WO2020175352A1 - 高濃度スルホン酸錫水溶液及びその製造方法 - Google Patents

高濃度スルホン酸錫水溶液及びその製造方法 Download PDF

Info

Publication number
WO2020175352A1
WO2020175352A1 PCT/JP2020/006991 JP2020006991W WO2020175352A1 WO 2020175352 A1 WO2020175352 A1 WO 2020175352A1 JP 2020006991 W JP2020006991 W JP 2020006991W WO 2020175352 A1 WO2020175352 A1 WO 2020175352A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
tin
aqueous solution
less
methanesulfonic acid
Prior art date
Application number
PCT/JP2020/006991
Other languages
English (en)
French (fr)
Inventor
康司 巽
恭平 峯尾
広隆 平野
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020018835A external-priority patent/JP6773241B2/ja
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US17/433,909 priority Critical patent/US11525187B2/en
Priority to CN202080005424.0A priority patent/CN112789370B/zh
Priority to EP20763523.6A priority patent/EP3916132A4/en
Priority to KR1020217008998A priority patent/KR102343152B1/ko
Publication of WO2020175352A1 publication Critical patent/WO2020175352A1/ja
Priority to US17/853,078 priority patent/US11692277B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin

Definitions

  • the present invention relates to a high-concentration tin sulfonate aqueous solution used for building or replenishing an electrolytic tin plating solution, and a method for producing the same.
  • the present application includes Japanese Patent Application No. 201 9-035 186 filed in Japan on February 28, 2010 and Japanese Patent Application No. 2020 — 01 8835 filed in Japan on February 6, 2020. Claim priority based on the above, and the contents are incorporated here. Background technology
  • tin methanesulfonate aqueous solution includes (1) a method of neutralizing stannous oxide powder and methanesulfonic acid (hereinafter, referred to as a neutralization method). (2) A method of electrolytically dissolving tin metal in methanesulfonic acid (hereinafter referred to as electrolysis method) is known.
  • electrolysis method A method of electrolytically dissolving tin metal in methanesulfonic acid (hereinafter referred to as electrolysis method) is known.
  • electrolysis method A method of electrolytically dissolving tin metal in methanesulfonic acid
  • Patent Document 1 Japanese Patent Laid-Open No. 7_41999
  • Oxygen-containing gas is blown into the bath using a methane sulfonic acid solution with a concentration of !_ to chemically dissolve metallic tin. Therefore, the dissolved solution of metal tin with this methanesulfonic acid solution has a dissolved oxygen concentration of 8 or more, which promotes the oxidation of divalent tin ion (S n 2 +) and leads to tetravalent tin ion (3 +). The concentration became higher, and the liquid might be suspended due to the formation of tin dioxide (s n O 2 ).
  • liquid removal when performing the above-mentioned pre-and-feed operation, when the tin concentration in the tin methanesulfonate aqueous solution is low, or when the free methanesulfonic acid concentration is high, the amount of liquid to be withdrawn (hereinafter referred to as liquid removal). There is also a problem that the process cost increases due to the increase in the amount. Therefore, an aqueous solution of tin methanesulfonate having a high tin concentration and a low concentration of free methanesulfonic acid has been desired for the purpose of building or replenishing the electrolytic tin plating solution.
  • An object of the present invention is a high-concentration sulfonic acid that is transparent, does not deteriorate plating performance, requires a small amount of replenishing solution in the case of replenishing solution, and does not precipitate crystals even during storage.
  • Another object of the present invention is to provide a method for producing such a high concentration tin sulfonate aqueous solution.
  • the present inventor has conducted extensive studies to improve the above-mentioned neutralization method (1), and as a result, the suspension of the liquid is caused by the increase in the concentration of tetravalent tin ions (S n 4 +). Therefore, by suppressing the heat of neutralization that occurs when stannous oxide reacts with methanesulfonic acid, the oxidation of divalent tin ion (S n 2 +) is suppressed and tetravalent tin ion is suppressed.
  • the present invention has been achieved by focusing on the fact that the (S n 4 +) concentration decreases and the liquid does not suspend.
  • the first aspect of the present invention is that the divalent tin ion (S n 2+ ) concentration is 360 9 /!_ ⁇ 4
  • a second aspect of the present invention is the invention based on the first aspect, wherein the high-concentration tin sulfonate aqueous solution contains impurities of plural kinds of metals, and a total content of the plural kinds of metals.
  • Is 3 in metal conversion It is a high-concentration tin sulfonate aqueous solution that is 9/!_ or less.
  • a third aspect of the present invention is the invention based on the second aspect, wherein the plurality of types of metals are sodium, potassium, lead, iron, nickel, copper, zinc, arsenic, antimony, and aluminum.
  • a fourth aspect of the present invention is an invention based on the second aspect, the high concentration phone that the content of each of the plurality of metals is 1 0 9 / 1_ less in terms of metal It is a tin acid aqueous solution.
  • a fifth aspect of the present invention is the invention based on any one of the first to fourth aspects, wherein the high-concentration tin sulfonate aqueous solution contains chloride ions, and It is a high-concentration tin sulfonate aqueous solution with a content of 109/!_ or less.
  • a sixth aspect of the present invention is to neutralize stannous oxide powder and methanesulfonic acid. ⁇ 0 2020/175352 4 ⁇ (: 171? 2020 /006991
  • a seventh aspect of the present invention is the invention based on the sixth aspect, wherein nitrogen gas is bubbled through the circulating aqueous methanesulfonic acid solution and/or degassing is performed by a hollow fiber membrane degassing module. This is a method of producing a high-concentration tin sulfonate aqueous solution for treatment.
  • An eighth aspect of the present invention is the invention based on the sixth or seventh aspect, wherein the stannous oxide powder contains impurities of a plurality of kinds of metals, and a total of the plurality of kinds of metals is included. Content is metal equivalent
  • a ninth aspect of the present invention is the invention based on the eighth aspect, wherein the plurality of kinds of metals are sodium, potassium, lead, iron, nickel, copper, zinc, arsenic, antimony, and aluminum. It is a method for producing a high-concentration tin sulfonate aqueous solution containing silver, bismuth, magnesium, calcium, titanium, chromium, manganese, cobalt, indium, tungsten, thallium, and cadmium.
  • a tenth aspect of the present invention is the invention based on the eighth aspect, wherein the content of each of the plurality of kinds of metals is 10 9 /1_ or less in terms of metal. It is a method for producing a tin sulfonate aqueous solution.
  • a eleventh aspect of the present invention is an invention based on any of the sixth to tenth aspects, in which the stannous oxide powder contains chloride ions, The content of ions
  • the highly concentrated tin sulfonate aqueous solution according to the first aspect of the present invention is a divalent tin ion.
  • the high-concentration tin sulfonate aqueous solution according to the second aspect of the present invention even when the high-concentration tin sulfonate aqueous solution contains impurities of plural kinds of metals, the total content thereof is converted into metal.
  • the high density sulfonic tin aqueous fourth aspect 1 the content of each of a plurality of types of metals in terms of metal ⁇ 9/1 - less and less, both the advantage not to lower the plating performance.
  • the total content of these metals is calculated in terms of metal. Since it is slightly less than 3 09 / !_, it does not deteriorate plating performance, and when this aqueous solution is used for semiconductor applications, it is preferable in terms of quality of semiconductor products.
  • the content is not more than 100 19 / 1_. Since it is small, the plating performance is not deteriorated, and when this aqueous solution is used for semiconductors, it is preferable for improving the quality of semiconductor products.
  • methanesulfonic acid is diluted with pure water to obtain a methanesulfone having a concentration of 60% by mass to 90% by mass. ⁇ 0 2020/175 352 6 ⁇ (: 171? 2020 /006991
  • stannous oxide powder adjusted to a temperature of 10 °C or less was added while circulating the aqueous solution at a temperature of 10 °C or less, and the aqueous solution of methane sulfonic acid was added at a low temperature. Since the stannous oxide undergoes a neutralization reaction, the heat of neutralization can be suppressed. This suppresses the oxidation of divalent tin ions (3 n 2 +), lowers the concentration of tetravalent tin ions (S n 4 +), and suppresses the production of tin dioxide (s n ⁇ 2 ). The liquid does not suspend.
  • the stannous oxide has a total impurity amount of a plurality of kinds of metals of 3 09 / 1_ or less, which is very small.
  • the content of each of a plurality of kinds of metals is 10 9 /
  • chloride ions are
  • the high-concentration tin sulfonate aqueous solution of this embodiment has a divalent tin ion (3
  • the high-concentration tin sulfonate aqueous solution contains impurities of plural kinds of metals, the total content of plural kinds of metals is preferably not more than 300! 9/!_ in terms of metal. More preferably, the content of each of the plurality of kinds of metal is 10 in terms of metal.
  • the chloride ion content is preferably 100! 9 /1_ or less.
  • Divalent tin ion If the concentration is less than 3609/1_, there is a problem that the amount of liquid drained increases when the above-mentioned bleeding and feeding work is performed after the bath of electrolytic tin plating solution is prepared with this aqueous solution. If it exceeds 420 9 /1_, the stannous oxide powder will not dissolve and will precipitate during storage. Divalent tin ions (s n 2 +) concentration in the preferred range is 380 9 / 1_ ⁇ 420 9 / 1_, have further preferred range is 4009 / 1_ ⁇ 4209 / 1_.
  • tetravalent tin ions of the aqueous solution is (3 ⁇ 4 +) concentration is above 1 0 9 / 1_, aqueous solution is clouded, the plating solution and that bath preparation in such aqueous solutions, like this Plating with a plating solution that uses an aqueous solution as a replenisher reduces the plating performance.
  • the preferred range of the tetravalent tin ion (S n 4 +) concentration is 89 /!_ or less, and the more preferred range is 59/1- or less.
  • the free methanesulfonic acid concentration exceeds 40 9 / l and after the bath preparation of electrolytic tin plating solution in the aqueous solution, in the case of performing the bleed and feed the work described above, it is often drained weight In addition to the defects, the solubility of tin methanesulfonate decreases, so there is a problem that tin methanesulfonate precipitates out during storage of this aqueous solution (especially at a low temperature of 10 ° C or less). ..
  • the preferred range of free methanesulfonic acid concentration is 09 A more preferable range is 0 9 /1-to 20 9 /1_. ⁇ 0 2020/175 352 8 ⁇ (: 17 2020 /006991
  • a plurality of types of metals constituting the metal impurities are sodium, potassium, lead, iron, nickel, copper, zinc, arsenic, antimony, aluminum, silver, bismuth, magnesium, calcium, titanium, chromium, manganese, and copa '. Lt, indium, tungsten, thallium and cadmium. If the plating solution contains a large amount of such a metal, the plating performance may deteriorate. In high concentrations sulfonic tin solution in this embodiment, it is preferable that the total content of the plurality of types of metals such as described above is 3 0_Rei_1 9 /! _ Less, 1 0_Rei_1 9 / 1_ Is more preferable.
  • the plating performance is Is more difficult to decrease.
  • the content of each of the plurality of kinds of metals is, as metal conversion, as described above, and more preferably More preferably Is.
  • the high-concentration tin sulfonate aqueous solution of the present embodiment has a divalent tin ion (3
  • the high-concentration tin sulfonate aqueous solution of the present embodiment is a step of diluting methane sulfonic acid with pure water to obtain a methane sulfonic acid aqueous solution having a concentration of 60% by mass to 90% by mass. 0 ° and step circulating in the state where ⁇ was maintained at a temperature below the methanesulfonic acid solution circulating, 1 0 ° ⁇ following the addition the adjusted oxidizing stannous powder to a temperature above the tin (II) oxide A step of dissolving the powder.
  • the concentration of methanesulfonic acid in the aqueous solution of methanesulfonic acid is set to 60% by mass to 90% by mass because, outside this concentration range, when the final aqueous solution of tin methanesulfonate is divalent, tin ions (S n 2 +) concentration does not become 3 6 0 9 / 1_ ⁇ 4 2 0 9 / 1_.
  • the concentration of methanesulfonic acid in the methanesulfonic acid aqueous solution is adjusted by diluting commercially available methanesulfonic acid with pure water. As the pure water, ion-exchanged water, distilled water or the like can be used.
  • the preferred concentration is 60% by mass to 80% by mass, and the more preferred concentration is 60% by mass to 70% by mass.
  • aqueous solution of methanesulfonic acid in neutralization tank with a cooling device, 1 ⁇ ° ⁇ a temperature below the cooling device, preferably circulates while keeping at 0 ° ⁇ lower.
  • a cooling device for example, a chiller can be used.
  • stannous oxide is preferably a powder.
  • the stannous oxide is adjusted to a temperature of 10° or less. Since stannous oxide is added at 10° or less, it is possible to suppress the heat of neutralization that occurs during the neutralization reaction of the aqueous solution of methanesulfonic acid and stannous oxide. This suppresses the oxidation of divalent tin ion (S n 2 +), lowers the concentration of tetravalent tin ion (S n 4 +), and suppresses the formation of tin dioxide (S n 0 2 ). Therefore, the liquid will not be suspended.
  • liquid temperature of the methanesulfonic acid aqueous solution it is preferable to maintain the liquid temperature of the methanesulfonic acid aqueous solution at a temperature of 10 ° C or less even during the dissolution.
  • the total content of the plurality of kinds of metals is preferably 30 or less, more preferably 10 or less in terms of metal. Further, the content of each of the plurality of kinds of metals is more preferably 10 or less, and further preferably 5 or less in terms of metal. Further, it is preferable to use stannous oxide having a chloride ion of 100 or less, and it is more preferable to use stannous oxide having a chloride ion of 5 or less. Stannous oxide having such a quality can be obtained, for example, by the method described in Japanese Patent Publication No. 1-310104.
  • stannous hydroxide is produced by a neutralization reaction between an acidic aqueous solution of stannous salt and an alkaline aqueous solution and dehydrated to produce stannous oxide.
  • ammonia water and ammonium bicarbonate are simultaneously used as an alkaline aqueous solution, and an acidic aqueous solution of stannous salt is neutralized at a temperature of 1 to 16.0 to 10.0 and a liquid temperature of 50 ° ⁇ or less.
  • stannous hydroxide precipitates, a dehydration step of aging the formed stannous hydroxide precipitates to dehydrate them to form stannous oxide, and the stannous oxide Stannous oxide is produced by the recovery step of filtering, washing with water and drying.
  • the amount of metal impurities in stannous oxide is sodium, potassium, lead, iron, nickel, copper, zinc, arsenic, antimony, aluminum, silver, bismuth, magnesium, calcium, which are contained in stannous oxide. It can be determined by measuring the amounts of titanium, chromium, manganese, cobalt, indium, tungsten, thallium, and cadmium by inductively coupled plasma emission spectroscopy (______3).
  • the amount of chloride ions in stannous oxide is the amount measured by ion chromatography after dissolving stannous oxide in a suitable solvent containing no chloride ions.
  • the method for producing a high-concentration tin sulfonate aqueous solution of the present embodiment it is preferable to bubbling nitrogen gas into the circulating methane sulfonic acid aqueous solution and/or to perform degassing treatment with a hollow fiber membrane degassing module. ..
  • the dissolved oxygen concentration in the methane sulfonic acid aqueous solution is reduced, the oxidation of divalent tin ion (S n 2 +) is further suppressed, and the tetravalent tin ion (S n 4 +) concentration is further reduced.
  • the liquid does not become more suspended.
  • the dissolved oxygen concentration in the methanesulfonic acid aqueous solution is 5 ⁇ 0 2020/175 352 1 1 ⁇ (: 171? 2020 /006991
  • An aqueous solution of tin methanesulfonate was produced by the neutralization method.
  • a neutralization tank equipped with a cooling device (chiller) and connected with a nitrogen pulsing pipe and a hollow fiber membrane degassing module was prepared.
  • a commercially available methanesulfonic acid aqueous solution having a concentration adjusted to 90 mass% was obtained by diluting commercially available methanesulfonic acid with pure water.
  • the concentration-adjusted methanesulfonic acid aqueous solution 1!_ was charged into the neutralization tank and circulated in the neutralization tank while the temperature was kept at 10°C by a chiller.
  • Nitrogen gas was bubbled through the circulating liquid, and degassing was performed with a hollow fiber membrane degassing module to adjust the dissolved oxygen concentration to 1 or less, and the liquid temperature was controlled to 10° with a chiller.
  • Stannous oxide powder with a total impurity content of 8 and a chloride ion content of 8 adjusted to 10° ⁇ was gradually added to it, and the solution was stirred uniformly to produce methane gas.
  • the aqueous rufonic acid solution and the stannous oxide powder were neutralized. 5 9 / 1_ target methanesulfonic acid concentration as the free acid in the solution,
  • stannous oxide powder and pure water were added. Specifically, stannous oxide powder at 100 °C for both the neutralization reaction and the concentration adjustment was added at 9089, and pure water was used for dilution and concentration adjustment (5 °O). 8 5 7 9 were added together. This produced an aqueous solution of tin methanesulfonate.
  • the temperature of the aqueous solution of methanesulfonic acid is circulated in the neutralization tank while holding the ⁇ ° ⁇ by chiller, using stannous oxide powder which is adjusted to ⁇ ° ⁇ , methane as a free acid in the solution Target sulfonic acid concentration of 15.9/!-,
  • the methanesulfonic acid aqueous solution was circulated in a neutralization tank while the temperature was kept at 15° with a chiller, and stannous oxide powder adjusted to _20 ° was used to remove methane as free acid in the liquid.
  • Stannous oxide powder and pure water were added to adjust the sulfonic acid concentration to the target of 25 g/L and the 3 n 2+ concentration to the target of 3609/1_.
  • pure water for dilution and concentration adjustment (5 ° ⁇ ) 1 1 039 Turned on.
  • the tin methanesulfonate aqueous solution was produced by the neutralization method in the same manner as in Example 1.
  • the methanesulfonic acid aqueous solution was circulated in a neutralization tank while the temperature was kept at 15° with a chiller, and stannous oxide powder adjusted to _20 ° was used to remove methane as free acid in the liquid.
  • Stannous oxide powder and pure water were added to achieve the target sulfonic acid concentration of 40 g/L and the target 3 n 2+ concentration of 4009/1_.
  • stannous oxide powder at 120° ⁇ , for both neutralization reaction and concentration adjustment is fed in 86 119, and pure water for dilution and concentration adjustment (5 ° ⁇ ) is added. A total of 81 69 were put in. Except for this, the tin methanesulfonate aqueous solution was produced by the neutralization method in the same manner as in Example 1.
  • aqueous solution of tin methanesulfonate was produced by the neutralization method in the same manner as in Example 2 except that the dissolved oxygen concentration was set to more than 3 and 5 or less without deaeration. However, the input amount of pure water was 9019 for both dilution and concentration adjustment (5 ° ⁇ ).
  • a tin methanesulfonate aqueous solution was produced by the neutralization method in the same manner as in Example 2 except that bubbling was not performed with nitrogen gas and the dissolved oxygen concentration was more than 1 and not more than 30! ⁇ 0 2020/175 352 13 ⁇ (: 171? 2020 /006991
  • Tin methane sulfonate was prepared by the neutralization method in the same manner as in Example 2 except that the bubbling with nitrogen gas was not performed, the degassing treatment was not performed, and the dissolved oxygen concentration was more than 50! and not more than 80!.
  • An aqueous solution was prepared. However, the input amount of pure water was 910 for both dilution and concentration adjustment (5 ° ⁇ ).
  • a tin methanesulfonate aqueous solution was produced by the neutralization method in the same manner as in Example 6 except that stannous oxide powder having a total content of impurities of plural kinds of metals of 8 and a chloride ion amount of 20 was used. ..
  • a tin methanesulfonate aqueous solution was produced by the neutralization method in the same manner as in Example 6 except that stannous oxide powder having a total content of impurities of plural kinds of metals of 32 and a chloride ion amount of 8 was used. ..
  • the concentration of the aqueous methanesulfonic acid solution was adjusted to 70% by mass, and the concentration of methanesulfonic acid as free acid in the liquid was set at the target value of 109/1-
  • a tin methanesulfonate aqueous solution was produced by the neutralization method in the same manner as in Example 2 except that the ratio was changed to 9/1_.
  • the input amount of stannous oxide at 0 ° was 659
  • the input amount of pure water was 3789 for both dilution and concentration adjustment (5 ° ).
  • the concentration of the aqueous methanesulfonic acid solution was adjusted to 60% by mass, and the target concentration of methanesulfonic acid as free acid in the liquid was 15 9 /! -,
  • a tin methanesulfonate aqueous solution was produced by the neutralization method in the same manner as in Example 2 except that the ratio was changed to 9/1_.
  • the input amount of stannous oxide at 0 ° was 5 3 8 9 and the input amount of pure water was 1 1 6 9 for both dilution and concentration adjustment (5 ° 0).
  • a tin methanesulfonate aqueous solution was produced by an electrolytic method.
  • an anion exchange membrane was installed between the electrodes.
  • the methanesulfonic acid solution 1 !_ having a concentration adjusted to 90% by mass was charged into the electrolytic cell in the same manner as in Example 1, and electrolysis was performed while the temperature was kept at 10 ° .
  • 382 8 11 electrolysis is continued and pure water is added.
  • pure water was added.
  • the amount of pure water input was 18009 for both dilution and concentration adjustment (5 ° combined). This produced an aqueous tin methanesulfonate solution in the electrolytic cell.
  • An aqueous solution of tin methanesulfonate was produced by the neutralization method.
  • the temperature of the aqueous solution of methanesulfonic acid was kept at 25° and circulated in the neutralization tank.
  • Stannous oxide powder kept at 25° was used.
  • the concentration of dissolved oxygen was set to 80°C or less, without pulsing with nitrogen gas and without degassing, and the concentration of methanesulfonic acid as free acid in the liquid was set to the target 309/1_, 3 2+ concentration. to target the 300 9, it was added stannous oxide powder and pure water.
  • stannous oxide powder at 25° ⁇ is added for neutralization reaction and concentration adjustment 86 9 and pure water for dilution and concentration adjustment (5 ° ⁇ ) is combined. 1 5049 was put in. Except for this, the tin methanesulfonate aqueous solution was produced in the same manner as in Example 1.
  • the methanesulfonic acid aqueous solution was circulated in the neutralization tank while maintaining the temperature at 25 °.
  • Stannous oxide powder with a chloride ion content of 12 held at 25° ⁇ 02020/175352 15 ⁇ (: 171? 2020 /006991
  • the dissolved oxygen concentration was set to 8 or less, and the target concentration of methanesulfonic acid as free acid in the solution was 20 9 /1_, 3 n 2 + to the concentration to the target of 400 9 / 1_, it was added stannous powder and pure water oxidation. Specifically, 8879 of 25 ° ⁇ stannous oxide powder for both neutralization reaction and concentration adjustment was added, and pure water for dilution and concentration adjustment (5 ° ⁇ ) was added to 8839. I put it in. Except for this, the tin methanesulfonate aqueous solution was produced by the neutralization method in the same manner as in Example 1.
  • the methanesulfonic acid aqueous solution was circulated in the neutralization tank while the temperature was kept at 10 ° .
  • Stannous oxide powder held at 25° was used.
  • nitrogen gas was not used for the bubbling and degassing was not performed, the dissolved oxygen concentration was set to 8 or less, and the target concentration of methanesulfonic acid as free acid in the solution was 20 9 /1_, + Stannous oxide powder and pure water were added to reach the target concentration of 400 9 /1_.
  • 8879 of 25 °C stannous oxide powder for both neutralization reaction and concentration adjustment is added, and pure water for dilution and concentration adjustment (5 ° ⁇ ) is combined for 8839. I put it in. Otherwise in the same manner as in Example 1, a tin methanesulfonate aqueous solution was produced by a neutralization method.
  • the methanesulfonic acid aqueous solution was circulated in the neutralization tank while maintaining the temperature at 25 °.
  • Stannous oxide powder adjusted to 10 ° was used.
  • nitrogen gas was not used for the bubbling and degassing was not performed, the dissolved oxygen concentration was set to 8 or less, and the target concentration of methanesulfonic acid as free acid in the solution was 20 9 /1_, + Stannous oxide powder and pure water were added to reach the target concentration of 400 9 /1_.
  • the methanesulfonic acid aqueous solution was circulated in the neutralization tank while maintaining the temperature at 0°.
  • Stannous oxide powder adjusted to 110° was used.
  • nitrogen gas is used for the purging and degassing treatment to reduce the dissolved oxygen concentration to 1 or less, and the target concentration of methanesulfonic acid as free acid in the solution is 509/1_, 3 2 + concentration.
  • stannous oxide powder and pure water were added in order to bring the total to 420 9 /1_. Specifically, put 0 5 ° stannous oxide powder for neutralization reaction and concentration adjustment at 8529, and add pure water for dilution and concentration adjustment (5 ° ⁇ ) at the same time. 7 1 59 Turned on. Otherwise in the same manner as in Example 1, a tin methanesulfonate aqueous solution was produced by a neutralization method.
  • the methanesulfonic acid aqueous solution was circulated in the neutralization tank while maintaining the temperature at 0°.
  • Stannous oxide powder adjusted to 0 ° was used.
  • bubbling with nitrogen gas and degassing were performed to reduce the dissolved oxygen concentration to 10! or less, and the target concentration of methanesulfonic acid as free acid in the liquid was 40 9 /1_, 3 2+ concentration.
  • stannous oxide powder and pure water were added. Specifically, stannous oxide powder at 0° ⁇ was added for neutralization reaction and concentration adjustment 865 9 and pure water for dilution and concentration adjustment (5 ° ⁇ ) were combined. 6949 was introduced. Except for this, the tin methanesulfonate aqueous solution was produced by the neutralization method in the same manner as in Example 1.
  • the concentration of each component in methanesulfonic tin solution prepared to indicate (S n 2 + concentration, S n 4 + concentration, the free acid concentration, chloride ion concentration, the metal impurity concentration) in Table 2 below .
  • the method for measuring or calculating the concentration of each component in the produced tin methanesulfonate aqueous solution is as follows.
  • the total 3 concentration was obtained by measuring the solid 3 concentration and the dissolved 3 concentration in the obtained tin methanesulfonate aqueous solution, and summed them. Specifically, first, the obtained tin methanesulfonate aqueous solution was collected, filtered through a membrane filter, and the weight of tin dioxide (3
  • the concentration of metal impurities was measured using the obtained tin methanesulfonate aqueous solution using a thermometer.
  • the metals to be measured are sodium, potassium, Iron and nickel, copper, zinc, arsenic, antimony, aluminum, silver, bismuth, magnesium, calcium, titanium, chromium, manganese, Copa 'belt, indium, tungsten, and thallium, and cadmium.
  • the values listed in Table 2 are the total content of these metals.
  • the produced tin methanesulfonate aqueous solution was dispensed in a glass cell, and 8 1 to 18 was measured by color measurement using a Ding 6000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • the tin methanesulfonate aqueous solution produced was dispensed into a glass cell, and using Mitsubishi Chemical Analytech's Ding 2000 and formazine standard solution.” ⁇ 3 ⁇
  • Turbidity was measured by a method according to 01 01-1 998.
  • the amount of the tin methanesulfonate aqueous solution used to replenish the electrolytic tin plating solution was calculated by the following method.
  • the following pure tin plating solution was bathed.
  • An insoluble I/plate is placed as the anode in the plating solution, and a silicon wafer on the surface of which is formed by the sputtering method as a cathode is placed as a cathode, and the bath temperature is 30 ° and the cathode current density is 5 8 30. It electrolyzed until 08/11/11_. Since the amount of plating solution decreases due to electrolysis and volatilization of water by electrolysis, in order to circulate the plating solution in the plating equipment normally, during the electrolysis, pure water is automatically replenished by the liquid level sensor. The bath volume was kept constant. As the additive, a commercially available additive for pure tin plating solution was used.
  • composition of the three plating solutions after electrolysis was as follows.
  • the amount of tin solution to be supplemented when the tin sulfonate aqueous solution of Comparative Example 1 was supplemented to the electrolytic tin plating solution is the usual amount of replenishment for conventional plating.
  • the ratio of the amount of replenishment in other examples to the amount of replenishment in comparative example 1: 19.6 !_ (%) was calculated.
  • Table 2 above and Table 3 below It was judged that there was a cost reduction effect when the concentration of the tin liquid used was reduced by 20% or more, that is, when the amount of tin liquid supplied was less than 80%.
  • Table 3 shows the amount of liquid removed and the amount of replenishment (tin liquid, additives, and pure water).
  • Comparative Example 2 The solution was transparent with low turbidity and the free acid concentration was as high as 109/!_, so precipitation of tin methanesulfonate crystals was observed during low temperature storage, and the amount of liquid drained was also high. In many cases, the ratio of the tin sulfonate aqueous solution to be replenished was 88%, and the effect of reducing the amount of tin liquid to be replenished was not significant.
  • the temperature was as high as 25° and the temperature of stannous oxide was as high as 25°. For this reason, S n 4 + concentration of 1 6 9 /! _ And high, and turbidity is relatively high, turbidity had Ji raw. Moreover, since the concentration of 3 n 2 + was low at 3009/1_, the ratio of the replenished tin liquid amount was 100%, and there was no effect of reducing the replenished tin liquid amount.
  • the concentration of 3 1 ⁇ 4 + was less than 10 9 / !_ and the concentration of free methanesulfonic acid was less than 40 9 / 1_, so compared to the cases of Comparative Examples 1 to 8,
  • the amount of tin liquid to be replenished could be reduced by 20% or more.
  • tin liquid In addition, the liquid was transparent with low turbidity, and no precipitation of tin methanesulfonate crystals was observed during storage at low temperature.
  • Example 8 the salt hydride ion concentration of methanesulfonic tin in the aqueous solution becomes more than 1 8 9 /! _ As in Example 1 to 7 and 9 to 1 1 This is because the chloride ion concentration in the stannous oxide as a raw material was 2 O ppm (Table 1), which was higher than those in Examples 1 to 7 and 9 to 11.
  • Table 1 the concentration of metal impurities in the tin methanesulfonate aqueous solution was 2 9 9/1- and Examples 1 to 8, 10 and 11 were higher than those of Examples 1 to 8 and 10 because the metal impurity concentration in the stannous oxide as a raw material was 3 2 (Table 1).
  • Example 7 8 1 to 18 was 2 40 and turbidity was 25 and higher than Examples 1 to 4, 10 and 11 in Table 1. This is because neither nitrogen bubbling nor deaeration of the hollow fiber membrane was performed as shown in FIG.
  • the high-concentration tin sulfonate aqueous solution of the present invention can be used for establishing a bath or replenishing an electrolytic tin plating solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

本発明の高濃度スルホン酸錫水溶液は、二価錫イオン(Sn2+)濃度が360g/L~420g/Lであり、四価錫イオン(Sn4+)濃度が10g/L以下であり、遊離のメタンスルホン酸濃度が40g/L以下であり、ハーゼン単位色数(APHA)が240以下であり、濁度が25FTU以下である。この水溶液は10℃以下の温度に保持した状態で循環する濃度が60質量%~90質量%のメタンスルホン酸水溶液に、10℃以下の温度に調整された酸化第一錫粉末を添加して酸化第一錫粉末を溶解することにより製造する。

Description

\¥02020/175352 1 卩(:17 2020 /006991 明 細 書
発明の名称 : 高濃度スルホン酸錫水溶液及びその製造方法 技術分野
[0001] 本発明は、 電解錫めっき液の建浴又は補給のために用いられる高濃度スル ホン酸錫水溶液及びその製造方法に関する。
本願は、 201 9年 2月 28日に、 日本に出願された特願 201 9— 03 5 1 86号、 及び、 2020年 2月 6日に、 日本に出願された特願 2020 — 01 8835号に基づき優先権を主張し、 その内容をここに援用する。 背景技術
[0002] 従来、 この種のメタンスルホン酸錫水溶液を製造する方法には、 (1) 酸 化第一錫粉末とメタンスルホン酸とを中和反応させる方法 (以下、 中和法と いう。 ) と、 (2) メタンスルホン酸中で錫金属を電解溶解させる方法 (以 下、 電解法という。 ) が知られている。 市販のメタンスルホン酸錫水溶液中 には、 錫が 2009/1_〜 3009/1_の濃度で、 また遊離のメタンスルホ ン酸 (以下、 単に遊離酸ということもある。 ) が 409/!_〜 1 409/!_ の濃度で含まれている。
[0003] 一般に、 メタンスルホン酸錫水溶液の電解錫めっき浴に、 不溶性電極を使 用する場合には、 めっきに消費された錫イオンを電解めっき浴に補給するか 、 又は電解によって生じた遊離のメタンスルホン酸濃度を低減させるために 、 電解めっき浴から液を抜き、 新たなメタンスルホン酸錫水溶液を追加する プリードアンドフィード (巳 I 66 & 66 ) 作業を行う。
[0004] 一方、 電気錫めっき浴の調製方法として、 金属錫粒子と酸性液との固液流 動槽中に酸素含有気体を吹き込んで、 金属錫粒子、 電解錫めっき液および酸 素含有気体の固液気の 3相接触により、 金属錫を化学的に酸性液に溶解する 電気錫めっき液の調製に際して、 前記錫溶解のための酸性液として、 209 /! -〜 1 209/!-の濃度のメタンスルホン酸液を用いて金属錫を化学溶解 させる方法が開示されている (特許文献 1参照。 請求項 1) 。 \¥0 2020/175352 2 卩(:17 2020 /006991 先行技術文献
特許文献
[0005] 特許文献 1 :特開平 7 _ 4 1 9 9 9号公報
発明の概要
発明が解決しようとする課題
[0006] 特許文献 1 に示される方法では、 酸性液として、 2 0 9 / !_〜 1 2 0 9 /
!_の濃度のメタンスルホン酸液を用いて、 酸素含有気体を槽中に吹き込んで 金属錫を化学溶解させている。 そのため、 このメタンスルホン酸液による金 属錫の溶解液は溶存酸素濃度が 8 以上となり、 これにより二価錫イオ ン (S n 2 +) の酸化が促進され、 四価錫イオン (3 +) 濃度が高くなり、 二酸化錫 (s n2) の生成により、 液が懸濁化するおそれがあった。 また前 述したプリードアンドフイード作業を行った場合、 メタンスルホン酸錫水溶 液中の錫濃度が低いときには、 或いは遊離のメタンスルホン酸濃度が高いと きには、 抜き取る液量 (以下、 液抜き量ということもある。 ) が多くなりプ ロセスコストが増大する問題があった。 そのため、 電解錫めっき液の建浴又 は補給の用途には、 錫濃度が高く、 遊離のメタンスルホン酸濃度が低いメタ ンスルホン酸錫水溶液が望まれていた。
[0007] しかし、 上記用途のために、 錫濃度を高くすると、 前述した (1) の中和 法では、 四価錫イオン (S n 4 +) 濃度が高くなり、 二酸化錫 (s n2) が生 成することで液が懸濁化する課題があった。 また前述した (2) の電解法で は、 錫金属の電解溶解効率を上げるために、 遊離のメタンスルホン酸濃度を 高くする必要があり、 これによりメタンスルホン酸錫の溶解度が低下し、 液 を保管中にメタンスルホン酸錫の結晶が析出するおそれがあった。
[0008] 本発明の目的は、 透明で、 めっき性能を低下させず、 補給液の場合に補給 液量が少なくて済み、 保管時にも結晶が析出しない保管安定性に優れた高濃 度スルホン酸錫水溶液を提供することにある。 本発明の別の目的は、 こうし た高濃度スルホン酸錫水溶液を製造する方法を提供することにある。 \¥02020/175352 3 卩(:171? 2020 /006991
課題を解決するための手段
[0009] 本発明者は、 前述した (1) の中和法を改良すべく鋭意検討した結果、 液 の懸濁は四価錫イオン (S n4+) 濃度が高くなることに起因していることか ら、 酸化第一錫とメタンスルホン酸とを反応させたときに生じる中和熱を抑 制すれば、 二価錫イオン (S n2+) の酸化が抑制され、 四価錫イオン (S n4 +) 濃度が低下して液が懸濁しないことに着目し、 本発明に到達した。
[0010] 本発明の第 1の観点は、 二価錫イオン (S n 2+) 濃度が 3609/!_〜 4
209/!_であり、 四価錫イオン (S n4+) 濃度が 1 09/1_以下であり、 遊離のメタンスルホン酸濃度が 409/1_以下であり、 ハーゼン単位色数 ( A P l·\A) が 240以下であり、 濁度が 25 丁 II以下である高濃度スルホ ン酸錫水溶液である。
[0011] 本発明の第 2の観点は、 第 1の観点に基づく発明であって、 前記高濃度ス ルホン酸錫水溶液は複数種類の金属の不純物を含み、 前記複数種類の金属の 合計含有量が金属換算で 3
Figure imgf000004_0001
9 /!_以下である高濃度スルホン酸錫水溶液 である。
[0012] 本発明の第 3の観点は、 第 2の観点に基づく発明であって、 前記複数種類 の金属が、 ナトリウム、 カリウム、 鉛、 鉄、 ニッケル、 銅、 亜鉛、 ヒ素、 ア ンチモン、 アルミニウム、 銀、 ビスマス、 マグネシウム、 カルシウム、 チタ ン、 クロム、 マンガン、 コバルト、 インジウム、 タングステン、 タリウム及 びカドミウムである高濃度スルホン酸錫水溶液である。
[0013] 本発明の第 4の観点は、 第 2の観点に基づく発明であって、 前記複数種類 の金属のそれぞれの含有量が金属換算で 1 0 9/1_以下である高濃度スル ホン酸錫水溶液である。
[0014] 本発明の第 5の観点は、 第 1ないし第 4の観点のいずれかの観点に基づく 発明であって、 前記高濃度スルホン酸錫水溶液は塩化物イオンを含み、 前記 塩化物イオンの含有量が 1 0 9 /!_以下である高濃度スルホン酸錫水溶液 である。
[0015] 本発明の第 6の観点は、 酸化第一錫粉末とメタンスルホン酸とを中和反応 \¥0 2020/175352 4 卩(:171? 2020 /006991
させてスルホン酸錫水溶液を製造する方法において、 前記メタンスルホン酸 を純水で希釈し、 濃度 6 0質量%〜 9 0質量%のメタンスルホン酸水溶液を 得る工程と、 前記メタンスルホン酸水溶液を 1 0 °〇以下の温度に保持した状 態で循環させる工程と、 前記循環するメタンスルホン酸水溶液に、 1 0 °〇以 下の温度に調整された酸化第一錫粉末を添加して前記酸化第一錫粉末を溶解 する工程とを含む第 1ないし第 5の観点のいずれかの観点の高濃度スルホン 酸錫水溶液を製造する方法である。
[0016] 本発明の第 7の観点は、 第 6の観点に基づく発明であって、 前記循環する メタンスルホン酸水溶液に窒素ガスをバプリングするか、 及び/又は中空糸 膜脱気モジュールで脱気処理を行う高濃度スルホン酸錫水溶液を製造する方 法である。
[0017] 本発明の第 8の観点は、 第 6又は第 7の観点に基づく発明であって、 前記 酸化第一錫粉末は複数種類の金属の不純物を含み、 前記複数種類の金属の合 計含有量が金属換算で
Figure imgf000005_0001
製造方法である。
[0018] 本発明の第 9の観点は、 第 8の観点に基づく発明であって、 前記複数種類 の金属が、 ナトリウム、 カリウム、 鉛、 鉄、 ニッケル、 銅、 亜鉛、 ヒ素、 ア ンチモン、 アルミニウム、 銀、 ビスマス、 マグネシウム、 カルシウム、 チタ ン、 クロム、 マンガン、 コバルト、 インジウム、 タングステン、 タリウム及 びカドミウムである高濃度スルホン酸錫水溶液の製造方法である。
[0019] 本発明の第 1 0の観点は、 第 8の観点に基づく発明であって、 前記複数種 類の金属のそれぞれの含有量が金属換算で 1 0 9 / 1_以下である高濃度ス ルホン酸錫水溶液の製造方法である。
[0020] 本発明の第 1 1の観点は、 第 6ないし第 1 0の観点のいずれかの観点に基 づく発明であって、 前記酸化第一錫粉末は塩化物イオンを含み、 前記塩化物 イオンの含有量が
Figure imgf000005_0002
方法である。
発明の効果 \¥0 2020/175352 5 卩(:171? 2020 /006991
[0021 ] 本発明の第 1の観点の高濃度スルホン酸錫水溶液は、 二価錫イオン
Figure imgf000006_0001
+) 濃度が 3 6 0 9 / 1_〜 4 2 0 9 / 1_であり、 四価錫イオン (3 1·^ +) 濃度 が 1 0 9 / !_以下であり、 かつ遊離のメタンスルホン酸濃度が 4 0 9 / !_以 下であるため、 この水溶液で電解錫めっき液の建浴をした後で、 前述したブ リードアンドフィード作業を行った場合、 液抜き量が少なくて済む。 これに より、 補給液の場合に補給液量が少なくて済み、 プロセスコストが増大しな い。 また四価錫イオン (S n 4 +) 濃度が 1 0 9 / 1_以下と低いため、 液が懸 濁化せず、 ハーゼン単位色数 ( 1~1 ) が 2 4 0以下でありかつ濁度が 2 5 丁11以下であり、 液が透明である。 また高濃度スルホン酸錫水溶液は、 低温保管時にメタンスルホン酸錫の結晶が析出せず、 保管安定性に優れる。 更に二酸化錫 (s n2) の生成による液中パーティクルが少なく、 半導体製 品の品質を高める。
[0022] 本発明の第 2の観点の高濃度スルホン酸錫水溶液では、 高濃度スルホン酸 錫水溶液が複数種類の金属の不純物を含んだときにも、 その合計含有量が金 属換算で
Figure imgf000006_0002
また第 4の観点の高濃度スルホン 酸錫水溶液では、 複数種類の金属のそれぞれの含有量が金属換算で 1 〇 9 / 1 -以下と少ないため、 いずれもめっき性能を低下させない利点がある。
[0023] 本発明の第 3の観点の高濃度スルホン酸錫水溶液では、 複数種類の金属が 半導体製品の品質に悪影響を及ぼすナトリウム等であっても、 これらの金属 の合計含有量が金属換算で 3 0 9 / !_以下と僅かであるため、 めっき性能 を低下させず、 またこの水溶液が半導体用途に供される場合、 半導体製品の 品質を局めるうえで好ましい。
[0024] 本発明の第 5の観点の高濃度スルホン酸錫水溶液では、 高濃度スルホン酸 錫水溶液が塩化物イオンを含んだときにも、 その含有量が 1 0〇1 9 / 1_以下 と少ないため、 めっき性能を低下させず、 またこの水溶液が半導体用途に供 される場合、 半導体製品の品質を高めるうえで好ましい。
[0025] 本発明の第 6の観点の高濃度スルホン酸錫水溶液の製造方法では、 メタン スルホン酸を純水で希釈し、 濃度 6 0質量%〜 9 0質量%のメタンスルホン \¥0 2020/175352 6 卩(:171? 2020 /006991
酸水溶液を得た後、 この水溶液を 1 〇 以下の温度で循環させた状態で 1 〇 °〇以下の温度に調整された酸化第一錫粉末を添加して、 低温状態でメタンス ルホン酸水溶液と酸化第一錫を中和反応をさせるため、 中和熱を抑制するこ とができる。 これにより二価錫イオン ( 3 n 2 +) の酸化が抑制され、 四価錫 イオン (S n 4 +) 濃度が低下して、 二酸化錫 (s n2) の生成が抑制される ため、 液が懸濁化しない。
[0026] 本発明の第 7の観点の高濃度スルホン酸錫水溶液の製造方法では、 循環す るメタンスルホン酸水溶液に窒素ガスをバプリングするか、 及び/又は中空 糸膜脱気モジュールで脱気処理を行うことにより、 液中の溶存酸素量を低減 できる。 これにより、 二価錫イオン (3 |^ 2 +) の酸化がより一層抑制され、 四価錫イオン (S n 4 +) 濃度がより低下し、 二酸化錫 (S n2) の生成がよ り一層抑制されるため、 液がより一層懸濁化しない。
[0027] 本発明の第 8の観点の高濃度スルホン酸錫水溶液の製造方法では、 酸化第 —錫が複数種類の金属の不純物を合計で金属換算にして 3 0 9 / 1_以下と 僅かしか含まず、 また本発明の第 1 〇の観点の高濃度スルホン酸錫水溶液の 製造方法では、 複数種類の金属のそれぞれの含有量が金属換算で 1 0 9 /
!_以下と僅かしか含まないため、 得られる水溶液の不純物金属の含有量を低 減して、 めっき性能を低下させないスルホン酸錫水溶液を製造することがで きる。
[0028] 本発明の第 9の観点の高濃度スルホン酸錫水溶液の製造方法では、 酸化第 —錫に含まれる複数種類の金属が半導体製品の品質に悪影響を及ぼすナトリ ウム等であっても、 これらの金属の合計含有量が金属換算で 3
Figure imgf000007_0001
9 / 1_以 下と僅かであるため、 めっき性能を低下させないスルホン酸錫水溶液を製造 することができる。
[0029] 本発明の第 1 1の観点の高濃度スルホン酸錫水溶液の製造方法では、 塩化 物イオンを
Figure imgf000007_0002
得られる水溶液の塩化物イオン濃度を低減して、 めっき性能を低下させない スルホン酸錫水溶液を製造することができる。 \¥02020/175352 7 卩(:171? 2020 /006991 発明を実施するための形態
[0030] 本発明を実施するための形態を説明する。
[0031] 〔高濃度スルホン酸錫水溶液〕
本実施形態の高濃度スルホン酸錫水溶液は、 二価錫イオン (3 |^2+) 濃度 が 3609/1_〜 4209/1_であり、 四価錫イオン (3 n4+) 濃度が 1 0 9/1_以下であり、 遊離のメタンスルホン酸濃度が 409/1_以下である。 高濃度スルホン酸錫水溶液が複数種類の金属の不純物を含むとき、 複数種 類の金属の合計含有量が、 好ましくは、 金属換算で 30〇! 9 /!_以下である 。 より好ましくは、 複数種類の金属のそれぞれの含有量が金属換算で 1 〇
9 / !_以下である。 また高濃度スルホン酸錫水溶液が塩化物イオンを含むと き、 好ましくは、 塩化物イオンの含有量が 1 0〇! 9/1_以下である。
二価錫イオン
Figure imgf000008_0001
濃度が 3609 / 1_未満では、 この水溶液で電解 錫めっき液の建浴をした後で、 前述したプリードアンドフィード作業を行っ た場合、 液抜き量が多くなる不具合がある。 また 4209/1_を超えると、 酸化第一錫粉末が溶解せず、 保存時に析出してしまう。 二価錫イオン (s n 2 +) 濃度の好ましい範囲は、 3809/1_〜 4209/1_であり、 更に好まし い範囲は、 4009 / 1_〜 4209 / 1_である。
[0032] この水溶液の四価錫イオン (3 |^4+) 濃度が 1 09/1_を超えると、 水溶 液が白濁化し、 このような水溶液で建浴しためっき液や、 このような水溶液 を補給液としためっき液でめっきを行うと、 めっき性能を低下させる。 四価 錫イオン (S n4+) 濃度の好ましい範囲は 89 /!_以下であり、 更に好まし い範囲は 59/1-以下である。 また遊離のメタンスルホン酸濃度が 409 / 1-を超えると、 この水溶液で電解錫めっき液の建浴をした後で、 前述したブ リードアンドフィード作業を行った場合、 液抜き量が多くなる不具合がある とともに、 メタンスルホン酸錫の溶解度が低下するため、 この水溶液を保管 (特に一 1 0°〇以下の低温での保管) している間にメタンスルホン酸錫が析 出する不具合がある。 遊離のメタンスルホン酸濃度の好ましい範囲は、 09
Figure imgf000008_0002
更に好ましい範囲は、 09/1 -〜 209/1_であ \¥0 2020/175352 8 卩(:17 2020 /006991
る。
[0033] この水溶液の複数種類の金属の不純物の合計含有量が金属換算で 3 0〇! 9 / !_を超えると、 また塩化物イオンの含有量が
Figure imgf000009_0001
を超えると、 金 属不純物及び塩化物イオンがめっき反応に関与するため、 めっき性能を低下 させるおそれがある。 好ましい塩化物イオンの含有量は 8
Figure imgf000009_0002
9 / 1_以下であ る。
[0034] 金属不純物を構成する複数種類の金属は、 ナトリウム、 カリウム、 鉛、 鉄 、 ニッケル、 銅、 亜鉛、 ヒ素、 アンチモン、 アルミニウム、 銀、 ビスマス、 マグネシウム、 カルシウム、 チタン、 クロム、 マンガン、 コパ'ルト、 インジ ウム、 タングステン、 タリウム及びカドミウムである。 このような金属がめ っき液に多く含まれると、 めっき性能が低下するおそれがある。 本実施形態 の高濃度スルホン酸錫水溶液においては、 上記のような複数種類の金属の合 計含有量が 3 0〇1 9 / !_以下であることが好ましく、 1 0〇1 9 / 1_であるこ とが更に好ましい。 複数種類の金属の合計含有量がこのように少ない含有量 であることにより、 本実施形態の水溶液を、 めっき液を建浴するための液、 及び/又は、 補給液として用いた場合、 めっき性能がより一層低下しにくく なる。 また、 複数種類の金属のそれぞれの含有量は、 金属換算で、 上記のよ うに、 より好ましくは
Figure imgf000009_0003
更に好ましくは
Figure imgf000009_0004
である。 複数種類の金属のそれぞれの含有量がこのように少ない含有量であ ることにより、 本実施形態の水溶液を、 めっき液を建浴するための液、 及び /又は、 補給液として用いた場合、 めっき性能が更に一層低下しにくくなる
[0035] 本実施形態の高濃度スルホン酸錫水溶液は、 二価錫イオン (3 |^ 2 +) 濃度 、 四価錫イオン (S n 4 +) 濃度及び遊離のメタンスルホン酸濃度が上記の範 囲であるため、 」 丨 3 < 0 0 7 1 - 1 ( 1 9 9 8年) に準拠して測定される ハーゼン単位色数 (八 1~1八) が 2 4 0以下である。 また積分球式光電光度 法を用いた濁度測定によるホルマジン濁度が 2 5 丁 II以下である。
[0036] 〔高濃度スルホン酸錫水溶液の製造方法〕 \¥0 2020/175352 9 卩(:171? 2020 /006991
本実施形態の高濃度スルホン酸錫水溶液は、 メタンスルホン酸を純水で希 釈し、 濃度 6 0質量%〜 9 0質量%のメタンスルホン酸水溶液を得る工程と 、 このメタンスルホン酸水溶液を 1 0 °〇以下の温度に保持した状態で循環さ せる工程と、 循環するメタンスルホン酸水溶液に、 1 0 °〇以下の温度に調整 された酸化第一錫粉末を添加して上記酸化第一錫粉末を溶解する工程とを含 む。
[0037] メタンスルホン酸水溶液中のメタンスルホン酸濃度を 6 0質量%〜 9 0質 量%とするのは、 この濃度範囲外では、 最終的にメタンスルホン酸錫水溶液 にしたときに、 二価錫イオン (S n 2 +) 濃度が 3 6 0 9 / 1_〜 4 2 0 9 / 1_ にならない。 メタンスルホン酸水溶液中のメタンスルホン酸濃度の調整は市 販のメタンスルホン酸を純水で希釈することにより行われる。 純水としては 、 イオン交換水や蒸留水などを用いることができる。 好ましい濃度は 6 0質 量%〜 8 0質量%であり、 更に好ましい濃度は 6 0質量%〜 7 0質量%であ る。 次に、 このメタンスルホン酸水溶液を冷却装置を備えた中和槽に入れて 、 冷却装置により 1 〇°〇以下の温度、 好ましくは 0 °〇以下の温度に保持した 状態で循環させる。 冷却装置としては、 例えば、 チラーを用いることができ る。 そして、 1 〇°〇以下の温度で循環しているメタンスルホン酸水溶液に酸 化第一錫を添加し、 溶解させることにより、 高濃度スルホン酸錫水溶液を得 ることができる。 酸化第一錫は粉末であることが望ましい。 ここで、 酸化第 —錫は 1 0 °〇以下の温度に調整されている。 酸化第一錫を 1 0 °〇以下で添加 するので、 メタンスルホン酸水溶液と酸化第一錫の中和反応時に生じる中和 熱を抑制することができる。 これにより二価錫イオン (S n 2 +) の酸化が抑 制され、 四価錫イオン (S n 4 +) 濃度が低下して、 二酸化錫 (S n〇2) の生 成が抑制されるため、 液が懸濁化しない。
溶解中もメタンスルホン酸水溶液の液温を 1 〇 °〇以下の温度に保つことが 好ましい。
[0038] メタンスルホン酸水溶液に添加する酸化第一錫は、 メタンスルホン酸水溶 液の金属不純物や塩化物イオンの各含有量を低下させて、 めっき性能の低下 \¥02020/175352 10 卩(:171?2020/006991
を防ぐために、 複数種類の金属の不純物又は塩化物イオンを含む場合、 複数 種類の金属の合計含有量が金属換算で 3 0 以下であることが好ましく 、 1 0 以下であることが更に好ましい。 また複数種類の金属のそれぞ れの含有量が金属換算で 1 〇 以下であることがより好ましく、 5 以下であることが更に好ましい。 更に塩化物イオンが 1 0 〇1以下であ る酸化第一錫を用いることが好ましく、 5 以下である酸化第一錫を用 いることが更に好ましい。 このような品質を備えた酸化第一錫は、 例えば特 開平 1 1 —3 1 0 4 1 5号公報に記載された方法で入手することができる。 この方法では、 第一錫塩の酸性水溶液とアルカリ水溶液との中和反応によつ て水酸化第一錫を生成させ、 脱水して酸化第一錫が製造される。 具体的には 、 アルカリ水溶液としてアンモニア水と重炭酸アンモニウムとを同時に用い 、 1~1 6 . 〇〜 1 0 . 0及び液温 5 0 °◦以下で、 第一錫塩の酸性水溶液を中 和して水酸化第一錫沈殿を生成させる中和工程と、 生成した水酸化第一錫沈 殿を加熱下で熟成し脱水させて酸化第一錫とする脱水工程と、 該酸化第一錫 を濾別して水洗し乾燥する回収工程により酸化第一錫が製造される。
[0039] 酸化第一錫中の金属不純物量は、 酸化第一錫に含まれるナトリウム、 カリ ウム、 鉛、 鉄、 ニッケル、 銅、 亜鉛、 ヒ素、 アンチモン、 アルミニウム、 銀 、 ビスマス、 マグネシウム、 カルシウム、 チタン、 クロム、 マンガン、 コバ ルト、 インジウム、 タングステン、 タリウム及びカドミウムの各量を誘導結 合プラズマ発光分光 (丨 〇 _〇巳3) で測定することにより求められる。 酸化第一錫中の塩化物イオン量は、 酸化第一錫を塩化物イオンを含まない 適当な溶媒に溶解し、 イオンクロマトグラフィーにより測定した量である。
[0040] 本実施形態の高濃度スルホン酸錫水溶液の製造方法では、 循環するメタン スルホン酸水溶液に窒素ガスをバプリングするか、 及び/又は中空糸膜脱気 モジユールで脱気処理を行うことが好ましい。 こうすることにより、 メタン スルホン酸水溶液中の溶存酸素濃度を低下させ、 二価錫イオン (S n 2 +) の 酸化がより一層抑制され、 四価錫イオン (S n 4 +) 濃度がより低下し、 液が より一層懸濁化しない。 メタンスルホン酸水溶液中の溶存酸素濃度は、 5 \¥0 2020/175352 1 1 卩(:171? 2020 /006991
111以下であることが好ましく、 1 01以下であることが更に好ましい。 実施例
[0041 ] 本発明の実施例を比較例とともに詳しく説明する。
[0042] <実施例 1 >
中和法によりメタンスルホン酸錫水溶液を製造した。 先ず、 冷却装置 (チ ラー) を備え、 窒素パブリング配管及び中空糸膜脱気モジュールを接続した 中和槽を用意した。 一方、 市販のメタンスルホン酸を純水で希釈することに より濃度を 9 0質量%に調整したメタンスルホン酸水溶液を得た。 濃度調整 したメタンスルホン酸水溶液 1 !_を中和槽に投入し、 チラーにより温度 1 0 °〇に保持した状態で中和槽内を循環させた。 循環液に窒素ガスをバプリング し、 かつ中空糸膜脱気モジュールで脱気処理を行って、 溶存酸素濃度を 1 以下とし、 チラーにより液温を 1 0 °〇に制御した。 そこに 1 0 °〇に調整 された複数種類の金属の不純物の合計含有量が 8 で塩化物イオン量が 8 の酸化第一錫粉末を徐々に添加し、 液を均一に撹拌して、 メタンス ルホン酸水溶液と酸化第一錫粉末とを中和反応させた。 液中の遊離酸として のメタンスルホン酸濃度を目標の 5 9 / 1_、
Figure imgf000012_0001
1_にするために、 酸化第一錫粉末と純水を添加した。 具体的には、 1 0 °〇の 酸化第一錫粉末を中和反応用と濃度調整用とを合せて 9 0 8 9投入し、 純水 を希釈用と濃度調整用 (5 °〇) とを合せて 8 5 7 9投入した。 これによりメ タンスルホン酸錫水溶液を製造した。
[0043] <実施例 2 >
メタンスルホン酸水溶液の温度をチラーにより〇°〇に保持した状態で中和 槽内で循環させ、 〇°〇に調整された酸化第一錫粉末を用い、 液中の遊離酸と してのメタンスルホン酸濃度を目標の 1 5 9 / ! -、
Figure imgf000012_0002
〇 9 / 1 -にするために、 酸化第一錫粉末と純水を添加した。 具体的には、 0 °〇の酸化第一錫粉末を中和反応用と濃度調整用とを合せて 8 9 4 9投入し、 純水を希釈用と濃度調整用 (5 °〇) とを合せて 9 0 1 9投入した。 これ以外 、 実施例 1 と同様にして中和法によりメタンスルホン酸錫水溶液を製造した \¥02020/175352 12 卩(:171? 2020 /006991
[0044] <実施例 3>
メタンスルホン酸水溶液の温度をチラーにより一 5 °〇に保持した状態で中 和槽内で循環させ、 _20°〇に調整された酸化第一錫粉末を用い、 液中の遊 離酸としてのメタンスルホン酸濃度を目標の 25 g/L, 3 n 2+濃度を目標 の 3609/1_にするために、 酸化第一錫粉末と純水を添加した。 具体的に は、 一20°〇の酸化第一錫粉末を中和反応用と濃度調整用とを合せて 877 9投入し、 純水を希釈用と濃度調整用 (5°〇) と合せて 1 1 039投入した 。 これ以外、 実施例 1 と同様にして中和法によりメタンスルホン酸錫水溶液 を製造した。
[0045] <実施例 4>
メタンスルホン酸水溶液の温度をチラーにより一 5 °〇に保持した状態で中 和槽内で循環させ、 _20°〇に調整された酸化第一錫粉末を用い、 液中の遊 離酸としてのメタンスルホン酸濃度を目標の 40 g/L, 3 n 2+濃度を目標 の 4009/1_にするために、 酸化第一錫粉末と純水を添加した。 具体的に は、 一20°〇の酸化第一錫粉末を中和反応用と濃度調整用とを合せて 86 1 9投入し、 純水を希釈用と濃度調整用 (5°〇) とを合せて 81 69投入した 。 これ以外、 実施例 1 と同様にして中和法によりメタンスルホン酸錫水溶液 を製造した。
[0046] <実施例 5>
脱気処理を行わず、 溶存酸素濃度を 3 を超え 5 以下とした以 外、 実施例 2と同様にして中和法によりメタンスルホン酸錫水溶液を製造し た。 但し、 純水の投入量は希釈用と濃度調整用 (5°〇) とを合せて 901 9 であった。
[0047] <実施例 6>
窒素ガスでバブリングを行わず、 溶存酸素濃度を 1 を超え 3 〇! 以下とした以外、 実施例 2と同様にして中和法によりメタンスルホン酸錫水 溶液を製造した。 \¥0 2020/175352 13 卩(:171? 2020 /006991
[0048] <実施例 7 >
窒素ガスでパブリングを行わず、 かつ脱気処理を行わず、 溶存酸素濃度を 5 〇!を超え 8 〇!以下とした以外、 実施例 2と同様にして中和法によ りメタンスルホン酸錫水溶液を製造した。 但し、 純水の投入量は希釈用と濃 度調整用 (5 °〇) とを合せて 9 0 1 9であった。
[0049] <実施例 8 >
複数種類の金属の不純物の合計含有量が 8 で塩化物イオン量が 2 0 の酸化第一錫粉末を用いた以外、 実施例 6と同様にして中和法により メタンスルホン酸錫水溶液を製造した。
[0050] <実施例 9 >
複数種類の金属の不純物の合計含有量が 3 2 で塩化物イオン量が 8 の酸化第一錫粉末を用いた以外、 実施例 6と同様にして中和法により メタンスルホン酸錫水溶液を製造した。
[0051 ] <実施例 1 0 >
メタンスルホン酸水溶液の濃度を 7 0質量%に調整し、 液中の遊離酸とし てのメタンスルホン酸濃度を目標の 1 〇 9 / 1 -、
Figure imgf000014_0001
9 / 1_とした以外は、 実施例 2と同様にして中和法によりメタンスルホン酸 錫水溶液を製造した。 但し、 〇°〇の酸化第一錫の投入量は 6 5 7 9であり、 純水の投入量は希釈用と濃度調整用 (5 °〇) とを合せて 3 7 8 9であった。
[0052] <実施例 1 1 >
メタンスルホン酸水溶液の濃度を 6 0質量%に調整し、 液中の遊離酸とし てのメタンスルホン酸濃度を目標の 1 5 9 / ! -、
Figure imgf000014_0002
9 / 1_とした以外は、 実施例 2と同様にして中和法によりメタンスルホン酸 錫水溶液を製造した。 但し、 〇°〇の酸化第一錫の投入量は 5 3 8 9であり、 純水の投入量は希釈用と濃度調整用 (5 °〇) とを合せて 1 1 6 9であった。
[0053] <比較例 1 >
電解法によりメタンスルホン酸錫水溶液を製造した。 先ず、 電解槽の中に 、 アノード電極として金属 3 n板、 カソード電極として 1: /丁 丨電極を用 \¥02020/175352 14 卩(:171? 2020 /006991
意し、 電極間に陰イオン交換膜を設置した。 実施例 1 と同様に濃度調整した 濃度が 90質量%であるメタンスルホン酸溶液 1 !_を電解槽の中に投入し、 温度を 1 〇°〇に保持した状態で電解処理を行った。 アノード側の電解液中の 遊離酸としてのメタンスルホン酸濃度を目標の 309/1_、 3 n 2+濃度を目 標の 3009/1_にするために、 382八 11電解を継続し、 純水を加えて濃 度調整を行った。 具体的には、 純水の投入量は希釈用と濃度調整用 (5°〇 とを合せて 1 8009であった。 これにより電解槽内でメタンスルホン酸錫 水溶液を製造した。
[0054] <比較例 2>
アノード側の電解液中の遊離酸としてのメタンスルホン酸濃度を目標の 1 009 /! -、 3 n 2+濃度を目標の 4009/1_にするために、 347八 1^電 解を継続し、 純水を加えて濃度調整を行った。 それ以外は比較例 1 と同様に して、 電解槽内で電解法によりメタンスルホン酸錫水溶液を製造した。 但し 、 純水の投入量は希釈用と濃度調整用 (5°〇) とを合せて 9 1 59であった
[0055] <比較例 3>
中和法によりメタンスルホン酸錫水溶液を製造した。 メタンスルホン酸水 溶液の温度を 25 °〇に保持した状態で中和槽内で循環させた。 25°〇に保持 された酸化第一錫粉末を用いた。 また窒素ガスでパブリングを行わず、 かつ 脱気処理を行わず、 溶存酸素濃度を 8 〇!以下とし、 液中の遊離酸として のメタンスルホン酸濃度を目標の 309/1_、 3 2+濃度を目標の 3009 にするために、 酸化第一錫粉末と純水を添加した。 具体的には、 25°〇 の酸化第一錫粉末を中和反応用と濃度調整用とを合せて 86 1 9投入し、 純 水を希釈用と濃度調整用 (5°〇) とを合せて 1 5049投入した。 これ以外 、 実施例 1 と同様にしてメタンスルホン酸錫水溶液を製造した。
[0056] <比較例 4>
メタンスルホン酸水溶液の温度を 25 °〇に保持した状態で中和槽内で循環 させた。 25°〇に保持され、 塩化物イオン量が 1 2 の酸化第一錫粉末 \¥02020/175352 15 卩(:171? 2020 /006991
を用いた。 また窒素ガスでバプリングを行わず、 かつ脱気処理を行わず、 溶 存酸素濃度を 8 以下とし、 液中の遊離酸としてのメタンスルホン酸濃 度を目標の 209/1_、 3 n 2+濃度を目標の 4009/1_にするために、 酸 化第一錫粉末と純水を添加した。 具体的には、 25 °〇の酸化第一錫粉末を中 和反応用と濃度調整用とを合せて 8879投入し、 純水を希釈用と濃度調整 用 (5°〇) とを合せて 8839投入した。 これ以外、 実施例 1 と同様にして 中和法によりメタンスルホン酸錫水溶液を製造した。
[0057] <比較例 5>
メタンスルホン酸水溶液の温度を 1 0°〇に保持した状態で中和槽内で循環 させた。 25 °〇に保持された酸化第一錫粉末を用いた。 また窒素ガスでパブ リングを行わず、 かつ脱気処理を行わず、 溶存酸素濃度を 8 以下とし 、 液中の遊離酸としてのメタンスルホン酸濃度を目標の 209/1_、
Figure imgf000016_0001
+ 濃度を目標の 4009/1_にするために、 酸化第一錫粉末と純水を添加した 。 具体的には、 25 °〇の酸化第一錫粉末を中和反応用と濃度調整用とを合せ て 8879投入し、 純水を希釈用と濃度調整用 (5°〇) とを合せて 8839 投入した。 これ以外、 実施例 1 と同様にして中和法によりメタンスルホン酸 錫水溶液を製造した。
[0058] <比較例 6>
メタンスルホン酸水溶液の温度を 25 °〇に保持した状態で中和槽内で循環 させた。 1 〇°〇に調整された酸化第一錫粉末を用いた。 また窒素ガスでパブ リングを行わず、 かつ脱気処理を行わず、 溶存酸素濃度を 8 以下とし 、 液中の遊離酸としてのメタンスルホン酸濃度を目標の 209/1_、
Figure imgf000016_0002
+ 濃度を目標の 4009/1_にするために、 酸化第一錫粉末と純水を添加した 。 具体的には、 1 0°〇の酸化第一錫粉末を中和反応用と濃度調整用とを合せ て 8879投入し、 純水を希釈用と濃度調整用 (5°〇) とを合せて 8839 投入した。 これ以外、 実施例 1 と同様にして中和法によりメタンスルホン酸 錫水溶液を製造した。
[0059] <比較例 7> \¥02020/175352 16 卩(:171? 2020 /006991
メタンスルホン酸水溶液の温度を 0°〇に保持した状態で中和槽内で循環さ せた。 一 1 0°〇に調整された酸化第一錫粉末を用いた。 また窒素ガスでパブ リングを行い、 かつ脱気処理を行って、 溶存酸素濃度を 1 以下とし、 液中の遊離酸としてのメタンスルホン酸濃度を目標の 509/1_、 3 2+濃 度を目標の 4209/1_にするために、 酸化第一錫粉末と純水を添加した。 具体的には、 0 °〇の酸化第一錫粉末を中和反応用と濃度調整用とを合せて 8 529投入し、 純水を希釈用と濃度調整用 (5°〇) とを合せて 7 1 59投入 した。 これ以外、 実施例 1 と同様にして中和法によりメタンスルホン酸錫水 溶液を製造した。
[0060] <比較例 8>
メタンスルホン酸水溶液の温度を 0°〇に保持した状態で中和槽内で循環さ せた。 0°〇に調整された酸化第一錫粉末を用いた。 また窒素ガスでバブリン グを行い、 かつ脱気処理を行って、 溶存酸素濃度を 1 〇!以下とし、 液中 の遊離酸としてのメタンスルホン酸濃度を目標の 409/1_、 3 2+濃度を 目標の 4309/1_にするために、 酸化第一錫粉末と純水を添加した。 具体 的には、 0°〇の酸化第一錫粉末を中和反応用と濃度調整用とを合せて 865 9投入し、 純水を希釈用と濃度調整用 (5°〇) とを合せて 6949投入した 。 これ以外、 実施例 1 と同様にして中和法によりメタンスルホン酸錫水溶液 を製造した。
[0061] 上述した実施例 1〜 1 1及び比較例 1〜 8の各製造方法 (種類、 製造条件 (窒化バプリングの有無、 中空糸膜脱気の有無) 、 メタンスルホン酸水溶液 の濃度、 温度及び投入量、 酸化第一錫の塩化物イオン濃度、 金属不純物濃度 及び投入量、 純水の温度及び投入量) をそれぞれ下記の表 1 に示す。
[0062] \¥02020/175352 17 卩(:171? 2020 /006991
[表 1]
Figure imgf000018_0002
[0063] 製造したメタンスルホン酸錫水溶液中の各成分の濃度 (S n 2+濃度、 S n 4 +濃度、 遊離酸濃度、 塩化物イオン濃度、 金属不純物濃度) を下記の表 2に示 す。 製造したメタンスルホン酸錫水溶液中の各成分の濃度の測定又は算出方 法は以下の通りである。
[0064] (a) 3
Figure imgf000018_0001
2+濃度は、 得られたメタンスルホン酸錫水溶液をヨウ素滴定する \¥0 2020/175352 18 卩(:171? 2020 /006991
ことにより測定した。
(13)
Figure imgf000019_0001
全 3 濃度から (3) で測定した 3 2 +濃度を差し引 くことにより算出した。 全 3 濃度は、 得られたメタンスルホン酸錫水溶液 中の固形 3 濃度と溶存3 濃度をそれぞれ測定し、 それらの合計とした。 具体的には、 先ず、 得られたメタンスルホン酸錫水溶液を採取し、 メンブレ ンフィルタにより濾過し、 メンプレンフィルタ上に残った二酸化錫 (3 |^〇2 ) の重量を測定し、 固形 3 n濃度を算出した。 続いて、 誘導結合プラズマ発 光分光 (丨 〇 _〇巳3) 装置を用いてフィルタリング後の濾液中の溶存3 门濃度を測定した。 そして固形 3 n濃度と溶存3 n濃度の合計を全 3 n濃度 とし、 全 S n濃度から (3) で測定した 3 n 2 +濃度を差し引くことにより、
3门 4 +濃度を算出した。
(〇) 遊離のメタンスルホン酸濃度は、 得られたメタンスルホン酸錫水溶液 に対して 3〇 1~1水溶液を用いて中和滴定を行い、 算出した。
(¢1) 塩化物イオン濃度は、 得られたメタンスルホン酸錫水溶液をイオンク ロマトグラフィーで測定することにより求めた。
(㊀) 金属不純物濃度は、 得られたメタンスルホン酸錫水溶液を 丨 〇 一〇 巳 3を用いて測定した。 測定対象の金属は、 ナトリウム、 カリウム、
Figure imgf000019_0002
鉄 、 ニッケル、 銅、 亜鉛、 ヒ素、 アンチモン、 アルミニウム、 銀、 ビスマス、 マグネシウム、 カルシウム、 チタン、 クロム、 マンガン、 コパ'ルト、 インジ ウム、 タングステン、 タリウム及びカドミウムとした。 表 2に記載の値はこ れら金属の含有量の合計である。
[0065] \¥02020/175352 19 卩(:171? 2020 /006991
Figure imgf000020_0001
[0066] 上述した実施例 1〜 1 1及び比較例 1〜 8の各製造方法 (種類、 製造条件 等) 及び製造したメタンスルホン酸錫水溶液 (以下、 単に錫液ということも ある。 ) を評価するために、 (1) 」 1 3 <007 1 - 1 (1 998年) に 準拠して測定されるハーゼン単位色数 ( ? !~1 ) 、 (2) 積分球式光電光 度法を用いた濁度測定によるホルマジン濁度、 及び (3) この水溶液の低温 時の析出状況を上記表 2に示すとともに、 ( 4) この水溶液を電解錫めっき 液に補給したときの補給する錫液量の割合を上記表 2及び下記表 3にそれそ' \¥02020/175352 20 卩(:171? 2020 /006991
れ示す。 これらの評価項目は次の方法により評価した。
[0067] ( 1 ) ハーゼン単位色数 (八 1~1八)
製造したメタンスルホン酸錫水溶液をガラスセルに分取し、 日本電色工業 株式会社製の丁 6000を用いて色彩測定から八 1~1八を測定した。
[0068] (2) ホルマジン濁度 (全光線透過率)
製造したメタンスルホン酸錫水溶液をガラスセルに分取し、 三菱ケミカル アナリテック社製の 丁一 2000とホルマジン標準液を用い、 」 丨 3 <
01 01 - 1 998に準拠した方法で濁度測定を行った。
[0069] (3) 液の低温保管時の析出状況
- 1 〇°〇に設定した冷蔵庫内に製造したメタンスルホン酸錫水溶液を容量 1 リッ トルのガラス容器に 24時間保管したときの容器底部に析出するメタ ンスルホン酸錫の結晶の有無を目視で確認した。
[0070] (4) メタンスルホン酸錫水溶液を電解錫めっき液に補給する際の使用量の 割合
メタンスルホン酸錫水溶液を電解錫めっき液の補給のために使用した液量 、 即ち補給する錫液量の割合は次の方法により算出した。
[0071] 先ず、 以下の純錫めっき液を建浴した。 めっき液中にアノードとして不溶 性の I /丁 丨板を、 カソードとして表面に〇リ導通層をスパッタリング法 により形成したシリコンウェハをそれぞれ配置し、 浴温 30°〇、 カソード電 流密度 5八 30で 1 0八 11/1_まで電解した。 電解による水の電気分解、 及 び揮発により、 めっき液の量が減少するので、 めっき液をめっき装置内で正 常に循環させるため、 電解中は液面レベルセンサーにより、 純水を自動補給 して浴量を一定に保った。 添加剤として市販の純錫めっき液用添加剤を用い た。
[0072] (建浴時の 3 nめっき液の組成)
3 2+濃度: 1 009/1_
遊離酸 (メタンスルホン酸) 濃度 ·· 509/!_
添加剤濃度: 50 !_/!_ \¥02020/175352 21 卩(:171? 2020 /006991
浴量: 1 001-
[0073] (電解後の 3 nめっき液の組成)
電解後の 3 めっき液の組成は以下の通りであった。
3 2+濃度: 789/1_
遊離酸 (メタンスルホン酸) 濃度: 829/1_
添加剤濃度: 50 1_/1_
浴量: 1 001-
[0074] 次に、 電解後のめっき液を初期濃度に戻すために、 比較例 1のスルホン酸 錫水溶液を用いてプリードアンドフィード (巳 I
Figure imgf000022_0001
作業を 行った。 プリードアンドフィード作業とは、 装置内の液量を一定に保つため 、 電解後のめっき液の一部を抜いて (巳 I 6601) 、 補給液を補給する ( 66〇1) 操作のことである。 その際に必要であった液量は以下の通りであっ た。 これらの液量は表 3にも示した。
[0075] 液抜き量: 47 !_
比較例 1の錫液: 1 9. 61_
添加剤: 2. 41_
純水: 25. 0 !_
[0076] より具体的に述べる。 電解めっき後のめっき液 1 001_から、 471_のめ っき液を抜き取る。 この抜き取った後に、 装置内に残った 531_のめっき液 に、 比較例 1の錫液を 1 9. 6 !_、 添加剤を 2. 4 !_、 純水を 25 !_入れ、 めっき液の液量を元の 1 001-に戻した。
[0077] この比較例 1のスルホン酸錫水溶液を電解錫めっき液に補給したときの補 給する錫液量は、 従来のめっきにおける通常の補給量である。 他の実施例、 比較例での補給量が従来に比べてどの程度減少したかを評価するため、 比較 例 1の補給量: 1 9. 6 !_に対する、 他の例での補給量の割合 (%) を算出 した。 その結果を上記の表 2及び下記の表 3に示す。 20%以上、 錫液の使 用量が減る濃度、 即ち補給する錫液量が 80%未満である場合をコスト削減 効果ありと判定した。 なお、 実施例 1〜 1 1及び比較例 2〜 8についての上 \¥0 2020/175352 22 卩(:171? 2020 /006991
記液抜き量及び補給量 (錫液、 添加剤、 及び純水) を表 3に示す。
[0078] [表 3]
Figure imgf000023_0003
[0079] 上記表 2及び表 3から明らかなように、 比較例 1では、
Figure imgf000023_0001
及び濁度 が低く透明であり、 低温保管時のメタンスルホン酸錫の結晶の析出は 「無し 」 であったが、 Sn 2 +濃度が 3 0 0 9 / 1_と低かったため、 補給する錫液量 の割合が 1 0 0 %であり、 補給する錫液量の削減効果がなかった。
[0080] 比較例 2では、
Figure imgf000023_0002
及び濁度が低く、 液は透明であったが、 遊離酸濃 度が 1 0 0 9 / !_と高かったため、 低温保管時にメタンスルホン酸錫の結晶 の析出が見られ、 また液抜き量が多く、 補給するスルホン酸錫水溶液の割合 が 8 8 %であり、 補給する錫液量の削減効果があまりなかった。
[0081 ] 比較例 3では、 低温保管時のメタンスルホン酸錫の結晶の析出は 「無し」 であったが、 スルホン酸錫水溶液の製造時において、 メタンスルホン酸の温 \¥02020/175352 23 卩(:171? 2020 /006991
度が 25°〇と高く、 また酸化第一錫の温度も 25°〇と高かった。 このため、 S n 4+濃度が 1 69/!_と高く、 及び濁度が比較的高く、 濁りが生 じていた。 また 3 n 2+濃度が 3009/1_と低かったため、 補給する錫液量 の割合が 1 00%であり、 補給する錫液量の削減効果がなかった。
[0082] 比較例 4では、 低温保管時のメタンスルホン酸錫の結晶の析出は 「無し」 であったが、 スルホン酸錫水溶液の製造時において、 メタンスルホン酸の温 度が 25°〇と高く、 また酸化第一錫の温度も 25°〇と高かった。 このため、
3 n 4+濃度が 249/1_と高く、
Figure imgf000024_0001
及び濁度が高くなり、 液は白濁し ており、 液の補給は行わなかった。
[0083] 比較例 5では、 低温保管時のメタンスルホン酸錫の結晶の析出は 「無し」 であり、 補給する錫液量の割合が 7 1 %であり、 補給する錫液量の削減効果 はあったが、 スルホン酸錫水溶液の製造時において、 酸化第一錫の温度が 2 5°〇と高かった。 このため、 3 n4+濃度が 1 59/1_と高く、 八 1~1八及び 濁度が比較的高く、 液に濁りが生じていた。
[0084] 比較例 6では、 低温保管時のメタンスルホン酸錫の結晶の析出は 「無し」 であり、 補給する錫液量の割合が 7 1 %であり、 補給する錫液量の削減効果 はあったが、 スルホン酸錫水溶液の製造時において、 メタンスルホン酸の温 度が 25°〇と高かった。 このため、 3 n4+濃度が 1 49/1_と高く、 A P H 八及び濁度が比較的高く、 液に濁りが生じていた。
[0085] 比較例 7では、
Figure imgf000024_0002
及び濁度が低く、 液は透明であり、 補給する錫液 量の割合が 72%であり、 補給する錫液量の削減効果はあったが、 錫液の遊 離酸濃度が 509 /!_と高かったため、 メタンスルホン酸錫の溶解度が低下 し、 低温保管時にメタンスルホン酸錫の結晶の析出が見られた。
[0086] 比較例 8では、
Figure imgf000024_0003
及び濁度が低く、 液は透明であり、 補給する錫液 量の割合が 69%であり、 補給する錫液量の削減効果はあったが、 錫液の 3 门2+濃度が 4309/1_と高かったため、 低温保管時にメタンスルホン酸錫 の結晶の析出が見られた。
[0087] これに対して、 実施例 1〜 1 1では、 3 n 2+濃度が 360〜 4209/1_ \¥0 2020/175352 24 卩(:171? 2020 /006991
であり、 3 1^ 4 +濃度が 1 0 9 / !_以下であり、 遊離のメタンスルホン酸濃度 が 4 0 9 / 1_以下であったため、 比較例 1〜 8の場合と比較して、 補給する 錫液量を 2 0 %以上の削減することができた。 また、 錫液の
Figure imgf000025_0001
及び濁 度が低く、 液は透明であり、 低温保管時のメタンスルホン酸錫の結晶の析出 も見られなかった。
[0088] 表 2に示すように、 実施例 8において、 メタンスルホン酸錫水溶液中の塩 化物イオン濃度が 1 8 9 / !_と実施例 1〜 7及び 9〜 1 1 より多くなった のは、 原料の酸化第一錫中の塩化物イオン濃度が 2 O p p m (表 1) と実施 例 1〜 7及び 9〜 1 1 より多かったためである。 また、 表 2に示すように、 実施例 9において、 メタンスルホン酸錫水溶液中の金属不純物濃度が 2 9
Figure imgf000025_0002
9 / 1 -と実施例 1〜 8、 1 0及び 1 1 より多くなったのは、 原料の酸化第一 錫中の金属不純物濃度が 3 2 (表 1) と実施例 1〜 8、 1 0及び 1 1 より多かったためである。 更に、 表 2に示すように、 比較例 4において、 メ タンスルホン酸錫水溶液中の塩化物イオン濃度が 1 1
Figure imgf000025_0003
9 / 1_と比較例 3及 び 5〜 8より多くなったのは、 原料の酸化第一錫中の塩化物イオン濃度が 1 2 〇1 (表 1) と比較例 3及び 5〜 8より多かったためである。
[0089] 表 2に示すように、 実施例 6、 8及び 9において、
Figure imgf000025_0004
がそれぞれ 1
3 0と実施例 1〜 4、 1 0及び 1 1 より高くなったのは、 表 1 に示すように 、 中空糸膜脱気を行ったけれども、 窒素バブリングを行わなかったためであ る。 また、 表 2に示すように、 実施例 5において、
Figure imgf000025_0005
例 1〜 4、 1 0及び 1 1 より高くなったのは、 表 1 に示すように、 窒素バブ リングを行ったけれども、 中空糸膜脱気を行わなかったためである。 更に、 表 2に示すように、 実施例 7において、 八 1~1八が 2 4 0及び濁度が 2 5と 実施例 1〜 4、 1 0及び 1 1 より高くなったのは、 表 1 に示すように、 窒素 バプリング及び中空糸膜脱気のいずれも行わなかったためである。
産業上の利用可能性
[0090] 本発明の高濃度スルホン酸錫水溶液は、 電解錫めっき液の建浴又は補給の ために利用することができる。

Claims

\¥02020/175352 25 卩(:171? 2020 /006991 請求の範囲
[請求項 1] 二価錫イオン (S n 2+) 濃度が 3609/1_〜 4209/1_であ り、 四価錫イオン (S n 4+) 濃度が 1 09/! -以下であり、 遊離の メタンスルホン酸濃度が 409/1_以下であり、 ハーゼン単位色数 ( A P l·\A) が 240以下であり、 濁度が 25 丁 II以下である高濃度 スルホン酸錫水溶液。
[請求項 2] 前記高濃度スルホン酸錫水溶液は複数種類の金属の不純物を含み、 前記複数種類の金属の合計含有量が金属換算で 30〇! 9/1_以下であ る請求項 1記載の高濃度スルホン酸錫水溶液。
[請求項 3] 前記複数種類の金属が、 ナトリウム、 カリウム、 鉛、 鉄、 ニッケル
、 銅、 亜鉛、 ヒ素、 アンチモン、 アルミニウム、 銀、 ビスマス、 マグ ネシウム、 カルシウム、 チタン、 クロム、 マンガン、 コパ'ルト、 イン ジウム、 タングステン、 タリウム及びカドミウムである請求項 2記載 の高濃度スルホン酸錫水溶液。
[請求項 4] 前記複数種類の金属のそれぞれの含有量が金属換算で 1 0 9/1_ 以下である請求項 2記載の高濃度スルホン酸錫水溶液。
[請求項 5] 前記高濃度スルホン酸錫水溶液は塩化物イオンを含み、
前記塩化物イオンの含有量が 1 〇 9/1_以下である請求項 1ない し 4いずれか 1項に記載の高濃度スルホン酸錫水溶液。
[請求項 6] 酸化第一錫粉末とメタンスルホン酸とを中和反応させてスルホン酸 錫水溶液を製造する方法において、
前記メタンスルホン酸を純水で希釈し、 濃度 60質量%〜 90質量 %のメタンスルホン酸水溶液を得る工程と、
前記メタンスルホン酸水溶液を 1 0°〇以下の温度に保持した状態で 循環させる工程と、
前記循環するメタンスルホン酸水溶液に、 1 〇°〇以下の温度に調整 された酸化第一錫粉末を添加して前記酸化第一錫粉末を溶解する工程 と \¥0 2020/175352 26 卩(:171? 2020 /006991
を含む請求項 1ないし 5いずれか 1項に記載の高濃度スルホン酸錫 水溶液を製造する方法。
[請求項 7] 前記循環するメタンスルホン酸水溶液に窒素ガスをバプリングする か、 及び/又は中空糸膜脱気モジュールで脱気処理を行う請求項 6記 載の高濃度スルホン酸錫水溶液の製造方法。
[請求項 8] 前記酸化第一錫粉末は複数種類の金属の不純物を含み、 前記複数種 類の金属の合計含有量が金属換算で
Figure imgf000027_0001
又は 7記載の高濃度スルホン酸錫水溶液の製造方法。
[請求項 9] 前記複数種類の金属が、 ナトリウム、 カリウム、 鉛、 鉄、 ニッケル
、 銅、 亜鉛、 ヒ素、 アンチモン、 アルミニウム、 銀、 ビスマス、 マグ ネシウム、 カルシウム、 チタン、 クロム、 マンガン、 コパ'ルト、 イン ジウム、 タングステン、 タリウム及びカドミウムである請求項 8記載 の高濃度スルホン酸錫水溶液の製造方法。
[請求項 10] 前記複数種類の金属のそれぞれの含有量が金属換算で 1 0 9 / 1_ 以下である請求項 8記載の高濃度スルホン酸錫水溶液の製造方法。
[請求項 1 1 ] 前記酸化第一錫粉末は塩化物イオンを含み、 前記塩化物イオンの含 有量が
Figure imgf000027_0002
いずれか 1項に記 載の高濃度スルホン酸錫水溶液の製造方法。
PCT/JP2020/006991 2019-02-28 2020-02-21 高濃度スルホン酸錫水溶液及びその製造方法 WO2020175352A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/433,909 US11525187B2 (en) 2019-02-28 2020-02-21 High-concentration tin sulfonate aqueous solution and method for producing same
CN202080005424.0A CN112789370B (zh) 2019-02-28 2020-02-21 高浓度磺酸锡水溶液及其制造方法
EP20763523.6A EP3916132A4 (en) 2019-02-28 2020-02-21 HIGH CONCENTRATION AQUEOUS TIN SULFONATE SOLUTION AND METHOD FOR PRODUCTION THEREOF
KR1020217008998A KR102343152B1 (ko) 2019-02-28 2020-02-21 고농도 술폰산주석 수용액 및 그 제조 방법
US17/853,078 US11692277B2 (en) 2019-02-28 2022-06-29 High-concentration tin sulfonate aqueous solution and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-035186 2019-02-28
JP2019035186 2019-02-28
JP2020018835A JP6773241B2 (ja) 2019-02-28 2020-02-06 高濃度スルホン酸錫水溶液及びその製造方法
JP2020-018835 2020-02-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/433,909 A-371-Of-International US11525187B2 (en) 2019-02-28 2020-02-21 High-concentration tin sulfonate aqueous solution and method for producing same
US17/853,078 Continuation US11692277B2 (en) 2019-02-28 2022-06-29 High-concentration tin sulfonate aqueous solution and method for producing same

Publications (1)

Publication Number Publication Date
WO2020175352A1 true WO2020175352A1 (ja) 2020-09-03

Family

ID=72238479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006991 WO2020175352A1 (ja) 2019-02-28 2020-02-21 高濃度スルホン酸錫水溶液及びその製造方法

Country Status (4)

Country Link
US (2) US11525187B2 (ja)
KR (1) KR102343152B1 (ja)
TW (1) TWI744807B (ja)
WO (1) WO2020175352A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220243349A1 (en) * 2019-08-01 2022-08-04 Jx Nippon Mining & Metals Corporation Method for dissolving tin (ii) oxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741999A (ja) 1993-07-23 1995-02-10 Nippon Steel Corp 電気錫めっき浴調製方法
JPH11152595A (ja) * 1997-11-19 1999-06-08 Ishihara Chem Co Ltd スズ及びスズ合金メッキ浴、当該メッキ浴の管理方法及び調製方法
JP2013227641A (ja) * 2012-03-30 2013-11-07 Ishihara Chem Co Ltd スズ系メッキ液への補給方法
JP2019035186A (ja) 2010-11-15 2019-03-07 ファイバーリーン テクノロジーズ リミテッド 組成物
JP2020018835A (ja) 2018-07-18 2020-02-06 リバーフィールド株式会社 医療用器具の関節部および医療用器具

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2585902A (en) * 1949-02-02 1952-02-19 Du Pont Inhibition of oxidation in tin solutions
US2854388A (en) * 1955-03-14 1958-09-30 City Auto Stamping Co Electrodeposition of copper-tin alloys
JPH05125582A (ja) * 1991-10-31 1993-05-21 Kawasaki Steel Corp 鋼板への電気錫めつき方法
JP4698904B2 (ja) * 2001-09-20 2011-06-08 株式会社大和化成研究所 錫又は錫系合金めっき浴、該めっき浴の建浴用又は維持・補給用の錫塩及び酸又は錯化剤溶液並びに該めっき浴を用いて製作した電気・電子部品
JP5125582B2 (ja) 2008-02-18 2013-01-23 パナソニック株式会社 ケースモールド型コンデンサ
CN101671838A (zh) 2009-10-28 2010-03-17 广东光华化学厂有限公司 一种电子级高纯甲基磺酸亚锡溶液的制备方法
JP5807377B2 (ja) * 2011-05-10 2015-11-10 三菱マテリアル株式会社 Sn合金めっき液へのSn成分補給用酸化第一錫粉末及びその製造方法
TWI464117B (zh) 2011-09-30 2014-12-11 Dow Global Technologies Llc 複數個氧化亞錫薄片
EP2586746B1 (en) 2011-10-31 2016-09-14 Dow Global Technologies LLC Process for treating crusty SnO
JP6047714B2 (ja) 2012-08-08 2016-12-21 石原ケミカル株式会社 無電解スズ系メッキ液用のペースト状スズ補給剤及び補給方法
JP6022922B2 (ja) * 2012-12-13 2016-11-09 株式会社荏原製作所 Sn合金めっき装置及び方法
JP6084112B2 (ja) * 2013-05-09 2017-02-22 株式会社荏原製作所 Sn合金めっき装置およびSn合金めっき方法
KR20160094385A (ko) 2013-12-05 2016-08-09 허니웰 인터내셔날 인코포레이티드 조절된 pH를 갖는 주석(II) 메탄술포네이트 용액
CN104060308B (zh) * 2014-06-30 2016-09-14 句容市博远电子有限公司 一种降低露铜现象的纯锡电镀液及其应用
CN105063680A (zh) * 2015-08-21 2015-11-18 无锡桥阳机械制造有限公司 一种磺酸型半光亮纯锡电镀液
DE102016111214B3 (de) * 2016-06-20 2017-06-29 Ancosys Gmbh Vorrichtung zur Pulverdosierung für chemische Produktionsprozesse unter Reinraumbedingungen, Verwendung derselben und Zudosierungsverfahren
CN106283103B (zh) 2016-08-30 2018-01-23 广东光华科技股份有限公司 一种电子级甲基磺酸亚锡的制备方法
WO2019097831A1 (ja) * 2017-11-15 2019-05-23 Jx金属株式会社 酸化第一錫及びその製造方法
KR20220038146A (ko) 2019-08-01 2022-03-25 제이엑스금속주식회사 산화 제1 주석의 용해 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741999A (ja) 1993-07-23 1995-02-10 Nippon Steel Corp 電気錫めっき浴調製方法
JPH11152595A (ja) * 1997-11-19 1999-06-08 Ishihara Chem Co Ltd スズ及びスズ合金メッキ浴、当該メッキ浴の管理方法及び調製方法
JP2019035186A (ja) 2010-11-15 2019-03-07 ファイバーリーン テクノロジーズ リミテッド 組成物
JP2013227641A (ja) * 2012-03-30 2013-11-07 Ishihara Chem Co Ltd スズ系メッキ液への補給方法
JP2020018835A (ja) 2018-07-18 2020-02-06 リバーフィールド株式会社 医療用器具の関節部および医療用器具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220243349A1 (en) * 2019-08-01 2022-08-04 Jx Nippon Mining & Metals Corporation Method for dissolving tin (ii) oxide

Also Published As

Publication number Publication date
US20220333264A1 (en) 2022-10-20
KR102343152B1 (ko) 2021-12-23
KR20210041091A (ko) 2021-04-14
TWI744807B (zh) 2021-11-01
US11692277B2 (en) 2023-07-04
US20220042196A1 (en) 2022-02-10
US11525187B2 (en) 2022-12-13
TW202045777A (zh) 2020-12-16

Similar Documents

Publication Publication Date Title
JP5281210B1 (ja) 高濃度バナジウム電解液、その製造方法及びその製造装置
US8333834B2 (en) High-purity aqueous copper sulfonate solution and method of producing same
CN110760898A (zh) 一种锂电池用高抗拉电解铜箔制备方法
TW201527309A (zh) 具經調整ph的甲基磺酸亞錫溶液
JP6733313B2 (ja) 高純度銅電解精錬用添加剤と高純度銅製造方法
WO2020175352A1 (ja) 高濃度スルホン酸錫水溶液及びその製造方法
CN106555208B (zh) 高纯度铜电解精炼用添加剂、高纯度铜制法及高纯度电解铜
EP0103356A2 (en) Method of making and color stabilization of choline base
JP6773241B2 (ja) 高濃度スルホン酸錫水溶液及びその製造方法
JP4515804B2 (ja) 電解採取による金属インジウムの回収方法
JP2014032849A (ja) バナジウム電解液の製造方法
JP6548019B2 (ja) 高純度銅電解精錬用添加剤と高純度銅製造方法
KR101570795B1 (ko) 불소 함유 니켈 슬라임으로부터 고순도 니켈의 제조방법
TWI756694B (zh) 一氧化錫之溶解方法
JP6740801B2 (ja) 高純度銅電解精錬用添加剤と高純度銅製造方法
JPH06172881A (ja) 脱銀又は銀の回収方法
TWI798681B (zh) 鹵素含氧酸溶液之製造方法
TWI664320B (zh) 自碘類蝕刻廢液回收Au與重製蝕刻溶液之方法
WO2020049657A1 (ja) 電気めっき浴、電気めっき製品の製造方法、及び電気めっき装置
CN114375283A (zh) 含过硫酸成分的硫酸溶液中的氧化剂浓度降低的抑制方法
JP2015190053A (ja) 不純物の混入なく酸化を抑制する錫めっき方法
JP2012132047A (ja) 電気錫の製造方法
BE356165A (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020763523

Country of ref document: EP

Effective date: 20210824

NENP Non-entry into the national phase

Ref country code: DE