となる傾向にある。なお本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレンン換算)で測定される。GPC法による重量平均分子量は、具体的には、測定装置として(株)島津製作所製LC-9A/RID-6Aを、カラムとして昭和電工(株)社製Shodex K-800P/K-804L/K-804Lを、移動相としてクロロホルム等を用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。
 本発明の樹脂組成物に、(F)熱可塑性樹脂を配合する場合には、樹脂組成物中の熱可塑性樹脂の含有量は、特に限定されるものではないが、樹脂組成物中の不揮発分100質量%に対し、0.1~10質量%が好ましく、1~5質量%がより好ましい。熱可塑性樹脂の含有量が少なすぎるとフィルム成型能や機械強度向上の効果が発揮されない傾向にあり、多すぎると溶融粘度の上昇と、湿式粗化工程後の絶縁層表面の算術平均粗さが増大する傾向にある。
 <(G)ゴム粒子>
 本発明の樹脂組成物は、更に(G)ゴム粒子を含有させる事により、メッキピール強度を向上させることができ、ドリル加工性の向上、誘電正接の低下、応力緩和効果を得ることもできる。本発明において使用され得るゴム粒子は、例えば、当該樹脂組成物のワニスを調製する際に使用する有機溶剤にも溶解せず、必須成分であるシアネートエステル樹脂やエポキシ樹脂などとも相溶しないものである。従って、該ゴム粒子は、本発明の樹脂組成物のワニス中では分散状態で存在する。このようなゴム粒子は、一般には、ゴム成分の分子量を有機溶剤や樹脂に溶解しないレベルまで大きくし、粒子状とすることで調製される。
 本発明で使用され得るゴム粒子の好ましい例としては、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子などが挙げられる。コアシェル型ゴム粒子は、コア層とシェル層とを有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマーで構成され、内層のコア層がゴム状ポリマーで構成される2層構造、又は外層のシェル層がガラス状ポリマーで構成され、中間層がゴム状ポリマーで構成され、コア層がガラス状ポリマーで構成される3層構造のものなどが挙げられる。ガラス状ポリマー層は、例えば、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマー層は、例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。ゴム粒子は2種以上を組み合わせて使用してもよい。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N、IM-401改1、IM-401改7-17 (商品名、ガンツ化成(株)製)、メタブレンKW-4426(商品名、三菱レイヨン(株)製)が挙げられる。架橋アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER-91(平均粒径0.5μm、JSR(株)製)などが挙げられる。架橋スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK-500(平均粒径0.5μm、JSR(株)製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒径0.1μm)、W450A(平均粒径0.2μm)(三菱レイヨン(株)製)を挙げることができる。
 配合するゴム粒子の平均粒径は、好ましくは0.005~1μmの範囲であり、より好ましくは0.2~0.6μmの範囲である。本発明で使用されるゴム粒子の平均粒径は、動的光散乱法を用いて測定することができる。例えば、適当な有機溶剤にゴム粒子を超音波などにより均一に分散させ、濃厚系粒径アナライザー(FPAR-1000;大塚電子(株)製)を用いて、ゴム粒子の粒度分布を質量基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。
 ゴム粒子の含有量は、樹脂組成物中の不揮発分100質量%に対し、好ましくは0.05~10質量%であり、より好ましくは0.5~5質量%である。
 <(H)難燃剤>
 本発明の樹脂組成物は、更に(H)難燃剤を含有させる事により、難燃性を付与することができる。難燃剤としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等が挙げられる。有機リン系難燃剤としては、三光(株)製のHCA、HCA-HQ、HCA-NQ等のフェナントレン型リン化合物、昭和高分子(株)製のHFB-2006M等のリン含有ベンゾオキサジン化合物、味の素ファインテクノ(株)製のレオフォス30、50、65、90、110、TPP、RPD、BAPP、CPD、TCP、TXP、TBP、TOP、KP140、TIBP、北興化学工業(株)製のTPPO、PPQ、クラリアント(株)製のOP930、大八化学(株)製のPX200等のリン酸エステル化合物、東都化成(株)製のFX289、FX305、TX0712等のリン含有エポキシ樹脂、東都化成(株)製のERF001等のリン含有フェノキシ樹脂、ジャパンエポキシレジン(株)製のYL7613等のリン含有エポキシ樹脂等が挙げられる。有機系窒素含有リン化合物としては、四国化成工業(株)製のSP670、SP703等のリン酸エステルアミド化合物、大塚化学(株)社製のSPB100、SPE100、(株)伏見製薬所製FP-series等のホスファゼン化合物等が挙げられる。金属水酸化物としては、宇部マテリアルズ(株)製のUD65、UD650、UD653等の水酸化マグネシウム、巴工業(株)社製のB-30、B-325、B-315、B-308、B-303、UFH-20等の水酸化アルミニウム等が挙げられる。
 難燃剤の含有量は、樹脂組成物中の不揮発分100質量%に対し、好ましくは0.5~10質量%であり、より好ましくは1~5質量%である。
 <他の成分>
 本発明の樹脂組成物には、本発明の効果を阻害しない範囲で、必要に応じて他の成分を配合することができる。他の成分としては、ビニルベンジル化合物、アクリル化合物、マレイミド化合物、ブロックイソシアネート化合物のような熱硬化性樹脂、シリコンパウダー、ナイロンパウダー、フッ素パウダー等の有機充填剤、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤、イミダゾール系、チアゾール系、トリアゾール系、シラン系カップリング剤等の密着性付与剤、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤等を挙げることができる。
 本発明の樹脂組成物の調製方法は、特に限定されるものではなく、例えば、配合成分を、必要により溶媒等を添加し、回転ミキサーなどを用いて混合する方法などが挙げられる。
 本発明の樹脂組成物の用途は、特に限定されないが、接着フィルム、プリプレグ等の絶縁樹脂シート、回路基板(積層板用途、多層プリント配線板用途等)、ソルダーレジスト、アンダ-フィル材、ダイボンディング材、半導体封止材、穴埋め樹脂、部品埋め込み樹脂等、樹脂組成物が必要とされる用途の広範囲に使用できる。なかでも、多層プリント配線板の製造において、絶縁層を形成するための樹脂組成物(多層プリント配線板の絶縁層用樹脂組成物)として好適に使用することができ、メッキにより導体層を形成するための樹脂組成物(メッキにより導体層を形成する多層プリント配線板の絶縁層用樹脂組成物)としてより好適に使用することが出来る。本発明の樹脂組成物は、ワニス状態で回路基板に塗布して絶縁層を形成することもできるが、工業的には一般に、接着フィルム、プリプレグ等のシート状積層材料の形態で用いるのが好ましい。樹脂組成物の軟化点は、シート状積層材料のラミネート性の観点から40~150℃が好ましい。
 <接着フィルム>
 本発明の接着フィルムは、当業者に公知の方法、例えば、有機溶剤に樹脂組成物を溶解した樹脂ワニスを調製し、この樹脂ワニスを、ダイコーターなどを用いて、支持体に塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて樹脂組成物層を形成させることにより製造することができる。
 有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶媒等を挙げることができる。有機溶剤は2種以上を組みわせて用いてもよい。
 乾燥条件は特に限定されないが、樹脂組成物層への有機溶剤の含有量が10質量%以下、好ましくは5質量%以下となるように乾燥させる。ワニス中の有機溶剤量、有機溶剤の沸点によっても異なるが、例えば30~60質量%の有機溶剤を含むワニスを50~150℃で3~10分程度乾燥させることにより、樹脂組成物層が形成することができる。
 接着フィルムにおいて形成される樹脂組成物層の厚さは、導体層の厚さ以上とするのが好ましい。回路基板が有する導体層の厚さは通常5~70μmの範囲であるので、樹脂組成物層は10~100μmの厚さを有するのが好ましい。
 支持体としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィンのフィルム、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステルのフィルム、ポリカーボネートフィルム、ポリイミドフィルムなどの各種プラスチックフィルムが挙げられる。また離型紙や銅箔、アルミニウム箔等の金属箔などを使用してもよい。支持体及び後述する保護フィルムには、マッド処理、コロナ処理等の表面処理が施してあってもよい。また、シリコーン樹脂系離型剤、アルキッド樹脂系離型剤、フッ素樹脂系離型剤等の離型剤で離型処理が施してあってもよい。
 支持体の厚さは特に限定されないが、10~150μmが好ましく、25~50μmがより好ましい。
 樹脂組成物層の支持体が密着していない面には、支持体に準じた保護フィルムをさらに積層することができる。保護フィルムの厚みは、特に限定されるものではないが、例えば、1~40μmである。保護フィルムを積層することにより、樹脂組成物層の表面へのゴミ等の付着やキズを防止することができる。接着フィルムは、ロール状に巻きとって貯蔵することもできる。
 <接着フィルムを用いた多層プリント配線板>
 次に、上記のようにして製造した接着フィルムを用いて多層プリント配線板を製造する方法の一例を説明する。
 まず、接着フィルムを、真空ラミネーターを用いて回路基板の片面又は両面にラミネートする。回路基板に用いられる基板としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。なお、ここで回路基板とは、上記のような基板の片面又は両面にパターン加工された導体層(回路)が形成されたものをいう。また導体層と絶縁層とを交互に積層してなる多層プリント配線板において、該多層プリント配線板の最外層の片面又は両面がパターン加工された導体層(回路)となっているものも、ここでいう回路基板に含まれる。なお導体層表面には、黒化処理、銅エッチング等により予め粗化処理が施されていてもよい。
 上記ラミネートにおいて、接着フィルムが保護フィルムを有している場合には該保護フィルムを除去した後、必要に応じて接着フィルム及び回路基板をプレヒートし、接着フィルムを加圧及び加熱しながら回路基板に圧着する。本発明の接着フィルムにおいては、真空ラミネート法により減圧下で回路基板にラミネートする方法が好適に用いられる。ラミネートの条件は、特に限定されるものではないが、例えば、圧着温度(ラミネート温度)を好ましくは70~140℃、圧着圧力を好ましくは1~11kgf/cm(9.8×10~107.9×10N/m)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートするのが好ましい。また、ラミネートの方法は、バッチ式であってもロールでの連続式であってもよい。真空ラミネートは、市販の真空ラミネーターを使用して行うことができる。市販の真空ラミネーターとしては、例えば、ニチゴー・モートン(株)製バキュームアップリケーター、(株)名機製作所製真空加圧式ラミネーター、(株)日立インダストリイズ製ロール式ドライコータ、日立エーアイーシー(株)製真空ラミネーター等を挙げることができる。
 また、減圧下、加熱及び加圧を行う積層工程は、一般の真空ホットプレス機を用いて行うことも可能である。例えば、加熱されたSUS板等の金属板を支持体層側からプレスすることにより行うことができる。プレス条件は、減圧度を通常1×10-2MPa以下、好ましくは1×10-3MPa以下の減圧下とする。加熱及び加圧は、1段階で行うことも出来るが、樹脂のしみだしを制御する観点から2段階以上に条件を分けて行うのが好ましい。例えば、1段階目のプレスを、温度が70~150℃、圧力が1~15kgf/cmの範囲、2段階目のプレスを、温度が150~200℃、圧力が1~40kgf/cmの範囲で行うのが好ましい。各段階の時間は30~120分で行うのが好ましい。市販されている真空ホットプレス機としては、例えば、MNPC-V-750-5-200(株)名機製作所製)、VH1-1603(北川精機(株)製)等が挙げられる。
 接着フィルムを回路基板にラミネートした後、室温付近に冷却してから、支持体を剥離する場合は剥離し、熱硬化することにより回路基板に絶縁層を形成することができる。熱硬化の条件は、樹脂組成物中の樹脂成分の種類、含有量などに応じて適宜選択すればよいが、好ましくは150℃~220℃で20分~180分、より好ましくは160℃~210℃で30~120分の範囲で選択される。
 絶縁層を形成した後、硬化前に支持体を剥離しなかった場合は、ここで剥離する。次いで必要により、回路基板上に形成された絶縁層に穴開けを行ってビアホール、スルーホールを形成する。穴あけは、例えば、ドリル、レーザー、プラズマ等の公知の方法により、また必要によりこれらの方法を組み合わせて行うことができるが、炭酸ガスレーザー、YAGレーザー等のレーザーによる穴あけが最も一般的な方法である。
 次いで、乾式メッキ又は湿式メッキにより絶縁層上に導体層を形成する。乾式メッキとしては、蒸着、スパッタリング、イオンプレーティング等の公知の方法を使用することができる。湿式メッキの場合は、絶縁層表面を、膨潤液による膨潤処理、酸化剤による粗化処理及び中和液による中和処理をこの順に行うことによって凸凹のアンカーを形成する。膨潤液による膨潤処理は、絶縁層を50~80℃で5~20分間膨潤液に浸漬させることで行われる。膨潤液としてはアルカリ溶液、界面活性剤溶液等が挙げられ、好ましくはアルカリ溶液であり、該アルカリ溶液としては、例えば、水酸化ナトリウム溶液、水酸化カリウム溶液等が挙げられる。市販されている膨潤液としては、例えば、アトテックジャパン(株)製のスウェリング・ディップ・セキュリガンスP(Swelling Dip Securiganth P)、スウェリング・ディップ・セキュリガンスSBU(Swelling Dip Securiganth SBU)等を挙げることができる。酸化剤による粗化処理は、絶縁層を60℃~80℃で10分~30分間酸化剤溶液に浸漬させることで行われる。酸化剤としては、例えば、水酸化ナトリウムの水溶液に過マンガン酸カリウムや過マンガン酸ナトリウムを溶解したアルカリ性過マンガン酸溶液、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等を挙げることができる。また、アルカリ性過マンガン酸溶液における過マンガン酸塩の濃度は5~10重量%とするのが好ましい。市販されている酸化剤としては、例えば、アトテックジャパン(株)製のコンセントレート・コンパクト CP、ドージングソリューション セキュリガンスP等のアルカリ性過マンガン酸溶液が挙げられる。中和液による中和処理は、30~50℃で3~10分間中和液に浸漬させることで行われる。中和液としては、酸性の水溶液が好ましく、市販品としては、アトテックジャパン(株)製のリダクションソリューシン・セキュリガントPが挙げられる。
 次いで、無電解メッキと電解メッキとを組み合わせて導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。その後のパターン形成の方法として、例えば、当業者に公知のサブトラクティブ法、セミアディティブ法などを用いることができる。
 <プリプレグ>
 本発明のプリプレグは、本発明の樹脂組成物を繊維からなるシート状補強基材にホットメルト法又はソルベント法により含浸させ、加熱して半硬化させることにより製造することができる。すなわち、本発明の樹脂組成物が繊維からなるシート状補強基材に含浸した状態となるプリプレグとすることができる。繊維からなるシート状補強基材としては、例えば、ガラスクロスやアラミド繊維等のプリプレグ用繊維として常用されている繊維からなるものを用いることができる。
 ホットメルト法は、樹脂を、有機溶剤に溶解することなく、該樹脂との剥離性の良い塗工紙に一旦コーティングし、それをシート状補強基材にラミネートする、あるいは樹脂を、有機溶剤に溶解することなく、ダイコーターによりシート状補強基材に直接塗工するなどして、プリプレグを製造する方法である。またソルベント法は、接着フィルムと同様にして樹脂を有機溶剤に溶解して樹脂ワニスを調製し、このワニスにシート状補強基材を浸漬し、樹脂ワニスをシート状補強基材に含浸させ、その後乾燥させる方法である。
 <プリプレグを用いた多層プリント配線板>
 次に、上記のようにして製造したプリプレグを用いて多層プリント配線板を製造する方法の一例を説明する。回路基板に本発明のプリプレグを1枚あるいは必要により数枚重ね、離型フィルムを介して金属プレートで挟み、加圧・加熱条件下で真空プレス積層する。加圧・加熱条件は、好ましくは、圧力が5~40kgf/cm(49×10~392×10N/m)、温度が120~200℃で20~100分である。また接着フィルムと同様に、プリプレグを真空ラミネート法により回路基板にラミネートした後、加熱硬化することも可能である。その後、上記で記載した方法と同様にして、硬化したプリプレグ表面を粗化した後、導体層をメッキにより形成して多層プリント配線板を製造することができる。
 <半導体装置>
 本発明の多層プリント配線板を用いることで半導体装置を製造することができる。本発明の多層プリント配線板の導通箇所に、半導体チップを実装することにより半導体装置を製造することができる。「導通箇所」とは、「多層プリント配線板における電気信号を伝える箇所」であって、その場所は表面であっても、埋め込まれた箇所であってもいずれでも構わない。また、半導体チップは半導体を材料とする電気回路素子であれば特に限定されない。
 本発明の半導体装置を製造する際の半導体チップの実装方法は、半導体チップが有効に機能しさえすれば、特に限定されないが、具体的には、ワイヤボンディング実装方法、フリップチップ実装方法、バンプなしビルドアップ層(BBUL)による実装方法、異方性導電フィルム(ACF)による実装方法、非導電性フィルム(NCF)による実装方法、などが挙げられる。
 「バンプなしビルドアップ層(BBUL)による実装方法」とは、「半導体チップを多層プリント配線板の凹部に直接埋め込み、半導体チップとプリント配線板上の配線とを接続させる実装方法」のことであり、更に、以下のBBUL方法1)、BBUL方法2)の実装方法に大別される。
BBUL方法1)アンダーフィル剤を用いて多層プリント配線板の凹部に半導体チップを実装する実装方法
BBUL方法2)接着フィルム又はプリプレグを用いて多層プリント配線板の凹部に半導体チップを実装する実装方法
 BBUL方法1)は、具体的には以下の工程を含む。
工程1)多層プリント配線板の両面から導体層を除去したものを設け、レーザー、機械ドリルによって貫通孔を形成する。
工程2)多層プリント配線板の片面に粘着テープを貼り付けて、貫通孔の中に半導体チップの底面を粘着テープ上に固定するように配置する。このときの半導体チップは貫通孔の高さより低くすることが好ましい。
工程3)貫通孔と半導体チップの隙間にアンダーフィル剤を注入、充填することによって、半導体チップを貫通孔に固定する。
工程4)その後粘着テープを剥がして、半導体チップの底面を露出させる。
工程5)半導体チップの底面側に本発明の接着フィルム又はプリプレグをラミネートし、半導体チップを被覆する。
工程6)接着フィルム又はプリプレグを硬化後、レーザーによって穴あけし、半導体チップの底面にあるボンディングパットを露出させ、上記で示した粗化処理、無電解メッキ、電解メッキを行うことで、配線と接続する。必要に応じて更に接着フィルム又はプリプレグを積層してもよい。
 BBUL方法2)は、具体的には以下の工程を含む。
工程1)多層プリント配線板の両面の導体層上に、フォトレジスト膜を形成し、フォトリソグラフィー工法でフォトレジスト膜の片面のみに開口部を形成する。
工程2)開口部に露出した導体層をエッチング液により除去し、絶縁層を露出させ、その後両面のレジスト膜を除去する。
工程3)レーザーやドリルを用いて、露出した絶縁層を全て除去して穴あけを行い、凹部を形成する。レーザーのエネルギーは、銅のレーザー吸収率を低くし、絶縁層のレーザー吸収率を高くするようにエネルギーが調整できるレーザーが好ましく、炭酸ガスレーザーがより好ましい。このようなレーザーを用いることで、レーザーは導体層の開口部の対面の導体層を貫通することがなく、絶縁層のみを除去することが可能となる。
工程4)半導体チップの底面を開口部側に向けて凹部に配置し、本発明の接着フィルム又はプリプレグを開口部の側から、ラミネートし、半導体チップを被覆して、半導体チップと凹部の隙間を埋め込む。このときの半導体チップは凹部の高さより低くすることが好ましい。
工程5)接着フィルム又はプリプレグを硬化後、レーザーによって穴あけし、半導体チップの底面のボンディングパットを露出させる。
工程6)上記で示した粗化処理、無電解メッキ、電解メッキを行うことで、配線を接続し、必要に応じて更に接着フィルム又はプリプレグを積層する。
 半導体チップの実装方法の中でも、半導体装置の小型化、伝送損失の軽減という観点や、半田を使用しないため半導体チップにその熱履歴が掛からず、さらに半田と樹脂とのひずみを将来的に生じ得ないという観点から、バンプなしビルドアップ層(BBUL)による実装方法が好ましく、BBUL方法1)、BBUL方法2)がより好ましく、BBUL方法2)が更に好ましい。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 <測定方法・評価方法>
 まずは各種測定方法・評価方法について説明する。
 <ピール強度、算術平均粗さ(Ra値)、二乗平均平方根粗さ(Rq値)測定用サンプルの調製>
(1)内層回路基板の下地処理
 内層回路を形成したガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ18μm、基板厚み0.3mm、松下電工(株)製R5715ES)の両面をメック(株)製CZ8100にて1umエッチングして銅表面の粗化処理をおこなった。
(2)接着フィルムのラミネート
 実施例及び比較例で作成した接着フィルムを、バッチ式真空加圧ラミネーターMVLP-500(名機(株)製商品名)を用いて、内層回路基板の両面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、100℃、圧力0.74MPaでプレスすることにより行った。
(3)樹脂組成物の硬化
 ラミネートされた接着フィルムを、実施例1~9についてはPETフィルムを剥離した後に、100℃、30分続けて180℃、30分の硬化条件で樹脂組成物を硬化し、実施例10については同条件で熱硬化させた後にPETフィルムを剥離して、絶縁層を形成した。
(4)粗化処理
 絶縁層を形成した内層回路基板を、膨潤液である、アトテックジャパン(株)のジエチレングリコールモノブチルエーテル含有のスエリングディップ・セキュリガントP(グリコールエーテル類、水酸化ナトリウムの水溶液)に、実施例1~9については60℃で5分間、実施例10については60℃で10分間、浸漬し、次に粗化液として、アトテックジャパン(株)のコンセントレート・コンパクトP(KMnO4:60g/L、NaOH:40g/Lの水溶液)に実施例1~9については80℃で15分間、実施例10については80℃で20分間、浸漬、最後に中和液として、アトテックジャパン(株)のリダクションショリューシン・セキュリガントP(グリオキザール、硫酸の水溶液)に40℃で5分間浸漬した。80℃で30分乾燥後、この粗化処理後の絶縁層表面について、算術平均粗さ(Ra値)の測定を行った。
(5)セミアディティブ工法によるメッキ
 絶縁層表面に回路を形成するために、内層回路基板を、PdClを含む無電解メッキ用溶液に40℃で5分間浸漬し、次に無電解銅メッキ液に25℃で20分間浸漬した。150℃にて30分間加熱してアニール処理を行った後に、エッチングレジストを形成し、エッチングによるパターン形成の後に、硫酸銅電解メッキを行い、35±5μmの厚さで導体層を形成した。次に、アニール処理を200℃にて60分間行った。この回路基板についてメッキ導体層の引き剥がし強さ(ピール強度)の測定を行った。
 <メッキ導体層の引き剥がし強さ(ピール強度)の測定>
 回路基板の導体層に、幅10mm、長さ100mmの部分の切込みをいれ、この一端を剥がしてつかみ具(株式会社ティー・エス・イー、オートコム型試験機 AC-50C-SL)で掴み、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重(kgf/cm)を測定した。
 <粗化後の算術平均粗さ(Ra値)、二乗平均平方根粗さ(Rq値)の測定>
 非接触型表面粗さ計(ビーコインスツルメンツ社製WYKO NT3300)を用いて、VSIコンタクトモード、50倍レンズにより測定範囲を121μm×92μmとして得られる数値によりRa値、Rq値を求めた。そして、それぞれ10点の平均値を求めることにより測定した。
 <平均熱膨張率及びガラス転移温度の測定>
 実施例及び比較例において得られた接着フィルムを200℃で90分間加熱することで熱硬化させ、PETフィルムを剥離することによりシート状の硬化物を得た。その硬化物を、幅約5mm、長さ約15mmの試験片に切断し、熱機械分析装置Thermo Plus TMA8310((株)リガク製)を使用して、引張加重法で熱機械分析を行った。試験片を前記装置に装着後、荷重1g、昇温速度5℃/分の測定条件にて連続して2回測定した。2回目の測定における25℃から150℃までの平均熱膨張率(ppm)を算出した。また2回目の測定における寸法変化シグナルの傾きが変化する点からガラス転移温度(℃)を算出した。
 <単位表面積当たりのカーボン量の算出>
 製造例において得られた各製造物の3gをそれぞれ試料として用いた。試料と30gのMEK(メチルエチルケトン)とを遠心分離機の遠心管に入れ、撹拌し固形分を懸濁させて、500Wの超音波を5分間照射した。その後、遠心分離により固液分離し、上澄液を除去した。さらに、30gのMEKを足し、撹拌して固形分を懸濁させて、500Wの超音波を5分間照射した。その後、遠心分離により固液分離し、上澄液を除去した。固形分を150℃にて30分間乾燥させた。この乾燥試料0.3gを測定用坩堝に正確に量りとり、さらに測定用坩堝に助燃剤(タングステン3.0g及びスズ0.3g)を入れた。測定用坩堝をカーボン分析計((株)堀場製作所製「EMIA-320V」)にセットし、カーボン量を測定した。カーボン量の測定値を、使用した無機充填剤の比表面積で除すことにより、単位表面積当たりのカーボン量を算出した。
 <製造例1>
 球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、エポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」、グリシドキシプロピル基含有メトキシシリル樹脂、粘度40mm/s)0.6質量部を噴霧しながら球状シリカを10分間攪拌し、さらに75℃で1時間攪拌後、揮発成分を留去して、製造物1(単位表面積あたりのカーボン量0.30mg/m)を作製した。
 <製造例2>
 球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、メルカプト基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1805」、メルカプトプロピル基含有メトキシシリル樹脂及びメルカプトプロピル基含有エトキシシリル樹脂、粘度30mm/s)0.6質量部を噴霧しながら球状シリカを10分間攪拌し、さらに75℃で1時間攪拌後、揮発成分を留去して、製造物2(単位表面積あたりのカーボン量0.25mg/m)を作製した。
 <製造例3>
 球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、アミノ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-40-2651」、3-アミノプロピル基含有エトキシシリル樹脂、粘度20mm/s)0.6質量部を噴霧しながら球状シリカを10分間攪拌し、さらに75℃で1時間攪拌後、揮発成分を留去して、製造物3(単位表面積あたりのカーボン量0.18mg/m)を作製した。
 <製造例4>
 球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、N-フェニル-3-アミノプロピル基含有メトキシシリル樹脂(信越化学工業(株)製「KBM573」とメチルトリメトキシシランのアルコキシ基を部分加水分解し、重縮合させる反応によって得たもの、粘度234mm/s)0.6質量部を噴霧しながら球状シリカを10分間攪拌し、さらに75℃で1時間攪拌後、揮発成分を留去して、製造物4(単位表面積あたりのカーボン量0.16mg/m)を作製した。
 <製造例5>
 球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、N-フェニル-3-アミノプロピル基含有メトキシシリル樹脂(信越化学工業(株)製「KBM573」のアルコキシ基を部分加水分解し、重縮合させる反応によって得たもの、粘度1045mm/s)0.6質量部を噴霧しながら球状シリカを10分間攪拌し、さらに75℃で1時間攪拌後、揮発成分を留去して、製造物5(単位表面積あたりのカーボン量0.20mg/m)を作製した。
 <製造例6>
 球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、N-フェニル-3-アミノプロピル基含有メトキシシリル樹脂(信越化学工業(株)製「KBM573」とメチルトリメトキシシランのアルコキシ基を部分加水分解し、重縮合させる反応によって得たもの、粘度1392mm/s)0.6質量部を噴霧しながら球状シリカを10分間攪拌し、さらに75℃で1時間攪拌後、揮発成分を留去して、製造物6(単位表面積あたりのカーボン量0.15mg/m)を作製した。
 <製造例7>
 球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、エポキシ基含有シランカップリング剤(信越化学工業(株)製「KBM403」)0.6質量部を噴霧しながら球状シリカを10分間攪拌し、さらに75℃で1時間攪拌後、揮発成分を留去して、製造物7(単位表面積あたりのカーボン量0.22mg/m)を作製した。
 <製造例8>
 球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、メルカプト基含有シランカップリング剤(信越化学工業(株)製「KBM803」)0.6質量部を噴霧しながら球状シリカを10分間攪拌し、さらに75℃で1時間攪拌後、揮発成分を留去して、製造物8(単位表面積あたりのカーボン量0.17mg/m)を作製した。
 <製造例9>
 球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、アミノ基含有シランカップリング剤(信越化学工業(株)製「KBE903」)0.6質量部を噴霧しながら球状シリカを10分間攪拌し、さらに75℃で1時間攪拌後、揮発成分を留去して、製造物9(単位表面積あたりのカーボン量0.12mg/m)を作製した。
 <製造例10>
 球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部をヘンシェル型混粉機に投入し、反応性シリコーンオイル(信越化学工業(株)製「KF-857」、アルコキシ基の代わりにアルキル基が結合しているもの、粘度65mm/s)0.6質量部を噴霧しながら球状シリカを10分間攪拌し、さらに75℃で1時間攪拌後、揮発成分を留去して、製造物10(単位表面積あたりのカーボン量0.26mg/m)を作製した。
 <実施例1>
 ナフタレン型エポキシ樹脂(エポキシ当量144、DIC(株)製「HP4700」)5質量部、液状ビスフェノールA型エポキシ樹脂(エポキシ当量180、三菱化学(株)製「jER828EL」)14質量部、ビフェニル型エポキシ樹脂(エポキシ当量269、日本化薬(株)製「NC3000H」)14質量部をソルベントナフサ30質量部に撹拌しながら加熱溶解させ、その後室温にまで冷却し、混合物1を作製した。次いで、ゴム粒子(ガンツ化成(株)製、スタフィロイドAC3816N)1.5質量部を、ソルベントナフサ6質量部に12時間、20℃で静置膨潤し、混合物2を作製した。混合物1に、混合物2と、球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部と、エポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」、エポキシ当量280)0.6質量部をそのまま添加し、さらに難燃剤(三光(株)製「HCA-HQ」、10-(2,5-ジヒドロキシフェニル)-10-ヒドロ-9-オキサ-10-フォスファフェナンスレン-10-オキサイド、平均粒径1μm)5質量部を添加し、3本ロールで混練し分散させた。そこへ、フェノールノボラック系硬化剤(DIC(株)製「LA-7054」、フェノール性水酸基当量124の不揮発分60質量%のメチルエチルケトン(以下「MEK」と略称する)溶液)10質量部、ナフタレン系フェノール樹脂(フェノール性水酸基当量215、新日鐵化学(株)製「SN485」、不揮発分60質量%のMEK溶液)10質量部、フェノキシ樹脂(重量平均分子量35000、三菱化学(株)製「YL7553」不揮発分30質量%のMEKとシクロヘキサノンの1:1溶液)7質量部、硬化促進剤として4-ジメチルアミノピリジンの5質量%のMEK溶液2質量部、メチルエチルケトン(MEK)4質量部を混合し、回転ミキサーで均一に分散して、樹脂ワニスを作製した。次に、かかる樹脂ワニスをアルキド系離型処理付きポリエチレンテレフタレートフィルム(厚さ38μm)の離型面上に、乾燥後の樹脂組成物層の厚みが40μmとなるようにダイコーターにて均一に塗布し、80~110℃(平均95℃)で5分間乾燥した(樹脂組成物層中の残留溶媒量:約2質量%)。次いで、樹脂組成物層の表面に厚さ15μmのポリプロピレンフィルムを貼り合わせながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリットし、507×336mmサイズのシート状の接着フィルムを得た。
 <実施例2>
 実施例1のエポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」)0.6質量部を、メルカプト基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1805」、メルカプト当量800)0.6質量部に変更した以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 <実施例3>
 実施例1のエポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」)0.6質量部を、アミノ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-40-2651」)0.6質量部に変更した以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 <実施例4>
 実施例1の球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部と、エポキシ基含有メトキシシリル樹脂(信越化学工業(株)製「X-41-1056」)0.6質量部をそのまま添加する代わりに、製造物1を添加したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 <実施例5>
 実施例1の球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部と、エポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」)0.6質量部をそのまま添加する代わりに、製造物2を添加したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 <実施例6>
 実施例1の球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部と、エポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」)0.6質量部をそのまま添加する代わりに、製造物3を添加したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 <実施例7>
 実施例1の球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部と、エポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」)0.6質量部をそのまま添加する代わりに、製造物4を添加したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 <実施例8>
 実施例1の球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部と、エポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」)0.6質量部をそのまま添加する代わりに、製造物5を添加したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 <実施例9>
 実施例1の球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部と、エポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」)0.6質量部をそのまま添加する代わりに、製造物6を添加したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 <実施例10>
 ナフタレン型エポキシ樹脂(エポキシ当量144、DIC(株)製「EXA4032SS」)8質量部と、ビキシレノール型エポキシ樹脂(エポキシ当量190、三菱化学(株)製「YX4000HK」)11質量部、変性ナフタレン型エポキシ樹脂(エポキシ当量約330、新日鐵化学(株)製「ESN475V」)9質量部をソルベントナフサ32質量部に撹拌しながら加熱溶解させ、その後室温にまで冷却した。その混合溶液に、ゴム粒子としてスタフィロイド(ガンツ化成(株)製、AC3816N)1.5質量部を、ソルベントナフサ6質量部に12時間、20℃で静置膨潤したもの、球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)140質量部、アミノ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-40-2651」)0.7質量部を混合し、3本ロールで混練、均一に分散させた。そこへ、活性エステル硬化剤(DIC(株)製「HPC-8000-65T」、活性基当量約223の不揮発分65質量%のトルエン溶液)45質量部、フェノキシ樹脂(重量平均分子量35000、三菱化学(株)製「YL7553」不揮発分30質量%のMEKとシクロヘキサノンの1:1溶液)5質量部、硬化促進剤として1-ベンジル-2-フェニルイミダゾールの10質量%のMEK溶液3質量部、メチルエチルケトン(MEK)7質量部を混合し、回転ミキサーで均一に分散して、樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 <比較例1>
 実施例1のエポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」)を添加しなかったこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 <比較例2>
 実施例1のエポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」)0.6質量部をエポキシ基含有シランカップリング剤(信越化学工業(株)製「KBM403」)0.6質量部に変更したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 <比較例3>
 実施例1のエポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」)0.6質量部をエポキシ基含有シランカップリング剤(信越化学工業(株)製「KBM803」)0.6質量部に変更したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 <比較例4>
 実施例1のエポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」)0.6質量部をアミノ基含有シランカップリング剤(信越化学工業(株)製「KBM903」)0.6質量部に変更したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 <比較例5>
 実施例1の球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部と、エポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」)0.6質量部をそのまま添加する代わりに、製造物7を添加したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 <比較例6>
 実施例1の球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部と、エポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」)0.6質量部をそのまま添加する代わりに、製造物8を添加したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 <比較例7>
 実施例1の球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部と、エポキシ基含有アルコキシシリル樹脂(信越化学工業(株)製「X-41-1056」)0.6質量部をそのまま添加する代わりに、製造物9を添加したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 <比較例8>
 実施例1の球状シリカ((株)アドマテックス製「SOC2」、平均粒径0.5μm)100質量部と、エポキシ基含有メトキシシリル樹脂(信越化学工業(株)製「X-41-1056」)0.6質量部をそのまま添加する代わりに、製造物10を添加したこと以外は、全く同様にして樹脂ワニスを作製した。次にかかる樹脂ワニスを使用し、実施例1と全く同様にして接着フィルムを得た。
 実施例1~3、10及び比較例1~4の結果を表1に示す。実施例4~9及び比較例5~8の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表1及び表2の結果から、実施例1~10の樹脂組成物は、低算術平均粗さ、低二乗平均平方根粗さでピール強度が十分な値が得られていることが分かる。なお、Rq値は絶縁層表面の局所的な状態が反映されるため、Rq値の減少により緻密な粗面になっていることがわかる。一方、比較例1~8では、算術平均粗さ、二乗平均平方根粗さが大きくなり、メッキが膨れてピール強度が著しく小さい値となった。
 ガラス転移温度、熱膨張率を維持しながら、湿式粗化工程において絶縁層表面の算術平均粗さが低いのみならず、二乗平均平方根粗さも小さく、その上に十分なピール強度を有するメッキ導体層を形成することができる樹脂組成物を提供できるようになった。更にそれを用いた接着フィルム、プリプレグ、多層プリント配線板、半導体装置を提供できるようになった。更にこれらを搭載した、コンピューター、携帯電話、デジタルカメラ、テレビ、等の電気製品や、自動二輪車、自動車、電車、船舶、航空機、等の乗物も提供できるようになった。

Claims (22)

  1.  (A)エポキシ樹脂、(B)アルコキシオリゴマー及び(C)無機充填剤を含有することを特徴とする樹脂組成物。
  2.  (B)アルコキシオリゴマーの少なくとも一部が(C)無機充填剤と反応して反応物を形成していることを特徴とする請求項1に記載の樹脂組成物。
  3.  (B)アルコキシオリゴマーと(C)無機充填剤とを予め反応させてから、(A)エポキシ樹脂に添加してなることを特徴とする請求項2に記載の樹脂組成物。
  4.  (B)アルコキシオリゴマーと(C)無機充填剤とを、50~150℃で、0.5~3時間予め反応させてから、(A)エポキシ樹脂に添加してなることを特徴とする請求項3に記載の樹脂組成物。
  5.  (C)無機充填剤の単位表面積当たりのカーボン量が0.05mg/m以上であることを特徴とする請求項2~4のいずれか1項に記載の樹脂組成物。
  6.  [(C)無機充填剤と反応した(B)アルコキシオリゴマーが有する炭素原子の量(mg)/(C)無機充填剤の表面積(m)]の値が、0.05mg/m以上である、請求項5に記載の樹脂組成物。
  7.  (C)無機充填剤を100質量%とした場合、(B)アルコキシオリゴマーが0.1~5質量%であることを特徴とする請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  (B)アルコキシオリゴマーの粘度(25℃)が10mm/s~2000mm/sであることを特徴とする請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  (B)アルコキシオリゴマーが、メチル基含有アルコキシシリル樹脂、フェニル基含有アルコキシシリル樹脂、エポキシ基含有アルコキシシリル樹脂、メルカプト基含有アルコキシシリル樹脂、アミノ基含有アルコキシシリル樹脂、アクリル基含有アルコキシシリル樹脂、メタクリル基含有アルコキシシリル樹脂、ウレイド基含有アルコキシシリル樹脂、イソシアネート基含有アルコキシシリル樹脂、ビニル基含有アルコキシシリル樹脂からなる群より選択される1種以上であることを特徴とする請求項1~8のいずれか1項に記載の樹脂組成物。
  10.  (B)アルコキシオリゴマーが、グリシドキシプロピル基含有アルコキシシリル樹脂、アミノプロピル基含有アルコキシシリル樹脂、N-2-(アミノエチル)-3-アミノプロピル基含有アルコキシシリル樹脂、N-フェニル-3-アミノプロピル基含有アルコキシシリル樹脂、メタクリロキシプロピル基含有アルコキシシリル樹脂、アクリロキシプロピル基含有アルコキシシリル樹脂、メルカプトプロピル基含有アルコキシシリル樹脂、ウレイドプロピル基含有アルコキシシリル樹脂、イソシアネートプロピル基含有アルコキシシリル樹脂からなる群より選択される1種以上であることを特徴とする請求項1~8のいずれか1項に記載の樹脂組成物。
  11.  (B)アルコキシオリゴマーが、グリシドキシプロピル基含有メトキシシリル樹脂、アミノプロピル基含有メトキシシリル樹脂、アミノプロピル基含有エトキシシリル樹脂、N-2-(アミノエチル)-3-アミノプロピル基含有メトキシシリル樹脂、N-フェニル-3-アミノプロピル基含有メトキシシリル樹脂、メタクリロキシプロピル基含有メトキシシリル樹脂、アクリロキシプロピル基含有メトキシシリル樹脂、メルカプトプロピル基含有メトキシシリル樹脂、ウレイドプロピル基含有エトキシシリル樹脂、イソシアネートプロピル基含有エトキシシリル樹脂からなる群より選択される1種以上であることを特徴とする請求項1~8のいずれか1項に記載の樹脂組成物。
  12.  (B)アルコキシオリゴマーが、下記一般式(1)の構造で表されることを特徴とする請求項1~8のいずれか1項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    式(1)中、R、R、Rはそれぞれ独立に、炭素数1~10の直鎖または分岐鎖のアルキル基であり、Xは低級アルキル基、グリシドキシアルキル基、アミノアルキル基、メルカプトアルキル基、アクリロキシアルキル基、メタクリロキシアルキル基、ウレイドアルキル基、イソシアネートアルキル基又はビニルアルキル基であり、nは2~10の整数である。複数存在するXは互いに同じでも異なっていてもよく、複数存在するRは互いに同じでも異なっていてもよい。
  13.  更に(D)硬化促進剤を含有することを特徴とする、請求項1~12のいずれか1項に記載の樹脂組成物。
  14.  更に(E)硬化剤を含有することを特徴とする、請求項1~13のいずれか1項に記載の樹脂組成物。
  15.  更に(F)熱可塑性樹脂を含有することを特徴とする、請求項1~14のいずれか1項に記載の樹脂組成物。
  16.  更に(G)ゴム粒子を含有することを特徴とする、請求項1~15のいずれか1項に記載の樹脂組成物。
  17.  更に(H)難燃剤を含有することを特徴とする、請求項1~16のいずれか1項に記載の樹脂組成物。
  18.  樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理し、メッキして得られる導体層と絶縁層とのピール強度が0.4kgf/cm~1.0kgf/cmであり、樹脂組成物を硬化して絶縁層を形成し、その絶縁層表面を粗化処理した後の算術平均粗さが10nm~300nmであり、二乗平均平方根粗さが10~520nmであることを特徴とする請求項1~17のいずれか1項に記載の樹脂組成物。
  19.  請求項1~18のいずれか1項に記載の樹脂組成物が支持体上に層形成された接着フィルム。
  20.  請求項1~18のいずれか1項に記載の樹脂組成物がシート状補強基材中に含浸されたプリプレグ。
  21.  請求項1~18のいずれか1項に記載の樹脂組成物の硬化物により絶縁層が形成された多層プリント配線板。
  22.  請求項21に記載の多層プリント配線板を用いることを特徴とする、半導体装置。
PCT/JP2012/058005 2011-05-27 2012-03-27 樹脂組成物 WO2012165012A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012537257A JP5234229B1 (ja) 2011-05-27 2012-03-27 樹脂組成物
KR1020137033148A KR101433556B1 (ko) 2011-05-27 2012-03-27 수지 조성물
US14/087,113 US8912279B2 (en) 2011-05-27 2013-11-22 Resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-119400 2011-05-27
JP2011119400 2011-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/087,113 Continuation US8912279B2 (en) 2011-05-27 2013-11-22 Resin composition

Publications (1)

Publication Number Publication Date
WO2012165012A1 true WO2012165012A1 (ja) 2012-12-06

Family

ID=47258878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058005 WO2012165012A1 (ja) 2011-05-27 2012-03-27 樹脂組成物

Country Status (5)

Country Link
US (1) US8912279B2 (ja)
JP (1) JP5234229B1 (ja)
KR (1) KR101433556B1 (ja)
TW (1) TWI445759B (ja)
WO (1) WO2012165012A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140107256A1 (en) * 2012-10-16 2014-04-17 Guangdong Shengyi Sci. Tech Co., Ltd. Thermoset resin composition and its use
JP2014118433A (ja) * 2012-12-13 2014-06-30 Hitachi Chemical Co Ltd 熱硬化性樹脂成形材料及び電子部品装置
JP2014208764A (ja) * 2013-03-22 2014-11-06 積水化学工業株式会社 エポキシ樹脂材料及び多層基板
JP2015003982A (ja) * 2013-06-20 2015-01-08 住友ベークライト株式会社 プライマー層形成用樹脂組成物
WO2015072261A1 (ja) * 2013-11-12 2015-05-21 住友ベークライト株式会社 樹脂層付きキャリア材料、積層体、回路基板および電子装置
JP2015127367A (ja) * 2013-12-27 2015-07-09 パナソニックIpマネジメント株式会社 半導体封止用液状エポキシ樹脂組成物とそれを用いた半導体装置
JP2016008279A (ja) * 2014-06-25 2016-01-18 味の素株式会社 樹脂組成物
JP2016027097A (ja) * 2014-06-30 2016-02-18 味の素株式会社 樹脂組成物
JP2016037545A (ja) * 2014-08-07 2016-03-22 パナソニックIpマネジメント株式会社 絶縁樹脂シート、並びにそれを用いた回路基板および半導体パッケージ
WO2016098305A1 (ja) * 2014-12-18 2016-06-23 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物、その硬化物、および硬化皮膜の形成方法
WO2016132671A1 (ja) * 2015-02-16 2016-08-25 パナソニックIpマネジメント株式会社 封止用アクリル樹脂組成物とその硬化物、製造方法、その樹脂組成物を用いた半導体装置とその製造方法
WO2016204182A1 (ja) * 2015-06-16 2016-12-22 日立化成株式会社 熱硬化性樹脂組成物、硬化物、樹脂シート、封止構造体及びその製造方法、並びに、電子部品装置及びその製造方法
JP2017066331A (ja) * 2015-10-02 2017-04-06 東洋インキScホールディングス株式会社 粘着剤およびそれを用いた粘着シート
JP2017149874A (ja) * 2016-02-25 2017-08-31 住友ベークライト株式会社 半導体装置製造用樹脂シート、半導体装置、半導体装置の製造方法、有機樹脂基板および有機樹脂基板の製造方法
JP2017171925A (ja) * 2017-04-20 2017-09-28 味の素株式会社 樹脂組成物
JP2018076505A (ja) * 2017-11-14 2018-05-17 味の素株式会社 粗化硬化体の製造方法、積層体の製造方法、プリント配線板の製造方法及び半導体装置の製造方法
JP2018100421A (ja) * 2018-03-19 2018-06-28 味の素株式会社 樹脂組成物
JP2018150536A (ja) * 2018-04-02 2018-09-27 東洋インキScホールディングス株式会社 粘着剤およびそれを用いた粘着シート
JP2019077758A (ja) * 2017-10-23 2019-05-23 味の素株式会社 樹脂組成物
WO2020158851A1 (ja) * 2019-01-30 2020-08-06 日立化成株式会社 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法
US10743412B2 (en) * 2014-02-27 2020-08-11 Shin-Etsu Chemical Co., Ltd. Substrate and semiconductor apparatus
JP2021008583A (ja) * 2019-07-02 2021-01-28 味の素株式会社 樹脂組成物

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101331646B1 (ko) * 2012-06-14 2013-11-20 삼성전기주식회사 절연성 에폭시수지 조성물, 이로부터 제조된 절연필름 및 다층 인쇄회로기판
TWI629306B (zh) * 2013-07-19 2018-07-11 Ajinomoto Co., Inc. Resin composition
CN103756614B (zh) * 2014-01-14 2015-03-11 湖南柯盛新材料有限公司 一种改性环氧石材背网胶及其制备方法
KR102359868B1 (ko) * 2014-06-04 2022-02-07 쇼와덴코머티리얼즈가부시끼가이샤 필름형 에폭시 수지 조성물, 필름형 에폭시 수지 조성물의 제조 방법, 및 반도체 장치의 제조 방법
KR101652174B1 (ko) * 2014-10-06 2016-08-29 주식회사 두산 프리프레그 및 이를 포함하는 금속박 적층판 및 인쇄회로기판
CN107428940B (zh) * 2014-12-30 2020-12-15 株式会社普利司通 末端官能化聚合物及相关方法
KR102213455B1 (ko) 2017-02-01 2021-02-08 한화솔루션 주식회사 에멀젼 및 그 제조 방법
WO2018236993A1 (en) * 2017-06-21 2018-12-27 Lord Corporation ALUMINUM COATING
US10491121B2 (en) 2017-10-30 2019-11-26 Renesas Electronics America Inc. Window comparator structure for low power hysteretic buck-boost DC-DC controller
CN108314991A (zh) * 2018-02-12 2018-07-24 成都理工大学 一种耐180℃高温胶粘剂及其制备方法
KR102051375B1 (ko) * 2018-05-11 2019-12-04 삼성전자주식회사 인쇄회로기판 및 ic 패키지용 수지 조성물, 및 이를 이용한 제품
JP2019196475A (ja) * 2018-05-11 2019-11-14 サムスン エレクトロニクス カンパニー リミテッド 低損失絶縁樹脂組成物、及びこれを用いた絶縁フィルム
SG11202101938QA (en) 2018-09-27 2021-04-29 Basf Se Epoxy resin composition
KR102400111B1 (ko) * 2019-02-08 2022-05-19 주식회사 엘지화학 반도체 패키지용 열경화성 수지 조성물, 프리프레그 및 금속박 적층판
EP3718768B1 (de) * 2019-04-02 2022-02-02 Flooring Technologies Ltd. Imprägnat mit antistatischen eigenschaften
ES2950130T3 (es) 2019-04-02 2023-10-05 Flooring Technologies Ltd Plancha de materia derivada de la madera con propiedades antiestáticas
KR20220038380A (ko) 2019-07-18 2022-03-28 바스프 에스이 트윈 단량체 조성물 및 이의 유전 필름
EP4127018A1 (en) 2020-03-26 2023-02-08 Basf Se Epoxy resin composition
US11920023B2 (en) 2022-04-28 2024-03-05 Rohm And Haas Electronic Materials Llc. Composite materials for dielectric applications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160951A (ja) * 1997-08-19 1999-03-05 Hitachi Chem Co Ltd 印刷配線板用樹脂組成物及びそれを用いたプリプレグ、金属張り積層板
JP2003012892A (ja) * 2001-06-29 2003-01-15 Hitachi Chem Co Ltd 樹脂組成物ならびにそれを用いた難燃性の積層板および印刷配線板
JP2003082306A (ja) * 2001-09-17 2003-03-19 Hitachi Chem Co Ltd 半導体用接着フィルム及びその用途
JP2004352956A (ja) * 2003-05-30 2004-12-16 Shin Etsu Chem Co Ltd 半導体封止用難燃性エポキシ樹脂組成物及び半導体装置
JP2006131749A (ja) * 2004-11-05 2006-05-25 Hitachi Chem Co Ltd 樹脂組成物、それを用いたプリプレグ、積層板および印刷配線板
WO2008126825A1 (ja) * 2007-04-10 2008-10-23 Sumitomo Bakelite Co., Ltd. 樹脂組成物、プリプレグ、積層板、多層プリント配線板および半導体装置
JP2009270001A (ja) * 2008-05-07 2009-11-19 Nitto Denko Corp 半導体封止用樹脂組成物およびそれを用いた半導体装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1337338A (en) * 1971-06-19 1973-11-14 Macdermid Inc Process for making printed circuit boards and products obtained by said process
US5726257A (en) * 1994-08-30 1998-03-10 Sumitomo Chemical Company, Ltd. Esterified resorcinol-carbonyl compound condensates and epoxy resins therewith
JP2001261776A (ja) * 2000-03-24 2001-09-26 Matsushita Electric Works Ltd プリント配線板用絶縁材料
JP2005340270A (ja) * 2004-05-24 2005-12-08 Matsushita Electric Works Ltd 積層板用プリプレグ、積層板並びにそれを用いたフレキシブルプリント配線板及びフレックスリジッドプリント配線板
JP2006057013A (ja) * 2004-08-20 2006-03-02 Yokohama Rubber Co Ltd:The 樹脂組成物
JP2006117826A (ja) 2004-10-22 2006-05-11 Dainippon Ink & Chem Inc 硬化型樹脂組成物及びそれを貼着した部品
JP2007273616A (ja) * 2006-03-30 2007-10-18 Ajinomoto Co Inc 多層プリント配線板の製造方法
CN101646718B (zh) 2007-03-26 2013-04-03 Jsr株式会社 固化性树脂组合物、保护膜和保护膜的形成方法
CN103232682B (zh) 2008-07-31 2016-03-02 积水化学工业株式会社 环氧树脂组合物、预浸料、固化物、片状成形体、叠层板及多层叠层板
JP4674730B2 (ja) 2008-09-24 2011-04-20 積水化学工業株式会社 半硬化体、硬化体、積層体、半硬化体の製造方法及び硬化体の製造方法
CN102159616B (zh) 2008-09-24 2014-08-06 积水化学工业株式会社 树脂组合物、固化体及层叠体
TWI565750B (zh) 2009-02-20 2017-01-11 Ajinomoto Kk Resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160951A (ja) * 1997-08-19 1999-03-05 Hitachi Chem Co Ltd 印刷配線板用樹脂組成物及びそれを用いたプリプレグ、金属張り積層板
JP2003012892A (ja) * 2001-06-29 2003-01-15 Hitachi Chem Co Ltd 樹脂組成物ならびにそれを用いた難燃性の積層板および印刷配線板
JP2003082306A (ja) * 2001-09-17 2003-03-19 Hitachi Chem Co Ltd 半導体用接着フィルム及びその用途
JP2004352956A (ja) * 2003-05-30 2004-12-16 Shin Etsu Chem Co Ltd 半導体封止用難燃性エポキシ樹脂組成物及び半導体装置
JP2006131749A (ja) * 2004-11-05 2006-05-25 Hitachi Chem Co Ltd 樹脂組成物、それを用いたプリプレグ、積層板および印刷配線板
WO2008126825A1 (ja) * 2007-04-10 2008-10-23 Sumitomo Bakelite Co., Ltd. 樹脂組成物、プリプレグ、積層板、多層プリント配線板および半導体装置
JP2009270001A (ja) * 2008-05-07 2009-11-19 Nitto Denko Corp 半導体封止用樹脂組成物およびそれを用いた半導体装置

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9193858B2 (en) * 2012-10-16 2015-11-24 Guangdong Shengyi Sci. Tech Co., Ltd. Thermoset resin composition and its use
US20140107256A1 (en) * 2012-10-16 2014-04-17 Guangdong Shengyi Sci. Tech Co., Ltd. Thermoset resin composition and its use
JP2014118433A (ja) * 2012-12-13 2014-06-30 Hitachi Chemical Co Ltd 熱硬化性樹脂成形材料及び電子部品装置
JP2014208764A (ja) * 2013-03-22 2014-11-06 積水化学工業株式会社 エポキシ樹脂材料及び多層基板
JP2018115334A (ja) * 2013-03-22 2018-07-26 積水化学工業株式会社 エポキシ樹脂材料及び多層基板
JP2015003982A (ja) * 2013-06-20 2015-01-08 住友ベークライト株式会社 プライマー層形成用樹脂組成物
JPWO2015072261A1 (ja) * 2013-11-12 2017-03-16 住友ベークライト株式会社 樹脂層付きキャリア材料、積層体、回路基板および電子装置
WO2015072261A1 (ja) * 2013-11-12 2015-05-21 住友ベークライト株式会社 樹脂層付きキャリア材料、積層体、回路基板および電子装置
JP2015127367A (ja) * 2013-12-27 2015-07-09 パナソニックIpマネジメント株式会社 半導体封止用液状エポキシ樹脂組成物とそれを用いた半導体装置
US10743412B2 (en) * 2014-02-27 2020-08-11 Shin-Etsu Chemical Co., Ltd. Substrate and semiconductor apparatus
JP2016008279A (ja) * 2014-06-25 2016-01-18 味の素株式会社 樹脂組成物
JP2016027097A (ja) * 2014-06-30 2016-02-18 味の素株式会社 樹脂組成物
JP2016037545A (ja) * 2014-08-07 2016-03-22 パナソニックIpマネジメント株式会社 絶縁樹脂シート、並びにそれを用いた回路基板および半導体パッケージ
US10611877B2 (en) 2014-12-18 2020-04-07 Dow Toray Co., Ltd. Curable organopolysiloxane composition, cured product thereof, and method for forming cured film
JPWO2016098305A1 (ja) * 2014-12-18 2017-11-02 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物、その硬化物、および硬化皮膜の形成方法
WO2016098305A1 (ja) * 2014-12-18 2016-06-23 東レ・ダウコーニング株式会社 硬化性オルガノポリシロキサン組成物、その硬化物、および硬化皮膜の形成方法
WO2016132671A1 (ja) * 2015-02-16 2016-08-25 パナソニックIpマネジメント株式会社 封止用アクリル樹脂組成物とその硬化物、製造方法、その樹脂組成物を用いた半導体装置とその製造方法
WO2016204182A1 (ja) * 2015-06-16 2016-12-22 日立化成株式会社 熱硬化性樹脂組成物、硬化物、樹脂シート、封止構造体及びその製造方法、並びに、電子部品装置及びその製造方法
JPWO2016204182A1 (ja) * 2015-06-16 2018-02-22 日立化成株式会社 熱硬化性樹脂組成物、硬化物、樹脂シート、封止構造体及びその製造方法、並びに、電子部品装置及びその製造方法
JP2017066331A (ja) * 2015-10-02 2017-04-06 東洋インキScホールディングス株式会社 粘着剤およびそれを用いた粘着シート
JP2017149874A (ja) * 2016-02-25 2017-08-31 住友ベークライト株式会社 半導体装置製造用樹脂シート、半導体装置、半導体装置の製造方法、有機樹脂基板および有機樹脂基板の製造方法
JP2017171925A (ja) * 2017-04-20 2017-09-28 味の素株式会社 樹脂組成物
JP2019077758A (ja) * 2017-10-23 2019-05-23 味の素株式会社 樹脂組成物
JP7052286B2 (ja) 2017-10-23 2022-04-12 味の素株式会社 樹脂組成物
JP2018076505A (ja) * 2017-11-14 2018-05-17 味の素株式会社 粗化硬化体の製造方法、積層体の製造方法、プリント配線板の製造方法及び半導体装置の製造方法
JP2018100421A (ja) * 2018-03-19 2018-06-28 味の素株式会社 樹脂組成物
JP2018150536A (ja) * 2018-04-02 2018-09-27 東洋インキScホールディングス株式会社 粘着剤およびそれを用いた粘着シート
WO2020158851A1 (ja) * 2019-01-30 2020-08-06 日立化成株式会社 封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法
CN113260651A (zh) * 2019-01-30 2021-08-13 昭和电工材料株式会社 密封用树脂组合物、电子零件装置及电子零件装置的制造方法
JP2021008583A (ja) * 2019-07-02 2021-01-28 味の素株式会社 樹脂組成物
JP7283274B2 (ja) 2019-07-02 2023-05-30 味の素株式会社 樹脂組成物

Also Published As

Publication number Publication date
US20140087152A1 (en) 2014-03-27
JPWO2012165012A1 (ja) 2015-02-23
JP5234229B1 (ja) 2013-07-10
US8912279B2 (en) 2014-12-16
TWI445759B (zh) 2014-07-21
TW201247766A (en) 2012-12-01
KR20140007961A (ko) 2014-01-20
KR101433556B1 (ko) 2014-08-22

Similar Documents

Publication Publication Date Title
JP5234229B1 (ja) 樹脂組成物
JP5413522B1 (ja) 樹脂組成物
JP6123169B2 (ja) 樹脂組成物
KR101489175B1 (ko) 수지 조성물
JP6069887B2 (ja) 樹脂組成物
JP6595336B2 (ja) 樹脂組成物
JP6123177B2 (ja) 樹脂組成物
JP2014028880A (ja) 樹脂組成物
JP6119441B2 (ja) 樹脂組成物
JP6534986B2 (ja) 樹脂組成物
JP6007663B2 (ja) 樹脂組成物
JP6489148B2 (ja) 樹脂組成物
JP6398283B2 (ja) 樹脂組成物
JP5918943B2 (ja) 半導体パッケージの製造方法
JP6337917B2 (ja) 樹脂組成物
JP5234231B1 (ja) 樹脂組成物
JP2019116630A (ja) 樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012537257

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137033148

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12793131

Country of ref document: EP

Kind code of ref document: A1