WO2020195543A1 - アルカリ蓄電池用水素吸蔵合金およびそれを負極に用いたアルカリ蓄電池ならびに車両 - Google Patents

アルカリ蓄電池用水素吸蔵合金およびそれを負極に用いたアルカリ蓄電池ならびに車両 Download PDF

Info

Publication number
WO2020195543A1
WO2020195543A1 PCT/JP2020/008332 JP2020008332W WO2020195543A1 WO 2020195543 A1 WO2020195543 A1 WO 2020195543A1 JP 2020008332 W JP2020008332 W JP 2020008332W WO 2020195543 A1 WO2020195543 A1 WO 2020195543A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen storage
storage alloy
alloy
negative electrode
storage battery
Prior art date
Application number
PCT/JP2020/008332
Other languages
English (en)
French (fr)
Inventor
孝雄 澤
沙紀 能登山
友樹 相馬
勝幸 工藤
巧也 渡部
正人 穂積
素宜 奥村
昌士 児玉
卓郎 菊池
岳太 岡西
厚志 南形
修平 持田
佐々木 博之
聡 河野
Original Assignee
日本重化学工業株式会社
トヨタ自動車株式会社
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本重化学工業株式会社, トヨタ自動車株式会社, 株式会社豊田自動織機 filed Critical 日本重化学工業株式会社
Priority to US17/442,927 priority Critical patent/US20220190327A1/en
Priority to CN202080023705.9A priority patent/CN113631302B/zh
Priority to JP2021508864A priority patent/JP7036397B2/ja
Priority to DE112020001442.8T priority patent/DE112020001442T5/de
Publication of WO2020195543A1 publication Critical patent/WO2020195543A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • H01M4/385Hydrogen absorbing alloys of the type LaNi5
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a hydrogen storage alloy used for an alkaline storage battery, particularly a hydrogen storage alloy suitable for use in an alkaline storage battery for a power source of a hybrid electric vehicle (HEV) or an idling stop vehicle, and a hybrid electric vehicle (HEV) or an idling stop. It relates to an alkaline storage battery suitable for a power source of a car or the like, and a vehicle equipped with the alkaline storage battery.
  • HEV hybrid electric vehicle
  • HEV hybrid electric vehicle
  • secondary batteries have come to be widely used in, for example, mobile phones, personal computers, electric tools, hybrid electric vehicles (HEVs), electric vehicles (EVs), etc., and are mainly used for alkaline storage batteries. Is used. Of these, high output and high durability are particularly important for alkaline storage batteries used in vehicles such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs). In addition, as the spread of these applications expands, there is an increasing demand for smaller and lighter alkaline storage batteries.
  • HEVs hybrid electric vehicles
  • PHEVs plug-in hybrid electric vehicles
  • EVs electric vehicles
  • Patent Document 1 and Patent Document 2 propose a rare earth-Mg transition metal-based hydrogen storage alloy containing Mg.
  • Patent Document 3 proposes a method of increasing the operating voltage by using a hydrogen storage alloy having a high hydrogen equilibrium pressure.
  • Patent Document 5 the general formula: Ln in 1-x Mg x Ni y A z (wherein, Ln is at least one element selected from the rare earth elements, Ga, Zr and Ti containing Y Yes, A is at least one element selected from Co, Mn, V, Cr, Nb, Al, Ga, Zn, Sn, Cu, Si, P and B, and the subscripts x, y and z are In the hydrogen storage alloy represented by 0.05 ⁇ x ⁇ 0.25, 0 ⁇ z ⁇ 1.5, 2.8 ⁇ y + z ⁇ 4.0), 20 mol of Sm is contained in the above Ln. Hydrogen storage alloys containing% or more are disclosed.
  • Patent Document 7 describes a rare earth - Mg—Ni hydrogen storage alloy used for the negative electrode of an alkaline storage battery as a general formula: (A ⁇ Ln 1- ⁇ ) 1- ⁇ Mg ⁇ Ni ⁇ - ⁇ - ⁇ Al ⁇ T ⁇ .
  • A represents one or more elements including at least Sm selected from the group consisting of Pr, Nd, Sm and Gd
  • Ln represents La, Ce, Pm, Eu, Tb, Dy
  • Ho represents at least one element selected from the group consisting of Er, Tm, Yb, Lu, Ca, Sr, Sc, Y, Ti, Zr and Hf, where T represents V, Nb, Ta, Cr, Mo, Mn, Fe.
  • Co, Zn, Ga, Sn, In, Cu, Si, P and B represent at least one element selected from the group, and the subscripts ⁇ , ⁇ , ⁇ , ⁇ and ⁇ are 0.4 ⁇ , respectively.
  • the hydrogen storage alloy having is disclosed.
  • Patent Document 8 reports a hydrogen storage alloy electrode using hydrogen storage alloy particles having a center diameter D50 represented by a 50% passing rate in the range of 8 to 15 ⁇ m in order to enable high rate discharge. There is.
  • Patent Documents 1 and 2 have not been optimized for alloys and have not been installed in hybrid vehicles.
  • Patent Document 5 the hydrogen storage alloys disclosed in Patent Document 5, Patent Document 6, and Patent Document 7 all have a large alloy particle size, and an alkaline storage battery using these alloys is a problem for in-vehicle use.
  • the hydrogen storage alloy used in the Patent Document 8 a so-called AB 5 alloys (MmNi 4.0 Co 0.4 Mn 0.3 Al 0.3), discharge characteristics by atomization is improved
  • AB 5 alloys MmNi 4.0 Co 0.4 Mn 0.3 Al 0.3
  • the present invention has been made in view of these problems of the prior art, and an object of the present invention is to provide a hydrogen storage alloy particularly suitable for an in-vehicle nickel-metal hydride battery (alkaline storage battery).
  • the hydrogen storage alloy for the negative electrode of an alkaline storage battery the main phase has the crystal structure of A 2 B 7 type structure, and by using a fine alloy having specific component composition, the discharge We have found that it is possible to achieve both capacitance characteristics and charge / discharge cycle life characteristics in a well-balanced manner, and have developed the present invention.
  • the main phase is a fine-grained alloy having a crystal structure of A 2 B 7 type, specifically, Ce 2 Ni 7 type or Gd 2 Co 7 type, and the following.
  • a hydrogen storage alloy for an alkaline storage battery which has a component composition represented by the general formula (1).
  • the subscripts a, b, c, d and e in the above equation (1) are 0 ⁇ a ⁇ 0.35, 0.15 ⁇ b ⁇ 0.30, 0.02 ⁇ d ⁇ 0.10. 0 ⁇ e ⁇ 0.10. 3.20 ⁇ c + d + e ⁇ 3.50, 0 ⁇ a + e Satisfy the conditions.
  • the particle size of the hydrogen storage alloy according to the present invention is preferably such that the mass-based D50 is 3 ⁇ m or more and 20 ⁇ m or less, and the mass-based D90 is 8 ⁇ m or more and 50 ⁇ m or less.
  • the particle size of the hydrogen storage alloy is preferably such that the volume-based D50 is 10 ⁇ m or more and 20 ⁇ m or less, and the initial mass saturation magnetization is 2.5 emu / g or more and 6.0 emu / g or less.
  • the hydrogen storage alloy preferably has a layer made of Ni on at least a part of the particle surface, and the layer made of Ni is preferably an alkali-treated layer or an acid-treated layer.
  • the present invention is an alkaline storage battery using any of the above hydrogen storage alloys as a negative electrode, which is mounted on a hybrid vehicle using a motor as a drive source to supply electric power to the motor.
  • the present invention provides an alkaline storage battery, which is mounted on an idling stop vehicle in which an engine is started by a starter motor to supply electric power to the starter motor.
  • the present invention provides a vehicle characterized by having an alkaline storage battery using any of the above hydrogen storage alloys as a negative electrode as a power supply source to the motor.
  • the hydrogen storage alloy for the alkaline storage battery of the present invention and the alkaline storage battery using this hydrogen storage alloy have high output density and excellent charge / discharge cycle life, so that they have excellent discharge capacity characteristics and can be used in vehicles. A sufficiently high rate of discharge can be achieved even under conditions. Further, by using fine powder with an optimized particle size, the progress of alloy cracking can be suppressed and the durability can be improved. Therefore, Al that improves corrosion resistance can be reduced, and eventually the discharge capacity can be increased. Can be increased. Further, by forming a layer made of Ni on a part of the particle surface by surface treatment, the progress of alloy corrosion can be suppressed and the durability can be further improved.
  • the alkaline storage battery according to the present invention it is possible to reduce the size and weight, and when it is mounted on a vehicle such as an automobile, it is possible to provide a hybrid electric vehicle (HEV) having high kinetic performance and low fuel consumption. Will be.
  • HEV hybrid electric vehicle
  • the alkaline storage battery using the hydrogen storage alloy of the present invention will be described with reference to FIG. 1, which is a partially cutaway perspective view showing an example of the battery.
  • the alkaline storage battery 10 includes a nickel positive electrode 1 using nickel hydroxide (Ni (OH) 2 ) as the main positive electrode active material, a hydrogen storage alloy negative electrode 2 using the hydrogen storage alloy (MH) according to the present invention as the negative electrode active material, and the negative electrode 2.
  • Ni (OH) 2 nickel hydroxide
  • MH hydrogen storage alloy
  • This is a storage battery in which an electrode group including a separator 3 is provided in a housing 4 together with an electrolyte layer (not shown) filled with an alkaline electrolytic solution.
  • This battery 10 corresponds to a so-called nickel-metal hydride battery (Ni-MH battery), and the following reaction occurs.
  • the hydrogen storage alloy of the present invention has fine particles having a crystal structure whose main phase is A 2 B 7 type, specifically Ce 2 Ni 7 type or Gd 2 Co 7 type, and has the following general formula (1). It is necessary to have a component composition represented by. Serial (La 1-a Sm a) 1-b Mg b Ni c Al d Cr e ⁇ (1)
  • the subscripts a, b, c, d and e in the above equation (1) are 0 ⁇ a ⁇ 0.35, 0.15 ⁇ b ⁇ 0.30, 0.02 ⁇ d ⁇ 0.10. 0 ⁇ e ⁇ 0.10. 3.20 ⁇ c + d + e ⁇ 3.50, 0 ⁇ a + e Satisfy the conditions.
  • the alloy represented by the general formula (1) When the alloy represented by the general formula (1) is used as the negative electrode of an alkaline storage battery, it imparts high discharge capacity and cycle life characteristics to the battery, so that the alkaline storage battery can be made smaller, lighter, and more durable. Contribute to.
  • Rare earth elements La 1-a Sm a (where, 0 ⁇ a ⁇ 0.35)
  • the hydrogen storage alloy of the present invention as the element of the A component of the A 2 B 7 type structure, containing a rare earth element.
  • a rare earth element in principle, two elements, La and Sm, are essential as basic components that bring about hydrogen storage capacity. Further, since La and Sm have different atomic radii, the hydrogen equilibrium pressure can be controlled by this component ratio, and the equilibrium pressure required for the battery can be arbitrarily set.
  • the value is the atomic ratio a value of Sm with respect to the total of La and Sm, and it is necessary in principle to be in the range of more than 0 and 0.35 or less. Within this range, it is easy to set the hydrogen equilibrium pressure suitable for the battery.
  • the atomic ratio a value of Sm is in the range of 0.05 or more and 0.30 or less.
  • the atomic ratio a value can be in the range of 0 or more and 0.35 or less. In this case, the preferable a value is in the range of 0.02 or more and 0.32 or less, and more preferably in the range of 0.05 or more and 0.30 or less.
  • a composition with a large amount of La increases the discharge capacity, and when combined with other elements, the discharge capacity characteristics are further improved. Further, Pr, Nd, and Ce as rare earth elements are not actively utilized, but may be contained at an unavoidable impurity level.
  • Mg Mg b (however, 0.15 ⁇ b ⁇ 0.30) Mg is an essential element in the present invention that constitutes the element of the A component of the A 2 B 7 type structure, and contributes to the improvement of the discharge capacity and the cycle life characteristics.
  • the b value representing the atomic ratio of Mg in the A component shall be in the range of 0.15 or more and 0.30 or less. If the b value is less than 0.15, the hydrogen release capacity is lowered, so that the discharge capacity is lowered. On the other hand, if it exceeds 0.30, cracking due to hydrogen storage and release is particularly promoted, and the cycle life characteristic, that is, durability is lowered.
  • the b value is in the range of 0.16 or more and 0.28 or less.
  • Ni c Ni is the main element of the B component of the A 2 B 7 type structure.
  • the atomic ratio c value will be described later.
  • Al Al d (where 0.02 ⁇ d ⁇ 0.10.)
  • Al is an element contained as an element of the B component of the A 2 B 7 type structure, which is effective for adjusting the hydrogen equilibrium pressure related to the battery voltage, can improve the corrosion resistance, and has the durability of the fine hydrogen storage alloy. It is effective in improving the cycle life characteristics.
  • the d value representing the atomic ratio of Al to the component A is set in the range of 0.02 or more and 0.10 or less. If the d value is less than 0.02, the corrosion resistance becomes insufficient, and as a result, the cycle life becomes insufficient. On the other hand, if the d value exceeds 0.10, the discharge capacity will decrease.
  • the preferred d value is in the range of 0.04 or more and 0.09 or less.
  • Cr Cr e (where 0 ⁇ e ⁇ 0.10, 0 ⁇ a + e) Cr is an element contained as an element of the B component of the A 2 B 7 type structure, is effective for adjusting the hydrogen equilibrium pressure related to the battery voltage, and can improve the corrosion resistance together with Al. In particular, it is effective in improving the durability of fine hydrogen storage alloys, that is, in cycle life characteristics.
  • the e value representing the atomic ratio of Cr to the A component shall be in the range of 0 or more and 0.10 or less. As described above, since the hydrogen storage alloy of the present invention requires Sm or Cr, both the atomic ratios a value and e value do not become 0 at the same time.
  • the relationship of 0 ⁇ a + e is satisfied.
  • the e value exceeds 0.10, excessive Cr induces cracks due to the storage and release of hydrogen, and as a result, the durability is lowered and the cycle life is not sufficient.
  • the preferable e value is in the range of 0.005 or more and 0.09 or less, and more preferably 0.01 or more and 0.08 or less.
  • Ratio of component A and component B 3.20 ⁇ c + d + e ⁇ 3.50
  • the lower limit can be expanded to 3.20. If it is less than 3.20, the sub-phases: AB 3 phase will increasingly, especially discharge capacity decreases.
  • the range is preferably 3.22 or more and 3.47 or less, and more preferably 3.25 or more and 3.47 or less.
  • the hydrogen storage alloy of the present invention weighs rare earth elements (Sm, La, etc.) and metal elements such as magnesium (Mg), nickel (Ni), aluminum (Al), and chromium (Cr) so as to have a predetermined molar ratio. After that, these raw materials are put into an aluminum crucible installed in a high-frequency induction furnace to dissolve them in an atmosphere of an inert gas such as argon gas, and then cast into a mold to prepare an ingot of a hydrogen storage alloy. Alternatively, a flake-shaped sample having a thickness of about 200 to 500 ⁇ m may be directly prepared by using the strip casting method.
  • the hydrogen storage alloy of the present invention contains Mg having a low melting point and a high vapor pressure as a main component, if the raw materials of all alloy components are dissolved at once, Mg evaporates, which is a target. It may be difficult to obtain an alloy with a chemical composition. Therefore, in producing the hydrogen storage alloy of the present invention by the melting method, first, the other alloy components other than Mg are melted, and then Mg raw materials such as metallic Mg and Mg alloy are put into the molten metal. preferable. Further, this dissolution step is preferably performed in an atmosphere of an inert gas such as argon or helium. Specifically, the inert gas containing 80 vol% or more of argon gas was adjusted to 0.05 to 0.2 MPa. It is preferably carried out in a reduced pressure atmosphere.
  • an inert gas such as argon or helium
  • the alloy melted under the above conditions is then preferably cast in a water-cooled mold and solidified to form an ingot of a hydrogen storage alloy.
  • the melting point ( Tm ) of each of the obtained hydrogen storage alloy ingots is measured using a DSC (Differential Scanning Calorimeter).
  • the hydrogen storage alloy of the present invention makes the ingot after casting the melting point of the alloy at 900 ° C. or higher under the atmosphere of either an inert gas such as argon or helium or a nitrogen gas, or a mixed gas atmosphere thereof. This is because it is preferable to perform a heat treatment for holding the temperature at a temperature of T m ) or less for 3 to 50 hours.
  • the ratio of the main phase having an A 2 B 7 type crystal structure in the hydrogen storage alloy is set to 50 vol% or more, and the AB 2 phase, AB 3 phase, and AB 5 phase, which are subphases, are reduced or eliminated. Can be done. It can be confirmed by X-ray diffraction measurement using Cu—K ⁇ rays that the crystal structure of the main phase of the obtained hydrogen storage alloy has an A 2 B 7 type structure.
  • the heat treatment temperature is preferably in the range of 900 ° C. to ( Tm- 30 ° C.). More preferably, it is in the range of 900 ° C. to ( Tm- 50 ° C.).
  • the heat treatment holding time is 3 hours or less, the ratio of the main phase cannot be stably set to 50 vol% or more, and the homogenization of the chemical components of the main phase becomes insufficient. Expansion and contraction at the time of discharge become non-uniform, and the amount of strain and defects generated may increase, which may adversely affect the cycle characteristics.
  • the holding time of the heat treatment is preferably 4 hours or more, and more preferably 5 hours or more from the viewpoint of homogenization of the main phase and improvement of crystallinity.
  • the holding time exceeds 50 hours, the chemical composition changes become much evaporation amount of Mg, As a result, there is a possibility that the AB 5 type subphase come generated. Further, it is not preferable because it may increase the manufacturing cost and cause a dust explosion due to the evaporated Mg fine powder.
  • the heat-treated alloy is pulverized by a dry method or a wet method.
  • pulverizing by the dry method it is pulverized using, for example, a hammer mill or an ACM palverizer.
  • pulverizing by the wet method it is pulverized using a bead mill or an attritor.
  • wet pulverization is preferable because it can be produced safely.
  • the particle size of the alloy particles to be pulverized is 3 ⁇ m at a mass-based 50% passing rate particle size D50 in terms of the balance of battery characteristics such as output and cycle life characteristics.
  • the range of 20 ⁇ m or more is preferable, and the range of 5 ⁇ m or more and 15 ⁇ m or less is more preferable. Further, if the particle size distribution of the alloy particles is too wide, the above characteristics are deteriorated. Therefore, the mass-based 10% pass rate particle size D10 is in the range of 0.5 ⁇ m or more and 9 ⁇ m or less, and the 90% pass rate particle size D90 is 8 ⁇ m or more. The range is preferably 50 ⁇ m or less, D10 is 1 ⁇ m or more and 7 ⁇ m or less, and D90 is 10 ⁇ m or more and 40 ⁇ m or less.
  • the particle size of the alloy particles can be controlled by adjusting conditions such as the diameter, amount, and rotation speed of the media.
  • the particle size distributions D50, D10 and D90 of the alloy particles described above the values measured by the laser diffraction / scattering type particle size distribution measuring device are used, and the measuring device is, for example, MT3300EXII manufactured by Microtrac Bell. A mold or the like can be used.
  • the pulverized alloy particles may be subsequently subjected to surface treatment such as alkali treatment using an alkaline aqueous solution such as KOH or NaOH, or acid treatment using an aqueous solution of nitric acid, sulfuric acid or hydrochloric acid.
  • surface treatment such as alkali treatment using an alkaline aqueous solution such as KOH or NaOH, or acid treatment using an aqueous solution of nitric acid, sulfuric acid or hydrochloric acid.
  • the alkaline storage battery 10 of the present invention is composed of at least a positive electrode 1, a negative electrode 2, a separator 3, and a housing 4 (battery case) filled with an electrolyte and accommodating them.
  • a specific description will be given.
  • the positive electrode 1 is usually composed of a positive electrode active material layer and a positive electrode current collector.
  • the positive electrode active material layer contains at least the positive electrode active material.
  • the positive electrode active material layer may further contain at least one of a conductive auxiliary agent, a binder and a thickener.
  • the positive electrode active material is not particularly limited as long as it functions as a battery when combined with the above-mentioned hydrogen storage alloy (negative electrode material), and examples thereof include simple metals, alloys, and hydroxides. ..
  • As the positive electrode active material a material containing nickel oxide and mainly composed of nickel oxyhydroxide and / or nickel hydroxide can be used.
  • the amount of nickel oxide in the positive electrode active material is, for example, 90 to 100% by mass, and may be 95 to 100% by mass.
  • the average particle size of the nickel oxide can be appropriately selected from the range of, for example, 3 to 35 ⁇ m, and is preferably in the range of 3 to 25 ⁇ m.
  • the conductive auxiliary agent is not particularly limited as long as it is a material capable of imparting electron conductivity, and examples thereof include metal powders such as Ni powder, oxides such as cobalt oxide, and carbon materials such as graphite and carbon nanotubes. Can be done.
  • the amount of the conductive auxiliary agent added is not particularly limited, but is preferably in the range of 0.1 to 50 parts by weight, more preferably 0.1 to 30 parts by weight, based on 100 parts by mass of the positive electrode active material, for example.
  • binder examples include synthetic rubber such as styrene-butadiene rubber (SBR), cellulose such as carboxymethyl cellulose (CMC), polyol such as polyvinyl alcohol (PVA), and fluororesin such as polyvinylidene fluoride (PVDF). Etc. can be mentioned.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • PVA polyvinyl alcohol
  • PVDF polyvinylidene fluoride
  • Etc. can be mentioned.
  • the amount of the binder may be, for example, 7 parts by mass or less with respect to 100 parts by mass of the positive electrode active material, and even if it is in the range of 0.01 to 5 parts by mass, it is further 0.05 to 2 parts by mass. It may be in the range of.
  • examples of the thickener include carboxymethyl cellulose and its modified products (including salts such as Na salt), cellulose derivatives such as methyl cellulose, saponified products of polymers having a vinyl acetate unit such as polyvinyl alcohol, and polyethylene oxide. Polyalkylene oxide and the like. These thickeners may be used alone or in combination of two or more.
  • the amount of the thickener is, for example, 5 parts by mass or less, may be in the range of 0.01 to 3 parts by mass, and further 0.05 to 1.5 parts by mass with respect to 100 parts by mass of the positive electrode active material. It may be a range of parts.
  • the material of the positive electrode current collector for example, stainless steel, aluminum, nickel, iron, titanium and the like can be mentioned.
  • the shape of the positive electrode current collector includes, for example, a foil shape, a mesh shape, a porous shape, and the like, and any shape may be used.
  • the positive electrode can be formed by adhering a positive electrode mixture containing a positive electrode active material to a support (positive electrode current collector).
  • the positive electrode mixture is usually prepared by forming a paste together with the above-mentioned positive electrode active material, conductive auxiliary agent, and binder.
  • As the dispersion medium water, an organic medium, or a mixed medium in which two or more kinds of media selected from these are mixed can be used.
  • the positive electrode mixture paste may be applied to the support depending on the shape of the support, or the pores of the support may be filled.
  • the positive electrode can be formed by applying or filling the support, drying to remove the dispersion medium, and compressing the obtained dried product in the thickness direction (for example, rolling between a pair of rolls).
  • the negative electrode 2 is usually composed of a negative electrode active material layer and a negative electrode current collector.
  • the negative electrode active material layer needs to contain at least the hydrogen storage alloy of the present invention described above as the negative electrode active material.
  • the negative electrode active material layer may further contain at least one of a conductive auxiliary agent, a binder and a thickener.
  • the conductive auxiliary agent is not particularly limited as long as it is a material capable of imparting electron conductivity, and examples thereof include metal powders such as Ni powder, oxides such as cobalt oxide, and carbon materials such as graphite and carbon nanotubes. Can be done.
  • the amount of the conductive auxiliary agent added is not particularly limited, but is preferably in the range of 0.1 to 50 parts by weight, more preferably in the range of 0.1 to 30 parts by weight, based on 100 parts by weight of the hydrogen storage alloy powder, for example. ..
  • the binder include synthetic rubber such as styrene-butadiene rubber (SBR), cellulose such as carboxymethyl cellulose (CMC), polyol such as polyvinyl alcohol (PVA), and fluororesin such as polyvinylidene fluoride (PVDF). Etc. can be mentioned.
  • the amount of the binder may be, for example, 7 parts by mass or less with respect to 100 parts by mass of the hydrogen storage alloy powder, and even if it is in the range of 0.01 to 5 parts by mass, it is further 0.05 to 2 parts by mass. It may be a range of parts.
  • Examples of the material of the negative electrode current collector include steel, stainless steel, aluminum, nickel, iron, titanium, carbon and the like.
  • the shape of the negative electrode current collector includes, for example, a foil shape, a mesh shape, a porous shape, and the like, and any shape may be used.
  • To form the negative electrode active material layer on the negative electrode current collector it is made into a paste. This is prepared by containing the above-mentioned negative electrode active material, conductive auxiliary agent, binder, thickener and the like.
  • the negative electrode for a nickel hydrogen battery can be produced by molding a negative electrode paste containing the hydrogen storage alloy powder of the present invention into a predetermined shape and supporting the molded negative electrode paste with a negative electrode core material (negative electrode current collector). , The negative electrode paste containing the hydrogen storage alloy powder is prepared, applied to the negative electrode current collector, and dried.
  • the electrolyte layer is a layer containing an aqueous electrolyte solution formed between the positive electrode and the negative electrode.
  • the aqueous electrolytic solution means an electrolytic solution mainly using water as a solvent, and the solvent may contain a solvent other than water.
  • the ratio of water to the total solvent of the electrolytic solution may be 50 mol% or more, 70 mol% or more, 90 mol% or more, or 100 mol%.
  • the aqueous electrolytic solution is preferably an alkaline aqueous solution. Examples of the solute of the alkaline aqueous solution include potassium hydroxide (KOH) and sodium hydroxide (NaOH), which may contain LiOH.
  • the electrolyte layer has a separator 3. By installing the separator 3, a short circuit can be effectively prevented. Examples of the separator 3 include a non-woven fabric and a porous membrane containing a resin such as polyethylene or polypropylene that has been sulfonated.
  • the housing 4 is a battery case (cell container) that houses the above-mentioned positive electrode 1, negative electrode 2, and separator 3 and is filled with an electrolyte.
  • the material may be stable without being corroded by the electrolytic solution, and may be able to retain the gas (oxygen or hydrogen) temporarily generated during charging and the electrolytic solution without leaking to the outside, for example.
  • a metal case, a resin case, or the like is generally used.
  • the housing 4 has a structure in which the periphery of the laminated body is sealed with a frame-shaped resin. There may be.
  • the battery 10 of the present invention is usually a secondary battery. Therefore, since it can be repeatedly charged and discharged, it is suitable as, for example, an in-vehicle battery. At that time, it is not limited to the use as a hybrid vehicle battery that supplies power to the motor for driving the vehicle, but also supplies power to the starter motor for restarting the engine in a vehicle having an idling stop function. It may be applied as a form to be used.
  • the secondary battery also includes the use as a primary battery of the secondary battery (use for the purpose of discharging only once after charging).
  • the shape of the battery includes, for example, a coin type, a laminated type, a cylindrical type, a square type, and the like, but any shape may be used.
  • the vehicle of the present invention is equipped with an alkaline storage battery using the hydrogen storage alloy as a negative electrode as a power supply source to the motor.
  • an alkaline storage battery of the present invention which is smaller and lighter than the conventional one, it is possible to improve the exercise performance, reduce the fuel consumption, and extend the cruising distance.
  • Example 1 No. having the component composition shown in Table 1 below. Evaluation cells using hydrogen storage alloys 1 to 60 as the negative electrode active material were prepared as described below, and an experiment was conducted to evaluate their characteristics.
  • the No. 1 shown in Table 1 The alloys 1 to 14 and 35 to 57 are alloy examples (invention examples) that meet the conditions of the present invention, No. Reference numerals 15 to 34 and 58 to 60 are alloy examples (comparative examples) that do not satisfy the conditions of the present invention. In addition, No. Fifteen alloys were used as reference alloys for evaluating cell properties.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • ⁇ Positive electrode> Nickel hydroxide (Ni (OH) 2 ), metallic cobalt (Co) as a conductive aid, and two types of binders (styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC)) are mixed in a mass ratio of Ni. (OH) 2 : Co: SBR: CMC 95.5: 2.0: 2.0: 0.5 was mixed and kneaded to obtain a paste-like composition. This paste-like composition was applied to porous nickel, dried at 80 ° C., and then roll-pressed with a load of 15 kN to obtain a positive electrode.
  • Ni OH
  • Co styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • Electrolytic solution an alkaline aqueous solution was used in which potassium hydroxide (KOH) was added to pure water to a concentration of 6 mol / L and LiOH was further added to 0.1 mol / L.
  • KOH potassium hydroxide
  • Electrode discharge capacity The discharge capacity of the electrode of the working electrode was confirmed by the following procedure. After 10 hours of constant current charging at a current value of 80 mA / g per active material of the working electrode, constant current discharge was performed at a current value of 40 mA / g per active material of the working electrode. The end condition of the discharge was an working pole potential of ⁇ 0.5 V. The above charge / discharge was repeated 10 times, and the maximum value of the discharge capacity was taken as the discharge capacity of the electrode of the working electrode. It has been confirmed that the discharge capacity of the working electrode is saturated and stable after 10 times of charging and discharging. The measured discharge capacity is No. 1 shown in Table 1.
  • Cycle life characteristics of the working electrode were determined by the following procedure.
  • the discharge capacity of the electrode of the working electrode confirmed by the discharge capacity of the electrode (1) above is set to 1C and the current value required to complete charging or discharging in 1 hour, the charging rate of the working electrode is 20-.
  • performing constant current charging and constant current discharging at a current value of C / 2 is defined as one cycle, and this is repeated for 100 cycles, and the discharge capacity after 100 cycles is measured.
  • the capacity retention rate was calculated by the formula.
  • Capacity retention rate (Discharge capacity in the 100th cycle) / (Discharge capacity in the 1st cycle) ... (3)
  • the evaluation of the cycle life characteristics was carried out by No. 1 shown in Table 1.
  • the capacity maintenance rate after 100 cycles of AB 5 alloys 15 and the reference capacity maintenance ratio, to calculate the ratio of it by the following equation (4), what this ratio is greater than 1.10, cycle life than AB 5 alloys It was evaluated as having great characteristics and being excellent. Cycle life characteristics (capacity retention rate after 100 cycles of measurements alloy) / (capacity maintenance rate after 100 cycles of AB 5 alloys (No.15)) ⁇ ⁇ ⁇ (4)
  • Example 2> (Preparation of negative electrode active material) (La 0.80 Sm 0.20 ) 0.80 Mg 0.20 Ni 3.31
  • a hydrogen storage alloy (samples No. B1 to B7) having a component composition of Al 0.09 is once evacuated and then subjected to a high frequency. It is melted in an argon atmosphere (Ar: 90 vol%, 0.15 MPa) using an induction heating furnace, cast into an ingot, and then this ingot is made 1000 in an argon atmosphere (Ar: 100 vol%, 0.5 MPa).
  • a sample for cell evaluation (negative electrode active material) is subjected to heat treatment for 10 hours at a temperature of ° C.
  • Example 3> Preparation of negative electrode active material (La 0.80 Sm 0.20 ) 0.80 Mg 0.20 Ni 3.31 Al 0.07 hydrogen storage alloys (samples No. C1 and C2) are once vacuumed and then high frequency induction. Using a heating furnace, the ingot is melted in an argon atmosphere (Ar: 100 vol%, 0.1 MPa) and cast into an ingot, and then this ingot is placed in an argon atmosphere (Ar: 90 vol% 0.1 MPa) at 1000 ° C.
  • Ar 100 vol%, 0.1 MPa
  • the finely pulverized alloy powder was subjected to the following two levels of surface treatment to prepare a sample for cell evaluation (negative electrode active material).
  • -Alkaline treatment Immersed in a sodium hydroxide aqueous solution of NaOH: 40 mass% at 75 ° C. for 2 hours under the condition of a solid-liquid ratio of 1: 2 (samples No. C1 and C3).
  • -Acid treatment Immersed in a 1 mol / L hydrochloric acid aqueous solution at 30 ° C. for 2 hours under the condition of a solid-liquid ratio of 1: 1 (samples No. C2 and C4).
  • the hydrogen storage alloy of the present invention was found to have a significant improvement in cycle life characteristics by surface treatment.
  • Example 4> Preparation of negative electrode active material (La 0.80 Sm 0.20 ) 0.80 Mg 0.20 Ni 3.31
  • An argon storage alloy having a component composition of Al 0.09 is once vacuumed and then subjected to an argon atmosphere using a high frequency induction heating furnace. lower (Ar: 90vol%, 0.15MPa) was dissolved in, after an ingot by casting, the ingot under argon (Ar: 100vol%, 0.5MPa), the 1000 ° C. (alloy melting point T m - Heat treatment is performed to keep the temperature at 50 ° C.
  • Alkali treatment was carried out by changing the alkali treatment temperature so that the mass saturation magnetization was 3.4, 4.2 and 5.0 emu / g.
  • the mass saturation magnetization after the alkali treatment and before charging / discharging is referred to as initial saturation magnetization.
  • the crushed powder of the above alloy was subjected to X-ray diffraction measurement, and it was confirmed that the main phase was A 2 B 7 phase in each case.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • ⁇ Positive electrode> Nickel hydroxide (Ni (OH) 2 ) coated with a cobalt oxyhydroxide layer containing sodium as a positive electrode active material, metallic cobalt (Co) as a conductive auxiliary agent, and two types of binders (acrylic resin emulsion). and carboxymethyl cellulose and (CMC)), a Y 2 O 3, in weight ratio, the positive electrode active material: Co: SBR: CMC: Y 2 O 3 96.5: 1.0: 1.0: 1.0
  • the mixture was mixed so as to have a ratio of: 0.5 and kneaded to obtain a paste-like composition.
  • a nickel foil having a thickness of 65 ⁇ m was prepared as a current collector for the positive electrode. This paste-like composition was applied to a nickel foil, dried at 80 ° C., and then roll-pressed with a load of 15 kN to obtain a positive electrode.
  • the electrolytic solution has a potassium hydroxide (KOH) concentration of 5.4 mol / L, a sodium hydroxide (NaOH) concentration of 0.8 mol / L, and a lithium hydroxide (LiOH) concentration of 0.5 mol.
  • KOH potassium hydroxide
  • NaOH sodium hydroxide
  • LiOH lithium hydroxide
  • a separator was sandwiched between the positive electrode and the negative electrode to form a group of electrode plates.
  • the discharge reserve amount means the remaining capacity of the negative electrode after the battery is completely discharged within the range used in normal charging / discharging.
  • FIG. 4 shows three types of hydrogen storage alloys having the same particle size but different initial mass saturation magnetizations. The change in mass saturation magnetization after the cycle test is shown.
  • the charge reserve amount (the negative electrode capacity that can be charged after the battery is fully charged) decreases, so there is a high possibility that gas will be generated at the end of charging, so the increase in the discharge reserve amount is smaller. Is preferable.
  • the negative electrode active material is corroded, Al is eluted in the alkaline solution and La and Mg are formed as hydroxides. As a result, the Ni fraction increases and the magnetization increases.
  • Example 5> (Preparation of negative electrode active material) (La 0.80 Sm 0.20 ) 0.80 Mg 0.20 Ni 3.31
  • An argon storage alloy having a component composition of Al 0.09 is once vacuumed and then subjected to an argon atmosphere using a high frequency induction heating furnace. lower (Ar: 90vol%, 0.15MPa) was dissolved in, after an ingot by casting, the ingot under argon (Ar: 100vol%, 0.5MPa), the 1000 ° C. (alloy melting point T m - It was subjected to a heat treatment held at a temperature of 50 ° C. for 10 hours, roughly pulverized, and then finely pulverized using a wet bead mill.
  • the negative electrode active materials of Sample Nos. D1 to D12 were produced by performing an alkali treatment using an aqueous solution of sodium hydroxide containing 40% by mass of sodium hydroxide so that the mass saturation magnetization was substantially the same.
  • Table 4 shows the volume-based average particle diameter D50 of the negative electrode active materials of Sample Nos. D1 to D12 and the mass saturation magnetization (initial saturation magnetization) after the alkali treatment. After the heat treatment, the crushed powder of the above alloy was subjected to X-ray diffraction measurement, and it was confirmed that the main phase was A 2 B 7 phase in each case.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • ⁇ Positive electrode> Nickel hydroxide (Ni (OH) 2 ) coated with a cobalt oxyhydroxide layer containing sodium as a positive electrode active material, metallic cobalt (Co) as a conductive auxiliary agent, and two types of binders (acrylic resin emulsion). and carboxymethyl cellulose and (CMC)), a Y 2 O 3, in weight ratio, the positive electrode active material: Co: SBR: CMC: Y 2 O 3 96.5: 1.0: 1.0: 1.0
  • the mixture was mixed so as to have a ratio of: 0.5 and kneaded to obtain a paste-like composition.
  • a nickel foil having a thickness of 65 ⁇ m was prepared as a current collector for the positive electrode. This paste-like composition was applied to a nickel foil, dried at 80 ° C., and then roll-pressed with a load of 15 kN to obtain a positive electrode.
  • the electrolytic solution has a potassium hydroxide (KOH) concentration of 5.4 mol / L, a sodium hydroxide (NaOH) concentration of 0.8 mol / L, and a lithium hydroxide (LiOH) concentration of 0.5 mol.
  • KOH potassium hydroxide
  • NaOH sodium hydroxide
  • LiOH lithium hydroxide
  • An alkaline aqueous solution having a concentration of / L and a concentration of tungsten trioxide (WO 3 ) of 0.01 mol / L was used.
  • WO 3 tungsten trioxide
  • a separator was sandwiched between the positive electrode and the negative electrode to form a group of electrode plates.
  • Discharge resistance After activation by charging and discharging at 25 ° C. for 24 cycles, the SOC was adjusted to 60%, and the mixture was discharged at a temperature of 25 ° C. at a 1 C rate for 5 seconds.
  • the discharge resistance value of each nickel metal hydride battery was calculated from the amount of voltage change before and after discharge and the current value during discharge based on Ohm's law. The results are shown in Table 4.
  • Example 6> (Preparation of negative electrode active material) (La 0.80 Sm 0.20 ) 0.80 Mg 0.20 Ni 3.31
  • An argon storage alloy having a component composition of Al 0.09 is once vacuumed and then subjected to an argon atmosphere using a high frequency induction heating furnace. lower (Ar: 90vol%, 0.15MPa) was dissolved in, after an ingot by casting, the ingot under argon (Ar: 100vol%, 0.5MPa), the 1000 ° C. (alloy melting point T m - It was subjected to a heat treatment held at a temperature of 50 ° C. for 10 hours, roughly pulverized, and then finely pulverized using a wet bead mill.
  • alkali treatment was carried out using an aqueous solution of sodium hydroxide containing 40% by mass of sodium hydroxide, respectively, to produce negative electrode active materials of Sample Nos. E1 to E7.
  • Table 5 shows the volume-based average particle diameter D50 of the negative electrode active materials of Sample Nos. E1 to E7 and the mass saturation magnetization (initial saturation magnetization) after the alkali treatment.
  • the crushed powder of the above alloy was subjected to X-ray diffraction measurement, and it was confirmed that the main phase was A 2 B 7 phase in each case.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • ⁇ Positive electrode> Nickel hydroxide (Ni (OH) 2 ) coated with a cobalt oxyhydroxide layer containing sodium as a positive electrode active material, metallic cobalt (Co) as a conductive auxiliary agent, and two types of binders (acrylic resin emulsion). and carboxymethyl cellulose and (CMC)), a Y 2 O 3, in weight ratio, the positive electrode active material: Co: SBR: CMC: Y 2 O 3 96.5: 1.0: 1.0: 1.0
  • the mixture was mixed so as to have a ratio of: 0.5 and kneaded to obtain a paste-like composition.
  • a nickel foil having a thickness of 65 ⁇ m was prepared as a current collector for the positive electrode. This paste-like composition was applied to a nickel foil, dried at 80 ° C., and then roll-pressed with a load of 15 kN to obtain a positive electrode.
  • the electrolytic solution has a potassium hydroxide (KOH) concentration of 5.4 mol / L, a sodium hydroxide (NaOH) concentration of 0.8 mol / L, and a lithium hydroxide (LiOH) concentration of 0.5 mol.
  • KOH potassium hydroxide
  • NaOH sodium hydroxide
  • LiOH lithium hydroxide
  • An alkaline aqueous solution having a concentration of / L and a concentration of tungsten trioxide (WO 3 ) of 0.01 mol / L was used.
  • WO 3 tungsten trioxide
  • a separator was sandwiched between the positive electrode and the negative electrode to form a group of electrode plates.
  • the volume-based average particle diameter D50 of the hydrogen storage alloy of the present invention is preferably 10 ⁇ m or more and 20 ⁇ m or less, more preferably 12 ⁇ m or more and 18 ⁇ m or less, and 13 ⁇ m or more and 17 ⁇ m The following are the most preferable.
  • the initial mass saturation magnetization of the hydrogen storage alloy of the present invention is preferably 2.5 emu / g or more and 6.0 emu / g or less, and further preferably 3.0 emu / g or more and 5.4 emu / g or less. Most preferably, it is 2 emu / g or more and 5.0 emu / g or less.
  • the hydrogen storage alloy of the present invention is excellent than the discharge capacity and the AB 5 type both previously used in the cycle life characteristics of hydrogen absorbing alloy, suitable as a negative electrode material for alkaline storage battery of a hybrid vehicle and the idling stop vehicle applications Not only that, it can also be suitably used for an alkaline storage battery for an electric vehicle.
  • Positive electrode 2 Negative electrode 3: Separator 4: Housing (battery case) 10: Alkaline battery

Abstract

車載用のアルカリ蓄電池の負極に適した水素吸蔵合金およびそれを用いたアルカリ蓄電池ならびに車両を提供する。アルカリ蓄電池に用いる微粒の水素吸蔵合金であって、A型構造の結晶構造を主相として有し、かつ、一般式(La1-aSm1-bMgNiAlCr(ここで、添字a、b、c、dおよびeは、0≦a≦0.35、0.15≦b≦0.30、0.02≦d≦0.10、0≦e≦0.10、3.20≦c+d+e≦3.50、0<a+eの条件を満たす)で表される水素吸蔵合金、およびそれを負極に用いたアルカリ蓄電池を提供する。モータの電力供給源として、そのアルカリ蓄電池を有する車両を提供する。

Description

アルカリ蓄電池用水素吸蔵合金およびそれを負極に用いたアルカリ蓄電池ならびに車両
 本発明は、アルカリ蓄電池に用いる水素吸蔵合金に関し、特に、ハイブリッド自動車(HEV)やアイドリングストップ車などの電源用のアルカリ蓄電池に用いて好適な水素吸蔵合金、および、ハイブリッド自動車(HEV)やアイドリングストップ車などの電源用として好適なアルカリ蓄電池、およびそのアルカリ蓄電池を搭載した車両に関するものである。
 近年、二次電池は、例えば、携帯電話やパーソナルコンピュータ、電動工具、ハイブリッド自動車(HEV)、電気自動車(EV)などに幅広く使われるようになってきており、これらの用途には、主としてアルカリ蓄電池が用いられている。このうち、ハイブリッド自動車(HEV)やプラグインハイブリッド自動車(PHEV)、電気自動車(EV)などの車両関係に用いられるアルカリ蓄電池では、高出力性や高耐久性が特に重要となる。また、これらの用途への普及が拡大するにつれ、アルカリ蓄電池に対する小型化や軽量化の要望が高まっている。
 従来、アルカリ蓄電池の負極には、AB型結晶構造の水素吸蔵合金が使用されていたが、該合金では、電池の小型軽量化には限界があり、小型で高容量を実現できる新たな水素吸蔵合金の開発が望まれていた。そこで、その解決策として、特許文献1や特許文献2は、Mgを含む希土類-Mg遷移金属系水素吸蔵合金を提案している。
 また、小型化、軽量化の手法として、例えば負極に用いる水素吸蔵合金の量を削減することが考えられるが、水素吸蔵合金の量を削減すると、ニッケル活性点の減少による出力低下という新たな問題が生じる。これを改善するため、特許文献3には、高水素平衡圧の水素吸蔵合金を用いて作動電圧を高くする手法が提案されている。
 さらに、特許文献4には、A19型構造の結晶構造を有し、該A19型構造のA成分に対するB成分のモル比である化学量論比(B/A)が3.8以上の水素吸蔵合金を用い、かつニッケル正極の容量Xに対する水素吸蔵合金負極の容量Yの比率である容量比Z(=Y/X)が1.2以下(1.0<Z≦1.2)の電池を部分充放電して使用することにより、低温出力と耐久性が両立できることが開示されている。
 また、水素吸蔵合金として、希土類-Mg-Ni系合金がいくつか提案されている。例えば、特許文献5には、一般式:Ln1-xMgxNiyz(式中、Lnは、Yを含む希土類元素とGaとZrとTiとから選択される少なくとも1種の元素であり、Aは、Co、Mn、V、Cr、Nb、Al、Ga、Zn、Sn、Cu、Si、PおよびBから選択される少なくとも1種の元素であり、添字x、yおよびzが、0.05≦x≦0.25、0<z≦1.5、2.8≦y+z≦4.0の条件を満たす)で表される水素吸蔵合金において、上記のLn中にSmが20モル%以上含まれるようにした水素吸蔵合金が開示されている。
 また、特許文献6には、ニッケル水素二次電池の負極に用いる水素吸蔵合金として、一般式:(LaSm1-wMgNiAl(式中、AおよびTは、Pr、Nd等よりなる群から選ばれる少なくとも1種の元素およびV、Nb等よりなる群から選ばれる少なくとも1種の元素をそれぞれ表し、添字a、bおよびcはそれぞれ、a>0、b>0、0.1>c≧0およびa+b+c=1で示される関係を満たし、添字w、x、yおよびzはそれぞれ0.1<w≦1、0.05≦y≦0.35、0≦z≦0.5、3.2≦x+y+z≦3.8で示される範囲にある)にて示される組成を有する合金が開示されている。
 さらに特許文献7には、アルカリ蓄電池の負極に用いる希土類-Mg-Ni系水素吸蔵合金として、一般式:(AαLn1-α1-βMgβNiγ-δ-εAlδε(式中、Aは、Pr、Nd、SmおよびGdよりなる群から選ばれた少なくともSmを含む1種以上の元素を表し、Lnは、La、Ce、Pm、Eu、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ca、Sr、Sc、Y、Ti、ZrおよびHfよりなる群から選ばれる少なくとも1種の元素を表し、TはV、Nb、Ta、Cr、Mo、Mn、Fe、Co、Zn、Ga、Sn、In、Cu、Si、PおよびBよりなる群から選ばれる少なくとも1種の元素を表し、添字α、β、γ、δおよびεは、それぞれ、0.4≦α、0.05<β<0.15、3.0≦γ≦4.2、0.15≦δ≦0.30、0≦ε≦0.20を満たす数を表す)で示される組成を有する水素吸蔵合金が開示されている。
 さらに、特許文献8には、高率放電を可能とするため、50%通過率で表わされる中心径D50が8~15μmの範囲にある水素吸蔵合金粒子を用いた水素吸蔵合金電極が報告されている。
特開平11-323469号公報 国際公開第01/ 48841号 特開2005- 32573号公報 特開2009- 87631号公報 特開2009- 74164号公報 特開2009-108379号公報 特開2009-138220号公報 特開2000-182608号公報
 しかしながら、上記特許文献1や特許文献2に開示の技術は、合金の最適化がなされず、ハイブリッド自動車には搭載されるまでには至らなかった。
 また、特許文献3に開示の技術では、高水素平衡圧の水素吸蔵合金を用いると、充放電サイクル寿命が低下するという新たな問題が生じた。
 また、特許文献4に開示の技術では、更なる小型化、軽量化を行おうとした場合、高出力の電池、即ち、高エネルギー密度の電池とする必要があり、電池容量当たりの最大放電可能な電流値(限界電流値)を考慮した電池サイズが必要となる。これは、単純な小型化、即ち、単純な電池サイズの小型化であると、電池容量が低下するだけだからである。しかし、特許文献4の技術では、そのような考慮はなされていない。
 また、特許文献5や特許文献6、特許文献7に開示の水素吸蔵合金は、いずれも合金の粒径が大きく、これらの合金を用いたアルカリ蓄電池は、車載用途としての課題である小型化、高出力および耐久性の3つの特性、言い換えると、放電特性とサイクル寿命特性を両立させるに至らず、車載アルカリ蓄電池用水素吸蔵合金としては不十分なものであった。
 また、特許文献8に用いられている水素吸蔵合金は、いわゆるAB合金(MmNi4.0Co0.4Mn0.3Al0.3)であって、微粒化により放電特性は改善されるものの、車載用途には、耐久性などの面でさらなる特性向上が必要であった。
 本発明は、従来技術が抱えるこれらの問題点に鑑みてなされたものであって、特に車載用のニッケル水素電池(アルカリ蓄電池)に適した水素吸蔵合金を提供することを目的とする。
 上記目的を達成するため、アルカリ蓄電池の負極用の水素吸蔵合金として、主相がA型構造の結晶構造を有し、かつ特定の成分組成を有する微粒の合金を用いることで、放電容量特性および充放電サイクル寿命特性をバランスよく両立させることができることを知見し、本発明を開発するに至った。
 すなわち、本発明は、第1に、主相がA型構造の結晶構造の微粒の合金、具体的にはCeNi型、あるいはGdCo型であって、かつ、下記一般式(1)で表される成分組成を有することを特徴とするアルカリ蓄電池用水素吸蔵合金を提供する。
                   記
(La1-aSm1-bMgNiAlCr  ・・・(1)
 ここで、上記(1)式中の添字a、b、c、dおよびeは、
     0≦a≦0.35、
    0.15≦b≦0.30、
    0.02≦d≦0.10、
    0≦e≦0.10、
    3.20≦c+d+e≦3.50、
    0<a+e
の条件を満たす。
 本発明に係る上記水素吸蔵合金の粒径は、質量基準のD50が3μm以上20μm以下であることが好ましく、質量基準のD90が8μm以上50μm以下であることが好ましい。上記水素吸蔵合金の粒径は、体積基準のD50が10μm以上20μm以下であり、初期質量飽和磁化が2.5emu/g以上6.0emu/g以下であることが好ましい。また、上記水素吸蔵合金は、粒子表面の少なくとも一部にNiからなる層を有することが好ましく、該Niからなる層がアルカリ処理層または酸処理層であることが好ましい。
 本発明は、第2に、上記いずれかの水素吸蔵合金を負極に用いたアルカリ蓄電池であって、モータを駆動源とするハイブリッド自動車に搭載されて、該モータに電力を供給するものであること、または、スターターモータによりエンジンを始動するアイドリングストップ車に搭載されて、該スターターモータに電力を供給するものであることを特徴とするアルカリ蓄電池を提供する。
 本発明は、第3に、モータへの電力供給源として、上記いずれかの水素吸蔵合金を負極に用いたアルカリ蓄電池を有することを特徴とする車両を提供する。
 本発明のアルカリ蓄電池用の水素吸蔵合金、および、この水素吸蔵合金を用いたアルカリ蓄電池は、高出力密度を有し、充放電サイクル寿命も優れているため、放電容量特性に優れ、車載の使用条件でも十分に高い高率放電ができる。
 また、粒径を適正化した微粉とすることによって、合金割れの進行を抑制し耐久性を向上させることができるので、もって、耐食性を改善するAlを削減することができ、ひいては、放電容量を増大させることができる。
 さらに、粒子表面の一部にNiからなる層を、表面処理を施すことによって形成することで、合金腐食の進行を抑制しより耐久性を高めることができる。
 また、本発明に係るアルカリ蓄電池によれば、小型軽量化が可能となり、これを自動車など車両に搭載した場合には、高い運動性能を有するとともに、低燃費のハイブリッド自動車(HEV)等を提供できるようになる。
本発明の水素吸蔵合金を用いたアルカリ蓄電池を例示する部分切欠斜視図である。 本発明の水素吸蔵合金を用いたアルカリ蓄電池のサイクル試験後の放電リザーブ量に与える粒径の影響を示すグラフである。 本発明の水素吸蔵合金を用いたアルカリ蓄電池のサイクル試験後の質量飽和磁化に与える粒径の影響を示すグラフである。 本発明の水素吸蔵合金を用いたアルカリ蓄電池のサイクル試験後の質量飽和磁化に与える初期の質量飽和磁化の影響を示すグラフである。
 本発明の水素吸蔵合金を用いたアルカリ蓄電池について、電池の一例を示す部分切欠斜視図である図1に基づいて説明する。アルカリ蓄電池10は、水酸化ニッケル(Ni(OH))を主正極活物質とするニッケル正極1と、本発明にかかる水素吸蔵合金(MH)を負極活物質とする水素吸蔵合金負極2と、セパレータ3とからなる電極群を、アルカリ電解液を充填した電解質層(図示せず)とともに筐体4内に備えた蓄電池である。
 この電池10は、いわゆるニッケル-金属水素化物電池(Ni-MH電池)に該当し、以下の反応が生じる。
   正極: NiOOH+HO+e-=Ni(OH)2+OH-
   負極: MH+OH-=M+HO+e-
[水素吸蔵合金]
 以下、本発明にかかる、アルカリ蓄電池の負極に用いる水素吸蔵合金について説明する。
 本発明の水素吸蔵合金は、主相がA型構造の結晶構造の微粒、具体的にはCeNi型、あるいはGdCo型であって、かつ下記一般式(1)で表される成分組成を有することが必要である。
                  記
 (La1-aSm1-bMgNiAlCr  ・・・(1)
 ここで、上記(1)式中の添字a、b、c、dおよびeは、
    0≦a≦0.35、
    0.15≦b≦0.30、
    0.02≦d≦0.10、
    0≦e≦0.10、
    3.20≦c+d+e≦3.50、
    0<a+e
の条件を満たす。
 この一般式(1)で表される合金は、アルカリ蓄電池の負極として用いたとき、電池に高い放電容量およびサイクル寿命特性を付与するので、アルカリ蓄電池の小型化・軽量化や高耐久性の達成に寄与する。
 以下、本発明の水素吸蔵合金の成分組成を限定する理由について説明する。
希土類元素:La1-aSm(ただし、0≦a≦0.35)
 本発明の水素吸蔵合金は、A型構造のA成分の元素として、希土類元素を含有する。希土類元素としては、水素吸蔵能力をもたらす基本成分として、LaおよびSmの2つの元素を原則として必須とする。また、LaとSmは原子半径が異なるため、この成分比率によって、水素平衡圧を制御することができ、電池に必要な平衡圧を任意に設定できる。その値はLaとSmの合計に対するSmの原子比率a値で、0超え0.35以下の範囲であることが原則として必要である。この範囲であれば、電池に適した水素平衡圧に設定しやすい。好ましくは、Smの原子比率a値が、0.05以上0.30以下の範囲である。一方、後述するように、Crを含有する場合には、水素吸蔵合金の耐久性が向上し、Smの原子比率a値が0でも特性の良好な水素吸蔵合金を得ることができるので、Smの原子比率a値を0以上0.35以下の範囲とすることができる。なお、この場合、好ましいa値は、0.02以上0.32以下の範囲であり、さらに好ましくは、0.05以上0.30以下の範囲である。
 Laが多い組成では放電容量が高くなり、他の元素と組み合わせたときに、さらに放電容量特性が向上する。また、希土類元素としてのPrやNd、Ceは積極的に活用しないが、不可避不純物レベルで含有していてもよい。
Mg:Mg(ただし、0.15≦b≦0.30)
 Mgは、A型構造のA成分の元素を構成する本発明では必須の元素であり、放電容量の向上およびサイクル寿命特性の向上に寄与する。A成分中のMgの原子比率を表すb値は、0.15以上0.30以下の範囲とする。b値が0.15未満では水素放出能力が低下するため、放電容量が低下してしまう。一方、0.30を超えると特に水素吸蔵放出に伴う割れが促進し、サイクル寿命特性すなわち耐久性が低下する。好ましくは、b値は0.16以上0.28以下の範囲である。
Ni:Ni
 Niは、A型構造のB成分の主たる元素である。その原子比率c値は後述する。
Al:Al(ただし、0.02≦d≦0.10)
 Alは、A型構造のB成分の元素として含有する元素であり、電池電圧に関係する水素平衡圧の調整に有効であるとともに、耐食性が向上でき、微粒の水素吸蔵合金の耐久性向上、すなわちサイクル寿命特性に効果がある。上記効果を確実に発現させるためには、A成分に対するAlの原子比率を表すd値は、0.02以上0.10以下の範囲とする。d値が、0.02未満では耐食性が十分ではなくなり、その結果サイクル寿命が十分でなくなる。一方、d値が、0.10を超えると放電容量が低下してしまう。好ましいd値は、0.04以上0.09以下の範囲である。なお、本発明の水素吸蔵合金を微小径の粉末とする場合、Al量は本発明の範囲の少ない側で十分であり、その分、放電容量を大きくすることができる。
Cr:Cr(ただし、0≦e≦0.10、0<a+e)
 Crは、A型構造のB成分の元素として含有する元素であり、電池電圧に関係する水素平衡圧の調整に有効であるとともに、Alとともに耐食性が向上できる。特に、微粒の水素吸蔵合金の耐久性向上、すなわちサイクル寿命特性に効果がある。上記効果を確実に発現させるためには、A成分に対するCrの原子比率を表すe値は、0以上0.10以下の範囲とする。上述したように、本発明の水素吸蔵合金では、SmまたはCrを必須とするので、その原子比率a値およびe値の両者が同時に0になることはない。即ち、0<a+eの関係を満足する。一方、e値が0.10を超えると過剰なCrによって水素の吸蔵放出に伴う割れが誘起され、結果として耐久性が低下して、サイクル寿命が十分ではなくなる。好ましいe値は、0.005以上0.09以下の範囲であり、さらに好ましくは0.01以上0.08以下の範囲である。なお、本発明の水素吸蔵合金を微小径の粉末とする場合、Cr量は本発明の好適な範囲の少ない側で十分であり、その分、放電容量を大きくすることができる。
A成分とB成分の比率:3.20≦c+d+e≦3.50
 A型構造のA成分に対するB成分(Ni、AlおよびCr)のモル比である化学量論比、すなわち、一般式で表されるc+d+eの値は、Crを含まない場合(e=0)、3.25以上3.50以下の範囲であることが好ましい。一方、Crを含有することにより、副相形成の抑制効果および耐食性向上による耐久性向上効果が得られるため、下限を3.20まで拡げることができる。3.20未満では、副相すなわちAB相が増えてしまい、特に放電容量が低下する。一方、3.50を超えるとAB相が増え、水素吸蔵放出に伴う割れが促進されるようになり、結果として耐久性、すなわちサイクル寿命が低下してしまう。好ましくは3.22以上3.47以下の範囲であり、さらに好ましくは3.25以上3.47以下である。
[水素吸蔵合金の製造方法]
 次に、本発明の水素吸蔵合金の製造方法について説明する。
 本発明の水素吸蔵合金は、希土類元素(Sm、Laなど)やマグネシウム(Mg)、ニッケル(Ni)、アルミニウム(Al)、クロム(Cr)などの金属元素を所定のモル比となるように秤量した後、これらの原料を、高周波誘導炉に設置したアルミナるつぼに投入してアルゴンガス等の不活性ガス雰囲気下で溶解した後、鋳型に鋳込んで水素吸蔵合金のインゴットを作製する。あるいは、ストリップキャスト法を用いて、200~500μm厚程度のフレーク状試料を直接作製してもよい。
 なお、本発明の水素吸蔵合金は、主成分として、融点が低く高蒸気圧のMgを含有しているため、全合金成分の原料を一度に溶解すると、Mgが蒸発してしまい、目標とする化学組成の合金を得ることが困難となる場合がある。そこで、本発明の水素吸蔵合金を溶解法により製造するに当たっては、まず、Mgを除いた他の合金成分を溶解した後、その溶湯内に金属MgおよびMg合金などのMg原料を投入するのが好ましい。また、この溶解工程は、アルゴンまたはヘリウム等の不活性ガス雰囲気下で行うのが望ましく、具体的には、アルゴンガスを80vol%以上含有した不活性ガスを0.05~0.2MPaに調整した減圧雰囲気下で行うのが好ましい。
 上記条件にて溶解した合金は、その後、水冷の鋳型に鋳造し、凝固させて水素吸蔵合金のインゴットとするのが好ましい。次いで、得られた各水素吸蔵合金のインゴットについて、DSC(示差走査熱量計)を用いて融点(T)を測定する。これは、本発明の水素吸蔵合金は、上記鋳造後のインゴットを、アルゴンまたはヘリウム等の不活性ガスまたは窒素ガスのいずれか、もしくは、それらの混合ガス雰囲気下で、900℃以上合金の融点(T)以下の温度で3~50時間保持する熱処理を施すことが好ましいからである。この熱処理により、水素吸蔵合金中におけるA7型の結晶構造をもつ主相の比率を50vol%以上とし、副相であるAB相、AB相、AB相を減少あるいは消滅させることができる。得られた水素吸蔵合金の主相の結晶構造がA7型構造であることは、Cu-Kα線を用いたX線回折測定により確認することができる。
 上記熱処理温度が900℃未満では、元素の拡散が不十分であるため、副相が残留してしまい、電池の放電容量の低下やサイクル特性の劣化を招いてしまうおそれがある。一方、熱処理温度が合金の融点Tより-20℃以上(T-20℃以上)となると、主相の結晶粒の粗大化や、Mg成分の蒸発が生じる結果、微粉化や化学組成の変化による水素吸蔵量の低下が起こってしまうおそれもある。したがって、熱処理温度は好ましくは900℃~(T-30℃)の範囲である。さらに好ましくは、900℃~(T-50℃)の範囲である。
 また、熱処理の保持時間が3時間以下では、安定的に主相の比率を50vol%以上とすることができず、また、主相の化学成分の均質化が不十分となるため、水素吸蔵・放出時の膨張・収縮が不均一となり、発生する歪みや欠陥量が増大してサイクル特性にも悪影響を与えるおそれがある。なお、上記熱処理の保持時間は4時間以上とするのが好ましく、主相の均質化や結晶性向上の観点からは、5時間以上とするのがより好ましい。ただし、保持時間が50時間を超えると、Mgの蒸発量が多くなって化学組成が変化し、その結果、AB型の副相が生成してくるおそれがある。さらに、製造コストの上昇や、蒸発したMg微粉末による粉塵爆発を招くおそれもあるため好ましくない。
 熱処理した合金は、乾式法または湿式法で微粉化する。乾式法で微粉化する場合は、例えばハンマーミルやACMパルベライザーなどを用いて粉砕する。一方、湿式法で微粉化する場合は、ビーズミルやアトライターなどを用いて粉砕する。特に微粉を得る場合には、湿式粉砕の方が安全に作製できるため好ましい。
 本発明の水素吸蔵合金を車載用途の電池に用いる場合、微粉化する合金粒子の粒径は、出力、サイクル寿命特性などの電池特性のバランス上、質量基準の50%通過率粒径D50で3μm以上20μm以下の範囲が好ましく、5μm以上15μm以下の範囲がより好ましい。さらに、合金粒子の粒径分布が広すぎると、上記特性が劣化するので、質量基準の10%通過率粒径D10は0.5μm以上9μm以下の範囲、90%通過率粒径D90は8μm以上50μm以下の範囲であるのが好ましく、D10は1μm以上7μm以下の範囲、D90は10μm以上40μm以下の範囲であるのがより好ましい。なお、上記合金粒子の粒径は、メディアの径、量、回転数などの条件を調整することにより制御することができる。
 ここで、上記した合金粒子の粒径分布D50、D10およびD90は、レーザー回折・散乱式粒度分布測定装置で測定した値を用いることとし、測定装置としては、例えば、マイクロトラック・ベル社製 MT3300EXII型などを用いることができる。
 なお、上記微粉化した合金粒子は、その後、KOHやNaOHなどのアルカリ水溶液を用いたアルカリ処理や、硝酸や硫酸、塩酸水溶液を用いた酸処理を行う表面処理を施してもよい。これらの表面処理を施すことで、合金粒子表面の少なくとも一部にNiからなる層(アルカリ処理層または酸処理層)を形成し、合金腐食の進行を抑制することができるとともに、耐久性を高めることができることから、電池のサイクル特性や広い温度範囲での放電特性を向上することができる。特に、酸処理の場合には、合金表面のダメージを少なくしてNiを析出させることが可能であることから、塩酸を用いて行うことが好ましい。また、湿式法で合金を粉砕する場合には、表面処理を同時に行うこともできる。
[アルカリ蓄電池]
 次に、本発明の水素吸蔵合金を用いたアルカリ蓄電池の構成例について、図1を参照しながら説明する。
 ここで、本発明のアルカリ蓄電池10は、少なくとも、正極1、負極2およびセパレータ3と、電解質を充填してそれらを収納する筐体4(電池ケース)から構成されている。以下、具体的に説明する。
<正極>
 正極1は、通常、正極活物質層および正極集電体から構成されている。正極活物質層は、少なくとも正極活物質を含有する。正極活物質層は、さらに、導電助剤、結着剤および増粘剤の少なくとも一つを含有していてもよい。正極活物質としては、上述した水素吸蔵合金(負極材料)と組み合わせた場合に、電池として機能する物質であれば特に限定されず、例えば、金属単体や合金、水酸化物等を挙げることができる。正極活物質としては、ニッケル酸化物を含み、主にオキシ水酸化ニッケルおよび/または水酸化ニッケルからなるものを用いることができる。正極活物質に占めるニッケル酸化物の量は、例えば、90~100質量%であり、95~100質量%であってもよい。ニッケル酸化物の平均粒径は、例えば、3~35μmの範囲から適宜選択でき、好ましくは3~25μmの範囲である。
 導電助剤は、電子伝導性を付与することができる材料であれば特に限定されず、例えば、Ni粉末等の金属粉末や酸化コバルト等の酸化物、グラファイト、カーボンナノチューブ等のカーボン材料を挙げることができる。導電助剤の添加量は、特に限定されないが、例えば、正極活物質100質量部に対して、0.1~50重量部の範囲が好ましく、0.1~30重量部の範囲がさらに好ましい。また、結着剤としては、例えば、スチレン・ブタジエンゴム(SBR)等の合成ゴムやカルボキシメチルセルロース(CMC)等のセルロース、ポリビニルアルコール(PVA)等のポリオール、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂等を挙げることができる。結着剤の量は、正極活物質100質量部に対して、例えば、7質量部以下であればよく、0.01~5質量部の範囲であっても、さらに0.05~2質量部の範囲であってもよい。
 さらに、増粘剤としては、例えば、カルボキシメチルセルロースおよびその変性体(Na塩などの塩も含む)や、メチルセルロースなどのセルロース誘導体、ポリビニルアルコールなどの酢酸ビニルユニットを有するポリマーのケン化物、ポリエチレンオキサイドなどのポリアルキレンオキサイドなどが挙げられる。これらの増粘剤は、一種単独でまたは二種以上を組み合わせて使用してもよい。増粘剤の量は、正極活物質100質量部に対して、例えば、5質量部以下であり、0.01~3質量部の範囲であってもよく、さらに0.05~1.5質量部の範囲であってもよい。
 また、正極集電体の素材としては、例えば、ステンレス鋼やアルミニウム、ニッケル、鉄、チタン等を挙げることができる。なお、正極集電体の形状としては、例えば、箔状やメッシュ状、多孔質状等があり、いずれの形状でもよい。
 正極は、正極活物質を含む正極合剤を支持体(正極集電体)に付着させることにより形成することができる。正極合剤は、通常、上記した正極活物質、導電助剤、結着剤とともにペースト化して作成する。分散媒としては、水、有機媒体、またはこれらから選択される二種以上の媒体を混合した混合媒体などが使用できる。必要に応じて、導電助剤、結着剤、増粘剤などを添加してもよいが、これら(特に、結着剤、増粘剤)は、必ずしも添加する必要はない。
 正極は、上記正極合剤ペーストを支持体の形状などに応じて支持体に塗布してもよく、支持体の空孔に充填させてもよい。正極は、支持体に塗布または充填し、乾燥して分散媒を除去し、得られた乾燥物を厚み方向に圧縮(例えば、一対のロール間で圧延)することにより形成できる。
<負極>
 負極2は、通常、負極活物質層および負極集電体から構成されている。負極活物質層は、負極活物質として、少なくとも上記に記載した本発明の水素吸蔵合金を含有する必要がある。負極活物質層は、さらに、導電助剤、結着剤および増粘剤の少なくとも一つを含有していてもよい。導電助剤は、電子伝導性を付与することができる材料であれば特に限定されず、例えば、Ni粉末等の金属粉末や酸化コバルト等の酸化物、グラファイト、カーボンナノチューブ等のカーボン材料を挙げることができる。導電助剤の添加量は、特に限定されないが、例えば、水素吸蔵合金粉末100重量部に対して、0.1~50重量部の範囲が好ましく、0.1~30重量部の範囲がさらに好ましい。また、結着剤としては、例えば、スチレン・ブタジエンゴム(SBR)等の合成ゴムやカルボキシメチルセルロース(CMC)等のセルロース、ポリビニルアルコール(PVA)等のポリオール、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂等を挙げることができる。結着剤の量は、水素吸蔵合金粉末100重量部に対して、例えば、7質量部以下であればよく、0.01~5質量部の範囲であっても、さらに0.05~2質量部の範囲であってもよい。
 負極集電体の素材としては、例えば、鋼やステンレス鋼、アルミニウム、ニッケル、鉄、チタン、カーボン等を挙げることができる。また、負極集電体の形状としては、例えば、箔状やメッシュ状、多孔質状等があり、いずれの形状でもよい。
 負極活物質層を負極集電体上に形成するには、ペースト化する。これには上記の負極活物質、導電助剤、結着剤、増粘剤などを含有させて作製する。
 このニッケル水素電池用負極は、本発明の水素吸蔵合金粉末を含む負極ペーストを所定形状に成形し、成形した負極ペーストを負極芯材(負極集電体)によって支持することによって作製するか、あるいは、上記水素吸蔵合金粉末を含む負極ペーストを調製し、これを負極集電材に塗布し、乾燥することによって作製される。
<電解質層>
 電解質層は、正極および負極の間に形成された、水系電解液を含有する層である。ここで、上記水系電解液とは、溶媒として主に水を用いた電解液のことをいい、該溶媒には水以外のものを含んでいてもよい。電解液の溶媒全体に対する水の割合は、50mol%以上であればよく、70mol%以上であっても、90mol%以上であっても、100mol%であってもよい。
 水系電解液は、アルカリ水溶液であることが好ましい。アルカリ水溶液の溶質としては、例えば、水酸化カリウム(KOH)や水酸化ナトリウム(NaOH)等を挙げることができ、これにLiOHが含まれていてもよい。水系電解液における溶質の濃度は、高いほど好ましく、例えば、3mol/L以上であればよく、5mol/L以上であることが好ましい。
 電解質層は、セパレータ3を有している。セパレータ3を設置することで、短絡を効果的に防止できる。セパレータ3としては、例えば、スルホン化処理したポリエチレンやポリプロピレン等の樹脂を含有する不織布や多孔膜を挙げることができる。
<筐体>
 筐体4は、上記した正極1、負極2およびセパレータ3を収納し、電解質を充填した電池ケース(セル容器)である。その素材は、電解液に対して腐食されることがなく安定であり、充電時に一時的に発生するガス(酸素または水素)および電解液を外部に漏らさず保持できるものであればよく、例えば、金属ケースや樹脂ケース等が一般に用いられている。また、正極1および負極2がセパレータ3を介して複数積層された積層体を有する積層型のアルカリ蓄電池10である場合、筐体4は当該積層体の周囲を枠状の樹脂でシールした構造であってもよい。
<電池>
 本発明の電池10は、通常、二次電池である。そのため、繰り返し充放電できるので、例えば車載用の電池として好適である。その際、自動車駆動用のモータに電力を供給する形態となるハイブリッド自動車用電池としての使い方だけに限定されず、アイドリングストップ機能を有する自動車でエンジンの再始動を行うためのスターターモータに電力を供給する形態として適用してもよい。なお、二次電池には、二次電池の一次電池的使用(充電後、一度の放電だけを目的とした使用)も含まれる。また、電池の形状としては、例えば、コイン型やラミネート型、円筒型、角型等があるが、いずれの形状でもよい。
<車両>
 本発明の車両は、上記水素吸蔵合金を負極に用いたアルカリ蓄電池を、モータへの電力供給源として搭載したものである。従来に比べ、各段に小型軽量化された本発明のアルカリ蓄電池を用いることにより、運動性能の向上や燃費の低減、航続距離の延長を図ることができる。
<実施例1>
 下記の表1に示した成分組成を有するNo.1~60の水素吸蔵合金を負極活物質とする評価用セルを、以下に説明する要領で作製し、その特性を評価する実験を行った。なお、表1に示したNo.1~14および35~57の合金は、本発明の条件に適合する合金例(発明例)、No.15~34および58~60は、本発明の条件を満たさない合金例(比較例)である。また、比較例のNo.15の合金は、セルの特性を評価するための基準合金に用いた。
(負極活物質の作製)
 表1に示したNo.1~60の合金の原料(Sm、La、Mg、Ni、AlおよびCrそれぞれ純度99%以上)を、高周波誘導加熱炉を用いてアルゴン雰囲気下(Ar:100vol%、0.1MPa)で溶解し、鋳造してインゴットとした。次いで、これらの合金インゴットを、アルゴン雰囲気下(Ar:90vol%、0.1MPa)で、各合金の融点T-50℃の温度(940~1130℃)で10時間保持する熱処理を施した後、粗粉砕し、湿式ビーズミルで、質量基準のD50で13μmになるまで微粉砕して、セル評価用の試料(負極活物質)とした。ただし、合金セル評価の基準として用いるNo.15のAB合金については、湿式粉砕で質量基準のD50で25μmの微粉末にして、セル評価用の試料(負極活物質)とした。なお、本発明の発明例のNo.1~14および35~57の合金は、熱処理後、粉砕した粉末をX線回折測定し、いずれも主相がA相になっていることを確認している。
(評価用セルの作製)
<負極>
 上記で調整した負極活物質と、導電助剤のNi粉末と、2種類のバインダー(スチレン・ブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC))とを、重量比で、負極活物質:Ni粉末:SBR:CMC=95.5:3.0:1.0:0.5となるように混合し、混練してペースト状の組成物とした。このペースト状の組成物を、パンチングメタルに塗布し、80℃で乾燥した後、15kNの荷重でロールプレスして、負極を得た。
<正極>
 水酸化ニッケル(Ni(OH)2)と、導電助剤の金属コバルト(Co)と、2種類のバインダー(スチレン・ブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC))とを、質量比で、Ni(OH)2:Co:SBR:CMC=95.5:2.0:2.0:0.5となるように混合し、混練してペースト状の組成物とした。このペースト状の組成物を、多孔質ニッケルに塗布し、80℃で乾燥した後、15kNの荷重でロールプレスして、正極を得た。
<電解液>
 電解液は、純水に、水酸化カリウム(KOH)を濃度が6mol/Lとなるようにして、さらにLiOHを0.1mol/Lを加え、混合したアルカリ水溶液を用いた。
<評価用セル>
 アクリル製の筐体内に、上記の正極を対極、上記の負極を作用極として配設した後、上記電解液を注入して、Hg/HgO電極を参照極としたセルを作製し、評価試験に供した。この際、作用極と対極の容量比は、作用極:対極=1:3となるように調整した。
(セルの特性評価)
 上記のようにして得た合金No.1~60にかかる評価用セルの評価試験は、以下の要領で行った。この際の評価温度はすべて25℃とした。
(1)電極の放電容量
 下記の手順で作用極の電極の放電容量の確認を行った。作用極の活物質あたり80mA/gの電流値で定電流充電を10時間行った後、作用極の活物質あたり40mA/gの電流値で定電流放電を行った。放電の終了条件は、作用極電位-0.5Vとした。上記の充放電を10回繰り返し、放電容量の最大値を、その作用極の電極の放電容量とした。なお、10回の充放電により作用極の放電容量が飽和し、安定したことを確認している。
 測定した放電容量は、表1に示したNo.15のAB合金の放電容量を基準容量とし、それに対する比率を下記(2)式で算出し、この比率が1.10より大きいものを、AB合金より放電容量が大きく、優れていると評価した。
 放電容量=(評価合金の放電容量)/(AB合金(No.15)の放電容量)  ・・・(2)
(2)サイクル寿命特性
 上記(1)電極の放電容量で作用極の電極の放電容量が確認されたセルを用いて、下記の手順で作用極のサイクル寿命特性を求めた。
 上記(1)電極の放電容量で確認された作用極の電極の放電容量を、1時間で充電または放電を完了させる際に必要な電流値を1Cとしたとき、作用極の充電率が20-80%の範囲において、C/2の電流値で定電流充電および定電流放電を行うことを1サイクルとし、これを100サイクル繰り返して行い、100サイクル後の放電容量を測定し、下記(3)式で容量維持率を求めた。
 容量維持率=(100サイクル目の放電容量)/(1サイクル目の放電容量)  ・・・(3)
 サイクル寿命特性の評価は、表1に示したNo.15のAB合金の100サイクル後の容量維持率を基準容量維持率とし、それに対する比率を下記(4)式で算出し、この比率が1.10より大きいものを、AB合金よりサイクル寿命特性が大きく、優れていると評価した。
 サイクル寿命特性=(測定合金の100サイクル後の容量維持率)/(AB合金(No.15)の100サイクル後の容量維持率)  ・・・(4)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1から明らかなように、発明例のNo.1~14および35~57の合金はNo.15のAB合金に対して、放電容量およびサイクル寿命特性の評価値がいずれも1.10以上と優れた特性を有していることがわかる。とくに、放電容量はすべて、1.20以上の評価値であり、優れていることがわかる。また、Crを含有する合金はサイクル寿命特性に優れている。これに対して、比較例のNo.15~34および58~60の合金は、いずれかの特性の評価値が1.05未満となっていることがわかる。
<実施例2>
(負極活物質の作製)
 (La0.80Sm0.200.80Mg0.20Ni3.31Al0.09の成分組成を有する水素吸蔵合金(試料No.B1~B7)を、一旦真空引きした後、高周波誘導加熱炉を用いてアルゴン雰囲気下(Ar:90vol%、0.15MPa)で溶解し、鋳造してインゴットとした後、このインゴットをアルゴン雰囲気下(Ar:100vol%、0.5MPa)で、1000℃(合金融点T-50℃)の温度に10時間保持する熱処理を施し、粗粉砕した後、表2に記載した粒径まで微粉砕して、セル評価用の試料(負極活物質)とした。また、(La0.90Sm0.100.76Mg0.24Ni3.29Al0.09Cr0.02の成分組成を有する水素吸蔵合金(試料No.B8~B14)を、一旦真空引きした後、高周波誘導加熱炉を用いてアルゴン雰囲気下(Ar:90vol%、0.15MPa)で溶解し、鋳造してインゴットとした後、このインゴットをアルゴン雰囲気下(Ar100vol%、0.5MPa)で、960℃(合金融点T-50℃)の温度に10時間保持する熱処理を施し、粗粉砕した後、表2に記載した粒径まで微粉砕して、セル評価用の試料(負極活物質)とした。なお、表2に示した試料No.B1~B4およびB8~11は、湿式ビーズミルを用いて、また、試料No.B5~B7およびB12~B14は、ACMパルベライザーを用いて微粉砕したものである。
 また、比較例の合金として、MmNi4.0Co0.4Mn0.3Al0.3の合金(試料No.BZ)を上記と同様にして溶解し、熱処理し、粗粉砕した後、ビーズミルで微粉砕して、質量基準でD50=11.2μmの微粉末とし、セル評価用の試料(負極活物質)とした。ここで、上記Mmは、質量%で、La:25%、Ce:50%、Pr:5%、Nd:20%からなる希土類元素の混合物である。
 なお、上記得られた試料について、X線回折を行った結果、試料No.B1~B14の合金は、主相の結晶構造がA型、比較例の試料No.BZの合金は、主相の結晶構造がAB型であることが確認された。
Figure JPOXMLDOC01-appb-T000004
(評価用セルの作製およびセルの特性評価)
 次いで、上記のようにして用意したセル評価用の試料を用いて、実施例1と同様にして評価用セルを作製し、実施例1と同様にして、セルの特性(放電容量、サイクル寿命特性)を評価し、それらの結果を、実施例1と同様、比較例である試料No.BZ合金の測定値を基準値(1.00)として相対評価し、その結果を表2中に併記した。
 表2から明らかなように、本発明に適合するNo.B1~B14の合金は、基準となる比較例のNo.BZ合金に対して、放電容量およびサイクル寿命特性の評価値がすべて1.10以上と優れていることがわかる。
<実施例3>
 (負極活物質の作製) 
 (La0.80Sm0.200.80Mg0.20Ni3.31Al0.07の成分組成を有する水素吸蔵合金(試料No.C1およびC2)を一旦真空引きした後、高周波誘導加熱炉を用いて、アルゴン雰囲気下(Ar:100vol%、0.1MPa)で溶解し、鋳造してインゴットとした後、このインゴットをアルゴン雰囲気下(Ar:90vol% 0.1MPa)にて1000℃(合金融点T-50℃)の温度に10時間保持する熱処理を施し、粗粉砕した後、湿式ビーズミルを用いて、質量基準のD50=13.4μmまで微粉砕した。また、(La0.95Sm0.050.75Mg0.25Ni3.31Al0.08Cr0.01の成分組成を有する水素吸蔵合金(試料No.C3およびC4)を、一旦真空引きした後、高周波誘導加熱炉を用いてアルゴン雰囲気下(Ar:90vol%、0.15MPa)で溶解し、鋳造してインゴットとした後、このインゴットをアルゴン雰囲気下(Ar100vol%、0.5MPa)で、930℃(合金融点T-20℃)の温度に10時間保持する熱処理を施し、粗粉砕した後、湿式ビーズミルを用いて、質量基準のD50=13.4μmまで微粉砕した。
 次いで、上記微粉砕した合金粉末に対して、下記2水準の表面処理を施し、セル評価用の試料(負極活物質)とした。
  ・アルカリ処理:NaOH:40mass%の75℃の水酸化ナトリウム水溶液中に、固液比1:2の条件で2時間浸漬(試料No.C1およびC3)
  ・酸処理:1mol/Lの30℃の塩酸水溶液中に、固液比1:1の条件で、2時間浸漬(試料No.C2およびC4)
(評価用セルの作製およびセルの特性評価)
 次いで、上記のようにして用意したセル評価用の試料を用いて、実施例1と同様にして評価用セルを作製し、実施例1と同様にして、セルの特性(放電容量、サイクル寿命特性)を評価し、それらの結果を、実施例2の比較例に用いた試料No.BZ合金(表面処理なし)の測定値を基準値(1.00)として相対評価し、その結果を表3に示した。
Figure JPOXMLDOC01-appb-T000005
 表3と表2を対比してわかるように、本発明の水素吸蔵合金は、表面処理を施すことにより、サイクル寿命特性の著しい改善が認められた。
<実施例4>
 (負極活物質の作製)
 (La0.80Sm0.200.80Mg0.20Ni3.31Al0.09の成分組成を有する水素吸蔵合金を、一旦真空引きした後、高周波誘導加熱炉を用いてアルゴン雰囲気下(Ar:90vol%、0.15MPa)で溶解し、鋳造してインゴットとした後、このインゴットをアルゴン雰囲気下(Ar:100vol%、0.5MPa)で、1000℃(合金融点T-50℃)の温度に10時間保持する熱処理を施し、粗粉砕した後、湿式ビーズミルを用いて、体積基準のD50=7.5、10.3、12.0、14.1および15.8μmまで微粉砕した。その後、質量飽和磁化がほぼ同じになるようにそれぞれ水酸化ナトリウムを40質量%で含有する水酸化ナトリウム水溶液を用いたアルカリ処理を行った。アルカリ処理後の質量飽和磁化はそれぞれ4.9、4.5、4.5、4.7および4.5emu/gであった。同様に、湿式ビーズミルを用いて、体積基準のD50=14.6、14.6および14.7μmまで微粉砕した。質量飽和磁化が3.4、4.2および5.0emu/gになるようにアルカリ処理温度を変更したアルカリ処理を行った。なお、本発明においては、アルカリ処理後であって充放電前の状態での質量飽和磁化を初期飽和磁化という。上記合金は、熱処理後、粉砕した粉末をX線回折測定し、いずれも主相がA相になっていることを確認している。
(評価用セルの作製)
<負極>
 上記で調整した負極活物質と、導電助剤の導電性カーボンブラック(ケッチェンブラック、KB)粉末と、2種類のバインダー(スチレン・ブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC))と、Yとを、重量比で、負極活物質:KB:SBR:CMC:Y=94.5:0.5:1.0:1.0:3.0となるように混合し、混練してペースト状の組成物とした。負極用集電体として厚さ65μmのニッケル箔を準備した。このペースト状の組成物を、ニッケル箔に塗布し、80℃で乾燥した後、15kNの荷重でロールプレスして、負極を得た。
<正極>
 正極活物質としてのナトリウムを含有するオキシ水酸化コバルト層で被覆された水酸化ニッケル(Ni(OH))と、導電助剤の金属コバルト(Co)と、2種類のバインダー(アクリル系樹脂エマルションおよびカルボキシメチルセルロース(CMC))と、Yとを、質量比で、正極活物質:Co:SBR:CMC:Y=96.5:1.0:1.0:1.0:0.5となるように混合し、混練してペースト状の組成物とした。正極用集電体として厚さ65μmのニッケル箔を準備した。このペースト状の組成物を、ニッケル箔に塗布し、80℃で乾燥した後、15kNの荷重でロールプレスして、正極を得た。
<電解液>
 電解液は、水酸化カリウム(KOH)の濃度が5.4mol/Lであり、水酸化ナトリウム(NaOH)の濃度が0.8mol/Lであり、水酸化リチウム(LiOH)の濃度が0.5mol/Lであり、三酸化タングステン(WO)の濃度が0.01mol/Lであるアルカリ水溶液を用いた。
<セパレータ>
 セパレータとして、スルホン化処理が施された厚さ138μmのポリオレフィン繊維製不織布を準備した。
<評価用セル>
 正極と負極とでセパレータを挟持し、極板群とした。樹脂製の筐体に、極板群を配置して、さらに上記電解液を注入し、筐体を密閉することで、セルを作製し、評価試験に供した。この際、作用極と対極の容量比は、作用極:対極=1:2となるように調整した。
(セルの特性評価)
 上記のようにして得た合金にかかる評価用セルの評価試験は、以下の要領で行った。
(1)放電リザーブ量
 上記評価用セルを用い、実車換算で50,000km走行および100,000km走行の充放電サイクルを55℃行った。その後、温度を25℃に変更して放電終了後の評価用セルの注液口を開放し、3Cの電流値で30分間、終了電圧を-1.99Vとして放電し、放電リザーブ量を測定した。なお、評価用セルの注液口を開放するのは、放電中に発生するガスを評価用セルの外に逃がすためである。
 ここで、放電リザーブ量とは、通常の充放電で使用する範囲で電池が完全放電後での負極の残存容量をいう。
 図2に、体積基準のD50=7.5、10.3、12.0、14.1および15.8μmの合金の充放電サイクル試験後の放電リザーブ量を、充放電サイクル試験前の放電リザーブ量との比でプロットした。
(2)水素吸蔵合金粉末の耐食性
 上記放電リザーブ量の測定と同様に実車50,000km走行および100,000km走行に相当する充放電サイクルを55℃で行い、その後、評価用セルを解体して、負極活物質としての合金粉末が負極集電体に付着したままの状態で回収し、3回の水洗の後、負極を80℃で乾燥し、負極集電体から負極活物質としての水素吸蔵合金を剥離し、採取する。得られた水素吸蔵合金粉末の質量飽和磁化(emu/g)を振動試料型磁力計VSM-5-15(東英工業製)を用いて測定した。測定にあたって、水素吸蔵合金粉末0.2gを秤量し、サンプルホルダーに充填して、10kOeの磁場をかけた。
 図3に体積基準のD50=7.5および14.1μmの合金のサイクル試験後の質量飽和磁化の変化を示し、図4に同一粒径で初期の質量飽和磁化の異なる3種の水素吸蔵合金をサイクル試験した後の質量飽和磁化の変化を示す。
(評価結果)
 放電リザーブ量が上昇すると、充電リザーブ量(電池が満充電後での充電可能な負極容量)が減少するので、充電末期にガスが生じる可能性が高くなるため、放電リザーブ量の上昇は小さい方が好ましい。放電リザーブ量の上昇が少ない方が、あらかじめ確保しておいた充電リザーブと放電リザーブとのバランスが取れ、いずれか一方がなくなることを抑制できる。図2の結果から、体積基準のD50=14.1μmの水素吸蔵合金の性能が優れていることがわかる。
 負極活性物質が腐食するとAlがアルカリ溶液中に溶出し、LaやMgは水酸化物形成するため、結果としてNi分率が上昇し磁化が上昇する。そのため、質量飽和磁化の値が大きいほど腐食が進んでいると考えられる。図3の結果から、体積基準のD50=14.1μmの水素吸蔵合金は、7.5μmの水素吸蔵合金より質量飽和磁化の増加量が少なく、腐食が抑えられていることがわかる。また、図4の結果から、初期質量飽和磁化の差は、充放電サイクル試験後も引き継がれていることがわかる。
<実施例5> 
(負極活物質の作製)
(La0.80Sm0.200.80Mg0.20Ni3.31Al0.09の成分組成を有する水素吸蔵合金を、一旦真空引きした後、高周波誘導加熱炉を用いてアルゴン雰囲気下(Ar:90vol%、0.15MPa)で溶解し、鋳造してインゴットとした後、このインゴットをアルゴン雰囲気下(Ar:100vol%、0.5MPa)で、1000℃(合金融点T-50℃)の温度に10時間保持する熱処理を施し、粗粉砕した後、湿式ビーズミルを用いて、微粉砕した。その後、質量飽和磁化がほぼ同じになるようにそれぞれ水酸化ナトリウムを40質量%で含有する水酸化ナトリウム水溶液を用いたアルカリ処理を行い、試料No.D1~D12の負極活物質を製造した。試料No.D1~D12の負極活物質の体積基準の平均粒子径D50、及びアルカリ処理後の質量飽和磁化(初期飽和磁化)を表4に示す。
 なお、上記合金は熱処理後、粉砕した粉末をX線回折測定し、いずれも主相がA相になっていることを確認している。
(評価用セルの作製)
<負極>
 上記で調整した負極活物質と、導電助剤の導電性カーボンブラック(ケッチェンブラック、KB)粉末と、2種類のバインダー(スチレン・ブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC))と、Yとを、重量比で、負極活物質:KB:SBR:CMC:Y=94.5:0.5:1.0:1.0:3.0となるように混合し、混練してペースト状の組成物とした。負極用集電体として厚さ65μmのニッケル箔を準備した。このペースト状の組成物を、ニッケル箔に塗布し、80℃で乾燥した後、15kNの荷重でロールプレスして、負極を得た。
<正極>
 正極活物質としてのナトリウムを含有するオキシ水酸化コバルト層で被覆された水酸化ニッケル(Ni(OH))と、導電助剤の金属コバルト(Co)と、2種類のバインダー(アクリル系樹脂エマルションおよびカルボキシメチルセルロース(CMC))と、Yとを、質量比で、正極活物質:Co:SBR:CMC:Y=96.5:1.0:1.0:1.0:0.5となるように混合し、混練してペースト状の組成物とした。正極用集電体として厚さ65μmのニッケル箔を準備した。このペースト状の組成物を、ニッケル箔に塗布し、80℃で乾燥した後、15kNの荷重でロールプレスして、正極を得た。
<電解液>
 電解液は、水酸化カリウム(KOH)の濃度が5.4mol/Lであり、水酸化ナトリウム(NaOH)の濃度が0.8mol/Lであり、水酸化リチウム(LiOH)の濃度が0.5mol/Lであり、三酸化タングステン(WO)の濃度が0.01mol/Lであるアルカリ水溶液を用いた。
<セパレータ>
 セパレータとして、スルホン化処理が施された厚さ138μmのポリオレフィン繊維製不織布を準備した。
<評価用セル>
 正極と負極とでセパレータを挟持し、極板群とした。樹脂製の筐体に、極板群を配置して、さらに上記電解液を注入し、筐体を密閉することでセルを作製し、評価試験に供した。この際、作用極と対極の容量比は、作用極:対極=1:2となるように調整した。
(セルの特性評価)
 上記のようにして得た合金にかかる評価用セルの評価試験は、以下の要領で行った。
放電抵抗
 25℃、24サイクルの充放電により活性化した後、SOC60%に調整し、25℃の温度下、1Cレートで5秒間放電させた。放電前後の電圧変化量及び放電時の電流値から、オームの法則に基づいて各ニッケル金属水素化物電池の放電抵抗値を算出した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000006
 表4の結果から、体積基準のD50の変化による放電抵抗への大きな影響は観測されなかった。
<実施例6>
(負極活物質の作製)
 (La0.80Sm0.200.80Mg0.20Ni3.31Al0.09の成分組成を有する水素吸蔵合金を、一旦真空引きした後、高周波誘導加熱炉を用いてアルゴン雰囲気下(Ar:90vol%、0.15MPa)で溶解し、鋳造してインゴットとした後、このインゴットをアルゴン雰囲気下(Ar:100vol%、0.5MPa)で、1000℃(合金融点T-50℃)の温度に10時間保持する熱処理を施し、粗粉砕した後、湿式ビーズミルを用いて微粉砕した。その後、それぞれ水酸化ナトリウムを40質量%で含有する水酸化ナトリウム水溶液を用いたアルカリ処理を行い、試料No.E1~E7の負極活物質を製造した。試料No.E1~E7の負極活物質の体積基準の平均粒子径D50、及びアルカリ処理後の質量飽和磁化(初期飽和磁化)を表5に示す。
 なお、上記合金は熱処理後、粉砕した粉末をX線回折測定し、いずれも主相がA相になっていることを確認している。
(評価用セルの作製)
<負極>
 上記で調整した負極活物質と、導電助剤の導電性カーボンブラック(ケッチェンブラック、KB)粉末と、2種類のバインダー(スチレン・ブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC))と、Yとを、重量比で、負極活物質:KB:SBR:CMC:Y=94.5:0.5:1.0:1.0:3.0となるように混合し、混練してペースト状の組成物とした。負極用集電体として厚さ65μmのニッケル箔を準備した。このペースト状の組成物を、ニッケル箔に塗布し、80℃で乾燥した後、15kNの荷重でロールプレスして、負極を得た。
<正極>
 正極活物質としてのナトリウムを含有するオキシ水酸化コバルト層で被覆された水酸化ニッケル(Ni(OH))と、導電助剤の金属コバルト(Co)と、2種類のバインダー(アクリル系樹脂エマルションおよびカルボキシメチルセルロース(CMC))と、Yとを、質量比で、正極活物質:Co:SBR:CMC:Y=96.5:1.0:1.0:1.0:0.5となるように混合し、混練してペースト状の組成物とした。正極用集電体として厚さ65μmのニッケル箔を準備した。このペースト状の組成物を、ニッケル箔に塗布し、80℃で乾燥した後、15kNの荷重でロールプレスして、正極を得た。
<電解液>
 電解液は、水酸化カリウム(KOH)の濃度が5.4mol/Lであり、水酸化ナトリウム(NaOH)の濃度が0.8mol/Lであり、水酸化リチウム(LiOH)の濃度が0.5mol/Lであり、三酸化タングステン(WO)の濃度が0.01mol/Lであるアルカリ水溶液を用いた。
<セパレータ>
 セパレータとして、スルホン化処理が施された厚さ138μmのポリオレフィン繊維製不織布を準備した。
<評価用セル>
 正極と負極とでセパレータを挟持し、極板群とした。樹脂製の筐体に、極板群を配置して、さらに上記電解液を注入し、筐体を密閉することでセルを作製し、評価試験に供した。この際、作用極と対極の容量比は、作用極:対極=1:2となるように調整した。
(セルの特性評価)
 上記のようにして得た合金にかかる評価用セルの評価試験は、以下の要領で行った。
<放電抵抗>
 25℃、24サイクルの充放電により活性化した後、SOC60%に調整し、25℃の温度下、1Cレートで5秒間放電させた。放電前後の電圧変化量及び放電時の電流値から、オームの法則に基づいて各ニッケル金属水素化物電池の放電抵抗値を算出した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000007
 表5より、試料No.E2~E6において放電抵抗の減少が観測された。図2、図3、表4、表5の結果から、本発明の水素吸蔵合金の体積基準の平均粒子径D50は10μm以上20μm以下が好ましく、さらには、12μm以上18μm以下が好ましく、13μm以上17μm以下が最も好ましい。また、本発明の水素吸蔵合金の初期質量飽和磁化は、2.5emu/g以上6.0emu/g以下が好ましく、さらには、3.0emu/g以上5.4emu/g以下が好ましく、3.2emu/g以上5.0emu/g以下が最も好ましい。
 本発明の水素吸蔵合金は、放電容量およびサイクル寿命特性のいずれも従来使用されていたAB型の水素吸蔵合金より優れているので、ハイブリッド自動車やアイドリングストップ車用途のアルカリ蓄電池の負極材として好適であるばかりでなく、電気自動車用のアルカリ蓄電池にも好適に用いることができる。
 1:正極
 2:負極
 3:セパレータ
 4:筐体(電池ケース)
 10:アルカリ蓄電池

Claims (9)

  1. アルカリ蓄電池に用いる微粒の水素吸蔵合金であって、
    該水素吸蔵合金はA型構造の結晶構造を主相とし、かつ、下記一般式(1)で表されることを特徴とするアルカリ蓄電池用水素吸蔵合金。
                       記
     (La1-aSm1-bMgNiAlCr  ・・・(1)
     ここで、上記(1)式中の添字a、b、c、dおよびeは、
        0≦a≦0.35、
        0.15≦b≦0.30、
        0.02≦d≦0.10、
        0≦e≦0.10、
        3.20≦c+d+e≦3.50、
        0<a+e
    の条件を満たす。
  2. 前記水素吸蔵合金の粒径は、質量基準のD50が3μm以上20μm以下であることを特徴とする請求項1に記載のアルカリ蓄電池用水素吸蔵合金。
  3. 前記水素吸蔵合金の粒径は、質量基準のD90が8μm以上50μm以下であることを特徴とする請求項1または2に記載のアルカリ蓄電池用水素吸蔵合金。
  4. 前記水素吸蔵合金の粒径は、体積基準のD50が10μm以上20μm以下であり、初期質量飽和磁化が2.5emu/g以上6.0emu/g以下である請求項1~3のいずれか1項に記載のアルカリ蓄電池用水素吸蔵合金。
  5. 前記水素吸蔵合金は、粒子表面の少なくとも一部にNiからなる層を有することを特徴とする請求項1~4のいずれか1項に記載のアルカリ蓄電池用水素吸蔵合金。
  6. 前記Niからなる層が、アルカリ処理層または酸処理層であることを特徴とする請求項5に記載のアルカリ蓄電池用水素吸蔵合金。
  7. 請求項1~6のいずれか1項に記載の水素吸蔵合金を負極に用いたアルカリ蓄電池であって、モータを駆動源とするハイブリッド自動車に搭載されて、該モータに電力を供給するものであることを特徴とするアルカリ蓄電池。
  8. 請求項1~6のいずれか1項に記載の水素吸蔵合金を負極に用いたアルカリ蓄電池であって、スターターモータによりエンジンを始動するアイドリングストップ機能を有する自動車に搭載されて、該スターターモータに電力を供給するものであることを特徴とするアルカリ蓄電池。
  9. モータへの電力供給源として、請求項1~6のいずれか1項に記載の水素吸蔵合金を負極に用いたアルカリ蓄電池を有することを特徴とする車両。
PCT/JP2020/008332 2019-03-26 2020-02-28 アルカリ蓄電池用水素吸蔵合金およびそれを負極に用いたアルカリ蓄電池ならびに車両 WO2020195543A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/442,927 US20220190327A1 (en) 2019-03-26 2020-02-28 Hydrogen storage alloy for alkaline storage battery, alkaline storage battery using the same as negative electrode, and vehicle
CN202080023705.9A CN113631302B (zh) 2019-03-26 2020-02-28 碱蓄电池用储氢合金、负极使用其的碱蓄电池及车辆
JP2021508864A JP7036397B2 (ja) 2019-03-26 2020-02-28 アルカリ蓄電池用水素吸蔵合金およびそれを負極に用いたアルカリ蓄電池ならびに車両
DE112020001442.8T DE112020001442T5 (de) 2019-03-26 2020-02-28 Wasserstoff-Speicherlegierung für alkalische Speicherbatterie, alkalische Speicherbatterie unter Verwendung dieser als negative Elektrode und Fahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019058381 2019-03-26
JP2019-058381 2019-03-26

Publications (1)

Publication Number Publication Date
WO2020195543A1 true WO2020195543A1 (ja) 2020-10-01

Family

ID=72609281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008332 WO2020195543A1 (ja) 2019-03-26 2020-02-28 アルカリ蓄電池用水素吸蔵合金およびそれを負極に用いたアルカリ蓄電池ならびに車両

Country Status (5)

Country Link
US (1) US20220190327A1 (ja)
JP (1) JP7036397B2 (ja)
CN (1) CN113631302B (ja)
DE (1) DE112020001442T5 (ja)
WO (1) WO2020195543A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023435A1 (en) * 1994-02-25 1995-08-31 Yuasa Corporation Hydrogen absorbing electrode and production method thereof
CN1974812A (zh) * 2006-11-22 2007-06-06 珠海金峰航电源科技有限公司 Ab3.5型负极储氢材料的制备方法及其制得的材料和用途
WO2009013848A1 (ja) * 2007-07-24 2009-01-29 Panasonic Corporation ニッケル水素電池用負極材料とその処理方法およびニッケル水素電池
JP2010212117A (ja) * 2009-03-11 2010-09-24 Sanyo Electric Co Ltd アルカリ蓄電池用負極及びアルカリ蓄電池
JP2011023337A (ja) * 2009-06-18 2011-02-03 Sanyo Electric Co Ltd アルカリ蓄電池用水素吸蔵合金およびその製造方法
JP2016069692A (ja) * 2014-09-30 2016-05-09 株式会社Gsユアサ 水素吸蔵合金、電極及びニッケル水素蓄電池
WO2016158302A1 (ja) * 2015-03-27 2016-10-06 Fdk株式会社 水素吸蔵合金、この水素吸蔵合金を用いた負極及びこの負極を用いたニッケル水素二次電池
CN108172807A (zh) * 2018-01-10 2018-06-15 包头中科轩达新能源科技有限公司 一种多元素单相a5b19型超晶格储氢合金电极材料及其制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323469A (ja) * 1997-06-17 1999-11-26 Toshiba Corp 水素吸蔵合金及び二次電池
JP4376988B2 (ja) 1998-12-18 2009-12-02 日本重化学工業株式会社 水素吸蔵合金負極
JP3998370B2 (ja) * 1999-06-14 2007-10-24 松下電器産業株式会社 水素吸蔵合金電極
WO2001048841A1 (en) 1999-12-27 2001-07-05 Kabushiki Kaisha Toshiba Alloy for hydrogen storage, secondary battery, hybrid car and electric vehicle
CN100359722C (zh) * 2003-01-20 2008-01-02 株式会社汤浅开发 密闭型镍氢蓄电池及其制造方法
JP4979178B2 (ja) 2003-07-04 2012-07-18 三洋電機株式会社 密閉型アルカリ蓄電池用水素吸蔵合金粉末及びそれを用いた密閉型アルカリ蓄電池
CN101501896B (zh) * 2006-08-09 2011-05-04 株式会社杰士汤浅国际 储氢合金、储氢合金电极、二次电池及储氢合金的制造方法
JP5171114B2 (ja) * 2007-05-30 2013-03-27 三洋電機株式会社 アルカリ蓄電池用水素吸蔵合金およびその製造方法ならびにアルカリ蓄電池
JP5173320B2 (ja) * 2007-08-29 2013-04-03 三洋電機株式会社 水素吸蔵合金電極およびこの水素吸蔵合金電極を用いたアルカリ蓄電池
JP5334455B2 (ja) 2007-08-30 2013-11-06 三洋電機株式会社 水素吸蔵合金及びニッケル・水素蓄電池
JP5241188B2 (ja) 2007-09-28 2013-07-17 三洋電機株式会社 アルカリ蓄電池システム
JP5196953B2 (ja) 2007-10-31 2013-05-15 三洋電機株式会社 水素吸蔵合金、該合金を用いた水素吸蔵合金電極及びニッケル水素二次電池
JP5512080B2 (ja) 2007-12-05 2014-06-04 三洋電機株式会社 アルカリ蓄電池
JP5465478B2 (ja) * 2008-09-30 2014-04-09 三洋電機株式会社 アルカリ蓄電池用負極、アルカリ蓄電池及びアルカリ蓄電池の製造方法
JP5642577B2 (ja) * 2010-03-18 2014-12-17 三洋電機株式会社 アルカリ蓄電池およびアルカリ蓄電池システム
JPWO2012073418A1 (ja) * 2010-12-03 2014-05-19 パナソニック株式会社 水素吸蔵合金粒子、電極用合金粉末およびアルカリ蓄電池
JP5975307B2 (ja) * 2012-11-28 2016-08-23 パナソニックIpマネジメント株式会社 ニッケル水素蓄電池および組電池
JP6120362B2 (ja) * 2013-04-11 2017-04-26 Fdk株式会社 ニッケル水素二次電池用の負極及びこの負極を用いたニッケル水素二次電池
JP6282007B2 (ja) * 2014-03-31 2018-02-21 Fdk株式会社 ニッケル水素二次電池
CN105274395B (zh) * 2014-07-24 2017-04-19 北京有色金属研究总院 一种La‑Mg‑Ni型储氢材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023435A1 (en) * 1994-02-25 1995-08-31 Yuasa Corporation Hydrogen absorbing electrode and production method thereof
CN1974812A (zh) * 2006-11-22 2007-06-06 珠海金峰航电源科技有限公司 Ab3.5型负极储氢材料的制备方法及其制得的材料和用途
WO2009013848A1 (ja) * 2007-07-24 2009-01-29 Panasonic Corporation ニッケル水素電池用負極材料とその処理方法およびニッケル水素電池
JP2010212117A (ja) * 2009-03-11 2010-09-24 Sanyo Electric Co Ltd アルカリ蓄電池用負極及びアルカリ蓄電池
JP2011023337A (ja) * 2009-06-18 2011-02-03 Sanyo Electric Co Ltd アルカリ蓄電池用水素吸蔵合金およびその製造方法
JP2016069692A (ja) * 2014-09-30 2016-05-09 株式会社Gsユアサ 水素吸蔵合金、電極及びニッケル水素蓄電池
WO2016158302A1 (ja) * 2015-03-27 2016-10-06 Fdk株式会社 水素吸蔵合金、この水素吸蔵合金を用いた負極及びこの負極を用いたニッケル水素二次電池
CN108172807A (zh) * 2018-01-10 2018-06-15 包头中科轩达新能源科技有限公司 一种多元素单相a5b19型超晶格储氢合金电极材料及其制备方法

Also Published As

Publication number Publication date
CN113631302B (zh) 2023-08-29
JPWO2020195543A1 (ja) 2020-10-01
JP7036397B2 (ja) 2022-03-15
DE112020001442T5 (de) 2021-12-09
US20220190327A1 (en) 2022-06-16
CN113631302A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
JP5642577B2 (ja) アルカリ蓄電池およびアルカリ蓄電池システム
JP5425433B2 (ja) 水素吸蔵合金および水素吸蔵合金を負極活物質とするアルカリ蓄電池
JP5718006B2 (ja) 水素吸蔵合金およびニッケル水素二次電池
JP2020205192A (ja) 表面処理を必要としないニッケル水素二次電池負極活物質及びニッケル水素二次電池
JP3201247B2 (ja) 密閉型アルカリ蓄電池
WO2012073418A1 (ja) 水素吸蔵合金粒子、電極用合金粉末およびアルカリ蓄電池
JP6736065B2 (ja) アルカリ蓄電池用水素吸蔵合金およびそれを用いたアルカリ蓄電池
JP4642967B2 (ja) 水素吸蔵合金電極の製造方法、アルカリ二次電池の製造方法、ハイブリッドカー及び電気自動車
WO2020195542A1 (ja) アルカリ蓄電池用水素吸蔵合金およびそれを負極に用いたアルカリ蓄電池ならびに車両
JP7461655B2 (ja) アルカリ蓄電池用水素吸蔵合金
JP5001809B2 (ja) 水素吸蔵合金
WO2020195543A1 (ja) アルカリ蓄電池用水素吸蔵合金およびそれを負極に用いたアルカリ蓄電池ならびに車両
JP5342669B2 (ja) 水素吸蔵合金
JP5703468B2 (ja) 水素吸蔵合金、水素吸蔵合金電極及びニッケル水素二次電池
WO2001094653A1 (en) Hydrogen-occluding alloy and process for producing the same
JP2001291511A (ja) 水素吸蔵合金電極、二次電池、ハイブリッドカー及び電気自動車
JP2005093297A (ja) 水素吸蔵合金粉末とその製造方法、水素吸蔵合金電極およびそれを用いたニッケル水素蓄電池。
JP7251864B2 (ja) アルカリ蓄電池用水素吸蔵合金
JP7451000B2 (ja) アルカリ蓄電池用水素吸蔵合金
JP3738156B2 (ja) 水素吸蔵合金電極の製造方法
JP2011102433A (ja) 水素吸蔵合金粉末とその製造方法、水素吸蔵合金電極およびそれを用いたニッケル水素蓄電池。
JP5617094B2 (ja) 水素吸蔵合金
JP2022052728A (ja) アルカリ蓄電池用水素吸蔵合金
JP3198896B2 (ja) ニッケル・水素蓄電池
CN117940595A (zh) 碱蓄电池用氢吸留合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508864

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20779818

Country of ref document: EP

Kind code of ref document: A1