WO2014196501A1 - プリント配線板材料用樹脂組成物、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板 - Google Patents
プリント配線板材料用樹脂組成物、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板 Download PDFInfo
- Publication number
- WO2014196501A1 WO2014196501A1 PCT/JP2014/064624 JP2014064624W WO2014196501A1 WO 2014196501 A1 WO2014196501 A1 WO 2014196501A1 JP 2014064624 W JP2014064624 W JP 2014064624W WO 2014196501 A1 WO2014196501 A1 WO 2014196501A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- resin composition
- compound
- metal foil
- cyanate ester
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/40—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/14—Layered products comprising a layer of metal next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/281—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/38—Layered products comprising a layer of synthetic resin comprising epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/043—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/244—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/249—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3412—Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
- C08K5/3415—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/544—Silicon-containing compounds containing nitrogen
- C08K5/5477—Silicon-containing compounds containing nitrogen containing nitrogen in a heterocyclic ring
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/304—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
- C08J2363/02—Polyglycidyl ethers of bis-phenols
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0373—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
Definitions
- the present invention relates to a resin composition useful as a material for an insulating layer of a printed wiring board, and a prepreg, a resin sheet, a metal foil-clad laminate, and a printed wiring board using such a resin composition.
- Patent Documents 1 and 2 describe a technique using an epoxy resin, a phenol resin, and imidazole silane in order to improve the adhesion and moldability between the inner layer circuit and the insulating layer.
- Patent Document 3 describes a resin composition that uses an epoxy resin, a curing agent, silica, and imidazole silane.
- the resin composition is cured, and then the surface of the roughened cured body is plated with a metal. It is disclosed that when a layer is formed, the cured body and the metal layer exhibit high adhesion.
- JP 2003-318499 A Japanese Patent No. 4016782 Japanese Patent No. 4686750
- Patent Documents 1 and 2 describe the adhesion between the inner layer circuit and the insulating layer, but do not describe the concept of the adhesion between the conductor layer and the insulating layer formed by plating and the high glass transition temperature. It has not been.
- the hardening body of patent document 3 is excellent in the adhesive force of the plating metal layer and hardening body on a hardening body, it is not satisfactory from a viewpoint of the glass transition temperature calculated
- the present invention has been made in view of the above-mentioned problems, and its object is to provide excellent prepreg manufacturability when used as a material for an insulating layer of a printed wiring board, and a conductor formed by plating on the insulating layer and its surface.
- a resin composition having excellent adhesion to a layer, a high glass transition temperature, and excellent heat resistance when absorbing moisture, and a prepreg, a resin sheet, and a metal foil-clad laminate using such a resin composition And providing a printed wiring board.
- the present inventors selected the maleimide compound and the imidazole silane from specific types, and the epoxy compound, cyanic acid When the ratio of the maleimide compound to the total content of the ester compound and the maleimide compound is within a specific range, when used as a material for the insulating layer of a printed wiring board, the insulating layer and the conductor layer formed on the surface thereof are plated. It has been found that a resin composition having excellent adhesion to the glass, high glass transition temperature, excellent prepreg manufacturability, and excellent heat resistance during moisture absorption can be obtained. The present invention is based on this finding.
- a resin composition used as a material for the insulating layer of a printed wiring board comprising an insulating layer and a conductor layer formed by plating on the surface of the insulating layer, Including epoxy compound (A), cyanate ester compound (B), maleimide compound (C), inorganic filler (D), and imidazole silane (E),
- the maleimide compound (C) includes a maleimide compound represented by the following formula (1) and / or a maleimide compound represented by the following formula (2),
- the content of the maleimide compound (C) is 25% by mass or less with respect to 100% by mass of the total content of the epoxy compound (A), the cyanate ester compound (B), and the maleimide compound (C).
- the said imidazole silane (E) contains the compound represented by following formula (3), Resin composition.
- n is a real number in the range of 1 to 30 as an average value.
- R 1 , R 2 , R 3 , and R 4 each independently represent a hydrogen atom or a methyl group, and n is a real number in the range of 1 to 10 as an average value.
- R 5 represents hydrogen or an alkyl group having 1 to 20 carbon atoms
- R 6 represents hydrogen, a vinyl group, or an alkyl group having 1 to 5 carbon atoms
- R 7 and R 8 each independently represents an alkyl group having 1 to 3 carbon atoms
- X represents an acetate ion or a phthalate ion
- Y represents hydrogen or a hydroxyl group
- n represents an integer of 1 to 3.
- the cyanate ester compound (B) includes a naphthol aralkyl cyanate ester compound represented by the following formula (4) and / or a novolac cyanate ester compound represented by the following formula (5): ]
- the content of the epoxy compound (A) is 40 to 75% by mass with respect to 100% by mass of the total content of the epoxy compound (A), the cyanate ester compound (B), and the maleimide compound (C).
- the content of the cyanate ester compound (B) is 20 to 40 with respect to 100 mass% of the total content of the epoxy compound (A), the cyanate ester compound (B), and the maleimide compound (C).
- the content of the inorganic filler (D) is 50 to 300 mass with respect to 100 mass% of the total content of the epoxy compound (A), the cyanate ester compound (B), and the maleimide compound (C).
- the content of the imidazole silane (E) is 0.1 to 3 with respect to 100 mass% of the total content of the epoxy compound (A), the cyanate ester compound (B), and the maleimide compound (C).
- a prepreg comprising: a base material; and the resin composition according to any one of items [1] to [7] attached to the base material.
- a resin sheet comprising: an outer layer made of a metal foil or a metal film; and a layer made of the resin composition according to any one of [1] to [7], which is laminated on the outer layer.
- a metal foil-clad laminate comprising the prepreg according to the preceding item [8] and a metal foil laminated on one side or both sides of the prepreg.
- the metal foil-clad laminate according to [10] wherein the metal foil has a matte surface with a surface roughness Rz of 0.7 ⁇ m to 2.5 ⁇ m.
- the printed wiring board according to [15] which is produced by etching a metal foil of the metal foil-clad laminate, surface-treating and patterning by plating.
- the resin composition of the present invention exhibits at least one, preferably all of the following effects (1) to (4).
- the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
- the present invention is not limited to this, and various modifications can be made without departing from the gist thereof. Is possible.
- the resin composition of the present embodiment is A resin composition used as a material for the insulating layer of a printed wiring board comprising an insulating layer and a conductor layer formed by plating on the surface of the insulating layer, Including epoxy compound (A), cyanate ester compound (B), maleimide compound (C), inorganic filler (D), and imidazole silane (E),
- the maleimide compound (C) includes a compound represented by the following formula (1) and / or a compound represented by the following formula (2),
- the content of the maleimide compound (C) is 25% by mass or less with respect to 100% by mass of the total content of the epoxy compound (A), the cyanate ester compound (B), and the maleimide compound (C).
- the said imidazole silane (E) contains the compound represented by following formula (3).
- n is a real number in the range of 1 to 30 as an average value.
- R 1 , R 2 , R 3 , and R 4 each independently represent a hydrogen atom or a methyl group, and n is a real number in the range of 1 to 10 as an average value.
- R 5 represents hydrogen or an alkyl group having 1 to 20 carbon atoms
- R 6 represents hydrogen, a vinyl group, or an alkyl group having 1 to 5 carbon atoms
- R 7 and R 8 each independently represents an alkyl group having 1 to 3 carbon atoms
- X represents an acetate ion or a phthalate ion
- Y represents hydrogen or a hydroxyl group
- n represents an integer of 1 to 3.
- the resin composition of the present embodiment is used as a material for an insulating layer of a printed wiring board including an insulating layer and a conductor layer formed by plating on the surface of the insulating layer, more specifically. And an insulating layer and a conductive layer formed by selectively plating the surface of the insulating layer by a semi-additive method or a full additive method, and used as a material for an insulating layer of a printed wiring board. Is preferred. Since the insulating layer containing the resin composition of the present embodiment is excellent in adhesion to a conductor layer formed by plating on the surface of the insulating layer, it is particularly suitable for such applications.
- Epoxy compound (A) The epoxy compound (A) contained in the resin composition of this embodiment is an organic compound having at least one epoxy group.
- the number of epoxy groups per molecule of the epoxy compound (A) is 1 or more.
- the number of the epoxy groups is more preferably 2 or more.
- the epoxy compound (A) is not particularly limited and a conventionally known epoxy resin can be used.
- a biphenyl aralkyl type epoxy compound epoxy group-containing biphenyl aralkyl resin
- a naphthalene type epoxy compound an epoxy group having a naphthalene skeleton
- Containing compound: naphthalene bifunctional epoxy compound bisnaphthalene type epoxy compound (epoxy group containing compound having bisnaphthalene skeleton: naphthalene tetrafunctional epoxy compound)
- polyfunctional phenol type epoxy resin naphthylene ether type epoxy resin
- phenol Aralkyl epoxy resin phenol novolac epoxy resin, cresol novolac epoxy resin, xylene novolac epoxy resin, naphthalene skeleton modified novolac epoxy resin, dicyclopenta Ennovolak type epoxy resin, biphenyl novolac type epoxy resin, phenol aralkyl novolak type epoxy resin, nap
- an epoxy compound having a structure obtained by epoxidizing a certain resin or compound is referred to as “ ⁇ epoxy compound” in the name of the resin or compound. May be expressed.
- the epoxy compound (A) from the viewpoint of improving adhesion between the insulating layer and the plated conductor layer, flame retardancy, and the like, a biphenylaralkyl type epoxy compound, a naphthalene type epoxy compound, a bisnaphthalene type epoxy compound, It is preferable that it is 1 type, or 2 or more types selected from the group which consists of an aromatic hydrocarbon formaldehyde type epoxy compound, an anthraquinone type epoxy compound, a naphthol aralkyl type epoxy compound, and a zylock type epoxy compound.
- an aromatic hydrocarbon formaldehyde resin obtained by polymerizing an aromatic hydrocarbon such as benzene, toluene or xylene with formaldehyde is used as a hydroxyl group such as phenol or xylenol.
- the epoxy compound (A) is selected from the group consisting of a biphenyl aralkyl type epoxy resin, a naphthalene type epoxy compound, a bisnaphthalene type epoxy compound, and an anthraquinone type epoxy compound. It is preferable that it is 1 type, or 2 or more types.
- n represents an integer of 1 or more.
- the upper limit value of n is usually 10, preferably 7.
- the content of the epoxy compound (A) is not particularly limited, but from the viewpoint of imparting a high glass transition temperature and good heat resistance to the insulating layer while maintaining the adhesion between the insulating layer and the plated conductor layer.
- the total content of the compound (A), the cyanate ester compound (B), and the maleimide compound (C) is preferably 40 to 75% by mass, more preferably 50 to 70% by mass with respect to 100% by mass. More preferably, it is 60 to 70% by mass.
- the epoxy compound (A) may be used alone or in combination of two or more in any combination and ratio.
- epoxy compound (A) off-the-shelf products having various structures are commercially available, and can be appropriately obtained and used. Moreover, you may manufacture an epoxy compound (A) using a well-known various manufacturing method. Such a production method is not particularly limited, and examples thereof include a method of obtaining or synthesizing a hydroxyl group-containing compound having a desired skeleton, modifying the hydroxyl group by a known method, and epoxidizing (introducing an epoxy group). It is done.
- the cyanate ester compound (B) contained in the resin composition of the present embodiment is a compound having a cyanate group (cyanate ester group).
- cyanate ester group a compound having a cyanate group
- excellent properties such as chemical resistance, high glass transition temperature, and low thermal expansion can be imparted to the resin composition.
- the cyanate ester compound (B) is not particularly limited, and a conventionally known epoxy resin can be used.
- a naphthol aralkyl type cyanate ester compound (cyanate group-containing naphthol aralkyl resin)
- a novolak type cyanate ester compound Selected from the group consisting of cyanate group-containing novolak resins
- aromatic hydrocarbon formaldehyde type cyanate ester compounds cyanate group-containing aromatic hydrocarbon formaldehyde resins
- biphenyl aralkyl type cyanate ester compounds cyanate group-containing biphenyl aralkyl resins. 1 type or more to be mentioned.
- cyanate ester compound (B) having a structure obtained by cyanating (cyanate esterification) a certain resin or compound is referred to as the name of the resin or compound. It may be indicated with the description “-type cyanate ester compound”.
- cyanate ester compound (B) a naphthol aralkyl type cyanide is provided from the viewpoint of providing a resin composition having excellent flame retardancy, high curability, and high glass transition temperature of the obtained cured product.
- One or more selected from the group consisting of acid ester compounds, novolak-type cyanate ester compounds, aromatic hydrocarbon formaldehyde-type cyanate ester compounds, and biphenylaralkyl-type cyanate ester compounds are particularly preferred.
- the aromatic hydrocarbon formaldehyde type cyanate ester compound is not particularly limited.
- an aromatic hydrocarbon formaldehyde resin is obtained by polymerizing an aromatic hydrocarbon such as benzene, toluene, or xylene with formaldehyde,
- the obtained aromatic hydrocarbon formaldehyde resin is modified with a hydroxyl group-containing aromatic hydrocarbon such as phenol or xylenol, and further a method of cyanating the hydroxyl group, a hydroxyl group-containing aromatic hydrocarbon such as phenol or xylenol is polymerized with formaldehyde
- examples thereof include a compound obtained by a method of obtaining a hydroxyl group-containing aromatic hydrocarbon formaldehyde resin and cyanating the hydroxyl group of the obtained hydroxyl group-containing aromatic hydrocarbon formaldehyde resin.
- naphthol aralkyl cyanate ester compounds and / or novolac cyanate ester compounds are preferred.
- a naphthol aralkyl type cyanate ester compound By using a naphthol aralkyl type cyanate ester compound, the curability of the resin composition is further improved, and a cured product having further excellent flame resistance tends to be obtained. Moreover, it exists in the tendency which heat resistance and flame resistance improve more by using a novolak-type cyanate ester compound.
- n shows an integer greater than or equal to 1.
- the upper limit of n is preferably 10, and more preferably 6.
- the novolak type cyanate ester compound is not particularly limited, but for example, a compound represented by the following formula (5) is preferable.
- R ⁇ 13> , R ⁇ 14> , R ⁇ 15 > and R ⁇ 16 > respectively independently represent a hydrogen atom or a methyl group, and a hydrogen atom is preferable among these.
- n shows an integer greater than or equal to 1. The upper limit value of n is preferably 10, more preferably 7.
- the content of the cyanate ester compound (B) in the resin composition is not particularly limited, but from the viewpoint of imparting a high glass transition temperature and good heat resistance to the insulating layer, the epoxy compound (A) and the cyanate ester compound
- the total content of (B) and the maleimide compound (C) is preferably 20 to 40% by mass and more preferably 20 to 35% by mass with respect to 100% by mass.
- these total content satisfy
- the cyanate ester compound (B) may be used alone or in combination of two or more in any combination and ratio. Moreover, it is also possible to use together 1 type, or 2 or more types of well-known cyanate ester compounds other than the above-mentioned cyanate ester compound (B).
- cyanate ester compound (B) off-the-shelf products with various structures are commercially available, and can be obtained and used as appropriate. Moreover, you may manufacture a cyanate ester compound (B) using a well-known various manufacturing method. Such a production method is not particularly limited, and examples thereof include a method of obtaining or synthesizing a hydroxyl group-containing compound having a desired skeleton, and modifying the hydroxyl group by a known method to form cyanate.
- the method for cyanating a hydroxyl group is not particularly limited, and examples thereof include the method described in Ian Hamerton, "Chemistry and Technology of Cyanate Ester Resins," Blackie Academic & Professional.
- the maleimide compound (C) contained in the resin composition of the present embodiment includes a maleimide compound represented by the following formula (1) and / or a maleimide compound represented by the formula (2), and a prepolymer of these maleimide compounds. Polymers, prepolymers of these maleimide compounds and amine compounds, and the like can also be used.
- a maleimide compound represented by the following formula (1) heat resistance can be imparted to the insulating layer while maintaining the adhesion between the insulating layer and the plated conductor layer.
- n is a real number in the range of 1 to 30 as an average value.
- R 1 , R 2 , R 3 , and R 4 each independently represent a hydrogen atom or a methyl group, and n is a real number in the range of 1 to 10 as an average value. .
- the maleimide compound (C) represented by the above formula (1) is ⁇ polytetramethylene oxide-bis (4-maleimidobenzoate) ⁇ , and the maleimide compound represented by the above formula (1) having a different n is represented by 1 It is also possible to use seeds or a mixture of two or more kinds as appropriate.
- the maleimide compound (C) represented by the above formula (1) is obtained by reacting a diamino compound ⁇ polytetramethylene oxide-bis (4-aminobenzoate) ⁇ represented by the following formula (7) with maleic anhydride. Can be obtained.
- the maleimide compound (C) represented by the above formula (1) is In most cases, it has a molecular weight distribution in a predetermined range. (In the above formula (7), n is a real number in the range of 1 to 30 as an average value.)
- n is a real number in the range of 1-30 as an average value, preferably a real number in the range of 3-21, more preferably a real number in the range of 7-18. It is.
- Examples of the product of the maleimide compound (C) represented by the formula (1) include “BMI-650P” and “BMI-1000P” manufactured by Kay Kasei Co., Ltd.
- the content of the maleimide compound (C) is 25% by mass or less with respect to 100% by mass of the total content of the epoxy compound (A), the cyanate ester compound (B), and the maleimide compound (C), preferably It is 0.10 to 25% by mass, and more preferably 3.0 to 20% by mass.
- the content of the maleimide compound (C) is 25% by mass or less, the interaction with each component of the resin composition, particularly the cyanate ester compound (B) and the specific imidazole silane (E) is further improved.
- the glass transition temperature Tg of the insulating layer can be maintained at an extremely high value (for example, 230 ° C. or higher).
- an extremely high value for example, 230 ° C. or higher.
- maleimide compound (C) may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio. When using 2 or more types of maleimide compounds (C) together, it is preferable that these total content satisfy
- the inorganic filler (D) contained in the resin composition of the present embodiment is not particularly limited.
- silica for example, natural silica, fused silica, amorphous silica, Hollow silica, wet silica, synthetic silica, aerosil, etc.
- aluminum compounds eg, boehmite, aluminum hydroxide, alumina, hydrotalcite, aluminum borate, aluminum nitride
- magnesium compounds eg, magnesium carbonate, magnesium oxide, hydroxide
- calcium compounds eg calcium carbonate, calcium hydroxide, calcium sulfate, calcium sulfite, calcium borate etc.
- molybdenum compounds eg molybdenum oxide, zinc molybdate etc.
- talc eg natural talc, baked) Talc, etc.
- the inorganic filler (D) is preferably one or more selected from the group consisting of silica, aluminum hydroxide, alumina, boehmite, magnesium oxide, and magnesium hydroxide.
- the thermal expansion and the flame resistance tend to be further improved.
- the inorganic filler (D) is preferably silica, and particularly preferably fused silica.
- silica include SFP-130MC manufactured by Denki Kagaku Kogyo Co., Ltd., SC2050-MB, SC2500-SQ, and SC4500-SQ manufactured by Admatechs.
- magnesium hydroxide and / or magnesium oxide alone or in combination with other inorganic fillers such as silica.
- the flame resistance tends to be further improved.
- Specific examples of magnesium hydroxide include “Echo Mug Z-10” and “Echo Mug PZ-1” manufactured by Tateho Chemical Co., Ltd., “Magsees N”, “Magsees S” manufactured by Kamishima Chemical Co., Ltd., “ “Magsees EP”, “Magsees EP2-A”, MGZ-1, MGZ-3, MGZ-6R manufactured by Sakai Chemical Industry Co., Ltd.
- magnesium oxide examples include FNM-G manufactured by Tateho Chemical Industry Co., Ltd., SMO, SMO-0.1, SMO-S-0.5 manufactured by Sakai Chemical Industry Co., Ltd., and the like.
- the average particle size of the inorganic filler (D) is not particularly limited, but is preferably 0.01 to 5.0 ⁇ m, more preferably 0.1 to 2.0 ⁇ m from the viewpoint of improving the prepreg productivity. More preferably, the thickness is 0.2 to 1.5 ⁇ m.
- the “average particle diameter” of the inorganic filler (D) means the median diameter of the inorganic filler (D).
- the “median diameter” means that when the particle size distribution of the powder is divided into two on the basis of a certain particle diameter, the volume of the particle having a larger particle diameter, the volume of the particle having a smaller particle diameter, Means a particle size that occupies 50% of the total powder.
- the average particle diameter (median diameter) of the inorganic filler (D) can be measured by a wet laser diffraction / scattering method.
- the content of the inorganic filler (D) in the resin composition is not particularly limited, but from the viewpoint of obtaining high plating peel strength while reducing the thermal expansion of the insulating layer, the epoxy compound (A), the cyanate ester compound ( The total content of B) and the maleimide compound (C) is preferably 50 to 300% by mass, more preferably 60 to 280% by mass, and still more preferably 70 to 250% by mass with respect to 100% by mass. . In addition, when using together 2 or more types of inorganic fillers (D), it is preferable that these total content satisfy
- the imidazole silane (E) contained in the resin composition of this embodiment contains the compound represented by following formula (3).
- the varnish gel time becomes relatively long, and the prepreg productivity is further improved.
- R 5 represents hydrogen or an alkyl group having 1 to 20 carbon atoms
- R 6 represents hydrogen, a vinyl group, or an alkyl group having 1 to 5 carbon atoms
- R 7 and R 8 each independently represents an alkyl group having 1 to 3 carbon atoms
- X represents an acetate ion or a phthalate ion
- Y represents hydrogen or a hydroxyl group
- n represents an integer of 1 to 3.
- R 5 is particularly preferably hydrogen, methyl, ethyl, undecyl, or heptadecyl from the viewpoint of easy synthesis.
- R 6 is preferably hydrogen, methyl, ethyl, or vinyl, particularly from the viewpoint of ease of synthesis.
- R 7 is preferably methyl or ethyl from the viewpoint of easy synthesis, and more preferably an ethyl group from the viewpoint of storage stability.
- R 8 is particularly preferably a methyl group from the viewpoint of ease of synthesis.
- the method for synthesizing the compound represented by the above formula (3) is not particularly limited, and examples thereof include the methods disclosed in JP-A Nos. 05-186479 and 09-296135.
- Specific examples of imidazole silane (E) include “IA-100A”, “IA-100F” and “IM-100F” manufactured by JX Nippon Mining & Metals.
- the imidazole silane (E) is preferably free from the inorganic filler (D) without being subjected to surface treatment on the inorganic filler (D).
- the imidazole silane (E) is directly added to the resin composition, rather than being added by a method of proceeding dehydration condensation such as a dry method, a wet method, or a heating reflux treatment.
- the content of imidazole silane (E) in the resin composition is not particularly limited, but from the viewpoint of prepreg productivity, the total content of epoxy compound (A), cyanate ester compound (B), and maleimide compound (C).
- the amount is preferably 0.05 to 3.0% by mass, more preferably 0.07 to 2.0% by mass, and still more preferably 0.1 to 1.0% by mass with respect to 100% by mass. .
- these total content satisfy
- the resin composition of the present embodiment includes one of the other or Two or more components may be contained.
- the resin composition of the present embodiment may contain a silane coupling agent for the purpose of improving moisture absorption heat resistance.
- the silane coupling agent is not particularly limited as long as it is a silane coupling agent generally used for surface treatment of inorganic substances. Specific examples include aminosilane-based silane coupling agents (for example, ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane), and epoxysilane-based silane coupling agents (for example, ⁇ -Glycidoxypropyltrimethoxysilane, etc.), vinylsilane-based silane coupling agents (eg, ⁇ -methacryloxypropyltrimethoxysilane), cationic silane-based silane coupling agents (eg, N- ⁇ - (N-vinylbenzyl) Aminoethyl) - ⁇ -aminopropyltrimethoxysilane
- the silane coupling agent When the silane coupling agent is used, its content is not particularly limited, but preferably from 0.050 to 5.0 mass with respect to 100 mass% of the inorganic filler (D) from the viewpoint of improving moisture absorption heat resistance. %, More preferably 0.10 to 3.0% by mass. In addition, when using 2 or more types of silane coupling agents together, it is preferable that these total content satisfy
- the resin composition of the present embodiment may contain a wetting and dispersing agent for the purpose of improving the prepreg productivity.
- the wetting and dispersing agent is not particularly limited as long as it is a wetting and dispersing agent generally used in paints and the like. Specific examples include Disperbyk-110, Disperbyk-111, Disperbyk-180, Disperbyk-161, BYK-W996, BYK-W9010, and BYK-W903 manufactured by Big Chemie Japan.
- One of these wetting and dispersing agents may be used alone, or two or more thereof may be used in any combination and ratio.
- the wetting and dispersing agent When the wetting and dispersing agent is used, its content is not particularly limited, but preferably from 0.10 to 5.0% by mass with respect to 100% by mass of the inorganic filler (D) from the viewpoint of improving the prepreg productivity. More preferably, it is 0.50 to 3.0% by mass. In addition, when using 2 or more types of wet dispersing agents together, it is preferable that these total content satisfy
- the resin composition of the present embodiment may contain a curing accelerator for the purpose of adjusting the curing speed.
- a hardening accelerator it is well-known as hardening accelerators, such as an epoxy compound and a cyanate ester compound, and if it is generally used, it will not specifically limit.
- organometallic salts containing metals such as copper, zinc, cobalt, nickel, manganese (for example, zinc octylate, cobalt naphthenate, nickel octylate, manganese octylate, etc.), imidazoles, and derivatives thereof (for example, 2 -Ethyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 2,4,5-triphenylimidazole etc.), tertiary amines (eg triethylamine, tributylamine etc.) and the like.
- These hardening accelerators may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
- the content is not particularly limited, but from the viewpoint of obtaining a high glass transition temperature, the total content of the epoxy compound (A), the cyanate ester compound (B), and the maleimide compound (C)
- the amount is preferably 0.010 to 2.0% by mass, and more preferably 0.10 to 1.0% by mass with respect to the amount of 100% by mass.
- these total content satisfy
- the resin composition of the present embodiment may contain other various polymer compounds and / or flame retardant compounds as long as desired properties are not impaired.
- the polymer compound and the flame retardant compound are not limited as long as they are generally used. Although it does not specifically limit as a high molecular compound, For example, various thermosetting resins and thermoplastic resins, its oligomer, elastomers, etc. are mentioned.
- a flame retardant compound for example, phosphorus containing compounds (for example, phosphate ester, melamine phosphate, phosphorus containing epoxy resin etc.), nitrogen containing compounds (for example, melamine, benzoguanamine etc.), oxazine ring containing compounds, Examples thereof include silicone compounds. These polymer compounds and / or flame retardant compounds may be used alone or in combination of two or more in any combination and ratio.
- the resin composition of the present embodiment may contain various additives for various purposes within a range where the intended characteristics are not impaired.
- various additives for various purposes within a range where the intended characteristics are not impaired.
- additives may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
- the resin composition of the present embodiment includes the above-described components, that is, the epoxy compound (A), the cyanate ester compound (B), the maleimide compound (C), the inorganic filler (D), the imidazole silane (E), and the necessity. Accordingly, it can be produced by mixing other components. In addition, you may mix in the state of the solution which melt
- the solution of the resin composition thus obtained can be suitably used as a varnish for producing the prepreg and resin sheet of this embodiment described later.
- the organic solvent is not limited as long as it can suitably dissolve or disperse each of the above components and does not impair the desired effect of the resin composition of the present embodiment.
- Specific examples include alcohols (methanol, ethanol, propanol etc.), ketones (eg acetone, methyl ethyl ketone, methyl isobutyl ketone etc.), amides (eg dimethylacetamide, dimethylformamide etc.), aromatic hydrocarbons (eg toluene) , Xylene, etc.).
- These organic solvents may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
- the resin composition of the present embodiment When used as a material for an insulating layer of a printed wiring board, it has excellent prepreg manufacturability and excellent adhesion between the insulating layer and the plated conductor layer. Furthermore, an insulating layer having a high glass transition temperature and excellent moisture absorption heat resistance can be obtained. In addition, other suitable effects such as excellent chemical resistance can be exhibited. As described above, the resin composition of the present embodiment has various excellent characteristics and can particularly achieve both excellent adhesion and high heat resistance at a high level. It is extremely useful as a material.
- prepreg, resin sheet, metal foil-clad laminate and printed wiring board are all formed using the resin composition of the present embodiment described above.
- the prepreg of this embodiment is one in which the above resin composition is attached to a base material.
- a base material the well-known base material generally used as a material of various printed wiring boards can be used.
- glass fibers for example, A glass, C glass, E glass, D glass, H glass, L glass, S glass, NE glass, T glass, Q glass, UN glass, and spherical glass
- inorganic fibers for example, inorganic fibers other than glass such as quartz (quartz)
- organic fibers for example, polyamide resin fibers such as polyamide resin fibers, aromatic polyamide resin fibers, wholly aromatic polyamide resin fibers; polyester resin fibers, aromatic polyester resins
- Fibers polyester resin fibers such as wholly aromatic polyester resin fibers; polyimide resin fibers; fluororesin fibers, etc.
- the shape of the substrate is not particularly limited, and examples thereof include woven fabric, non-woven fabric, roving, chopped strand mat, and surfacing mat. Among these, glass fiber is preferable in terms of strength and water absorption, and liquid crystal polyester woven fabric is preferable in terms of electrical characteristics.
- a base material can be used individually by 1 type or in combination of 2 or more types.
- the thickness of the substrate is not limited, but is preferably in the range of 0.01 to 0.3 mm, for example.
- a glass woven fabric that has been surface-treated with a silane coupling agent such as epoxy silane treatment or aminosilane treatment is suitable.
- a treated woven fabric is preferred.
- the method for producing the prepreg by combining the resin composition with the above-mentioned base material is not particularly limited.
- the base material is impregnated with a solution or dispersion (varnish) obtained by dissolving or dispersing the resin composition in an organic solvent.
- a solution or dispersion obtained by dissolving or dispersing the resin composition in an organic solvent.
- it is applied, heated (for example, heated for 1 to 60 minutes in a dryer at 100 to 200 ° C.) and / or dried under reduced pressure, the solvent is removed and semi-cured, and the resin composition is attached to the substrate.
- heated for example, heated for 1 to 60 minutes in a dryer at 100 to 200 ° C.
- the solvent is removed and semi-cured, and the resin composition is attached to the substrate.
- the method etc. are mentioned.
- the amount of the resin composition attached to the substrate is preferably 15 to 95% by mass, more preferably 20 to 90% by mass with respect to 100% by mass of the entire prepreg.
- the prepreg of the present embodiment can be used as a build-up material for a printed wiring board.
- build-up means that a printed wiring board having a multilayer structure is manufactured by laminating a prepreg or a resin sheet and repeating hole forming, wiring formation, etc. for each layer.
- the prepreg constitutes an insulating layer. The printed wiring board will be described later.
- the resin sheet of this embodiment contains the outer layer which consists of metal foil or a metal film, and the layer which consists of the said resin composition laminated
- metal foil or a metal film used as an outer layer the foil or film which consists of metals, such as copper and aluminum, is mentioned.
- a copper foil or a copper film is preferable, and an electrolytic copper foil, a rolled copper foil, a copper alloy film, or the like can be preferably used.
- the metal foil or metal film may be subjected to a known surface treatment such as nickel treatment or cobalt treatment.
- the thickness of the metal foil or metal film can be appropriately adjusted depending on the intended use, but is preferably 5 to 70 ⁇ m.
- a method for producing a resin sheet by forming a layer (resin composition layer) made of a resin composition on the outer layer made of the above metal foil or metal film is not particularly limited.
- the resin composition is made of an organic solvent.
- the solution (varnish) dissolved or dispersed in is coated (coated, impregnated, etc.) on the surface of the above metal foil or film, dried under heating and / or reduced pressure, and the solvent is removed to obtain a resin composition.
- Examples thereof include a method of solidifying and forming a resin composition layer.
- the drying conditions are not particularly limited, but the content of the organic solvent in the resin composition layer is preferably 10 parts by mass or less, more preferably 5.0 parts by mass or less, with respect to 100 parts by mass of the resin composition layer. Let dry.
- the conditions for achieving such drying vary depending on the amount of the organic solvent in the varnish. For example, in the case of a varnish containing 30 to 60 parts by mass of the organic solvent, the drying is performed for about 3 to 10 minutes under a heating condition of 50 to 160 ° C. You can do it.
- the thickness of the resin composition layer in the resin sheet of this embodiment is not limited, but is usually the same as the thickness of the outer layer (usually about 5 to 70 ⁇ m as described above), preferably 10 to 100 ⁇ m.
- the resin sheet of this embodiment can also be used as a build-up material for printed wiring boards.
- the layer made of the resin composition constitutes an insulating layer. The printed wiring board will be described later.
- the metal foil-clad laminate of this embodiment includes the prepreg and a metal foil laminated on one side or both sides of the prepreg.
- One prepreg may be used, or two or more prepregs may be laminated and used.
- the method for producing the metal foil-clad laminate of the present embodiment is not limited.
- one or two or more prepregs are laminated, and the metal foil is disposed on one side or both sides thereof.
- Examples of the method include laminate molding under conditions of 220 ° C., heating time of 100 to 300 minutes, surface pressure of 20 to 40 kgf / cm 2 (about 2.0 MPa to about 3.9 MPa), and the like.
- metal foil such as copper and aluminum
- copper foil is preferable.
- electrolytic copper foil, rolled copper foil, and the like can be suitably used.
- the metal foil may be subjected to a known surface treatment such as nickel treatment or cobalt treatment.
- the thickness of the metal foil can be appropriately adjusted within a range suitable as a material for the printed wiring board, but is preferably 2 to 35 ⁇ m.
- the matte surface of the metal foil is transferred onto the surface of the insulating layer (a layer made of prepreg), and the adhesion with the conductor layer formed by plating on the insulating layer is enhanced by the uneven anchor effect transferred onto the surface of the insulating layer.
- the surface roughness Rz of the mat surface of the metal foil is preferably 0.5 to 2.5 ⁇ m, more preferably 0.6 to 2.3 ⁇ m, and still more preferably 0.7 to 2.0 ⁇ m. It is.
- the “surface roughness Rz” is an index representing the roughness of the matte surface of the metal foil.
- the roughness curve of the measurement target surface is measured with a laser microscope, and five peaks that exceed the average line are arranged in descending order. Then, five valley bottoms that do not reach the average line are extracted in ascending order, and the average value of the absolute values of the extracted peak height and valley bottom height can be calculated.
- the metal foil-clad laminate of this embodiment can also be used as a build-up material for printed wiring boards.
- the prepreg (the base material and the resin composition attached thereto) constitutes the insulating layer. The printed wiring board will be described later.
- the printed wiring board of this embodiment includes an insulating layer and a conductor layer formed on the surface of the insulating layer, and the insulating layer includes the resin composition.
- Such a printed wiring board can be produced using the prepreg, resin sheet, or metal foil-clad laminate of the above-described embodiment as a build-up material. That is, by producing a printed wiring board using these as a build-up material, a prepreg (a base material and a resin composition attached thereto) or a resin composition layer of a resin sheet (a layer made of a resin composition) ) Constitutes an insulating layer containing the resin composition.
- the resin composition layer (insulating layer) of the resin sheet is surface-treated by a conventional method, and the wiring pattern ( By forming the conductor layer, the printed wiring board of this embodiment is obtained.
- the metal foil-clad laminate of the present embodiment is used as a build-up material
- the metal foil of the metal foil-clad laminate is etched by a conventional method, and then a layer (insulating layer) made of prepreg is surface-treated to produce an insulating layer.
- a wiring pattern (conductor layer) is formed on the surface by plating, the printed wiring board of this embodiment can be obtained.
- a metal foil-clad laminate is produced using the prepreg by the method for producing a metal-foil-clad laminate, and then the printed wiring board of this embodiment is produced by the method described above. Obtainable. Or when using as a material of a multilayer printed wiring board etc. as mentioned later, you may use a prepreg as it is as a buildup material.
- the hole processing is performed to form via holes, through holes, and the like.
- the hole processing is performed by using any one of known methods such as NC drill, carbon dioxide laser, UV laser, YAG laser, plasma, or a combination of two or more if necessary.
- the surface treatment for the insulating layer is performed from the viewpoint of improving the adhesion between the insulating layer and the plated conductor layer, removing smear, and the like. Although it does not specifically limit as surface treatment, For example, a roughening process, a silane coupling process, etc. are mentioned.
- the roughening treatment can also serve as a removal of smear generated by the drilling step. In this case, since the roughening state varies depending on the degree of curing of the resin composition, it is preferable to select optimum conditions for the later-described lamination molding conditions in combination with the subsequent roughening treatment conditions and plating conditions.
- the roughening treatment includes a swelling step, a surface roughening and smear dissolving step, and a neutralizing step.
- the swelling step is performed by swelling the surface insulating layer using a swelling agent.
- the swelling agent is not particularly limited as long as the wettability of the surface insulating layer is improved and the surface insulating layer can be swollen to such an extent that the oxidative decomposition is promoted in the next surface roughening and smear dissolving step.
- an alkaline solution, a surfactant solution and the like can be mentioned.
- the surface roughening and smear dissolution process is performed using an oxidizing agent.
- an oxidizing agent for example, a permanganate solution etc. are mentioned, A potassium permanganate aqueous solution, sodium permanganate aqueous solution, etc. are mentioned as a suitable specific example, for example.
- Such oxidant treatment is called wet desmear, but in addition to the wet desmear, other known roughening treatments such as dry desmear by plasma treatment or UV treatment, mechanical polishing by buffing, sandblasting, etc. are carried out in an appropriate combination May be.
- the oxidizing agent used in the previous step is neutralized with a reducing agent.
- a reducing agent for example, an amine-type reducing agent is mentioned.
- acidic reducing agents such as hydroxylamine sulfate aqueous solution, ethylenediaminetetraacetic acid aqueous solution, nitrilotriacetic acid aqueous solution and the like can be mentioned.
- the surface roughness of the insulating layer after the roughening treatment is preferably small.
- the Rz value is preferably 4.0 ⁇ m or less, more preferably 2.0 ⁇ m or less. Since the surface irregularities after the roughening treatment are determined according to the degree of curing of the resin composition, the conditions of the roughening treatment, etc., it is preferable to select the optimum conditions for obtaining the desired surface irregularities.
- the insulating layer containing the resin composition of the present embodiment is extremely suitable because it can ensure adhesion with the plated conductor layer even if the surface roughness is low.
- Examples of methods for forming a wiring pattern (conductor layer) by plating include a semi-additive method, a full additive method, and a subtractive method.
- the semi-additive method is preferable from the viewpoint of forming a fine wiring pattern.
- electrolytic plating is selectively performed using a plating resist (pattern plating), and then the plating resist And a method of forming a wiring pattern by etching an appropriate amount of the whole.
- a method of forming a pattern by a full additive method there is a method of forming a wiring pattern by performing pattern formation in advance using a plating resist on the surface of an insulating layer and selectively attaching electroless plating or the like.
- An example of a pattern forming method using the subtractive method is a method of forming a wiring pattern by forming a conductive layer on the surface of an insulating layer by plating and then selectively removing the conductive layer using an etching resist. It is done.
- the pattern formation by the semi-additive method is performed by combining electroless plating and electrolytic plating. In this case, it is preferable to perform drying after the electroless plating and after the electrolytic plating.
- the drying after electroless is preferably performed at 80 to 180 ° C. for 10 to 120 minutes, for example, and the drying after the electroplating is preferably performed at 130 to 220 ° C. for 10 to 120 minutes, for example.
- the printed wiring board of the present embodiment can be a multilayer printed wiring board.
- a metal foil-clad laminate with metal foil for example, copper or aluminum
- an inner layer circuit is formed on this, and the resulting circuit is blackened
- the inner circuit board is obtained.
- a prepreg or resin sheet is arranged on one or both sides of the inner layer circuit board or metal foil (for example, copper or aluminum) thus obtained, and further metal foil (for example, copper or aluminum) or a release film (polyethylene film).
- Lamination molding uses a technique generally used for lamination molding of ordinary laminates for printed wiring boards, such as a multistage press, a multistage vacuum press, a laminator, a vacuum laminator, an autoclave molding machine, etc., and the temperature is, for example, 100 to 300 C., pressure is, for example, 0.1 to 100 kgf / cm 2 (about 9.8 kPa to about 38 MPa), and heating time is appropriately selected within a range of, for example, 30 seconds to 5 hours. If necessary, post-curing may be performed at a temperature of 150 to 300 ° C. to adjust the degree of curing.
- a reactor equipped with a thermometer, a stirrer, a dropping funnel and a reflux condenser was previously cooled to 0 to 5 ° C. with a saline solution, to which 7.47 g (0.122 mol) of cyanogen chloride and 35% hydrochloric acid 9. 75 g (0.0935 mol), water 76 mL, and methylene chloride 44 mL were charged.
- the ⁇ -naphthol aralkyl resin (SN485, OH group equivalent: 214 g / eq.) Represented by the following formula (4a ′) is stirred with keeping the temperature in the reactor at ⁇ 5 to + 5 ° C. and the pH at 1 or less.
- the average value of n is 3 to 4.
- silica SFP-130MC, manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 0.6 ⁇ m
- SFP-130MC manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 0.6 ⁇ m
- a varnish a solution of a resin composition containing an epoxy compound (A), a cyanate ester compound (B), a maleimide compound (C), an inorganic filler (D), and an imidazole silane (E) was obtained.
- This varnish was further diluted with MEK, impregnated on a 0.1 mm thick E glass woven fabric, and dried by heating at 160 ° C. for 4 minutes to obtain a prepreg having a resin composition content of 50 mass%.
- a prepreg having a resin composition content of 50 mass%.
- laminate molding is performed for 120 minutes at a pressure of 40 kgf / cm 2 (about 3.9 MPa) and a temperature of 220 ° C., and copper-clad laminates with insulating layer thicknesses of 0.4 mm and 0.8 mm (4 and 8 prepregs respectively) Use).
- Example 2 As imidazole silane (E), the amount of imidazole silane (IA-100A) in which X in formula (3) is an acetate ion and Y is a hydroxyl group is 3 parts by mass (non-volatile equivalent: 2.1 parts by mass) A varnish (resin composition solution) was prepared in the same manner as in Example 1 except for changing, and a copper-clad laminate (metal foil-clad laminate) was obtained.
- Example 3 As the maleimide compound (C), instead of the maleimide compound (BMI-2300) represented by the above formula (2), a maleimide compound (BMI-1000P represented by the above formula (1), Kay Kasei Co., Ltd.) A varnish (resin composition solution) was prepared in the same manner as in Example 1 except that 30 parts by mass (non-volatile content: 15 parts by mass) of MEK solution (non-volatile content: 50% by mass) was used. A stretched laminate (metal foil-clad laminate) was obtained.
- Example 4 The amount of the maleimide compound (BMI-2300) represented by the above formula (2) used in the MEK solution (non-volatile content: 50% by mass) was changed to 16 parts by mass (equivalent to 8 parts by mass in terms of non-volatile content).
- As (C) except that 14 parts by mass (7 parts by mass in terms of nonvolatile content) of a MEK solution (nonvolatile content 50% by mass) of the maleimide compound (BMI-1000P) represented by the above formula (1) was further added, A varnish (resin composition solution) was prepared in the same manner as in Example 1 to obtain a copper clad laminate (metal foil clad laminate).
- Example 5 60 parts by mass (in terms of non-volatile content) of the MEK solution (non-volatile content 75% by mass) of the biphenylaralkyl type epoxy compound (NC-3000-FH) represented by the above formula (6), which is the epoxy compound (A) 45 parts by mass), and as a cyanate ester compound (B), a MEK solution of an ⁇ -naphthol aralkyl cyanate ester compound of the above formula (4a) obtained in Synthesis Example 1 (non-volatile content: 50% by mass) Was changed to 40 parts by mass (20 parts by mass in terms of non-volatile content), and a maleimide compound (C), a maleimide compound (BMI-2300) represented by the above formula (2) in a MEK solution (non-volatile content) 50% by mass) is changed to 40 parts by mass (20 parts by mass in terms of nonvolatile content), and imidazole silane (E), X in the above formula (3) is acetate ion
- Example 6 The amount of silica (SC4500-SQ) used as the second inorganic filler (D) is changed to 200 parts by mass, and imidazole silane, X in the above formula (3) is acetate ion, and Y is hydroxyl group Varnish (resin composition solution) in the same manner as in Example 5 except that the amount of imidazolesilane (IA-100A) used was changed to 0.2 parts by mass (non-volatile content 0.14 parts by mass) And a copper clad laminate (metal foil clad laminate) was obtained.
- silica SC4500-SQ
- X in the above formula (3) is acetate ion
- Y is hydroxyl group Varnish (resin composition solution) in the same manner as in Example 5 except that the amount of imidazolesilane (IA-100A) used was changed to 0.2 parts by mass (non-volatile content 0.14 parts by mass)
- a copper clad laminate metal foil clad laminate
- Example 7 The amount of the MEK solution (non-volatile content 50% by mass) of the ⁇ -naphthol aralkyl-type cyanate ester compound of the above formula (4a) obtained in Synthesis Example 1 which is the cyanate ester compound (B) is 80 parts by mass ( The amount of the MEK solution (nonvolatile content 50% by mass) of the maleimide compound (BMI-2300) represented by the above formula (2), which is the maleimide compound (C), is changed to 40 parts by mass in terms of the nonvolatile content.
- the amount was changed to 10 parts by mass (5 parts by mass in terms of non-volatile content), and the second maleimide compound (C), the maleimide compound (BMI-1000P) represented by the above formula (1) was not used.
- Example 8 The amount of the MEK solution (nonvolatile content 75 mass%) of the biphenyl aralkyl type epoxy compound (NC-3000-FH) represented by the above formula (6), which is the epoxy compound (A), is 73.3 parts by mass (nonvolatile). The amount of use of the MEK solution (nonvolatile content 50 mass%) of the naphthalene type epoxy compound (HP4710), which is the second epoxy compound (A), is changed to 30 mass parts (nonvolatile content conversion).
- Example 9 The amount of the MEK solution (non-volatile content 50% by mass) of the ⁇ -naphthol aralkyl-type cyanate ester compound of the above formula (4a) obtained by Synthesis Example 1 which is the cyanate ester compound (B) was 70 parts by mass ( The amount of the MEK solution (non-volatile content 50% by mass) of the maleimide compound (BMI-2300) represented by the above formula (2), which is the maleimide compound (C), is changed to 35 parts by mass in terms of non-volatile content.
- a varnish (resin composition solution) was prepared in the same manner as in Example 7 except that the content was changed to 20 parts by mass (10 parts by mass in terms of nonvolatile content), and a copper-clad laminate (metal foil-clad laminate) was obtained. It was.
- Example 10 Instead of the ⁇ -naphthol aralkyl type cyanate ester compound of the above formula (4a) obtained in Synthesis Example 1 as the cyanate ester compound (B), R 13 to 16 in the above formula (5) are all hydrogen atoms. 70 parts by mass (35 parts by mass in terms of non-volatiles) of MEK solution (non-volatile part 50% by mass) of a certain cyanate ester compound (Primaset PT-60, manufactured by Lonza Japan Co., Ltd.) represented by the following formula (5a) ) A varnish (resin composition solution) was prepared in the same manner as in Example 9 except that it was used to obtain a copper clad laminate (metal foil clad laminate). (N represents an integer of 1 or more.)
- Example 11 As imidazole silane (E), X in the above formula (3) is an acetate ion, and instead of imidazole silane (IA-100A) in which Y is a hydroxyl group, X in the above formula (3) is a phthalate ion, Except for using 0.5 parts by mass (non-volatile content: 0.35 parts by mass) of imidazolesilane (IA-100F, manufactured by JX Nippon Mining & Metals Co., Ltd., non-volatile content: 70%) in which Y is a hydroxyl group. In the same manner as in Example 9, a varnish (resin composition solution) was prepared to obtain a copper-clad laminate (metal foil-clad laminate).
- Example 12 As imidazole silane (E), X in the above formula (3) is an acetate ion, and instead of imidazole silane (IA-100A) in which Y is a hydroxyl group, X in the above formula (3) is a phthalate ion, Except that 0.5 parts by mass (0.4 parts by mass in terms of nonvolatile content) of imidazolesilane (IM-100F, manufactured by JX Nippon Mining & Metals Co., Ltd., nonvolatile content 80%) in which Y is hydrogen was used. A varnish (resin composition solution) was prepared in the same manner as in Example 9 to obtain a copper clad laminate (metal foil clad laminate).
- Example 13 As inorganic filler (D), instead of silica (SFP-130MC) and silica (SC4500-SQ), magnesium hydroxide (MGZ-6R, Sakai Chemical Industry Co., Ltd., average particle size 2.0 ⁇ m) 100 parts by mass A varnish (resin composition solution) was prepared in the same manner as in Example 9 except that was added to the varnish to obtain a copper-clad laminate (metal foil-clad laminate).
- D inorganic filler (D), instead of silica (SFP-130MC) and silica (SC4500-SQ), magnesium hydroxide (MGZ-6R, Sakai Chemical Industry Co., Ltd., average particle size 2.0 ⁇ m) 100 parts by mass
- a varnish (resin composition solution) was prepared in the same manner as in Example 9 except that was added to the varnish to obtain a copper-clad laminate (metal foil-clad laminate).
- Example 14 Implementation was performed except that 100 parts by mass of magnesium oxide (SMO-0.4, manufactured by Sakai Chemical Industry Co., Ltd., average particle size 0.4 ⁇ m) was used as the inorganic filler (D) instead of magnesium hydroxide.
- a varnish (resin composition solution) was prepared in the same manner as in Example 13 to obtain a copper clad laminate (metal foil clad laminate).
- Example 15 Varnish as in Example 13 except that 100 parts by weight of boehmite silica (AOH-60, manufactured by Nabaltec, average particle size 0.9 ⁇ m) was used as the inorganic filler (D) instead of magnesium hydroxide. (Solution of resin composition) was prepared to obtain a copper clad laminate (metal foil clad laminate).
- AOH-60 boehmite silica
- Comparative example 1 As the imidazole silane (E), a varnish (IA) was used in the same manner as in Example 1 except that imidazole silane (IA-100A) in which X in the formula (3) is an acetate ion and Y is a hydroxyl group was not used. Resin composition solution) was prepared to obtain a copper clad laminate (metal foil clad laminate).
- Comparative example 2 As imidazole silane (E), instead of imidazole silane (IA-100A) in which X in formula (3) is an acetate ion and Y is a hydroxyl group, imidazole silane (IS- 1000, JX Nippon Mining & Metals Co., Ltd. (non-volatile content: 90% by mass) was used in the same manner as in Example 1, except that 1 part by mass (non-volatile content: 0.9 parts by mass) was used. The copper-clad laminate (metal foil-clad laminate) was obtained.
- R 17 is hydrogen or an alkyl group having 1 to 20 carbon atoms
- R 18 is hydrogen, a vinyl group or an alkyl group having 1 to 5 carbon atoms
- R 19 and R 20 are carbon atoms. 1 to 3 alkyl groups, n represents an integer of 1 to 3)
- R 21 is hydrogen or an alkyl group having 1 to 20 carbon atoms
- R 22 is hydrogen, a vinyl group or an alkyl group having 1 to 5 carbon atoms
- R 23 and R 24 are alkyl groups having 1 to 3 carbon atoms
- n represents an integer of 1 to 3.
- Comparative example 4 As the maleimide compound (C), instead of the maleimide compound (BMI-2300) represented by the above formula (2), bis (3-ethyl-5-methyl-4maleimidophenyl) methane (BMI-70, Kay Eye) A varnish (resin composition solution) was prepared in the same manner as in Example 1 except that 30 parts by mass (15 parts by mass in terms of nonvolatile content) of MEK solution (produced by Kasei Co., Ltd.) was used. The copper clad laminate (metal foil clad laminate) was obtained.
- Comparative example 5 Instead of the ⁇ -naphthol aralkyl cyanate ester compound of the above formula (4a) obtained in Synthesis Example 1, naphthol aralkyl type phenol resin (SN495V2 (SN-OH), phenol equivalent 236 g / eq., Nippon Steel Chemical Co., Ltd.) A varnish (resin composition solution) was prepared in the same manner as in Example 1 except that 70 parts by mass (non-volatile content: 35 parts by mass) of MEK solution (manufactured by Co., Ltd.) was used. A copper clad laminate (metal foil clad laminate) was obtained.
- Comparative Example 6 The amount of the epoxy compound (A) used in the MEK solution (nonvolatile content: 75% by mass) of the biphenylaralkyl epoxy compound (NC-3000-FH) represented by the above formula (6) is 35.7 parts by mass (nonvolatile) The amount of the MEK solution (nonvolatile content 50 mass%) of the naphthalene type epoxy compound (HP4710), which is the second epoxy compound (A), is changed to 10 mass parts (nonvolatile content). The amount of use of the MEK solution (non-volatile content 50 mass%) of the maleimide compound (BMI-2300) represented by the above formula (2), which is the maleimide compound (C), is changed to 70 mass%.
- a varnish (resin composition solution) was prepared in the same manner as in Example 9 except that the amount was changed to 35 parts by weight (35 parts by weight in terms of nonvolatile content) to obtain a copper-clad laminate (metal foil-clad laminate).
- Examples 1 to 15 having an insulating layer formed using the resin composition of the present invention have higher plating peel strength and glass transition temperature and moisture absorption heat resistance than Comparative Examples 1 to 6. It turns out that it is excellent.
- Comparative Examples 2 and 3 the amount of change in varnish gel time was small, and it was difficult to stably produce a prepreg.
- the resin composition of the present invention when used as a material for an insulating layer of a printed wiring board, it has excellent prepreg manufacturability, excellent adhesion between the insulating layer and the plated conductor layer, and is also heat resistant. Since it exhibits various effects such as superiority, it is extremely useful as a material for an insulating layer of a printed wiring board.
Landscapes
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Laminated Bodies (AREA)
Abstract
Description
〔1〕
絶縁層と、該絶縁層の表面にめっきにより形成される導体層と、を含むプリント配線板の前記絶縁層の材料として用いられる、樹脂組成物であって、
エポキシ化合物(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)、無機充填材(D)、及びイミダゾールシラン(E)を含み、
前記マレイミド化合物(C)が、下記式(1)で表されるマレイミド化合物及び/又は下記式(2)で表されるマレイミド化合物を含み、
前記マレイミド化合物(C)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、25質量%以下であり、
且つ、前記イミダゾールシラン(E)が、下記式(3)で表される化合物を含む、
樹脂組成物。
〔2〕
前記シアン酸エステル化合物(B)が、下記式(4)で表されるナフトールアラルキル型シアン酸エステル化合物及び/又は下記式(5)で表されるノボラック型シアン酸エステル化合物を含む、前項〔1〕に記載の樹脂組成物。
〔3〕
前記無機充填材(D)が、シリカ、水酸化アルミニウム、アルミナ、ベーマイト、酸化マグネシウム、及び水酸化マグネシウムからなる群から選択される少なくとも1種以上を含む、前項〔1〕又は〔2〕に記載の樹脂組成物。
〔4〕
前記エポキシ化合物(A)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、40~75質量%である、前項〔1〕~〔3〕のいずれか一項に記載の樹脂組成物。
〔5〕
前記シアン酸エステル化合物(B)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、20~40質量%である、前項〔1〕~〔4〕のいずれか一項に記載の樹脂組成物。
〔6〕
前記無機充填材(D)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、50~300質量%である、前項〔1〕~〔5〕のいずれか一項に記載の樹脂組成物。
〔7〕
前記イミダゾールシラン(E)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、0.1~3質量%である、前項〔1〕~〔6〕のいずれか一項に記載の樹脂組成物。
〔8〕
基材と、該基材に添着された、前項〔1〕~〔7〕のいずれか一項に記載の樹脂組成物と、を含む、プリプレグ。
〔9〕
金属箔又は金属フィルムからなる外層と、該外層上に積層された、前項〔1〕~〔7〕のいずれか1項に記載の樹脂組成物からなる層と、を含む、樹脂シート。
〔10〕
前項〔8〕に記載のプリプレグと、該プリプレグの片面又は両面に積層された金属箔と、を含む、金属箔張積層板。
〔11〕
前記金属箔が、表面粗さRz0.7μm~2.5μmのマット面を有する、前項〔10〕に記載の金属箔張積層板。
〔12〕
前項〔8〕に記載のプリプレグをビルドアップ材料として用いて作製された、プリント配線板。
〔13〕
前項〔9〕に記載の樹脂シートをビルドアップ材料として用いて作製された、プリント配線板。
〔14〕
前記樹脂シートを表面処理してめっきによりパターン形成することにより作製された、前項〔13〕に記載のプリント配線板。
〔15〕
前項〔10〕に記載の金属箔張積層板をビルドアップ材料として用いて作製された、プリント配線板。
〔16〕
前記金属箔張積層板の金属箔をエッチングし、表面処理してめっきによりパターン形成することにより作製された、前項〔15〕に記載のプリント配線板。
〔17〕
絶縁層と、該絶縁層の表面に形成された導体層と、を含み、
前記絶縁層が、前項〔1〕~〔7〕のいずれか一項に記載の樹脂組成物を含む、プリント配線板。
(1)プリプレグ製造性に優れる。
(2)絶縁層とその表面にめっき形成される導体層との密着性に優れる。
(3)ガラス転移温度が高い。
(4)吸湿時の耐熱性に優れる。
本実施形態の樹脂組成物は、
絶縁層と、該絶縁層の表面にめっきにより形成される導体層と、を含むプリント配線板の前記絶縁層の材料として用いられる、樹脂組成物であって、
エポキシ化合物(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)、無機充填材(D)、及びイミダゾールシラン(E)を含み、
前記マレイミド化合物(C)が、下記式(1)で表される化合物及び/又は下記式(2)で表される化合物を含み、
前記マレイミド化合物(C)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、25質量%以下であり、
且つ、前記イミダゾールシラン(E)が、下記式(3)で表される化合物を含む。
本実施形態の樹脂組成物に含まれるエポキシ化合物(A)は、少なくとも1個のエポキシ基を有する有機化合物である。エポキシ化合物(A)の1分子当たりのエポキシ基の数は、1以上である。該エポキシ基の数は2以上であることがより好ましい。
本実施形態の樹脂組成物に含まれるシアン酸エステル化合物(B)は、シアナト基(シアン酸エステル基)を有する化合物である。シアン酸エステル化合物(B)を用いることにより、樹脂組成物に対し、耐薬品性、高ガラス転移温度、低熱膨張性等の優れた特性を付与することができる。
本実施形態の樹脂組成物に含まれるマレイミド化合物(C)は、下記式(1)で表されるマレイミド化合物及び/又は式(2)で表されるマレイミド化合物を含み、これらのマレイミド化合物のプレポリマー、これらのマレイミド化合物とアミン化合物とのプレポリマー等を用いることもできる。下記式(1)で表されるマレイミド化合物を用いることにより、絶縁層とめっき導体層との密着性を維持しながら、絶縁層に耐熱性を付与することができる。また、下記式(2)で表されるマレイミド化合物を用いることにより、絶縁層とめっき導体層との密着性を維持しながら、高いガラス転移温度を付与することができる。
本実施形態の樹脂組成物に含まれる無機充填材(D)としては、特に限定されないが、例えば、カオリン、焼成カオリン、焼成クレー、未焼成クレー、シリカ(例えば天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ、湿式シリカ、合成シリカ、アエロジル等)、アルミニウム化合物(例えばベーマイト、水酸化アルミニウム、アルミナ、ハイドロタルサイト、ホウ酸アルミニウム、窒化アルミニウム等)、マグネシウム化合物(例えば炭酸マグネシウム、酸化マグネシウム、水酸化マグネシウム等)、カルシウム化合物(例えば炭酸カルシウム、水酸化カルシウム、硫酸カルシウム、亜硫酸カルシウム、ホウ酸カルシウム等)、モリブデン化合物(例えば酸化モリブデン、モリブデン酸亜鉛等)、タルク(例えば天然タルク、焼成タルク等)、マイカ(雲母)、ガラス(例えばAガラス、NEガラス、Cガラス、Lガラス、Sガラス、MガラスG20、Eガラス、Tガラス、Dガラス、Sガラス、Qガラス等の、短繊維状ガラス、球状ガラス、微粉末ガラス、中空ガラス等)、酸化チタン、酸化亜鉛、酸化ジルコニウム、硫酸バリウム、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸ナトリウム、窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化炭素、チタン酸ストロンチウム、チタン酸バリウム、錫酸亜鉛等の錫酸塩、ゴム系充填材(例えば、スチレン型、ブタジエン型、アクリル型などのゴムパウダー、コアシェル型のゴムパウダー、シリコーン複合パウダー、シリコーンレジンパウダー、シリコーンゴムパウダー等)などが挙げられる。本実施形態の樹脂組成物において、無機充填材(D)は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
本実施形態の樹脂組成物に含まれるイミダゾールシラン(E)は、下記式(3)で表される化合物を含む。下記式(3)で表されるように、酢酸イオン又はフタル酸イオンと塩を形成しているイミダゾールシランを用いることにより、ワニスゲルタイムが比較的長くなり、プリプレグの製造性がより向上する。
本実施形態の樹脂組成物は、エポキシ化合物(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)、無機充填材(D)、及びイミダゾールシラン(E)の他に、その他の1又は2種以上の成分を含有していてもよい。
本実施形態の樹脂組成物は、上述の成分、即ちエポキシ化合物(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)、無機充填材(D)、イミダゾールシラン(E)、及び必要に応じてその他の成分を混合することにより製造することができる。なお、必要に応じて、上記各成分を有機溶剤に溶解させた溶液の状態で混合してもよい。このようにして得られる樹脂組成物の溶液は、後述する本実施形態のプリプレグ及び樹脂シートを作製する際のワニスとして、好適に使用することができる。
本実施形態のプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板は、何れも上述した本実施形態の樹脂組成物を用いて形成される。
本実施形態のプリプレグは、上記樹脂組成物が、基材に添着されたものである。基材としては、各種プリント配線板の材料として一般に用いられる公知の基材を使用することができる。具体的には、ガラス繊維(例えばAガラス、Cガラス、Eガラス、Dガラス、Hガラス、Lガラス、Sガラス、NEガラス、Tガラス、Qガラス、UNガラス、及び球状ガラス等)、無機繊維(例えば石英(クオーツ)等のガラス以外の無機繊維)、有機繊維(例えばポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維等のポリアミド系樹脂繊維;ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維等のポリエステル系樹脂繊維;ポリイミド樹脂繊維;フッ素樹脂繊維等)が挙げられ、目的とする用途や性能により適宜選択できる。
本実施形態の樹脂シートは、金属箔又は金属フィルムからなる外層と、該外層上に積層された、上記樹脂組成物からなる層と、を含む。
本実施形態の金属箔張積層板は、上記プリプレグと、該プリプレグの片面又は両面に積層された金属箔と、を含む。プリプレグは一枚でもよく、二枚以上を積層して用いてもよい。
本実施形態のプリント配線板は、絶縁層と、前記絶縁層の表面に形成された導体層と、を含み、前記絶縁層が上記樹脂組成物を含むものである。
穴加工処理は、ビアホール、スルーホール等の形成のために実施される。穴加工処理は、NCドリル、炭酸ガスレーザー、UVレーザー、YAGレーザー、プラズマ等の公知の方法のうち何れか1種を用い、或いは必要により2種以上を組み合わせて行う。
膨潤工程は、膨潤剤を用いて表面絶縁層を膨潤させることにより行う。膨潤剤としては、表面絶縁層の濡れ性が向上し、次の表面粗化及びスミア溶解工程において酸化分解が促進される程度にまで表面絶縁層を膨潤させることができるものであれば特に限定されないが、例えば、アルカリ溶液、界面活性剤溶液等が挙げられる。
・実施例1:
エポキシ化合物(A)として、上記式(6)で表されるビフェニルアラルキル型エポキシ化合物(NC-3000-FH、エポキシ当量:320g/eq.、日本化薬(株)製)のメチルエチルケトン溶液(以下、「MEK溶液」ともいう。)(不揮発分75質量%)53.3質量部(不揮発分換算で40質量部)、更に第2のエポキシ化合物(A)として、ナフタレン型エポキシ化合物(HP4710、エポキシ当量240g/eq.、DIC(株)製)のMEK溶液(不揮発分50質量%)20質量部(不揮発分換算で10質量部)、シアン酸エステル化合物(B)として、合成例1により得られた上記式(4a)のα-ナフトールアラルキル型シアン酸エステル化合物(シアネート当量:261g/eq.)のメチルエチルケトン溶液(不揮発分50質量%)70質量部(不揮発分換算で35質量部)、マレイミド化合物(C)として、上記式(2)で表されるマレイミド化合物(BMI-2300、大和化成(株)製)のMEK溶液(不揮発分50質量%)30質量部(不揮発分換算15質量部)、イミダゾールシラン(E)として、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA-100A(不揮発分70質量%)、JX日鉱日石金属(株)製)を0.5質量部(不揮発分換算0.35質量部)、硬化促進剤として2,4,5-トリフェニルイミダゾール(和光純薬製)のプロピレングリコールモノメチルエーテルアセテート溶液(不揮発分1質量%)50質量部(不揮発分換算で0.5質量部)及びオクチル酸マンガンのMEK溶液(不揮発分1質量%)5質量部(不揮発分換算で0.05質量部)をMEKに溶解又は分散させた。さらに、無機充填材(D)として、シリカ(SFP-130MC、電気化学工業(株)製、平均粒子径0.6μm)100質量部を添加して、高速攪拌装置を用いて30分間攪拌して、ワニス(エポキシ化合物(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)、無機充填材(D)、及びイミダゾールシラン(E)を含む樹脂組成物の溶液)を得た。
イミダゾールシラン(E)として、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA-100A)の使用量を3質量部(不揮発分換算2.1質量部)に変更した以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
マレイミド化合物(C)として、上記式(2)で表されるマレイミド化合物(BMI-2300)の代わりに、上記式(1)で表されるマレイミド化合物(BMI-1000P、ケイ・アイ化成(株)製)のMEK溶液(不揮発分50質量%)30質量部(不揮発分換算15質量部)を使用したこと以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
上記式(2)で表されるマレイミド化合物(BMI-2300)のMEK溶液(不揮発分50質量%)の使用量を16質量部(不揮発分換算8質量部)に変更し、第2のマレイミド化合物(C)として、上記式(1)で表されるマレイミド化合物(BMI-1000P)のMEK溶液(不揮発分50質量%)14質量部(不揮発分換算7質量部)をさらに加えたこと以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
エポキシ化合物(A)である、上記式(6)で表されるビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分75質量%)の使用量を60質量部(不揮発分換算で45質量部)に変更し、シアン酸エステル化合物(B)として、合成例1により得られた上記式(4a)のα-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を40質量部(不揮発分換算で20質量部)に変更し、マレイミド化合物(C)である、上記式(2)で表されるマレイミド化合物(BMI-2300)のMEK溶液(不揮発分50質量%)の使用量を40質量部(不揮発分換算20質量部)に変更し、イミダゾールシラン(E)である、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA―100A)の使用量を1質量部(不揮発分換算0.7質量部)に変更し、第2のマレイミド化合物(C)として、上記式(1)で表されるマレイミド化合物(BMI-1000P)のMEK溶液(不揮発分50質量%)10質量部(不揮発分換算5質量部)をさらに加え、第2の無機充填材(D)として、シリカ(SC4500-SQ、アドマテックス(株)製、平均粒子径1.5μm)50質量部をさらに加えたこと以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
第2の無機充填材(D)である、シリカ(SC4500-SQ)の使用量を200質量部に変更し、イミダゾールシランである、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA―100A)の使用量を0.2質量部(不揮発分換算0.14質量部)に変更したこと以外は、実施例5と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
シアン酸エステル化合物(B)である、合成例1により得られた上記式(4a)のα-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を80質量部(不揮発分換算で40質量部)に変更し、マレイミド化合物(C)である、上記式(2)で表されるマレイミド化合物(BMI-2300)のMEK溶液(不揮発分50質量%)の使用量を10質量部(不揮発分換算5質量部)に変更し、第2のマレイミド化合物(C)である、上記式(1)で表されるマレイミド化合物(BMI-1000P)を使用せず、イミダゾールシラン(E)である上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA―100A)の使用量を0.5質量部(不揮発分換算0.35質量部)に変更したこと以外は、実施例5と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
エポキシ化合物(A)である、上記式(6)で表されるビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分75質量%)の使用量を73.3質量部(不揮発分換算で55質量部)に変更し、第2のエポキシ化合物(A)である、ナフタレン型エポキシ化合物(HP4710)のMEK溶液(不揮発分50質量%)の使用量を30質量部(不揮発分換算で15質量部)に変更し、シアン酸エステル化合物(B)である、合成例1により得られた上記式(4a)のα-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を40質量部(不揮発分換算で20質量部)に変更し、マレイミド化合物(C)である、上記式(2)で表されるマレイミド化合物(BMI-2300)のMEK溶液(不揮発分50質量%)を20質量部(不揮発分換算10質量部)に変更したこと以外は、実施例7と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
シアン酸エステル化合物(B)である、合成例1により得られた上記式(4a)のα-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を70質量部(不揮発分換算で35質量部)に変更し、マレイミド化合物(C)である、上記式(2)で表されるマレイミド化合物(BMI-2300)のMEK溶液(不揮発分50質量%)の使用量を20質量部(不揮発分換算10質量部)に変更したこと以外は、実施例7と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
シアン酸エステル化合物(B)として、合成例1により得られた上記式(4a)のα-ナフトールアラルキル型シアン酸エステル化合物の代わりに、上記式(5)におけるR13~16がすべて水素原子である下記式(5a)で表されるシアン酸エステル化合物(プリマセット PT-60,ロンザジャパン株式会社製、)のMEK溶液(不揮発分50質量%)を70質量部(不揮発分換算で35質量部)使用したこと以外は、実施例9と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
イミダゾールシラン(E)として、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA-100A)の代わりに、上記式(3)におけるXがフタル酸イオンであり、Yが水酸基であるイミダゾールシラン(IA―100F、JX日鉱日石金属(株)製、不揮発分70%)を0.5質量部(不揮発分換算0.35質量部)使用した以外は、実施例9と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
イミダゾールシラン(E)として、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA-100A)の代わりに、上記式(3)におけるXがフタル酸イオンであり、Yが水素であるイミダゾールシラン(IM―100F、JX日鉱日石金属(株)製、不揮発分80%)を0.5質量部(不揮発分換算0.4質量部)使用したこと以外は、実施例9と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
無機充填材(D)として、シリカ(SFP-130MC)及びシリカ(SC4500-SQ)の代わりに、水酸化マグネシウム(MGZ-6R、堺化学工業(株)、平均粒子径2.0μm)100質量部をワニスに配合したこと以外は、実施例9と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
無機充填材(D)として、水酸化マグネシウムの代わりに、酸化マグネシウム(SMO-0.4、堺化学工業(株)製、平均粒子径0.4μm)100質量部を用いたこと以外は、実施例13と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
無機充填材(D)として、水酸化マグネシウムの代わりに、ベーマイトシリカ(AOH-60、Nabaltec製、平均粒子径0.9μm)100質量部を用いたこと以外は、実施例13と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
イミダゾールシラン(E)として、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA-100A)を使用しなかったこと以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
イミダゾールシラン(E)として、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA-100A)の代わりに、下記式(8)で表されるイミダゾールシラン(IS-1000,JX日鉱日石金属(株)製、不揮発分90質量%)を1質量部(不揮発分換算0.9質量部)使用したこと以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
イミダゾールシラン(E)として、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA-100A)の代わりに、下記式(9)で表されるイミダゾールシラン(IM-1000,JX日鉱日石金属(株)製、不揮発分95質量%)を1質量部(不揮発分換算0.95質量部)使用したこと以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
マレイミド化合物(C)として、上記式(2)で表されるマレイミド化合物(BMI-2300)の代わりに、ビス(3-エチル-5-メチル-4マレイミドフェニル)メタン(BMI-70,ケイ・アイ化成(株)製)のMEK溶液(不揮発分50質量%)を30質量部(不揮発分換算15質量部)使用したこと以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
合成例1により得られた上記式(4a)のα-ナフトールアラルキル型シアン酸エステル化合物の代わりに、ナフトールアラルキル型フェノール樹脂(SN495V2(SN-OH)、フェノール当量236g/eq.、新日鐵化学(株)製)のMEK溶液(不揮発分50質量%)70質量部(不揮発分換算35質量部)を使用したこと以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
エポキシ化合物(A)である、上記式(6)で表されるビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分75質量%)の使用量を35.7質量部(不揮発分換算で25質量部)に変更し、更に第2のエポキシ化合物(A)である、ナフタレン型エポキシ化合物(HP4710)のMEK溶液(不揮発分50質量%)の使用量を10質量部(不揮発分換算で5質量部)に変更し、マレイミド化合物(C)である、上記式(2)で表されるマレイミド化合物(BMI-2300)のMEK溶液(不揮発分50質量%)の使用量を70質量部(不揮発分換算35質量部)に変更したこと以外は、実施例9と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・銅張積層板の湿式粗化処理と導体層めっき:
実施例1~15及び比較例1~6で得られた絶縁層厚さ0.4mm及び0.8mmの銅張積層板(それぞれプレプリグ4枚及び8枚使用)の表層銅箔をエッチングにより除去し、上村工業製の無電解銅めっきプロセス(使用薬液名:MCD-PL、MDP-2、MAT-SP、MAB-4-C、MEL-3-APEA ver.2)にて、約0.5μmの無電解銅めっきを施し、130℃で1時間の乾燥を行った。続いて、電解銅めっきをめっき銅の厚みが18μmになるように施し、180℃で1時間の乾燥を行った。こうして、厚さ0.4mm及び0.8mmの絶縁層上に厚さ18μmの導体層(めっき銅)が形成された回路配線板サンプルを作製し、以下の評価に供した。
(1)ワニスゲルタイム変化率
170℃のホットプレート上にワニスを載せ硬化するまでの時間(ワニスゲルタイム)を測定した。ワニス作製当日のワニスゲルタイムと、30℃で2日間保管した時のワニスゲルタイムとを測定し、下数式(1)によりワニスゲルタイム変化量を求め、下記評価基準で評価した。結果を表1~3に示す。
数式(1):ワニスゲルタイム変化量(%)=ワニス作製2日後のワニスゲルタイム/ワニス作製当日のワニスゲルタイム×100
○:ワニスゲルタイム変化量が75%~100%である。
△:ワニスゲルタイム変化量が50%~74%である。
×:ワニスゲルタイム変化量が49%以下である。
上記手順により作製された絶縁層厚さ0.4mmの回路配線板サンプルを用い、めっき銅ピール強度(接着力)をJISC6481に準じて3回測定し、めっき銅ピール強度の平均値を求めた。電解銅めっき後の乾燥で膨れたサンプルに関しては、膨れていない部分を用いて評価を行った。結果を表1~3に示す。
上記手順により作製された絶縁層厚さ0.8mmの回路配線板サンプルを用い、その表層銅箔をエッチングにより除去し、熱機械分析装置(TAインスツルメント製Q800)で40℃から300℃まで毎分10℃で昇温し、ガラス転移温度を測定した。結果を表1~3に示す。
上記手順により作製された絶縁層厚さ0.4mmの回路配線板サンプルを用い、50mm×50mm角にカットした後、片面の半分以外のめっき銅をエッチングにより除去したサンプルを作製した。そのサンプルを、プレッシャークッカー試験機(平山製作所製PC-3型)で、121℃、2気圧で1、3、5時間処理した後、260℃の半田槽に60秒間浸漬させて、外観変化の異常の有無を目視にて観察した。3枚試験を行い、一枚ごとに、異常が無いものを「良」、膨れが発生したものを「否」と表記した。結果を表1~3に示す。なお、表中「PCT-1H」、「PCT-3H」及び「PCT-5H」とは、それぞれプレッシャークッカー試験機による1、3、5時間処理後に得られた結果を示す。
Claims (17)
- 絶縁層と、該絶縁層の表面にめっきにより形成される導体層と、を含むプリント配線板の前記絶縁層の材料として用いられる、樹脂組成物であって、
エポキシ化合物(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)、無機充填材(D)、及びイミダゾールシラン(E)を含み、
前記マレイミド化合物(C)が、下記式(1)で表されるマレイミド化合物及び/又は下記式(2)で表されるマレイミド化合物を含み、
前記マレイミド化合物(C)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、25質量%以下であり、
且つ、前記イミダゾールシラン(E)が、下記式(3)で表される化合物を含む、
樹脂組成物。
- 前記無機充填材(D)が、シリカ、水酸化アルミニウム、アルミナ、ベーマイト、酸化マグネシウム、及び水酸化マグネシウムからなる群から選択される少なくとも1種以上を含む、請求項1又は2に記載の樹脂組成物。
- 前記エポキシ化合物(A)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、40~75質量%である、請求項1~3のいずれか一項に記載の樹脂組成物。
- 前記シアン酸エステル化合物(B)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、20~40質量%である、請求項1~4のいずれか一項に記載の樹脂組成物。
- 前記無機充填材(D)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、50~300質量%である、請求項1~5のいずれか一項に記載の樹脂組成物。
- 前記イミダゾールシラン(E)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、0.10~3.0質量%である、請求項1~6のいずれか一項に記載の樹脂組成物。
- 基材と、該基材に添着された、請求項1~7のいずれか一項に記載の樹脂組成物と、を含む、プリプレグ。
- 金属箔又は金属フィルムからなる外層と、該外層上に積層された、請求項1~7のいずれか1項に記載の樹脂組成物からなる層と、を含む、樹脂シート。
- 請求項8に記載のプリプレグと、該プリプレグの片面又は両面に積層された金属箔と、を含む、金属箔張積層板。
- 前記金属箔が、表面粗さRz0.70μm~2.5μmのマット面を有する、請求項10に記載の金属箔張積層板。
- 請求項8に記載のプリプレグをビルドアップ材料として用いて作製された、プリント配線板。
- 請求項9に記載の樹脂シートをビルドアップ材料として用いて作製された、プリント配線板。
- 前記樹脂シートの前記樹脂組成物からなる層を表面処理して、前記樹脂組成物からなる層にめっきによりパターン形成することにより作製された、請求項13に記載のプリント配線板。
- 請求項10に記載の金属箔張積層板をビルドアップ材料として用いて作製された、プリント配線板。
- 前記金属箔張積層板の金属箔をエッチングし、前記金属箔張積層板の前記プリプレグからなる層を表面処理して、前記プリプレグからなる層にめっきによりパターン形成することにより作製された、請求項15に記載のプリント配線板。
- 絶縁層と、該絶縁層の表面に形成された導体層と、を含み、
前記絶縁層が、請求項1~7のいずれか一項に記載の樹脂組成物を含む、プリント配線板。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG11201509490PA SG11201509490PA (en) | 2013-06-03 | 2014-06-02 | Resin composition for printed wiring board material and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the same |
EP14807917.1A EP3006503B1 (en) | 2013-06-03 | 2014-06-02 | Resin composition for printed wiring board material and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the same |
JP2015521439A JP6481610B2 (ja) | 2013-06-03 | 2014-06-02 | プリント配線板材料用樹脂組成物、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板 |
US14/890,714 US9905328B2 (en) | 2013-06-03 | 2014-06-02 | Resin composition for printed wiring board material and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the same |
KR1020157034758A KR102147632B1 (ko) | 2013-06-03 | 2014-06-02 | 프린트 배선판 재료용 수지 조성물, 그리고 그것을 사용한 프리프레그, 수지 시트, 금속박 피복 적층판, 및 프린트 배선판 |
CN201480031840.2A CN105264013B (zh) | 2013-06-03 | 2014-06-02 | 印刷电路板材料用树脂组合物、以及使用其的预浸料、树脂片、覆金属箔层叠板和印刷电路板 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-116901 | 2013-06-03 | ||
JP2013116901 | 2013-06-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014196501A1 true WO2014196501A1 (ja) | 2014-12-11 |
Family
ID=52008143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/064624 WO2014196501A1 (ja) | 2013-06-03 | 2014-06-02 | プリント配線板材料用樹脂組成物、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9905328B2 (ja) |
EP (1) | EP3006503B1 (ja) |
JP (1) | JP6481610B2 (ja) |
KR (1) | KR102147632B1 (ja) |
CN (1) | CN105264013B (ja) |
SG (1) | SG11201509490PA (ja) |
TW (1) | TWI631009B (ja) |
WO (1) | WO2014196501A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016010964A (ja) * | 2014-06-03 | 2016-01-21 | 三菱瓦斯化学株式会社 | 樹脂シート及びプリント配線板 |
WO2016158066A1 (ja) * | 2015-03-31 | 2016-10-06 | 三菱瓦斯化学株式会社 | シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物 |
JP2017071738A (ja) * | 2015-10-09 | 2017-04-13 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 |
JP2017088745A (ja) * | 2015-11-11 | 2017-05-25 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 |
WO2018003314A1 (ja) * | 2016-06-29 | 2018-01-04 | 三菱瓦斯化学株式会社 | 樹脂組成物、樹脂シート、多層プリント配線板及び半導体装置 |
KR20180027418A (ko) * | 2015-07-06 | 2018-03-14 | 미츠비시 가스 가가쿠 가부시키가이샤 | 수지 조성물, 프리프레그, 레진 시트, 금속박 피복 적층판 및 프린트 배선판 |
US20190078213A1 (en) * | 2016-01-27 | 2019-03-14 | Advanced Technologies, Inc. | Copper or copper alloy article comprising surface-modified polyester-based resin and manufacturing method |
JP2019199588A (ja) * | 2018-05-16 | 2019-11-21 | 山栄化学株式会社 | 溶解性・非溶解性粒子含有硬化性樹脂組成物 |
US10941323B2 (en) | 2017-08-02 | 2021-03-09 | Advanced Technologies, Inc. | Composite of metal and resin |
JP2022029527A (ja) * | 2020-08-05 | 2022-02-18 | 信越化学工業株式会社 | 熱硬化性樹脂組成物及び半導体装置 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107614620B (zh) * | 2015-05-25 | 2020-09-22 | 日立化成株式会社 | 树脂组合物、树脂片、预浸渍体、绝缘物、树脂片固化物和散热构件 |
JP6731190B2 (ja) | 2015-07-06 | 2020-07-29 | 三菱瓦斯化学株式会社 | 樹脂組成物、それを用いたプリプレグ、レジンシート、積層板、及びプリント配線板 |
JP6914194B2 (ja) * | 2015-07-06 | 2021-08-04 | 三菱瓦斯化学株式会社 | プリント配線板の製造方法、及び樹脂組成物 |
KR102605760B1 (ko) * | 2015-07-06 | 2023-11-23 | 미츠비시 가스 가가쿠 가부시키가이샤 | 수지 조성물, 그 수지 조성물을 사용한 프리프레그 또는 레진 시트 그리고 그것들을 사용한 적층판 및 프린트 배선판 |
KR102605758B1 (ko) * | 2015-07-06 | 2023-11-23 | 미츠비시 가스 가가쿠 가부시키가이샤 | 수지 조성물, 프리프레그, 레진 시트, 적층판, 및 프린트 배선판 |
KR102382655B1 (ko) * | 2015-07-06 | 2022-04-04 | 미츠비시 가스 가가쿠 가부시키가이샤 | 수지 조성물, 프리프레그, 금속박 피복 적층판, 및 프린트 배선판 |
US11339251B2 (en) * | 2016-07-05 | 2022-05-24 | Showa Denko Materials Co., Ltd. | Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board |
KR102026591B1 (ko) * | 2016-12-28 | 2019-09-27 | 미츠비시 가스 가가쿠 가부시키가이샤 | 프리프레그, 적층판, 금속박 피복 적층판, 프린트 배선판, 및 다층 프린트 배선판 |
JP7025729B2 (ja) * | 2016-12-28 | 2022-02-25 | 三菱瓦斯化学株式会社 | プリント配線板用樹脂組成物、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板 |
US11098195B2 (en) | 2017-02-07 | 2021-08-24 | Mitsubishi Gas Chemical Company, Inc. | Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed circuit board |
EP3627224A4 (en) * | 2017-05-15 | 2020-06-03 | Mitsubishi Gas Chemical Company, Inc. | FILM-FORMING MATERIAL FOR LITHOGRAPHY, COMPOSITION FOR FORMING FILM IN LITHOGRAPHY, UNDERLAYER FILM FOR LITHOGRAPHY AND PATTERN FORMING METHOD |
EP3734780A4 (en) | 2017-12-28 | 2021-10-27 | Furukawa Electric Co., Ltd. | EXTERIOR BODY FOR WIRE AND CABLE HARNESS TO EXTERIOR BODY |
JP6660513B1 (ja) * | 2018-03-28 | 2020-03-11 | 積水化学工業株式会社 | 樹脂材料及び多層プリント配線板 |
JP7322877B2 (ja) * | 2018-06-01 | 2023-08-08 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、及びプリント配線板 |
WO2020235328A1 (ja) * | 2019-05-20 | 2020-11-26 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ、支持体付きレジンシート、金属箔張積層板、及びプリント配線板 |
TWI733145B (zh) * | 2019-07-24 | 2021-07-11 | 宏泰電工股份有限公司 | 印刷電路板用樹脂組成物、預浸材、覆金屬基板及印刷電路板 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05186479A (ja) | 1991-08-01 | 1993-07-27 | Nikko Kyodo Co Ltd | 新規イミダゾールシラン化合物及びその製造方法並びにそれを用いる金属表面処理剤 |
JPH09296135A (ja) | 1996-04-30 | 1997-11-18 | Japan Energy Corp | 表面処理剤および樹脂添加剤 |
JP2001348393A (ja) * | 2000-04-07 | 2001-12-18 | Nikko Materials Co Ltd | イミダゾール有機モノカルボン酸塩誘導体反応生成物及びその製造方法、並びにそれを用いる表面処理剤、樹脂添加剤および樹脂組成物 |
JP2003318499A (ja) | 2002-04-23 | 2003-11-07 | Matsushita Electric Works Ltd | 内層回路用プリプレグ、内層回路用金属張積層板及び多層プリント配線板 |
JP4016782B2 (ja) | 2002-09-25 | 2007-12-05 | 松下電工株式会社 | プリント配線板用エポキシ樹脂組成物、プリプレグ、金属張積層板、多層プリント配線板 |
JP4686750B2 (ja) | 2008-09-24 | 2011-05-25 | 積水化学工業株式会社 | 硬化体及び積層体 |
WO2012165423A1 (ja) * | 2011-05-31 | 2012-12-06 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ及び積層板 |
WO2013008684A1 (ja) * | 2011-07-14 | 2013-01-17 | 三菱瓦斯化学株式会社 | プリント配線板用樹脂組成物 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS646782A (en) | 1987-06-29 | 1989-01-11 | Toshiba Corp | Radiation exposure management terminal equipment |
US7045461B2 (en) * | 2000-01-07 | 2006-05-16 | Nikkon Materials Co., Ltd. | Metal plating method, pretreatment agent, and semiconductor wafer and semiconductor device obtained using these |
JP4617838B2 (ja) * | 2003-12-25 | 2011-01-26 | チッソ株式会社 | 液晶性(メタ)アクリレート誘導体およびそれらを含む組成物 |
JP4810875B2 (ja) * | 2004-06-09 | 2011-11-09 | 三菱瓦斯化学株式会社 | 硬化性樹脂組成物 |
US7892651B2 (en) * | 2004-09-14 | 2011-02-22 | Mitsubishi Gas Chemical Company, Inc. | Resin composite metal foil, laminate and process for the production of printed wiring board using the laminate |
US20110189432A1 (en) * | 2008-07-29 | 2011-08-04 | Sekisui Chemical Co., Ltd. | Epoxy resin composition, prepreg, cured body, sheet-like molded body, laminate and multilayer laminate |
WO2014050871A1 (ja) * | 2012-09-27 | 2014-04-03 | 積水化学工業株式会社 | 多層基板の製造方法、多層絶縁フィルム及び多層基板 |
-
2014
- 2014-06-02 SG SG11201509490PA patent/SG11201509490PA/en unknown
- 2014-06-02 CN CN201480031840.2A patent/CN105264013B/zh not_active Expired - Fee Related
- 2014-06-02 WO PCT/JP2014/064624 patent/WO2014196501A1/ja active Application Filing
- 2014-06-02 JP JP2015521439A patent/JP6481610B2/ja active Active
- 2014-06-02 KR KR1020157034758A patent/KR102147632B1/ko active IP Right Grant
- 2014-06-02 EP EP14807917.1A patent/EP3006503B1/en not_active Not-in-force
- 2014-06-02 US US14/890,714 patent/US9905328B2/en active Active
- 2014-06-03 TW TW103119260A patent/TWI631009B/zh not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05186479A (ja) | 1991-08-01 | 1993-07-27 | Nikko Kyodo Co Ltd | 新規イミダゾールシラン化合物及びその製造方法並びにそれを用いる金属表面処理剤 |
JPH09296135A (ja) | 1996-04-30 | 1997-11-18 | Japan Energy Corp | 表面処理剤および樹脂添加剤 |
JP2001348393A (ja) * | 2000-04-07 | 2001-12-18 | Nikko Materials Co Ltd | イミダゾール有機モノカルボン酸塩誘導体反応生成物及びその製造方法、並びにそれを用いる表面処理剤、樹脂添加剤および樹脂組成物 |
JP2003318499A (ja) | 2002-04-23 | 2003-11-07 | Matsushita Electric Works Ltd | 内層回路用プリプレグ、内層回路用金属張積層板及び多層プリント配線板 |
JP4016782B2 (ja) | 2002-09-25 | 2007-12-05 | 松下電工株式会社 | プリント配線板用エポキシ樹脂組成物、プリプレグ、金属張積層板、多層プリント配線板 |
JP4686750B2 (ja) | 2008-09-24 | 2011-05-25 | 積水化学工業株式会社 | 硬化体及び積層体 |
WO2012165423A1 (ja) * | 2011-05-31 | 2012-12-06 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ及び積層板 |
WO2013008684A1 (ja) * | 2011-07-14 | 2013-01-17 | 三菱瓦斯化学株式会社 | プリント配線板用樹脂組成物 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016010964A (ja) * | 2014-06-03 | 2016-01-21 | 三菱瓦斯化学株式会社 | 樹脂シート及びプリント配線板 |
WO2016158066A1 (ja) * | 2015-03-31 | 2016-10-06 | 三菱瓦斯化学株式会社 | シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物 |
US10370325B2 (en) | 2015-03-31 | 2019-08-06 | Mitsubishi Gas Chemical Company, Inc. | Cyanate ester compound, curable resin composition containing the compound, and hardened product thereof |
US11195638B2 (en) | 2015-07-06 | 2021-12-07 | Mitsubishi Gas Chemical Company, Inc. | Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed circuit board |
KR20180027418A (ko) * | 2015-07-06 | 2018-03-14 | 미츠비시 가스 가가쿠 가부시키가이샤 | 수지 조성물, 프리프레그, 레진 시트, 금속박 피복 적층판 및 프린트 배선판 |
US11769607B2 (en) | 2015-07-06 | 2023-09-26 | Mitsubishi Gas Chemical Company, Inc. | Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed circuit board |
JP2020176267A (ja) * | 2015-07-06 | 2020-10-29 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ、レジンシート、金属箔張積層板及びプリント配線板 |
KR102579981B1 (ko) | 2015-07-06 | 2023-09-18 | 미츠비시 가스 가가쿠 가부시키가이샤 | 수지 조성물, 프리프레그, 레진 시트, 금속박 피복 적층판 및 프린트 배선판 |
JP2017071738A (ja) * | 2015-10-09 | 2017-04-13 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 |
JP2017088745A (ja) * | 2015-11-11 | 2017-05-25 | 三菱瓦斯化学株式会社 | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 |
US20190078213A1 (en) * | 2016-01-27 | 2019-03-14 | Advanced Technologies, Inc. | Copper or copper alloy article comprising surface-modified polyester-based resin and manufacturing method |
US11053593B2 (en) * | 2016-01-27 | 2021-07-06 | Advanced Technologies, Inc. | Copper or copper alloy article comprising surface-modified polyester-based resin and manufacturing method |
WO2018003314A1 (ja) * | 2016-06-29 | 2018-01-04 | 三菱瓦斯化学株式会社 | 樹脂組成物、樹脂シート、多層プリント配線板及び半導体装置 |
US10941323B2 (en) | 2017-08-02 | 2021-03-09 | Advanced Technologies, Inc. | Composite of metal and resin |
JP2019199588A (ja) * | 2018-05-16 | 2019-11-21 | 山栄化学株式会社 | 溶解性・非溶解性粒子含有硬化性樹脂組成物 |
JP2022029527A (ja) * | 2020-08-05 | 2022-02-18 | 信越化学工業株式会社 | 熱硬化性樹脂組成物及び半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
TWI631009B (zh) | 2018-08-01 |
EP3006503A4 (en) | 2017-02-22 |
SG11201509490PA (en) | 2015-12-30 |
EP3006503A1 (en) | 2016-04-13 |
CN105264013A (zh) | 2016-01-20 |
KR20160014643A (ko) | 2016-02-11 |
JPWO2014196501A1 (ja) | 2017-02-23 |
TW201504039A (zh) | 2015-02-01 |
KR102147632B1 (ko) | 2020-08-25 |
US20160125971A1 (en) | 2016-05-05 |
JP6481610B2 (ja) | 2019-03-13 |
EP3006503B1 (en) | 2019-05-08 |
US9905328B2 (en) | 2018-02-27 |
CN105264013B (zh) | 2018-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6481610B2 (ja) | プリント配線板材料用樹脂組成物、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板 | |
JP5999091B2 (ja) | プリント配線板用樹脂組成物 | |
US9351397B2 (en) | Resin composition for printed wiring board material, and prepreg, resin sheet, metal foil clad laminate, and printed wiring board using same | |
CN107254144B (zh) | 树脂组合物和使用其的预浸料以及层压板 | |
JP2014024970A (ja) | 樹脂組成物、プリプレグ、樹脂シート、金属箔張積層板及びプリント配線板 | |
JP6819921B2 (ja) | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 | |
JP2017088745A (ja) | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 | |
JP6796276B2 (ja) | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 | |
JP6817529B2 (ja) | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、樹脂複合シート及びプリント配線板 | |
JP6618036B2 (ja) | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 | |
JP6485728B2 (ja) | プリント配線板材料用樹脂組成物、それを用いたプリプレグ、樹脂シート、金属箔張積層板及びプリント配線板 | |
JP6575699B2 (ja) | プリント配線板用樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板 | |
TWI713784B (zh) | 樹脂組成物、預浸體、覆金屬箔疊層板、樹脂片及印刷電路板 | |
JP2017039898A (ja) | 樹脂組成物、プリプレグ、樹脂シート、金属箔張積層板及びプリント配線板 | |
JP2019119812A (ja) | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 | |
JP6829808B2 (ja) | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板 | |
TWI670321B (zh) | 樹脂組成物、預浸體、覆金屬箔疊層板、樹脂片及印刷電路板 | |
JP2018131541A (ja) | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、及びプリント配線板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480031840.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14807917 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14890714 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2015521439 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157034758 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014807917 Country of ref document: EP |