WO2020235331A1 - ダイカストマシン - Google Patents

ダイカストマシン Download PDF

Info

Publication number
WO2020235331A1
WO2020235331A1 PCT/JP2020/018375 JP2020018375W WO2020235331A1 WO 2020235331 A1 WO2020235331 A1 WO 2020235331A1 JP 2020018375 W JP2020018375 W JP 2020018375W WO 2020235331 A1 WO2020235331 A1 WO 2020235331A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
water supply
sleeve
supply pipe
die casting
Prior art date
Application number
PCT/JP2020/018375
Other languages
English (en)
French (fr)
Inventor
辻 眞
勇人 林
野田 三郎
Original Assignee
芝浦機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芝浦機械株式会社 filed Critical 芝浦機械株式会社
Priority to CN202080031722.7A priority Critical patent/CN113766982B/zh
Priority to MX2021013793A priority patent/MX2021013793A/es
Publication of WO2020235331A1 publication Critical patent/WO2020235331A1/ja
Priority to US17/454,390 priority patent/US11925975B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/30Accessories for supplying molten metal, e.g. in rations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/02Hot chamber machines, i.e. with heated press chamber in which metal is melted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/08Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled
    • B22D17/10Cold chamber machines, i.e. with unheated press chamber into which molten metal is ladled with horizontal press motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/14Machines with evacuated die cavity
    • B22D17/145Venting means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/2023Nozzles or shot sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/2015Means for forcing the molten metal into the die
    • B22D17/203Injection pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/28Melting pots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D39/00Equipment for supplying molten metal in rations
    • B22D39/003Equipment for supplying molten metal in rations using electromagnetic field
    • B22D39/006Electromagnetic conveyors

Definitions

  • the present invention relates to a die casting machine, and more particularly to a semi-hot chamber type die casting machine.
  • a sleeve leading to the mold and a plunger for pushing the molten metal in the sleeve into the mold are provided outside the holding furnace for storing the molten metal. ..
  • the holding furnace and the sleeve are communicated and the hot water supply pipe connected to the sleeve is connected. The molten metal is supplied to the sleeve through the sleeve.
  • an impact may be applied to the connection between the sleeve and the hot water supply pipe when the plunger is ejected, and the hot water supply pipe may be damaged. Therefore, it is desired to reduce the impact applied to the hot water supply pipe at the time of injection of the plunger and suppress the damage of the hot water supply pipe.
  • the problem to be solved by the present invention is to provide a die casting machine capable of reducing the impact applied to the hot water supply pipe at the time of injection of the plunger and suppressing damage to the hot water supply pipe.
  • the die casting machine has a holding furnace for holding the molten metal, a sleeve located outside the holding furnace, which is connected to a mold and has a hot water supply port, and slides in the sleeve.
  • a plunger having a plunger rod and a plunger tip fixed to the tip of the plunger rod, a hot water supply pipe pressed against the sleeve so as to cover the hot water supply port, and supplying the molten metal into the sleeve, and the plunger of the plunger. It is provided with a pressing force variable mechanism that reduces the pressing force of the hot water supply pipe against the sleeve during sliding.
  • a pressing force control unit that controls the pressing force variable mechanism and reduces the pressing force after the plunger tip closes the hot water supply port.
  • the hot water supply port is provided at the lower part of the sleeve.
  • the hot water supply pipe is fixed to the holding furnace and the pressing force variable mechanism changes the force applied to the holding furnace.
  • the hot water supply pipe can move relative to the holding furnace, and the pressing force variable mechanism changes the force applied to the hot water supply pipe independently of the holding furnace.
  • the hot water supply pipe has a cylindrical shape extending linearly.
  • the hot water supply pipe is made of ceramics.
  • a hot water supply driving unit that generates a driving force for transferring the molten metal from the holding furnace to the sleeve via the hot water supply pipe.
  • the hot water supply drive unit is an electromagnetic pump.
  • the hot water supply drive unit is a pneumatic device that raises the air pressure in the holding furnace.
  • the hot water supply control unit that controls the hot water supply drive unit so that the filling rate of the molten metal in the sleeve at the time when the hot water supply of the molten metal to the sleeve is completed is 70% or more. It is preferable to further prepare.
  • the hot water supply control unit is the hot water supply drive unit so that the filling rate of the molten metal in the sleeve becomes 95% or more when the plunger tip reaches the position of closing the hot water supply port. It is preferable to control.
  • the die casting machine of the above aspect faces a predetermined height between the lowermost portion and the uppermost portion of the inner surface of the sleeve, and detects that the molten metal in the sleeve has reached a predetermined height. It is preferable to further include a first sensor.
  • the sleeve has a gas vent provided at an upper portion, and further includes a second sensor above the gas vent for detecting the position of the molten metal in the sleeve. Is preferable.
  • the injection drive unit that drives the plunger and the injection control unit that controls the injection drive unit so as to increase the injection speed of the plunger after the plunger tip reaches the position of closing the hot water supply port It is preferable to further include a portion.
  • the present invention it is possible to provide a die casting machine capable of reducing the impact applied to the hot water supply pipe at the time of injection of the plunger and suppressing damage to the hot water supply pipe.
  • FIG. 6 is a schematic cross-sectional view showing a sleeve, a plunger, and a hot water supply device of the die casting machine of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of a sleeve and a hot water supply pipe of the die casting machine of the first embodiment.
  • the block diagram which shows the structure of the signal processing system of the die casting machine of 1st Embodiment.
  • FIG. 3 is a schematic cross-sectional view showing a sleeve, a plunger, and a water heater of the die casting machine of the second embodiment.
  • FIG. 3 is a schematic cross-sectional view showing a sleeve, a plunger, and a water heater of the die casting machine of the third embodiment.
  • FIG. 6 is a schematic cross-sectional view showing a sleeve, a plunger, and a water heater of the die casting machine of the fourth embodiment.
  • the die casting machine of the first embodiment is located outside the holding furnace for holding the molten metal and outside the holding furnace, leads to the inside of the mold, slides in the sleeve having the hot water supply port, and the plunger rod.
  • a plunger having a plunger tip fixed to the tip of the plunger rod, a hot water supply pipe pressed against the sleeve so as to cover the hot water supply port, and supplying molten metal into the sleeve, and a sleeve of the hot water supply pipe while the plunger is sliding. It is provided with a pressing force variable mechanism that reduces the pressing force against the vehicle.
  • FIG. 1 is a schematic view showing the overall configuration of the die casting machine of the first embodiment.
  • FIG. 1 is a side view including a cross-sectional view in part.
  • FIG. 2 is a schematic cross-sectional view showing a sleeve, a plunger, and a hot water supply device of the die casting machine of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of the sleeve and hot water supply pipe of the die casting machine of the first embodiment.
  • FIG. 3 is a cross-sectional view perpendicular to the extending direction of the sleeve.
  • the vertical direction of the paper surface is the vertical direction, and the left and right directions of the paper surface and the penetrating direction of the paper surface are horizontal directions.
  • FIG. 4 is a block diagram showing a configuration of a signal processing system of the die casting machine of the first embodiment.
  • the die casting machine 100 of the first embodiment is a semi-hot chamber type die casting machine.
  • the die casting machine 100 is a mold clamping device 10. It includes an extrusion device 12, an injection device 14, a mold 16, a control unit 18, and a hot water supply device 20.
  • the injection device 14 has a sleeve 22, a plunger 24, an injection drive unit 25, and a position sensor 27.
  • the plunger 24 includes a plunger tip 24a and a plunger rod 24b.
  • the sleeve 22 is provided with a molten metal sensor 26 (first sensor), a hot water supply port 28, and a gas vent port 30.
  • the mold 16 includes a fixed mold 16a and a moving mold 16b.
  • the control unit 18 includes a control device 32, an input device 34, and a display device 36.
  • the control device 32 includes a molding condition selection unit 32a, a hot water supply control unit 32b, an injection control unit 32c, and a pressing force control unit 32d.
  • the hot water supply device 20 includes a hot water supply pipe 40, a holding furnace 42, a packing 44, a first heater 46, a guard member 48, a hot water supply pipe sleeve 50, a second heater 52, an electromagnetic pump 54 (hot water supply drive unit), and a hot water level sensor 56.
  • a hot water level sensor 56 (Second sensor), fulcrum 62, metal feeder 64, actuator 90 (pressing force variable mechanism), elastic body 92, push-up member 94, load sensor 96, stopper 98.
  • the holding furnace 42 is provided with a holding furnace hot water level sensor 66, a filter 68, a filter support 70, a holding furnace heater 72, and a metal supply port 74.
  • the electromagnetic pump 54 has a coil 54a and a core 54b.
  • the die casting machine 100 is a machine that manufactures a die casting product by injecting a liquid metal (molten metal) into the inside of the mold 16 (cavity Ca in FIG. 1) and solidifying the liquid metal in the mold 16. .
  • the metal is, for example, aluminum, an aluminum alloy, a zinc alloy, or a magnesium alloy.
  • the mold 16 is provided between the mold clamping device 10 and the injection device 14.
  • the mold 16 includes a fixed mold 16a and a moving mold 16b.
  • the mold clamping device 10 has a function of opening and closing the mold 16 and mold clamping.
  • the injection device 14 has a function of injecting liquid metal into the mold 16. As shown in FIG. 1, the injection device 14 includes a sleeve 22, a plunger 24, an injection drive unit 25, and a position sensor 27.
  • the sleeve 22 is located outside the holding furnace 42 that holds the molten metal.
  • the sleeve 22 leads into the mold 16.
  • the sleeve 22 is, for example, a tubular member connected to the fixed mold 16a.
  • the sleeve 22 has, for example, a cylindrical shape.
  • the plunger 24 slides in the sleeve 22.
  • the plunger tip 24a fixed to the tip of the plunger rod 24b slides in the sleeve 22 in the front-rear direction. As the plunger tip 24a slides forward in the sleeve 22, the molten metal in the sleeve 22 is pushed out into the mold 16.
  • the injection drive unit 25 has a function of driving the plunger 24 in the front-rear direction.
  • the injection drive unit 25 is, for example, a hydraulic type, an electric type, or a hybrid type in which a hydraulic type and an electric type are combined.
  • the position sensor 27 has a function of detecting the position of the plunger 24.
  • the position sensor 27 is, for example, an optical or magnetic linear encoder. By differentiating the position of the plunger 24 detected by the position sensor 27, it is possible to detect the speed of the plunger 24.
  • the sleeve 22 is provided with a molten metal sensor 26 (first sensor), a hot water supply port 28, and a gas vent port 30.
  • the hot water supply port 28 is provided at the lower part of the sleeve 22.
  • the molten metal is supplied into the sleeve 22 from the hot water supply pipe 40 connected to the hot water supply port 28.
  • the gas vent 30 is provided on the upper part of the sleeve 22.
  • the gas vent 30 has a function of exhausting the gas in the upper part of the sleeve 22 when the sleeve 22 is filled with the molten metal. By providing the gas vent 30, the filling time of the molten metal into the sleeve 22 is shortened.
  • the molten metal sensor 26 faces a predetermined height between the lowermost portion and the uppermost portion of the inner surface of the sleeve 22.
  • the molten metal sensor 26 is exposed inside the sleeve 22, for example.
  • the molten metal sensor 26 detects that the molten metal has reached the position of the molten metal sensor 26 in the sleeve 22.
  • the molten metal sensor 26 is, for example, a resistance sensor having a pair of electrodes, and when the molten metal reaches the position of the electrodes, it is energized and outputs a signal. Further, the molten metal sensor 26 is, for example, a temperature sensor that outputs a signal when the temperature exceeds a predetermined value. Further, the molten metal sensor 26 is, for example, a pressure sensor that outputs a signal when the pressure exceeds a predetermined value.
  • the hot water supply device 20 is provided below the sleeve 22.
  • the hot water supply device 20 has a function of supplying molten metal into the sleeve 22 and filling the sleeve 22 with the molten metal.
  • the hot water supply device 20 includes a hot water supply pipe 40, a holding furnace 42, a packing 44, a first heater 46, a guard member 48, a hot water supply pipe sleeve 50, a second heater 52, an electromagnetic pump 54 (hot water supply drive unit), and a hot water level sensor 56.
  • a hot water supply pipe 40 a holding furnace 42, a packing 44, a first heater 46, a guard member 48, a hot water supply pipe sleeve 50, a second heater 52, an electromagnetic pump 54 (hot water supply drive unit), and a hot water level sensor 56.
  • fulcrum 62 fulcrum 62
  • metal feeder 64 actuator 90 (pressing force variable mechanism)
  • elastic body 92 push-up member 94
  • load sensor 96 stopper 98.
  • the hot water supply pipe 40 is provided below the sleeve 22. One end of the hot water supply pipe 40 is pressed against the sleeve 22 so as to cover the hot water supply port 28. The hot water supply pipe 40 contacts the sleeve 22 so that the central axis of the hot water supply pipe 40 and the central axis of the hot water supply port 28 coincide with each other.
  • the pressing force of the hot water supply pipe 40 against the sleeve 22 is variable.
  • the pressing force of the hot water supply pipe 40 against the sleeve 22 is adjusted by the actuator 90.
  • the hot water supply pipe 40 is fixed to the holding furnace 42, for example.
  • the hot water supply pipe 40 has a function of supplying the molten metal into the sleeve 22.
  • the hot water supply pipe 40 is a tubular member.
  • the hot water supply pipe 40 has, for example, a cylindrical shape extending linearly in the vertical direction.
  • the diameter of the cylinder may change in the vertical direction.
  • the hot water supply pipe 40 does not include, for example, a bent portion.
  • the hot water supply pipe 40 is made of, for example, ceramics.
  • the hot water supply pipe 40 is made of, for example, only ceramics.
  • the packing 44 is provided at the upper end of the hot water supply pipe 40.
  • the packing 44 has a function of preventing the molten metal from leaking from the gap between the sleeve 22 and the hot water supply pipe 40.
  • the packing 44 has heat resistance.
  • the first heater 46 is provided around the hot water supply pipe 40.
  • the first heater 46 has a function of heating the molten metal in the hot water supply pipe 40.
  • the guard member 48 covers the upper end portion and the upper side surface of the first heater 46.
  • the guard member 48 has a function of protecting the first heater 46.
  • the hot water supply pipe sleeve 50 is provided below the hot water supply pipe 40.
  • the lower end of the hot water supply pipe 40 is inserted into, for example, the hot water supply pipe sleeve 50.
  • the lower end of the hot water supply pipe sleeve 50 is immersed in the molten metal of the holding furnace 42.
  • the hot water supply pipe sleeve 50 is made of, for example, ceramics.
  • the second heater 52 is provided in the hot water supply pipe sleeve 50.
  • the second heater 52 has a function of heating the molten metal in the hot water supply pipe sleeve 50.
  • the electromagnetic pump 54 is an example of a hot water supply drive unit.
  • the electromagnetic pump 54 has a coil 54a and a core 54b.
  • the coil 54a is provided around the hot water supply pipe 40, and the core 54b is provided in the hot water supply pipe 40.
  • the electromagnetic pump 54 generates a driving force for transferring the molten metal from the holding furnace 42 to the sleeve 22 via the hot water supply pipe 40.
  • the hot water level sensor 56 is provided above the gas vent 30 provided on the sleeve 22.
  • the molten metal level sensor 56 has a function of detecting the molten metal level position in the sleeve 22.
  • the molten metal level sensor 56 is, for example, a non-contact type sensor that detects the height of the molten metal from above the molten metal surface.
  • the molten metal level sensor 56 is, for example, an optical or ultrasonic type sensor.
  • the holding furnace 42 is provided below the sleeve 22.
  • the holding furnace 42 has a function of holding the molten metal inside.
  • the holding furnace 42 is provided with a holding furnace hot water level sensor 66, a filter 68, a filter support 70, a holding furnace heater 72, and a metal supply port 74.
  • the holding furnace hot water level sensor 66 has a function of detecting the hot water level position of the molten metal in the holding furnace 42.
  • the holding furnace molten metal level sensor 66 is, for example, a non-contact type sensor that detects the height of the molten metal surface from above the molten metal surface.
  • the holding furnace hot water level sensor 66 is, for example, an optical or ultrasonic type sensor.
  • the height of the molten metal in the holding furnace 42 is maintained at a predetermined position by supplying an ingot into the holding furnace 42 based on the height of the molten metal detected by the holding furnace hot water level sensor 66. For example, by keeping the height of the hot water surface in the holding furnace 42 at a predetermined position, the hot water level in the hot water supply pipe 40 is brought into contact with the core 54b of the electromagnetic pump 54.
  • the filter 68 is provided in the holding furnace 42.
  • the filter 68 suppresses the supply of solid matter such as oxides of the molten metal contained in the molten metal into the sleeve 22.
  • the filter support 70 is fixed to the filter 68.
  • the filter support 70 has a function of pulling the filter 68 out of the holding furnace 42.
  • the holding furnace heater 72 is immersed in the molten metal in the holding furnace 42.
  • the holding furnace heater 72 has a function of heating the molten metal in the holding furnace 42.
  • the metal supply port 74 is provided on the upper surface of the holding furnace 42. For example, an ingot that is a raw material for molten metal is input from the metal supply port 74. The molten metal may be supplied from the metal supply port 74.
  • the actuator 90 is provided below the side surface of the holding furnace 42.
  • the actuator 90 is an example of a pressing force variable mechanism.
  • the actuator 90 has a function of reducing the pressing force of the hot water supply pipe 40 against the sleeve 22 while the plunger 24 is sliding.
  • the actuator 90 applies a force that presses the holding furnace 42 downward.
  • the actuator 90 changes the force applied to the holding furnace 42.
  • the fulcrum 62 is provided below the holding furnace 42.
  • the elastic body 92 is provided below the side surface of the holding furnace 42.
  • the elastic body 92 is provided on the opposite side of the actuator 90 with the fulcrum 62 interposed therebetween.
  • the elastic body 92 has a function of pressing the hot water supply pipe 40 against the sleeve 22.
  • the elastic body 92 is, for example, a spring.
  • the push-up member 94 is fixed to the side surface of the holding furnace 42 and is provided above the elastic body 92. An upward force is applied to the push-up member 94 by the elastic body 92.
  • the load sensor 96 is provided above the push-up member 94.
  • the load sensor 96 makes it possible to monitor the pressing force of the hot water supply pipe 40 against the sleeve 22.
  • the stopper 98 is provided above the push-up member 94.
  • the stopper 98 limits the upward displacement of the push-up member 94 and suppresses the excessive pressing force of the hot water supply pipe 40 against the sleeve 22.
  • the metal feeder 64 is provided above the holding furnace 42.
  • the metal feeder 64 supplies, for example, an ingot as a raw material for molten metal into the holding furnace 42 from the metal supply port 74.
  • the metal feeder 64 may supply the molten metal from, for example, the metal supply port 74.
  • the control unit 18 includes a control device 32, an input device 34, and a display device 36.
  • the input device 34 is provided, for example, on the fixed die plate (reference numeral omitted) of the mold clamping device 10.
  • the input device 34 receives an operator's input operation. The operator can set the molding conditions and the like of the die casting machine 100 by using the input device 34.
  • the input device 34 is, for example, a touch panel using a liquid crystal display or an organic EL display.
  • the display device 36 is provided, for example, on the fixed die plate (reference numeral omitted) of the mold clamping device 10.
  • the display device 36 displays, for example, the molding conditions, the operating status, and the like of the die casting machine 100 on the screen.
  • the display device 36 is, for example, a liquid crystal display or an organic EL display.
  • the control device 32 has a function of controlling the molding operation of the die casting machine 100 using the mold clamping device 10, the extrusion device 12, the injection device 14, and the hot water supply device 20.
  • the control device 32 has a function of performing various calculations and outputting a control command to each part of the die casting machine 100.
  • the control device 32 is composed of, for example, a combination of hardware and software.
  • the control device 32 includes, for example, a CPU (Central Processing Unit), a semiconductor memory, and a control program stored in the semiconductor memory.
  • a CPU Central Processing Unit
  • the control device 32 includes a molding condition selection unit 32a, a hot water supply control unit 32b, an injection control unit 32c, and a pressing force control unit 32d.
  • the molding condition selection unit 32a has a function of setting various molding conditions such as the injection speed of the plunger 24 based on the signal from the input device 34.
  • the hot water supply control unit 32b has a function of controlling the supply of molten metal from the holding furnace 42 into the sleeve 22 based on the data of the molten metal level position detected by the molten metal sensor 26 and the molten metal level sensor 56.
  • the molten metal is supplied into the sleeve 22 by controlling the drive of the electromagnetic pump 54.
  • the hot water supply control unit 32b controls the electromagnetic pump 54 so that the filling rate of the molten metal in the sleeve 22 at the time when the hot water supply of the molten metal to the sleeve 22 is completed is 70% or more. Further, the hot water supply control unit 32b controls the electromagnetic pump 54 so that the filling rate of the molten metal in the sleeve 22 becomes 95% or more when the plunger tip 24a reaches the position of closing the hot water supply port 28, for example.
  • the injection control unit 32c has a function of controlling the injection drive unit 25 based on the position of the plunger 24 detected by the position sensor 27.
  • the injection control unit 32c controls the injection drive unit 25 so as to increase the injection speed of the plunger 24, for example, after the plunger chip 24a reaches the position of closing the hot water supply port 28.
  • the pressing force control unit 32d has a function of controlling the actuator 90 based on the position of the plunger 24 detected by the position sensor 27 and the load measured by the load sensor 96.
  • the pressing force control unit 32d controls the actuator 90 after the plunger tip 24a closes the hot water supply port 28, and reduces the pressing force of the hot water supply pipe 40 against the sleeve 22.
  • FIG. 5 is a flowchart of an example of the operation of the die casting machine of the first embodiment.
  • FIG. 5 shows from hot water supply into the sleeve 22 to boosting and holding pressure after high-speed injection. That is, the description of mold closing and mold clamping before hot water supply, mold opening and extrusion after pressurizing / holding pressure, etc. will be omitted.
  • the operation for which the description is omitted is, for example, the same as a known operation.
  • the operations of the die casting machine 100 are hot water supply start (step ST1), molten metal detection determination (step ST2), deceleration start (step ST3), hot water supply stop (step ST4), injection start (step ST5), closed position determination (step ST6). ,
  • step ST1 hot water supply start
  • step ST2 molten metal detection determination
  • step ST3 hot water supply stop
  • step ST4 injection start
  • step ST6 closed position determination
  • step ST9 Each step of pressing force reduction (step ST7), high-speed injection (step ST8), and boosting / holding pressure (step ST9) is provided.
  • 6 and 7 are explanatory views of an example of the operation of the die casting machine of the first embodiment.
  • FIG. 6 is a graph showing an example of the injection operation of the die casting machine 100.
  • the horizontal axis is time. As time goes by, the plotted points are located on the left side of the page.
  • the vertical axis on the right side of the paper shows the injection speed, that is, the speed of the plunger 24.
  • the vertical axis on the left side of the paper shows the filling rate of the molten metal in the sleeve 22.
  • the filling rate means the ratio of the molten metal to the volume of the sleeve 22 in front of the plunger 24.
  • the line Lv indicates the time course of the injection rate. Further, the line Lr indicates a change with time in the filling rate of the molten metal in the sleeve 22.
  • FIG. 7 is a schematic view showing the inside of the sleeve 22 during the injection operation of the die casting machine 100 of the first embodiment.
  • 7 (a) shows the case of time t0
  • FIG. 7 (b) shows the case of time t1
  • FIG. 7 (c) shows the case of time t3.
  • step ST1 when the predetermined hot water supply start condition is satisfied, hot water supply into the sleeve 22 is started by a command from the hot water supply control unit 32b. Specifically, the electromagnetic pump 54 is operated to start supplying hot water from the holding furnace 42 into the sleeve 22 via the hot water supply pipe 40.
  • the pressing force of the hot water supply pipe 40 against the sleeve 22 is the sum of the force f applied to the pushing member 94 by the elastic body 92 and the force F that the actuator 90 presses the holding furnace 42 downward. ..
  • the pressing force control unit 32d feeds back the measured value of the load sensor 96 to the force F in which the actuator 90 presses the holding furnace 42 downward, and controls the pressing force of the hot water supply pipe 40 against the sleeve 22 so as not to be excessive. ..
  • step ST2 the hot water supply control unit 32b determines whether or not it is confirmed by the molten metal sensor 26 that the hot water surface in the sleeve 22 has reached a predetermined height. At the time of a negative determination, the hot water supply control unit 32b maintains the current supply speed of the molten metal. At the time of affirmative determination, the hot water supply control unit 32b proceeds to the next step ST3.
  • step ST3 the hot water supply control unit 32b controls the electromagnetic pump 54 so as to reduce the molten metal supply speed into the sleeve 22.
  • the hot water supply control unit 32b controls the electromagnetic pump 54 so as to reduce the molten metal supply speed into the sleeve 22.
  • step ST4 when the predetermined hot water supply stop condition is satisfied, the hot water supply control unit 32b stops the hot water supply from the holding furnace 42 to the sleeve 22.
  • the hot water supply stop condition is, for example, that the height of the hot water surface detected by the hot water level sensor 56 reaches a predetermined value satisfying a desired filling rate.
  • the hot water supply is stopped by stopping the operation of the electromagnetic pump 54.
  • Step ST4 is the state at time t0 in FIG. Further, step ST4 is the state shown in FIG. 7A.
  • the hot water supply control unit 32b controls the electromagnetic pump 54 so that the filling rate of the molten metal M in the sleeve 22 is 70% or more, for example.
  • the pressing force of the hot water supply pipe 40 against the sleeve 22 is the sum of the force f applied to the pushing member 94 by the elastic body 92 and the force F that the actuator 90 presses the holding furnace 42 downward (f + F). ).
  • step ST5 the injection of the molten metal in the sleeve 22 is started by the command of the injection control unit 32c. That is, the injection drive unit 25 is controlled so that the plunger 24 starts advancing.
  • the injection speed of the plunger 24 at this time is between time t0 and t1 in FIG. 6, and is performed at a relatively low speed.
  • the injection speed of the plunger 24 is, for example, less than 1 m / s.
  • step ST6 the injection control unit 32c and the pressing force control unit 32d determine whether or not the plunger 24 has reached the position of blocking the hot water supply port 28 from the position information detected by the position sensor 27. At the time of negative judgment, the injection speed is maintained at a relatively low speed. If the judgment is affirmative, the process proceeds to step ST7.
  • step ST7 the pressing force control unit 32d reduces the pressing force of the hot water supply pipe 40 against the sleeve 22. Specifically, the pressing force control unit 32d issues a command to the actuator 90, for example, and stops the actuator 90 from pushing the holding furnace 42 downward. Since the force for pushing the holding furnace 42 downward is eliminated, the pressing force for the sleeve 22 of the hot water supply pipe 40 is only the force f applied to the pushing member 94 by the elastic body 92.
  • Step ST7 is the state at time t1 in FIG. Further, step ST7 is the state shown in FIG. 7B. At this time, for example, the hot water supply control unit 32b maintains the hot water surface position in the hot water supply pipe 40 at a relatively high position directly below the hot water supply port 28.
  • the molten metal M in the sleeve 22 does not leak from the hot water supply port 28 even if the pressing force of the hot water supply pipe 40 against the sleeve 22 is reduced.
  • the filling rate of the molten metal M in the sleeve 22 is, for example, 95% or more.
  • the filling rate of the molten metal M in the sleeve 22 is, for example, 100%.
  • step ST8 the injection control unit 32c increases the injection speed of the plunger 24.
  • the injection control unit 32c controls the injection drive unit 25 to switch the injection speed of the plunger 24 to the high-speed injection speed VH to perform high-speed injection.
  • the injection speed of the plunger 24 is, for example, 1 m / s or more.
  • step ST9 the injection control unit 32c controls the injection drive unit 25 to increase the pressure and hold the molten metal M.
  • Step ST9 is the state at time t3 in FIG. Further, step ST9 is the state shown in FIG. 7 (c). In step ST9, the plunger 24 is stopped.
  • Steps ST1 to ST9 are executed every casting cycle.
  • an impact may be applied to the connection between the sleeve and the hot water supply pipe when the plunger is ejected, and the hot water supply pipe may be damaged. Therefore, it is desired to reduce the impact applied to the hot water supply pipe at the time of injection of the plunger and suppress the damage of the hot water supply pipe.
  • the die casting machine 100 of the first embodiment includes an actuator 90 that reduces the pressing force of the hot water supply pipe 40 against the sleeve 22 while the plunger 24 is sliding.
  • an actuator 90 that reduces the pressing force of the hot water supply pipe 40 against the sleeve 22 while the plunger 24 is sliding.
  • the hot water supply pipe 40 is preferably formed only of ceramics having high heat resistance.
  • the metal when a metal is used for the hot water supply pipe 40, the metal may be damaged by melting at a high temperature. Ceramics are inferior in impact resistance to metals.
  • the hot water supply pipe 40 can be formed only of ceramics.
  • the ceramic hot water supply pipe 40 preferably does not have a bent portion from the viewpoint of maintaining strength.
  • the hot water supply pipe 40 preferably has a cylindrical shape extending linearly from the viewpoint of maintaining strength.
  • the die casting machine 100 of the first embodiment includes a molten metal sensor 26 and a molten metal level sensor 56.
  • the molten metal sensor 26 detects the surface of the hot water immediately before the end of the hot water supply, and the hot water supply speed can be switched from high speed to low speed. Then, the molten metal level sensor 56 can measure the molten metal surface position with high accuracy. Therefore, it is possible to shorten the hot water supply time and improve the hot water supply accuracy.
  • the hot water supply control unit 32b preferably controls the electromagnetic pump 54 so that the filling rate of the molten metal in the sleeve 22 at the time when the hot water supply of the molten metal to the sleeve 22 is completed is 70% or more, preferably 80% or more. It is more preferable to control as such. Further, the hot water supply control unit 32b preferably controls the electromagnetic pump 54 so that the filling rate of the molten metal in the sleeve 22 becomes 95% or more when the plunger tip 24a reaches the position of closing the hot water supply port 28. It is more preferable to control the content to 98% or more. Entrainment of gas in the molten metal is reduced, and the quality of die-cast products is improved.
  • the injection control unit 32c controls the injection drive unit 25 so as to increase the injection speed of the plunger 24. Therefore, it is possible to shorten the manufacturing time of the die-cast product.
  • the actuator 90 that reduces the pressing force of the hot water supply pipe 40 against the sleeve 22 while the plunger 24 is sliding, the impact applied to the hot water supply pipe 40 at the time of injection of the plunger 24 is reduced. Will be done. Therefore, it is possible to realize a die casting machine capable of suppressing damage to the hot water supply pipe 40.
  • the hot water supply pipe can be moved relative to the holding furnace, and the pressing force variable mechanism changes the force applied to the hot water supply pipe independently of the holding furnace. Different from the embodiment. Hereinafter, some descriptions of the contents overlapping with the first embodiment will be omitted.
  • FIG. 8 is a schematic cross-sectional view showing a sleeve, a plunger, and a hot water supply device of the die casting machine of the second embodiment.
  • the die casting machine of the second embodiment is a semi-hot chamber type die casting machine.
  • the die casting machine of the second embodiment is a mold clamping device 10. It includes an extrusion device 12, an injection device 14, a mold 16, a control unit 18, and a hot water supply device 20.
  • the injection device 14 has a sleeve 22, a plunger 24, an injection drive unit 25, and a position sensor 27.
  • the plunger 24 includes a plunger tip 24a and a plunger rod 24b.
  • the sleeve 22 is provided with a molten metal sensor 26 (first sensor), a hot water supply port 28, and a gas vent port 30.
  • the mold 16 includes a fixed mold 16a and a moving mold 16b.
  • the control unit 18 includes a control device 32, an input device 34, and a display device 36.
  • the control device 32 includes a molding condition selection unit 32a, a hot water supply control unit 32b, an injection control unit 32c, and a pressing force control unit 32d.
  • the hot water supply device 20 includes a hot water supply pipe 40, a holding furnace 42, a packing 44, a first heater 46, a hot water supply pipe sleeve 50, a second heater 52, an electromagnetic pump 54 (hot water supply drive unit), and a hot water level sensor 56 (second hot water supply drive unit).
  • a sensor a metal feeder 64, a hot water supply pipe support member 80, an actuator 82 (variable pressing force mechanism), an actuator support member 84, an elastic body 85, and a slide member 86 are provided.
  • the holding furnace 42 is provided with a holding furnace hot water level sensor 66, a filter 68, a filter support 70, a holding furnace heater 72, and a metal supply port 74.
  • the electromagnetic pump 54 has a coil 54a and a core 54b.
  • the hot water supply pipe 40 is provided below the sleeve 22. One end of the hot water supply pipe 40 is pressed against the sleeve 22 so as to cover the hot water supply port 28. The hot water supply pipe 40 contacts the sleeve 22 so that the central axis of the hot water supply pipe 40 and the central axis of the hot water supply port 28 coincide with each other.
  • the pressing force of the hot water supply pipe 40 against the sleeve 22 is variable.
  • the pressing force of the hot water supply pipe 40 against the sleeve 22 is adjusted by the actuator 82.
  • the hot water supply pipe 40 can move relative to the holding furnace 42, for example.
  • the hot water supply pipe 40 has a function of supplying the molten metal into the sleeve 22.
  • the hot water supply pipe support member 80 has a function of supporting the hot water supply pipe 40.
  • the hot water supply pipe support member 80 supports the hot water supply pipe 40 with a fringe provided at the upper end of the hot water supply pipe 40.
  • the actuator 82 is an example of a variable pressing force mechanism.
  • the actuator 82 moves the hot water supply pipe 40 in the vertical direction.
  • the actuator 82 has a function of reducing the pressing force of the hot water supply pipe 40 against the sleeve 22 while the plunger 24 is sliding.
  • the actuator 82 changes the force applied to the hot water supply pipe 40 independently of the holding furnace 42.
  • the actuator 82 is, for example, a pneumatic cylinder.
  • the actuator 82 may be, for example, a hydraulic cylinder or a solenoid actuator.
  • the actuator support member 84 supports the actuator 82.
  • the hot water supply pipe 40 and the hot water supply pipe sleeve 50 move relative to each other in the vertical direction. Further, by operating the actuator 82, the hot water supply pipe support member 80 and the actuator support member 84 move relative to each other in the vertical direction.
  • the elastic body 85 is provided between the hot water supply pipe support member 80 and the actuator support member 84.
  • the elastic body 85 applies a pressing force against the sleeve 22 to the hot water supply pipe 40.
  • three or more actuators 82 and three or more elastic bodies 85 are arranged around the hot water supply pipe 40.
  • the slide member 86 is provided between the hot water supply pipe 40 and the hot water supply pipe sleeve 50.
  • the slide member 86 suppresses the leakage of molten metal from the gap between the hot water supply pipe 40 and the hot water supply pipe sleeve 50.
  • the pressing force of the hot water supply pipe 40 against the sleeve 22 is applied to the hot water supply pipe support member 80 by the elastic body 85, and the actuator 82 supports the hot water supply pipe.
  • the actuator 82 is controlled so as to be the sum of the force F that pushes up the member 80 upward.
  • the pressing force control unit 32d has a function of controlling the actuator 82 based on the position of the plunger 24 detected by the position sensor 27.
  • the pressing force control unit 32d controls the actuator 82 after the plunger tip 24a closes the hot water supply port 28, and reduces the pressing force of the hot water supply pipe 40 against the sleeve 22. Specifically, for example, the application of force by the actuator 82 is stopped.
  • the actuator 82 changes the force applied to the hot water supply pipe 40 independently of the holding furnace 42.
  • the actuator 82 that reduces the pressing force of the hot water supply pipe 40 against the sleeve 22 while the plunger 24 is sliding, the impact applied to the hot water supply pipe 40 when the plunger 24 is ejected is reduced.
  • the second embodiment independently raises and lowers only the hot water supply pipe 40.
  • the holding furnace 42 remains fixed. Therefore, the second embodiment is suitable for a large die casting machine that requires a heavy holding furnace 42.
  • the die casting machine of the third embodiment is different from the first embodiment in that the hot water supply drive unit is a pneumatic device that raises the air pressure in the holding furnace.
  • the hot water supply drive unit is a pneumatic device that raises the air pressure in the holding furnace.
  • FIG. 9 is a schematic cross-sectional view showing a sleeve, a plunger, and a hot water supply device of the die casting machine of the third embodiment.
  • the die casting machine of the third embodiment is a semi-hot chamber type die casting machine.
  • the die casting machine of the third embodiment is a mold clamping device 10. It includes an extrusion device 12, an injection device 14, a mold 16, a control unit 18, and a hot water supply device 20.
  • the injection device 14 has a sleeve 22, a plunger 24, an injection drive unit 25, and a position sensor 27.
  • the plunger 24 includes a plunger tip 24a and a plunger rod 24b.
  • the sleeve 22 is provided with a molten metal sensor 26 (first sensor), a hot water supply port 28, and a gas vent port 30.
  • the mold 16 includes a fixed mold 16a and a moving mold 16b.
  • the control unit 18 includes a control device 32, an input device 34, and a display device 36.
  • the control device 32 includes a molding condition selection unit 32a, a hot water supply control unit 32b, an injection control unit 32c, and a pressing force control unit 32d.
  • the hot water supply device 20 includes a hot water supply pipe 40, a holding furnace 42, a packing 44, a first heater 46, a guard member 48, a hot water supply pipe sleeve 50, a second heater 52, a pneumatic device 88 (hot water supply drive unit), and a hot water level sensor. It includes 56 (second sensor), fulcrum 62, actuator 90 (pushing force variable mechanism), elastic body 92, push-up member 94, load sensor 96, and stopper 98.
  • the holding furnace 42 is provided with a holding furnace hot water level sensor 66, a filter 68, a filter support 70, and a holding furnace heater 72.
  • the pneumatic device 88 generates a driving force for transferring the molten metal from the holding furnace 42 to the sleeve 22 via the hot water supply pipe 40.
  • the pneumatic device 88 supplies gas to the closed holding furnace 42 to pressurize the inside of the holding furnace 42. As a result, a pressure higher than the atmospheric pressure is applied to the molten metal surface in the holding furnace 42. Due to this pressure, the molten metal is filled in the sleeve 22.
  • the hot water supply control unit 32b has a function of controlling the supply of molten metal from the holding furnace 42 into the sleeve 22 based on the data of the molten metal level position detected by the molten metal sensor 26 and the molten metal level sensor 56.
  • the molten metal is supplied into the sleeve 22 by controlling the drive of the pneumatic device 88.
  • the actuator 90 that reduces the pressing force of the hot water supply pipe 40 against the sleeve 22 while the plunger 24 is sliding, the impact applied to the hot water supply pipe 40 at the time of injection of the plunger 24 is reduced. Will be done. Therefore, it is possible to realize a die casting machine capable of suppressing damage to the hot water supply pipe 40.
  • the hot water supply pipe can be moved relative to the holding furnace, and the pressing force variable mechanism changes the force applied to the hot water supply pipe independently of the holding furnace. Different from the embodiment.
  • the pressing force variable mechanism changes the force applied to the hot water supply pipe independently of the holding furnace.
  • FIG. 10 is a schematic cross-sectional view showing a sleeve, a plunger, and a hot water supply device of the die casting machine of the fourth embodiment.
  • the die casting machine of the fourth embodiment is a semi-hot chamber type die casting machine.
  • the die casting machine of the fourth embodiment is a mold clamping device 10. It includes an extrusion device 12, an injection device 14, a mold 16, a control unit 18, and a hot water supply device 20.
  • the injection device 14 has a sleeve 22, a plunger 24, an injection drive unit 25, and a position sensor 27.
  • the plunger 24 includes a plunger tip 24a and a plunger rod 24b.
  • the sleeve 22 is provided with a molten metal sensor 26 (first sensor), a hot water supply port 28, and a gas vent port 30.
  • the mold 16 includes a fixed mold 16a and a moving mold 16b.
  • the control unit 18 includes a control device 32, an input device 34, and a display device 36.
  • the control device 32 includes a molding condition selection unit 32a, a hot water supply control unit 32b, an injection control unit 32c, and a pressing force control unit 32d.
  • the hot water supply device 20 includes a hot water supply pipe 40, a holding furnace 42, a packing 44, a first heater 46, a hot water supply pipe sleeve 50, a second heater 52, a pneumatic device 88 (hot water supply drive unit), and a hot water level sensor 56 (second). Sensor), a hot water supply pipe support member 80, an actuator 82 (variable pressing force mechanism), an actuator support member 84, a slide member 86, and a stopper 98.
  • the holding furnace 42 is provided with a holding furnace hot water level sensor 66, a filter 68, a filter support 70, a holding furnace heater 72, and a metal supply port 74.
  • the hot water supply pipe 40 is provided below the sleeve 22. One end of the hot water supply pipe 40 is pressed against the sleeve 22 so as to cover the hot water supply port 28. The hot water supply pipe 40 contacts the sleeve 22 so that the central axis of the hot water supply pipe 40 and the central axis of the hot water supply port 28 coincide with each other.
  • the pressing force of the hot water supply pipe 40 against the sleeve 22 is variable.
  • the pressing force of the hot water supply pipe 40 against the sleeve 22 is adjusted by the actuator 82.
  • the hot water supply pipe 40 can move relative to the holding furnace 42, for example.
  • the hot water supply pipe 40 has a function of supplying the molten metal into the sleeve 22.
  • the hot water supply pipe support member 80 has a function of supporting the hot water supply pipe 40.
  • the hot water supply pipe support member 80 supports the hot water supply pipe 40 with a fringe provided at the upper end of the hot water supply pipe 40.
  • the actuator 82 is an example of a variable pressing force mechanism.
  • the actuator 82 moves the hot water supply pipe 40 in the vertical direction.
  • the actuator 82 has a function of reducing the pressing force of the hot water supply pipe 40 against the sleeve 22 while the plunger 24 is sliding.
  • the actuator 82 is, for example, a pneumatic cylinder.
  • the actuator 82 may be, for example, a hydraulic cylinder or a solenoid actuator.
  • the actuator support member 84 supports the actuator 82.
  • the hot water supply pipe 40 and the hot water supply pipe sleeve 50 move relative to each other in the vertical direction. Further, by operating the actuator 82, the hot water supply pipe support member 80 and the actuator support member 84 move relative to each other in the vertical direction.
  • the elastic body 85 is provided between the hot water supply pipe support member 80 and the actuator support member 84.
  • the elastic body 85 applies a pressing force against the sleeve 22 to the hot water supply pipe 40.
  • three or more actuators 82 and three or more elastic bodies 85 are arranged around the hot water supply pipe 40.
  • the slide member 86 is provided between the hot water supply pipe 40 and the hot water supply pipe sleeve 50.
  • the slide member 86 suppresses the leakage of molten metal from the gap between the hot water supply pipe 40 and the hot water supply pipe sleeve 50.
  • the stopper 98 is provided above the hot water supply pipe support member 80.
  • the stopper 98 limits the upward displacement of the hot water supply pipe support member 80 and suppresses the excessive pressing force of the hot water supply pipe 40 against the sleeve 22.
  • the pressing force of the hot water supply pipe 40 against the sleeve 22 is applied to the hot water supply pipe support member 80 by the elastic body 85, and the actuator 82 supports the hot water supply pipe.
  • the actuator 82 is controlled so as to be the sum of the force F that pushes the member 80 upward.
  • the pressing force control unit 32d has a function of controlling the actuator 82 based on the position of the plunger 24 detected by the position sensor 27.
  • the pressing force control unit 32d controls the actuator 82 after the plunger tip 24a closes the hot water supply port 28, and reduces the pressing force of the hot water supply pipe 40 against the sleeve 22. Specifically, for example, the application of force by the actuator 82 is stopped.
  • the actuator 82 changes the force applied to the hot water supply pipe 40 independently of the holding furnace 42.
  • the actuator 82 that reduces the pressing force of the hot water supply pipe 40 against the sleeve 22 while the plunger 24 is sliding, the impact applied to the hot water supply pipe 40 when the plunger 24 is ejected is reduced.
  • the fourth embodiment moves only the hot water supply pipe 40 up and down. In other words, the holding furnace 42 remains fixed. Therefore, the fourth embodiment is suitable for a large die casting machine that requires a heavy holding furnace 42.
  • the horizontal moving means is, for example, a wheel. By providing the horizontal moving means, the maintenance of the holding furnace 42 becomes easy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

実施形態のダイカストマシンは、溶湯を保持する保持炉と、保持炉の外部に位置し、金型の中に通じ、給湯口を有するスリーブと、スリーブの中を摺動し、プランジャロッドとプランジャロッドの先端に固定されたプランジャチップとを有するプランジャと、給湯口を覆うようにスリーブに押し付けられ、溶湯をスリーブの中に供給する給湯管と、プランジャの摺動中に給湯管のスリーブに対する押付力を低減させる押付力可変機構と、を備える。

Description

ダイカストマシン
 本発明は、ダイカストマシンに関し、特に、セミホットチャンバ式のダイカストマシンに関する。
 いわゆるセミホットチャンバ式のダイカストマシンは、コールドチャンバ式のダイカストマシンと同様に、金型に通じるスリーブ、及びスリーブ内の溶湯を金型内へ押し出すプランジャが、溶湯を貯留する保持炉の外部に設けられる。ただし、セミホットチャンバ式では、コールドチャンバ式とは異なり、ラドルによって保持炉内の溶湯を汲み上げてスリーブに注湯するのではなく、保持炉とスリーブとを連通し、スリーブに接続される給湯管を介してスリーブへ溶湯が供給される。
 セミホットチャンバ式のダイカストマシンでは、プランジャの射出時にスリーブと給湯管との接続部に衝撃が加わり、給湯管が破損するおそれがある。したがって、プランジャの射出時に給湯管に加わる衝撃を低減し、給湯管の破損を抑制することが望まれる。
特開平7-155924号公報 特開2012-232338号公報
 本発明が解決しようとする課題は、プランジャの射出時に給湯管に加わる衝撃を低減し、給湯管の破損を抑制できるダイカストマシンを提供することである。
 本発明の一態様のダイカストマシンは、溶湯を保持する保持炉と、前記保持炉の外部に位置し、金型の中に通じ、給湯口を有するスリーブと、前記スリーブの中を摺動し、プランジャロッドと前記プランジャロッドの先端に固定されたプランジャチップとを有するプランジャと、前記給湯口を覆うように前記スリーブに押し付けられ、前記溶湯を前記スリーブの中に供給する給湯管と、前記プランジャの摺動中に前記給湯管の前記スリーブに対する押付力を低減させる押付力可変機構と、を備える。
 上記態様のダイカストマシンにおいて、前記プランジャチップが前記給湯口を塞いだ後に、前記押付力可変機構を制御し、前記押付力を低減させる押付力制御部を、更に備えることが好ましい。
 上記態様のダイカストマシンにおいて、前記給湯口は、前記スリーブの下部に設けられることが好ましい。
 上記態様のダイカストマシンにおいて、前記給湯管は前記保持炉に固定され、前記押付力可変機構は前記保持炉に加える力を変化させることが好ましい。
 上記態様のダイカストマシンにおいて、前記給湯管は前記保持炉に対して相対移動が可能であり、前記押付力可変機構は前記保持炉とは独立に前記給湯管に加える力を変化させることが好ましい。
 上記態様のダイカストマシンにおいて、前記給湯管は直線状に延びる円筒形状であることが好ましい。
 上記態様のダイカストマシンにおいて、前記給湯管はセラミックスで形成されることが好ましい。
 上記態様のダイカストマシンにおいて、前記保持炉から前記給湯管を介して前記スリーブへ前記溶湯を移送する駆動力を生じさせる給湯駆動部を、更に備えることが好ましい。
 上記態様のダイカストマシンにおいて、前記給湯駆動部は、電磁ポンプであることが好ましい。
 上記態様のダイカストマシンにおいて、前記給湯駆動部は、前記保持炉の中の気圧を上昇させる空圧装置であることが好ましい。
 上記態様のダイカストマシンにおいて、前記スリーブへの前記溶湯の給湯が完了した時点の前記スリーブの中の前記溶湯の充填率が70%以上となるように前記給湯駆動部を制御する給湯制御部を、更に備えることが好ましい。
 上記態様のダイカストマシンにおいて、前記給湯制御部は、前記プランジャチップが前記給湯口を塞ぐ位置に到達した時に、前記スリーブの中の前記溶湯の充填率が95%以上となるように前記給湯駆動部を制御することが好ましい。
 上記態様のダイカストマシンにおいて、前記スリーブの内面の最下部と最上部との間の所定の高さに臨んでおり、前記スリーブの中の前記溶湯が、所定の高さに到達したことを検知する第1のセンサを、更に備えることが好ましい。
 上記態様のダイカストマシンにおいて、前記スリーブは上部に設けられたガス抜き口を有し、前記ガス抜き口の上方に前記スリーブの中の溶湯の湯面位置を検知する第2のセンサを、更に備えることが好ましい。
 上記態様のダイカストマシンにおいて、前記プランジャを駆動する射出駆動部と、前記プランジャチップが前記給湯口を塞ぐ位置に到達した後に、前記プランジャの射出速度を上げるように前記射出駆動部を制御する射出制御部と、を更に備えることが好ましい。
 本発明によれば、プランジャの射出時に給湯管に加わる衝撃を低減し、給湯管の破損を抑制することが可能となるダイカストマシンを提供することができる。
第1の実施形態のダイカストマシンの全体構成を示す模式図。 第1の実施形態のダイカストマシンのスリーブ、プランジャ、及び給湯装置を示す模式断面図。 第1の実施形態のダイカストマシンのスリーブ及び給湯管の模式断面図。 第1の実施形態のダイカストマシンの信号処理系の構成を示すブロック図。 第1の実施形態のダイカストマシンの動作の一例のフローチャート。 第1の実施形態のダイカストマシンの動作の一例の説明図。 第1の実施形態のダイカストマシンの動作の一例の説明図。 第2の実施形態のダイカストマシンのスリーブ、プランジャ、及び給湯装置を示す模式断面図。 第3の実施形態のダイカストマシンのスリーブ、プランジャ、及び給湯装置を示す模式断面図。 第4の実施形態のダイカストマシンのスリーブ、プランジャ、及び給湯装置を示す模式断面図。
 以下、本発明の実施形態について図面を参照して説明する。
(第1の実施形態)
 第1の実施形態のダイカストマシンは、溶湯を保持する保持炉と、保持炉の外部に位置し、金型の中に通じ、給湯口を有するスリーブと、スリーブの中を摺動し、プランジャロッドとプランジャロッドの先端に固定されたプランジャチップとを有するプランジャと、給湯口を覆うようにスリーブに押し付けられ、溶湯をスリーブの中に供給する給湯管と、プランジャの摺動中に給湯管のスリーブに対する押付力を低減させる押付力可変機構と、を備える。
 図1は、第1の実施形態のダイカストマシンの全体構成を示す模式図である。図1は、一部に断面図を含む側面図である。図2は、第1の実施形態のダイカストマシンのスリーブ、プランジャ、及び給湯装置を示す模式断面図である。
 図3は、第1の実施形態のダイカストマシンのスリーブ及び給湯管の模式断面図である。図3は、スリーブの伸長方向に垂直な断面図である。なお、紙面上下方向は鉛直方向であり、紙面左右及び紙面貫通方向は水平方向である。
 図4は、第1の実施形態のダイカストマシンの信号処理系の構成を示すブロック図である。
 第1の実施形態のダイカストマシン100は、セミホットチャンバ式のダイカストマシンである。
 ダイカストマシン100は、型締装置10.押出装置12、射出装置14、金型16、制御ユニット18、給湯装置20を備える。
 射出装置14は、スリーブ22、プランジャ24、射出駆動部25、位置センサ27を有する。プランジャ24は、プランジャチップ24aとプランジャロッド24bを含む。スリーブ22には、溶湯センサ26(第1のセンサ)、給湯口28、ガス抜き口30が設けられる。
 金型16は、固定金型16aと移動金型16bを含む。
 制御ユニット18は、制御装置32、入力装置34、表示装置36を含む。制御装置32は、成形条件選定部32a、給湯制御部32b、射出制御部32c、押付力制御部32dを有する。
 給湯装置20は、給湯管40、保持炉42、パッキン44、第1のヒータ46、ガード部材48、給湯管スリーブ50、第2のヒータ52、電磁ポンプ54(給湯駆動部)、湯面センサ56(第2のセンサ)、支点62、金属供給機64、アクチュエータ90(押付力可変機構)、弾性体92、押上部材94、荷重センサ96、ストッパ98を備える。保持炉42には、保持炉湯面センサ66、フィルタ68、フィルタ支持具70、保持炉ヒータ72、金属供給口74が設けられる。電磁ポンプ54は、コイル54a、コア54bを有する。
 ダイカストマシン100は、金型16の内部(図1中のキャビティCa)に液状金属(溶湯)を射出し、その液状金属を金型16内で凝固させることにより、ダイカスト品を製造する機械である。金属は、例えば、アルミニウム、アルミニウム合金、亜鉛合金、又は、マグネシウム合金である。
 金型16は、型締装置10と射出装置14との間に設けられる。金型16は、固定金型16aと移動金型16bを含む。
 型締装置10は、金型16の開閉及び型締めを行う機能を有する。
 射出装置14は、金型16の内部に液状金属を射出する機能を有する。射出装置14は、図1に示すように、スリーブ22、プランジャ24、射出駆動部25、位置センサ27を有する。
 スリーブ22は、溶湯を保持する保持炉42の外部に位置する。スリーブ22は、金型16の中に通じる。スリーブ22は、例えば、固定金型16aに連結された筒状の部材である。スリーブ22は、例えば、円筒形状である。
 プランジャ24は、スリーブ22の中を摺動する。プランジャロッド24bの先端に固定されたプランジャチップ24aが、スリーブ22の中を前後方向に摺動する。スリーブ22の中をプランジャチップ24aが前方へ摺動することにより、スリーブ22の中の溶湯が金型16の中に押し出される。
 射出駆動部25は、プランジャ24を前後方向に駆動させる機能を備える。射出駆動部25は、例えば、液圧式、電動式、又は液圧式と電動式とを組み合わせたハイブリッド式である。
 位置センサ27は、プランジャ24の位置を検出する機能を有する。位置センサ27は、例えば、光学式又は磁気式のリニアエンコーダである。位置センサ27で検出されるプランジャ24の位置を微分することで、プランジャ24の速度を検出することが可能である。
 図3に示すように、スリーブ22には、溶湯センサ26(第1のセンサ)、給湯口28、ガス抜き口30が設けられる。
 給湯口28は、スリーブ22の下部に設けられる。給湯口28に接続される給湯管40から溶湯がスリーブ22内に供給される。
 ガス抜き口30は、スリーブ22の上部に設けられる。ガス抜き口30は、スリーブ22内に溶湯を充填する際に、スリーブ22内の上部のガスを排気する機能を有する。ガス抜き口30を設けることで、スリーブ22内のへの溶湯の充填時間が短縮される。
 溶湯センサ26は、スリーブ22の内面の最下部と最上部との間の所定の高さに臨んでいる。溶湯センサ26は、例えば、スリーブ22内に露出する。
 溶湯センサ26は、溶湯がスリーブ22内で溶湯センサ26の位置まで到達したことを検知する。
 溶湯センサ26は、例えば、1対の電極を有し、溶湯が電極の位置に到達することにより通電して信号を出力する抵抗センサである。また、溶湯センサ26は、例えば、温度が所定値を超えた時に信号を出力する温度センサである。また、溶湯センサ26は、例えば、圧力が所定値を超えた時に信号を出力する圧力センサである。
 給湯装置20は、スリーブ22の下方に設けられる。給湯装置20は、スリーブ22内に溶湯を供給し、スリーブ22内に溶湯を充填する機能を有する。
 給湯装置20は、給湯管40、保持炉42、パッキン44、第1のヒータ46、ガード部材48、給湯管スリーブ50、第2のヒータ52、電磁ポンプ54(給湯駆動部)、湯面センサ56(第2のセンサ)、支点62、金属供給機64、アクチュエータ90(押付力可変機構)、弾性体92、押上部材94、荷重センサ96、ストッパ98を備える。
 給湯管40は、スリーブ22の下方に設けられる。給湯管40の一端は、給湯口28を覆うようにスリーブ22に押し付けられる。給湯管40の中心軸と給湯口28の中心軸が一致するように給湯管40がスリーブ22に接触する。
 給湯管40のスリーブ22に対する押付力は可変である。給湯管40のスリーブ22に対する押付力は、アクチュエータ90によって調整される。給湯管40は、例えば、保持炉42に固定される。給湯管40は、溶湯をスリーブ22の中に供給する機能を有する。
 給湯管40は、管状の部材である。給湯管40は、例えば、鉛直方向に直線状に延びる円筒形状である。例えば、円筒の直径が鉛直方向に変化しても構わない。給湯管40は、例えば、屈曲部を備えない。
 給湯管40は、例えば、セラミックスで形成される。給湯管40は、例えば、セラミックスのみで形成される。
 パッキン44は、給湯管40の上端に設けられる。パッキン44は、スリーブ22と給湯管40との接触部の隙間から、溶湯が漏出することを防止する機能を有する。パッキン44は、耐熱性を備える。
 第1のヒータ46は、給湯管40の周囲に設けられる。第1のヒータ46は、給湯管40の中の溶湯を加熱する機能を有する。
 ガード部材48は、第1のヒータ46の上端部及び上部側面を覆う。ガード部材48は、第1のヒータ46を保護する機能を有する。
 給湯管スリーブ50は、給湯管40の下方に設けられる。給湯管40の下端は、例えば、給湯管スリーブ50に挿入される。給湯管スリーブ50の下端は、保持炉42の溶湯内に浸漬される。給湯管スリーブ50は、例えば、セラミックスで形成される。
 第2のヒータ52は、給湯管スリーブ50内に設けられる。第2のヒータ52は、給湯管スリーブ50の中の溶湯を加熱する機能を有する。
 電磁ポンプ54は、給湯駆動部の一例である。電磁ポンプ54は、コイル54a、コア54bを有する。コイル54aは給湯管40の周囲に設けられ、コア54bは給湯管40の中に設けられる。
 電磁ポンプ54は、保持炉42から給湯管40を介してスリーブ22へ溶湯を移送する駆動力を生じさせる。
 湯面センサ56は、図3に示すように、スリーブ22に設けられたガス抜き口30の上方に設けられる。湯面センサ56は、スリーブ22の中の溶湯の湯面位置を検知する機能を有する。
 湯面センサ56は、例えば、湯面の上方から湯面高さを検知する非接触式のセンサである。湯面センサ56は、例えば、光学式又は超音波式のセンサである。
 保持炉42は、スリーブ22の下方に設けられる。保持炉42は、内部に溶湯を保持する機能を有する。
 保持炉42には、保持炉湯面センサ66、フィルタ68、フィルタ支持具70、保持炉ヒータ72、金属供給口74が設けられる。
 保持炉湯面センサ66は、保持炉42内の溶湯の湯面位置を検知する機能を有する。保持炉湯面センサ66は、例えば、湯面の上方から湯面高さを検知する非接触式のセンサである。保持炉湯面センサ66は、例えば、光学式又は超音波式のセンサである。
 例えば、保持炉湯面センサ66によって検知される湯面高さに基づき、保持炉42内にインゴットを供給することで、保持炉42内の湯面高さを所定の位置に保つ。例えば、保持炉42内の湯面高さを所定の位置に保つことで、給湯管40内の湯面が、電磁ポンプ54のコア54bに接するようにする。
 フィルタ68は、保持炉42内に設けられる。フィルタ68は、溶湯に含まれる溶湯の酸化物等の固形物がスリーブ22内に供給されることを抑制する。
 フィルタ支持具70は、フィルタ68に固定される。フィルタ支持具70は、フィルタ68を保持炉42の外部に引き出す機能を有する。
 保持炉ヒータ72は、保持炉42内の溶湯に浸漬される。保持炉ヒータ72は、保持炉42内の溶湯を加熱する機能を有する。
 金属供給口74は、保持炉42の上面に設けられる。金属供給口74から、例えば、溶湯の原料となるインゴットが投入される。金属供給口74から、溶湯を供給しても構わない。
 アクチュエータ90は、保持炉42の側面の下方に設けられる。アクチュエータ90は、押付力可変機構の一例である。アクチュエータ90は、プランジャ24の摺動中に給湯管40のスリーブ22に対する押付力を低減させる機能を有する。アクチュエータ90は、保持炉42を下向きに押さえる力を印加する。アクチュエータ90は保持炉42に加える力を変化させる。
 支点62は、保持炉42の下方に設けられる。
 弾性体92は、保持炉42の側面の下方に設けられる。弾性体92は、アクチュエータ90とは支点62を挟んで反対側に設けられる。弾性体92は、給湯管40をスリーブ22に押し付ける機能を有する。弾性体92は、例えば、ばねである。
 押上部材94は、保持炉42の側面に固定され、弾性体92の上方に設けられる。押上部材94には、弾性体92によって上向きの力が印加される。
 荷重センサ96は、押上部材94の上方に設けられる。荷重センサ96により、給湯管40のスリーブ22に対する押付力をモニタすることが可能となる。
 ストッパ98は、押上部材94の上方に設けられる。ストッパ98は、押上部材94の上方向への変位を制限し、給湯管40のスリーブ22に対する押付力が過剰になることを抑制する。
 金属供給機64は、保持炉42の上方に設けられる。金属供給機64は、例えば、保持炉42の中に金属供給口74から溶湯の原料となるインゴットを供給する。金属供給機64は、例えば、金属供給口74から溶湯を供給しても構わない。
 制御ユニット18は、制御装置32、入力装置34、表示装置36を含む。
 入力装置34は、例えば、型締装置10の固定ダイプレート(符号省略)に設けられる。入力装置34は、オペレータの入力操作を受け付ける。オペレータは、入力装置34を用いて、ダイカストマシン100の成形条件等の設定が可能となる。
 入力装置34は、例えば、液晶ディスプレイ又は有機ELディスプレイを用いたタッチパネルである。
 表示装置36は、例えば、型締装置10の固定ダイプレート(符号省略)に設けられる。表示装置36は、例えば、ダイカストマシン100の成形条件、動作状況等を画面に表示する。表示装置36は、例えば、液晶ディスプレイ又は有機ELディスプレイである。
 制御装置32は、型締装置10、押出装置12、射出装置14、及び給湯装置20を用いたダイカストマシン100の成形動作を制御する機能を有する。制御装置32は、各種の演算を行って、ダイカストマシン100の各部に制御指令を出力する機能を有する。
 制御装置32は、例えば、ハードウェアとソフトウェアとの組み合わせで構成される。制御装置32は、例えば、CPU(Central Processing Unit)、半導体メモリ及び半導体メモリに記憶された制御プログラムを含む。
 制御装置32は、図4に示すように、成形条件選定部32a、給湯制御部32b、射出制御部32c、押付力制御部32dを有する。
 成形条件選定部32aは、入力装置34からの信号に基づいて、プランジャ24の射出速度等の種々の成形条件を設定する機能を有する。
 給湯制御部32bは、溶湯センサ26、及び湯面センサ56で検知された湯面位置のデータに基づき、保持炉42からスリーブ22内への溶湯の供給を制御する機能を有する。スリーブ22内への溶湯の供給は、電磁ポンプ54の駆動を制御することにより行う。
 給湯制御部32bは、例えば、スリーブ22への溶湯の給湯が完了した時点のスリーブ22の中の溶湯の充填率が70%以上となるように電磁ポンプ54を制御する。また、給湯制御部32bは、例えば、プランジャチップ24aが給湯口28を塞ぐ位置に到達した時に、スリーブ22の中の溶湯の充填率が95%以上となるように電磁ポンプ54を制御する。
 射出制御部32cは、位置センサ27で検知されたプランジャ24の位置に基づき、射出駆動部25を制御する機能を有する。射出制御部32cは、例えば、プランジャチップ24aが給湯口28を塞ぐ位置に到達した後に、プランジャ24の射出速度を上げるように射出駆動部25を制御する。
 押付力制御部32dは、位置センサ27で検知されたプランジャ24の位置及び荷重センサ96で計測された荷重に基づき、アクチュエータ90を制御する機能を有する。押付力制御部32dは、例えば、プランジャチップ24aが給湯口28を塞いだ後に、アクチュエータ90を制御し、給湯管40のスリーブ22に対する押付力を低減させる。
 次に、ダイカストマシン100の動作の一例について説明する。
 図5は、第1の実施形態のダイカストマシンの動作の一例のフローチャートである。図5は、スリーブ22内への給湯から高速射出後の昇圧・保圧までを示す。すなわち、給湯よりも前における型閉じ及び型締め、並びに、昇圧・保圧の後における型開き、押出等については説明を省略する。説明が省略された動作は、例えば、公知の動作と同様である。
 ダイカストマシン100の動作は、給湯開始(ステップST1)、溶湯検知判定(ステップST2)、減速開始(ステップST3)、給湯停止(ステップST4)、射出開始(ステップST5)、閉位置判定(ステップST6)、押付力低減(ステップST7)、高速射出(ステップST8)、昇圧・保圧(ステップST9)の各ステップを備える。
 図6、図7は、第1の実施形態のダイカストマシンの動作の一例の説明図である。
 図6は、ダイカストマシン100の射出動作の一例を示すグラフである。横軸は時間である。時間が経過するほど、プロットされる点は紙面左側に位置する。紙面右側の縦軸は、射出速度、すなわちプランジャ24の速度を示している。また、紙面左側の縦軸は、スリーブ22内の溶湯の充填率を示している。なお、充填率とは、スリーブ22のうちのプランジャ24よりも前方の容積に対して、溶湯が占める割合を意味する。線Lvは、射出速度の経時変化を示している。また、線Lrは、スリーブ22内の溶湯の充填率の経時変化を示している。
 図7は、第1の実施形態のダイカストマシン100の射出動作中のスリーブ22内の様子を示す模式図である。図7(a)は時刻t0、図7(b)は時刻t1、図7(c)は時刻t3の場合を示す。
 ステップST1では、所定の給湯開始条件が満たされると、給湯制御部32bからの指令により、スリーブ22内への給湯を開始する。具体的には、電磁ポンプ54を動作させて、保持炉42から給湯管40を介してスリーブ22内への給湯を開始する。
 ステップST1の時点で、給湯管40のスリーブ22に対する押付力は、弾性体92によって押上部材94に加えられている力fと、アクチュエータ90が保持炉42を下向きに押さえる力Fとの和になる。
 押付力制御部32dは、例えば、荷重センサ96の測定値をアクチュエータ90が保持炉42を下向きに押さえる力Fにフィードバックして、給湯管40のスリーブ22に対する押付力が過剰にならないように制御する。
 ステップST2では、給湯制御部32bは、溶湯センサ26により、スリーブ22内の湯面が所定の高さに達したことが確認されたか否かを判定する。否定判定の時は、給湯制御部32bは、現在の溶湯の供給速度を維持する。肯定判定の時は、給湯制御部32bは、次のステップST3に進む。
 ステップST3では、給湯制御部32bは、スリーブ22内への溶湯供給速度を減じるように、電磁ポンプ54を制御する。溶湯供給速度を減じることで、所望の充填率を精度高く実現することが可能となる。
 ステップST4では、所定の給湯停止条件が満たされると、給湯制御部32bが保持炉42からスリーブ22への給湯を停止する。給湯停止条件は、例えば、湯面センサ56で検知される湯面高さが、所望の充填率を満たす所定値に達することである。給湯停止は、電磁ポンプ54の動作を停止することで行う。
 ステップST4は、図6の時刻t0の状態である。また、ステップST4は、図7(a)の状態である。給湯制御部32bは、例えば、スリーブ22の中の溶湯Mの充填率が70%以上となるように電磁ポンプ54を制御する。ステップST4の時点も、給湯管40のスリーブ22に対する押付力は、弾性体92によって押上部材94に加えられている力fと、アクチュエータ90が保持炉42を下向きに押さえる力Fとの和(f+F)である。
 ステップST5では、射出制御部32cの指令により、スリーブ22内の溶湯の射出を開始する。すなわち、プランジャ24が前進を開始するように射出駆動部25が制御される。この時のプランジャ24の射出速度は、図6の時刻t0からt1の間であり、比較的低速で行われる。プランジャ24の射出速度は、例えば、1m/s未満である。
 ステップST6では、射出制御部32c及び押付力制御部32dは、位置センサ27で検知される位置情報から、プランジャ24が給湯口28を塞ぐ位置に到達したか否かを判定する。否定判定の時は、比較的低速の射出速度を維持する。肯定判定の時は、ステップST7に進む。
 ステップST7では、押付力制御部32dは、給湯管40のスリーブ22に対する押付力を低減させる。具体的には、押付力制御部32dは、例えば、アクチュエータ90に指令を発し、アクチュエータ90が保持炉42を下方に押すことを停止する。保持炉42を下方に押す力がなくなることで、給湯管40のスリーブ22に対する押付力は、弾性体92によって押上部材94に加えられている力fのみになる。
 ステップST7は、図6の時刻t1の状態である。また、ステップST7は、図7(b)の状態である。この時、例えば、給湯制御部32bが、給湯管40内の湯面位置を給湯口28の直下の比較的高い位置に維持する。
 給湯口28は、プランジャチップ24aにより塞がれているため、給湯管40のスリーブ22に対する押付力が低減しても、スリーブ22内の溶湯Mが給湯口28から漏れることは無い。スリーブ22の中の溶湯Mの充填率は、例えば、95%以上である。スリーブ22の中の溶湯Mの充填率は、例えば、100%である。
 ステップST8では、射出制御部32cは、プランジャ24の射出速度を増加させる。射出制御部32cは、射出駆動部25を制御して、プランジャ24の射出速度を高速射出速度VHに切り換えて高速射出を行う。プランジャ24の射出速度は、例えば、1m/s以上である。
 ステップST9では、射出制御部32cは、射出駆動部25を制御して、溶湯Mの昇圧及び保圧を行う。
 ステップST9は、図7の時刻t3の状態である。また、ステップST9は、図7(c)の状態である。ステップST9では、プランジャ24は停止している。
 上記ステップST1からステップST9が、鋳造サイクル毎に実行される。
 次に、第1の実施形態のダイカストマシンの作用及び効果について説明する。
 セミホットチャンバ式のダイカストマシンでは、プランジャの射出時にスリーブと給湯管との接続部に衝撃が加わり、給湯管が破損するおそれがある。したがって、プランジャの射出時に給湯管に加わる衝撃を低減し、給湯管の破損を抑制することが望まれる。
 第1の実施形態のダイカストマシン100は、プランジャ24の摺動中に給湯管40のスリーブ22に対する押付力を低減させるアクチュエータ90を備える。給湯管40のスリーブ22に対する押付力を低減させることで、プランジャ24の射出に伴って、給湯管40に加わる衝撃が軽減される。したがって、給湯管40の破損が抑制される。
 給湯管40のスリーブ22に対する押付力が低減した後の、給湯管40内の湯面位置を、給湯口28の直下の比較的高い位置に維持することが好ましい。これにより、続く鋳造サイクルの際のスリーブ22への溶湯充填時間を短縮することが可能となる。
 給湯管40は、耐熱性の高いセラミックスのみで形成されることが好ましい。例えば、給湯管40に金属を用いる場合、高温の溶湯により金属の溶損が生じるおそれがある。セラミックスは金属と比較して、衝撃に対する耐性が劣る。しかし、第1の実施形態のダイカストマシン100は、給湯管40のスリーブ22に対する押付力が低減されるため、給湯管40に加わる衝撃が軽減される。したがって、給湯管40をセラミックスのみで形成することが可能となる。
 セラミックスの給湯管40は、強度を維持する観点から屈曲部を備えないことが好ましい。給湯管40は、強度を維持する観点から直線状に延びる円筒形状であることが好ましい。
 第1の実施形態のダイカストマシン100は、溶湯センサ26と湯面センサ56を備える。溶湯センサ26により給湯終了直前の湯面を検知して、給湯速度を高速から低速に切り替えることが可能となる。そして、湯面センサ56により湯面位置を高精度に測定できる。したがって、給湯時間の短縮と給湯精度の向上が実現できる。
 給湯制御部32bは、スリーブ22への溶湯の給湯が完了した時点のスリーブ22の中の溶湯の充填率が70%以上となるように電磁ポンプ54を制御することが好ましく、80%以上となるように制御することがより好ましい。また、給湯制御部32bは、プランジャチップ24aが給湯口28を塞ぐ位置に到達した時に、スリーブ22の中の溶湯の充填率が95%以上となるように電磁ポンプ54を制御することが好ましく、98%以上となるように制御することがより好ましい。溶湯へのガスの巻き込みが低減され、ダイカスト品の品質が向上する。
 また、第1の実施形態のダイカストマシン100は、プランジャチップ24aが給湯口28を塞ぐ位置に到達した後に、プランジャ24の射出速度を上げるように射出制御部32cが射出駆動部25を制御する。したがって、ダイカスト品の製造時間を短縮することが可能となる。
 以上、第1の実施形態によれば、プランジャ24の摺動中に給湯管40のスリーブ22に対する押付力を低減させるアクチュエータ90を備えることにより、プランジャ24の射出時に給湯管40に加わる衝撃が低減される。したがって、給湯管40の破損を抑制することが可能なダイカストマシンを実現できる。
(第2の実施形態)
 第2の実施形態のダイカストマシンは、給湯管は保持炉に対して相対移動が可能であり、押付力可変機構は保持炉とは独立に給湯管に加える力を変化させる点で、第1の実施形態と異なる。以下、第1の実施形態と重複する内容については一部記述を省略する。
 図8は、第2の実施形態のダイカストマシンのスリーブ、プランジャ、及び給湯装置を示す模式断面図である。
 第2の実施形態のダイカストマシンは、セミホットチャンバ式のダイカストマシンである。
 第2の実施形態のダイカストマシンは、型締装置10.押出装置12、射出装置14、金型16、制御ユニット18、給湯装置20を備える。
 射出装置14は、スリーブ22、プランジャ24、射出駆動部25、位置センサ27を有する。プランジャ24は、プランジャチップ24aとプランジャロッド24bを含む。スリーブ22には、溶湯センサ26(第1のセンサ)、給湯口28、ガス抜き口30が設けられる。
 金型16は、固定金型16aと移動金型16bを含む。
 制御ユニット18は、制御装置32、入力装置34、表示装置36を含む。制御装置32は、成形条件選定部32a、給湯制御部32b、射出制御部32c、押付力制御部32dを有する。
 給湯装置20は、給湯管40、保持炉42、パッキン44、第1のヒータ46、給湯管スリーブ50、第2のヒータ52、電磁ポンプ54(給湯駆動部)、湯面センサ56(第2のセンサ)、金属供給機64、給湯管支持部材80、アクチュエータ82(押付力可変機構)、アクチュエータ支持部材84、弾性体85、スライド部材86を備える。保持炉42には、保持炉湯面センサ66、フィルタ68、フィルタ支持具70、保持炉ヒータ72、金属供給口74が設けられる。電磁ポンプ54は、コイル54a、コア54bを有する
 給湯管40は、スリーブ22の下方に設けられる。給湯管40の一端は、給湯口28を覆うようにスリーブ22に押し付けられる。給湯管40の中心軸と給湯口28の中心軸が一致するように給湯管40がスリーブ22に接触する。
 給湯管40のスリーブ22に対する押付力は可変である。給湯管40のスリーブ22に対する押付力は、アクチュエータ82によって調整される。給湯管40は、例えば、保持炉42に対して相対移動が可能である。給湯管40は、溶湯をスリーブ22の中に供給する機能を有する。
 給湯管支持部材80は、給湯管40を支持する機能を有する。給湯管支持部材80は、給湯管40を給湯管40の上端に設けられたフリンジで支持する。
 アクチュエータ82は、押付力可変機構の一例である。アクチュエータ82は、給湯管40を上下方向に移動させる。アクチュエータ82は、プランジャ24の摺動中に給湯管40のスリーブ22に対する押付力を低減させる機能を有する。アクチュエータ82は、保持炉42とは独立に給湯管40に加える力を変化させる。
 アクチュエータ82は、例えば、空気圧シリンダである。アクチュエータ82は、例えば、油圧シリンダ、又は、ソレノイドアクチュエータであっても構わない。
 アクチュエータ支持部材84は、アクチュエータ82を支持する。
 アクチュエータ82を動作させることにより、給湯管40と給湯管スリーブ50が上下方向に相対移動する。また、アクチュエータ82を動作させることにより、給湯管支持部材80とアクチュエータ支持部材84が上下方向に相対移動する。
 弾性体85は、給湯管支持部材80とアクチュエータ支持部材84との間に設けられる。弾性体85は、給湯管40にスリーブ22に対する押付力を印加する。
 給湯管40のスリーブ22に対する押付力を安定させる観点から、例えば、アクチュエータ82及び弾性体85は、給湯管40の回りに、それぞれ3個以上配置する。
 スライド部材86は、給湯管40と給湯管スリーブ50との間に設けられる。スライド部材86は、給湯管40と給湯管スリーブ50との間の隙間から、溶湯が漏出することを抑制する。
 押付力制御部32dは、給湯を開始する際には、給湯管40のスリーブ22に対する押付力が、弾性体85によって給湯管支持部材80に加えられている力fと、アクチュエータ82が給湯管支持部材80を上向きに押し上げる力Fとの和になるように、アクチュエータ82を制御する。
 押付力制御部32dは、位置センサ27で検知されたプランジャ24の位置に基づき、アクチュエータ82を制御する機能を有する。押付力制御部32dは、例えば、プランジャチップ24aが給湯口28を塞いだ後に、アクチュエータ82を制御し、給湯管40のスリーブ22に対する押付力を低減させる。具体的には、例えば、アクチュエータ82による力の印加を停止する。アクチュエータ82は、保持炉42とは独立に給湯管40に加える力を変化させる
 以上、第2の実施形態によれば、プランジャ24の摺動中に給湯管40のスリーブ22に対する押付力を低減させるアクチュエータ82を備えることにより、プランジャ24の射出時に給湯管40に加わる衝撃を低減し、給湯管40の破損を抑制することが可能なダイカストマシンを実現できる。
 また、第2の実施形態は、第1の実施形態と異なり、給湯管40のみを独立に上下させる。言い換えれば、保持炉42は固定されたままである。したがって、重量の大きい保持炉42が要求される大型のダイカストマシンに第2の実施形態は好適である。
(第3の実施形態)
 第3の実施形態のダイカストマシンは、給湯駆動部は、保持炉の中の気圧を上昇させる空圧装置である点で、第1の実施形態と異なる。以下、第1の実施形態と重複する内容については一部記述を省略する。
 図9は、第3の実施形態のダイカストマシンのスリーブ、プランジャ、及び給湯装置を示す模式断面図である。
 第3の実施形態のダイカストマシンは、セミホットチャンバ式のダイカストマシンである。
 第3の実施形態のダイカストマシンは、型締装置10.押出装置12、射出装置14、金型16、制御ユニット18、給湯装置20を備える。
 射出装置14は、スリーブ22、プランジャ24、射出駆動部25、位置センサ27を有する。プランジャ24は、プランジャチップ24aとプランジャロッド24bを含む。スリーブ22には、溶湯センサ26(第1のセンサ)、給湯口28、ガス抜き口30が設けられる。
 金型16は、固定金型16aと移動金型16bを含む。
 制御ユニット18は、制御装置32、入力装置34、表示装置36を含む。制御装置32は、成形条件選定部32a、給湯制御部32b、射出制御部32c、押付力制御部32dを有する。
 給湯装置20は、給湯管40、保持炉42、パッキン44、第1のヒータ46、ガード部材48、給湯管スリーブ50、第2のヒータ52、空圧装置88(給湯駆動部)、湯面センサ56(第2のセンサ)、支点62、アクチュエータ90(押付力可変機構)、弾性体92、押上部材94、荷重センサ96、ストッパ98を備える。保持炉42には、保持炉湯面センサ66、フィルタ68、フィルタ支持具70、保持炉ヒータ72が設けられる。
 空圧装置88は、保持炉42から給湯管40を介してスリーブ22へ溶湯を移送する駆動力を生じさせる。空圧装置88は、密閉された保持炉42に気体を供給して保持炉42内を加圧する。これにより、保持炉42内の湯面には大気圧よりも高い圧力が付与される。この圧力により、溶湯がスリーブ22内に充填される。
 給湯制御部32bは、溶湯センサ26、及び湯面センサ56で検知された湯面位置のデータに基づき、保持炉42からスリーブ22内への溶湯の供給を制御する機能を有する。スリーブ22内への溶湯の供給は、空圧装置88の駆動を制御することにより行う。
 以上、第3の実施形態によれば、プランジャ24の摺動中に給湯管40のスリーブ22に対する押付力を低減させるアクチュエータ90を備えることにより、プランジャ24の射出時に給湯管40に加わる衝撃が低減される。したがって、給湯管40の破損を抑制することが可能なダイカストマシンを実現できる。
(第4の実施形態)
 第4の実施形態のダイカストマシンは、給湯管は保持炉に対して相対移動が可能であり、押付力可変機構は保持炉とは独立に給湯管に加える力を変化させる点で、第3の実施形態と異なる。以下、第1の実施形態、第3の実施形態と重複する内容については一部記述を省略する。
 図10は、第4の実施形態のダイカストマシンのスリーブ、プランジャ、及び給湯装置を示す模式断面図である。
 第4の実施形態のダイカストマシンは、セミホットチャンバ式のダイカストマシンである。
 第4の実施形態のダイカストマシンは、型締装置10.押出装置12、射出装置14、金型16、制御ユニット18、給湯装置20を備える。
 射出装置14は、スリーブ22、プランジャ24、射出駆動部25、位置センサ27を有する。プランジャ24は、プランジャチップ24aとプランジャロッド24bを含む。スリーブ22には、溶湯センサ26(第1のセンサ)、給湯口28、ガス抜き口30が設けられる。
 金型16は、固定金型16aと移動金型16bを含む。
 制御ユニット18は、制御装置32、入力装置34、表示装置36を含む。制御装置32は、成形条件選定部32a、給湯制御部32b、射出制御部32c、押付力制御部32dを有する。
 給湯装置20は、給湯管40、保持炉42、パッキン44、第1のヒータ46、給湯管スリーブ50、第2のヒータ52、空圧装置88(給湯駆動部)、湯面センサ56(第2のセンサ)、給湯管支持部材80、アクチュエータ82(押付力可変機構)、アクチュエータ支持部材84、スライド部材86、ストッパ98を備える。保持炉42には、保持炉湯面センサ66、フィルタ68、フィルタ支持具70、保持炉ヒータ72、金属供給口74が設けられる。
 給湯管40は、スリーブ22の下方に設けられる。給湯管40の一端は、給湯口28を覆うようにスリーブ22に押し付けられる。給湯管40の中心軸と給湯口28の中心軸が一致するように給湯管40がスリーブ22に接触する。
 給湯管40のスリーブ22に対する押付力は可変である。給湯管40のスリーブ22に対する押付力は、アクチュエータ82によって調整される。給湯管40は、例えば、保持炉42に対して相対移動が可能である。給湯管40は、溶湯をスリーブ22の中に供給する機能を有する。
 給湯管支持部材80は、給湯管40を支持する機能を有する。給湯管支持部材80は、給湯管40を給湯管40の上端に設けられたフリンジで支持する。
 アクチュエータ82は、押付力可変機構の一例である。アクチュエータ82は、給湯管40を上下方向に移動させる。アクチュエータ82は、プランジャ24の摺動中に給湯管40のスリーブ22に対する押付力を低減させる機能を有する。
 アクチュエータ82は、例えば、空気圧シリンダである。アクチュエータ82は、例えば、油圧シリンダ、又は、ソレノイドアクチュエータであっても構わない。
 アクチュエータ支持部材84は、アクチュエータ82を支持する。
 アクチュエータ82を動作させることにより、給湯管40と給湯管スリーブ50が上下方向に相対移動する。また、アクチュエータ82を動作させることにより、給湯管支持部材80とアクチュエータ支持部材84が上下方向に相対移動する。
 弾性体85は、給湯管支持部材80とアクチュエータ支持部材84との間に設けられる。弾性体85は、給湯管40にスリーブ22に対する押付力を印加する。
 給湯管40のスリーブ22に対する押付力を安定させる観点から、例えば、アクチュエータ82及び弾性体85は、給湯管40の回りに、それぞれ3個以上配置する。
 スライド部材86は、給湯管40と給湯管スリーブ50との間に設けられる。スライド部材86は、給湯管40と給湯管スリーブ50との間の隙間から、溶湯が漏出することを抑制する。
 ストッパ98は、給湯管支持部材80の上方に設けられる。ストッパ98は、給湯管支持部材80の上方向への変位を制限し、給湯管40のスリーブ22に対する押付力が過剰になることを抑制する。
 押付力制御部32dは、給湯を開始する際には、給湯管40のスリーブ22に対する押付力が、弾性体85によって給湯管支持部材80に加えられている力fと、アクチュエータ82が給湯管支持部材80を上向きに押す力Fとの和になるように、アクチュエータ82を制御する。
 押付力制御部32dは、位置センサ27で検知されたプランジャ24の位置に基づき、アクチュエータ82を制御する機能を有する。押付力制御部32dは、例えば、プランジャチップ24aが給湯口28を塞いだ後に、アクチュエータ82を制御し、給湯管40のスリーブ22に対する押付力を低減させる。具体的には、例えば、アクチュエータ82による力の印加を停止する。アクチュエータ82は、保持炉42とは独立に給湯管40に加える力を変化させる
 以上、第4の実施形態によれば、プランジャ24の摺動中に給湯管40のスリーブ22に対する押付力を低減させるアクチュエータ82を備えることにより、プランジャ24の射出時に給湯管40に加わる衝撃を低減し、給湯管40の破損を抑制することが可能なダイカストマシンを実現できる。
 また、第4の実施形態は、第3の実施形態と異なり、給湯管40のみを上下させる。言い換えれば、保持炉42は固定されたままである。したがって、重量の大きい保持炉42が要求される大型のダイカストマシンに第4の実施形態は好適である。
 以上、具体例を参照しつつ本発明の実施形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。実施形態においては、ダイカストマシンなどで、本発明の説明に直接必要としない部分については記載を省略したが、必要とされる、ダイカストマシンなどに関わる要素を適宜選択して用いることができる。
 第1ないし第4の実施形態の保持炉42の下部に、保持炉42の水平移動を可能にする水平移動手段を設けることも可能である。水平移動手段は、例えば、車輪である。水平移動手段を設けることで、保持炉42のメインテナンスが容易になる。
 その他、本発明の要素を具備し、当業者が適宜設計変更しうる全てのダイカストマシンは、本発明の範囲に包含される。本発明の範囲は、特許請求の範囲及びその均等物の範囲によって定義されるものである。
16    金型
22    スリーブ
24    プランジャ
24a   プランジャチップ
24b   プランジャロッド
25    射出駆動部
26    溶湯センサ(第1のセンサ)
28    給湯口
32b   給湯制御部
32c   射出制御部
32d   押付力制御部
40    給湯管
42    保持炉
54    電磁ポンプ(給湯駆動部)
56    湯面センサ(第2のセンサ)
82    アクチュエータ(押付力可変機構)
88    空圧装置(給湯駆動部)
90    アクチュエータ(押付力可変機構)
100   ダイカストマシン
M     溶湯
α     距離

Claims (14)

  1.  溶湯を保持する保持炉と、
     前記保持炉の外部に位置し、金型の中に通じ、給湯口を有するスリーブと、
     前記スリーブの中を摺動し、プランジャロッドと前記プランジャロッドの先端に固定されたプランジャチップとを有するプランジャと、
     前記給湯口を覆うように前記スリーブに押し付けられ、前記溶湯を前記スリーブの中に供給する給湯管と、
     前記プランジャの摺動中に前記給湯管の前記スリーブに対する押付力を低減させる押付力可変機構と、
    を備えることを特徴とするダイカストマシン。
  2.  前記プランジャチップが前記給湯口を塞いだ後に、前記押付力可変機構を制御し、前記押付力を低減させる押付力制御部を、更に備えることを特徴とする請求項1記載のダイカストマシン。
  3.  前記給湯口は、前記スリーブの下部に設けられることを特徴とする請求項1又は請求項2記載のダイカストマシン。
  4.  前記給湯管は前記保持炉に固定され、前記押付力可変機構は前記保持炉に加える力を変化させることを特徴とする請求項1ないし請求項3いずれか一項記載のダイカストマシン。
  5.  前記給湯管は前記保持炉に対して相対移動が可能であり、前記押付力可変機構は前記保持炉とは独立に前記給湯管に加える力を変化させることを特徴とする請求項1ないし請求項3いずれか一項記載のダイカストマシン。
  6.  前記給湯管は直線状に延びる円筒形状であることを特徴とする請求項1ないし請求項5いずれか一項記載のダイカストマシン。
  7.  前記給湯管はセラミックスで形成されることを特徴とする請求項6記載のダイカストマシン。
  8.  前記保持炉から前記給湯管を介して前記スリーブへ前記溶湯を移送する駆動力を生じさせる給湯駆動部を、更に備えることを特徴とする請求項1ないし請求項7いずれか一項記載のダイカストマシン。
  9.  前記給湯駆動部は、電磁ポンプであることを特徴とする請求項8記載のダイカストマシン。
  10.  前記給湯駆動部は、前記保持炉の中の気圧を上昇させる空圧装置であることを特徴とする請求項8記載のダイカストマシン。
  11.  前記スリーブへの前記溶湯の給湯が完了した時点の前記スリーブの中の前記溶湯の充填率が70%以上となり、前記プランジャチップが前記給湯口を塞ぐ位置に到達した時に、前記スリーブの中の前記溶湯の充填率が95%以上となるように前記給湯駆動部を制御する給湯制御部を、更に備えることを特徴とする請求項8ないし請求項10いずれか一項記載のダイカストマシン。
  12.  前記スリーブの内面の最下部と最上部との間の所定の高さに臨んでおり、前記スリーブの中の前記溶湯が、所定の高さに到達したことを検知する第1のセンサを、更に備えることを特徴とする請求項1ないし請求項11いずれか一項記載のダイカストマシン。
  13.  前記スリーブは上部に設けられたガス抜き口を有し、
     前記ガス抜き口の上方に前記スリーブの中の前記溶湯の湯面位置を検知する第2のセンサを、更に備えることを特徴とする請求項1ないし請求項12いずれか一項記載のダイカストマシン。
  14.  前記プランジャを駆動する射出駆動部と、
     前記プランジャチップが前記給湯口を塞ぐ位置に到達した後に、前記プランジャの射出速度を上げるように前記射出駆動部を制御する射出制御部と、を更に備えることを特徴とする請求項1ないし請求項13いずれか一項記載のダイカストマシン。
PCT/JP2020/018375 2019-05-17 2020-05-01 ダイカストマシン WO2020235331A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080031722.7A CN113766982B (zh) 2019-05-17 2020-05-01 压铸机
MX2021013793A MX2021013793A (es) 2019-05-17 2020-05-01 Maquina de colada en matriz.
US17/454,390 US11925975B2 (en) 2019-05-17 2021-11-10 Die casting machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-094042 2019-05-17
JP2019094042A JP7254619B2 (ja) 2019-05-17 2019-05-17 ダイカストマシン

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/454,390 Division US11925975B2 (en) 2019-05-17 2021-11-10 Die casting machine

Publications (1)

Publication Number Publication Date
WO2020235331A1 true WO2020235331A1 (ja) 2020-11-26

Family

ID=73453301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018375 WO2020235331A1 (ja) 2019-05-17 2020-05-01 ダイカストマシン

Country Status (5)

Country Link
US (1) US11925975B2 (ja)
JP (1) JP7254619B2 (ja)
CN (1) CN113766982B (ja)
MX (1) MX2021013793A (ja)
WO (1) WO2020235331A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152361A (en) * 1980-11-03 1982-09-20 Uaingaruten Ag Maschf Method of manufacturing casted lump having little gas, gross porosity and oxide, pressure casting machine for executing said method and control unit for controlling said pressure
JPH06154985A (ja) * 1992-11-26 1994-06-03 Kobe Steel Ltd ダイカスト鋳造機
JPH09136153A (ja) * 1995-11-14 1997-05-27 Kobe Steel Ltd 鋳造機の給湯装置
JP2012232338A (ja) * 2011-04-18 2012-11-29 Sukegawa Electric Co Ltd ダイキャストスリーブへの溶融金属給湯装置

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100615B2 (ja) 1986-09-30 1994-12-12 日産自動車株式会社 角速度校正器
JPH01271050A (ja) 1988-04-20 1989-10-30 Honda Motor Co Ltd 給湯方法及び装置
EP0389646B1 (en) * 1988-10-13 1993-03-03 Seiki Corporation Co. Ltd. Process and apparatus for injection molding
JP2840887B2 (ja) 1991-02-07 1998-12-24 東芝機械株式会社 横型ダイカストマシンの射出スリーブ給湯口と給湯口ブロックとの接口構造
JPH05104227A (ja) 1991-10-11 1993-04-27 Toshiba Mach Co Ltd 立形ホツトチヤンバダイカストマシンの給湯方法
JP2983755B2 (ja) * 1992-03-17 1999-11-29 東芝機械株式会社 電磁ポンプ給湯の自動呼び水方法およびその給湯装置
JP3002338B2 (ja) 1992-09-21 2000-01-24 東洋機械金属株式会社 ダイカストマシン
JPH06106330A (ja) * 1992-09-28 1994-04-19 Nissan Motor Co Ltd ダイカスト鋳造装置
JPH06126414A (ja) * 1992-10-23 1994-05-10 Toshiba Mach Co Ltd 縦型締横射出の竪型ダイカストマシン
JP2783503B2 (ja) 1993-12-09 1998-08-06 株式会社神戸製鋼所 ダイカスト鋳造機の給湯方法およびダイカスト鋳造機
JPH0910914A (ja) * 1995-06-30 1997-01-14 Kobe Steel Ltd ダイカスト鋳造機の給湯方法
US5983979A (en) * 1996-09-06 1999-11-16 Sanki Company Hot chamber die casting machine for aluminum and its alloys
JP3887806B2 (ja) * 1997-03-31 2007-02-28 日立金属株式会社 半凝固ダイカスト鋳造方法及び鋳造装置
US5983978A (en) * 1997-09-30 1999-11-16 Thixomat, Inc. Thermal shock resistant apparatus for molding thixotropic materials
JP3882013B2 (ja) * 1998-07-14 2007-02-14 池田孝史 鋳造装置の給湯装置
JP2001259815A (ja) * 2000-03-17 2001-09-25 Olympus Optical Co Ltd ダイカストマシンによる鋳造方法
JP2001287007A (ja) * 2000-04-10 2001-10-16 Toyo Mach & Metal Co Ltd ダイカストマシン
JP2002239708A (ja) 2001-02-19 2002-08-28 Honda Motor Co Ltd 鋳造機への給湯構造
JP3691783B2 (ja) 2001-11-12 2005-09-07 東芝機械株式会社 ダイカストマシンの吸引給湯方法及び同方法を用いた吸引給湯装置
JP2003225748A (ja) 2002-01-31 2003-08-12 Hitachi Metals Ltd 真空ダイカスト装置
US6951238B2 (en) * 2003-05-19 2005-10-04 Takata Corporation Vertical injection machine using gravity feed
JP4312560B2 (ja) * 2003-09-25 2009-08-12 東芝機械株式会社 ダイカスト装置および鋳造方法
JP4402007B2 (ja) 2004-06-24 2010-01-20 有限会社藤野技術コンサルタント ダイカスト鋳造装置及びダイカスト鋳造方法
JP5031268B2 (ja) 2006-05-29 2012-09-19 東芝機械株式会社 給湯量制御装置
US7588434B2 (en) * 2006-08-15 2009-09-15 Husky Injection Molding Systems Ltd. Fluid distributor and translatable drive apparatus for a molding
JP2008073714A (ja) * 2006-09-20 2008-04-03 Nissan Motor Co Ltd 鋳造方法及び鋳造装置
JP2010058129A (ja) 2008-09-01 2010-03-18 Masashi Katsumi 鋳造装置及びその方法
WO2010038321A1 (ja) * 2008-10-01 2010-04-08 東洋機械金属株式会社 ダイカスト装置における射出シリンダの油圧回路
JP5767848B2 (ja) 2011-04-18 2015-08-19 助川電気工業株式会社 ダイキャストスリーブへの溶融金属給湯装置
JP5768616B2 (ja) 2011-09-20 2015-08-26 トヨタ自動車株式会社 ダイカスト装置
JP5892829B2 (ja) * 2012-03-28 2016-03-23 ホットチャンバー開発株式会社 溶湯供給装置及びホットチャンバーダイカスト装置
ITMI20120950A1 (it) * 2012-06-01 2013-12-02 Flavio Mancini Metodo e impianto per ottenere getti pressofusi in leghe leggere con anime non metalliche
JP2014188589A (ja) * 2013-03-27 2014-10-06 Hot Chamber Kaihatsu Kk ダイカスト機の自動給湯装置
DE102013105435B3 (de) * 2013-05-27 2014-07-10 Schuler Pressen Gmbh Gießventil mit einem Nachverdichtungskolben
JP6135613B2 (ja) 2014-07-22 2017-05-31 トヨタ自動車株式会社 ダイカスト鋳造装置及びダイカスト鋳造方法
JP6179477B2 (ja) 2014-07-31 2017-08-16 トヨタ自動車株式会社 ダイカスト鋳造装置
CN204621044U (zh) * 2015-03-18 2015-09-09 东莞台一盈拓科技股份有限公司 非晶合金用卧式压铸机
CN208758587U (zh) * 2018-08-13 2019-04-19 宁海县赛跃金属制品有限公司 一种烤盘铝压铸模具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152361A (en) * 1980-11-03 1982-09-20 Uaingaruten Ag Maschf Method of manufacturing casted lump having little gas, gross porosity and oxide, pressure casting machine for executing said method and control unit for controlling said pressure
JPH06154985A (ja) * 1992-11-26 1994-06-03 Kobe Steel Ltd ダイカスト鋳造機
JPH09136153A (ja) * 1995-11-14 1997-05-27 Kobe Steel Ltd 鋳造機の給湯装置
JP2012232338A (ja) * 2011-04-18 2012-11-29 Sukegawa Electric Co Ltd ダイキャストスリーブへの溶融金属給湯装置

Also Published As

Publication number Publication date
CN113766982B (zh) 2023-07-14
JP7254619B2 (ja) 2023-04-10
JP2020189299A (ja) 2020-11-26
CN113766982A (zh) 2021-12-07
MX2021013793A (es) 2021-12-10
US20220062978A1 (en) 2022-03-03
US11925975B2 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
TWI630042B (zh) Die casting machine and method for forming solid-liquid coexisting metal
US20090242161A1 (en) Injection device for die casting machine
JP4883557B2 (ja) スクイズピンの異常検知方法及び成形機
US9889500B2 (en) Die casting machine and control method of die casting machine
JP7222751B2 (ja) ダイカストマシン、金型付ダイカストマシン、ダイカストマシン用制御装置及びダイカスト方法
WO2020235330A1 (ja) ダイカストマシン
WO2020235331A1 (ja) ダイカストマシン
JP2961218B2 (ja) 加圧鋳造方法およびその装置
JP2016135570A (ja) 射出成形機
US11813668B2 (en) Die casting machine
EP3012085B1 (en) Injection molding machine
JP7324576B2 (ja) ダイカストマシン
JP7195207B2 (ja) 成形機及び給湯装置
EP3028834A1 (en) Injection molding machine
JP7254617B2 (ja) 給湯装置及び成形機
JP6472053B2 (ja) ダイカストマシン及び固液共存金属の成形方法
JP5491206B2 (ja) ダイカストマシン
JP2009285679A (ja) ダイカストマシン
JP2020089911A (ja) ダイカストマシン及び金属加熱供給装置
JP2005028637A (ja) 射出成形装置における中間金型の移動装置とその方法
JP2013071156A (ja) 射出成形装置及び射出成形方法
JPH0679758B2 (ja) 鋳造機
JPH11240054A (ja) 型締制御方法
KR20120025921A (ko) 자동차 휠 제조용 저압주조 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20810218

Country of ref document: EP

Kind code of ref document: A1