WO2014196501A1 - プリント配線板材料用樹脂組成物、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板 - Google Patents

プリント配線板材料用樹脂組成物、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板 Download PDF

Info

Publication number
WO2014196501A1
WO2014196501A1 PCT/JP2014/064624 JP2014064624W WO2014196501A1 WO 2014196501 A1 WO2014196501 A1 WO 2014196501A1 JP 2014064624 W JP2014064624 W JP 2014064624W WO 2014196501 A1 WO2014196501 A1 WO 2014196501A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin composition
compound
metal foil
cyanate ester
Prior art date
Application number
PCT/JP2014/064624
Other languages
English (en)
French (fr)
Inventor
恵一 長谷部
直樹 鹿島
武紀 瀧口
尊明 小柏
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to SG11201509490PA priority Critical patent/SG11201509490PA/en
Priority to EP14807917.1A priority patent/EP3006503B1/en
Priority to JP2015521439A priority patent/JP6481610B2/ja
Priority to US14/890,714 priority patent/US9905328B2/en
Priority to KR1020157034758A priority patent/KR102147632B1/ko
Priority to CN201480031840.2A priority patent/CN105264013B/zh
Publication of WO2014196501A1 publication Critical patent/WO2014196501A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5477Silicon-containing compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Definitions

  • the present invention relates to a resin composition useful as a material for an insulating layer of a printed wiring board, and a prepreg, a resin sheet, a metal foil-clad laminate, and a printed wiring board using such a resin composition.
  • Patent Documents 1 and 2 describe a technique using an epoxy resin, a phenol resin, and imidazole silane in order to improve the adhesion and moldability between the inner layer circuit and the insulating layer.
  • Patent Document 3 describes a resin composition that uses an epoxy resin, a curing agent, silica, and imidazole silane.
  • the resin composition is cured, and then the surface of the roughened cured body is plated with a metal. It is disclosed that when a layer is formed, the cured body and the metal layer exhibit high adhesion.
  • JP 2003-318499 A Japanese Patent No. 4016782 Japanese Patent No. 4686750
  • Patent Documents 1 and 2 describe the adhesion between the inner layer circuit and the insulating layer, but do not describe the concept of the adhesion between the conductor layer and the insulating layer formed by plating and the high glass transition temperature. It has not been.
  • the hardening body of patent document 3 is excellent in the adhesive force of the plating metal layer and hardening body on a hardening body, it is not satisfactory from a viewpoint of the glass transition temperature calculated
  • the present invention has been made in view of the above-mentioned problems, and its object is to provide excellent prepreg manufacturability when used as a material for an insulating layer of a printed wiring board, and a conductor formed by plating on the insulating layer and its surface.
  • a resin composition having excellent adhesion to a layer, a high glass transition temperature, and excellent heat resistance when absorbing moisture, and a prepreg, a resin sheet, and a metal foil-clad laminate using such a resin composition And providing a printed wiring board.
  • the present inventors selected the maleimide compound and the imidazole silane from specific types, and the epoxy compound, cyanic acid When the ratio of the maleimide compound to the total content of the ester compound and the maleimide compound is within a specific range, when used as a material for the insulating layer of a printed wiring board, the insulating layer and the conductor layer formed on the surface thereof are plated. It has been found that a resin composition having excellent adhesion to the glass, high glass transition temperature, excellent prepreg manufacturability, and excellent heat resistance during moisture absorption can be obtained. The present invention is based on this finding.
  • a resin composition used as a material for the insulating layer of a printed wiring board comprising an insulating layer and a conductor layer formed by plating on the surface of the insulating layer, Including epoxy compound (A), cyanate ester compound (B), maleimide compound (C), inorganic filler (D), and imidazole silane (E),
  • the maleimide compound (C) includes a maleimide compound represented by the following formula (1) and / or a maleimide compound represented by the following formula (2),
  • the content of the maleimide compound (C) is 25% by mass or less with respect to 100% by mass of the total content of the epoxy compound (A), the cyanate ester compound (B), and the maleimide compound (C).
  • the said imidazole silane (E) contains the compound represented by following formula (3), Resin composition.
  • n is a real number in the range of 1 to 30 as an average value.
  • R 1 , R 2 , R 3 , and R 4 each independently represent a hydrogen atom or a methyl group, and n is a real number in the range of 1 to 10 as an average value.
  • R 5 represents hydrogen or an alkyl group having 1 to 20 carbon atoms
  • R 6 represents hydrogen, a vinyl group, or an alkyl group having 1 to 5 carbon atoms
  • R 7 and R 8 each independently represents an alkyl group having 1 to 3 carbon atoms
  • X represents an acetate ion or a phthalate ion
  • Y represents hydrogen or a hydroxyl group
  • n represents an integer of 1 to 3.
  • the cyanate ester compound (B) includes a naphthol aralkyl cyanate ester compound represented by the following formula (4) and / or a novolac cyanate ester compound represented by the following formula (5): ]
  • the content of the epoxy compound (A) is 40 to 75% by mass with respect to 100% by mass of the total content of the epoxy compound (A), the cyanate ester compound (B), and the maleimide compound (C).
  • the content of the cyanate ester compound (B) is 20 to 40 with respect to 100 mass% of the total content of the epoxy compound (A), the cyanate ester compound (B), and the maleimide compound (C).
  • the content of the inorganic filler (D) is 50 to 300 mass with respect to 100 mass% of the total content of the epoxy compound (A), the cyanate ester compound (B), and the maleimide compound (C).
  • the content of the imidazole silane (E) is 0.1 to 3 with respect to 100 mass% of the total content of the epoxy compound (A), the cyanate ester compound (B), and the maleimide compound (C).
  • a prepreg comprising: a base material; and the resin composition according to any one of items [1] to [7] attached to the base material.
  • a resin sheet comprising: an outer layer made of a metal foil or a metal film; and a layer made of the resin composition according to any one of [1] to [7], which is laminated on the outer layer.
  • a metal foil-clad laminate comprising the prepreg according to the preceding item [8] and a metal foil laminated on one side or both sides of the prepreg.
  • the metal foil-clad laminate according to [10] wherein the metal foil has a matte surface with a surface roughness Rz of 0.7 ⁇ m to 2.5 ⁇ m.
  • the printed wiring board according to [15] which is produced by etching a metal foil of the metal foil-clad laminate, surface-treating and patterning by plating.
  • the resin composition of the present invention exhibits at least one, preferably all of the following effects (1) to (4).
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the present invention is not limited to this, and various modifications can be made without departing from the gist thereof. Is possible.
  • the resin composition of the present embodiment is A resin composition used as a material for the insulating layer of a printed wiring board comprising an insulating layer and a conductor layer formed by plating on the surface of the insulating layer, Including epoxy compound (A), cyanate ester compound (B), maleimide compound (C), inorganic filler (D), and imidazole silane (E),
  • the maleimide compound (C) includes a compound represented by the following formula (1) and / or a compound represented by the following formula (2),
  • the content of the maleimide compound (C) is 25% by mass or less with respect to 100% by mass of the total content of the epoxy compound (A), the cyanate ester compound (B), and the maleimide compound (C).
  • the said imidazole silane (E) contains the compound represented by following formula (3).
  • n is a real number in the range of 1 to 30 as an average value.
  • R 1 , R 2 , R 3 , and R 4 each independently represent a hydrogen atom or a methyl group, and n is a real number in the range of 1 to 10 as an average value.
  • R 5 represents hydrogen or an alkyl group having 1 to 20 carbon atoms
  • R 6 represents hydrogen, a vinyl group, or an alkyl group having 1 to 5 carbon atoms
  • R 7 and R 8 each independently represents an alkyl group having 1 to 3 carbon atoms
  • X represents an acetate ion or a phthalate ion
  • Y represents hydrogen or a hydroxyl group
  • n represents an integer of 1 to 3.
  • the resin composition of the present embodiment is used as a material for an insulating layer of a printed wiring board including an insulating layer and a conductor layer formed by plating on the surface of the insulating layer, more specifically. And an insulating layer and a conductive layer formed by selectively plating the surface of the insulating layer by a semi-additive method or a full additive method, and used as a material for an insulating layer of a printed wiring board. Is preferred. Since the insulating layer containing the resin composition of the present embodiment is excellent in adhesion to a conductor layer formed by plating on the surface of the insulating layer, it is particularly suitable for such applications.
  • Epoxy compound (A) The epoxy compound (A) contained in the resin composition of this embodiment is an organic compound having at least one epoxy group.
  • the number of epoxy groups per molecule of the epoxy compound (A) is 1 or more.
  • the number of the epoxy groups is more preferably 2 or more.
  • the epoxy compound (A) is not particularly limited and a conventionally known epoxy resin can be used.
  • a biphenyl aralkyl type epoxy compound epoxy group-containing biphenyl aralkyl resin
  • a naphthalene type epoxy compound an epoxy group having a naphthalene skeleton
  • Containing compound: naphthalene bifunctional epoxy compound bisnaphthalene type epoxy compound (epoxy group containing compound having bisnaphthalene skeleton: naphthalene tetrafunctional epoxy compound)
  • polyfunctional phenol type epoxy resin naphthylene ether type epoxy resin
  • phenol Aralkyl epoxy resin phenol novolac epoxy resin, cresol novolac epoxy resin, xylene novolac epoxy resin, naphthalene skeleton modified novolac epoxy resin, dicyclopenta Ennovolak type epoxy resin, biphenyl novolac type epoxy resin, phenol aralkyl novolak type epoxy resin, nap
  • an epoxy compound having a structure obtained by epoxidizing a certain resin or compound is referred to as “ ⁇ epoxy compound” in the name of the resin or compound. May be expressed.
  • the epoxy compound (A) from the viewpoint of improving adhesion between the insulating layer and the plated conductor layer, flame retardancy, and the like, a biphenylaralkyl type epoxy compound, a naphthalene type epoxy compound, a bisnaphthalene type epoxy compound, It is preferable that it is 1 type, or 2 or more types selected from the group which consists of an aromatic hydrocarbon formaldehyde type epoxy compound, an anthraquinone type epoxy compound, a naphthol aralkyl type epoxy compound, and a zylock type epoxy compound.
  • an aromatic hydrocarbon formaldehyde resin obtained by polymerizing an aromatic hydrocarbon such as benzene, toluene or xylene with formaldehyde is used as a hydroxyl group such as phenol or xylenol.
  • the epoxy compound (A) is selected from the group consisting of a biphenyl aralkyl type epoxy resin, a naphthalene type epoxy compound, a bisnaphthalene type epoxy compound, and an anthraquinone type epoxy compound. It is preferable that it is 1 type, or 2 or more types.
  • n represents an integer of 1 or more.
  • the upper limit value of n is usually 10, preferably 7.
  • the content of the epoxy compound (A) is not particularly limited, but from the viewpoint of imparting a high glass transition temperature and good heat resistance to the insulating layer while maintaining the adhesion between the insulating layer and the plated conductor layer.
  • the total content of the compound (A), the cyanate ester compound (B), and the maleimide compound (C) is preferably 40 to 75% by mass, more preferably 50 to 70% by mass with respect to 100% by mass. More preferably, it is 60 to 70% by mass.
  • the epoxy compound (A) may be used alone or in combination of two or more in any combination and ratio.
  • epoxy compound (A) off-the-shelf products having various structures are commercially available, and can be appropriately obtained and used. Moreover, you may manufacture an epoxy compound (A) using a well-known various manufacturing method. Such a production method is not particularly limited, and examples thereof include a method of obtaining or synthesizing a hydroxyl group-containing compound having a desired skeleton, modifying the hydroxyl group by a known method, and epoxidizing (introducing an epoxy group). It is done.
  • the cyanate ester compound (B) contained in the resin composition of the present embodiment is a compound having a cyanate group (cyanate ester group).
  • cyanate ester group a compound having a cyanate group
  • excellent properties such as chemical resistance, high glass transition temperature, and low thermal expansion can be imparted to the resin composition.
  • the cyanate ester compound (B) is not particularly limited, and a conventionally known epoxy resin can be used.
  • a naphthol aralkyl type cyanate ester compound (cyanate group-containing naphthol aralkyl resin)
  • a novolak type cyanate ester compound Selected from the group consisting of cyanate group-containing novolak resins
  • aromatic hydrocarbon formaldehyde type cyanate ester compounds cyanate group-containing aromatic hydrocarbon formaldehyde resins
  • biphenyl aralkyl type cyanate ester compounds cyanate group-containing biphenyl aralkyl resins. 1 type or more to be mentioned.
  • cyanate ester compound (B) having a structure obtained by cyanating (cyanate esterification) a certain resin or compound is referred to as the name of the resin or compound. It may be indicated with the description “-type cyanate ester compound”.
  • cyanate ester compound (B) a naphthol aralkyl type cyanide is provided from the viewpoint of providing a resin composition having excellent flame retardancy, high curability, and high glass transition temperature of the obtained cured product.
  • One or more selected from the group consisting of acid ester compounds, novolak-type cyanate ester compounds, aromatic hydrocarbon formaldehyde-type cyanate ester compounds, and biphenylaralkyl-type cyanate ester compounds are particularly preferred.
  • the aromatic hydrocarbon formaldehyde type cyanate ester compound is not particularly limited.
  • an aromatic hydrocarbon formaldehyde resin is obtained by polymerizing an aromatic hydrocarbon such as benzene, toluene, or xylene with formaldehyde,
  • the obtained aromatic hydrocarbon formaldehyde resin is modified with a hydroxyl group-containing aromatic hydrocarbon such as phenol or xylenol, and further a method of cyanating the hydroxyl group, a hydroxyl group-containing aromatic hydrocarbon such as phenol or xylenol is polymerized with formaldehyde
  • examples thereof include a compound obtained by a method of obtaining a hydroxyl group-containing aromatic hydrocarbon formaldehyde resin and cyanating the hydroxyl group of the obtained hydroxyl group-containing aromatic hydrocarbon formaldehyde resin.
  • naphthol aralkyl cyanate ester compounds and / or novolac cyanate ester compounds are preferred.
  • a naphthol aralkyl type cyanate ester compound By using a naphthol aralkyl type cyanate ester compound, the curability of the resin composition is further improved, and a cured product having further excellent flame resistance tends to be obtained. Moreover, it exists in the tendency which heat resistance and flame resistance improve more by using a novolak-type cyanate ester compound.
  • n shows an integer greater than or equal to 1.
  • the upper limit of n is preferably 10, and more preferably 6.
  • the novolak type cyanate ester compound is not particularly limited, but for example, a compound represented by the following formula (5) is preferable.
  • R ⁇ 13> , R ⁇ 14> , R ⁇ 15 > and R ⁇ 16 > respectively independently represent a hydrogen atom or a methyl group, and a hydrogen atom is preferable among these.
  • n shows an integer greater than or equal to 1. The upper limit value of n is preferably 10, more preferably 7.
  • the content of the cyanate ester compound (B) in the resin composition is not particularly limited, but from the viewpoint of imparting a high glass transition temperature and good heat resistance to the insulating layer, the epoxy compound (A) and the cyanate ester compound
  • the total content of (B) and the maleimide compound (C) is preferably 20 to 40% by mass and more preferably 20 to 35% by mass with respect to 100% by mass.
  • these total content satisfy
  • the cyanate ester compound (B) may be used alone or in combination of two or more in any combination and ratio. Moreover, it is also possible to use together 1 type, or 2 or more types of well-known cyanate ester compounds other than the above-mentioned cyanate ester compound (B).
  • cyanate ester compound (B) off-the-shelf products with various structures are commercially available, and can be obtained and used as appropriate. Moreover, you may manufacture a cyanate ester compound (B) using a well-known various manufacturing method. Such a production method is not particularly limited, and examples thereof include a method of obtaining or synthesizing a hydroxyl group-containing compound having a desired skeleton, and modifying the hydroxyl group by a known method to form cyanate.
  • the method for cyanating a hydroxyl group is not particularly limited, and examples thereof include the method described in Ian Hamerton, "Chemistry and Technology of Cyanate Ester Resins," Blackie Academic & Professional.
  • the maleimide compound (C) contained in the resin composition of the present embodiment includes a maleimide compound represented by the following formula (1) and / or a maleimide compound represented by the formula (2), and a prepolymer of these maleimide compounds. Polymers, prepolymers of these maleimide compounds and amine compounds, and the like can also be used.
  • a maleimide compound represented by the following formula (1) heat resistance can be imparted to the insulating layer while maintaining the adhesion between the insulating layer and the plated conductor layer.
  • n is a real number in the range of 1 to 30 as an average value.
  • R 1 , R 2 , R 3 , and R 4 each independently represent a hydrogen atom or a methyl group, and n is a real number in the range of 1 to 10 as an average value. .
  • the maleimide compound (C) represented by the above formula (1) is ⁇ polytetramethylene oxide-bis (4-maleimidobenzoate) ⁇ , and the maleimide compound represented by the above formula (1) having a different n is represented by 1 It is also possible to use seeds or a mixture of two or more kinds as appropriate.
  • the maleimide compound (C) represented by the above formula (1) is obtained by reacting a diamino compound ⁇ polytetramethylene oxide-bis (4-aminobenzoate) ⁇ represented by the following formula (7) with maleic anhydride. Can be obtained.
  • the maleimide compound (C) represented by the above formula (1) is In most cases, it has a molecular weight distribution in a predetermined range. (In the above formula (7), n is a real number in the range of 1 to 30 as an average value.)
  • n is a real number in the range of 1-30 as an average value, preferably a real number in the range of 3-21, more preferably a real number in the range of 7-18. It is.
  • Examples of the product of the maleimide compound (C) represented by the formula (1) include “BMI-650P” and “BMI-1000P” manufactured by Kay Kasei Co., Ltd.
  • the content of the maleimide compound (C) is 25% by mass or less with respect to 100% by mass of the total content of the epoxy compound (A), the cyanate ester compound (B), and the maleimide compound (C), preferably It is 0.10 to 25% by mass, and more preferably 3.0 to 20% by mass.
  • the content of the maleimide compound (C) is 25% by mass or less, the interaction with each component of the resin composition, particularly the cyanate ester compound (B) and the specific imidazole silane (E) is further improved.
  • the glass transition temperature Tg of the insulating layer can be maintained at an extremely high value (for example, 230 ° C. or higher).
  • an extremely high value for example, 230 ° C. or higher.
  • maleimide compound (C) may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio. When using 2 or more types of maleimide compounds (C) together, it is preferable that these total content satisfy
  • the inorganic filler (D) contained in the resin composition of the present embodiment is not particularly limited.
  • silica for example, natural silica, fused silica, amorphous silica, Hollow silica, wet silica, synthetic silica, aerosil, etc.
  • aluminum compounds eg, boehmite, aluminum hydroxide, alumina, hydrotalcite, aluminum borate, aluminum nitride
  • magnesium compounds eg, magnesium carbonate, magnesium oxide, hydroxide
  • calcium compounds eg calcium carbonate, calcium hydroxide, calcium sulfate, calcium sulfite, calcium borate etc.
  • molybdenum compounds eg molybdenum oxide, zinc molybdate etc.
  • talc eg natural talc, baked) Talc, etc.
  • the inorganic filler (D) is preferably one or more selected from the group consisting of silica, aluminum hydroxide, alumina, boehmite, magnesium oxide, and magnesium hydroxide.
  • the thermal expansion and the flame resistance tend to be further improved.
  • the inorganic filler (D) is preferably silica, and particularly preferably fused silica.
  • silica include SFP-130MC manufactured by Denki Kagaku Kogyo Co., Ltd., SC2050-MB, SC2500-SQ, and SC4500-SQ manufactured by Admatechs.
  • magnesium hydroxide and / or magnesium oxide alone or in combination with other inorganic fillers such as silica.
  • the flame resistance tends to be further improved.
  • Specific examples of magnesium hydroxide include “Echo Mug Z-10” and “Echo Mug PZ-1” manufactured by Tateho Chemical Co., Ltd., “Magsees N”, “Magsees S” manufactured by Kamishima Chemical Co., Ltd., “ “Magsees EP”, “Magsees EP2-A”, MGZ-1, MGZ-3, MGZ-6R manufactured by Sakai Chemical Industry Co., Ltd.
  • magnesium oxide examples include FNM-G manufactured by Tateho Chemical Industry Co., Ltd., SMO, SMO-0.1, SMO-S-0.5 manufactured by Sakai Chemical Industry Co., Ltd., and the like.
  • the average particle size of the inorganic filler (D) is not particularly limited, but is preferably 0.01 to 5.0 ⁇ m, more preferably 0.1 to 2.0 ⁇ m from the viewpoint of improving the prepreg productivity. More preferably, the thickness is 0.2 to 1.5 ⁇ m.
  • the “average particle diameter” of the inorganic filler (D) means the median diameter of the inorganic filler (D).
  • the “median diameter” means that when the particle size distribution of the powder is divided into two on the basis of a certain particle diameter, the volume of the particle having a larger particle diameter, the volume of the particle having a smaller particle diameter, Means a particle size that occupies 50% of the total powder.
  • the average particle diameter (median diameter) of the inorganic filler (D) can be measured by a wet laser diffraction / scattering method.
  • the content of the inorganic filler (D) in the resin composition is not particularly limited, but from the viewpoint of obtaining high plating peel strength while reducing the thermal expansion of the insulating layer, the epoxy compound (A), the cyanate ester compound ( The total content of B) and the maleimide compound (C) is preferably 50 to 300% by mass, more preferably 60 to 280% by mass, and still more preferably 70 to 250% by mass with respect to 100% by mass. . In addition, when using together 2 or more types of inorganic fillers (D), it is preferable that these total content satisfy
  • the imidazole silane (E) contained in the resin composition of this embodiment contains the compound represented by following formula (3).
  • the varnish gel time becomes relatively long, and the prepreg productivity is further improved.
  • R 5 represents hydrogen or an alkyl group having 1 to 20 carbon atoms
  • R 6 represents hydrogen, a vinyl group, or an alkyl group having 1 to 5 carbon atoms
  • R 7 and R 8 each independently represents an alkyl group having 1 to 3 carbon atoms
  • X represents an acetate ion or a phthalate ion
  • Y represents hydrogen or a hydroxyl group
  • n represents an integer of 1 to 3.
  • R 5 is particularly preferably hydrogen, methyl, ethyl, undecyl, or heptadecyl from the viewpoint of easy synthesis.
  • R 6 is preferably hydrogen, methyl, ethyl, or vinyl, particularly from the viewpoint of ease of synthesis.
  • R 7 is preferably methyl or ethyl from the viewpoint of easy synthesis, and more preferably an ethyl group from the viewpoint of storage stability.
  • R 8 is particularly preferably a methyl group from the viewpoint of ease of synthesis.
  • the method for synthesizing the compound represented by the above formula (3) is not particularly limited, and examples thereof include the methods disclosed in JP-A Nos. 05-186479 and 09-296135.
  • Specific examples of imidazole silane (E) include “IA-100A”, “IA-100F” and “IM-100F” manufactured by JX Nippon Mining & Metals.
  • the imidazole silane (E) is preferably free from the inorganic filler (D) without being subjected to surface treatment on the inorganic filler (D).
  • the imidazole silane (E) is directly added to the resin composition, rather than being added by a method of proceeding dehydration condensation such as a dry method, a wet method, or a heating reflux treatment.
  • the content of imidazole silane (E) in the resin composition is not particularly limited, but from the viewpoint of prepreg productivity, the total content of epoxy compound (A), cyanate ester compound (B), and maleimide compound (C).
  • the amount is preferably 0.05 to 3.0% by mass, more preferably 0.07 to 2.0% by mass, and still more preferably 0.1 to 1.0% by mass with respect to 100% by mass. .
  • these total content satisfy
  • the resin composition of the present embodiment includes one of the other or Two or more components may be contained.
  • the resin composition of the present embodiment may contain a silane coupling agent for the purpose of improving moisture absorption heat resistance.
  • the silane coupling agent is not particularly limited as long as it is a silane coupling agent generally used for surface treatment of inorganic substances. Specific examples include aminosilane-based silane coupling agents (for example, ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane), and epoxysilane-based silane coupling agents (for example, ⁇ -Glycidoxypropyltrimethoxysilane, etc.), vinylsilane-based silane coupling agents (eg, ⁇ -methacryloxypropyltrimethoxysilane), cationic silane-based silane coupling agents (eg, N- ⁇ - (N-vinylbenzyl) Aminoethyl) - ⁇ -aminopropyltrimethoxysilane
  • the silane coupling agent When the silane coupling agent is used, its content is not particularly limited, but preferably from 0.050 to 5.0 mass with respect to 100 mass% of the inorganic filler (D) from the viewpoint of improving moisture absorption heat resistance. %, More preferably 0.10 to 3.0% by mass. In addition, when using 2 or more types of silane coupling agents together, it is preferable that these total content satisfy
  • the resin composition of the present embodiment may contain a wetting and dispersing agent for the purpose of improving the prepreg productivity.
  • the wetting and dispersing agent is not particularly limited as long as it is a wetting and dispersing agent generally used in paints and the like. Specific examples include Disperbyk-110, Disperbyk-111, Disperbyk-180, Disperbyk-161, BYK-W996, BYK-W9010, and BYK-W903 manufactured by Big Chemie Japan.
  • One of these wetting and dispersing agents may be used alone, or two or more thereof may be used in any combination and ratio.
  • the wetting and dispersing agent When the wetting and dispersing agent is used, its content is not particularly limited, but preferably from 0.10 to 5.0% by mass with respect to 100% by mass of the inorganic filler (D) from the viewpoint of improving the prepreg productivity. More preferably, it is 0.50 to 3.0% by mass. In addition, when using 2 or more types of wet dispersing agents together, it is preferable that these total content satisfy
  • the resin composition of the present embodiment may contain a curing accelerator for the purpose of adjusting the curing speed.
  • a hardening accelerator it is well-known as hardening accelerators, such as an epoxy compound and a cyanate ester compound, and if it is generally used, it will not specifically limit.
  • organometallic salts containing metals such as copper, zinc, cobalt, nickel, manganese (for example, zinc octylate, cobalt naphthenate, nickel octylate, manganese octylate, etc.), imidazoles, and derivatives thereof (for example, 2 -Ethyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 2,4,5-triphenylimidazole etc.), tertiary amines (eg triethylamine, tributylamine etc.) and the like.
  • These hardening accelerators may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the content is not particularly limited, but from the viewpoint of obtaining a high glass transition temperature, the total content of the epoxy compound (A), the cyanate ester compound (B), and the maleimide compound (C)
  • the amount is preferably 0.010 to 2.0% by mass, and more preferably 0.10 to 1.0% by mass with respect to the amount of 100% by mass.
  • these total content satisfy
  • the resin composition of the present embodiment may contain other various polymer compounds and / or flame retardant compounds as long as desired properties are not impaired.
  • the polymer compound and the flame retardant compound are not limited as long as they are generally used. Although it does not specifically limit as a high molecular compound, For example, various thermosetting resins and thermoplastic resins, its oligomer, elastomers, etc. are mentioned.
  • a flame retardant compound for example, phosphorus containing compounds (for example, phosphate ester, melamine phosphate, phosphorus containing epoxy resin etc.), nitrogen containing compounds (for example, melamine, benzoguanamine etc.), oxazine ring containing compounds, Examples thereof include silicone compounds. These polymer compounds and / or flame retardant compounds may be used alone or in combination of two or more in any combination and ratio.
  • the resin composition of the present embodiment may contain various additives for various purposes within a range where the intended characteristics are not impaired.
  • various additives for various purposes within a range where the intended characteristics are not impaired.
  • additives may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the resin composition of the present embodiment includes the above-described components, that is, the epoxy compound (A), the cyanate ester compound (B), the maleimide compound (C), the inorganic filler (D), the imidazole silane (E), and the necessity. Accordingly, it can be produced by mixing other components. In addition, you may mix in the state of the solution which melt
  • the solution of the resin composition thus obtained can be suitably used as a varnish for producing the prepreg and resin sheet of this embodiment described later.
  • the organic solvent is not limited as long as it can suitably dissolve or disperse each of the above components and does not impair the desired effect of the resin composition of the present embodiment.
  • Specific examples include alcohols (methanol, ethanol, propanol etc.), ketones (eg acetone, methyl ethyl ketone, methyl isobutyl ketone etc.), amides (eg dimethylacetamide, dimethylformamide etc.), aromatic hydrocarbons (eg toluene) , Xylene, etc.).
  • These organic solvents may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the resin composition of the present embodiment When used as a material for an insulating layer of a printed wiring board, it has excellent prepreg manufacturability and excellent adhesion between the insulating layer and the plated conductor layer. Furthermore, an insulating layer having a high glass transition temperature and excellent moisture absorption heat resistance can be obtained. In addition, other suitable effects such as excellent chemical resistance can be exhibited. As described above, the resin composition of the present embodiment has various excellent characteristics and can particularly achieve both excellent adhesion and high heat resistance at a high level. It is extremely useful as a material.
  • prepreg, resin sheet, metal foil-clad laminate and printed wiring board are all formed using the resin composition of the present embodiment described above.
  • the prepreg of this embodiment is one in which the above resin composition is attached to a base material.
  • a base material the well-known base material generally used as a material of various printed wiring boards can be used.
  • glass fibers for example, A glass, C glass, E glass, D glass, H glass, L glass, S glass, NE glass, T glass, Q glass, UN glass, and spherical glass
  • inorganic fibers for example, inorganic fibers other than glass such as quartz (quartz)
  • organic fibers for example, polyamide resin fibers such as polyamide resin fibers, aromatic polyamide resin fibers, wholly aromatic polyamide resin fibers; polyester resin fibers, aromatic polyester resins
  • Fibers polyester resin fibers such as wholly aromatic polyester resin fibers; polyimide resin fibers; fluororesin fibers, etc.
  • the shape of the substrate is not particularly limited, and examples thereof include woven fabric, non-woven fabric, roving, chopped strand mat, and surfacing mat. Among these, glass fiber is preferable in terms of strength and water absorption, and liquid crystal polyester woven fabric is preferable in terms of electrical characteristics.
  • a base material can be used individually by 1 type or in combination of 2 or more types.
  • the thickness of the substrate is not limited, but is preferably in the range of 0.01 to 0.3 mm, for example.
  • a glass woven fabric that has been surface-treated with a silane coupling agent such as epoxy silane treatment or aminosilane treatment is suitable.
  • a treated woven fabric is preferred.
  • the method for producing the prepreg by combining the resin composition with the above-mentioned base material is not particularly limited.
  • the base material is impregnated with a solution or dispersion (varnish) obtained by dissolving or dispersing the resin composition in an organic solvent.
  • a solution or dispersion obtained by dissolving or dispersing the resin composition in an organic solvent.
  • it is applied, heated (for example, heated for 1 to 60 minutes in a dryer at 100 to 200 ° C.) and / or dried under reduced pressure, the solvent is removed and semi-cured, and the resin composition is attached to the substrate.
  • heated for example, heated for 1 to 60 minutes in a dryer at 100 to 200 ° C.
  • the solvent is removed and semi-cured, and the resin composition is attached to the substrate.
  • the method etc. are mentioned.
  • the amount of the resin composition attached to the substrate is preferably 15 to 95% by mass, more preferably 20 to 90% by mass with respect to 100% by mass of the entire prepreg.
  • the prepreg of the present embodiment can be used as a build-up material for a printed wiring board.
  • build-up means that a printed wiring board having a multilayer structure is manufactured by laminating a prepreg or a resin sheet and repeating hole forming, wiring formation, etc. for each layer.
  • the prepreg constitutes an insulating layer. The printed wiring board will be described later.
  • the resin sheet of this embodiment contains the outer layer which consists of metal foil or a metal film, and the layer which consists of the said resin composition laminated
  • metal foil or a metal film used as an outer layer the foil or film which consists of metals, such as copper and aluminum, is mentioned.
  • a copper foil or a copper film is preferable, and an electrolytic copper foil, a rolled copper foil, a copper alloy film, or the like can be preferably used.
  • the metal foil or metal film may be subjected to a known surface treatment such as nickel treatment or cobalt treatment.
  • the thickness of the metal foil or metal film can be appropriately adjusted depending on the intended use, but is preferably 5 to 70 ⁇ m.
  • a method for producing a resin sheet by forming a layer (resin composition layer) made of a resin composition on the outer layer made of the above metal foil or metal film is not particularly limited.
  • the resin composition is made of an organic solvent.
  • the solution (varnish) dissolved or dispersed in is coated (coated, impregnated, etc.) on the surface of the above metal foil or film, dried under heating and / or reduced pressure, and the solvent is removed to obtain a resin composition.
  • Examples thereof include a method of solidifying and forming a resin composition layer.
  • the drying conditions are not particularly limited, but the content of the organic solvent in the resin composition layer is preferably 10 parts by mass or less, more preferably 5.0 parts by mass or less, with respect to 100 parts by mass of the resin composition layer. Let dry.
  • the conditions for achieving such drying vary depending on the amount of the organic solvent in the varnish. For example, in the case of a varnish containing 30 to 60 parts by mass of the organic solvent, the drying is performed for about 3 to 10 minutes under a heating condition of 50 to 160 ° C. You can do it.
  • the thickness of the resin composition layer in the resin sheet of this embodiment is not limited, but is usually the same as the thickness of the outer layer (usually about 5 to 70 ⁇ m as described above), preferably 10 to 100 ⁇ m.
  • the resin sheet of this embodiment can also be used as a build-up material for printed wiring boards.
  • the layer made of the resin composition constitutes an insulating layer. The printed wiring board will be described later.
  • the metal foil-clad laminate of this embodiment includes the prepreg and a metal foil laminated on one side or both sides of the prepreg.
  • One prepreg may be used, or two or more prepregs may be laminated and used.
  • the method for producing the metal foil-clad laminate of the present embodiment is not limited.
  • one or two or more prepregs are laminated, and the metal foil is disposed on one side or both sides thereof.
  • Examples of the method include laminate molding under conditions of 220 ° C., heating time of 100 to 300 minutes, surface pressure of 20 to 40 kgf / cm 2 (about 2.0 MPa to about 3.9 MPa), and the like.
  • metal foil such as copper and aluminum
  • copper foil is preferable.
  • electrolytic copper foil, rolled copper foil, and the like can be suitably used.
  • the metal foil may be subjected to a known surface treatment such as nickel treatment or cobalt treatment.
  • the thickness of the metal foil can be appropriately adjusted within a range suitable as a material for the printed wiring board, but is preferably 2 to 35 ⁇ m.
  • the matte surface of the metal foil is transferred onto the surface of the insulating layer (a layer made of prepreg), and the adhesion with the conductor layer formed by plating on the insulating layer is enhanced by the uneven anchor effect transferred onto the surface of the insulating layer.
  • the surface roughness Rz of the mat surface of the metal foil is preferably 0.5 to 2.5 ⁇ m, more preferably 0.6 to 2.3 ⁇ m, and still more preferably 0.7 to 2.0 ⁇ m. It is.
  • the “surface roughness Rz” is an index representing the roughness of the matte surface of the metal foil.
  • the roughness curve of the measurement target surface is measured with a laser microscope, and five peaks that exceed the average line are arranged in descending order. Then, five valley bottoms that do not reach the average line are extracted in ascending order, and the average value of the absolute values of the extracted peak height and valley bottom height can be calculated.
  • the metal foil-clad laminate of this embodiment can also be used as a build-up material for printed wiring boards.
  • the prepreg (the base material and the resin composition attached thereto) constitutes the insulating layer. The printed wiring board will be described later.
  • the printed wiring board of this embodiment includes an insulating layer and a conductor layer formed on the surface of the insulating layer, and the insulating layer includes the resin composition.
  • Such a printed wiring board can be produced using the prepreg, resin sheet, or metal foil-clad laminate of the above-described embodiment as a build-up material. That is, by producing a printed wiring board using these as a build-up material, a prepreg (a base material and a resin composition attached thereto) or a resin composition layer of a resin sheet (a layer made of a resin composition) ) Constitutes an insulating layer containing the resin composition.
  • the resin composition layer (insulating layer) of the resin sheet is surface-treated by a conventional method, and the wiring pattern ( By forming the conductor layer, the printed wiring board of this embodiment is obtained.
  • the metal foil-clad laminate of the present embodiment is used as a build-up material
  • the metal foil of the metal foil-clad laminate is etched by a conventional method, and then a layer (insulating layer) made of prepreg is surface-treated to produce an insulating layer.
  • a wiring pattern (conductor layer) is formed on the surface by plating, the printed wiring board of this embodiment can be obtained.
  • a metal foil-clad laminate is produced using the prepreg by the method for producing a metal-foil-clad laminate, and then the printed wiring board of this embodiment is produced by the method described above. Obtainable. Or when using as a material of a multilayer printed wiring board etc. as mentioned later, you may use a prepreg as it is as a buildup material.
  • the hole processing is performed to form via holes, through holes, and the like.
  • the hole processing is performed by using any one of known methods such as NC drill, carbon dioxide laser, UV laser, YAG laser, plasma, or a combination of two or more if necessary.
  • the surface treatment for the insulating layer is performed from the viewpoint of improving the adhesion between the insulating layer and the plated conductor layer, removing smear, and the like. Although it does not specifically limit as surface treatment, For example, a roughening process, a silane coupling process, etc. are mentioned.
  • the roughening treatment can also serve as a removal of smear generated by the drilling step. In this case, since the roughening state varies depending on the degree of curing of the resin composition, it is preferable to select optimum conditions for the later-described lamination molding conditions in combination with the subsequent roughening treatment conditions and plating conditions.
  • the roughening treatment includes a swelling step, a surface roughening and smear dissolving step, and a neutralizing step.
  • the swelling step is performed by swelling the surface insulating layer using a swelling agent.
  • the swelling agent is not particularly limited as long as the wettability of the surface insulating layer is improved and the surface insulating layer can be swollen to such an extent that the oxidative decomposition is promoted in the next surface roughening and smear dissolving step.
  • an alkaline solution, a surfactant solution and the like can be mentioned.
  • the surface roughening and smear dissolution process is performed using an oxidizing agent.
  • an oxidizing agent for example, a permanganate solution etc. are mentioned, A potassium permanganate aqueous solution, sodium permanganate aqueous solution, etc. are mentioned as a suitable specific example, for example.
  • Such oxidant treatment is called wet desmear, but in addition to the wet desmear, other known roughening treatments such as dry desmear by plasma treatment or UV treatment, mechanical polishing by buffing, sandblasting, etc. are carried out in an appropriate combination May be.
  • the oxidizing agent used in the previous step is neutralized with a reducing agent.
  • a reducing agent for example, an amine-type reducing agent is mentioned.
  • acidic reducing agents such as hydroxylamine sulfate aqueous solution, ethylenediaminetetraacetic acid aqueous solution, nitrilotriacetic acid aqueous solution and the like can be mentioned.
  • the surface roughness of the insulating layer after the roughening treatment is preferably small.
  • the Rz value is preferably 4.0 ⁇ m or less, more preferably 2.0 ⁇ m or less. Since the surface irregularities after the roughening treatment are determined according to the degree of curing of the resin composition, the conditions of the roughening treatment, etc., it is preferable to select the optimum conditions for obtaining the desired surface irregularities.
  • the insulating layer containing the resin composition of the present embodiment is extremely suitable because it can ensure adhesion with the plated conductor layer even if the surface roughness is low.
  • Examples of methods for forming a wiring pattern (conductor layer) by plating include a semi-additive method, a full additive method, and a subtractive method.
  • the semi-additive method is preferable from the viewpoint of forming a fine wiring pattern.
  • electrolytic plating is selectively performed using a plating resist (pattern plating), and then the plating resist And a method of forming a wiring pattern by etching an appropriate amount of the whole.
  • a method of forming a pattern by a full additive method there is a method of forming a wiring pattern by performing pattern formation in advance using a plating resist on the surface of an insulating layer and selectively attaching electroless plating or the like.
  • An example of a pattern forming method using the subtractive method is a method of forming a wiring pattern by forming a conductive layer on the surface of an insulating layer by plating and then selectively removing the conductive layer using an etching resist. It is done.
  • the pattern formation by the semi-additive method is performed by combining electroless plating and electrolytic plating. In this case, it is preferable to perform drying after the electroless plating and after the electrolytic plating.
  • the drying after electroless is preferably performed at 80 to 180 ° C. for 10 to 120 minutes, for example, and the drying after the electroplating is preferably performed at 130 to 220 ° C. for 10 to 120 minutes, for example.
  • the printed wiring board of the present embodiment can be a multilayer printed wiring board.
  • a metal foil-clad laminate with metal foil for example, copper or aluminum
  • an inner layer circuit is formed on this, and the resulting circuit is blackened
  • the inner circuit board is obtained.
  • a prepreg or resin sheet is arranged on one or both sides of the inner layer circuit board or metal foil (for example, copper or aluminum) thus obtained, and further metal foil (for example, copper or aluminum) or a release film (polyethylene film).
  • Lamination molding uses a technique generally used for lamination molding of ordinary laminates for printed wiring boards, such as a multistage press, a multistage vacuum press, a laminator, a vacuum laminator, an autoclave molding machine, etc., and the temperature is, for example, 100 to 300 C., pressure is, for example, 0.1 to 100 kgf / cm 2 (about 9.8 kPa to about 38 MPa), and heating time is appropriately selected within a range of, for example, 30 seconds to 5 hours. If necessary, post-curing may be performed at a temperature of 150 to 300 ° C. to adjust the degree of curing.
  • a reactor equipped with a thermometer, a stirrer, a dropping funnel and a reflux condenser was previously cooled to 0 to 5 ° C. with a saline solution, to which 7.47 g (0.122 mol) of cyanogen chloride and 35% hydrochloric acid 9. 75 g (0.0935 mol), water 76 mL, and methylene chloride 44 mL were charged.
  • the ⁇ -naphthol aralkyl resin (SN485, OH group equivalent: 214 g / eq.) Represented by the following formula (4a ′) is stirred with keeping the temperature in the reactor at ⁇ 5 to + 5 ° C. and the pH at 1 or less.
  • the average value of n is 3 to 4.
  • silica SFP-130MC, manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 0.6 ⁇ m
  • SFP-130MC manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size 0.6 ⁇ m
  • a varnish a solution of a resin composition containing an epoxy compound (A), a cyanate ester compound (B), a maleimide compound (C), an inorganic filler (D), and an imidazole silane (E) was obtained.
  • This varnish was further diluted with MEK, impregnated on a 0.1 mm thick E glass woven fabric, and dried by heating at 160 ° C. for 4 minutes to obtain a prepreg having a resin composition content of 50 mass%.
  • a prepreg having a resin composition content of 50 mass%.
  • laminate molding is performed for 120 minutes at a pressure of 40 kgf / cm 2 (about 3.9 MPa) and a temperature of 220 ° C., and copper-clad laminates with insulating layer thicknesses of 0.4 mm and 0.8 mm (4 and 8 prepregs respectively) Use).
  • Example 2 As imidazole silane (E), the amount of imidazole silane (IA-100A) in which X in formula (3) is an acetate ion and Y is a hydroxyl group is 3 parts by mass (non-volatile equivalent: 2.1 parts by mass) A varnish (resin composition solution) was prepared in the same manner as in Example 1 except for changing, and a copper-clad laminate (metal foil-clad laminate) was obtained.
  • Example 3 As the maleimide compound (C), instead of the maleimide compound (BMI-2300) represented by the above formula (2), a maleimide compound (BMI-1000P represented by the above formula (1), Kay Kasei Co., Ltd.) A varnish (resin composition solution) was prepared in the same manner as in Example 1 except that 30 parts by mass (non-volatile content: 15 parts by mass) of MEK solution (non-volatile content: 50% by mass) was used. A stretched laminate (metal foil-clad laminate) was obtained.
  • Example 4 The amount of the maleimide compound (BMI-2300) represented by the above formula (2) used in the MEK solution (non-volatile content: 50% by mass) was changed to 16 parts by mass (equivalent to 8 parts by mass in terms of non-volatile content).
  • As (C) except that 14 parts by mass (7 parts by mass in terms of nonvolatile content) of a MEK solution (nonvolatile content 50% by mass) of the maleimide compound (BMI-1000P) represented by the above formula (1) was further added, A varnish (resin composition solution) was prepared in the same manner as in Example 1 to obtain a copper clad laminate (metal foil clad laminate).
  • Example 5 60 parts by mass (in terms of non-volatile content) of the MEK solution (non-volatile content 75% by mass) of the biphenylaralkyl type epoxy compound (NC-3000-FH) represented by the above formula (6), which is the epoxy compound (A) 45 parts by mass), and as a cyanate ester compound (B), a MEK solution of an ⁇ -naphthol aralkyl cyanate ester compound of the above formula (4a) obtained in Synthesis Example 1 (non-volatile content: 50% by mass) Was changed to 40 parts by mass (20 parts by mass in terms of non-volatile content), and a maleimide compound (C), a maleimide compound (BMI-2300) represented by the above formula (2) in a MEK solution (non-volatile content) 50% by mass) is changed to 40 parts by mass (20 parts by mass in terms of nonvolatile content), and imidazole silane (E), X in the above formula (3) is acetate ion
  • Example 6 The amount of silica (SC4500-SQ) used as the second inorganic filler (D) is changed to 200 parts by mass, and imidazole silane, X in the above formula (3) is acetate ion, and Y is hydroxyl group Varnish (resin composition solution) in the same manner as in Example 5 except that the amount of imidazolesilane (IA-100A) used was changed to 0.2 parts by mass (non-volatile content 0.14 parts by mass) And a copper clad laminate (metal foil clad laminate) was obtained.
  • silica SC4500-SQ
  • X in the above formula (3) is acetate ion
  • Y is hydroxyl group Varnish (resin composition solution) in the same manner as in Example 5 except that the amount of imidazolesilane (IA-100A) used was changed to 0.2 parts by mass (non-volatile content 0.14 parts by mass)
  • a copper clad laminate metal foil clad laminate
  • Example 7 The amount of the MEK solution (non-volatile content 50% by mass) of the ⁇ -naphthol aralkyl-type cyanate ester compound of the above formula (4a) obtained in Synthesis Example 1 which is the cyanate ester compound (B) is 80 parts by mass ( The amount of the MEK solution (nonvolatile content 50% by mass) of the maleimide compound (BMI-2300) represented by the above formula (2), which is the maleimide compound (C), is changed to 40 parts by mass in terms of the nonvolatile content.
  • the amount was changed to 10 parts by mass (5 parts by mass in terms of non-volatile content), and the second maleimide compound (C), the maleimide compound (BMI-1000P) represented by the above formula (1) was not used.
  • Example 8 The amount of the MEK solution (nonvolatile content 75 mass%) of the biphenyl aralkyl type epoxy compound (NC-3000-FH) represented by the above formula (6), which is the epoxy compound (A), is 73.3 parts by mass (nonvolatile). The amount of use of the MEK solution (nonvolatile content 50 mass%) of the naphthalene type epoxy compound (HP4710), which is the second epoxy compound (A), is changed to 30 mass parts (nonvolatile content conversion).
  • Example 9 The amount of the MEK solution (non-volatile content 50% by mass) of the ⁇ -naphthol aralkyl-type cyanate ester compound of the above formula (4a) obtained by Synthesis Example 1 which is the cyanate ester compound (B) was 70 parts by mass ( The amount of the MEK solution (non-volatile content 50% by mass) of the maleimide compound (BMI-2300) represented by the above formula (2), which is the maleimide compound (C), is changed to 35 parts by mass in terms of non-volatile content.
  • a varnish (resin composition solution) was prepared in the same manner as in Example 7 except that the content was changed to 20 parts by mass (10 parts by mass in terms of nonvolatile content), and a copper-clad laminate (metal foil-clad laminate) was obtained. It was.
  • Example 10 Instead of the ⁇ -naphthol aralkyl type cyanate ester compound of the above formula (4a) obtained in Synthesis Example 1 as the cyanate ester compound (B), R 13 to 16 in the above formula (5) are all hydrogen atoms. 70 parts by mass (35 parts by mass in terms of non-volatiles) of MEK solution (non-volatile part 50% by mass) of a certain cyanate ester compound (Primaset PT-60, manufactured by Lonza Japan Co., Ltd.) represented by the following formula (5a) ) A varnish (resin composition solution) was prepared in the same manner as in Example 9 except that it was used to obtain a copper clad laminate (metal foil clad laminate). (N represents an integer of 1 or more.)
  • Example 11 As imidazole silane (E), X in the above formula (3) is an acetate ion, and instead of imidazole silane (IA-100A) in which Y is a hydroxyl group, X in the above formula (3) is a phthalate ion, Except for using 0.5 parts by mass (non-volatile content: 0.35 parts by mass) of imidazolesilane (IA-100F, manufactured by JX Nippon Mining & Metals Co., Ltd., non-volatile content: 70%) in which Y is a hydroxyl group. In the same manner as in Example 9, a varnish (resin composition solution) was prepared to obtain a copper-clad laminate (metal foil-clad laminate).
  • Example 12 As imidazole silane (E), X in the above formula (3) is an acetate ion, and instead of imidazole silane (IA-100A) in which Y is a hydroxyl group, X in the above formula (3) is a phthalate ion, Except that 0.5 parts by mass (0.4 parts by mass in terms of nonvolatile content) of imidazolesilane (IM-100F, manufactured by JX Nippon Mining & Metals Co., Ltd., nonvolatile content 80%) in which Y is hydrogen was used. A varnish (resin composition solution) was prepared in the same manner as in Example 9 to obtain a copper clad laminate (metal foil clad laminate).
  • Example 13 As inorganic filler (D), instead of silica (SFP-130MC) and silica (SC4500-SQ), magnesium hydroxide (MGZ-6R, Sakai Chemical Industry Co., Ltd., average particle size 2.0 ⁇ m) 100 parts by mass A varnish (resin composition solution) was prepared in the same manner as in Example 9 except that was added to the varnish to obtain a copper-clad laminate (metal foil-clad laminate).
  • D inorganic filler (D), instead of silica (SFP-130MC) and silica (SC4500-SQ), magnesium hydroxide (MGZ-6R, Sakai Chemical Industry Co., Ltd., average particle size 2.0 ⁇ m) 100 parts by mass
  • a varnish (resin composition solution) was prepared in the same manner as in Example 9 except that was added to the varnish to obtain a copper-clad laminate (metal foil-clad laminate).
  • Example 14 Implementation was performed except that 100 parts by mass of magnesium oxide (SMO-0.4, manufactured by Sakai Chemical Industry Co., Ltd., average particle size 0.4 ⁇ m) was used as the inorganic filler (D) instead of magnesium hydroxide.
  • a varnish (resin composition solution) was prepared in the same manner as in Example 13 to obtain a copper clad laminate (metal foil clad laminate).
  • Example 15 Varnish as in Example 13 except that 100 parts by weight of boehmite silica (AOH-60, manufactured by Nabaltec, average particle size 0.9 ⁇ m) was used as the inorganic filler (D) instead of magnesium hydroxide. (Solution of resin composition) was prepared to obtain a copper clad laminate (metal foil clad laminate).
  • AOH-60 boehmite silica
  • Comparative example 1 As the imidazole silane (E), a varnish (IA) was used in the same manner as in Example 1 except that imidazole silane (IA-100A) in which X in the formula (3) is an acetate ion and Y is a hydroxyl group was not used. Resin composition solution) was prepared to obtain a copper clad laminate (metal foil clad laminate).
  • Comparative example 2 As imidazole silane (E), instead of imidazole silane (IA-100A) in which X in formula (3) is an acetate ion and Y is a hydroxyl group, imidazole silane (IS- 1000, JX Nippon Mining & Metals Co., Ltd. (non-volatile content: 90% by mass) was used in the same manner as in Example 1, except that 1 part by mass (non-volatile content: 0.9 parts by mass) was used. The copper-clad laminate (metal foil-clad laminate) was obtained.
  • R 17 is hydrogen or an alkyl group having 1 to 20 carbon atoms
  • R 18 is hydrogen, a vinyl group or an alkyl group having 1 to 5 carbon atoms
  • R 19 and R 20 are carbon atoms. 1 to 3 alkyl groups, n represents an integer of 1 to 3)
  • R 21 is hydrogen or an alkyl group having 1 to 20 carbon atoms
  • R 22 is hydrogen, a vinyl group or an alkyl group having 1 to 5 carbon atoms
  • R 23 and R 24 are alkyl groups having 1 to 3 carbon atoms
  • n represents an integer of 1 to 3.
  • Comparative example 4 As the maleimide compound (C), instead of the maleimide compound (BMI-2300) represented by the above formula (2), bis (3-ethyl-5-methyl-4maleimidophenyl) methane (BMI-70, Kay Eye) A varnish (resin composition solution) was prepared in the same manner as in Example 1 except that 30 parts by mass (15 parts by mass in terms of nonvolatile content) of MEK solution (produced by Kasei Co., Ltd.) was used. The copper clad laminate (metal foil clad laminate) was obtained.
  • Comparative example 5 Instead of the ⁇ -naphthol aralkyl cyanate ester compound of the above formula (4a) obtained in Synthesis Example 1, naphthol aralkyl type phenol resin (SN495V2 (SN-OH), phenol equivalent 236 g / eq., Nippon Steel Chemical Co., Ltd.) A varnish (resin composition solution) was prepared in the same manner as in Example 1 except that 70 parts by mass (non-volatile content: 35 parts by mass) of MEK solution (manufactured by Co., Ltd.) was used. A copper clad laminate (metal foil clad laminate) was obtained.
  • Comparative Example 6 The amount of the epoxy compound (A) used in the MEK solution (nonvolatile content: 75% by mass) of the biphenylaralkyl epoxy compound (NC-3000-FH) represented by the above formula (6) is 35.7 parts by mass (nonvolatile) The amount of the MEK solution (nonvolatile content 50 mass%) of the naphthalene type epoxy compound (HP4710), which is the second epoxy compound (A), is changed to 10 mass parts (nonvolatile content). The amount of use of the MEK solution (non-volatile content 50 mass%) of the maleimide compound (BMI-2300) represented by the above formula (2), which is the maleimide compound (C), is changed to 70 mass%.
  • a varnish (resin composition solution) was prepared in the same manner as in Example 9 except that the amount was changed to 35 parts by weight (35 parts by weight in terms of nonvolatile content) to obtain a copper-clad laminate (metal foil-clad laminate).
  • Examples 1 to 15 having an insulating layer formed using the resin composition of the present invention have higher plating peel strength and glass transition temperature and moisture absorption heat resistance than Comparative Examples 1 to 6. It turns out that it is excellent.
  • Comparative Examples 2 and 3 the amount of change in varnish gel time was small, and it was difficult to stably produce a prepreg.
  • the resin composition of the present invention when used as a material for an insulating layer of a printed wiring board, it has excellent prepreg manufacturability, excellent adhesion between the insulating layer and the plated conductor layer, and is also heat resistant. Since it exhibits various effects such as superiority, it is extremely useful as a material for an insulating layer of a printed wiring board.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Laminated Bodies (AREA)

Abstract

 絶縁層と、該絶縁層の表面にめっきにより形成される導体層と、を含むプリント配線板の前記絶縁層の材料として用いられる、樹脂組成物であって、エポキシ化合物(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)、無機充填材(D)、及びイミダゾールシラン(E)を含み、前記マレイミド化合物(C)が、所定のマレイミド化合物を含み、前記マレイミド化合物(C)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、25質量%以下であり、且つ、前記イミダゾールシラン(E)が、下記式(3)で表される化合物を含む、樹脂組成物。

Description

プリント配線板材料用樹脂組成物、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板
 本発明は、プリント配線板の絶縁層の材料として有用な樹脂組成物、並びに斯かる樹脂組成物を用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板に関する。
 近年、電子機器の小型化、高性能化が進んでいる。多層プリント配線板は、電子部品の実装密度を向上させるため、導体配線の微細化が進んでおり、その配線形成技術が望まれている。絶縁層上に高密度の微細配線を形成する方法としては、無電解めっきのみで導体層を形成するアディティブ法や、無電解めっきで全面に薄い銅層を形成した後に電解めっきで導体層を形成し、そのあとに薄い銅層をフラッシュエッチングするセミアディティブ法などが知られている。
 また、多層プリント配線板の小型化、高密度化により、多層プリント配線板に用いられる積層板を薄型化する検討が盛んに行なわれている。薄型化に伴い、実装信頼性の低下及び多層プリント配線板の反りの拡大という問題が生じるため、絶縁層の材料となる樹脂組成物には、高密着性、高ガラス転移温度が求められている。
 特許文献1及び2には、内層回路と絶縁層との密着性及び成形性を向上させるため、エポキシ樹脂、フェノール樹脂及びイミダゾールシランを用いる技術が記載されている。
 また、特許文献3には、エポキシ樹脂、硬化剤、シリカ及びイミダゾールシランを用いる樹脂組成物が記載され、この樹脂組成物を硬化し、その後粗化処理された硬化体の表面にめっき処理により金属層を形成した場合に、硬化体と金属層が高い密着を示すことが開示されている。
特開2003-318499号公報 特許第4016782号公報 特許第4686750号公報
 しかしながら、特許文献1及び2では、内層回路と絶縁層との密着については記載されているが、めっきにより形成される導体層と絶縁層との密着性や、高ガラス転移温度という概念は一切記載されていない。
 また、特許文献3に記載の硬化体は、硬化体上のめっき金属層と硬化体との密着力には優れるものの、プリント配線板の絶縁層として求められるガラス転移温度の観点から満足いくものでない。
 本発明は上記の課題に鑑みてなされたもので、その目的は、プリント配線板の絶縁層の材料として使用した場合に、プリプレグの製造性に優れ、絶縁層とその表面にめっき形成される導体層との密着性に優れ、ガラス転移温度が高く、且つ吸湿時の耐熱性にも優れた樹脂組成物を提供するとともに、斯かる樹脂組成物を用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板を提供することである。
 本発明者らは、エポキシ化合物、シアン酸エステル化合物、マレイミド化合物、無機充填材及びイミダゾールシランを含む樹脂組成物において、マレイミド化合物及びイミダゾールシランを特定の種類から選択し、且つ、エポキシ化合物、シアン酸エステル化合物、及びマレイミド化合物の合計含有量に対するマレイミド化合物の比率を特定の範囲とすることにより、プリント配線板の絶縁層の材料として使用した場合に、絶縁層とその表面にめっき形成される導体層との密着性に優れ、ガラス転移温度が高く、プリプレグ製造性に優れ、吸湿時の耐熱性にも優れた樹脂組成物が得られる、との知見を得た。本発明はかかる知見によるものである。
 すなわち、本発明は以下のとおりである。
〔1〕
 絶縁層と、該絶縁層の表面にめっきにより形成される導体層と、を含むプリント配線板の前記絶縁層の材料として用いられる、樹脂組成物であって、
 エポキシ化合物(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)、無機充填材(D)、及びイミダゾールシラン(E)を含み、
 前記マレイミド化合物(C)が、下記式(1)で表されるマレイミド化合物及び/又は下記式(2)で表されるマレイミド化合物を含み、
 前記マレイミド化合物(C)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、25質量%以下であり、
 且つ、前記イミダゾールシラン(E)が、下記式(3)で表される化合物を含む、
 樹脂組成物。
Figure JPOXMLDOC01-appb-C000006
(上記式(1)中、nは、平均値として1~30の範囲の実数である。)
Figure JPOXMLDOC01-appb-C000007
(上記式(2)中、R、R、R、及びRは、各々独立して、水素原子又はメチル基を示し、nは、平均値として1~10の範囲の実数である。)
Figure JPOXMLDOC01-appb-C000008
(上記式(3)中、Rは、水素又は炭素数が1~20のアルキル基を示し、Rは水素、ビニル基、又は炭素数が1~5のアルキル基を示し、R及びRは、各々独立して、炭素数が1~3のアルキル基を示し、Xは、酢酸イオン又はフタル酸イオンを示し、Yは、水素又は水酸基を示し、nは1~3の整数を示す。)
〔2〕
 前記シアン酸エステル化合物(B)が、下記式(4)で表されるナフトールアラルキル型シアン酸エステル化合物及び/又は下記式(5)で表されるノボラック型シアン酸エステル化合物を含む、前項〔1〕に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000009
(上記(4)式中、R、R10、R11、及びR12は、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
Figure JPOXMLDOC01-appb-C000010
(上記(5)式中、R13、R14、R15、及びR16は、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
〔3〕
 前記無機充填材(D)が、シリカ、水酸化アルミニウム、アルミナ、ベーマイト、酸化マグネシウム、及び水酸化マグネシウムからなる群から選択される少なくとも1種以上を含む、前項〔1〕又は〔2〕に記載の樹脂組成物。
〔4〕
 前記エポキシ化合物(A)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、40~75質量%である、前項〔1〕~〔3〕のいずれか一項に記載の樹脂組成物。
〔5〕
 前記シアン酸エステル化合物(B)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、20~40質量%である、前項〔1〕~〔4〕のいずれか一項に記載の樹脂組成物。
〔6〕
 前記無機充填材(D)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、50~300質量%である、前項〔1〕~〔5〕のいずれか一項に記載の樹脂組成物。
〔7〕
 前記イミダゾールシラン(E)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、0.1~3質量%である、前項〔1〕~〔6〕のいずれか一項に記載の樹脂組成物。
〔8〕
 基材と、該基材に添着された、前項〔1〕~〔7〕のいずれか一項に記載の樹脂組成物と、を含む、プリプレグ。
〔9〕
 金属箔又は金属フィルムからなる外層と、該外層上に積層された、前項〔1〕~〔7〕のいずれか1項に記載の樹脂組成物からなる層と、を含む、樹脂シート。
〔10〕
 前項〔8〕に記載のプリプレグと、該プリプレグの片面又は両面に積層された金属箔と、を含む、金属箔張積層板。
〔11〕
 前記金属箔が、表面粗さRz0.7μm~2.5μmのマット面を有する、前項〔10〕に記載の金属箔張積層板。
〔12〕
 前項〔8〕に記載のプリプレグをビルドアップ材料として用いて作製された、プリント配線板。
〔13〕
 前項〔9〕に記載の樹脂シートをビルドアップ材料として用いて作製された、プリント配線板。
〔14〕
 前記樹脂シートを表面処理してめっきによりパターン形成することにより作製された、前項〔13〕に記載のプリント配線板。
〔15〕
 前項〔10〕に記載の金属箔張積層板をビルドアップ材料として用いて作製された、プリント配線板。
〔16〕
 前記金属箔張積層板の金属箔をエッチングし、表面処理してめっきによりパターン形成することにより作製された、前項〔15〕に記載のプリント配線板。
〔17〕
 絶縁層と、該絶縁層の表面に形成された導体層と、を含み、
 前記絶縁層が、前項〔1〕~〔7〕のいずれか一項に記載の樹脂組成物を含む、プリント配線板。
 本発明の樹脂組成物は、以下の(1)~(4)の効果の少なくとも何れか、好ましくは全てを発揮する。
(1)プリプレグ製造性に優れる。
(2)絶縁層とその表面にめっき形成される導体層との密着性に優れる。
(3)ガラス転移温度が高い。
(4)吸湿時の耐熱性に優れる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
[I.樹脂組成物]
 本実施形態の樹脂組成物は、
 絶縁層と、該絶縁層の表面にめっきにより形成される導体層と、を含むプリント配線板の前記絶縁層の材料として用いられる、樹脂組成物であって、
 エポキシ化合物(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)、無機充填材(D)、及びイミダゾールシラン(E)を含み、
 前記マレイミド化合物(C)が、下記式(1)で表される化合物及び/又は下記式(2)で表される化合物を含み、
 前記マレイミド化合物(C)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、25質量%以下であり、
 且つ、前記イミダゾールシラン(E)が、下記式(3)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000011
(上記式(1)中、nは、平均値として1~30の範囲の実数である。)
Figure JPOXMLDOC01-appb-C000012
(上記式(2)中、R、R、R、及びRは、各々独立して、水素原子又はメチル基を示し、nは、平均値として1~10の範囲の実数である。)
Figure JPOXMLDOC01-appb-C000013
(上記式(3)中、Rは、水素又は炭素数が1~20のアルキル基を示し、Rは水素、ビニル基、又は炭素数が1~5のアルキル基を示し、R及びRは、各々独立して、炭素数が1~3のアルキル基を示し、Xは、酢酸イオン又はフタル酸イオンを示し、Yは、水素又は水酸基を示し、nは1~3の整数を示す。)
 本実施形態の樹脂組成物は、絶縁層と、該絶縁層の表面にめっきにより形成される導体層と、を含むプリント配線板の絶縁層の材料として用いられるものであり、より具体的には、絶縁層と、絶縁層の表面にセミアディティブ法又はフルアディティブ法により選択的にめっきされることにより形成される導体層と、を含むプリント配線板の絶縁層の材料として用いられるものであることが好ましい。本実施形態の樹脂組成物を含む絶縁層は、絶縁層の表面にめっき形成される導体層との密着性に優れるため、このような用途に特に適したものとなる。
〔I-1.エポキシ化合物(A)〕
 本実施形態の樹脂組成物に含まれるエポキシ化合物(A)は、少なくとも1個のエポキシ基を有する有機化合物である。エポキシ化合物(A)の1分子当たりのエポキシ基の数は、1以上である。該エポキシ基の数は2以上であることがより好ましい。
 エポキシ化合物(A)としては、特に限定されず従来公知のエポキシ樹脂を用いることができ、例えば、ビフェニルアラルキル型エポキシ化合物(エポキシ基含有ビフェニルアラルキル樹脂)、ナフタレン型エポキシ化合物(ナフタレン骨格を有するエポキシ基含有化合物:ナフタレン2官能型エポキシ化合物)、ビスナフタレン型エポキシ化合物(ビスナフタレン骨格を有するエポキシ基含有化合物:ナフタレン4官能型エポキシ化合物)、多官能フェノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、キシレンノボラック型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、フェノールアラルキルノボラック型エポキシ樹脂、ナフトールアラルキルノボラック型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド型エポキシ化合物(エポキシ基含有芳香族炭化水素ホルムアルデヒド樹脂)、アントラキノン型エポキシ化合物(アントラキノン骨格を有するエポキシ基含有化合物)、アントラセン型エポキシ樹脂、ナフトールアラルキル型エポキシ化合物(エポキシ基含有ナフトールアラルキル樹脂)、ジシクロペンタジエン型エポキシ樹脂、ザイロック型エポキシ化合物(エポキシ基含有ザイロック樹脂)、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、3官能フェノール型エポキシ化合物(3官能フェノール骨格を有するエポキシ基含有化合物)、4官能フェノール型エポキシ化合物(4官能フェノール骨格を有するエポキシ基含有化合物)、ビフェニル型エポキシ樹脂(ビフェニル骨格を有するエポキシ基含有化合物)、アラルキルノボラック型エポキシ樹脂、トリアジン骨格エポキシ化合物(トリアジン骨格含有エポキシ樹脂)、トリグリシジルイソシアヌレート、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、グリシジルアミン、グリシジル型エステル樹脂、ブタジエン等の二重結合含有化合物の二重結合をエポキシ化した化合物、及び、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物等が挙げられる。
 なお、上記例示に記すように、本明細書では、ある樹脂又は化合物をエポキシ化して得られる構造を有するエポキシ化合物を、その樹脂又は化合物の名称に「~型エポキシ化合物」との記載を付して表す場合がある。
 これらの中でも、エポキシ化合物(A)としては、絶縁層とめっき導体層との密着性及び難燃性等を向上させる観点から、ビフェニルアラルキル型エポキシ化合物、ナフタレン型エポキシ化合物、ビスナフタレン型エポキシ化合物、芳香族炭化水素ホルムアルデヒド型エポキシ化合物、アントラキノン型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、及びザイロック型エポキシ化合物からなる群から選択される1種又は2種以上であることが好ましい。なお、芳香族炭化水素ホルムアルデヒド型エポキシ化合物の好ましい例としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素をホルムアルデヒドと重合して得られた芳香族炭化水素ホルムアルデヒド樹脂を、フェノール、キシレノール等の水酸基含有芳香族炭化水素で変性し、更に当該水酸基をエポキシ化した化合物や、フェノール、キシレノール等の水酸基含有芳香族炭化水素をホルムアルデヒドと重合して得られた芳香族炭化水素ホルムアルデヒド樹脂の当該水酸基をエポキシ化した化合物等が挙げられる。
 さらに、樹脂組成物の熱膨張率をより一層低くする観点から、エポキシ化合物(A)は、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ化合物、ビスナフタレン型エポキシ化合物及びアントラキノン型エポキシ化合物からなる群から選択される1種又は2種以上であることが好ましい。
 ビフェニルアラルキル型エポキシ化合物としては、特に限定されないが、例えば、下記式(6)で表される化合物が好ましい。このようなビフェニルアラルキル型エポキシ樹脂を用いることにより、樹脂組成物の耐燃焼性がより向上する傾向にある。
Figure JPOXMLDOC01-appb-C000014
(上記式(6)中、nは1以上の整数を示す。nの上限値は、通常は10、好ましくは7である。)
 エポキシ化合物(A)の含有量は、特に限定されないが、絶縁層とめっき導体層との密着性を維持しながら、絶縁層に高いガラス転移温度と良好な耐熱性とを付与する観点から、エポキシ化合物(A)、シアン酸エステル化合物(B)、及びマレイミド化合物(C)の合計含有量100質量%に対して、好ましくは40~75質量%であり、より好ましくは50~70質量%であり、さらに好ましくは60~70質量%である。なお、2種以上のエポキシ化合物(A)を併用する場合には、これらの合計含有量が上記値を満たすことが好ましい。
 エポキシ化合物(A)は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 エポキシ化合物(A)としては、様々な構造の既製品が市販されており、それら適宜入手して用いることができる。また、公知の種々の製法を用いて、エポキシ化合物(A)を製造してもよい。このような製法としては、特に限定されないが、例えば、所望の骨格を有する水酸基含有化合物を入手又は合成し、当該水酸基を公知の手法により修飾してエポキシ化(エポキシ基導入)する方法等が挙げられる。
〔I-2.シアン酸エステル化合物(B)〕
 本実施形態の樹脂組成物に含まれるシアン酸エステル化合物(B)は、シアナト基(シアン酸エステル基)を有する化合物である。シアン酸エステル化合物(B)を用いることにより、樹脂組成物に対し、耐薬品性、高ガラス転移温度、低熱膨張性等の優れた特性を付与することができる。
 シアン酸エステル化合物(B)としては、特に限定されず従来公知のエポキシ樹脂を用いることができ、例えば、ナフトールアラルキル型シアン酸エステル化合物(シアナト基含有ナフトールアラルキル樹脂)、ノボラック型シアン酸エステル化合物(シアナト基含有ノボラック樹脂)、芳香族炭化水素ホルムアルデヒド型シアン酸エステル化合物(シアナト基含有芳香族炭化水素ホルムアルデヒド樹脂)、及びビフェニルアラルキル型シアン酸エステル化合物(シアナト基含有ビフェニルアラルキル樹脂)からなる群から選択される1種以上が挙げられる。
 なお、上記例示に記すように、本明細書では、ある樹脂又は化合物をシアナト化(シアン酸エステル化)して得られる構造を有するシアン酸エステル化合物(B)を、その樹脂又は化合物の名称に「~型シアン酸エステル化合物」との記載を付して表す場合がある。
 これらの中でも、シアン酸エステル化合物(B)としては、難燃性に優れ、硬化性が高く、かつ得られる硬化物のガラス転移温度が高い樹脂組成物を提供するという観点から、ナフトールアラルキル型シアン酸エステル化合物、ノボラック型シアン酸エステル化合物、芳香族炭化水素ホルムアルデヒド型シアン酸エステル化合物、及びビフェニルアラルキル型シアン酸エステル化合物からなる群から選択される1種又は2種以上が特に好ましい。なお、芳香族炭化水素ホルムアルデヒド型シアン酸エステル化合物としては、特に限定されないが、例えば、ベンゼン、トルエン、又はキシレン等の芳香族炭化水素をホルムアルデヒドと重合して芳香族炭化水素ホルムアルデヒド樹脂を得て、得られた芳香族炭化水素ホルムアルデヒド樹脂をフェノール又はキシレノール等の水酸基含有芳香族炭化水素で変性し、更に水酸基をシアナト化する方法、フェノール又はキシレノール等の水酸基含有芳香族炭化水素をホルムアルデヒドと重合して水酸基含有芳香族炭化水素ホルムアルデヒド樹脂を得て、得られた水酸基含有芳香族炭化水素ホルムアルデヒド樹脂の水酸基をシアナト化する方法等により得られる化合物が挙げられる。
 さらにこのなかでも、ナフトールアラルキル型シアン酸エステル化合物及び/又はノボラック型シアン酸エステル化合物が好ましい。ナフトールアラルキル型シアン酸エステル化合物を用いることにより、樹脂組成物の硬化性がより一層向上し、耐燃性がさらに優れる硬化物を得ることができる傾向にある。また、ノボラック型シアン酸エステル化合物を用いることにより、耐熱性と耐燃性がより向上する傾向にある。
 上記ナフトールアラルキル型シアン酸エステル化合物としては、特に限定されないが、例えば、下記式(4)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000015
 上記式(4)中、R、R10、R11、及びR12は、各々独立して、水素原子又はメチル基を表し、この中でも水素原子が好ましい。また、上記式(4)中、nは1以上の整数を示す。nの上限値は、好ましくは10であり、より好ましくは6である。
 また、ノボラック型シアン酸エステル化合物としては、特に限定されないが、例えば、下記式(5)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000016
 上記式(5)中、R13、R14、R15、及びR16は、各々独立して、水素原子又はメチル基を表し、この中でも水素原子が好ましい。また、上記式(5)中、nは1以上の整数を示す。nの上限値は、好ましくは10であり、より好ましくは7である。
 樹脂組成物におけるシアン酸エステル化合物(B)の含有量は、特に限定されないが、絶縁層に高いガラス転移温度と良好な耐熱性とを付与する観点から、エポキシ化合物(A)、シアン酸エステル化合物(B)及びマレイミド化合物(C)の合計含有量100質量%に対して、好ましくは20~40質量%であり、より好ましくは20~35質量%である。なお、2種以上のシアン酸エステル化合物(B)を併用する場合には、これらの合計含有量が上記比率を満たすことが好ましい。
 本実施形態の樹脂組成物において、シアン酸エステル化合物(B)は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。また、上述のシアン酸エステル化合物(B)以外の公知のシアン酸エステル化合物を1種又は2種以上併用することも可能である。
 シアン酸エステル化合物(B)としては、様々な構造の既製品が市販されており、それら適宜入手して用いることができる。また、公知の種々の製法を用いて、シアン酸エステル化合物(B)を製造してもよい。このような製法としては、特に限定されないが、例えば、所望の骨格を有する水酸基含有化合物を入手又は合成し、当該水酸基を公知の手法により修飾してシアナト化する方法等が挙げられる。水酸基をシアナト化する手法としては、特に限定されないが、例えば、Ian Hamerton, "Chemistry and Technology of Cyanate Ester Resins," Blackie Academic & Professionalに記載の手法が挙げられる。
〔I-3.マレイミド化合物(C)〕
 本実施形態の樹脂組成物に含まれるマレイミド化合物(C)は、下記式(1)で表されるマレイミド化合物及び/又は式(2)で表されるマレイミド化合物を含み、これらのマレイミド化合物のプレポリマー、これらのマレイミド化合物とアミン化合物とのプレポリマー等を用いることもできる。下記式(1)で表されるマレイミド化合物を用いることにより、絶縁層とめっき導体層との密着性を維持しながら、絶縁層に耐熱性を付与することができる。また、下記式(2)で表されるマレイミド化合物を用いることにより、絶縁層とめっき導体層との密着性を維持しながら、高いガラス転移温度を付与することができる。
Figure JPOXMLDOC01-appb-C000017
(上記式(1)中、nは、平均値として1~30の範囲の実数である。)
Figure JPOXMLDOC01-appb-C000018
(上記式(2)中、R、R、R、及びRは、各々独立して、水素原子又はメチル基を示し、nは、平均値として1~10の範囲の実数である。)
 上記式(1)で表されるマレイミド化合物(C)は、{ポリテトラメチレンオキサイド-ビス(4-マレイミドベンゾエート)}であり、上記式(1)で表されるnが異なるマレイミド化合物を、1種もしくは2種以上を適宜混合して使用することも可能である。上記式(1)で表されるマレイミド化合物(C)は、下記式(7)で表されるジアミノ化合物{ポリテトラメチレンオキサイド-ビス(4-アミノベンゾエート)}と、無水マレイン酸と、を反応させることにより得ることができる。下記式(7)で表されるジアミノ化合物の分子量には、通常、原料のポリテトラメチレングリコール由来の分子量分布が反映されることから、上記式(1)で表されるマレイミド化合物(C)は、ほとんどの場合、所定の範囲の分子量分布を有する。
Figure JPOXMLDOC01-appb-C000019
(上記式(7)中、nは平均値として1~30の範囲の実数である。)
 上記式(1)及び(7)中、nは、平均値として、1~30の範囲の実数であり、好ましくは3~21の範囲の実数であり、より好ましくは7~18の範囲の実数である。式(1)で表されるマレイミド化合物(C)の製品例としては、ケイ・アイ化成(株)製の「BMI-650P」及び「BMI-1000P」が挙げられる。
 式(2)で表されるマレイミド化合物(C)の製品例としては、大和化成(株)製「BMI-2300」が挙げられる。
 マレイミド化合物(C)の含有量は、エポキシ化合物(A)、シアン酸エステル化合物(B)、及びマレイミド化合物(C)の合計含有量100質量%に対して、25質量%以下であり、好ましくは0.10~25質量%であり、より好ましくは3.0~20質量%である。マレイミド化合物(C)の含有量が25質量%以下であることにより、樹脂組成物の各成分、特にシアン酸エステル化合物(B)及び特定のイミダゾールシラン(E)との相互作用がより向上し、樹脂組成物を用いて形成された絶縁層とめっき導体層との密着性を顕著に向上させつつ、絶縁層のガラス転移温度Tgも極めて高い値(例えば230℃以上)に維持することができる。かくして、本実施形態の樹脂組成物によれば、優れた密着性と高耐熱性とを高い水準で両立させるという、予測し得ない顕著な効果を得ることが可能となる。
 なお、本実施形態の樹脂組成物において、マレイミド化合物(C)は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。2種以上のマレイミド化合物(C)を併用する場合には、これらの合計含有量が上記比率を満たすことが好ましい。
〔I-4.無機充填材(D)〕
 本実施形態の樹脂組成物に含まれる無機充填材(D)としては、特に限定されないが、例えば、カオリン、焼成カオリン、焼成クレー、未焼成クレー、シリカ(例えば天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ、湿式シリカ、合成シリカ、アエロジル等)、アルミニウム化合物(例えばベーマイト、水酸化アルミニウム、アルミナ、ハイドロタルサイト、ホウ酸アルミニウム、窒化アルミニウム等)、マグネシウム化合物(例えば炭酸マグネシウム、酸化マグネシウム、水酸化マグネシウム等)、カルシウム化合物(例えば炭酸カルシウム、水酸化カルシウム、硫酸カルシウム、亜硫酸カルシウム、ホウ酸カルシウム等)、モリブデン化合物(例えば酸化モリブデン、モリブデン酸亜鉛等)、タルク(例えば天然タルク、焼成タルク等)、マイカ(雲母)、ガラス(例えばAガラス、NEガラス、Cガラス、Lガラス、Sガラス、MガラスG20、Eガラス、Tガラス、Dガラス、Sガラス、Qガラス等の、短繊維状ガラス、球状ガラス、微粉末ガラス、中空ガラス等)、酸化チタン、酸化亜鉛、酸化ジルコニウム、硫酸バリウム、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸ナトリウム、窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化炭素、チタン酸ストロンチウム、チタン酸バリウム、錫酸亜鉛等の錫酸塩、ゴム系充填材(例えば、スチレン型、ブタジエン型、アクリル型などのゴムパウダー、コアシェル型のゴムパウダー、シリコーン複合パウダー、シリコーンレジンパウダー、シリコーンゴムパウダー等)などが挙げられる。本実施形態の樹脂組成物において、無機充填材(D)は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 これらの中でも、無機充填材(D)としては、シリカ、水酸化アルミニウム、アルミナ、ベーマイト、酸化マグネシウム、及び水酸化マグネシウムからなる群から選択される1種又は2種以上が好適である。このような無機充填材(D)を用いることにより、低熱膨張化及び耐燃性がより向上する傾向にある。
 特に、低熱膨張性の観点から、無機充填材(D)としては、シリカが好ましく、溶融シリカが特に好ましい。シリカの具体例としては、電気化学工業(株)製のSFP-130MC等、(株)アドマテックス製のSC2050―MB、SC2500―SQ、SC4500-SQ等が挙げられる。
 また、無機充填材(D)としては、水酸化マグネシウム及び/又は酸化マグネシウムを単独で、或いはシリカ等の他の無機充填材との組み合わせで使用することも好ましい。水酸化マグネシウム及び水酸化マグネシウムを用いることにより、耐燃性がより向上する傾向にある。水酸化マグネシウムの具体例としては、タテホ化学工業(株)製の「エコーマグZ-10」、「エコーマグPZ-1」、神島化学工業(株)製の「マグシーズN」、「マグシーズS」、「マグシーズEP」、「マグシーズEP2-A」、堺化学工業(株)製のMGZ-1、MGZ-3、MGZ-6R、協和化学工業(株)製の「キスマ5」、「キスマ5A」、「キスマ5P」等が挙げられる。酸化マグネシウムの具体例としては、タテホ化学工業(株)製のFNM-G、堺化学工業(株)製のSMO、SMO-0.1、SMO-S-0.5等が挙げられる。
 無機充填材(D)の平均粒子径は、特に限定されないが、プリプレグの製造性向上の観点から、好ましくは0.01~5.0μmであり、より好ましくは0.1~2.0μmであり、さらに好ましくは0.2~1.5μmである。なお、本明細書において無機充填材(D)の「平均粒子径」とは、無機充填材(D)のメジアン径を意味するものとする。ここで「メジアン径」とは、ある粒子径を基準として粉体の粒度分布を2つに分けた場合に、より粒径が大きい側の粒子の体積と、より粒径が小さい側の体積とが、全粉体の夫々50%を占めるような粒子径を意味する。無機充填材(D)の平均粒子径(メジアン径)は、湿式レーザー回折・散乱法により測定することができる。
 樹脂組成物における無機充填材(D)の含有量は、特に限定されないが、絶縁層の熱膨張化を低減しながら高いめっきピール強度を得る観点から、エポキシ化合物(A)、シアン酸エステル化合物(B)及びマレイミド化合物(C)の合計含有量100質量%に対して、好ましくは50~300質量%であり、より好ましくは60~280質量%であり、さらに好ましくは70~250質量%である。なお、2種以上の無機充填材(D)を併用する場合には、これらの合計含有量が上記比率を満たすことが好ましい。
〔I-5.イミダゾールシラン(E)〕
 本実施形態の樹脂組成物に含まれるイミダゾールシラン(E)は、下記式(3)で表される化合物を含む。下記式(3)で表されるように、酢酸イオン又はフタル酸イオンと塩を形成しているイミダゾールシランを用いることにより、ワニスゲルタイムが比較的長くなり、プリプレグの製造性がより向上する。
Figure JPOXMLDOC01-appb-C000020
(上記式(3)中、Rは、水素又は炭素数が1~20のアルキル基を示し、Rは水素、ビニル基、又は炭素数が1~5のアルキル基を示し、R及びRは、各々独立して、炭素数が1~3のアルキル基を示し、Xは、酢酸イオン又はフタル酸イオンを示し、Yは、水素又は水酸基を示し、nは1~3の整数を示す。)
 Rは、特に合成の容易性の点から、水素、メチル、エチル、ウンデシル、ヘプタデシルが好ましい。また、Rは、特に合成の容易性の点から、水素、メチル、エチル、ビニルが好ましい。さらに、Rは、特に合成の容易性の点から、メチル、エチルが好ましく、貯蔵安定性の点からエチル基がより好ましい。Rは、特に合成の容易性の点から、メチル基が好ましい。
 上記式(3)で表される化合物の合成方法としては、特に限定されないが、例えば、特開平05-186479号又は特開平09-296135公報に開示された方法が挙げられる。イミダゾールシラン(E)の具体例としては、JX日鉱日石金属(株)製の「IA-100A」、「IA-100F」及び「IM-100F」が挙げられる。
 樹脂組成物中において、イミダゾールシラン(E)は、無機充填材(D)に表面処理に供せず、無機充填材(D)から遊離した状態であることが好ましい。このような状態であることにより、樹脂組成物を用いて形成された絶縁層とその表面にめっきで形成された導体層との密着性がより向上する傾向にある。このような観点から、イミダゾールシラン(E)は、乾式法、湿式法、加熱還流処理等の脱水縮合を進行させる方法によって添加されるよりも、樹脂組成物中に直接添加されることが好ましい。
 樹脂組成物におけるイミダゾールシラン(E)の含有量は、特に限定されないが、プリプレグ製造性の観点から、エポキシ化合物(A)、シアン酸エステル化合物(B)、及びマレイミド化合物(C)の合計含有量100質量%に対して、好ましくは0.05~3.0質量%であり、より好ましくは0.07~2.0質量%であり、さらに好ましくは0.1~1.0質量%である。なお、2種以上のイミダゾールシラン(E)を併用する場合には、これらの合計含有量が上記比率を満たすことが好ましい。
〔I-6.その他の成分〕
 本実施形態の樹脂組成物は、エポキシ化合物(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)、無機充填材(D)、及びイミダゾールシラン(E)の他に、その他の1又は2種以上の成分を含有していてもよい。
 例えば、本実施形態の樹脂組成物は、吸湿耐熱性向上の目的で、シランカップリング剤を含有してもよい。シランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されない。具体例としては、アミノシラン系シランカップリング剤(例えばγ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン等)、エポキシシラン系シランカップリング剤(例えばγ-グリシドキシプロピルトリメトキシシラン等)、ビニルシラン系シランカップリング剤(例えばγ-メタアクリロキシプロピルトリメトキシシラン等)、カチオン性シラン系シランカップリング剤(例えばN-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩等)、フェニルシラン系シランカップリング剤等が挙げられる。これらのシランカップリング剤は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 シランカップリング剤を使用する場合、その含有量は、特に限定されないが、吸湿耐熱性向上の観点から、無機充填材(D)100質量%に対して、好ましくは0.050~5.0質量%であり、より好ましくは0.10~3.0質量%である。なお、2種以上のシランカップリング剤を併用する場合には、これらの合計含有量が上記比率を満たすことが好ましい。
 また、本実施形態の樹脂組成物は、プリプレグ製造性向上等の目的で、湿潤分散剤を含有してもよい。湿潤分散剤としては、一般に塗料等に使用されている湿潤分散剤であれば、特に限定されない。具体例としては、ビッグケミー・ジャパン(株)製のDisperbyk-110、Disperbyk-111、Disperbyk-180、Disperbyk-161、BYK-W996、BYK-W9010、BYK-W903等が挙げられる。これらの湿潤分散剤は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 湿潤分散剤を使用する場合、その含有量は、特に限定されないが、プリプレグ製造性向上の観点から、無機充填材(D)100質量%に対して、好ましくは0.10~5.0質量%であり、より好ましくは0.50~3.0質量%である。なお、2種以上の湿潤分散剤を併用する場合には、これらの合計含有量が上記比率を満たすことが好ましい。
 また、本実施形態の樹脂組成物は、硬化速度の調整等の目的で、硬化促進剤を含有してもよい。硬化促進剤としては、エポキシ化合物やシアン酸エステル化合物等の硬化促進剤として公知であり、一般に使用されるものであれば、特に限定されない。具体例としては、銅、亜鉛、コバルト、ニッケル、マンガン等の金属を含む有機金属塩類(例えばオクチル酸亜鉛、ナフテン酸コバルト、オクチル酸ニッケル、オクチル酸マンガン等)、イミダゾール類及びその誘導体(例えば2-エチル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2,4,5-トリフェニルイミダゾール等)、第3級アミン(例えばトリエチルアミン、トリブチルアミン等)等が挙げられる。これらの硬化促進剤は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 硬化促進剤を使用する場合、その含有量は、特に限定されないが、高いガラス転移温度を得る観点から、エポキシ化合物(A)、シアン酸エステル化合物(B)、及びマレイミド化合物(C)の合計含有量100質量%に対して、好ましくは0.010~2.0質量%であり、より好ましくは0.10~1.0質量%である。なお、2種以上の硬化促進剤を併用する場合には、これらの合計含有量が上記比率を満たすことが好ましい。
 また、本実施形態の樹脂組成物は、所期の特性が損なわれない範囲において、その他の種々の高分子化合物及び/又は難燃性化合物等を含有してもよい。高分子化合物及び難燃性化合物としては、一般に使用されているものであれば限定されない。高分子化合物としては、特に限定されないが、例えば、各種の熱硬化性樹脂及び熱可塑性樹脂並びにそのオリゴマー、エラストマー類等が挙げられる。
 難燃性化合物としては、特に限定されないが、例えば、リン含有化合物(例えばリン酸エステル、リン酸メラミン、リン含有エポキシ樹脂等)、窒素含有化合物(例えばメラミン、ベンゾグアナミン等)、オキサジン環含有化合物、シリコーン系化合物等が挙げられる。これらの高分子化合物及び/又は難燃性化合物は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 また、本実施形態の樹脂組成物には、所期の特性が損なわれない範囲において、種々の目的により、各種の添加剤を含有していてもよい。添加剤としては、特に限定されないが、例えば、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤等が挙げられる。これらの添加剤は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
〔I-7.樹脂組成物の製造方法〕
 本実施形態の樹脂組成物は、上述の成分、即ちエポキシ化合物(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)、無機充填材(D)、イミダゾールシラン(E)、及び必要に応じてその他の成分を混合することにより製造することができる。なお、必要に応じて、上記各成分を有機溶剤に溶解させた溶液の状態で混合してもよい。このようにして得られる樹脂組成物の溶液は、後述する本実施形態のプリプレグ及び樹脂シートを作製する際のワニスとして、好適に使用することができる。
 有機溶剤としては、上記各成分を各々好適に溶解又は分散させることができ、且つ、本実施形態の樹脂組成物の所期の効果を損なわないものであれば限定されない。具体例としては、アルコール類(メタノール、エタノール、プロパノール等)、ケトン類(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等)、アミド類(例えばジメチルアセトアミド、ジメチルホルムアミド等)、芳香族炭化水素類(例えばトルエン、キシレン等)等が挙げられる。これらの有機溶剤は、1種を単独で使用してもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 本実施形態の樹脂組成物は、プリント配線板の絶縁層の材料として用いた場合、プリプレグ製造性に優れ、絶縁層とめっき導体層との密着性に優れる。更には、ガラス転移温度が高く、更には吸湿耐熱性にも優れた絶縁層とすることができる。加えて、耐薬品性に優れる等、その他の好適な効果も発揮し得る。このように、本実施形態の樹脂組成物は、各種の優れた特徴を有し、特に優れた密着性と高耐熱性とを高い水準で両立させることができることから、プリント配線板の絶縁層の材料として極めて有用である。
[II.プリプレグ、樹脂シート、金属箔張積層板及びプリント配線板]
 本実施形態のプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板は、何れも上述した本実施形態の樹脂組成物を用いて形成される。
〔II-1.プリプレグ〕
 本実施形態のプリプレグは、上記樹脂組成物が、基材に添着されたものである。基材としては、各種プリント配線板の材料として一般に用いられる公知の基材を使用することができる。具体的には、ガラス繊維(例えばAガラス、Cガラス、Eガラス、Dガラス、Hガラス、Lガラス、Sガラス、NEガラス、Tガラス、Qガラス、UNガラス、及び球状ガラス等)、無機繊維(例えば石英(クオーツ)等のガラス以外の無機繊維)、有機繊維(例えばポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維等のポリアミド系樹脂繊維;ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維等のポリエステル系樹脂繊維;ポリイミド樹脂繊維;フッ素樹脂繊維等)が挙げられ、目的とする用途や性能により適宜選択できる。
 基材の形状としては、特に限定されないが、例えば、織布、不織布、ロービング、チョップドストランドマット、サーフェシングマット等が挙げられる。これらの中でも、強度や吸水性の面からは、ガラス繊維が好ましく、電気特性の面からは、液晶ポリエステル織布が好ましい。基材は、1種を単独で又は2種以上を組み合わせて用いることができる。
 基材の厚みは限定されないが、例えば0.01~0.3mmの範囲が好ましい。吸湿耐熱性の面からは、エポキシシラン処理、アミノシラン処理等のシランカップリング剤などで表面処理を施したガラス織布が好適であり、寸法安定性の面からは、超開繊処理や目詰め処理を施した織布が好適である。
 樹脂組成物を上述の基材と組み合わせてプリプレグを製造する方法としては、特に限定されないが、例えば、樹脂組成物を有機溶剤に溶解又は分散させた溶液又は分散液(ワニス)を基材に含浸又は塗布し、加熱(例えば100~200℃の乾燥機中で1~60分加熱等)及び/又は減圧下で乾燥し、溶媒を除去して半硬化させ、樹脂組成物を基材に添着させる手法等が挙げられる。
 基材に対する樹脂組成物の添着量は、プリプレグ全体100質量%に対して、好ましくは15~95質量%であり、より好ましくは20~90質量%である。
 本実施形態のプリプレグは、プリント配線板のビルドアップ材料として使用することが可能である。ここで、「ビルドアップ」とは、プリプレグ又は樹脂シートを積層すると共に、一層毎に孔あけ加工、配線形成などを繰り返すことによって、多層構造のプリント配線板を作製することを意味する。本実施形態のプリプレグを用いて形成されたプリント配線板においては、プリプレグが、絶縁層を構成することになる。なお、プリント配線板については後述する。
〔II-2.樹脂シート〕
 本実施形態の樹脂シートは、金属箔又は金属フィルムからなる外層と、該外層上に積層された、上記樹脂組成物からなる層と、を含む。
 外層として使用される金属箔又は金属フィルムとしては、特に限定されないが、例えば、銅やアルミニウム等の金属からなる箔又はフィルムが挙げられる。中でも銅箔又は銅フィルムが好ましく、特に電解銅箔、圧延銅箔、銅合金フィルム等が好適に使用できる。金属箔又は金属フィルムには、例えばニッケル処理やコバルト処理等、公知の表面処理が施されていてもよい。金属箔又は金属フィルムの厚さは、使用用途によって適宜調整することができるが、好ましくは5~70μmである。
 上述の金属箔又は金属フィルムからなる外層上に、樹脂組成物からなる層(樹脂組成物層)を形成して樹脂シートを製造する方法は、特に限定されないが、例えば、樹脂組成物を有機溶剤に溶解又は分散させた溶液(ワニス)を、上述の金属箔又はフィルムの表面に塗工(塗布、含浸等)し、加熱及び/又は減圧下で乾燥し、溶媒を除去して樹脂組成物を固化させ、樹脂組成物層を形成する方法等が挙げられる。
 乾燥条件は、特に限定されないが、樹脂組成物層中の有機溶剤の含有量が、樹脂組成物層100質量部に対して、好ましくは10質量部以下、より好ましくは5.0質量部以下となるように乾燥させる。斯かる乾燥を達成する条件は、ワニス中の有機溶媒量によっても異なるが、例えば30~60質量部の有機溶剤を含むワニスの場合、50~160℃の加熱条件下で3~10分程度乾燥させればよい。本実施形態の樹脂シートにおける樹脂組成物層の厚さは限定されないが、通常は外層の厚さ(上述のように通常は5~70μm程度)と同様であり、好ましくは10~100μmである。
 本実施形態の樹脂シートも、プリント配線板のビルドアップ材料として使用可能である。本実施形態の樹脂シートを用いて形成されたプリント配線板においては、樹脂組成物からなる層が、絶縁層を構成することになる。プリント配線板については後述する。
〔II-3.金属箔張積層板〕
 本実施形態の金属箔張積層板は、上記プリプレグと、該プリプレグの片面又は両面に積層された金属箔と、を含む。プリプレグは一枚でもよく、二枚以上を積層して用いてもよい。
 本実施形態の金属箔張積層板を作製する方法は限定されないが、例えば、プリプレグを一枚、或いは二枚以上を積層した上で、その片面又は両面に金属箔を配置し、例えば温度180~220℃、加熱時間100~300分、面圧20~40kgf/cm2(約2.0MPa~約3.9MPa)等の条件で積層成形する手法等が挙げられる。
 金属箔としては、特に限定されないが、例えば、銅やアルミニウム等の金属箔が挙げられる。この中でも銅箔が好ましい。特に電解銅箔、圧延銅箔等が好適に使用できる。金属箔には、例えばニッケル処理やコバルト処理等、公知の表面処理が施されていてもよい。金属箔の厚さは、プリント配線板の材料として適した範囲内で適宜調整することができるが、好ましくは2~35μmである。
 また、金属箔のマット面を絶縁層(プリプレグからなる層)の表面に転写させ、絶縁層表面に転写された凹凸のアンカー効果によって、絶縁層上にめっき形成される導体層との密着を高める観点から、金属箔のマット面の表面粗さRzは、好ましくは0.5~2.5μmであり、より好ましくは0.6~2.3μmであり、さらに好ましくは0.7~2.0μmである。ここで、「表面粗さRz」とは、金属箔のマット面の粗さを表す指標であり、レーザー顕微鏡により測定対象面の粗さ曲線を測定し、平均線を越える山頂を高い順に5つ、平均線に届かない谷底を低い順に5つ夫々抽出し、抽出された山頂の高さ及び谷底の低さの絶対値の平均値を算出することにより求めることができる。
 本実施形態の金属箔張積層板も、プリント配線板のビルドアップ材料として使用することが可能である。本実施形態の金属箔張積層板を用いて形成されたプリント配線板においては、プリプレグ(基材及びこれに添着された樹脂組成物)が、絶縁層を構成することになる。プリント配線板については後述する。
〔II-4.プリント配線板〕
 本実施形態のプリント配線板は、絶縁層と、前記絶縁層の表面に形成された導体層と、を含み、前記絶縁層が上記樹脂組成物を含むものである。
 斯かるプリント配線板は、上述の本実施形態のプリプレグ、樹脂シート、又は金属箔張積層板をビルドアップ材料として用いて作製することができる。すなわち、これらをビルドアップ材料として用いてプリント配線板を作製することにより、プリプレグ(基材及びこれに添着された樹脂組成物)、又は、樹脂シートの樹脂組成物層(樹脂組成物からなる層)が、樹脂組成物を含む絶縁層を構成することになる。
 具体的には、本実施形態の樹脂シートをビルドアップ材料として用いる場合は、常法により、当該樹脂シートの樹脂組成物層(絶縁層)を表面処理し、絶縁層表面にめっきにより配線パターン(導体層)を形成することにより、本実施形態のプリント配線板が得られる。
 本実施形態の金属箔張積層板をビルドアップ材料として用いる場合は、常法により、金属箔張積層板の金属箔をエッチングした後、プリプレグからなる層(絶縁層)を表面処理し、絶縁層表面にめっきにより配線パターン(導体層)を形成することにより、本実施形態のプリント配線板を得ることができる。
 本実施形態のプリプレグをビルドアップ材料として用いる場合は、上記金属箔張積層板の製造方法によりプリプレグを用いて金属箔張積層板を作製してから、上記方法により本実施形態のプリント配線板を得ることができる。或いは、後述のように多層プリント配線板の材料として用いる場合等は、プリプレグをそのままビルドアップ材料として使用してもよい。
 なお、何れの場合も、必要に応じてその他の各種の工程(例えば、ビアホール、スルーホール等を形成する穴加工処理等)を加えてもよい。
 以下、本実施形態のプリント配線板を製造するための各工程について説明する。
 穴加工処理は、ビアホール、スルーホール等の形成のために実施される。穴加工処理は、NCドリル、炭酸ガスレーザー、UVレーザー、YAGレーザー、プラズマ等の公知の方法のうち何れか1種を用い、或いは必要により2種以上を組み合わせて行う。
 絶縁層に対する表面処理は、絶縁層とめっき導体層との密着性の向上や、スミア除去等の観点から実施される。表面処理としては、特に限定されないが、例えば、粗化処理、シランカップリング処理等が挙げられる。粗化処理は、孔あけ工程により生じたスミアの除去も兼ねることができる。この場合、樹脂組成物の硬化度の違いにより、粗化状態が異なるため、後述の積層成形の条件は、その後の粗化処理条件やめっき条件との組み合わせで最適な条件を選ぶことが好ましい。
 粗化処理は、膨潤工程、表面粗化及びスミア溶解工程、及び中和工程からなる。
 膨潤工程は、膨潤剤を用いて表面絶縁層を膨潤させることにより行う。膨潤剤としては、表面絶縁層の濡れ性が向上し、次の表面粗化及びスミア溶解工程において酸化分解が促進される程度にまで表面絶縁層を膨潤させることができるものであれば特に限定されないが、例えば、アルカリ溶液、界面活性剤溶液等が挙げられる。
 表面粗化及びスミア溶解工程は、酸化剤を用いて行う。酸化剤としては、特に限定されないが、例えば、過マンガン酸塩溶液等が挙げられ、好適な具体例としては、過マンガン酸カリウム水溶液、過マンガン酸ナトリウム水溶液等が挙げられる。斯かる酸化剤処理はウェットデスミアと呼ばれるが、当該ウェットデスミアに加えて、プラズマ処理やUV処理によるドライデスミア、バフ等による機械研磨、サンドブラスト等の他の公知の粗化処理を、適宜組み合わせて実施してもよい。
 中和工程は、前工程で使用した酸化剤を還元剤で中和するものである。還元剤としては、特に限定されないが、例えば、アミン系還元剤が挙げられる。このなかでも、ヒドロキシルアミン硫酸塩水溶液、エチレンジアミン四酢酸水溶液、ニトリロ三酢酸水溶液等の酸性還元剤が挙げられる。
 微細配線パターンを形成する上で、粗化処理後の絶縁層の表面凹凸は小さい方が好ましい。具体的には、Rz値で4.0μm以下が好ましく、より好ましくは2.0μm以下である。粗化処理後の表面凹凸は、樹脂組成物の硬化度や粗化処理の条件等に応じて決まるため、所望の表面凹凸を得るための最適条件を選ぶことが好ましい。特に、本実施形態の樹脂組成物を含む絶縁層は、表面粗度が低くても、めっき導体層との密着性を確保することができ、極めて好適である。
 めっきにより配線パターン(導体層)を形成する方法としては、セミアディティブ法、フルアディティブ法、サブトラクティブ法等が挙げられる。中でも、微細配線パターンを形成する観点からは、セミアディティブ法が好ましい。
 セミアディティブ法でパターン形成する手法の例としては、絶縁層表面に無電解メッキ等により薄い導体層を形成した後、メッキレジストを用いて選択的に電解メッキを施し(パターンメッキ)、その後メッキレジストを剥離し、全体を適量エッチングして配線パターン形成する手法が挙げられる。
 フルアディティブ法でパターン形成する手法の例としては、絶縁層表面にメッキレジストを用いて予めパターン形成を行い、選択的に無電解メッキ等を付着させることにより配線パターンを形成する手法が挙げられる。
 サブトラクティブ法でパターン形成する手法の例としては、絶縁層表面にメッキにより導体層を形成した後、エッチングレジストを用いて選択的に導体層を除去することにより、配線パターンを形成する手法が挙げられる。
 めっきにより配線パターンを形成する際に、絶縁層と導体層との密着強度を向上させる観点から、メッキの後に乾燥を行うことが好ましい。セミアディティブ法によるパターン形成では、無電解めっきと電解めっきとを組み合わせて行うが、その際、無電解めっきの後と、電解めっきの後に、それぞれ乾燥を行うことが好ましい。無電解後の乾燥は、例えば80~180℃で10~120分に亘って行うことが好ましく、電解めっき後の乾燥は、例えば130~220℃で10~120分に亘って行うことが好ましい。
 本実施形態のプリント配線板は、多層プリント配線板とすることも可能である。例えば、上記手順により、プリプレグの両面に金属箔(例えば銅やアルミニウム等)を配置した金属箔張積層板を形成した後、これに内層回路を形成し、得られた回路に黒化処理を実施して、内層回路板とする。こうして得られた内層回路板、又は、金属箔(例えば銅やアルミニウム等)の片面又は両面に、プリプレグ又は樹脂シートを配置し、更に金属箔(例えば銅やアルミニウム等)又は離型フィルム(ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム、ポリエチレンテレフタレートフィルム、エチレンテトラフルオロエチレン共重合体フィルム等の表面に離型剤を塗布したフィルム)をその外側に配置する、という操作を繰り返し、積層成形することにより、多層プリント配線板が製造される。
 積層成形は、通常のプリント配線板用積層板の積層成形に一般に使用される手法、例えば、多段プレス、多段真空プレス、ラミネーター、真空ラミネーター、オートクレーブ成形機等を使用し、温度は例えば100~300℃、圧力は例えば0.1~100kgf/cm2(約9.8kPa~約38MPa)、加熱時間は例えば30秒~5時間の範囲で適宜選択して行う。また、必要に応じて、例えば150~300℃の温度で後硬化を行い、硬化度を調整してもいい。
 以下に合成例、実施例及び比較例を示し、本実施形態を詳細に説明するが、本実施形態はこれらに限定されるものではない。
1.シアン酸エステル化合物の製造
・合成例1 α-ナフトールアラルキル型シアン酸エステル化合物(式(4a)の化合物)の合成:
Figure JPOXMLDOC01-appb-C000021
(式中、nの平均値は3~4である。)
 温度計、攪拌器、滴下漏斗及び還流冷却器を取りつけた反応器を予め食塩水により0~5℃に冷却しておき、そこへ塩化シアン7.47g(0.122mol)、35%塩酸9.75g(0.0935mol)、水76mL、及び塩化メチレン44mLを仕込んだ。
 この反応器内の温度を-5~+5℃、pHを1以下に保ちながら、撹拌下、下記式(4a’)で表されるα-ナフトールアラルキル樹脂(SN485、OH基当量:214g/eq.軟化点:86℃、新日鐵化学(株)製)20g(0.0935mol)、及びトリエチルアミン14.16g(0.14mol)を塩化メチレン92mLに溶解した溶液を滴下漏斗により1時間かけて滴下し、滴下終了後、更にトリエチルアミン4.72g(0.047mol)を15分間かけて滴下した。
Figure JPOXMLDOC01-appb-C000022
(式中、nの平均値は3~4である。)
 滴下終了後、同温度で15分間撹拌後、反応液を分液し、有機層を分取した。得られた有機層を水100mLで2回洗浄した後、エバポレーターにより減圧下で塩化メチレンを留去し、最終的に80℃で1時間濃縮乾固させて、上記式(4a)で表されるα-ナフトールアラルキル樹脂のシアン酸エステル化物(α-ナフトールアラルキル型シアン酸エステル化合物)23.5gを得た。
2.樹脂組成物及び銅張積層板の作製
・実施例1:
 エポキシ化合物(A)として、上記式(6)で表されるビフェニルアラルキル型エポキシ化合物(NC-3000-FH、エポキシ当量:320g/eq.、日本化薬(株)製)のメチルエチルケトン溶液(以下、「MEK溶液」ともいう。)(不揮発分75質量%)53.3質量部(不揮発分換算で40質量部)、更に第2のエポキシ化合物(A)として、ナフタレン型エポキシ化合物(HP4710、エポキシ当量240g/eq.、DIC(株)製)のMEK溶液(不揮発分50質量%)20質量部(不揮発分換算で10質量部)、シアン酸エステル化合物(B)として、合成例1により得られた上記式(4a)のα-ナフトールアラルキル型シアン酸エステル化合物(シアネート当量:261g/eq.)のメチルエチルケトン溶液(不揮発分50質量%)70質量部(不揮発分換算で35質量部)、マレイミド化合物(C)として、上記式(2)で表されるマレイミド化合物(BMI-2300、大和化成(株)製)のMEK溶液(不揮発分50質量%)30質量部(不揮発分換算15質量部)、イミダゾールシラン(E)として、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA-100A(不揮発分70質量%)、JX日鉱日石金属(株)製)を0.5質量部(不揮発分換算0.35質量部)、硬化促進剤として2,4,5-トリフェニルイミダゾール(和光純薬製)のプロピレングリコールモノメチルエーテルアセテート溶液(不揮発分1質量%)50質量部(不揮発分換算で0.5質量部)及びオクチル酸マンガンのMEK溶液(不揮発分1質量%)5質量部(不揮発分換算で0.05質量部)をMEKに溶解又は分散させた。さらに、無機充填材(D)として、シリカ(SFP-130MC、電気化学工業(株)製、平均粒子径0.6μm)100質量部を添加して、高速攪拌装置を用いて30分間攪拌して、ワニス(エポキシ化合物(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)、無機充填材(D)、及びイミダゾールシラン(E)を含む樹脂組成物の溶液)を得た。
 このワニスを更にMEKで希釈し、厚さ0.1mmのEガラス織布に含浸塗工し、160℃で4分間加熱乾燥して、樹脂組成物含有量50質量%のプリプレグを得た。得られたプリプレグを4又は8枚重ねて、3μm厚の電解銅箔(JXUT-I、JX日鉱日石金属(株)製、表面粗さRz=1.1μm)のマット面をプリプレグ側に配置し、圧力40kgf/cm2(約3.9MPa)、温度220℃で120分間の積層成形を行い、絶縁層厚さ0.4mm及び0.8mmの銅張積層板(それぞれプレプリグ4枚及び8枚使用)を得た。
・実施例2:
 イミダゾールシラン(E)として、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA-100A)の使用量を3質量部(不揮発分換算2.1質量部)に変更した以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・実施例3:
 マレイミド化合物(C)として、上記式(2)で表されるマレイミド化合物(BMI-2300)の代わりに、上記式(1)で表されるマレイミド化合物(BMI-1000P、ケイ・アイ化成(株)製)のMEK溶液(不揮発分50質量%)30質量部(不揮発分換算15質量部)を使用したこと以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・実施例4:
 上記式(2)で表されるマレイミド化合物(BMI-2300)のMEK溶液(不揮発分50質量%)の使用量を16質量部(不揮発分換算8質量部)に変更し、第2のマレイミド化合物(C)として、上記式(1)で表されるマレイミド化合物(BMI-1000P)のMEK溶液(不揮発分50質量%)14質量部(不揮発分換算7質量部)をさらに加えたこと以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・実施例5:
 エポキシ化合物(A)である、上記式(6)で表されるビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分75質量%)の使用量を60質量部(不揮発分換算で45質量部)に変更し、シアン酸エステル化合物(B)として、合成例1により得られた上記式(4a)のα-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を40質量部(不揮発分換算で20質量部)に変更し、マレイミド化合物(C)である、上記式(2)で表されるマレイミド化合物(BMI-2300)のMEK溶液(不揮発分50質量%)の使用量を40質量部(不揮発分換算20質量部)に変更し、イミダゾールシラン(E)である、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA―100A)の使用量を1質量部(不揮発分換算0.7質量部)に変更し、第2のマレイミド化合物(C)として、上記式(1)で表されるマレイミド化合物(BMI-1000P)のMEK溶液(不揮発分50質量%)10質量部(不揮発分換算5質量部)をさらに加え、第2の無機充填材(D)として、シリカ(SC4500-SQ、アドマテックス(株)製、平均粒子径1.5μm)50質量部をさらに加えたこと以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・実施例6:
 第2の無機充填材(D)である、シリカ(SC4500-SQ)の使用量を200質量部に変更し、イミダゾールシランである、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA―100A)の使用量を0.2質量部(不揮発分換算0.14質量部)に変更したこと以外は、実施例5と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・実施例7:
 シアン酸エステル化合物(B)である、合成例1により得られた上記式(4a)のα-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を80質量部(不揮発分換算で40質量部)に変更し、マレイミド化合物(C)である、上記式(2)で表されるマレイミド化合物(BMI-2300)のMEK溶液(不揮発分50質量%)の使用量を10質量部(不揮発分換算5質量部)に変更し、第2のマレイミド化合物(C)である、上記式(1)で表されるマレイミド化合物(BMI-1000P)を使用せず、イミダゾールシラン(E)である上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA―100A)の使用量を0.5質量部(不揮発分換算0.35質量部)に変更したこと以外は、実施例5と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・実施例8:
 エポキシ化合物(A)である、上記式(6)で表されるビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分75質量%)の使用量を73.3質量部(不揮発分換算で55質量部)に変更し、第2のエポキシ化合物(A)である、ナフタレン型エポキシ化合物(HP4710)のMEK溶液(不揮発分50質量%)の使用量を30質量部(不揮発分換算で15質量部)に変更し、シアン酸エステル化合物(B)である、合成例1により得られた上記式(4a)のα-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を40質量部(不揮発分換算で20質量部)に変更し、マレイミド化合物(C)である、上記式(2)で表されるマレイミド化合物(BMI-2300)のMEK溶液(不揮発分50質量%)を20質量部(不揮発分換算10質量部)に変更したこと以外は、実施例7と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・実施例9:
 シアン酸エステル化合物(B)である、合成例1により得られた上記式(4a)のα-ナフトールアラルキル型シアン酸エステル化合物のMEK溶液(不揮発分50質量%)の使用量を70質量部(不揮発分換算で35質量部)に変更し、マレイミド化合物(C)である、上記式(2)で表されるマレイミド化合物(BMI-2300)のMEK溶液(不揮発分50質量%)の使用量を20質量部(不揮発分換算10質量部)に変更したこと以外は、実施例7と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・実施例10:
 シアン酸エステル化合物(B)として、合成例1により得られた上記式(4a)のα-ナフトールアラルキル型シアン酸エステル化合物の代わりに、上記式(5)におけるR13~16がすべて水素原子である下記式(5a)で表されるシアン酸エステル化合物(プリマセット PT-60,ロンザジャパン株式会社製、)のMEK溶液(不揮発分50質量%)を70質量部(不揮発分換算で35質量部)使用したこと以外は、実施例9と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
Figure JPOXMLDOC01-appb-C000023
(nは1以上の整数を示す。)
・実施例11:
 イミダゾールシラン(E)として、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA-100A)の代わりに、上記式(3)におけるXがフタル酸イオンであり、Yが水酸基であるイミダゾールシラン(IA―100F、JX日鉱日石金属(株)製、不揮発分70%)を0.5質量部(不揮発分換算0.35質量部)使用した以外は、実施例9と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・実施例12:
 イミダゾールシラン(E)として、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA-100A)の代わりに、上記式(3)におけるXがフタル酸イオンであり、Yが水素であるイミダゾールシラン(IM―100F、JX日鉱日石金属(株)製、不揮発分80%)を0.5質量部(不揮発分換算0.4質量部)使用したこと以外は、実施例9と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・実施例13:
 無機充填材(D)として、シリカ(SFP-130MC)及びシリカ(SC4500-SQ)の代わりに、水酸化マグネシウム(MGZ-6R、堺化学工業(株)、平均粒子径2.0μm)100質量部をワニスに配合したこと以外は、実施例9と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・実施例14:
 無機充填材(D)として、水酸化マグネシウムの代わりに、酸化マグネシウム(SMO-0.4、堺化学工業(株)製、平均粒子径0.4μm)100質量部を用いたこと以外は、実施例13と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・実施例15:
 無機充填材(D)として、水酸化マグネシウムの代わりに、ベーマイトシリカ(AOH-60、Nabaltec製、平均粒子径0.9μm)100質量部を用いたこと以外は、実施例13と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・比較例1:
 イミダゾールシラン(E)として、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA-100A)を使用しなかったこと以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・比較例2:
 イミダゾールシラン(E)として、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA-100A)の代わりに、下記式(8)で表されるイミダゾールシラン(IS-1000,JX日鉱日石金属(株)製、不揮発分90質量%)を1質量部(不揮発分換算0.9質量部)使用したこと以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
Figure JPOXMLDOC01-appb-C000024
(式(8)中、R17は、水素又は炭素数が1~20のアルキル基、R18は水素、ビニル基又は炭素数が1~5のアルキル基、R19、R20は炭素数が1~3のアルキル基、nは1~3の整数を示す。)
・比較例3:
 イミダゾールシラン(E)として、上記式(3)におけるXが酢酸イオンであり、Yが水酸基であるイミダゾールシラン(IA-100A)の代わりに、下記式(9)で表されるイミダゾールシラン(IM-1000,JX日鉱日石金属(株)製、不揮発分95質量%)を1質量部(不揮発分換算0.95質量部)使用したこと以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
Figure JPOXMLDOC01-appb-C000025
(R21は水素又は炭素数が1~20のアルキル基、R22は水素、ビニル基又は炭素数が1~5のアルキル基、R23、R24は炭素数が1~3のアルキル基、nは1~3の整数を示す。)
・比較例4:
 マレイミド化合物(C)として、上記式(2)で表されるマレイミド化合物(BMI-2300)の代わりに、ビス(3-エチル-5-メチル-4マレイミドフェニル)メタン(BMI-70,ケイ・アイ化成(株)製)のMEK溶液(不揮発分50質量%)を30質量部(不揮発分換算15質量部)使用したこと以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・比較例5:
 合成例1により得られた上記式(4a)のα-ナフトールアラルキル型シアン酸エステル化合物の代わりに、ナフトールアラルキル型フェノール樹脂(SN495V2(SN-OH)、フェノール当量236g/eq.、新日鐵化学(株)製)のMEK溶液(不揮発分50質量%)70質量部(不揮発分換算35質量部)を使用したこと以外は、実施例1と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
・比較例6:
 エポキシ化合物(A)である、上記式(6)で表されるビフェニルアラルキル型エポキシ化合物(NC-3000-FH)のMEK溶液(不揮発分75質量%)の使用量を35.7質量部(不揮発分換算で25質量部)に変更し、更に第2のエポキシ化合物(A)である、ナフタレン型エポキシ化合物(HP4710)のMEK溶液(不揮発分50質量%)の使用量を10質量部(不揮発分換算で5質量部)に変更し、マレイミド化合物(C)である、上記式(2)で表されるマレイミド化合物(BMI-2300)のMEK溶液(不揮発分50質量%)の使用量を70質量部(不揮発分換算35質量部)に変更したこと以外は、実施例9と同様にしてワニス(樹脂組成物の溶液)を調製し、銅張積層板(金属箔張積層板)を得た。
3.樹脂組成物の評価
・銅張積層板の湿式粗化処理と導体層めっき:
 実施例1~15及び比較例1~6で得られた絶縁層厚さ0.4mm及び0.8mmの銅張積層板(それぞれプレプリグ4枚及び8枚使用)の表層銅箔をエッチングにより除去し、上村工業製の無電解銅めっきプロセス(使用薬液名:MCD-PL、MDP-2、MAT-SP、MAB-4-C、MEL-3-APEA ver.2)にて、約0.5μmの無電解銅めっきを施し、130℃で1時間の乾燥を行った。続いて、電解銅めっきをめっき銅の厚みが18μmになるように施し、180℃で1時間の乾燥を行った。こうして、厚さ0.4mm及び0.8mmの絶縁層上に厚さ18μmの導体層(めっき銅)が形成された回路配線板サンプルを作製し、以下の評価に供した。
・評価方法:
(1)ワニスゲルタイム変化率
 170℃のホットプレート上にワニスを載せ硬化するまでの時間(ワニスゲルタイム)を測定した。ワニス作製当日のワニスゲルタイムと、30℃で2日間保管した時のワニスゲルタイムとを測定し、下数式(1)によりワニスゲルタイム変化量を求め、下記評価基準で評価した。結果を表1~3に示す。
 数式(1):ワニスゲルタイム変化量(%)=ワニス作製2日後のワニスゲルタイム/ワニス作製当日のワニスゲルタイム×100
 ○:ワニスゲルタイム変化量が75%~100%である。
 △:ワニスゲルタイム変化量が50%~74%である。
 ×:ワニスゲルタイム変化量が49%以下である。
(2)めっき銅ピール強度:
 上記手順により作製された絶縁層厚さ0.4mmの回路配線板サンプルを用い、めっき銅ピール強度(接着力)をJISC6481に準じて3回測定し、めっき銅ピール強度の平均値を求めた。電解銅めっき後の乾燥で膨れたサンプルに関しては、膨れていない部分を用いて評価を行った。結果を表1~3に示す。
(3)ガラス転移温度:
 上記手順により作製された絶縁層厚さ0.8mmの回路配線板サンプルを用い、その表層銅箔をエッチングにより除去し、熱機械分析装置(TAインスツルメント製Q800)で40℃から300℃まで毎分10℃で昇温し、ガラス転移温度を測定した。結果を表1~3に示す。
(4)吸湿耐熱性:
 上記手順により作製された絶縁層厚さ0.4mmの回路配線板サンプルを用い、50mm×50mm角にカットした後、片面の半分以外のめっき銅をエッチングにより除去したサンプルを作製した。そのサンプルを、プレッシャークッカー試験機(平山製作所製PC-3型)で、121℃、2気圧で1、3、5時間処理した後、260℃の半田槽に60秒間浸漬させて、外観変化の異常の有無を目視にて観察した。3枚試験を行い、一枚ごとに、異常が無いものを「良」、膨れが発生したものを「否」と表記した。結果を表1~3に示す。なお、表中「PCT-1H」、「PCT-3H」及び「PCT-5H」とは、それぞれプレッシャークッカー試験機による1、3、5時間処理後に得られた結果を示す。
Figure JPOXMLDOC01-appb-T000026
※DMA:動的粘弾性測定
Figure JPOXMLDOC01-appb-T000027
※DMA:動的粘弾性測定
Figure JPOXMLDOC01-appb-T000028
※DMA:動的粘弾性測定
 表1~3より、本発明の樹脂組成物を用いて形成された絶縁層を有する実施例1~15は、比較例1~6に比べ、めっきピール強度及びガラス転移温度が高く、吸湿耐熱性も優れていることがわかる。また、比較例2及び3はワニスゲルタイムの変化量が小さくなり、安定的にプリプレグを製造することが困難であった。
 本出願は、2013年6月3日に日本国特許庁へ出願された日本特許出願(特願2013-116901)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の樹脂組成物は、上述のように、プリント配線板の絶縁層の材料として用いた場合、プリプレグ製造性に優れ、絶縁層とめっき導体層との密着性に優れると共に、耐熱性にも優れる等、各種の効果を発揮することから、プリント配線板の絶縁層の材料として極めて有用である。

Claims (17)

  1.  絶縁層と、該絶縁層の表面にめっきにより形成される導体層と、を含むプリント配線板の前記絶縁層の材料として用いられる、樹脂組成物であって、
     エポキシ化合物(A)、シアン酸エステル化合物(B)、マレイミド化合物(C)、無機充填材(D)、及びイミダゾールシラン(E)を含み、
     前記マレイミド化合物(C)が、下記式(1)で表されるマレイミド化合物及び/又は下記式(2)で表されるマレイミド化合物を含み、
     前記マレイミド化合物(C)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、25質量%以下であり、
     且つ、前記イミダゾールシラン(E)が、下記式(3)で表される化合物を含む、
     樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)中、nは、平均値として1~30の範囲の実数である。)
    Figure JPOXMLDOC01-appb-C000002
    (上記式(2)中、R、R、R、及びRは、各々独立して、水素原子又はメチル基を示し、nは、平均値として1~10の範囲の実数である。)
    Figure JPOXMLDOC01-appb-C000003
    (上記式(3)中、Rは、水素又は炭素数が1~20のアルキル基を示し、Rは水素、ビニル基、又は炭素数が1~5のアルキル基を示し、R及びRは、各々独立して、炭素数が1~3のアルキル基を示し、Xは、酢酸イオン又はフタル酸イオンを示し、Yは、水素又は水酸基を示し、nは1~3の整数を示す。)
  2.  前記シアン酸エステル化合物(B)が、下記式(4)で表されるナフトールアラルキル型シアン酸エステル化合物及び/又は下記式(5)で表されるノボラック型シアン酸エステル化合物を含む、請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (上記(4)式中、R、R10、R11、及びR12は、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
    Figure JPOXMLDOC01-appb-C000005
    (上記(5)式中、R13、R14、R15、及びR16は、各々独立して、水素原子又はメチル基を示し、nは1以上の整数を示す。)
  3.  前記無機充填材(D)が、シリカ、水酸化アルミニウム、アルミナ、ベーマイト、酸化マグネシウム、及び水酸化マグネシウムからなる群から選択される少なくとも1種以上を含む、請求項1又は2に記載の樹脂組成物。
  4.  前記エポキシ化合物(A)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、40~75質量%である、請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  前記シアン酸エステル化合物(B)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、20~40質量%である、請求項1~4のいずれか一項に記載の樹脂組成物。
  6.  前記無機充填材(D)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、50~300質量%である、請求項1~5のいずれか一項に記載の樹脂組成物。
  7.  前記イミダゾールシラン(E)の含有量が、前記エポキシ化合物(A)、前記シアン酸エステル化合物(B)、及び前記マレイミド化合物(C)の合計含有量100質量%に対して、0.10~3.0質量%である、請求項1~6のいずれか一項に記載の樹脂組成物。
  8.  基材と、該基材に添着された、請求項1~7のいずれか一項に記載の樹脂組成物と、を含む、プリプレグ。
  9.  金属箔又は金属フィルムからなる外層と、該外層上に積層された、請求項1~7のいずれか1項に記載の樹脂組成物からなる層と、を含む、樹脂シート。
  10.  請求項8に記載のプリプレグと、該プリプレグの片面又は両面に積層された金属箔と、を含む、金属箔張積層板。
  11.  前記金属箔が、表面粗さRz0.70μm~2.5μmのマット面を有する、請求項10に記載の金属箔張積層板。
  12.  請求項8に記載のプリプレグをビルドアップ材料として用いて作製された、プリント配線板。
  13.  請求項9に記載の樹脂シートをビルドアップ材料として用いて作製された、プリント配線板。
  14.  前記樹脂シートの前記樹脂組成物からなる層を表面処理して、前記樹脂組成物からなる層にめっきによりパターン形成することにより作製された、請求項13に記載のプリント配線板。
  15.  請求項10に記載の金属箔張積層板をビルドアップ材料として用いて作製された、プリント配線板。
  16.  前記金属箔張積層板の金属箔をエッチングし、前記金属箔張積層板の前記プリプレグからなる層を表面処理して、前記プリプレグからなる層にめっきによりパターン形成することにより作製された、請求項15に記載のプリント配線板。
  17.  絶縁層と、該絶縁層の表面に形成された導体層と、を含み、
     前記絶縁層が、請求項1~7のいずれか一項に記載の樹脂組成物を含む、プリント配線板。
PCT/JP2014/064624 2013-06-03 2014-06-02 プリント配線板材料用樹脂組成物、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板 WO2014196501A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11201509490PA SG11201509490PA (en) 2013-06-03 2014-06-02 Resin composition for printed wiring board material and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the same
EP14807917.1A EP3006503B1 (en) 2013-06-03 2014-06-02 Resin composition for printed wiring board material and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the same
JP2015521439A JP6481610B2 (ja) 2013-06-03 2014-06-02 プリント配線板材料用樹脂組成物、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板
US14/890,714 US9905328B2 (en) 2013-06-03 2014-06-02 Resin composition for printed wiring board material and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the same
KR1020157034758A KR102147632B1 (ko) 2013-06-03 2014-06-02 프린트 배선판 재료용 수지 조성물, 그리고 그것을 사용한 프리프레그, 수지 시트, 금속박 피복 적층판, 및 프린트 배선판
CN201480031840.2A CN105264013B (zh) 2013-06-03 2014-06-02 印刷电路板材料用树脂组合物、以及使用其的预浸料、树脂片、覆金属箔层叠板和印刷电路板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-116901 2013-06-03
JP2013116901 2013-06-03

Publications (1)

Publication Number Publication Date
WO2014196501A1 true WO2014196501A1 (ja) 2014-12-11

Family

ID=52008143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064624 WO2014196501A1 (ja) 2013-06-03 2014-06-02 プリント配線板材料用樹脂組成物、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板

Country Status (8)

Country Link
US (1) US9905328B2 (ja)
EP (1) EP3006503B1 (ja)
JP (1) JP6481610B2 (ja)
KR (1) KR102147632B1 (ja)
CN (1) CN105264013B (ja)
SG (1) SG11201509490PA (ja)
TW (1) TWI631009B (ja)
WO (1) WO2014196501A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010964A (ja) * 2014-06-03 2016-01-21 三菱瓦斯化学株式会社 樹脂シート及びプリント配線板
WO2016158066A1 (ja) * 2015-03-31 2016-10-06 三菱瓦斯化学株式会社 シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物
JP2017071738A (ja) * 2015-10-09 2017-04-13 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP2017088745A (ja) * 2015-11-11 2017-05-25 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
WO2018003314A1 (ja) * 2016-06-29 2018-01-04 三菱瓦斯化学株式会社 樹脂組成物、樹脂シート、多層プリント配線板及び半導体装置
KR20180027418A (ko) * 2015-07-06 2018-03-14 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 레진 시트, 금속박 피복 적층판 및 프린트 배선판
US20190078213A1 (en) * 2016-01-27 2019-03-14 Advanced Technologies, Inc. Copper or copper alloy article comprising surface-modified polyester-based resin and manufacturing method
JP2019199588A (ja) * 2018-05-16 2019-11-21 山栄化学株式会社 溶解性・非溶解性粒子含有硬化性樹脂組成物
US10941323B2 (en) 2017-08-02 2021-03-09 Advanced Technologies, Inc. Composite of metal and resin
JP2022029527A (ja) * 2020-08-05 2022-02-18 信越化学工業株式会社 熱硬化性樹脂組成物及び半導体装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107614620B (zh) * 2015-05-25 2020-09-22 日立化成株式会社 树脂组合物、树脂片、预浸渍体、绝缘物、树脂片固化物和散热构件
JP6731190B2 (ja) 2015-07-06 2020-07-29 三菱瓦斯化学株式会社 樹脂組成物、それを用いたプリプレグ、レジンシート、積層板、及びプリント配線板
JP6914194B2 (ja) * 2015-07-06 2021-08-04 三菱瓦斯化学株式会社 プリント配線板の製造方法、及び樹脂組成物
KR102605760B1 (ko) * 2015-07-06 2023-11-23 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 그 수지 조성물을 사용한 프리프레그 또는 레진 시트 그리고 그것들을 사용한 적층판 및 프린트 배선판
KR102605758B1 (ko) * 2015-07-06 2023-11-23 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 레진 시트, 적층판, 및 프린트 배선판
KR102382655B1 (ko) * 2015-07-06 2022-04-04 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 및 프린트 배선판
US11339251B2 (en) * 2016-07-05 2022-05-24 Showa Denko Materials Co., Ltd. Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
KR102026591B1 (ko) * 2016-12-28 2019-09-27 미츠비시 가스 가가쿠 가부시키가이샤 프리프레그, 적층판, 금속박 피복 적층판, 프린트 배선판, 및 다층 프린트 배선판
JP7025729B2 (ja) * 2016-12-28 2022-02-25 三菱瓦斯化学株式会社 プリント配線板用樹脂組成物、プリプレグ、レジンシート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
US11098195B2 (en) 2017-02-07 2021-08-24 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed circuit board
EP3627224A4 (en) * 2017-05-15 2020-06-03 Mitsubishi Gas Chemical Company, Inc. FILM-FORMING MATERIAL FOR LITHOGRAPHY, COMPOSITION FOR FORMING FILM IN LITHOGRAPHY, UNDERLAYER FILM FOR LITHOGRAPHY AND PATTERN FORMING METHOD
EP3734780A4 (en) 2017-12-28 2021-10-27 Furukawa Electric Co., Ltd. EXTERIOR BODY FOR WIRE AND CABLE HARNESS TO EXTERIOR BODY
JP6660513B1 (ja) * 2018-03-28 2020-03-11 積水化学工業株式会社 樹脂材料及び多層プリント配線板
JP7322877B2 (ja) * 2018-06-01 2023-08-08 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、及びプリント配線板
WO2020235328A1 (ja) * 2019-05-20 2020-11-26 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、支持体付きレジンシート、金属箔張積層板、及びプリント配線板
TWI733145B (zh) * 2019-07-24 2021-07-11 宏泰電工股份有限公司 印刷電路板用樹脂組成物、預浸材、覆金屬基板及印刷電路板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186479A (ja) 1991-08-01 1993-07-27 Nikko Kyodo Co Ltd 新規イミダゾールシラン化合物及びその製造方法並びにそれを用いる金属表面処理剤
JPH09296135A (ja) 1996-04-30 1997-11-18 Japan Energy Corp 表面処理剤および樹脂添加剤
JP2001348393A (ja) * 2000-04-07 2001-12-18 Nikko Materials Co Ltd イミダゾール有機モノカルボン酸塩誘導体反応生成物及びその製造方法、並びにそれを用いる表面処理剤、樹脂添加剤および樹脂組成物
JP2003318499A (ja) 2002-04-23 2003-11-07 Matsushita Electric Works Ltd 内層回路用プリプレグ、内層回路用金属張積層板及び多層プリント配線板
JP4016782B2 (ja) 2002-09-25 2007-12-05 松下電工株式会社 プリント配線板用エポキシ樹脂組成物、プリプレグ、金属張積層板、多層プリント配線板
JP4686750B2 (ja) 2008-09-24 2011-05-25 積水化学工業株式会社 硬化体及び積層体
WO2012165423A1 (ja) * 2011-05-31 2012-12-06 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ及び積層板
WO2013008684A1 (ja) * 2011-07-14 2013-01-17 三菱瓦斯化学株式会社 プリント配線板用樹脂組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646782A (en) 1987-06-29 1989-01-11 Toshiba Corp Radiation exposure management terminal equipment
US7045461B2 (en) * 2000-01-07 2006-05-16 Nikkon Materials Co., Ltd. Metal plating method, pretreatment agent, and semiconductor wafer and semiconductor device obtained using these
JP4617838B2 (ja) * 2003-12-25 2011-01-26 チッソ株式会社 液晶性(メタ)アクリレート誘導体およびそれらを含む組成物
JP4810875B2 (ja) * 2004-06-09 2011-11-09 三菱瓦斯化学株式会社 硬化性樹脂組成物
US7892651B2 (en) * 2004-09-14 2011-02-22 Mitsubishi Gas Chemical Company, Inc. Resin composite metal foil, laminate and process for the production of printed wiring board using the laminate
US20110189432A1 (en) * 2008-07-29 2011-08-04 Sekisui Chemical Co., Ltd. Epoxy resin composition, prepreg, cured body, sheet-like molded body, laminate and multilayer laminate
WO2014050871A1 (ja) * 2012-09-27 2014-04-03 積水化学工業株式会社 多層基板の製造方法、多層絶縁フィルム及び多層基板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186479A (ja) 1991-08-01 1993-07-27 Nikko Kyodo Co Ltd 新規イミダゾールシラン化合物及びその製造方法並びにそれを用いる金属表面処理剤
JPH09296135A (ja) 1996-04-30 1997-11-18 Japan Energy Corp 表面処理剤および樹脂添加剤
JP2001348393A (ja) * 2000-04-07 2001-12-18 Nikko Materials Co Ltd イミダゾール有機モノカルボン酸塩誘導体反応生成物及びその製造方法、並びにそれを用いる表面処理剤、樹脂添加剤および樹脂組成物
JP2003318499A (ja) 2002-04-23 2003-11-07 Matsushita Electric Works Ltd 内層回路用プリプレグ、内層回路用金属張積層板及び多層プリント配線板
JP4016782B2 (ja) 2002-09-25 2007-12-05 松下電工株式会社 プリント配線板用エポキシ樹脂組成物、プリプレグ、金属張積層板、多層プリント配線板
JP4686750B2 (ja) 2008-09-24 2011-05-25 積水化学工業株式会社 硬化体及び積層体
WO2012165423A1 (ja) * 2011-05-31 2012-12-06 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ及び積層板
WO2013008684A1 (ja) * 2011-07-14 2013-01-17 三菱瓦斯化学株式会社 プリント配線板用樹脂組成物

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016010964A (ja) * 2014-06-03 2016-01-21 三菱瓦斯化学株式会社 樹脂シート及びプリント配線板
WO2016158066A1 (ja) * 2015-03-31 2016-10-06 三菱瓦斯化学株式会社 シアン酸エステル化合物、該化合物を含む硬化性樹脂組成物及びその硬化物
US10370325B2 (en) 2015-03-31 2019-08-06 Mitsubishi Gas Chemical Company, Inc. Cyanate ester compound, curable resin composition containing the compound, and hardened product thereof
US11195638B2 (en) 2015-07-06 2021-12-07 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed circuit board
KR20180027418A (ko) * 2015-07-06 2018-03-14 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 레진 시트, 금속박 피복 적층판 및 프린트 배선판
US11769607B2 (en) 2015-07-06 2023-09-26 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed circuit board
JP2020176267A (ja) * 2015-07-06 2020-10-29 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、レジンシート、金属箔張積層板及びプリント配線板
KR102579981B1 (ko) 2015-07-06 2023-09-18 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 레진 시트, 금속박 피복 적층판 및 프린트 배선판
JP2017071738A (ja) * 2015-10-09 2017-04-13 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP2017088745A (ja) * 2015-11-11 2017-05-25 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
US20190078213A1 (en) * 2016-01-27 2019-03-14 Advanced Technologies, Inc. Copper or copper alloy article comprising surface-modified polyester-based resin and manufacturing method
US11053593B2 (en) * 2016-01-27 2021-07-06 Advanced Technologies, Inc. Copper or copper alloy article comprising surface-modified polyester-based resin and manufacturing method
WO2018003314A1 (ja) * 2016-06-29 2018-01-04 三菱瓦斯化学株式会社 樹脂組成物、樹脂シート、多層プリント配線板及び半導体装置
US10941323B2 (en) 2017-08-02 2021-03-09 Advanced Technologies, Inc. Composite of metal and resin
JP2019199588A (ja) * 2018-05-16 2019-11-21 山栄化学株式会社 溶解性・非溶解性粒子含有硬化性樹脂組成物
JP2022029527A (ja) * 2020-08-05 2022-02-18 信越化学工業株式会社 熱硬化性樹脂組成物及び半導体装置

Also Published As

Publication number Publication date
TWI631009B (zh) 2018-08-01
EP3006503A4 (en) 2017-02-22
SG11201509490PA (en) 2015-12-30
EP3006503A1 (en) 2016-04-13
CN105264013A (zh) 2016-01-20
KR20160014643A (ko) 2016-02-11
JPWO2014196501A1 (ja) 2017-02-23
TW201504039A (zh) 2015-02-01
KR102147632B1 (ko) 2020-08-25
US20160125971A1 (en) 2016-05-05
JP6481610B2 (ja) 2019-03-13
EP3006503B1 (en) 2019-05-08
US9905328B2 (en) 2018-02-27
CN105264013B (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
JP6481610B2 (ja) プリント配線板材料用樹脂組成物、並びにそれを用いたプリプレグ、樹脂シート、金属箔張積層板、及びプリント配線板
JP5999091B2 (ja) プリント配線板用樹脂組成物
US9351397B2 (en) Resin composition for printed wiring board material, and prepreg, resin sheet, metal foil clad laminate, and printed wiring board using same
CN107254144B (zh) 树脂组合物和使用其的预浸料以及层压板
JP2014024970A (ja) 樹脂組成物、プリプレグ、樹脂シート、金属箔張積層板及びプリント配線板
JP6819921B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP2017088745A (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6796276B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6817529B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、樹脂複合シート及びプリント配線板
JP6618036B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6485728B2 (ja) プリント配線板材料用樹脂組成物、それを用いたプリプレグ、樹脂シート、金属箔張積層板及びプリント配線板
JP6575699B2 (ja) プリント配線板用樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
TWI713784B (zh) 樹脂組成物、預浸體、覆金屬箔疊層板、樹脂片及印刷電路板
JP2017039898A (ja) 樹脂組成物、プリプレグ、樹脂シート、金属箔張積層板及びプリント配線板
JP2019119812A (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP6829808B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
TWI670321B (zh) 樹脂組成物、預浸體、覆金屬箔疊層板、樹脂片及印刷電路板
JP2018131541A (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、及びプリント配線板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480031840.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807917

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14890714

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015521439

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157034758

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014807917

Country of ref document: EP