WO2020049657A1 - 電気めっき浴、電気めっき製品の製造方法、及び電気めっき装置 - Google Patents

電気めっき浴、電気めっき製品の製造方法、及び電気めっき装置 Download PDF

Info

Publication number
WO2020049657A1
WO2020049657A1 PCT/JP2018/032891 JP2018032891W WO2020049657A1 WO 2020049657 A1 WO2020049657 A1 WO 2020049657A1 JP 2018032891 W JP2018032891 W JP 2018032891W WO 2020049657 A1 WO2020049657 A1 WO 2020049657A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
electroplating
electroplating bath
plating
ions
Prior art date
Application number
PCT/JP2018/032891
Other languages
English (en)
French (fr)
Inventor
石塚 清和
完 齊藤
後藤 靖人
高橋 武寛
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020540921A priority Critical patent/JP6969688B2/ja
Priority to PCT/JP2018/032891 priority patent/WO2020049657A1/ja
Publication of WO2020049657A1 publication Critical patent/WO2020049657A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys

Definitions

  • the present invention relates to an electroplating bath, a method for producing an electroplated product, and an electroplating apparatus.
  • Co plating bath used in a Co plating method using an insoluble anode a bath in which cobalt sulfate or cobalt sulfamate is used as a Co source and boric acid, cobalt chloride, sodium chloride, or the like is added thereto is often used. It is also widely practiced to further add Ni to such a Co plating bath to perform Co—Ni alloy plating.
  • Patent Literature 1 a plating plate of cobalt sulfate: 300 g / L, cobalt chloride: 30 g / L, sodium chloride: 25 g / L, and boric acid: 45 g / L is used. And a current density: 2.5 A / dm 2 , and a Ni-plated steel sheet is Co-plated.
  • Patent Document 2 a plating bath of cobalt sulfate: 300 g / L, sodium chloride: 25 g / L, boric acid: 45 g / L.
  • the insoluble anode is obtained by plating a Ti plate with Pt, and is plated with Co at a current density of 5 A / dm 2 on a carbonaceous dispersed Ni-based plated steel plate.
  • Non-Patent Document 1 discloses that a plating bath composed of Co, Ni sulfamate, boric acid, and sulfamic acid is used to perform Co plating or Ni—Co alloy plating using a Ni plate (Pt in the case of Co plating) as an anode. It is shown.
  • Non-Patent Document 2 discloses that Co plating or Ni—Co alloy plating is performed in a plating bath composed of Ni sulfate, Ni chloride, Co sulfate, Co chloride, and boric acid, but there is no disclosure regarding an anode.
  • a Co plating method using a soluble anode and a Co—Ni alloy plating method are also known.
  • Co 2+ and Ni 2+ are supplied to a plating bath by a dissolution reaction by using metal Co and metal Ni for the anode.
  • As a form of the soluble anode there is a method of arranging metal ingots, but there is a problem in workability and plating uniformity.
  • a basket-type anode in which an insoluble basket made of a corrosion-resistant metal such as titanium is filled with a metal piece is also known (for example, Patent Document 3). Basket-type anodes are widely and widely used for plating Ni, which is a metal similar to Co.
  • Ni—Co alloy plating can be performed using an insoluble basket-type soluble anode in which a Ni basket and a Co pellet are filled in a Ti basket using a plating bath composed of Ni sulfate, Ni chloride, Co sulfate, and boric acid. It is shown.
  • Patent Document 4 a Ni—Co alloy plating can be performed using a plating bath composed of Ni sulfate, Ni chloride, Co sulfate, boric acid, and sodium lauryl sulfate, and using an insoluble basket-type soluble anode in which Ni pellets are filled in a Ti basket. It is shown.
  • the cathode is plated with Co using the plating bath containing the insoluble anode and Co as described above, not only the oxygen generation reaction but also the black sludge generation reaction may proceed on the insoluble anode. If plating is performed continuously in such a state, the black sludge may contaminate the bath and change the properties of the plating layer. In addition, black sludge covers the anode surface, which causes an increase in electrolytic resistance, and requires a high voltage, thereby increasing power consumption and requiring a high voltage exceeding the capability of the plating apparatus. There is a risk of rolling. In such a case, the bath and the anode need to be replaced.
  • the insoluble basket takes charge of electron conduction between the soluble anode metal such as metal Co. Only, no electrochemical reaction should take place on the surface.
  • a black sludge generation reaction may proceed similarly to a reaction on an insoluble anode, and the same problem as described above occurs.
  • a large number of anodes can be arranged around the material to be plated, and the current density of the anode can be suppressed to be lower than the plating current density.
  • a current density substantially equal to the plating current density is also applied to the anode, which is one of the causes of the above problem.
  • an object of the present invention is to provide an electroplating bath which has a high Co ion concentration and can suppress a black sludge reaction on an insoluble anode or an insoluble basket. Further, the present invention provides a method for producing an electroplating product, which uses an electroplating bath having a high Co ion concentration in combination with an insoluble anode or an insoluble basket, and can suppress a black sludge reaction while increasing a cathode current density. And to provide an electroplating apparatus.
  • the electroplating bath is selected from the group consisting of formic acid, oxalic acid, a salt of formic acid or oxalic acid, formaldehyde, methanol, and hydrogen peroxide. It has been found that the generation of black sludge can be suppressed by adding one or more additives.
  • the main component of the black sludge formed at the time of plating containing Co is CoO (OH) formed by oxidizing Co 2+ on an insoluble anode or an insoluble basket. Therefore, in order to suppress the generation of black sludge, it was considered necessary to suppress the reaction in which Co 2+ is oxidized on the insoluble anode or on the insoluble basket.
  • an additive composed of a component in which the oxidation reaction proceeds more easily than the oxidation reaction of Co 2+ to CoO (OH) is added to the Co plating bath. It was found that the addition can suppress the oxidation of Co 2+ to CoO (OH). Specifically, the generation of black sludge is reduced by adding one or more additives selected from the group consisting of formic acid, oxalic acid, salts of formic acid or oxalic acid, formaldehyde, and methanol to the electroplating bath. I knew I could do it. It was also found that the effect of the additive was not impaired even when the electroplating bath contained Ni.
  • the present invention has been made based on the above findings, and the gist is as follows.
  • (1) It contains 20 to 200 g / L of Co ions and 0.1 to 3.0 mol / L of an additive, wherein the additive is formic acid, formate, oxalic acid, oxalate, formaldehyde, At least one selected from the group consisting of methanol and hydrogen peroxide, and that the total molar concentration of alkali metal ions, alkaline earth metal ions, Al ions, and ammonium ions is 0.5 mol / L or less.
  • (2) The electroplating bath according to (1) may further contain 100 g / L or less of Ni ions.
  • the electroplating bath according to the above (1) or (2) may contain 35 g / L or more of Co ions.
  • at least 50% by mass of the Co ions is at least one selected from the group consisting of cobalt sulfate and cobalt sulfamate. May be a Co ion of a water-soluble Co salt.
  • the Co ion may be one or more halogen compounds selected from the group consisting of cobalt chloride and cobalt fluoride. It may be an ion.
  • the electroplating bath according to any one of the above (1) to (5) has an insoluble anode or an insoluble basket and a metal piece disposed in the insoluble basket and serving as a plating metal source. It may be used in a method for producing an electroplated product using a soluble anode.
  • a method for manufacturing an electroplated product according to another aspect of the present invention is a method for manufacturing an electroplated product using the electroplating bath according to any one of the above (1) to (6).
  • the additive concentration in the electroplating bath is It is maintained at 0.1 to 3.0 mol / L.
  • the anode may be the insoluble anode, and the electroplating bath may be the electroplating bath according to (4).
  • the anode may be the soluble anode, and the electroplating bath may be the electroplating bath according to (5).
  • the method for producing an electroplated product according to any one of the above (7) to (9) may include a step of Ni plating or a Ni alloy plating on a plating substrate as a pretreatment.
  • the shape of the plating substrate may be a plate.
  • a current for the electroplating may be applied in one direction.
  • the electroplating apparatus according to another aspect of the present invention includes an insoluble anode, or an insoluble basket and one or more selected from the group consisting of Co, Ni, and an alloy thereof, disposed in the insoluble basket.
  • an electroplating bath according to any one of the above (1) to (6).
  • a means for measuring the concentration of the additive In the electroplating apparatus according to the above (13), a means for measuring the concentration of the additive, a means for supplying the additive, and a means for measuring the concentration of the additive in the electroplating bath of 0.1 to 0.1.
  • An additive control means configured to supply the additive to the electroplating bath according to the concentration so as to be maintained at 1 to 3.0 mol / L may be further provided.
  • the anode may be the insoluble anode, and the electroplating bath may be the electroplating bath according to (4).
  • the anode may be the soluble anode, and the electroplating bath may be the electroplating bath according to (5).
  • the electroplating apparatus according to any one of (13) to (16) may include a current control unit configured to supply a current for electroplating in one direction.
  • the electroplating bath of the present invention generation of black sludge on the insoluble anode or the insoluble basket can be suppressed even if the Co ion concentration or the current density is increased in order to increase productivity.
  • the method for producing an electroplated product of the present invention and the electroplating apparatus, even if the Co ion concentration or the current density is increased in order to increase the productivity, the generation of black sludge on the insoluble anode or the insoluble basket can be suppressed.
  • the bath composition can be maintained.
  • the present invention even when Co plating or Co—Ni alloy plating is performed by continuously increasing the current density over a long period of time, the contamination of the electroplating bath by the black sludge and the characteristics of the plating layer due to the black sludge are considered. Changes can be suppressed, and the frequency of replacement of the electroplating bath can be reduced. Further, according to the present invention, black sludge coating on the surface of the insoluble anode or the insoluble basket can be suppressed, and the frequency of replacement of the anode with the black sludge coating can be reduced.
  • Electroplating bath The electroplating bath according to the present embodiment can be used, for example, for Co plating and Co—Ni alloy plating using an insoluble anode or a soluble anode having an insoluble basket. First, the electroplating bath according to the present embodiment will be described below.
  • a plating bath using a water-soluble Co salt as a Co source can be used as the electroplating bath according to the present embodiment.
  • the Co ion concentration in the electroplating bath is 20 to 200 g / L.
  • the Co ion concentration is insufficient, it is necessary to lower the cathode current density, so that the plating production efficiency decreases.
  • a remarkable effect can be obtained when the Co ion concentration is 20 g / L or more in the case of the insoluble anode, and when the Co ion concentration is 35 g / L or more in the case of the soluble anode having the insoluble basket.
  • the Co ion concentration may be 25 g / L or more, 40 g / L or more, or 60 g / L or more.
  • the Co ion concentration may be 180 g / L or less, 150 g / L or less, or 120 g / L or less.
  • an insoluble anode When an insoluble anode is combined with an electroplating bath using cobalt chloride or cobalt fluoride as a Co source, a chlorine gas or a fluorine gas may be generated at the anode. It is necessary to install a collection device. Therefore, in the electroplating bath used in combination with the insoluble anode, a bath in which 50% or more of the Co source is cobalt sulfate or cobalt sulfamate is preferably used as the basic bath. On the other hand, in an electroplating bath used in combination with a soluble anode having an insoluble basket, it is desirable to use a halogen compound such as cobalt chloride as a Co source in order to promote the dissolution of a soluble metal such as Co.
  • a halogen compound such as cobalt chloride
  • a buffer can be further contained in the electroplating bath in order to suppress a fluctuation in pH during plating.
  • the buffer include various weak acids and Co salts of the weak acids. Among them, boric acid is easy to use in view of stability. Also, other known additives such as brighteners can be added to the electroplating bath.
  • a so-called supporting electrolyte may be added in order to lower the electric resistance of the solution.
  • the supporting electrolyte is a water-soluble salt such as a cation which is difficult to electrodeposit in an aqueous solution, for example, an alkali metal ion, an alkaline earth metal ion, an Al ion, and an ammonium ion.
  • Be and Mg may not be classified as alkaline earth metals, but in the electroplating bath according to the present embodiment, the alkaline earth metals are considered to include Be and Mg.
  • the content of these supporting electrolytes is allowed.
  • the electroplating bath according to the present embodiment since the Co ion concentration in the plating bath is relatively high as described above, it is estimated that the electroplating bath has an effect of increasing the viscosity of the supporting electrolyte plating bath. As a result, the supporting electrolyte can hinder the reaction at the anode and cause a black sludge reaction. Therefore, it is desirable that the electroplating bath according to the present embodiment does not contain a supporting electrolyte in principle.
  • the electroplating bath according to the present embodiment contains a supporting electrolyte
  • the total molar concentration of alkali metal ions, alkaline earth metal ions, Al ions, and ammonium ions is set to 0.5 mol / L or less to suppress the black sludge reaction. is necessary.
  • the total molar concentration of the alkali metal ion, alkaline earth metal ion, Al ion, and ammonium ion may be 0.4 mol / L or less, 0.3 mol / L or less, or 0.3 mol / L or less.
  • an upper limit value of the concentration is set for individual ions that can constitute the cation component of the supporting electrolyte after satisfying the above-mentioned rules.
  • the following specifically examines the allowable range of each ion. Alkaline earth metal ions, Al ions, and ammonium ions have the effect of reducing bath stability. Therefore, the concentration of each of the alkaline earth metal ions, Al ions, and ammonium ions is set to 0.15 mol / l or less, preferably 0.1 mol / l or less. The concentration of the alkali metal ion is set to 0.5 mol / l or less.
  • the type of the cation component of the supporting electrolyte is preferably an Na ion or a K ion in consideration of cost among alkali metal ions.
  • alkali metals Rb ions and Cs ions are expensive, and are not general cations of the supporting electrolyte. Therefore, their concentrations should be suppressed to the impurity level.
  • CoAs the electroplating bath, a Co plating bath or a Ni—Co alloy plating bath is effective from the viewpoint of industrial use, but is not necessarily limited thereto.
  • the electroplating bath may contain Ni ions. According to such an electroplating bath, Co—Ni alloy plating can be formed. It is also believed that Ni ions do not cause problems such as accelerating the black sludge reaction. It is preferable that the concentration of Ni ions be 100 g / L or less.
  • the Ni ion concentration may be 5 g / L or more, 10 g / L or more, or 20 g / L or more.
  • the Ni ion concentration may be 80 g / L or less, 50 g / L or less, or 40 g / L or less.
  • the Ni source is not particularly limited, and examples thereof include nickel sulfate, nickel sulfamate, nickel nitrate, nickel chloride, and nickel fluoride.
  • an insoluble anode when a nickel source such as nickel chloride and nickel fluoride is used, chlorine gas and fluorine gas may be generated at the anode. It is not preferable because a collection device needs to be installed. In the case of a soluble anode using an insoluble basket, it is desirable to use a halogen compound such as nickel chloride in order to promote the dissolution of Ni and / or Co. When a small amount of alloying element is added to Co plating in order to improve various properties of Co plating, the electroplating bath may further contain ions of the alloying element.
  • the additive contained in the electroplating bath according to the present embodiment is at least one selected from the group consisting of formic acid, formate, oxalic acid, oxalate, formaldehyde, methanol, and hydrogen peroxide.
  • Salts that can be used here include Co, Ni (in the case of Co—Ni alloy plating), and salts of metals that hardly precipitate in an aqueous solution.
  • the metal that hardly precipitates in an aqueous solution include an alkali metal, an alkaline earth metal, and Al. Therefore, one or both of formate and oxalate may be at least one selected from the group consisting of alkali metal, alkaline earth metal, or Al formate and oxalate. Specifically, at least one selected from the group consisting of formate and oxalate of Li, Na, or K may be used as the additive.
  • the alkali metal ions and the like here have a harmful effect when the concentration thereof is too high, as already described for the supporting electrolyte.
  • the electroplating bath contains the additive of 0.1 mol / L or more.
  • the electroplating bath is The concentration of the additive is preferably 3.0 mol / L or less.
  • the concentration of the additive may be 0.3 mol / L or more, 0.5 mol / L or more, or 1.0 mol / L or more.
  • the concentration of the additive may be 2.5 mol / L or less, 2.0 mol / L or less, or 1.5 mol / L or less.
  • the electroplating method according to the present embodiment is a method for manufacturing an electroplated product using the electroplating bath according to the present embodiment, and the anode for electroplating includes an insoluble anode, or an insoluble basket and an insoluble basket.
  • a soluble anode having a metal piece serving as a plating metal source disposed therein is used, and the additive concentration in the electroplating bath is maintained at 0.1 to 3.0 mol / L.
  • the plating base material used as the material of the electroplating product is connected to the cathode.
  • the upper limit of the current density of plating is generally about 100 A / dm 2 . However, it is not limited to these conditions.
  • the plating current be a normal direct current. So-called pulsed energization should be avoided.
  • the pulse-like energization in which the cathode and anode are reversed reverses the plating deposition efficiency by dissolving the plating.
  • the reversal of the current-carrying direction may cause plating failure, which is presumed to be caused by minute black sludge being involved in plating.
  • the direction of current supply is set to one direction, that is, a pulse current pattern that reverses the anode and the cathode is not generated. preferable.
  • a pulse current pattern that increases or decreases the current value without inverting the anode and the cathode is allowed.
  • a pulse current pattern in which the minimum value of the current value is 0 A is not preferable because plating efficiency is impaired.
  • An insoluble anode is an anode composed of a metal (insoluble material) that does not dissolve in the electroplating bath during the electroplating operation.
  • Insoluble materials that do not dissolve in the electroplating bath according to the present embodiment include, for example, titanium, zirconium, niobium, tantalum, hastelloy, and the like.
  • the corrosion-resistant metal coated with Pt, Ir, or an oxide thereof is widely used as an insoluble anode. It is not impossible to use the Pb anode as an insoluble material.
  • the Pb anode is not preferable in the case of considering Pb-free in consideration of environmental problems.
  • the Co source of Co plating becomes Co ions in the electroplating bath
  • the Co source and Ni source of Co-Ni plating are Co ions and Ni ions in the electroplating bath.
  • the electroplating bath is such that 50% by mass or more of Co ions is derived from at least one water-soluble Co salt selected from the group consisting of cobalt sulfate and cobalt sulfamate. It is preferable to use an electroplating bath that is a Co ion.
  • the soluble anode is an anode provided with an insoluble basket made of an insoluble material such as titanium, zirconium, niobium, tantalum, and Hastelloy, and a metal piece serving as a plating metal source disposed in the insoluble basket.
  • the metal piece serving as the plating metal source includes, for example, at least one selected from the group consisting of Co, Ni, and an alloy thereof.
  • the metal piece may further contain the alloying element or a metal piece of the alloying element may be used in combination.
  • the shape of the metal piece is, for example, a metal particle.
  • the electroplating bath is an electroplating bath in which Co ions are Co ions of one or more halogen compounds selected from the group consisting of cobalt chloride and cobalt fluoride. It is preferred that there be.
  • additives in the electroplating bath are consumed at the anode by electrolysis.
  • the additive may be supplied to the electroplating bath so as to maintain the additive concentration of 0.1 mol / L or more and 3.0 mol / L or less.
  • the timing of replenishment is not particularly limited, the concentration of the additive may be constantly measured and added so as to maintain a constant concentration, or the concentration of the additive may be measured at regular time intervals, and the consumption rate of the additive may be measured. May be calculated, and the additive may be added so that the additive concentration of 0.1 mol / L or more and 3.0 mol / L or less can be maintained.
  • additive used for replenishment for example, one or more of formic acid and oxalic acid and their Co salts, Ni salts (in the case of Co—Ni alloy plating), formaldehyde, methanol, and hydrogen peroxide may be freely selected.
  • the salt when a metal salt other than Co such as Li, Na, and K is used as an additive, metal ions such as Li, Na, and K are concentrated in the plating bath, and the bath composition changes. .
  • the additive to be replenished is a Co salt, there is no change in bath composition, and it is possible to replenish Co consumed in plating, which is preferable.
  • an insoluble anode in that the Co salt of formic acid and oxalic acid can be supplied.
  • an insoluble anode in the electroplating bath, 50% by mass or more of Co ions are Co ions derived from one or more water-soluble Co salts selected from the group consisting of cobalt sulfate and cobalt sulfamate.
  • An electroplating bath is preferred.
  • basic Co carbonate for replenishing Co ions consumed in plating. Water is decomposed by the reaction at the anode to lower the pH, but basic Co carbonate has an effect of keeping the pH stable.
  • the carbonate ions are volatilized as a gas, the use of the basic Co carbonate does not cause an unnecessary problem of ion concentration.
  • the insoluble basket is filled with Co, and the plating metal consumed in the plating can be supplied from the anode.
  • a plating metal in a metal state which is generally cheaper than a salt of the plating metal can be used as a plating metal source.
  • Replenishment of Co with the soluble anode and replenishment of Co with the Co salt may be used in combination.
  • one or both of Co and Ni may be filled in the insoluble basket.
  • Co may be supplied by Co pieces filled in an insoluble basket, and Ni may be supplied by a salt of Ni (for example, a basic Ni carbonate).
  • Co salt may or may not be replenished.
  • Ni may be supplied by Ni pieces filled in the insoluble basket, and Co may be supplied by Co salt (for example, basic Co carbonate).
  • Co salt may or may not be supplied.
  • both Co pieces and Ni pieces (or Co-Ni alloy pieces) may be filled in the insoluble basket. In this case, the salt of Co and the salt of Ni may or may not be replenished.
  • the plating base material is not particularly limited, but in the method for manufacturing an electroplated product according to the present embodiment, the base material shape is preferably a plate shape. This is because, when the substrate shape is a plate, uniformity of the plating thickness is maintained even when the current density is improved.
  • the material of the base material is not particularly limited, and solid metals, Ni-plated steel materials, Ni-alloy-plated steel materials, and Co materials for electrolytic refining of Co can be used.
  • An electroplating apparatus for performing the method for manufacturing an electroplated product according to the present embodiment includes, for example, an insoluble anode, or an insoluble basket and an insoluble basket disposed in the insoluble basket, Co, Ni, and an alloy thereof.
  • the cathode of this electroplating apparatus preferably has a shape connectable to a plating substrate, but is not limited to this.
  • This electroplating apparatus includes a means for measuring the concentration of the additive, a means for supplying the additive, and a method for maintaining the concentration of the additive in the electroplating bath at 0.1 to 3.0 mol / L.
  • Additive control means configured to supply the additive to the electroplating bath according to the concentration.
  • the anode is an insoluble anode
  • the electroplating bath contains at least 50% by mass of Co ions of a Co-soluble one or more water-soluble Co salts selected from the group consisting of cobalt sulfate and cobalt sulfamate. It may be an electroplating bath that is an ion.
  • the anode is a soluble anode
  • the electroplating bath is an electroplating bath in which Co ions are Co ions of one or more halogen compounds selected from the group consisting of cobalt chloride and cobalt fluoride.
  • the electroplating apparatus may include current control means configured to supply a current for electroplating in one direction.
  • the experiment was performed using the experimental plating apparatus shown in FIGS.
  • the anode was as shown in Table 1-2.
  • a cold rolled steel sheet was set for the cathode.
  • the temperature of the Co plating bath is 50 ° C.
  • the volume is 10 L
  • the area of the part of the cathode and the anode immersed in the Co plating bath is 50 mm wide ⁇ 100 mm long on one side, and the distance between the cathode and the anode Was 20 mm.
  • the anode is a Ti basket
  • the area of the part of the anode immersed in the Co plating bath is the projected area of the part of the anode immersed in the Co plating bath with respect to a virtual plane including the cathode. .
  • the current density was set to 10 A / dm 2 (when the anode was a basket, 10 A / dm 2 based on the projected area described above).
  • the power supply was a normal DC power supply.
  • plating metal such as Co consumed by plating was supplied.
  • As a replenishing means basic cobalt carbonate or basic nickel carbonate was used.
  • the basic cobalt carbonate or the basic nickel carbonate was supplied while being dissolved in the dissolution tank 2.
  • the amount of basic cobalt carbonate or basic nickel carbonate to be replenished is determined by conducting another experiment in advance and confirming the current efficiency under the above experimental conditions from the relationship between the amount of current applied and the amount of deposited plating. An appropriate amount of basic cobalt carbonate or basic nickel carbonate was added to the plating cell 1 as needed.
  • the presence or absence of supplementation of basic cobalt carbonate or basic nickel carbonate is described in Table 1-1.
  • the continuous plating time was 5 minutes.
  • the evaluation criteria for the L value were as follows, and the evaluation results are also shown in Table 1-4.
  • the L value refers to the L * (L * a * b * color space of the anode (CIE 1976) measured by the SCI method using a spectrophotometer (CM-700d, manufactured by Konica Minolta).
  • the outline of the plating apparatus of FIGS. 1 and 2 used in the experiment is as follows.
  • the plating apparatus includes a plating cell 1, a dissolving tank 2, an anode 3, a cathode 4, a current plate 5, a pump 6, and a stirring blade 7.
  • the plating cell 1 was filled with an electroplating bath.
  • dissolution tank 2 basic cobalt carbonate and basic nickel carbonate were dissolved.
  • a flow path for flowing an electroplating bath from the plating cell 1 to the dissolution tank 2 and a flow path for flowing the electroplating bath from the dissolution tank 2 to the plating cell 1 are provided between the plating cell 1 and the dissolution tank 2. The latter was provided with a pump 6.
  • the anode 3 was the above-mentioned insoluble anode or a soluble anode having an insoluble basket.
  • the cathode 4 was the cold-rolled steel sheet described above.
  • the current plate 5 was provided to form a flow of the electroplating bath between the cathode 3 and the anode 4.
  • the pump 6 was used to supply the basic cobalt carbonate and the basic nickel carbonate dissolved in the dissolving tank 2 to the plating cell 1.
  • the end of the flow path in which the pump 6 was disposed was disposed below the current plate 5 of the plating cell 1.
  • the stirring blade 7 was used to uniformly dissolve the basic cobalt carbonate and the basic nickel carbonate.
  • the electroplating bath used in Examples 1 to 25 contained 20 to 200 g / L of Co ions and 0.1 to 3.0 mol / L of additives, and the additives were formic acid and formate. , Oxalic acid, oxalate, formaldehyde, methanol, and hydrogen peroxide, each containing at least 0.5 mol / mol of alkali metal ions, alkaline earth metal ions, Al ions, and ammonium ions. L or less. In all of these examples, the reduction of the L value was less than 20, that is, the black sludge reaction could be suppressed while having a high Co ion concentration.
  • Example 1 containing Na ions when Example 1 containing Na ions was compared with Example 14 containing no Na ions, the black sludge reaction could be suppressed in all cases, but Example 14 had a more remarkable effect. Demonstrated.
  • Example 10 containing Na ions when Example 10 containing Na ions was compared with Example 8 containing no Na ions, the black sludge reaction could be all suppressed, but Example 8 was more remarkable.
  • Example 12 which does not include ions such as Na, Li, and K, with Examples 17, 24, and 25, which includes ions such as Na, Li, and K, all suppress the black sludge reaction. However, Example 12 exhibited a more remarkable effect.
  • Example 11 including the supporting electrolyte Mg sulfate
  • Example 8 the black sludge reaction could be suppressed in all cases, but Example 11 including the supporting electrolyte (Mg sulfate) was slightly more than Example 8 not including this.
  • the effect of suppressing the black sludge reaction was small. As described above, it was recognized that the lower the concentration of sodium ions, lithium ions, potassium ions, and magnesium ions used as the supporting electrolyte, the better.
  • Comparative Example 3 containing a large amount of sodium sulfate as a supporting electrolyte and having a sodium ion concentration of more than 1 mol / L also failed.
  • the experiment was performed using the experimental plating apparatus shown in FIGS.
  • the anode was as shown in Table 2-2.
  • a cold rolled steel sheet was set for the cathode.
  • the temperature of the Co plating bath is 50 ° C.
  • the volume is 10 L
  • the area of the cathode and the anode immersed in the Co plating bath is 50 mm wide ⁇ 100 mm long on one side, and the distance between the anode and the cathode Was 20 mm.
  • the definition of the immersion area is the same as in Experimental Examples 1 to 25 and Comparative Examples 1 to 3.
  • the power supply was a normal DC power supply.
  • plating metal such as Co consumed by plating was supplied.
  • Table 2-1 shows the types of salt for replenishment and the presence or absence of replenishment. In the experimental examples in which a cobalt salt or a nickel salt was used as a supplemental additive, the amount of basic cobalt carbonate or basic nickel carbonate to be replenished was reduced accordingly.
  • the concentration of each additive was measured every 5 minutes, and the amount of the replenishment additive corresponding to the decrease from the building bath concentration was changed to a base so that the concentration of each additive was as shown in Table 2-4. It was added while dissolving in the dissolving tank 2 of the neutral cobalt chloride. When the type of additive at the time of building bath and the type of replenishment additive were different, the total value of each molar concentration was adjusted to the concentration shown in Table 2-4. Other items relating to bath replenishment were based on Experimental Examples 1 to 25 and Comparative Examples 1 to 3.
  • the continuous plating time was 30 minutes in total. Based on the change in the L value of the anode before and after continuous plating, the amount of black sludge generated in each plating bath was evaluated.
  • the method of measuring the L value and the evaluation criteria were in accordance with Experimental Examples 1 to 25 and Comparative Examples 1 to 3.
  • the measurement point of the L value of the anode was, in principle, near the center of the surface directly facing the cathode, but in Examples 44 and 46, it was near the draft line of the surface directly facing the cathode, which is the place where the discoloration was greatest.
  • the method of adding an additive having a sacrificial anode effect to the electroplating bath suppresses the generation of black sludge on the anode.
  • the frequency of discarding the plating bath due to black sludge can be reduced, and the increase in electrolytic voltage due to the suppression of increase in anode resistance can be suppressed. This contributes not only to economical efficiency but also to effective use of resources. Therefore, the industrial utility value is extremely large.
  • plating cell 2 melting tank 3: anode 4: steel plate (cathode) 5: current plate 6: pump 7: stirring blade

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本発明の一態様に係る電気めっき浴は、20~200g/LのCoイオンと、0.1~3.0mol/Lの添加剤とを含み、添加剤が、ぎ酸、ぎ酸塩、しゅう酸、しゅう酸塩、ホルムアルデヒド、メタノール、及び過酸化水素からなる群から選ばれる一種以上であり、アルカリ金属イオン、アルカリ土類金属イオン、Alイオン、及びアンモニウムイオンのモル濃度の合計値が0.5mol/L以下である。電気めっき浴が、さらに100g/L以下のNiイオンを含んでもよい。本発明の別の態様に係る電気めっき製品の製造方法は、上記の電気めっき浴を用いた電気めっき製品の製造方法である。本発明の別の態様に係る電気めっき装置は、不溶性陽極又は可溶性陽極である陽極と、上記の電気めっき浴とを備える。

Description

電気めっき浴、電気めっき製品の製造方法、及び電気めっき装置
 本発明は、電気めっき浴、電気めっき製品の製造方法、及び電気めっき装置に関する。
 不溶性陽極を用いるCoめっき方法に使用するCoめっき浴としては、硫酸コバルトやスルファミン酸コバルトをCo源とし、それらにほう酸や塩化コバルト、塩化ナトリウム等を加えた浴が多く用いられている。また、このようなCoめっき浴にさらにNiを加えて、Co-Ni合金めっきを行うことも広く行われている。
 例えば特許文献1では硫酸コバルト:300g/L、塩化コバルト:30g/L、塩化ナトリウム:25g/L、ホウ酸:45g/Lのめっき浴で不溶性陽極にTi板にPtをめっきしたものを使用し、電流密度:2.5A/dmでNi系めっき鋼板にCoめっきしており、特許文献2では硫酸コバルト:300g/L、塩化ナトリウム:25g/L、ホウ酸:45g/Lのめっき浴で不溶性陽極にTi板にPtをめっきしたものを使用し、電流密度:5A/dmで炭素質分散Ni系めっき鋼板にCoめっきしている。
 不溶性陽極とCoめっき浴を用いて連続電解する場合、陰極ではCo2+の金属Coへの還元反応が進行し、不溶性陽極では主に酸素発生反応が進行する。硫酸イオンやスルファミン酸イオンは、陰極、陽極どちらでも反応しないため、めっきによって消費されたCo2+を補給するのに硫酸コバルトやスルファミン酸コバルトを使用すると、めっき浴中に硫酸イオンやスルファミン酸イオンが濃化してしまう。そのため、塩基性炭酸CoによりCo2+を補給するのが一般的である。
 非特許文献1には、Co,Niスルファミン酸塩とホウ酸、スルファミン酸からなるめっき浴で、陽極としてNi板(Coめっきの場合はPt)を用いてCoめっきまたはNi-Co合金めっきすることが示されている。
 非特許文献2には、硫酸Ni、塩化Ni、硫酸Co、塩化Co、ホウ酸からなるめっき浴で、CoめっきまたはNi-Co合金めっきすることが示されているが陽極に関する開示はない。
 可溶性陽極を用いるCoめっき方法、及びCo-Ni合金めっき方法も公知である。可溶性陽極を用いる方法では、陽極に金属Co、金属Niを用いることで、溶解反応によってCo2+及びNi2+をめっき浴に供給する。可溶性陽極の形態としては、金属のインゴットを並べる方法があるが、作業性やめっきの均一性に課題がある。このため、チタン等の耐食金属からなる不溶性のバスケットに金属片を充てんしたバスケット型陽極も知られている(例えば特許文献3)。バスケット型陽極は、Coと同族金属であるNiのめっきについては、極めて広く実用されている。
 非特許文献3では、硫酸Ni、塩化Ni、硫酸Co、ホウ酸からなるめっき浴を用い、NiペレットおよびCoペレットをTiバスケットに充填した不溶性バスケット型可溶性陽極で、Ni-Co合金めっきすることが示されている。
 特許文献4では、硫酸Ni、塩化Ni、硫酸Co、ホウ酸、ラウリル硫酸ナトリウムからなるめっき浴を用い、NiペレットをTiバスケットに充填した不溶性バスケット型可溶性陽極で、Ni-Co合金めっきすることが示されている。
 上記のように不溶性陽極とCoとを含むめっき浴を用い、陰極にCoを含むめっきすると、不溶性陽極上で酸素発生反応だけでなく、黒色スラッジ発生反応が進行する場合がある。そのような状態で連続めっきすると、黒色スラッジが浴を汚染し、めっき層の特性を変化させてしまうおそれがある。また、陽極表面を黒色スラッジが覆ってしまうことにより電解抵抗の増大を招き、高電圧が必要となることで電力消費量が増大したり、めっき装置の能力を超える高電圧が必要となってしまったりするおそれがある。このような場合には、浴、陽極の交換が必要となる。
 また、不溶性バスケットを使用した可溶性陽極とCoを含むめっき浴を用い、陰極にCoを含むめっきする場合、理想的には、不溶性バスケットは金属Co等の可溶性陽極金属との間の電子伝導を担うのみで、その表面で電気化学反応は起こさないはずである。しかしながら、例えば鉄鋼薄板の連続表面処理プロセスに代表される大規模、高速処理においては、不溶性陽極上での反応と同様に黒色スラッジ発生反応が進行する場合があり、前記と同様の問題が生ずる。
 小規模な部品めっきであれば、被めっき材の周囲に多数の陽極を配置することが可能で、めっき電流密度に対して陽極の電流密度を低く抑えることが可能である。一方、連続表面処理プロセスに代表される大規模かつ高速のめっき処理においては、めっき電流密度とほぼ同程度の電流密度が陽極にも負荷されることが、上述の問題の一因である。
 このような黒色スラッジ発生反応は、特にめっき浴のCoイオン濃度が高い(例えば20g/L以上)である場合に顕著に生じる。電流密度を高めてめっき作業を効率化するためには、めっき浴のCoイオン濃度を高める必要があるが、黒色スラッジ反応を効率的に抑制する技術は確立されていない。
特開2006-307321号公報 特開2006-351434号公報 国際公開第2015/198958号パンフレット 特開2007-122940号公報
鉄と鋼、85(1999),No10,728 東洋鋼鈑、vol.39、p7 東洋鋼鈑、vol.39、p17
 上記事情に鑑みて本発明は、高いCoイオン濃度を有しながら、不溶性陽極または不溶性バスケット上での黒色スラッジ反応を抑制可能な電気めっき浴を提供することを課題とする。さらに本発明は、高いCoイオン濃度を有する電気めっき浴と、不溶性陽極または不溶性バスケットとを組み合わせて用い、且つ陰極電流密度を高くしながらも黒色スラッジ反応を抑制可能な、電気めっき製品の製造方法及び電気めっき装置を提供することを課題とする。
 本発明者らは、上記認識のもと鋭意検討した結果、電気めっき浴に、ぎ酸、しゅう酸、ぎ酸又はしゅう酸の塩、ホルムアルデヒド、メタノール、及び過酸化水素からなる群から選択される一種又は二種以上の添加剤を添加することで、黒色スラッジの発生を抑制できることを見出した。
 Coを含むめっき時に形成される黒色のスラッジの主成分は、Co2+が不溶性陽極上または不溶性バスケット上で酸化されることにより形成されたCoO(OH)である。従って、黒色スラッジの発生を抑制するためには、Co2+が不溶性陽極上または不溶性バスケット上で酸化される反応を抑制することが必要であると考えられた。
 Co2+からCoO(OH)への酸化反応を抑制するためには、不溶性陽極の場合には、酸素発生反応のみが進行し易いようにすればよい。先行技術においては、そのためには低電流密度でめっきするか、又は酸素発生過電圧が低い不溶性陽極でめっきすると良いとされる。例えば、特許文献1、特許文献2のように電流密度を2.5A/dm、又は5A/dmと低くすれば、黒色スラッジの発生は比較的軽微になるか、条件によってはほとんど発生しない。しかし、低電流密度でのめっきでは、生産性が低くなってしまうため、工業生産では必ずしも良い方法とは言えない。また、酸素発生過電圧が低い不溶性陽極でのめっきでも、電流密度を高くすると、完全には黒色スラッジの発生を抑制できない。
 また、めっき浴中のCo2+濃度を極めて低くすれば、黒色スラッジの発生は軽微になる。しかしこの場合には、陰極電流密度を低くしない限りめっきに異常が生じるため、やはり生産性が低くなってしまい工業生産には向かない。
 不溶性バスケットを有する可溶性陽極の場合には、Coの溶解反応のみが進行しやすいようにすればよいが、電流密度が高い場合、あるいは電極面積が大きくかつ液流れ等が完全に均一でない場合には、Coの溶解反応以外の電流が流れることを完全に抑制するのは難しく、不溶性バスケット上での黒色スラッジ発生を抑制できない。
 そのように黒色スラッジが発生してしまう高電流密度条件であっても、Co2+のCoO(OH)への酸化反応よりも容易に酸化反応が進行し易い成分からなる添加剤をCoめっき浴に加えることで、Co2+のCoO(OH)への酸化を抑制できることが分かった。具体的には、ぎ酸、しゅう酸、ぎ酸又はしゅう酸の塩、ホルムアルデヒド、及びメタノールからなる群から選択される一種以上の添加剤を電気めっき浴に加えることによって、黒色スラッジの発生を低減できることが分かった。また、電気めっき浴にNiが含まれる場合でも、添加剤の効果が損なわれないことが認められた。
 本発明は、上記知見に基づきなされたもので、その要旨は次の通りである。
(1)20~200g/LのCoイオンと、0.1~3.0mol/Lの添加剤とを含み、前記添加剤が、ぎ酸、ぎ酸塩、しゅう酸、しゅう酸塩、ホルムアルデヒド、メタノール、及び過酸化水素からなる群から選ばれる一種以上であり、アルカリ金属イオン、アルカリ土類金属イオン、Alイオン、及びアンモニウムイオンのモル濃度の合計値が0.5mol/L以下であることを特徴とする電気めっき浴。
(2)上記(1)に記載の電気めっき浴は、さらに100g/L以下のNiイオンを含んでもよい。
(3)上記(1)又は(2)に記載の電気めっき浴は、Coイオンを35g/L以上含んでもよい。
(4)上記(1)~(3)のいずれか一項に記載の電気めっき浴では、前記Coイオンの50質量%以上が、硫酸コバルト、及びスルファミン酸コバルトからなる群から選択される一種以上の水溶性Co塩のCoイオンであってもよい。
(5)上記(1)~(3)のいずれか一項に記載の電気めっき浴では、前記Coイオンが、塩化コバルト、及びフッ化コバルトからなる群から選択される一種以上のハロゲン化合物のCoイオンであってもよい。
(6)上記(1)~(5)のいずれか一項に記載の電気めっき浴は、不溶性陽極、又は不溶性バスケットと前記不溶性バスケットの中に配されためっき金属源となる金属片とを有する可溶性陽極を用いる電気めっき製品の製造方法において用いられてもよい。
(7)本発明の別の態様に係る電気めっき製品の製造方法は、上記(1)~(6)のいずれか一項に記載の電気めっき浴を用いた電気めっき製品の製造方法であって、電気めっきのための陽極として、不溶性陽極、又は不溶性バスケットと前記不溶性バスケットの中に配されためっき金属源となる金属片とを有する可溶性陽極を用い、前記電気めっき浴中の添加剤濃度が0.1~3.0mol/Lで保持されている。
(8)上記(7)に記載の電気めっき製品の製造方法では、前記陽極が前記不溶性陽極であり、前記電気めっき浴が上記(4)に記載の電気めっき浴であってもよい。
(9)上記(7)に記載の電気めっき製品の製造方法では、前記陽極が前記可溶性陽極であり、前記電気めっき浴が上記(5に記載の電気めっき浴であってもよい。
(10)上記(7)~(9)のいずれか一項に記載の電気めっき製品の製造方法は、前処理として、めっき基材にNiめっき又はNi合金めっきする工程を備えてもよい。
(11)上記(7)~(10)のいずれか一項に記載の電気めっき製品の製造方法では、前記めっき基材の形状が板状であってもよい。
(12)上記(7)~(11)のいずれか一項に記載の電気めっき製品の製造方法では、前記電気めっきのための電流が一方向に通電されてもよい。
(13)本発明の別の態様に係る電気めっき装置は、不溶性陽極、又は不溶性バスケットと前記不溶性バスケットの中に配された、Co、Ni、及びこれらの合金からなる群から選択される一種以上を含む金属片とから構成された可溶性陽極である陽極と、上記(1)~(6)のいずれか一項に記載の電気めっき浴と、を備える。
(14)上記(13)に記載の電気めっき装置は、前記添加剤の濃度を測定する手段と、前記添加剤を供給する手段と、前記電気めっき浴中の前記添加剤の前記濃度が0.1~3.0mol/Lで保持されるように、前記濃度に応じて前記添加剤を前記電気めっき浴に供給するように構成された添加剤制御手段と、をさらに備えてもよい。
(15)上記(13)又は(14)に記載の電気めっき装置では、前記陽極が前記不溶性陽極であり、前記電気めっき浴が上記(4)に記載の電気めっき浴であってもよい。
(16)上記(13)又は(14)に記載の電気めっき装置では、前記陽極が前記可溶性陽極であり、前記電気めっき浴が上記(5)に記載の電気めっき浴であってもよい。
(17)上記(13)~(16)のいずれか一項に記載の電気めっき装置は、電気めっきのための電流を一方向に通電させるように構成された電流制御手段を備えてもよい
 本発明の電気めっき浴によれば、生産性を高めるためにCoイオン濃度や電流密度を高めても、不溶性陽極又は不溶性バスケット上での黒色スラッジの発生を抑制できる。本発明の電気めっき製品の製造方法、及び電気めっき装置によれば、生産性を高めるためにCoイオン濃度や電流密度を高めても、不溶性陽極又は不溶性バスケット上での黒色スラッジの発生を抑制できる浴組成を維持することができる。従って、本発明によれば、連続的に長期間に渡って電流密度を高めてCoめっき又はCo-Ni合金めっきをしても、黒色スラッジによる電気めっき浴の汚染と、これによるめっき層の特性変化を抑性でき、電気めっき浴の交換頻度を低減できる。さらに、本発明によれば、不溶性陽極または不溶性バスケットの表面の黒色スラッジ被覆を抑性でき、黒色スラッジ被覆による陽極の交換頻度を低減できる。
実験用のめっき装置を側面から見た模式図である。 実験用のめっき装置を上面から見た模式図である。
1.電気めっき浴
 本実施形態に係る電気めっき浴は、例えば、不溶性陽極、または不溶性バスケットを有する可溶性陽極を用いたCoめっき及びCo-Ni合金めっきのために用いることができる。まず、以下に、本実施形態に係る電気めっき浴について説明する。
 (Coを含むめっき浴)
 本実施形態に係る電気めっき浴としては、水溶性のCo塩をCo源としためっき浴を用いることができる。電気めっき浴中のCoイオン濃度は、20~200g/Lとする。Coイオン濃度が不足する場合、陰極電流密度を低くする必要が生じるので、めっきの生産効率が減少する。なお、不溶性陽極の場合はCoイオン濃度を20g/L以上とし、不溶性バスケットを有する可溶性陽極の場合にはCoイオン濃度を35g/L以上とした場合に、特に顕著な効果が得られる。一方、Coイオン濃度が高すぎる場合、めっき液の安定性が低下しめっき不良の原因となりやすい。Coイオン濃度を25g/L以上、40g/L以上、又は60g/L以上としてもよい。Coイオン濃度を180g/L以下、150g/L以下、又は120g/L以下としてもよい。
 なお、不溶性陽極と、塩化コバルトやフッ化コバルトをCo源とした電気めっき浴とを組み合わせた場合、陽極で塩素ガスやフッ素ガスが発生することがあるため、ガスの発生量に応じたガスの回収装置を設置する必要がある。そのため、不溶性陽極と組み合わせて用いられる電気めっき浴においては、Co源の50%以上を硫酸コバルトまたはスルファミン酸コバルトとした浴を基本浴とすると良い。一方、不溶性バスケットを有する可溶性陽極と組み合わせて用いられる電気めっき浴においては、Co等の可溶性金属の溶解を促進するために塩化コバルト等のハロゲン化合物をCo源として用いることが望ましい。
 また、めっき時のpHの変動を抑制するため、電気めっき浴にさらに緩衝剤を含有させることができる。緩衝剤としては例えば、各種弱酸、および弱酸のCo塩が挙げられる。その中でもほう酸が、安定性に鑑みて使いやすい。また、光沢剤等の他の公知の添加剤も電気めっき浴に添加することができる。
 一般に電気めっき浴においては、溶液の電気抵抗を下げるために、所謂支持電解質が添加される場合がある。しかし本実施形態に係る電気めっき浴では、支持電解質の量を減少させることが好ましい。支持電解質とは、水溶液中では電析しがたいカチオン、例えばアルカリ金属イオン、アルカリ土類金属イオン、Alイオン、及びアンモニウムイオン等の水溶性塩である。なお、Be及びMgはアルカリ土類金属に分類されない場合があるが、本実施形態に係る電気めっき浴においてアルカリ土類金属はBe及びMgを含むものとみなす。
 本実施形態に係る電気めっき浴においては、これら支持電解質の含有は許容される。ただし本実施形態に係る電気めっき浴においては、前述したようにめっき浴中のCoイオン濃度が比較的高いため、支持電解質めっき浴の粘度を上げる作用があると推定される。その結果として支持電解質は、陽極での反応を阻害し、黒色スラッジ反応を引き起こす場合がある。そのため、本実施形態に係る電気めっき浴は原則的に支持電解質を含有しないことが望ましい。本実施形態に係る電気めっき浴に支持電解質を含有させる場合には、支持電解質のカチオン成分であるアルカリ金属イオン、アルカリ土類金属イオン、Alイオン、及びアンモニウムイオンの濃度を制限する必要がある。具体的には、電気めっき浴においてアルカリ金属イオン、アルカリ土類金属イオン、Alイオン、及びアンモニウムイオンのモル濃度を合計で0.5mol/L以下とすることが、黒色スラッジ反応の抑制のために必要である。アルカリ金属イオン、アルカリ土類金属イオン、Alイオン、及びアンモニウムイオンのモル濃度を合計で0.4mol/L以下、0.3mol/L以下、又は0.3mol/L以下としてもよい。
 さらに、上述の規定を満たした上で、支持電解質のカチオン成分を構成しうる個別のイオンに関しても濃度の上限値を設けることが好ましい。個別のイオンの許容範囲について具体的に検討すると、以下の通りである。アルカリ土類金属イオン、Alイオン、及びアンモニウムイオンは浴安定性も低下させる作用がある。そのため、アルカリ土類金属イオン、Alイオン、及びアンモニウムイオンそれぞれの濃度は0.15mol/l以下、好ましくは0.1mol/l以下とする。アルカリ金属イオンは、その濃度を0.5mol/l以下とする。支持電解質のカチオン成分の種類は、アルカリ金属イオンの中でもコストを考慮すると、Naイオン、Kイオンが好ましい。アルカリ金属のうちRbイオン、及びCsイオンについては、コストも高く、支持電解質のカチオンとして一般的なものではないことから、その濃度を不純物レベルに抑えるべきである。
 電気めっき浴としては、工業的な利用の観点から、Coめっき浴またはNi-Co合金めっき浴が有効であるが、必ずしもこれに限定されるものではない。
 電気めっき浴がNiイオンを含んでもよい。このような電気めっき浴によれば、Co-Ni合金めっきを形成することが出来る。また、Niイオンが黒色スラッジ反応を促進する等の不具合を生じさせることはないと考えられている。Niイオンの濃度は100g/L以下とすることが好ましい。Niイオン濃度を5g/L以上、10g/L以上、又は20g/L以上としてもよい。Niイオン濃度を80g/L以下、50g/L以下、又は40g/L以下としてもよい。Ni源としては特に限定されるものではないが、硫酸ニッケル、スルファミン酸ニッケル、硝酸ニッケル、塩化ニッケル、及びフッ化ニッケルなどが挙げられる。前述したように不溶性陽極の場合には、塩化ニッケル及びフッ化ニッケル等をNi源とした場合、陽極で塩素ガス及びフッ素ガス等が発生することがあるため、ガスの発生量に応じたガスの回収装置を設置する必要があるため好ましくない。不溶性バスケットを使用した可溶性陽極の場合には、Niおよび/またはCoの溶解を促進するために、塩化ニッケル等のハロゲン化合物を用いることが望ましい。なお、Coめっきの諸特性を向上させるために、微量な合金元素をCoめっきに添加させる場合、電気めっき浴にその合金元素のイオンをさらに含有させることが出来る。
 (建浴時の添加剤の種類、建浴時の添加剤濃度)
 不溶性陽極または不溶性バスケットを有する可溶性陽極を用いた電気めっきをする際、不溶性陽極または不溶性バスケット上においてCo2+より容易に酸化分解反応が進行する添加剤を電気めっき浴に加えることにより、Co2+のCoO(OH)への酸化を防止することができる。ただし、添加剤を選択する際は、酸化分解反応の進行し易さだけでなく、浴の安定性や、添加剤の分解生成物がめっき浴に残留しないか、及び、めっき浴に残留してもめっき性に悪影響を及ぼさないものであるかも考慮する必要がある。
 Co2+からCoO(OH)への酸化反応よりも容易に酸化反応が進行しやすい添加剤としては、各種カルボン酸などがある。その中でも、ぎ酸及びしゅう酸ならびにそれらの塩は、酸化された後にめっき浴中に分解生成物が蓄積しない。また、カルボン酸に加えて、ホルムアルデヒド、メタノール、及び過酸化水素も、酸化分解反応の容易性、及び分解生成物の影響を考慮して、添加剤として使用可能である。従って、本実施形態に係る電気めっき浴が含む添加剤は、ぎ酸、ぎ酸塩、しゅう酸、しゅう酸塩、ホルムアルデヒド、メタノール、及び過酸化水素からなる群から選ばれる一種以上とする。ここで使用できる塩は、Co、Ni(Co-Ni合金めっきの場合)、および水溶液中では析出し難い金属の塩も用いることができる。水溶液中では析出し難い金属としては、通常、アルカリ金属、アルカリ土類金属、及びAlなどが挙げられる。従って、ぎ酸塩及びしゅう酸塩の一方又は両方を、アルカリ金属、アルカリ土類金属、又はAlのぎ酸塩及びしゅう酸塩からなる群から選択される一種以上としてもよい。具体的には、Li、Na、又はKのぎ酸塩及びしゅう酸塩からなる群から選択される一種以上を添加剤としてもよい。ただし、ここでのアルカリ金属イオン等は、すでに支持電解質のところで述べたように、その濃度が高すぎると弊害もあることから、すでに述べた濃度範囲になるようにする必要がある。
 それら添加剤は、たとえ添加量が少量であっても、添加剤が含まれない場合と比較して優れた効果を発揮する。一方、0.1mol/L以上の濃度となるように添加剤を含有させた方が、安定した効果を得られるので、電気めっき浴は0.1mol/L以上の添加剤を含むものとする。一方、あまり多量に添加剤を電気めっき浴に含有させても効果が飽和すること、及び一部の種類の添加剤については、臭気及び可燃性の問題もあることを考慮して、電気めっき浴の添加剤の濃度は3.0mol/L以下にした方が良い。添加剤の濃度を0.3mol/L以上、0.5mol/L以上、又は1.0mol/L以上としてもよい。添加剤の濃度を2.5mol/L以下、2.0mol/L以下、又は1.5mol/L以下としてもよい。
2.電気めっき製品の製造方法(電気めっき方法)
 次に、本実施形態に係る電気めっき製品の製造方法について説明する。本実施形態に係る電気めっき方法は、本実施形態に係る電気めっき浴を用いた電気めっき製品の製造方法であって、電気めっきのための陽極には、不溶性陽極、又は不溶性バスケットと不溶性バスケットの中に配されためっき金属源となる金属片とを有する可溶性陽極を用い、電気めっき浴中の添加剤濃度が0.1~3.0mol/Lで保持されていることを特徴とする。当然ながら、電気めっき製品の材料となるめっき基材は、陰極と接続される。
 めっきの電流密度は最低でも10A/dm~30A/dm程度の高い条件を適用可能である。めっきの電流密度の上限は、一般的には100A/dm程度である。ただし、これら条件に限定されるものではない。
 めっき電流は、通常の直流通電とすることが望ましい。いわゆるパルス状通電は避けるべきである。特に、陰極及び陽極反転させるようなパルス状通電は、めっきを溶解させることによりめっきの付着効率を低下させる。そればかりでなく、通電方向の反転は、微小な黒色スラッジのめっき巻き込みに起因すると推定される、めっき不良も引き起こすことがある。以上の事情に鑑みて、本実施形態に係るめっき製品の製造方法では少なくとも、電流の通電方向を一方向とすること、即ち、陽極と陰極とを反転させるようなパルス電流パターンを生じさせないことが好ましい。陽極と陰極とを反転させることなく電流値を増減させるようなパルス電流パターンは許容される。ただしこの場合でも、電流値の最小値が0Aとなるようなパルス電流パターンは、めっき効率を損なうので好ましくない。
 (陽極)
 不溶性陽極とは、電気めっき作業中に電気めっき浴中に溶解しない金属(不溶性材料)から構成された陽極である。本実施形態に係る電気めっき浴中に溶解しない不溶性材料とは、例えばチタン、ジルコニウム、ニオブ、タンタル、及びハステロイ等である。また、前記耐食金属上に、Pt、Ir、またはこれらの酸化物等を被覆したものも不溶性陽極として広く用いられている。なお、Pb陽極を不溶性材料として用いることも不可能ではない。しかし、めっき浴、および形成されるめっき層中に極微量のPbが共析することから、Pb陽極は、環境問題を考慮してPbフリー化を志向する場合には好ましくない。不溶性陽極を用いて電気めっき製品を製造する場合、CoめっきのCo源は電気めっき浴中のCoイオンとなり、Co-NiめっきのCo源及びNi源は、電気めっき浴中のCoイオン及びNiイオンとなる。不溶性陽極を用いて電気めっき製品を製造する場合、電気めっき浴は、Coイオンの50質量%以上が、硫酸コバルト、及びスルファミン酸コバルトからなる群から選択される一種以上の水溶性Co塩に由来するCoイオンである電気めっき浴とすることが好ましい。
 可溶性陽極とは、例えばチタン、ジルコニウム、ニオブ、タンタル、及びハステロイ等の不溶性材料から構成された不溶性バスケットと、この不溶性バスケット内に配置されためっき金属源となる金属片とを備える陽極である。めっき金属源となる金属片は、例えばCo、Ni、及びこれらの合金からなる群から選択される一種以上を含む。可溶性陽極を用いて電気めっき製品を製造する場合、CoめっきのCo源は電気めっき浴中のCoイオン及び金属片となり、Co-NiめっきのCo源及びNi源は、電気めっき浴中のCoイオン及びNiイオン、並びに金属片となる。Coめっきの諸特性を向上させるために、微量な合金元素をCoめっきに添加させる場合、金属片にその合金元素をさらに含有させるか、合金元素の金属片を併用することが出来る。金属片の形状は、例えば金属粒である。可溶性陽極を用いて電気めっき製品を製造する場合、電気めっき浴は、Coイオンが、塩化コバルト、及びフッ化コバルトからなる群から選択される一種以上のハロゲン化合物のCoイオンである電気めっき浴であるものとすることが好ましい。
 (電解処理中の浴に補給する添加剤の種類、電解処理中の浴の添加剤濃度)
 本実施形態に係る電気めっき製品の製造方法によって電気めっきをする場合、電気めっき浴中の添加剤が電解により陽極で消耗することとなる。この場合は、0.1mol/L以上、3.0mol/L以下の添加剤濃度を保てるように、添加剤を電気めっき浴に補給すれば良い。特に補給のタイミングは限定するものではないが、添加剤濃度を常時計測し、常に一定濃度を保てるように添加しても良いし、一定時間ごとに添加剤濃度を計測し、添加剤の消耗速度を計算し、0.1mol/L以上、3.0mol/L以下の添加剤濃度を維持できるように添加剤を添加しても良い。
 補給に用いる添加剤としては、例えばぎ酸及びしゅう酸並びにそれらのCo塩、Ni塩(Co-Ni合金めっきの場合)、ホルムアルデヒド、メタノール、及び過酸化水素からなる一種以上を自由に選んで良い。塩については、Li、Na、KなどのCo以外の金属塩を添加剤として用いると、Li、Na、及びKなどの金属イオンがめっき浴中に濃化してしまい、浴組成が変化してしまう。一方、不溶性陽極を用いた電気めっきにおいて、補給される添加剤がCo塩であれば、浴組成の変化も無く、めっきで消費されたCoの補給にもなり好適である。
 ぎ酸及びしゅう酸のCo塩を補給できる点で、本実施形態に係る電気めっき製品の製造方法では、不溶性陽極を用いることが好ましい。また、不溶性陽極を用いる場合、電気めっき浴は、Coイオンの50質量%以上が、硫酸コバルト、及びスルファミン酸コバルトからなる群から選択される一種以上の水溶性Co塩に由来するCoイオンである電気めっき浴とすることが好ましい。
不溶性陽極の場合、めっきで消費されたCoイオンの補給に塩基性炭酸Coを用いることも好適である。陽極での反応で水が分解されpHが低下するが、塩基性炭酸CoはpHを安定に保つ効果を有する。さらに、炭酸イオンはガスとして揮発するので、塩基性炭酸Coを用いれば、余計なイオンの濃化の問題も発生しない。Ni-Co合金めっきの場合には、めっきで消費されたNiイオンの補給に塩基性炭酸Niを用いることが好適である
 一方、不溶性バスケットを使用した可溶性陽極を用いた電気めっきに本実施形態に係る電気めっき浴を適用した場合には、不溶性バスケットにCoを充てんし、めっきで消費されためっき金属を陽極から補給できる点、及びめっき金属の塩よりも一般的に安価な金属状態のめっき金属がめっき金属源として使用できるなどコスト上のメリットが大きい。可溶性陽極によるCoの補給と、Co塩によるCoの補給とを併用することもできる。
 Ni-Co合金めっきの場合には、不溶性バスケットのなかに、Co、Niの一方または双方を充てんすればよい。一方のみを充てんする場合には、必要に応じてCoまたはNiの塩、例えば塩基性炭酸塩での補給を併用しても良い。即ち、Ni-Co合金めっきの場合には、不溶性バスケットの中に充填されたCo片によってCoを補給し、Niの塩(例えば塩基性炭酸Ni塩)によってNiを補給してもよい。この場合、Coの塩は補給してもよいし、しなくてもよい。また、不溶性バスケットの中に充てんされたNi片によってNiを補給し、Coの塩(例えば塩基性炭酸Co塩)によってCoを補給してもよい。この場合、Niの塩は補給してもよいし、しなくてもよい。あるいは、不溶性バスケットのなかにCo片とNi片との双方(又はCo-Ni合金片)を充てんしてもよい。この場合、Coの塩及びNiの塩は補給してもよいし、しなくてもよい。
 (めっき基材)
 めっき基材は特に限定されないが、本実施形態に係る電気めっき製品の製造方法においては、基材形状を板状とすることが好ましい。基材形状を板とした場合、電流密度を向上させてもめっき厚の均一性が保たれるからである。基材の材質も特に限定されず、無垢の金属、Niめっき鋼材、Ni合金めっき鋼材、及びCoの電解精錬としてCo材などを用いることができる。特に、NiまたはNi合金でめっきした鋼材をめっき基材とすると、鋼板から電気めっき浴への金属の溶解を抑制できるので、好ましい。従って本実施形態に係る電気めっき製品の製造方法は、前処理として、めっき基材にNiめっき又はNi合金めっきする工程を備えてもよい。
 (電気めっき装置)
 本実施形態に係る電気めっき製品の製造方法を実施するための電気めっき装置は、例えば、不溶性陽極、又は不溶性バスケットと前記不溶性バスケットの中に配された、Co、Ni、及びこれらの合金からなる群から選択される一種以上を含む金属片とから構成された可溶性陽極である陽極と、本実施形態に係る電気めっき浴と、を備える電気めっき装置である。この電気めっき装置の陰極は、めっき基材と接続可能な形状を有することが好ましいが、これに限定されない。この電気めっき装置は、添加剤の濃度を測定する手段と、添加剤を供給する手段と、電気めっき浴中の添加剤の濃度が0.1~3.0mol/Lで保持されるように、濃度に応じて添加剤を電気めっき浴に供給するように構成された添加剤制御手段と、をさらに備えてもよい。この電気めっき装置は、陽極が不溶性陽極であり、電気めっき浴は、Coイオンの50質量%以上が、硫酸コバルト、及びスルファミン酸コバルトからなる群から選択される一種以上の水溶性Co塩のCoイオンである電気めっき浴であるものとしてもよい。この電気めっき装置は、陽極が可溶性陽極であり、電気めっき浴は、Coイオンが、塩化コバルト、及びフッ化コバルトからなる群から選択される一種以上のハロゲン化合物のCoイオンである電気めっき浴であるものとしてもよい。この電気めっき装置は、電気めっきのための電流を一方向に通電させるように構成された電流制御手段を備えてもよい。
 次に、実施例を用いて本発明を非限定的に説明する。
 (各種添加剤の効果)
 表1-1及び表1-4に記載の通りの組成となるように種々のCoめっき浴及びCo-Niめっき浴を建浴し、これらを用いて実験を行った。なお、添加剤の種類及び濃度は表1-4に記載し、その他成分の組成は表1-1に記載した。表1-4に記載のCoイオン濃度、Niイオン濃度、およびその他金属カチオン濃度は、表1-1及び表1-4に記載の組成による建浴が行われた結果としての値である。
 実験は、図1及び図2に記載の実験用のめっき装置を用いて行った。陽極は、表1-2に記載のものとした。陰極には冷延鋼板をセットした。
 Coめっき浴の温度は50℃とし、体積は10Lとし、陰極及び陽極のうちCoめっき浴中に浸漬された部分の面積は、片面当たり幅50mm×長さ100mmとし、陰極及び陽極の間の距離は20mmとした。なお、陽極がTiバスケットであった場合、陽極のCoめっき浴中に浸漬された部分の面積とは、陽極のCoめっき浴中に浸漬された部分の、陰極を含む仮想面に対する投影面積である。
 原則的に、陰極及び陽極の間には、5m/minの上方向の流れを形成させた。ただし、一部の実施例では陽極及び陰極の間に流れを形成させなかった。これは、Tiバスケットを用いた工業的な大規模な生産を模擬したものである。大規模生産現場においては、浴流れを形成したとしても、形成されるめっきが不均一になることは避けがたく、浴流れのばらつきによって黒色スラッジ形成が促進される。このことから、本実験では浴流れを形成しないことによってそのような状況を模擬したものである。流れの有無については表1-3に記載した。
 電流密度は10A/dm(陽極がバスケットである場合、上述の投影面積基準で10A/dm)とした。電源は、通常の直流電源とした。また、一部の実施例においては、めっきにより消費されたCo等のめっき金属の補給をした。補給の手段としては、塩基性炭酸コバルト又は塩基性炭酸ニッケルを用いた。塩基性炭酸コバルト又は塩基性炭酸ニッケルは、溶解槽2で溶解させながら補給した。塩基性炭酸コバルト又は塩基性炭酸ニッケルの補給量は、事前に別実験を行い、通電量と付着しためっき量との関係から上記実験条件における電流効率を確認することにより決定し、電気めっき中は、それに見合った量の塩基性炭酸コバルト又は塩基性炭酸ニッケルをめっきセル1に随時添加した。塩基性炭酸コバルト又は塩基性炭酸ニッケルの補給の有無は、表1-1に記載した。連続めっき時間は5分とした。
 このような条件の連続めっき前後の陽極のL値の変化に基づいて、各Coめっき浴における黒色スラッジの発生量を評価した。すなわち、黒色スラッジの発生量が多いとL値は大きく低下し、発生量が少ないとL値の低下は小さい。L値の評価基準は以下のようにし、評価結果も表1-4に合わせて示した。なお、L値とは、分光測色計(CM-700d、コニカミノルタ製)を使用して、SCI方式にて測定された、陽極のL*(L*a*b*色空間(CIE 1976)における明度指数)である。連続めっき後の陽極のL*の測定は、陽極を電気めっき浴から取り出した後、水洗、乾燥してから実施した。なお、陽極のL値の測定箇所は、原則的に陰極に正対する面の中央付近としたが、実施例18、19、22、23及び比較例2においては、最も変色が大きい箇所である陰極に正対する面の喫水線付近とした。
 優 :L値の低下  5未満
 良 :L値の低下  5以上、10未満
 可 :L値の低下 10以上、20未満
 不可:L値の低下 20以上
 なお、実験に用いた図1および図2のめっき装置の概略は以下の通りである。めっき装置は、めっきセル1と、溶解槽2と、陽極3と、陰極4と、整流板5と、ポンプ6と撹拌羽根7とを備える。めっきセル1に、電気めっき浴を充填した。溶解槽2において、塩基性炭酸コバルト及び塩基性炭酸ニッケルを溶解させた。めっきセル1と溶解槽2との間には、めっきセル1から溶解槽2に電気めっき浴を流すための流路と、溶解槽2からめっきセル1に電気めっき浴を流すための流路とが設けられており、後者にはポンプ6が配置された。
 陽極3は、上述の不溶性陽極又は不溶性バスケットを有する可溶性陽極とされた。陰極4は上述の冷延鋼板とされた。整流板5は、陰極3と陽極4との間に電気めっき浴の流れを形成するために設けられた。ポンプ6は、溶解槽2で溶解された塩基性炭酸コバルト及び塩基性炭酸ニッケルをめっきセル1に供給するために用いられた。ポンプ6が配置された流路の端部は、めっきセル1の整流板5の下部に配置された。ポンプ6を作動させることにより、電気めっき浴をめっきセル1の下部から上部へ整流板5を介して流し、上向きの電気めっき浴の流れを形成することができた。撹拌羽根7は、塩基性炭酸コバルト及び塩基性炭酸ニッケルを均一に溶解させるために用いられた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~25で用いられた電気めっき浴は、20~200g/LのCoイオンと、0.1~3.0mol/Lの添加剤とを含み、添加剤が、ぎ酸、ぎ酸塩、しゅう酸、しゅう酸塩、ホルムアルデヒド、メタノール、及び過酸化水素からなる群から選ばれる一種以上であり、アルカリ金属イオン、アルカリ土類金属イオン、Alイオン、及びアンモニウムイオンが合計で0.5mol/L以下であった。これら実施例は、全てL値の低下が20未満であり、即ち、高いCoイオン濃度を有しながら黒色スラッジ反応を抑制することが出来た。
 また、Naイオンが含まれる実施例1と、Naイオンが含まれない実施例14とを比較すると、いずれも黒色スラッジ反応を抑制することができたが、実施例14の方が一層顕著な効果を発揮した。同様に、Naイオンが含まれる実施例10と、Naイオンが含まれない実施例8とを比較すると、いずれも黒色スラッジ反応を抑制することができたが、実施例8の方が一層顕著な効果を発揮した。Na、Li、及びK等のイオンが含まれない実施例12と、Na、Li、及びK等のイオンが含まれる実施例17、24、及び25とを比較すると、いずれも黒色スラッジ反応を抑制することができたが、実施例12の方が一層顕著な効果を発揮した。以上の結果からは、Na、Li、及びK等イオンの減少によって黒色スラッジ反応の抑制効果が一層高められる傾向が確認された。また、実施例8と実施例11を比較すると、いずれも黒色スラッジ反応を抑制することができたが、支持電解質(硫酸Mg)を含む実施例11は、これを含まない実施例8よりも若干黒色スラッジ反応の抑制効果が小さかった。以上のように、支持電解質として用いられるナトリウムイオン、リチウムイオン、カリウムイオン、及びマグネシウムイオン等は、その濃度が低い方が好ましいことが認められた。
 一方、比較例1、及び比較例2の、添加剤を全く加えていないCoめっき浴では、陽極のL値が20以上低下し、不可となった。また、支持電解質として硫酸ナトリウムを多量に含有し、ナトリウムイオン濃度が1mol/Lを超えた比較例3も、不可となった。
 (長時間電解時の各種添加剤の補給添加による効果)
 表2-1及び表2-4に記載の通りの組成となるように種々のめっき浴を建浴し、これらを用いて実験を行った。なお、添加剤の種類及び濃度は表2-4に記載し、その他成分の組成は表2-1に記載した。表2-4に記載のCoイオン濃度及びNiイオン濃度は、表2-1及び表2-4に記載の組成による建浴が行われた結果としての、建浴時のめっき浴中での値である。
 実験は、図1及び図2に記載の実験用のめっき装置を用いて行った。陽極は、表2-2に記載のものとした。陰極には冷延鋼板をセットした。
 Coめっき浴の温度は50℃とし、体積は10Lとし、陰極及び陽極のうちCoめっき浴中に浸漬された部分の面積は、片面当たり幅50mm×長さ100mmとし、陽極及び陰極の間の距離は20mmとした。浸漬面積の定義は、実験例1~25及び比較例1~3と同様である。
 原則的に、陰極及び陽極の間には、5m/minの上方向の流れを形成させた。ただし、一部の実施例では陽極及び陰極の間の流れを0.5m/minとした。各実験例における流量については表2-3に記載した。
 電流密度は10A/dmとした(陽極がバスケットである場合、上述の投影面積基準で10A/dm)。電源は、通常の直流電源とした。また、一部の実施例においては、めっきにより消費されたCo等のめっき金属の補給をした。補給のための塩の種類及び補給の有無は表2-1に記載の通りである。補給添加剤としてコバルト塩又はニッケル塩を使用した実験例においては、その分だけ塩基性炭酸コバルト又は塩基性炭酸ニッケルの補給量を減じた。
 また、各種添加剤濃度を5分おきに測定して、各種添加剤濃度が表2-4に示す濃度になるように、建浴濃度からの減少分に相当する量の補給添加剤を、塩基性塩化コバルトの溶解槽2で溶解しながら添加した。なお、建浴時の添加剤と補給添加剤の種類とが相違する場合、それぞれのモル濃度の合計値が表2-4に示す濃度となるようにした。浴の補給に関するその他の事項については実験例1~25及び比較例1~3に準じた。
 連続めっき時間は合計で30分とした。連続めっき前後の陽極のL値の変化に基づいて、各めっき浴における黒色スラッジの発生量を評価した。L値の測定方法、及び評価基準は実験例1~25及び比較例1~3に準じた。陽極のL値の測定箇所は、原則的に陰極に正対する面の中央付近としたが、実施例44及び46においては、最も変色が大きい箇所である陰極に正対する面の喫水線付近とした。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 比較例4の、初期の添加剤濃度が低く、さらに添加剤の補給も行わなかったCoめっき浴では、L値が20以上低下し、不可となった。それに対して、添加剤を初期から含み、5分ごとに減少分を追加添加した電気めっき浴では、L値の低下が20未満で、添加剤の効果が認められた。
 本発明により、不溶性陽極または不溶性バスケットを含む可溶性陽極を用いたCoを含むめっきにおいて、電気めっき浴に犠牲陽極作用を有する添加剤を加えるという方法で、陽極上での黒色スラッジの発生を抑制し、浴の汚染防止、陽極の抵抗増大を抑制可能となった。これにより、生産性の高い高電流密度で連続めっきをしても、黒色スラッジによるめっき浴の廃棄頻度の低減、陽極の抵抗増大抑制による電解電圧の上昇を抑制可能となった。これは、経済性に優れるだけでなく、資源の有効活用に寄与する。したがって産業上の利用価値は極めて大きい。
 1:めっきセル
 2:溶解槽
 3:陽極
 4:鋼板(陰極)
 5:整流板
 6:ポンプ
 7:撹拌羽根

Claims (17)

  1.  20~200g/LのCoイオンと、
     0.1~3.0mol/Lの添加剤とを含み、
     前記添加剤が、ぎ酸、ぎ酸塩、しゅう酸、しゅう酸塩、ホルムアルデヒド、メタノール、及び過酸化水素からなる群から選ばれる一種以上であり、
     アルカリ金属イオン、アルカリ土類金属イオン、Alイオン、及びアンモニウムイオンのモル濃度の合計値が0.5mol/L以下である
    ことを特徴とする電気めっき浴。
  2.  前記電気めっき浴が、さらに100g/L以下のNiイオンを含むことを特徴とする請求項1に記載の電気めっき浴。
  3.  Coイオンを35g/L以上含むことを特徴とする請求項1又は2に記載の電気めっき浴。
  4.  前記Coイオンの50質量%以上が、硫酸コバルト、及びスルファミン酸コバルトからなる群から選択される一種以上の水溶性Co塩のCoイオンであることを特徴とする請求項1~3のいずれか一項に記載の電気めっき浴。
  5.  前記Coイオンが、塩化コバルト、及びフッ化コバルトからなる群から選択される一種以上のハロゲン化合物のCoイオンであることを特徴とする請求項1~3のいずれか一項に記載の電気めっき浴。
  6.  前記電気めっき浴が、不溶性陽極、又は不溶性バスケットと前記不溶性バスケットの中に配されためっき金属源となる金属片とを有する可溶性陽極を用いる電気めっき製品の製造方法において用いられることを特徴とする請求項1~5のいずれか一項に記載の電気めっき浴。
  7.  請求項1~6のいずれか一項に記載の電気めっき浴を用いた電気めっき製品の製造方法であって、
     電気めっきのための陽極として、不溶性陽極、又は不溶性バスケットと前記不溶性バスケットの中に配されためっき金属源となる金属片とを有する可溶性陽極を用い、
     前記電気めっき浴中の添加剤濃度が0.1~3.0mol/Lで保持されていることを特徴とする、電気めっき製品の製造方法。
  8.  前記陽極が前記不溶性陽極であり、
     前記電気めっき浴が請求項4に記載の電気めっき浴である
    ことを特徴とする請求項7に記載の電気めっき製品の製造方法。
  9.  前記陽極が前記可溶性陽極であり、
     前記電気めっき浴が請求項5に記載の電気めっき浴である
    ことを特徴とする請求項7に記載の電気めっき製品の製造方法。
  10.  前処理として、めっき基材にNiめっき又はNi合金めっきする工程を備えることを特徴とする請求項7~9のいずれか一項に記載の電気めっき製品の製造方法。
  11.  前記めっき基材の形状が板状であることを特徴とする請求項7~10のいずれか一項に記載の電気めっき製品の製造方法。
  12.  前記電気めっきのための電流が一方向に通電されることを特徴とする請求項7~11のいずれか一項に記載の電気めっき製品の製造方法。
  13.  不溶性陽極、又は不溶性バスケットと前記不溶性バスケットの中に配された、Co、Ni、及びこれらの合金からなる群から選択される一種以上を含む金属片とから構成された可溶性陽極である陽極と、
     請求項1~6のいずれか一項に記載の電気めっき浴と、を備えることを特徴とする電気めっき装置。
  14.  前記添加剤の濃度を測定する手段と、
     前記添加剤を供給する手段と、
     前記電気めっき浴中の前記添加剤の前記濃度が0.1~3.0mol/Lで保持されるように、前記濃度に応じて前記添加剤を前記電気めっき浴に供給するように構成された添加剤制御手段と、をさらに備えることを特徴とする請求項13に記載の電気めっき装置。
  15.  前記陽極が前記不溶性陽極であり、
     前記電気めっき浴が請求項4に記載の電気めっき浴である
    ことを特徴とする請求項13又は14に記載の電気めっき装置。
  16.  前記陽極が前記可溶性陽極であり、
     前記電気めっき浴が請求項5に記載の電気めっき浴である
    ことを特徴とする請求項13又は14に記載の電気めっき装置。
  17.  前記電気めっき装置が、電気めっきのための電流を一方向に通電させるように構成された電流制御手段を備えることを特徴とする請求項13~16のいずれか一項に記載の電気めっき装置。
PCT/JP2018/032891 2018-09-05 2018-09-05 電気めっき浴、電気めっき製品の製造方法、及び電気めっき装置 WO2020049657A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020540921A JP6969688B2 (ja) 2018-09-05 2018-09-05 電気めっき浴、電気めっき製品の製造方法、及び電気めっき装置
PCT/JP2018/032891 WO2020049657A1 (ja) 2018-09-05 2018-09-05 電気めっき浴、電気めっき製品の製造方法、及び電気めっき装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/032891 WO2020049657A1 (ja) 2018-09-05 2018-09-05 電気めっき浴、電気めっき製品の製造方法、及び電気めっき装置

Publications (1)

Publication Number Publication Date
WO2020049657A1 true WO2020049657A1 (ja) 2020-03-12

Family

ID=69723026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032891 WO2020049657A1 (ja) 2018-09-05 2018-09-05 電気めっき浴、電気めっき製品の製造方法、及び電気めっき装置

Country Status (2)

Country Link
JP (1) JP6969688B2 (ja)
WO (1) WO2020049657A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190588A (ja) * 1984-03-12 1985-09-28 Toyo Kohan Co Ltd 亜鉛または亜鉛合金めつき鋼板の黒色処理方法
JPS63239848A (ja) * 1987-02-06 1988-10-05 Kobe Steel Ltd リ−ドフレ−ム及びその製造方法
JPH02240280A (ja) * 1989-03-15 1990-09-25 Toyo Kohan Co Ltd 半田用複層めっき鋼板
JP2001150105A (ja) * 1999-11-26 2001-06-05 Nomura Plating Co Ltd 連続鋳造用鋳型及びその製造方法
JP2009079247A (ja) * 2007-09-26 2009-04-16 C Uyemura & Co Ltd 電気めっき方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190588A (ja) * 1984-03-12 1985-09-28 Toyo Kohan Co Ltd 亜鉛または亜鉛合金めつき鋼板の黒色処理方法
JPS63239848A (ja) * 1987-02-06 1988-10-05 Kobe Steel Ltd リ−ドフレ−ム及びその製造方法
JPH02240280A (ja) * 1989-03-15 1990-09-25 Toyo Kohan Co Ltd 半田用複層めっき鋼板
JP2001150105A (ja) * 1999-11-26 2001-06-05 Nomura Plating Co Ltd 連続鋳造用鋳型及びその製造方法
JP2009079247A (ja) * 2007-09-26 2009-04-16 C Uyemura & Co Ltd 電気めっき方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NINEVA, S. L. ET AL.: "Electrodeposition of silver- cobalt coatings. Electrolytes", BULGARIAN CHEMICAL COMMUNICATIONS, vol. 43, no. 1, 2011, pages 88 - 95, XP055692166 *

Also Published As

Publication number Publication date
JP6969688B2 (ja) 2021-11-24
JPWO2020049657A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
US20160024683A1 (en) Apparatus and method for electrolytic deposition of metal layers on workpieces
US20120279869A1 (en) Chromium plating method
US2693444A (en) Electrodeposition of chromium and alloys thereof
BR112016018584A2 (pt) processo de banho continuo de cromo trivalente
US6332970B1 (en) Electrolytic method of and compositions for stripping electroless nickel
WO2020049657A1 (ja) 電気めっき浴、電気めっき製品の製造方法、及び電気めっき装置
US3488264A (en) High speed electrodeposition of nickel
JP5688145B2 (ja) ニッケルのpHを調整する方法及び装置
JP5747441B2 (ja) 電気亜鉛めっき鋼板の製造方法
JP6081224B2 (ja) 表面処理鋼板の製造方法
JP2005314799A (ja) 錫めっき方法とこれに用いられる錫めっき浴
CN109594106B (zh) 由锡杂质导致的氯化钾无氰镀镉故障的排除方法
JPH1060683A (ja) 電気めっき三元系亜鉛合金とその方法
KR101173879B1 (ko) 니켈플래시 도금용 다기능성 과포화 슬러리 도금용액
JP7074197B2 (ja) 電気めっき浴、電気めっき製品の製造方法、及び電気めっき装置
JP3104704B1 (ja) Ni−W合金の連続めっき方法
JP7291858B2 (ja) 金属化すべきプラスチック部品を調製するための電解処理装置及びプラスチック部品をエッチングする方法
JPS586792B2 (ja) アエンイオンノメツキヨクヘノキヨウキユウホウホウ
US1273432A (en) Composition for electrolytes for electrical etching.
US20230015534A1 (en) Electroplating composition and method for depositing a chromium coating on a substrate
JP2022142176A (ja) 電気ニッケルめっき液および電気ニッケルめっき方法
JP2005344208A (ja) 無電解ニッケルめっき液の処理方法
JPH09111492A (ja) 金属板の連続電気メッキ法
JP5817403B2 (ja) めっき用陽極材、めっき用陽極材の製造方法
KR20210131832A (ko) 합금도금층을 포함한 금속판 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020540921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932612

Country of ref document: EP

Kind code of ref document: A1