WO2020162411A1 - ポリアミド酸およびポリイミド、光学フィルムおよび表示装置、ならびにそれらの製造方法 - Google Patents
ポリアミド酸およびポリイミド、光学フィルムおよび表示装置、ならびにそれらの製造方法 Download PDFInfo
- Publication number
- WO2020162411A1 WO2020162411A1 PCT/JP2020/003969 JP2020003969W WO2020162411A1 WO 2020162411 A1 WO2020162411 A1 WO 2020162411A1 JP 2020003969 W JP2020003969 W JP 2020003969W WO 2020162411 A1 WO2020162411 A1 WO 2020162411A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyimide
- general formula
- polyamic acid
- solution
- optical film
- Prior art date
Links
- 229920001721 polyimide Polymers 0.000 title claims abstract description 153
- 239000004642 Polyimide Substances 0.000 title claims abstract description 151
- 239000012788 optical film Substances 0.000 title claims abstract description 82
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 239000004952 Polyamide Substances 0.000 title claims description 4
- 229920002647 polyamide Polymers 0.000 title claims description 4
- 239000002253 acid Substances 0.000 title 1
- 239000010408 film Substances 0.000 claims abstract description 76
- 239000003960 organic solvent Substances 0.000 claims abstract description 43
- -1 tetracarboxylic acid dianhydride Chemical class 0.000 claims abstract description 32
- 229920005575 poly(amic acid) Polymers 0.000 claims description 97
- 239000000758 substrate Substances 0.000 claims description 77
- 239000011521 glass Substances 0.000 claims description 53
- 125000000962 organic group Chemical group 0.000 claims description 43
- 239000002904 solvent Substances 0.000 claims description 31
- 150000004985 diamines Chemical class 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 17
- 239000011347 resin Substances 0.000 claims description 14
- 229920005989 resin Polymers 0.000 claims description 14
- 229910001220 stainless steel Inorganic materials 0.000 claims description 10
- 239000010935 stainless steel Substances 0.000 claims description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 claims description 6
- 125000006158 tetracarboxylic acid group Chemical group 0.000 claims description 6
- 238000001035 drying Methods 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 239000002202 Polyethylene glycol Substances 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000012643 polycondensation polymerization Methods 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 4
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 150000001408 amides Chemical class 0.000 claims description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- 150000002596 lactones Chemical class 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 2
- 239000004962 Polyamide-imide Substances 0.000 claims description 2
- 239000004697 Polyetherimide Substances 0.000 claims description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 239000004210 ether based solvent Substances 0.000 claims description 2
- 125000005487 naphthalate group Chemical group 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229920002312 polyamide-imide Polymers 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920002530 polyetherether ketone Polymers 0.000 claims description 2
- 229920001601 polyetherimide Polymers 0.000 claims description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 2
- 229920012287 polyphenylene sulfone Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 55
- 230000015572 biosynthetic process Effects 0.000 abstract description 37
- 150000004984 aromatic diamines Chemical class 0.000 abstract description 8
- 239000000243 solution Substances 0.000 description 143
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 54
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 49
- 238000005259 measurement Methods 0.000 description 48
- 238000003756 stirring Methods 0.000 description 48
- 238000010438 heat treatment Methods 0.000 description 41
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 39
- 239000012299 nitrogen atmosphere Substances 0.000 description 38
- 239000000203 mixture Substances 0.000 description 33
- 238000003786 synthesis reaction Methods 0.000 description 30
- 229910052757 nitrogen Inorganic materials 0.000 description 28
- 239000012044 organic layer Substances 0.000 description 28
- 238000005227 gel permeation chromatography Methods 0.000 description 27
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 25
- 238000011085 pressure filtration Methods 0.000 description 25
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 24
- 230000009102 absorption Effects 0.000 description 23
- 238000010521 absorption reaction Methods 0.000 description 23
- 238000002329 infrared spectrum Methods 0.000 description 23
- 125000005462 imide group Chemical group 0.000 description 20
- 239000012295 chemical reaction liquid Substances 0.000 description 19
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 18
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 18
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 13
- JVTSHOJDBRTPHD-UHFFFAOYSA-N 2,2,2-trifluoroacetaldehyde Chemical compound FC(F)(F)C=O JVTSHOJDBRTPHD-UHFFFAOYSA-N 0.000 description 12
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 12
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 125000000217 alkyl group Chemical group 0.000 description 11
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 10
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 10
- QQGYZOYWNCKGEK-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)oxy]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(OC=2C=C3C(=O)OC(C3=CC=2)=O)=C1 QQGYZOYWNCKGEK-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 230000000704 physical effect Effects 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- UKJLNMAFNRKWGR-UHFFFAOYSA-N cyclohexatrienamine Chemical group NC1=CC=C=C[CH]1 UKJLNMAFNRKWGR-UHFFFAOYSA-N 0.000 description 7
- 238000000605 extraction Methods 0.000 description 7
- 229910052731 fluorine Inorganic materials 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 238000005160 1H NMR spectroscopy Methods 0.000 description 6
- ZYEDGEXYGKWJPB-UHFFFAOYSA-N 4-[2-(4-aminophenyl)propan-2-yl]aniline Chemical compound C=1C=C(N)C=CC=1C(C)(C)C1=CC=C(N)C=C1 ZYEDGEXYGKWJPB-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 150000008065 acid anhydrides Chemical class 0.000 description 6
- 125000003545 alkoxy group Chemical group 0.000 description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 6
- 238000004817 gas chromatography Methods 0.000 description 6
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 6
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 6
- 239000005416 organic matter Substances 0.000 description 6
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 6
- 235000017557 sodium bicarbonate Nutrition 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000004580 weight loss Effects 0.000 description 5
- BEKFRNOZJSYWKZ-UHFFFAOYSA-N 4-[2-(4-aminophenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl]aniline Chemical compound C1=CC(N)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(N)C=C1 BEKFRNOZJSYWKZ-UHFFFAOYSA-N 0.000 description 4
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 4
- 0 CCC(C)N(C*=O)C(*C(N(*)C=O)=O)=O Chemical compound CCC(C)N(C*=O)C(*C(N(*)C=O)=O)=O 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 125000001153 fluoro group Chemical group F* 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- BDTAGYJIJFELQQ-UHFFFAOYSA-N 4-[1-(4-amino-3-methylphenyl)-2,2,2-trifluoroethyl]-2-methylaniline Chemical compound FC(C(C1=CC(=C(C=C1)N)C)C1=CC(=C(C=C1)N)C)(F)F BDTAGYJIJFELQQ-UHFFFAOYSA-N 0.000 description 3
- RNBWYKOYPKCZRK-UHFFFAOYSA-N 4-[1-(4-aminophenyl)-2,2,2-trifluoroethyl]aniline Chemical compound C1=CC(N)=CC=C1C(C(F)(F)F)C1=CC=C(N)C=C1 RNBWYKOYPKCZRK-UHFFFAOYSA-N 0.000 description 3
- NVKGJHAQGWCWDI-UHFFFAOYSA-N 4-[4-amino-2-(trifluoromethyl)phenyl]-3-(trifluoromethyl)aniline Chemical compound FC(F)(F)C1=CC(N)=CC=C1C1=CC=C(N)C=C1C(F)(F)F NVKGJHAQGWCWDI-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- VVAKEQGKZNKUSU-UHFFFAOYSA-N 2,3-dimethylaniline Chemical group CC1=CC=CC(N)=C1C VVAKEQGKZNKUSU-UHFFFAOYSA-N 0.000 description 2
- CDULGHZNHURECF-UHFFFAOYSA-N 2,3-dimethylaniline 2,4-dimethylaniline 2,5-dimethylaniline 2,6-dimethylaniline 3,4-dimethylaniline 3,5-dimethylaniline Chemical group CC1=CC=C(N)C(C)=C1.CC1=CC=C(C)C(N)=C1.CC1=CC(C)=CC(N)=C1.CC1=CC=C(N)C=C1C.CC1=CC=CC(N)=C1C.CC1=CC=CC(C)=C1N CDULGHZNHURECF-UHFFFAOYSA-N 0.000 description 2
- JJYPMNFTHPTTDI-UHFFFAOYSA-N 3-methylaniline Chemical compound CC1=CC=CC(N)=C1 JJYPMNFTHPTTDI-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- BPBNMWDFXWDRAR-UHFFFAOYSA-N 4-[1-(4-amino-2,5-dimethylphenyl)-2,2,2-trifluoroethyl]-2,5-dimethylaniline Chemical compound FC(C(C1=C(C=C(C(=C1)C)N)C)C1=C(C=C(C(=C1)C)N)C)(F)F BPBNMWDFXWDRAR-UHFFFAOYSA-N 0.000 description 2
- OOHONKQNZZDJPX-UHFFFAOYSA-N 4-[1-(4-amino-2-methylphenyl)-2,2,2-trifluoroethyl]-3-methylaniline Chemical group FC(C(C1=C(C=C(C=C1)N)C)C1=C(C=C(C=C1)N)C)(F)F OOHONKQNZZDJPX-UHFFFAOYSA-N 0.000 description 2
- SYWCQLZCWGGTKG-UHFFFAOYSA-N 4-[1-(4-amino-3,5-dimethylphenyl)-2,2,2-trifluoroethyl]-2,6-dimethylaniline Chemical compound FC(C(C1=CC(=C(C(=C1)C)N)C)C1=CC(=C(C(=C1)C)N)C)(F)F SYWCQLZCWGGTKG-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- QKKAGLHOWNYWEJ-UHFFFAOYSA-N FC(C(C1=C(C(=C(C=C1)N)C)C)C1=C(C(=C(C=C1)N)C)C)(F)F Chemical compound FC(C(C1=C(C(=C(C=C1)N)C)C)C1=C(C(=C(C=C1)N)C)C)(F)F QKKAGLHOWNYWEJ-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000013039 cover film Substances 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- JBFHTYHTHYHCDJ-UHFFFAOYSA-N gamma-caprolactone Chemical compound CCC1CCC(=O)O1 JBFHTYHTHYHCDJ-UHFFFAOYSA-N 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- RNVCVTLRINQCPJ-UHFFFAOYSA-N o-toluidine Chemical compound CC1=CC=CC=C1N RNVCVTLRINQCPJ-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000007363 ring formation reaction Methods 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical group FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical compound CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 1
- 229940075142 2,5-diaminotoluene Drugs 0.000 description 1
- VOWZNBNDMFLQGM-UHFFFAOYSA-N 2,5-dimethylaniline Chemical group CC1=CC=C(C)C(N)=C1 VOWZNBNDMFLQGM-UHFFFAOYSA-N 0.000 description 1
- UFFBMTHBGFGIHF-UHFFFAOYSA-N 2,6-dimethylaniline Chemical group CC1=CC=CC(C)=C1N UFFBMTHBGFGIHF-UHFFFAOYSA-N 0.000 description 1
- OBCSAIDCZQSFQH-UHFFFAOYSA-N 2-methyl-1,4-phenylenediamine Chemical compound CC1=CC(N)=CC=C1N OBCSAIDCZQSFQH-UHFFFAOYSA-N 0.000 description 1
- BDSPLIQKGRTNCG-UHFFFAOYSA-N 3,4-dimethylcyclohexa-1,5-diene-1,3-diamine Chemical group CC1C=CC(N)=CC1(C)N BDSPLIQKGRTNCG-UHFFFAOYSA-N 0.000 description 1
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- QGLBZNZGBLRJGS-UHFFFAOYSA-N Dihydro-3-methyl-2(3H)-furanone Chemical compound CC1CCOC1=O QGLBZNZGBLRJGS-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- MMCPOSDMTGQNKG-UHFFFAOYSA-N anilinium chloride Chemical compound Cl.NC1=CC=CC=C1 MMCPOSDMTGQNKG-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 125000000524 functional group Chemical class 0.000 description 1
- 125000004438 haloalkoxy group Chemical group 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 125000002510 isobutoxy group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])O* 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- SKTCDJAMAYNROS-UHFFFAOYSA-N methoxycyclopentane Chemical compound COC1CCCC1 SKTCDJAMAYNROS-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 125000006606 n-butoxy group Chemical group 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 238000001392 ultraviolet--visible--near infrared spectroscopy Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1039—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/26—Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
- C07C17/263—Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
- C07C17/266—Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions of hydrocarbons and halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/26—Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
- C07C17/32—Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by introduction of halogenated alkyl groups into ring compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C201/00—Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
- C07C201/06—Preparation of nitro compounds
- C07C201/12—Preparation of nitro compounds by reactions not involving the formation of nitro groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C205/00—Compounds containing nitro groups bound to a carbon skeleton
- C07C205/13—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups
- C07C205/20—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C07C205/21—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to carbon atoms of six-membered aromatic rings having nitro groups and hydroxy groups bound to carbon atoms of the same non-condensed six-membered aromatic ring
- C07C205/22—Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to carbon atoms of six-membered aromatic rings having nitro groups and hydroxy groups bound to carbon atoms of the same non-condensed six-membered aromatic ring having one nitro groups bound to the ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/68—Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
- C07C209/78—Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton from carbonyl compounds, e.g. from formaldehyde, and amines having amino groups bound to carbon atoms of six-membered aromatic rings, with formation of methylene-diarylamines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/43—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C211/54—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
- C07C211/56—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C213/00—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
- C07C213/08—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C215/00—Compounds containing amino and hydroxy groups bound to the same carbon skeleton
- C07C215/74—Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
- C07C215/76—Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton of the same non-condensed six-membered aromatic ring
- C07C215/80—Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton of the same non-condensed six-membered aromatic ring containing at least two amino groups bound to the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C22/00—Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
- C07C22/02—Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings
- C07C22/04—Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings
- C07C22/08—Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/11—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
- C07C37/20—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/62—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by introduction of halogen; by substitution of halogen atoms by other halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C39/00—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
- C07C39/12—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
- C07C39/15—Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
- C07C39/16—Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/18—Preparation of ethers by reactions not forming ether-oxygen bonds
- C07C41/30—Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C43/00—Ethers; Compounds having groups, groups or groups
- C07C43/02—Ethers
- C07C43/20—Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
- C07C43/225—Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/63—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of halogen; by substitution of halogen atoms by other halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1003—Preparatory processes
- C08G73/1007—Preparatory processes from tetracarboxylic acids or derivatives and diamines
- C08G73/1028—Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1003—Preparatory processes
- C08G73/1007—Preparatory processes from tetracarboxylic acids or derivatives and diamines
- C08G73/1028—Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
- C08G73/1032—Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1075—Partially aromatic polyimides
- C08G73/1078—Partially aromatic polyimides wholly aromatic in the diamino moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/12—Unsaturated polyimide precursors
- C08G73/123—Unsaturated polyimide precursors the unsaturated precursors comprising halogen-containing substituents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2379/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
Definitions
- the present disclosure relates to a polyamic acid and a polyimide, an optical film and a display device, and a manufacturing method thereof.
- cover films may be attached to protect the transparent substrate on the display surface.
- an optical film having high light transmittance, non-coloring property, and high scratch resistance is required.
- Polyimide has excellent heat resistance, mechanical properties, and electrical properties. Therefore, polyimide is widely used as a molding material or a composite material in various applications such as electrical/electronic material applications and optical material applications.
- polyimide is usually colored from yellow to brown, and it is hard to say that it is suitable for a cover film or a substrate for a display device that requires transparency.
- the coloring of the polyimide is due to its chemical structure, and the formation of the charge transfer complex causes coloring in the visible light region.
- fluorine into the polyimide, impart flexibility to the main chain, introduce bulky side chains and the like.
- Patent Documents 1 and 2 disclose a polyimide containing a hexafluoroisopropanol group (hereinafter sometimes referred to as an HFIP group) as a fluorine-containing polyimide.
- the monomer raw materials for polymerizing the fluorine-containing polyimide those that are easily available are each represented by the following formula, an aromatic diamine having a hexafluoroisopropylidene group, a tetracarboxylic dianhydride, and trifluoro.
- aromatic diamines that have a methyl group.
- the types of these monomers are limited, and because the chemical structure of polyimide is limited, it has suitable film forming properties when used as a substrate for optical films and display devices, and has excellent transparency. Also, there is a problem that it is difficult to combine heat resistance.
- the linkage skeleton represents a chemical structure of a functional group in which benzene rings containing at least an amino group among aromatic diamines are linked).
- An aromatic diamine having a 1,1,1-trifluoro-2,2-ethanediyl group (hereinafter sometimes referred to as “(—C(CF 3 )H—) group”) and tetracarboxylic dianhydride
- Polyimide obtained by the reaction with a substance is easy to dissolve in an organic solvent and has excellent film forming property, and therefore, when such a polyimide is used as an optical film and a display device, transparency and heat resistance are improved. It was found that the obtained article can be obtained.
- the transparency suitable for manufacturing an optical film and a display device can be further improved. It was found that an excellent polyimide can be obtained, and the present disclosure was completed.
- a polyimide having a repeating unit represented by the general formula [1] (excluding a polyimide having a repeating unit represented by the general formula [3] in the general formula [1]).
- R 1 is a divalent organic group represented by general formula [2]
- R 2 is a tetravalent organic group:
- n is an integer of 0 to 4 and each R 3 independently represents a monovalent organic group.
- a polyamic acid having a repeating unit represented by the general formula [1A] (excluding a polyamic acid having a repeating unit represented by the following general formula [3A] in the general formula [1A] is excluded. ) Is provided.
- R 1 is a divalent organic group represented by general formula [2]
- R 2 is a tetravalent organic group:
- n is an integer of 0 to 4 and each R 3 independently represents a monovalent organic group.
- a polyimide solution containing the above polyimide and an organic solvent.
- a polyamic acid solution containing the above polyamic acid and an organic solvent.
- an optical film including the above polyimide is provided.
- an optical film containing the above polyamic acid is provided.
- an optical film containing the above polyimide and the above polyamic acid.
- a display device including the optical film.
- a polyimide containing a repeating unit represented by the general formula [1] (however, in the general formula [1], the polyimide of the repeating unit represented by the general formula [3] is excluded) is produced.
- R 1 is a divalent organic group represented by general formula [2]
- R 2 is a tetravalent organic group: (In the general formula [2], n is an integer of 0 to 4 and each R 3 independently represents a monovalent organic group.)]
- the method is represented by the general formula [2A]: [In the general formula [2A], R 3 's each independently represent a monovalent organic group, and n represents 0 to 4.
- a method for producing a polyimide which comprises a step of polycondensing a tetracarboxylic acid dianhydride represented by the formula (1) to obtain the polyimide having a repeating unit represented by the general formula [1].
- a method of manufacturing an optical film or a display device comprising: A step of applying the polyimide solution or the polyamic acid solution to a supporting substrate, Removing the solvent contained in the polyimide solution or the polyamic acid solution, followed by drying, to produce a resin film containing a polyimide or polyamide,
- a method for manufacturing an optical film or a display device which comprises a step of heat-treating and curing the resin film.
- polyimide The polyimide of this embodiment has a repeating unit represented by the following general formula [1].
- R 1 is a divalent organic group represented by general formula [2]
- R 2 is a tetravalent organic group:
- n is an integer of 0 to 4 and each R 3 independently represents a monovalent organic group.
- the tetravalent organic group according to R 2 may contain an organic group selected from the group consisting of an alicyclic group, an aromatic ring, and an alkylene ring. Further, R 2 may contain a fluorine atom, a chlorine atom, an oxygen atom, a sulfur atom or a nitrogen atom in the structure. When the structure has a hydrogen atom, part or all of the hydrogen atom may be substituted with an alkyl group, a fluoroalkyl group, a carboxyl group, a hydroxy group or a cyano group.
- n is an integer of 0 to 4 and each R 3 independently represents a monovalent organic group.
- the monovalent organic group is not limited, for example, an alkyl group, an alkoxy group, a cycloalkyl group, an aryl group, an alkenyl group, an alkynyl group, an aryloxy group, an amino group, an alkylamino group, an arylamino group, a cyano group, Preferable examples include nitro group, silyl group, halogeno group (eg, fluoro group) and the like, which may have a substituent such as a fluorine atom and a carboxyl group, and among them, an alkyl group, an alkoxy group and a fluorinated alkyl group.
- halogeno group eg, fluoro group
- a group for example, a trifluoromethyl group
- a halogeno group for example, a fluoro group
- a nitro group are more preferable.
- the alkyl group as R 3 is not limited, but is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, among which n-butyl group, s-butyl group, isobutyl group, t-butyl group, n -Propyl group, i-propyl group, ethyl group and methyl group are preferable, and ethyl group and methyl group are particularly preferable.
- the alkoxy group as R 3 is not limited, but is preferably a linear or branched alkoxy group having 1 to 6 carbon atoms, and among them, an n-butoxy group, an s-butoxy group, an isobutoxy group, a t-butoxy group. , N-propoxy group, i-propoxy group, ethoxy group and methoxy group are preferable, and ethoxy group and methoxy group are particularly preferable.
- the alkyl group or alkoxy group may be one in which, for example, a halogen atom, an alkoxy group, and a haloalkoxy group are substituted on any carbon in any number and in any combination.
- R 3 's in the aryl compound when the number of R 3 's in the aryl compound is 2 or more, two or more R 3's are linked to each other to form a saturated or unsaturated monocyclic or polycyclic cyclic group having 3 to 10 carbon atoms. A group may be formed.
- the number (n) of R 3 bonded to the general formula [2] is an integer of 0 to (5-m), preferably an integer of 0 to 2.
- the type of R 3 in the monovalent organic group is an alkyl group
- it is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, among which n-butyl group, s- A butyl group, an isobutyl group, a t-butyl group, an n-propyl group, an i-propyl group, an ethyl group and a methyl group are preferable, and an ethyl group and a methyl group are particularly preferable.
- Examples of the divalent organic group represented by the general formula [2] include any of the following divalent organic groups.
- R 2 is preferably any one of the following tetravalent organic groups.
- the polyimide of the present embodiment having a repeating unit represented by the general formula [1] is particularly preferably a polyimide having a structural unit represented by any of the following formulas.
- the weight average molecular weight is not particularly limited.
- the weight average molecular weight of the polyimide is 1,000 or more and 1,000,000 or less, and particularly preferably 30,000 or more and 200,000 or less. If the amount is less than 1000 or more than 1,000,000, the performance of the polyimide as a substrate and the state of film formation on the base material may be affected.
- a weight average molecular weight is a value obtained by measuring it by gel permeation chromatography (hereinafter sometimes referred to as “GPC”) and converting it to polystyrene using a standard polystyrene calibration curve.
- polyamic acid The polyamic acid (polyamic acid) of this embodiment has a repeating unit represented by the following general formula [1A].
- R 1 is a divalent organic group represented by general formula [2]
- R 2 is a tetravalent organic group: (In the general formula [2], n is an integer of 0 to 4 and R 3's each independently represent a monovalent organic group.)]
- n is an integer of 0 to 4
- R 3's each independently represent a monovalent organic group.
- R 1 and R 2 are synonymous with the definitions of R 1 and R 2 of the polyimide containing the repeating unit represented by the general formula [1], and therefore description thereof is omitted.
- the polyamic acid of this embodiment having a repeating unit represented by the general formula [1A] is particularly preferably a polyamic acid having a structural unit represented by any of the following formulas.
- the weight average molecular weight of the polyamic acid according to this embodiment is not particularly limited. However, when the polyamic acid is used as an optical film and a substrate for a display device, the polyamic acid has a weight average molecular weight of 1,000 or more and 1,000,000 or less, and particularly preferably 30,000 or more and 500,000 or less. If the amount is less than 1000 or more than 1,000,000, the performance of the polyimide as a substrate and the state of film formation on the base material may be affected. In the present specification,
- the polyamic acid and the polyimide according to this embodiment may be used alone, or the polyimide and the polyamic acid may be mixed.
- the method for producing the polyamic acid (the above formula [1A]) and the polyimide (the above formula [1]) according to the present embodiment is not particularly limited.
- a diamine represented by the following general formula [2A] A production method by reaction with a tetracarboxylic acid dianhydride represented by the following general formula [4] can be mentioned.
- An example of the production method is a method in which the diamine and the tetracarboxylic dianhydride are melted at 150° C. or higher.
- a polyamic acid obtained by polycondensing these raw material compounds in an organic solvent is dehydrated and ring-closed to produce a polyimide according to the present embodiment (the above formula [1]).
- This polycondensation reaction is preferably carried out at ⁇ 20 to 80° C., and the diamine and the tetracarboxylic dianhydride are preferably reacted in a 1:1 ratio in terms of molar ratio.
- R 3's each independently represent a monovalent organic group, and n represents 0 to 4.
- R 2 has the same meaning as R 2 in the general formula [1].
- R 3 is the same as R 3 in the divalent organic group represented by the general formula [2].
- the type of R 3 is not limited, but for example, when R 3 is an alkyl group, it is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, among which n-butyl group, s-butyl group, isobutyl group.
- a group, a t-butyl group, an n-propyl group, an i-propyl group, an ethyl group and a methyl group are preferable, and an ethyl group and a methyl group are particularly preferable.
- Examples of the diamine represented by the general formula [2A] when R 3 is a methyl group include diamines having the following structures.
- the tetracarboxylic acid dianhydride represented by the general formula [4] is particularly preferably one of the following.
- Examples of other diamine compounds that can be used in combination include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, and 4-diamino-m because of easy availability.
- -Xylene, 2,4-diaminoxylene, 2,2-bis(4-(4-aminophenyl)hexafluoropropane, or 2,2'-bis(trifluoromethyl)benzidine A small amount of 2,2-bis(4-(4-aminophenyl)hexafluoropropane is particularly preferable. These may be used alone or in combination of two or more kinds.
- the organic solvent that can be used in the condensation polymerization reaction is not particularly limited as long as the raw material compound is dissolved, and examples thereof include amide-based solvents, ether-based solvents, aromatic hydrocarbon-based solvents, halogen-based solvents, lactone-based solvents and the like.
- the polyimide according to the present embodiment (the above formula [1]) is obtained by further dehydrating and ring-closing the polyamic acid (the above formula [1A]) obtained by the condensation polymerization reaction.
- This dehydration ring closure reaction is performed under conditions such as a heating method and a chemical method that promote cyclization.
- a heating method polyamic acid immediately after polymerization is imidized by heating at a high temperature of 150 to 350° C., and in the chemical method, a base such as pyridine or triethylamine and acetic anhydride are mixed with diamine as a raw material at room temperature (0 to 50° C.).
- the polyimide solution according to the present embodiment can be obtained by imidization by adding 0.1 molar equivalent or more and less than 10 equivalents.
- the concentration of polyimide in this solution is preferably 5% by mass or more and 50% by mass or less. If it is less than 5% by mass, practicality and efficiency may be affected, and if it exceeds 50% by mass, solubility may be affected. Furthermore, it is preferably 10% by mass or more and 40% by mass or less.
- the solution of the polyimide and the polyamic acid according to the embodiment can be used as they are for the production of the optical film of the present embodiment. Further, the residual monomer contained in the solution of the polyimide and polyamic acid according to the present embodiment, for the purpose of removing the low molecular weight material, in a poor solvent such as water or alcohol, a solution of the polyimide and polyamic acid according to the present embodiment , The polyimide and polyamic acid are precipitated, isolated and purified, and then adjusted again while being dissolved in an organic solvent to have the above concentration, and the adjusted solution may be used for the production of the optical film of the present embodiment. Good.
- the organic solvent is not particularly limited as long as the polyimide and the polyamic acid according to the present embodiment are dissolved, and examples thereof include the same kinds of organic solvents as those listed as the organic solvent that can be used in the condensation polymerization reaction, They may be used alone or as a mixed solvent of two or more kinds.
- the optical film containing polyimide and the substrate for a display device can be obtained by heating the solution of the polyimide and the polyamic acid. Specifically, a step of applying a solution of polyimide and polyamic acid according to the present embodiment to a supporting substrate (application step), a step of removing and drying a solvent (solvent removing step), and further heating the obtained resin film. It can be obtained through a treatment step (heating step).
- the coating method used in the coating step is not particularly limited, and a known method can be adopted.
- Known coating devices such as a spin coater, a bar coater, a doctor blade coater, an air knife coater, a roll coater, a rotary coater, a flow coater, a die coater, and a lip coater can be appropriately used depending on a desired coating thickness, resin viscosity, and the like.
- the supporting substrate is not particularly limited, but an inorganic substrate or an organic substrate is suitable.
- glass, silicon wafer, stainless steel, alumina, copper, nickel, etc. polyethylene terephthalate, polyethylene glycol terephthalate, polyethylene glycol naphthalate, polycarbonate, polyimide, polyamideimide, polyetherimide, polyetheretherketone, polypropylene, polyether Examples thereof include sulfone, polyethylene terephthalate, polyphenylene sulfone, polyphenylene sulfide and the like.
- the thickness of the film according to the present embodiment can be appropriately adjusted by the concentration of the resin component in the solution of the polyimide and the polyamic acid according to the present embodiment, and is usually 1 ⁇ m or more and 1000 ⁇ m or less. It is preferably 5 ⁇ m or more and 500 ⁇ m or less.
- the coating film is thinner than 1 ⁇ m, it is difficult to obtain sufficient strength of the substrate after molding, and if it is thicker than 1000 ⁇ m, defects such as cissing, dents and cracks of the substrate occur, which makes it difficult to obtain a uniform substrate.
- the solvent is removed and dried from the coating film, and the dried coating film (resin film) is heat-treated and cured, followed by a heating process to obtain an optical film. Is obtained.
- the temperature at which the solvent is removed/dried in the solvent removing step depends on the type of the organic solvent in which the polyimide and the polyamic acid according to the present embodiment are dissolved, but is preferably 50° C. or higher and 250° C. or lower, and 80° C. As described above, 200°C or lower is more preferable. If the temperature is lower than 50° C., the drying is insufficient, and if the temperature is higher than 250° C., rapid solvent evaporation occurs, which causes defects such as cissing, dents, and cracks, and does not result in a uniform film.
- the resin film can be cured by heat treatment at a high temperature to obtain the optical film of the present embodiment.
- the temperature at which the resin film is heat-treated and cured is preferably 150° C. or higher and 400° C. or lower, and more preferably 200° C. or higher and 300° C. or lower. If it is lower than 150°C, a sufficient imidization ratio may not be obtained, and if it is higher than 400°C, defects such as cracks may occur in the obtained substrate.
- the heating step is preferably performed using an apparatus such as an inert gas oven, a hot plate, a box dryer, or a conveyor dryer, but is not limited to the use of these apparatuses.
- the heating step is preferably performed under an inert gas stream from the viewpoint of preventing oxidation of the resin film and removing the solvent.
- the inert gas include nitrogen and argon.
- the flow rate of the inert gas is preferably 1 L/min or more and 5 L/min or less. If the flow rate of the inert gas is slower than 1 L/min, solvent removal/curing of the resin film may become insufficient, and if it is faster than 5 L/min, only the surface of the resin film may be dried, causing cracks and the like. Sometimes.
- the polyimide film is peeled off from the supporting substrate after the heating step, and the polyimide substrate is removed.
- the peeling process is required.
- the peeling step can be performed after cooling from room temperature (20° C.) to about 400° C. after the heating step.
- a releasing agent may be applied to the supporting substrate in order to facilitate the peeling.
- the release agent at that time is not particularly limited, but a silicon-based or fluorine-based release agent can be used.
- the polyimide having a (—C(CF 3 )H—) group of this embodiment has molding processability, excellent transparency, and heat resistance. Furthermore, the polyimide containing a methyl group in addition to the (—C(CF 3 )H—) group shows even better transparency.
- the polyimide has high solubility in a specific organic solvent, a polyimide solution can be easily prepared, and a desired film shape can be obtained. Can be molded.
- the polyimide having a (-C (CF 3) H-) group in the present embodiment the aromatic diamine as a raw material (-C (CF 3) H-) it is possible to contain the group Since it has high flexibility and excellent mechanical strength as compared with a conventional polyimide containing a fluorine-containing polyimide, it is possible to design a structure for improving the film strength.
- the light transmittance at a wavelength of 400 nm to 780 nm is preferably 50% or more, and more preferably 70% or more in a film thickness of 20 to 70 ⁇ m.
- the heat resistance of the optical film and the substrate for a display device of the present embodiment uses the glass transition temperature (hereinafter sometimes referred to as Tg) and the 5% weight loss temperature (hereinafter sometimes referred to as Td 5 ) as indexes. .. Tg is preferably 280° C. or higher from the viewpoint of heat resistance, and more preferably 300° C. or higher from the viewpoint of being able to cope with high process temperatures. Td 5 is preferably 300°C or higher, more preferably 350°C or higher. When Td 5 is lower than 300° C., it causes deterioration of the substrate in the device manufacturing process.
- Weight average molecular weight (Mw) and number average molecular weight (Mn) The weight average molecular weight and the number average molecular weight were measured using gel permeation chromatography (GPC, HLC-8320 manufactured by Tosoh Corporation). Tetrahydrofuran (THF) was used as the mobile phase, and TSKgel Super HZM-H was used as the column.
- the mobile phase was N,N-dimethylformamide, 30 mmol/L lithium bromide, 60 mmol/L phosphoric acid, and the column was TSKgel ⁇ -M, TSKgel ⁇ -2500.
- the heat resistance was evaluated by measuring the glass transition temperature and the 5% weight loss temperature (Td 5 ).
- the glass transition temperature (Tg) is measured by a differential scanning calorimeter (manufactured by Hitachi High-Tech Science Co., Ltd., model name DSC7000), and the temperature is raised to 400° C. at a temperature rising rate of 10° C./min. After the temperature was lowered to -40°C at °C/min, the differential scanning calorimetry was performed again under the condition that the temperature was raised to 400°C at the heating rate of 10°C/min, and the differential scanning calorific value change during the second heating was maximized. It is the temperature when it became.
- the 5% weight loss temperature (Td 5 ) was measured by thermogravimetric analysis using a differential thermogravimetric simultaneous measurement device (manufactured by Hitachi High-Tech Science Co., Ltd., model name STA7200) at a heating rate of 10°C/min. This is the temperature at which there was a 5% weight loss relative to the initial weight.
- the conversion rate of aniline was 96%.
- the organic layer recovered by the extraction operation was washed with 50 g of water and further with 50 g of saturated aqueous sodium hydrogen carbonate, and then the organic layer was recovered by a liquid separation operation.
- the organic layer was concentrated by an evaporator to obtain the target product 1,1,1-trifluoro-2,2-bis(4-aminophenyl)ethane (sometimes referred to as “BIS-A-EF”) in a yield. It was obtained with 93% and an isomer ratio of 92/8 (2,2-bis(4-aminophenyl) form/unidentified).
- the conversion rate of 2-toluidine was 98%.
- the organic layer recovered by the extraction operation was washed with 150 g of water and further with 150 g of saturated aqueous sodium hydrogen carbonate, and then the organic layer was recovered by a liquid separation operation.
- the organic layer was concentrated by an evaporator to obtain the desired product, 1,1,1-trifluoro-2,2-bis(3-methyl-4-aminophenyl)ethane of the formula [3], in a yield of 96% and an isomer. Obtained with a ratio of 96/4.
- a 100 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor was placed in a fluoral-containing mixture (hydrogen fluoride: 44 wt. %, hydrogen chloride: 1% by weight, organic matter: 55% by weight) 5.3 g (fluoral: 30 mmol, hydrogen fluoride: 0.12 mol), hydrogen fluoride 9.6 g (0.48 mol), 3-toluidine 6 0.5 g (60 mmol) was weighed, heated in an oil bath at 150° C., and reacted at an absolute pressure of 1.3 MPa for 5 hours.
- the reaction solution was poured into 100 g of ice, 70 g of a 48% aqueous potassium hydroxide solution was added to neutralize, and an organic substance was extracted with 100 g of ethyl acetate.
- the conversion rate of 3-toluidine was 83%.
- the organic layer recovered by the extraction operation was washed with 50 g of water and further with 50 g of saturated aqueous sodium hydrogen carbonate, and then the organic layer was recovered by a liquid separation operation.
- the organic layer is concentrated by an evaporator and the target product is 1,1,1-trifluoro-2,2-bis(2-methyl-4-aminophenyl)ethane (referred to as "BIS-2-AT-EF".
- the reaction solution was poured into 100 g of ice, 70 g of a 48% aqueous potassium hydroxide solution was added to neutralize, and an organic substance was extracted with 100 g of ethyl acetate.
- the conversion rate of 2,6-xylidine was 99%.
- the organic layer recovered by the extraction operation was washed with 50 g of water and further with 50 g of saturated aqueous sodium hydrogen carbonate, and then the organic layer was recovered by a liquid separation operation.
- a 100 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor was placed in a fluoral-containing mixture (hydrogen fluoride: 44 wt. %, hydrogen chloride: 1% by weight, organic matter: 55% by weight) and 5.3 g (fluoral: 30 mmol, hydrogen fluoride: 0.12 mol) and hydrogen fluoride: 9.6 g (0.48 mol): 2,5- 7.3 g (60 mmol) of xylidine was weighed, heated in an oil bath at 150° C., and reacted at an absolute pressure of 1.3 MPa for 5 hours.
- the reaction solution was poured into 100 g of ice, 70 g of a 48% aqueous potassium hydroxide solution was added to neutralize, and an organic substance was extracted with 100 g of ethyl acetate.
- the conversion rate of 2,5-xylidine was 98%.
- the organic layer recovered by the extraction operation was washed with 50 g of water and further with 50 g of saturated aqueous sodium hydrogen carbonate, and then the organic layer was recovered by a liquid separation operation.
- the organic layer was concentrated by an evaporator and the target substance, 1,1,1-trifluoro-2,2-bis(2,5-dimethyl-4-aminophenyl)ethane (“BIS-2,5-AX-EF” May be expressed as “.”) with a yield of 94% and an isomer ratio of 99/1 (2,2-bis(2,5-dimethyl-4-aminophenyl) form/unidentified).
- a 100 mL stainless steel autoclave reactor equipped with a pressure gauge, a thermometer protection tube, an insertion tube, and a stirring motor was placed in a fluoral-containing mixture (hydrogen fluoride: 48 wt. %, hydrogen chloride: less than 0.1% by weight, organic matter: 52% by weight, 15.5 g (fluoral: 82 mmol, hydrogen fluoride: 0.37 mol) and hydrogen fluoride 12.4 g (0.62 mol), 2 , 3-Xylidine (20 g, 165 mmol) was weighed, heated in an oil bath at 150° C., and reacted at an absolute pressure of 0.55 MPa for 18 hours.
- the reaction solution was poured into 100 g of ice, 116 g of a 48% potassium hydroxide aqueous solution was added to neutralize, and an organic substance was extracted with 100 g of ethyl acetate.
- the conversion rate of 2,3-xylidine was 90%.
- the organic layer recovered by the extraction operation was washed with 50 g of water and further with 50 g of saturated aqueous sodium hydrogen carbonate, and then the organic layer was recovered by a liquid separation operation.
- the organic layer was concentrated with an evaporator, and the target 1,1,1-trifluoro-2,2-bis(2,3-dimethyl-4-aminophenyl)ethane (“BIS-2,3-AX-EF”) was obtained. In a yield of 77% and an isomer ratio of 99/1 (2,2-bis(2,3-dimethyl-4-aminophenyl) form/unidentified).
- the organic layer recovered by the extraction operation was washed with 1 kg of water, and then the organic layer was recovered by the liquid separation operation.
- the organic layer was concentrated with an evaporator to obtain a reaction crude product.
- the obtained reaction crude product was charged into a 1 L glass distillation apparatus equipped with a stirrer, a thermometer protection tube, and a vacuum distillation apparatus.
- the pressure was reduced to an absolute pressure of 50 kPa, and the mixture was heated in an oil bath at 90° C. for 1 hour to distill off low-boiling components including ethyl acetate. Further, the temperature was raised to 170° C.
- the solid collected by suction filtration is dried by an evaporator to obtain the target product, 2,2-bis(4-aminophenyl)propane (sometimes referred to as “BIS-AA”), in a yield of 19%. Obtained with a purity of 99%.
- Example 1 In a 500-mL three-necked flask equipped with a nitrogen introducing tube and a stirring blade, 1,1,1-trifluoro-2,2-bis(4-aminophenyl)ethane( 13.3 g (50 mmol) of BIS-A-EF) and 22.2 g (50 mmol) of 4,4′-hexafluoroisopropylidene diphthalic anhydride (hereinafter sometimes referred to as 6FDA) were added, and further, 142.1 g of DMAc was added as an organic solvent. Then, the reaction solution was obtained by stirring at room temperature (20° C.) for 24 hours under a nitrogen atmosphere.
- 6FDA 4,4′-hexafluoroisopropylidene diphthalic anhydride
- Example 2 In a 500-mL three-necked flask equipped with a nitrogen introducing tube and a stirring blade, 1,1,1-trifluoro-2,2-bis(3-methyl-4-) shown in the following formula and prepared in Synthesis Example 2 was used. 20.6 g (70 mmol) of aminophenyl)ethane (BIS-3-AT-EF) and 31.2 g (70 mmol) of 6FDA were added, and further 206.8 g of DMAc was added as an organic solvent. Then, the reaction solution was obtained by stirring at room temperature (20° C.) for 24 hours under a nitrogen atmosphere. Thereafter, DMAc was added to dilute the reaction solution, and pressure filtration was performed to prepare a polyamic acid solution.
- BIOS-3-AT-EF aminophenyl)ethane
- 6FDA 6FDA
- Example 3 In a 500-mL three-necked flask equipped with a nitrogen introducing tube and a stirring blade, 1,1,1-trifluoro-2,2-bis(2-methyl-4-amino) prepared in Synthesis Example 3 represented by the following formula: 17.7 g (70 mmol) of phenyl)ethane (BIS-2-AT-EF) and 26.6 g (60 mmol) of 6FDA were added, and further 103 g of DMAc was added as an organic solvent. Then, the reaction solution was obtained by stirring at room temperature (20° C.) for 24 hours under a nitrogen atmosphere. Thereafter, DMAc was added to dilute the reaction solution, and pressure filtration was performed to prepare a polyamic acid solution.
- Example 4 In a three-necked flask having a capacity of 500 mL equipped with a nitrogen introducing tube and a stirring blade, 1,1,1-trifluoro-2,2-bis(3,5-dimethyl-) shown in the following formula and prepared in Synthesis Example 4 was used. 24.2 g (75 mmol) of 4-aminophenyl)ethane (BIS-3,5-AX-EF) and 33.3 g (75 mmol) of 6FDA were added, and 134.1 g of DMAc was added as an organic solvent. Then, the mixture was stirred at room temperature (20° C.) for 23 hours under a nitrogen atmosphere to obtain a polyamic acid solution.
- BIOS-3,5-AX-EF 4-aminophenyl)ethane
- 6FDA 6FDA
- Example 5 In a 500 mL three-necked flask equipped with a nitrogen introducing tube and a stirring blade, 1,1,1-trifluoro-2,2-bis(2,5-dimethyl-) shown in the following formula and prepared in Synthesis Example 5 was used. 22.6 g (70 mmol) of 4-aminophenyl)ethane (BIS-2,5-AX-EF) and 31.2 g (70 mmol) of 6FDA were added, and further 125 g of DMAc was added as an organic solvent. Then, the mixture was stirred at room temperature (20° C.) for 24 hours under a nitrogen atmosphere to obtain a polyamic acid solution.
- BIOS-2,5-AX-EF 4-aminophenyl)ethane
- 6FDA 6FDA
- optical film was obtained on the glass substrate.
- the film thickness was 22 ⁇ m. From the measurement results of the IR spectrum, it was confirmed that the optical film was composed of polyimide, which had absorptions specific to imide groups at 1721 cm ⁇ 1 and 1786 cm ⁇ 1 .
- Example 6 In a 500-mL three-necked flask equipped with a nitrogen introducing tube and a stirring blade, 1,1,1-trifluoro-2,2-bis(2,3-dimethyl-) shown in the following formula and prepared in Synthesis Example 6 was used. 22.6 g (70 mmol) of 4-aminophenyl)ethane (BIS-2,3-AX-EF) and 31.1 g (70 mmol) of 6FDA were added, and 161 g of DMAc was added as an organic solvent. Then, the mixture was stirred at room temperature (20° C.) for 24 hours under a nitrogen atmosphere to obtain a polyamic acid solution.
- BIOS-2,3-AX-EF 4-aminophenyl)ethane
- 6FDA 6FDA
- optical film was obtained on the glass substrate.
- the film thickness was 30 ⁇ m. From the measurement result of the IR spectrum, it was confirmed that the optical film was composed of polyimide, because it had absorptions specific to imide groups at 1723 cm ⁇ 1 and 1787 cm ⁇ 1 .
- Example 7 In a 500-mL three-necked flask equipped with a nitrogen introducing tube and a stirring blade, 1,1,1-trifluoro-2,2-bis(3-methyl-4-) shown in the following formula and prepared in Synthesis Example 2 was used. 20.6 g (70 mmol) of aminophenyl)ethane (BIS-3-AT-EF) and 21.7 g (70 mmol) of 4,4'-oxydiphthalic anhydride (hereinafter sometimes referred to as ODPA) were added. Further, 169.2 g of DMAc was added as an organic solvent. Then, the reaction solution was obtained by stirring at room temperature (20° C.) for 24 hours under a nitrogen atmosphere.
- BIOS-3-AT-EF aminophenyl)ethane
- ODPA 4,4'-oxydiphthalic anhydride
- Example 8 In a three-necked flask having a capacity of 500 mL equipped with a nitrogen introducing tube and a stirring blade, 1,1,1-trifluoro-2,2-bis(3,5-dimethyl-) shown in the following formula and prepared in Synthesis Example 4 was used. 16.2 g (50 mmol) of 4-aminophenyl)ethane (BIS-3,5-AX-EF) and 15.6 g (50 mmol) of 4,4′-oxydiphthalic anhydride (ODPA) were added, and further organic 73.8 g of DMAc was added as a solvent. Then, the mixture was stirred at 40° C.
- BIOS-3,5-AX-EF 4-aminophenyl)ethane
- ODPA 4,4′-oxydiphthalic anhydride
- optical film was obtained on a glass substrate by heating continuously at 130° C. for 30 minutes, 200° C. for 1 hour, and 300° C. for 1 hour while gradually increasing the temperature.
- the film thickness was 27 ⁇ m. From the measurement results of the IR spectrum, it was confirmed that the optical film was made of polyimide, because it had absorptions specific to imide groups at 1717 cm -1 and 1777 cm -1 .
- Example 9 In a 500-mL three-necked flask equipped with a nitrogen introducing tube and a stirring blade, 1,1,1-trifluoro-2,2-bis(3-methyl-4-) shown in the following formula and prepared in Synthesis Example 2 was used. 29.4 g (100 mmol) of aminophenyl)ethane (BIS-3-AT-EF) and 29.4 g (100 mmol) of 4,4′-biphthalic anhydride (hereinafter sometimes referred to as BPDA) were added. Further, 197.0 g of DMAc was added as an organic solvent. Then, the mixture was stirred at room temperature (20° C.) for 24 hours under a nitrogen atmosphere to obtain a polyamic acid solution.
- BIOS-3-AT-EF aminophenyl)ethane
- BPDA 4,4′-biphthalic anhydride
- optical film was obtained on the glass substrate.
- the film thickness was 24 ⁇ m. From the measurement results of IR spectrum, there is absorption of imide group specific to 1711cm -1 and 1776 cm -1, it was confirmed that the optical film made of polyimide.
- Example 10 In a three-necked flask having a capacity of 500 mL equipped with a nitrogen introducing tube and a stirring blade, 1,1,1-trifluoro-2,2-bis(3,5-dimethyl-) shown in the following formula and prepared in Synthesis Example 4 was used. 16.2 g (50 mmol) of 4-aminophenyl)ethane (BIS-3,5-AX-EF) and 14.7 g (50 mmol) of 4,4′-biphthalic anhydride (BPDA) were added, and further organic 71.9 g of DMAc was added as a solvent. Then, under a nitrogen atmosphere, the mixture was stirred at 40° C.
- BIOS-3,5-AX-EF 4-aminophenyl)ethane
- BPDA 4,4′-biphthalic anhydride
- optical film was obtained on the glass substrate.
- the film thickness was 26 ⁇ m. From the measurement results of the IR spectrum, it was confirmed that the optical film was composed of polyimide, because it had absorptions specific to imide groups at 1713 cm ⁇ 1 and 1776 cm ⁇ 1 .
- Example 11 In a 500-mL three-necked flask equipped with a nitrogen introducing tube and a stirring blade, 1,1,1-trifluoro-2,2-bis(3-methyl-4-) shown in the following formula and prepared in Synthesis Example 2 was used. 21.0 g (71 mmol) of aminophenyl)ethane (BIS-3-AT-EF) and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (hereinafter sometimes referred to as BTDA). was added in an amount of 23.0 g (71 mmol), and 133 g of DMAc was further added as an organic solvent.
- BIOS-3-AT-EF aminophenyl)ethane
- BTDA 3,3′,4,4′-benzophenonetetracarboxylic dianhydride
- Example 12 In a 500 mL three-necked flask equipped with a nitrogen introducing tube and a stirring blade, 1,1,1-trifluoro-2,2-bis(2,5-dimethyl-) shown in the following formula and prepared in Synthesis Example 5 was used. 21.0 g (65 mmol) of 4-aminophenyl)ethane (BIS-2,5-AX-EF) and 21.0 g (65 mmol) of BTDA were added, and further 100 g of DMAc was added as an organic solvent. Then, the mixture was stirred at room temperature (20° C.) for 24 hours under a nitrogen atmosphere to obtain a polyamic acid solution.
- BIOS-2,5-AX-EF 4-aminophenyl)ethane
- BTDA 2-aminophenyl)ethane
- optical film was obtained on the glass substrate.
- the film thickness was 30 ⁇ m. From the measurement results of the IR spectrum, it was confirmed that the optical film was composed of polyimide, which had absorptions specific to imide groups at 1721 cm ⁇ 1 and 1786 cm ⁇ 1 .
- Solvent solubility and processability were measured for the polyimides obtained in Examples and Comparative Examples.
- the reaction liquid after imidization obtained in Examples and Comparative Examples was adjusted to a polymer solid content concentration of 2 mass% by adding each solvent (DMAc, NMP, DMF), and shaken at a constant temperature of Tokyo Rika Kikai Co., Ltd.
- solvent DMAc, NMP, DMF
- UNI THER MO SHAKER NTS-1300 which is a water tank, while vibrating and stirring at a shaking speed of 100 rpm at 30°C for 1 hour while keeping the temperature constant in a water bath
- the obtained polyimide solution was applied to a substrate to form a film, and it was visually confirmed whether or not a film having a uniform thickness was obtained.
- the case where a film having a uniform thickness was obtained was evaluated as good workability ( ⁇ ), and the case where a film having an uneven thickness was obtained was evaluated as poor workability (x).
- ⁇ good workability
- x poor workability
- Examples 1 to 9 it was confirmed that all the obtained polyamic acids were soluble in the organic solvent. From Examples 4, 5, 6, 8, 9, and 10, the polyimide composed of a diamine having an asymmetric skeleton was obtained as a uniform and highly viscous liquid, had appropriate workability, and was formed into a film by film formation.
- the transmittance and Tg were higher than those of Comparative Examples 1 and 2.
- the transmittance was higher than that of Comparative Example 3.
- the Tg was higher than that in Comparative Example 3.
- Examples 2, 4, and 6 had higher transmittance.
- Examples 5 and 6 had a higher Tg value.
- the polyimide of this embodiment was shown to have excellent transparency and heat resistance. Further, in the polyimide of the present embodiment, Examples 2, 4, and 6 in which the aromatic diamine having a methyl group was used exhibited a particularly high transmittance.
- Table 3 shows the evaluation results of the transparency and heat resistance of the optical film using ODPA as the acid anhydride.
- the films of Examples have excellent transparency and heat resistance, as in the case of using 6FDA as the acid anhydride. Therefore, it was found that the polyimide of this embodiment has excellent transparency and heat resistance.
- Table 4 shows the evaluation results of the transparency and heat resistance of the optical film using BPDA as the acid anhydride.
- Table 5 shows the evaluation results of the transparency of the optical film using BTDA as the acid anhydride.
- the optical film containing polyimide of the present embodiment and the substrate for a display device have excellent transparency and heat resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
[一般式[1]中、R1は一般式[2]で表される2価の有機基であり、R2は4価の有機基である:
で表されるジアミンと、
一般式[4]:
で表されるテトラカルボン酸二無水物とを重縮合して、一般式[1]で表される繰り返し単位を有する前記ポリイミドを得る工程を含む、ポリイミドの製造方法が提供される。
上記ポリイミド溶液または上記ポリアミド酸溶液を支持基材に塗布する工程と、
前記ポリイミド溶液中または前記ポリアミド酸溶液中に含まれる溶媒を除去し、続いて乾燥させることにより、ポリイミドまたはポリアミドを含む樹脂膜を製造する工程と、
前記樹脂膜を熱処理し、硬化させる工程と、を含む、光学フィルムまたは表示装置の製造方法が提供される。
本実施形態のポリイミドは、下記一般式[1]で表される繰り返し単位を有する。
ただし、本実施形態の一般式[1]で表される繰り返し単位を有するポリイミドにおいて、一般式[3]で表される繰り返し単位を有するポリイミドは除く。
一般式[2]で表される2価の有機基の例示として、以下のいずれかの2価の有機基が挙げられる。
本実施形態のポリアミド酸(ポリアミック酸)は、下記一般式[1A]で表される繰り返し単位を有する。
ただし、本実施形態の一般式[1A]で表される繰り返し単位を有するポリアミド酸において、一般式[3A]で表される繰り返し単位を有するポリアミド酸は除く。
本実施形態に係るポリアミド酸(上記式[1A])およびポリイミド(上記式[1])の製造方法は特に限定されるものではなく、例えば、下記一般式[2A]で表されるジアミンと、下記一般式[4]で表されるテトラカルボン酸二無水物との反応による製造方法が挙げられる。製造方法の例としては、上記ジアミンとテトラカルボン酸二無水物を150℃以上で相互に溶融させる方法が挙げられる。その他の例として、これらの原料化合物を有機溶媒中で縮重合して得られるポリアミド酸(上記式[1A])を脱水閉環することで本実施形態に係るポリイミド(上記式[1])を製造する方法が挙げられる。この縮重合反応は-20~80℃で行い、前記ジアミンと前記テトラカルボン酸二無水物とをモル比で表して1対1で反応させることが好ましい。
一般式[2A]で表されるジアミンは、R3がメチル基の場合の例示として、以下の構造のジアミンが挙げられる。
前記ポリイミドを含有する光学フィルムならびに表示装置用基板は、前記ポリイミドおよびポリアミド酸の溶液を加熱処理することで得られる。具体的には、本実施形態に係るポリイミドおよびポリアミド酸の溶液を支持基材に塗布する工程(塗布工程)、溶媒を除去・乾燥する工程(溶媒除去工程)、得られた樹脂膜をさらに加熱処理する工程(加熱工程)を経て得ることができる。
前記支持基材は、特に限定されないが、無機基材または有機基材が適当である。具体的にはガラス、シリコンウェハ、ステンレス、アルミナ、銅、ニッケル等、ポリエチレンテレフタレート、ポリエチレングリコールテレフタレート、ポリエチレングリコールナフタレート、ポリカーボネート、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリプロピレン、ポリエーテルスルホン、ポリエチレンテレフタレート、ポリフェニレンスルホン、ポリフェニレンスルフィド等を例示することができる。
以下、本実施形態の光学フィルムならびに表示装置に係るポリイミドの物性および特性について説明する。
本実施形態の(-C(CF3)H-)基を有するポリイミドは、成型加工性、優れた透明性および耐熱性を有する。さらに、(-C(CF3)H-)基に加え、メチル基を含むポリイミドは、さらに良好な透明性を示す。
本実施形態の光学フィルムならびに表示装置用基板の透明性は、膜厚20~70μmにおいて、波長400nm~780nmでの光透過率が、50%以上が好ましく、70%以上がより好ましい。
本実施形態の光学フィルムならびに表示装置用基板の耐熱性は、ガラス転移温度(以下、Tgと呼ぶことがある)および5%重量減少温度(以下、Td5と呼ぶことがある)を指標とする。Tgは耐熱性の観点から280℃以上が好ましく、プロセス温度が高くても対応できるという観点から300℃以上がより好ましい。Td5は300℃以上が好ましく、350℃以上がより好ましい。Td5が300℃より低いと、デバイス作製プロセスで基板の劣化の原因となる。
重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC、東ソー株式会社製HLC-8320)を用いて測定した。移動相はテトラヒドロフラン(THF)、カラムはTSKgel SuperHZM-Hを用いた。または、移動相はN,N-ジメチルホルムアミド、30mmol/Lリチウムブロミド、60mmol/Lリン酸、カラムはTSKgel α-M、TSKgel α-2500を用いた。
化合物または化合物膜の赤外線吸収スペクトルは、NicoletNEXUS470FT-IR(サーモフィッシャーサイエンティフィック社製)を用いて測定した。
透明性は、実施例及び比較例で得られたポリイミド光学フィルムを用いて、株式会社島津製作所製、紫外可視近赤外分光光度計(UV-VIS-NIR SPECTROMETER 機種名 UV-3150)を用い、波長400nmの光透過率(T400)を測定した。
耐熱性は、ガラス転移温度および5%重量減少温度(Td5)を測定することにより評価した。ガラス転移温度(Tg)は、示差走査熱量計(株式会社日立ハイテクサイエンス社製、機種名DSC7000)で測定し、昇温速度10℃/分の条件で400℃まで昇温し、降温速度-10℃/分で-40℃まで下げたのち、再び昇温速度10℃/分で400℃まで昇温する条件で示差走査熱量測定を行い、2回目の昇温時の示差走査熱量変化が極大になった時の温度である。5%重量減少温度(Td5)は、示差熱熱重量同時測定装置(株式会社日立ハイテクサイエンス社製、機種名STA7200)を用い、昇温速度10℃/分の条件で熱重量測定を行い、初期の重量に 対して5%の重量損失があった温度である。
[物性データ]
1,1,1-トリフルオロ-2,2-ビス(4-アミノフェニル)エタン:
1H-NMR(400MHz,CDCl3)δ(ppm):3.42(4H,s),4.45(1H,q,J=10.1Hz),6.62(4H,d,J=8.3Hz),7.12(4H,d,J=8.3Hz)
19F-NMR(400MHz,CDCl3,CFCl3)δ(ppm):-66.9(3F,d,J=11.5Hz)
[物性データ]
1,1,1-トリフルオロ-2,2-ビス(3-メチル-4-アミノフェニル)エタン:
1H-NMR(400MHz,CDCl3)δ(ppm):2.13(6H,s),3.14(4H,s),4.41(1H,q,J=10.4Hz),6.62(2H,d,J=10.4Hz),7.01(2H,s),7.02(2H,d,J=8.3Hz)
19F-NMR(400MHz,CDCl3,CFCl3)δ(ppm):-66.7(3F,d,J=11.5Hz)
[物性データ]
1,1,1-トリフルオロ-2,2-ビス(2-メチル-4-アミノフェニル)エタン:
1H-NMR(400MHz,CDCl3)δ(ppm):2.21(6H,s),3.58(4H,bs),4.83(1H,q,J=9.6Hz),6.48(2H,s),6.50(2H,d,J=9.4Hz)7.17(2H,d,J=8.7Hz)
19F-NMR(400MHz,CDCl3,CFCl3)δ(ppm):-65.6(3F,d,J=11.6Hz)
[物性データ]
1,1,1-トリフルオロ-2,2-ビス(3,5-ジメチル-4-アミノフェニル)エタン:
1H-NMR(400MHz,CDCl3)δ(ppm):2.15(12H,s),3.55(4H,s),4.36(1H,q,J=10.4Hz),6.62(2H, d,J=10.4Hz),6.93(4H,s)
19F-NMR(400MHz,CDCl3,CFCl3)δ(ppm):-66.6(3F,d,J=8.6Hz)
[物性データ]
1,1,1-トリフルオロ-2,2-ビス(2,5-ジメチル-4-アミノフェニル)エタン:
1H-NMR(400MHz,CDCl3)δ(ppm):2.12(6H,s),2.19(6H,s),3.53(4H,bs),4.80(1H,q,J=9.6Hz),6.45(2H,s,7.04(2H,s)
19F-NMR(400MHz,CDCl3,CFCl3)δ(ppm):-65.5(3F,d,J=8.7Hz)
[物性データ]
1,1,1-トリフルオロ-2,2-ビス(2,3-ジメチル-4-アミノフェニル)エタン:
1H-NMR(400MHz,CDCl3)δ(ppm):2.10(6H,s),2.18(6H,s),4.19(4H,bs),5.01(1H,q,J=9.6Hz),6.59(2H,d,J=8.4Hz),7.07(2H,d,J=8.4Hz)
19F-NMR(400MHz,CDCl3,CFCl3)δ(ppm):-64.6(3F,d,J=9.2Hz)
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す上記合成例1で調製した1,1,1-トリフルオロ-2,2-ビス(4-アミノフェニル)エタン(BIS-A-EF)を13.3g(50mmol)、および4,4'-ヘキサフルオロイソプロピリデンジフタル酸無水物(以下、6FDAと表すことがある)を22.2g(50mmol)加え、さらに、有機溶剤としてDMAcを142.1g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌して反応液を得た。その後、DMAcを加えて反応液を希釈し、加圧濾過することで、ポリアミド酸の溶液を調製した。当該溶液のGPC測定の結果、Mw=471820、Mw/Mn=2.7であった。ポリアミド酸の溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に膜を得た。膜厚は、21μmであった。IRスペクトルの測定結果から、1718cm-1および1786cm-1にイミド基固有の吸収があり、ポリイミドからなる膜であることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す、上記合成例2で調製した1,1,1-トリフルオロ-2,2-ビス(3-メチル-4-アミノフェニル)エタン(BIS-3-AT-EF)を20.6g(70mmol)、および6FDAを31.2g(70mmol)加え、さらに、有機溶剤としてDMAcを206.8g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌して反応液を得た。その後、DMAcを加えて反応液を希釈し、加圧濾過することで、ポリアミド酸の溶液を調製した。当該溶液のGPC測定の結果、Mw=243857、Mw/Mn=2.2であった。ポリアミド酸の溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、23μmであった。IRスペクトルの測定結果から、1720cm-1および1786cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す、合成例3で調製した1,1,1-トリフルオロ-2,2-ビス(2-メチル-4-アミノフェニル)エタン(BIS-2-AT-EF)を17.7g(70mmol)、および6FDAを26.6g(60mmol)加え、さらに、有機溶剤としてDMAcを103g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌して反応液を得た。その後、DMAcを加えて反応液を希釈し、加圧濾過することで、ポリアミド酸の溶液を調製した。当該溶液のGPC測定の結果、Mw=289916、Mw/Mn=2.7であった。ポリアミド酸の溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、23μmであった。IRスペクトルの測定結果から、1720cm-1および1785cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す、上記合成例4で調製した1,1,1-トリフルオロ-2,2-ビス(3,5-ジメチル-4-アミノフェニル)エタン(BIS-3,5-AX-EF)を24.2g(75mmol)、および6FDAを33.3g(75mmol)加え、さらに、有機溶剤としてDMAcを134.1g加えた。その後、窒素雰囲気下、室温(20℃)で23時間攪拌してポリアミド酸の溶液を得た。得られた反応液にピリジン12.5g(158mmol)、無水酢酸16.1g(158mmol)を順に加え、窒素雰囲気下、室温(20℃)で2時間攪拌し、イミド化を行った。その後、加圧濾過することで、ポリイミドの溶液を調製した。当該溶液のGPC測定の結果、Mw=149137、Mw/Mn=2.3であった。ポリイミドの溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、25μmであった。IRスペクトルの測定結果から、1723cm-1および1787cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す、上記合成例5で調製した1,1,1-トリフルオロ-2,2-ビス(2,5-ジメチル-4-アミノフェニル)エタン(BIS-2,5-AX-EF)を22.6g(70mmol)、および6FDAを31.2g(70mmol)加え、さらに、有機溶剤としてDMAcを125g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌してポリアミド酸の溶液を得た。得られた反応液にピリジン11.6g(147mmol)、無水酢酸15.0g(147mmol)を順に加え、窒素雰囲気下、室温(20℃)で3時間攪拌し、イミド化を行った。その後、DMAcを加えてイミド化後の反応液を希釈し、加圧濾過することで、ポリイミドの溶液を調製した。当該溶液のGPC測定の結果、Mw=337504、Mw/Mn=2.3であった。ポリイミドの溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、22μmであった。IRスペクトルの測定結果から、1721cm-1および1786cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す、上記合成例6で調製した1,1,1-トリフルオロ-2,2-ビス(2,3-ジメチル-4-アミノフェニル)エタン(BIS-2,3-AX-EF)を22.6g(70mmol)、および6FDAを31.1g(70mmol)加え、さらに、有機溶剤としてDMAcを161g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌してポリアミド酸の溶液を得た。得られた反応液にピリジン11.6g(147mmol)、無水酢酸15.0g(147mmol)を順に加え、窒素雰囲気下、室温(20℃)で3時間攪拌し、イミド化を行った。その後、DMAcを加えてイミド化後の反応液を希釈し、加圧濾過することで、ポリイミドの溶液を調製した。当該溶液のGPC測定の結果、Mw=192832、Mw/Mn=2.4であった。ポリイミドの溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、30μmであった。IRスペクトルの測定結果から、1723cm-1および1787cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す、上記合成例2で調製した1,1,1-トリフルオロ-2,2-ビス(3-メチル-4-アミノフェニル)エタン(BIS-3-AT-EF)を20.6g(70mmol)、および4,4′-オキシジフタル酸無水物(以下、ODPAと表すことがある。)を21.7g(70mmol)加え、さらに、有機溶剤としてDMAcを169.2g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌して反応液を得た。その後、DMAcを加えて反応液を希釈し、加圧濾過することで、ポリアミド酸の溶液を調製した。当該溶液のGPC測定の結果、Mw=199383、Mw/Mn=4.0であった。ポリアミド酸の溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、250℃で2時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、24μmであった。IRスペクトルの測定結果から、1714cm-1および1778cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す、上記合成例4で調製した1,1,1-トリフルオロ-2,2-ビス(3,5-ジメチル-4-アミノフェニル)エタン(BIS-3,5-AX-EF)を16.2g(50mmol)、および4,4′-オキシジフタル酸無水物(ODPA)を15.6g(50mmol)加え、さらに、有機溶剤としてDMAcを73.8g加えた。その後、窒素雰囲気下、40℃で1時間攪拌し、さらに室温(20℃)で23時間攪拌して反応液を得た。その後、DMAcを加えて反応液を希釈し、加圧濾過することで、ポリアミド酸の溶液を調製した。得られた反応液にピリジン8.3g(105mmol)、無水酢酸10.7g(105mmol)を順に加え、窒素雰囲気下、室温(20℃)で3時間攪拌し、イミド化を行った。その後、DMAcを加えてイミド化後の反応液を希釈し、加圧濾過することで、ポリイミドの溶液を調製した。当該溶液のGPC測定の結果、Mw=100473、Mw/Mn=3.3であった。130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、27μmであった。IRスペクトルの測定結果から、1717cm-1および1777cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す、上記合成例2で調製した1,1,1-トリフルオロ-2,2-ビス(3-メチル-4-アミノフェニル)エタン(BIS-3-AT-EF)を29.4g(100mmol)、および4,4'-ビフタル酸無水物(以下、BPDAと表すことがある。)を29.4g(100mmol)加え、さらに、有機溶剤としてDMAcを197.0g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌してポリアミド酸の溶液を得た。得られた反応液にピリジン16.6g(210mmol)、無水酢酸21.4g(210mmol)を順に加え、窒素雰囲気下、室温(20℃)で3時間攪拌し、イミド化を行った。その後、DMAcを加えてイミド化後の反応液を希釈し、加圧濾過することで、ポリイミドの溶液を調製した。当該溶液のGPC測定の結果、Mw=215115、Mw/Mn=3.4であった。ポリイミドの溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、24μmであった。IRスペクトルの測定結果から、1711cm-1および1776cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す、上記合成例4で調製した1,1,1-トリフルオロ-2,2-ビス(3,5-ジメチル-4-アミノフェニル)エタン(BIS-3,5-AX-EF)を16.2g(50mmol)、および4,4′-ビフタル酸無水物(BPDA)を14.7g(50mmol)加え、さらに、有機溶剤としてDMAcを71.9g加えた。その後、窒素雰囲気下、40℃で1時間攪拌し、さらに室温(20℃)で23時間攪拌してポリアミド酸の溶液を得た。得られた反応液にピリジン8.3g(105mmol)、無水酢酸10.7g(105mmol)を順に加え、窒素雰囲気下、室温(20℃)で3時間攪拌し、イミド化を行った。その後、DMAcを加えてイミド化後の反応液を希釈し、加圧濾過することで、ポリイミドの溶液を調製した。当該溶液のGPC測定の結果、Mw=121272、Mw/Mn=3.3であった。ポリイミドの溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、26μmであった。IRスペクトルの測定結果から、1713cm-1および1776cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す、上記合成例2で調製した1,1,1-トリフルオロ-2,2-ビス(3-メチル-4-アミノフェニル)エタン(BIS-3-AT-EF)を21.0g(71mmol)、および3,3′,4,4′-ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAと表すことがある。)を23.0g(71mmol)加え、さらに、有機溶剤としてDMAcを133g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌してポリアミド酸の溶液を得た。得られた反応液にピリジン11.9g(150mmol)、無水酢酸15.0g(150mmol)を順に加え、窒素雰囲気下、室温(20℃)で3時間攪拌し、イミド化を行った。その後、DMAcを加えてイミド化後の反応液を希釈し、加圧濾過することで、ポリイミドの溶液を調製した。当該溶液のGPC測定の結果、Mw=70000、Mw/Mn=2.6であった。ポリイミドの溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、26μmであった。IRスペクトルの測定結果から、1719cm-1および1780cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す、上記合成例5で調製した1,1,1-トリフルオロ-2,2-ビス(2,5-ジメチル-4-アミノフェニル)エタン(BIS-2,5-AX-EF)を21.0g(65mmol)、およびBTDAを21.0g(65mmol)加え、さらに、有機溶剤としてDMAcを100g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌してポリアミド酸の溶液を得た。得られた反応液にピリジン10.8g(137mmol)、無水酢酸14.0g(137mmol)を順に加え、窒素雰囲気下、室温(20℃)で3時間攪拌し、イミド化を行った。その後、DMAcを加えてイミド化後の反応液を希釈し、加圧濾過することで、ポリイミドの溶液を調製した。当該溶液のGPC測定の結果、Mw=68000、Mw/Mn=2.5であった。ポリイミドの溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、30μmであった。IRスペクトルの測定結果から、1721cm-1および1786cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す4,4-メチレンビスベンゼンジアミン(以下、MDAと記す)を14.9g(75mmol)、および6FDAを33.3g(75mmol)加え、さらに、有機溶剤としてDMAcを273g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌して反応液を得た。その後、DMAcを加えて反応液を希釈し、加圧濾過することで、ポリアミド酸の溶液を調製した。当該溶液のGPC測定の結果、Mw=199171、Mw/Mn=2.1であった。ポリアミド酸の溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、25μmであった。IRスペクトルの測定結果から、1718cm-1および1784cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す、上記合成例7で調製した2,2-ビス(4-アミノフェニル)プロパン(BIS-A-A)を15.8g(70mmol)、および6FDAを31.1g(70mmol)加え、さらに、有機溶剤としてDMAcを213g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌して反応液を得た。その後、DMAcを加えて反応液を希釈し、加圧濾過することで、ポリアミド酸の溶液を調製した。当該溶液のGPC測定の結果、Mw=176064、Mw/Mn=2.1であった。ポリアミド酸の溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、28μmであった。IRスペクトルの測定結果から、1717cm-1および1784cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す、上記合成例7で調製した2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン(BIS-A-AF)を12.5g(37mmol)、および6FDAを16.6g(37mmol)加え、さらに、有機溶剤としてDMAcを102g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌して反応液を得た。その後、加圧濾過することで、ポリアミド酸の溶液を調製した。当該溶液のGPC測定の結果、Mw=259362、Mw/Mn=2.7であった。ポリアミド酸の溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、26μmであった。IRスペクトルの測定結果から、1720cm-1および1787cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す2,2′-ビストリフルオロメチルベンジジン(以下、TFMBと記す)を10.0g(31mmol)、および6FDAを13.8g(31mmol)加え、さらに、有機溶剤としてDMAcを159g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌して反応液を得た。その後、加圧濾過することで、ポリアミド酸の溶液を調製した。当該溶液のGPC測定の結果、Mw=147837、Mw/Mn=2.7であった。ポリアミド酸の溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、27μmであった。IRスペクトルの測定結果から、1724cm-1および1786cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示すMDAを14.9g(75mmol)、およびODPAを23.3g(75mmol)加え、さらに、有機溶剤としてDMAcを150g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌して反応液を得た。その後、DMAcを加えて反応液を希釈し、加圧濾過することで、ポリアミド酸の溶液を調製した。当該溶液のGPC測定の結果、Mw=181515、Mw/Mn=4.1であった。ポリアミド酸の溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、25μmであった。IRスペクトルの測定結果から、1710cm-1および1775cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す、上記合成例7で調製した2,2-ビス(4-アミノフェニル)プロパン(BIS-A-A)を15.8g(70mmol)、およびODPAを21.7g(70mmol)加え、さらに、有機溶剤としてDMAcを113g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌して反応液を得た。その後、DMAcを加えて反応液を希釈し、加圧濾過することで、ポリアミド酸の溶液を調製した。当該溶液のGPC測定の結果、Mw=93037、Mw/Mn=3.6であった。ポリアミド酸の溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、30μmであった。IRスペクトルの測定結果から、1710cm-1および1776cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン(BIS-A-AF)を12.5g(37mmol)、およびODPAを11.6g(37mmol)加え、さらに、有機溶剤としてDMAcを56g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌して反応液を得た。その後、加圧濾過することで、ポリアミド酸の溶液を調製した。当該溶液のGPC測定の結果、Mw=294500、Mw/Mn=6.0であった。ポリアミド酸の溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に膜を得た。膜厚は、26μmであった。IRスペクトルの測定結果から、1718cm-1および1780cm-1にイミド基固有の吸収があり、ポリイミドからなる膜であることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示すMDAを11.9g(60mmol)、およびBPDAを17.7g(60mmol)加え、さらに、有機溶剤としてDMAcを118g加えた。その後、窒素雰囲気下、50℃で30分攪拌し、さらに室温(20℃)で23時間攪拌して反応液を得た。その後、DMAcを加えて反応液を希釈し、加圧濾過することで、ポリアミド酸の溶液を調製した。当該溶液のGPC測定の結果、Mw=59026、Mw/Mn=11.0であった。ポリアミド酸の溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、25μmであった。IRスペクトルの測定結果から、1707cm-1および1773cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す、上記合成例7で調製した2,2-ビス(4-アミノフェニル)プロパン(BIS-A-A)を15.8g(70mmol)、およびBPDAを20.6g(70mmol)加え、さらに、有機溶剤としてDMAcを109g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌して反応液を得た。その後、DMAcを加えて反応液を希釈し、加圧濾過することで、ポリアミド酸の溶液を調製した。当該溶液のGPC測定の結果、Mw=119313、Mw/Mn=6.0であった。ポリアミド酸の溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、25μmであった。IRスペクトルの測定結果から、1707cm-1および1773cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン(BIS-A-AF)を12.5g(37mmol)、およびBPDAを11.0g(37mmol)加え、さらに、有機溶剤としてDMAcを70.0g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌して反応液を得た。その後、加圧濾過することで、ポリアミド酸の溶液を調製した。当該溶液のGPC測定の結果、Mw=92678、Mw/Mn=5.3であった。ポリアミド酸の溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に膜を得た。膜厚は、33μmであった。IRスペクトルの測定結果から、1715cm-1および1778cm-1にイミド基固有の吸収があり、ポリイミドからなる膜であることを確認した。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、MDAを11.9g(60mmol)、およびBPDAを17.7g(60mmol)加え、さらに、有機溶剤としてDMAcを118g加えた。その後、窒素雰囲気下、50℃で30分攪拌し、さらに室温(20℃)で23時間攪拌してポリアミド酸の溶液を得た。得られた反応液にピリジン10.0g(126mmol)、無水酢酸12.9g(126mmol)を順に加えた。その後、窒素雰囲気下、室温(20℃)で3時間攪拌したが、イミド化後の反応液はゲル化してしまい、ポリイミドの溶液を得ることはできなかった。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、上記合成例7で調製した2,2-ビス(4-アミノフェニル)プロパン(BIS-A-A)を15.8g(70mmol)、およびBPDAを20.6g(70mmol)加え、さらに、有機溶剤としてDMAcを109g加えた。その後、窒素雰囲気下、室温(20℃)で23時間攪拌してポリアミド酸の溶液を調製した。得られた反応液にピリジン11.7g(147mmol)、無水酢酸15.0g(147mmol)を順に加えた。その後、窒素雰囲気下、室温(20℃)で3時間攪拌したが、イミド化後の反応液はゲル化してしまい、ポリイミドの溶液を得ることはできなかった。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン(BIS-A-AF)を12.5g(37mmol)、およびBPDAを11.0g(37mmol)加え、さらに、有機溶剤としてDMAcを70.0g加えた。その後、窒素雰囲気下、室温(20℃)で23時間攪拌してポリアミド酸の溶液を調製した。得られた反応液にピリジン6.2g(78mmol)、無水酢酸8.0g(78mmol)を順に加えた。その後、窒素雰囲気下、室温(20℃)で3時間攪拌したが、イミド化後の反応液はゲル化してしまい、ポリイミドの溶液を得ることはできなかった。
窒素導入管および攪拌翼を備えた容量500mLの三口フラスコに、以下の式に示す1,1,1-トリフルオロ-2,2-ビス(4-アミノフェニル)エタン(BIS-A-EF)を15g(56mmol)、BTDAを18.2g(56mmol)加え、さらに、有機溶剤としてDMAcを133g加えた。その後、窒素雰囲気下、室温(20℃)で24時間攪拌して反応液を得た。その後、DMAcを加えて反応液を希釈し、加圧濾過することで、ポリアミド酸の溶液を調製した。得られた反応液にピリジン9.4g(118mmol)、無水酢酸12.1g(118mmol)を順に加え、窒素雰囲気下、室温(20℃)で3時間攪拌し、イミド化を行った。その後、DMAcを加えてイミド化後の反応液を希釈し、加圧濾過することで、ポリイミドの溶液を調製した。当該溶液のGPC測定の結果、Mw=87000、Mw/Mn=2.6であった。ポリイミドの溶液を、ガラス基板上にスピンコーターを用いて塗布した後、130℃ で30分、200℃で1時間、300℃で1時間、段階的に昇温しつつ連続して加熱することで、ガラス基板上に光学フィルムを得た。膜厚は、30μmであった。IRスペクトルの測定結果から、1718cm-1および1780cm-1にイミド基固有の吸収があり、ポリイミドからなる光学フィルムであることを確認した。
実施例および比較例で得られたポリイミドについて、溶媒溶解性および加工性を測定した。
実施例1~9において、得られたポリアミド酸は、すべて有機溶媒に溶解することを確認した。実施例4、5、6、8、9、及び10より、非対称骨格を有するジアミンからなるポリイミドは、均一な高粘度の液体として得られ、適切な加工性を有し、成膜することでフィルムを得ることができた。比較例11~13においては、酸無水物としてBPDAを用いると、イミド化後の反応液は、ゲル化してしまい、適切な加工性を有しておらず、フィルムが得られなかった。したがって、実施例のポリアミド酸およびポリイミドは、有機溶媒対する溶解性に優れ、適切な加工性を有し、成膜することで、フィルムが得られることがわかった。
実施例1~6および比較例1~4で得られたポリイミドからなるフィルムについて、波長400nmの光透過率(T400)の測定により透明性の評価を行い、ガラス転移温度および5%重量減少温度(Td5)の測定により耐熱性の評価を行った。結果を表2に示す。
実施例2、4、および6は、比較例3と比較して、透過率が高い値となった。また実施例1~6は、比較例3と比較して、Tgが高い値となった。
比較例4と比べて、実施例2、4および6は透過率が高い値となった。また比較例4と比べて、実施例5および6は、Tgが高い値となった。
このように、本実施形態のポリイミドは、優れた透明性および耐熱性を有することが示された。
さらに、本実施形態のポリイミド中、芳香族にメチル基を有するジアミンを用いた実施例2、4、および6は、とくに透過率が高い値となった。
Claims (25)
- 重量平均分子量が、1000以上、1000000以下である、請求項1~3のいずれかに記載のポリイミド。
- 重量平均分子量が、1000以上、1000000以下である、請求項5~7のいずれかに記載のポリアミド酸。
- 請求項1~4のいずれかに記載のポリイミドと、有機溶媒とを含む、ポリイミド溶液。
- 前記有機溶媒が、アミド系溶媒、エーテル系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒及びラクトン系溶媒からなる群より選ばれる少なくとも1種である、請求項9に記載のポリイミド溶液。
- 前記ポリイミドが、当該ポリイミド溶液全体に対して、0.1質量%以上、50質量%以下の量である、請求項9または10に記載のポリイミド溶液。
- 請求項5~8のいずれかに記載のポリアミド酸と、有機溶媒とを含む、ポリアミド酸溶液。
- 前記有機溶媒が、アミド系溶媒、エーテル系溶媒、芳香族炭化水素系溶媒、ハロゲン系溶媒及びラクトン系溶媒からなる群より選ばれる少なくとも1種である、請求項12に記載のポリアミド酸溶液。
- 前記ポリアミド酸が、当該ポリアミド酸溶液全体に対して0.1質量%以上、50質量%以下の量である、請求項12または13に記載のポリアミド酸溶液。
- 請求項1~4のいずれかに記載のポリイミドを含む光学フィルム。
- 請求項5~8のいずれかに記載のポリアミド酸を含む光学フィルム。
- 請求項1~4のいずれかに記載のポリイミド及び請求項5~8のいずれかに記載のポリアミド酸を含む光学フィルム。
- 請求項15~17のいずれかに記載の光学フィルムを備える表示装置。
- 一般式[1]で表される繰り返し単位を有するポリイミド(ただし、一般式[3]で表される繰り返し単位を有するポリイミドを除く)を製造する方法であって、
[一般式[1]中、R1は一般式[2]で表される2価の有機基であり、R2は4価の有機基である:
で表されるジアミンと、
一般式[4]:
で表されるテトラカルボン酸二無水物とを重縮合して、一般式[1]で表される繰り返し単位を有する前記ポリイミドを得る工程を含む、ポリイミドの製造方法。 - 一般式[2A]で表される前記ジアミンと、一般式[4]で表される前記テトラカルボン酸二無水物とを縮重合して、一般式[1]で表される繰り返し単位を有するポリイミドを得る前記工程が、一般式[2A]で表される前記ジアミンと、一般式[4]で表される前記テトラカルボン酸二無水物とを反応させて、一般式[1A]:
で表される繰り返し単位を有するポリアミド酸(ただし、一般式[3A]で表される繰り返し単位を有するポリアミド酸を除く)を得る工程と、
- 光学フィルムまたは表示装置の製造方法であって、
請求項9~11のいずれかに記載のポリイミド溶液または請求項12~14のいずれかに記載のポリアミド酸溶液を支持基材に塗布する工程と、
前記ポリイミド溶液中または前記ポリアミド酸溶液中に含まれる溶媒を除去し、続いて乾燥させることにより、ポリイミドまたはポリアミドを含む樹脂膜を製造する工程と、
前記樹脂膜を熱処理し、硬化させる工程と、を含む、光学フィルムまたは表示装置の製造方法。 - 前記支持基材が、ガラス、シリコンウェハ、ステンレス、アルミナ、銅、ニッケル、ポリエチレンテレフタレート、ポリエチレングリコールテレフタレート、ポリエチレングリコールナフタレート、ポリカーボネート、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリプロピレン、ポリエーテルスルホン、ポリエチレンテレフタレート、ポリフェニレンスルホン及びポリフェニレンスルフィドからなる群より選ばれる少なくとも1種である、請求項21に記載の光学フィルムまたは表示装置の製造方法。
- ポリイミド溶液またはポリアミド溶液を支持基材に塗布する前記工程が、膜厚が1μm以上、1000μm以下となるように塗布する工程を含む、請求項21または請求項22に記載の光学フィルムまたは表示装置の製造方法。
- 乾燥させる前記工程が、50℃以上、250℃以下の温度で実施される、請求項21~23のいずれかに記載の光学フィルムまたは表示装置の製造方法。
- 樹脂膜を熱処理する前記工程が、150℃以上、400℃以下の温度で実施される、請求項21~24のいずれかに記載の光学フィルムまたは表示装置の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217027909A KR20210124331A (ko) | 2019-02-06 | 2020-02-03 | 폴리아미드산과 폴리이미드, 광학필름과 표시장치, 및 그들의 제조방법 |
US17/428,860 US20220119595A1 (en) | 2019-02-06 | 2020-02-03 | Polyamide Acid, Polyimide, Optical Film, Display Device and Production Methods Thereof |
CN202080013067.2A CN113412299B (zh) | 2019-02-06 | 2020-02-03 | 聚酰胺酸和聚酰亚胺、光学薄膜和显示装置、以及它们的制造方法 |
JP2020571191A JP7343794B2 (ja) | 2019-02-06 | 2020-02-03 | ポリアミド酸およびポリイミド、光学フィルムおよび表示装置、ならびにそれらの製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-019823 | 2019-02-06 | ||
JP2019019823 | 2019-02-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020162411A1 true WO2020162411A1 (ja) | 2020-08-13 |
Family
ID=71947364
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/003969 WO2020162411A1 (ja) | 2019-02-06 | 2020-02-03 | ポリアミド酸およびポリイミド、光学フィルムおよび表示装置、ならびにそれらの製造方法 |
PCT/JP2020/003964 WO2020162408A1 (ja) | 2019-02-06 | 2020-02-03 | 1,1,1-トリフルオロ-2,2-ビスアリールエタンの製造方法、および1,1,1-トリフルオロ-2,2-ビスアリールエタン |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/003964 WO2020162408A1 (ja) | 2019-02-06 | 2020-02-03 | 1,1,1-トリフルオロ-2,2-ビスアリールエタンの製造方法、および1,1,1-トリフルオロ-2,2-ビスアリールエタン |
Country Status (6)
Country | Link |
---|---|
US (2) | US20220119595A1 (ja) |
JP (2) | JP7343794B2 (ja) |
KR (2) | KR20210124331A (ja) |
CN (2) | CN113412299B (ja) |
TW (1) | TWI837295B (ja) |
WO (2) | WO2020162411A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022014425A1 (ja) * | 2020-07-13 | 2022-01-20 | セントラル硝子株式会社 | ポリアミド、ポリアミドイミド及びこれらの誘導体、光学フィルム及び表示装置、ならびにこれらの製造方法 |
WO2022030447A1 (ja) * | 2020-08-05 | 2022-02-10 | セントラル硝子株式会社 | 含フッ素ジアミンまたはその塩、含フッ素ジアミンまたはその塩の製造方法、ポリアミド、ポリアミドの製造方法、ポリアミド溶液、ポリアミド環化体、ポリアミド環化体の製造方法、高周波電子部品用絶縁材、高周波電子部品用絶縁材の製造方法、高周波電子部品、高周波機器および高周波電子部品製造用絶縁材料 |
WO2023048063A1 (ja) * | 2021-09-27 | 2023-03-30 | セントラル硝子株式会社 | ポリイミド、ポリアミド、樹脂組成物、ポリイミドフィルム、表示装置、電子材料用基板、ポリアミドの製造方法およびポリイミドの製造方法 |
WO2023190187A1 (ja) * | 2022-03-28 | 2023-10-05 | セントラル硝子株式会社 | マレイミド化合物、マレアミック酸化合物、硬化性組成物、硬化物、電子デバイス、マレイミド化合物の製造方法およびマレアミック酸化合物の製造方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230035390A (ko) * | 2020-07-10 | 2023-03-13 | 샌트랄 글래스 컴퍼니 리미티드 | 폴리벤조옥사졸, 폴리아미드, 폴리아미드 용액, 고주파 전자 부품용 절연재, 고주파 전자 부품, 고주파 기기, 고주파 전자 부품 제조용 절연 재료, 폴리아미드의 제조 방법, 폴리벤조옥사졸의 제조 방법, 고주파 전자 부품용 절연재의 제조 방법, 및, 디아민 또는 그 염 |
JP2023126997A (ja) * | 2020-08-05 | 2023-09-13 | セントラル硝子株式会社 | 感光性樹脂組成物、感光性樹脂膜、パターン樹脂膜、硬化物、パターン硬化物、電子装置の製造方法、および電子装置 |
WO2022114109A1 (ja) * | 2020-11-30 | 2022-06-02 | セントラル硝子株式会社 | フルオロエラストマー組成物、フッ素ゴム成形体、フッ素ゴム成形体製造用架橋剤、フッ素ゴム成形体製造用架橋促進剤、混合塩およびオニウム塩 |
JP7503015B2 (ja) * | 2021-03-09 | 2024-06-19 | 信越化学工業株式会社 | ポリイミドを含む重合体、ポジ型感光性樹脂組成物、ネガ型感光性樹脂組成物、パターン形成方法、硬化被膜形成方法、層間絶縁膜、表面保護膜、及び電子部品 |
CN114805094B (zh) * | 2021-06-03 | 2024-04-02 | 上海如鲲新材料股份有限公司 | 一种双(3-氨基-4-羟基苯基)六氟丙烷的制备方法 |
KR20240088837A (ko) * | 2021-11-02 | 2024-06-20 | 샌트랄 글래스 컴퍼니 리미티드 | 아랄킬 수지, 에폭시 수지의 희석제, 경화성 수지 조성물, 감광성 수지 조성물, 경화물, 전자 디바이스, 아랄킬 수지의 제조방법 |
WO2023182141A1 (ja) * | 2022-03-25 | 2023-09-28 | セントラル硝子株式会社 | エポキシ化合物、エポキシ樹脂、エポキシ樹脂組成物、硬化物、プリプレグ、繊維強化複合材料、およびこれらの製造方法、封止材、半導体装置、半導体素子を封止する方法、並びに封止材として使用する方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02870A (ja) * | 1987-11-24 | 1990-01-05 | Hoechst Celanese Corp | 感光性ポリイミド重合体組成物 |
JP2002356615A (ja) * | 2001-05-31 | 2002-12-13 | Nitto Denko Corp | 感光性ポリイミド前駆体組成物およびその感光性ポリイミドならびにそれを用いた光導波路 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3179614A (en) * | 1961-03-13 | 1965-04-20 | Du Pont | Polyamide-acids, compositions thereof, and process for their preparation |
US3388097A (en) * | 1964-05-15 | 1968-06-11 | Du Pont | Polyesters from perhaloalkyl bisphenols and specified aromatic acid halides |
GB1036870A (en) * | 1964-07-08 | 1966-07-20 | Du Pont | Preparation of fluorinated perhaloaldehydes |
US3770573A (en) * | 1971-06-08 | 1973-11-06 | Du Pont | Interdiffusionally bonded structures of polyimide polymeric material |
US4467121A (en) * | 1980-12-31 | 1984-08-21 | General Electric Company | Fluorinated diphenols and method for their preparation |
US4365098A (en) * | 1980-12-31 | 1982-12-21 | General Electric Company | Fluorinated diphenols and method for their preparation |
JP2016076481A (ja) | 2014-10-02 | 2016-05-12 | セントラル硝子株式会社 | 有機エレクトロルミネッセンス用基板およびそれを用いた有機エレクトロルミネッセンスディスプレイ |
JP2016076480A (ja) | 2014-10-02 | 2016-05-12 | セントラル硝子株式会社 | 有機エレクトロルミネッセンス用基板およびそれを用いた有機エレクトロルミネッセンスディスプレイ |
WO2018123649A1 (ja) * | 2016-12-29 | 2018-07-05 | セントラル硝子株式会社 | 1,2,2,2-テトラフルオロエチルジフルオロメチルエーテル(デスフルラン)の製造方法 |
US11267216B2 (en) * | 2017-01-25 | 2022-03-08 | Toyobo Co., Ltd. | Polymer film laminated substrate and method for producing flexible electronic device |
JP2021120354A (ja) * | 2018-05-09 | 2021-08-19 | セントラル硝子株式会社 | 1,2,2,2−テトラフルオロエチルメチルエーテルの製造方法 |
WO2020060265A1 (ko) * | 2018-09-20 | 2020-03-26 | 주식회사 엘지화학 | 다층인쇄회로기판, 이의 제조방법 및 이를 이용한 반도체 장치 |
KR102257926B1 (ko) * | 2018-09-20 | 2021-05-28 | 주식회사 엘지화학 | 다층인쇄회로기판, 이의 제조방법 및 이를 이용한 반도체 장치 |
-
2020
- 2020-02-03 KR KR1020217027909A patent/KR20210124331A/ko active Search and Examination
- 2020-02-03 US US17/428,860 patent/US20220119595A1/en active Pending
- 2020-02-03 CN CN202080013067.2A patent/CN113412299B/zh active Active
- 2020-02-03 US US17/428,762 patent/US20220106444A1/en active Pending
- 2020-02-03 JP JP2020571191A patent/JP7343794B2/ja active Active
- 2020-02-03 WO PCT/JP2020/003969 patent/WO2020162411A1/ja active Application Filing
- 2020-02-03 JP JP2020571190A patent/JP7460912B2/ja active Active
- 2020-02-03 CN CN202080013035.2A patent/CN113396137A/zh active Pending
- 2020-02-03 WO PCT/JP2020/003964 patent/WO2020162408A1/ja active Application Filing
- 2020-02-03 KR KR1020217027893A patent/KR20210124330A/ko unknown
- 2020-02-06 TW TW109103661A patent/TWI837295B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02870A (ja) * | 1987-11-24 | 1990-01-05 | Hoechst Celanese Corp | 感光性ポリイミド重合体組成物 |
JP2002356615A (ja) * | 2001-05-31 | 2002-12-13 | Nitto Denko Corp | 感光性ポリイミド前駆体組成物およびその感光性ポリイミドならびにそれを用いた光導波路 |
Non-Patent Citations (1)
Title |
---|
DELVIGS, P. ET AL.: "Addition polyimides from non-mutagenic diamines", HIGH PERFORMANCE POLYMERS, vol. 13, 2001, pages 301 - 312 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022014425A1 (ja) * | 2020-07-13 | 2022-01-20 | セントラル硝子株式会社 | ポリアミド、ポリアミドイミド及びこれらの誘導体、光学フィルム及び表示装置、ならびにこれらの製造方法 |
WO2022030447A1 (ja) * | 2020-08-05 | 2022-02-10 | セントラル硝子株式会社 | 含フッ素ジアミンまたはその塩、含フッ素ジアミンまたはその塩の製造方法、ポリアミド、ポリアミドの製造方法、ポリアミド溶液、ポリアミド環化体、ポリアミド環化体の製造方法、高周波電子部品用絶縁材、高周波電子部品用絶縁材の製造方法、高周波電子部品、高周波機器および高周波電子部品製造用絶縁材料 |
WO2023048063A1 (ja) * | 2021-09-27 | 2023-03-30 | セントラル硝子株式会社 | ポリイミド、ポリアミド、樹脂組成物、ポリイミドフィルム、表示装置、電子材料用基板、ポリアミドの製造方法およびポリイミドの製造方法 |
KR20240063858A (ko) | 2021-09-27 | 2024-05-10 | 샌트랄 글래스 컴퍼니 리미티드 | 폴리이미드, 폴리아미드, 수지조성물, 폴리이미드 필름, 표시장치, 전자재료용 기판, 폴리아미드의 제조방법 및 폴리이미드의 제조방법 |
WO2023190187A1 (ja) * | 2022-03-28 | 2023-10-05 | セントラル硝子株式会社 | マレイミド化合物、マレアミック酸化合物、硬化性組成物、硬化物、電子デバイス、マレイミド化合物の製造方法およびマレアミック酸化合物の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113412299B (zh) | 2023-08-18 |
KR20210124331A (ko) | 2021-10-14 |
US20220119595A1 (en) | 2022-04-21 |
JP7343794B2 (ja) | 2023-09-13 |
JPWO2020162408A1 (ja) | 2021-12-09 |
TW202035524A (zh) | 2020-10-01 |
JPWO2020162411A1 (ja) | 2021-12-16 |
KR20210124330A (ko) | 2021-10-14 |
TWI837295B (zh) | 2024-04-01 |
WO2020162408A1 (ja) | 2020-08-13 |
US20220106444A1 (en) | 2022-04-07 |
CN113412299A (zh) | 2021-09-17 |
JP7460912B2 (ja) | 2024-04-03 |
CN113396137A (zh) | 2021-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7343794B2 (ja) | ポリアミド酸およびポリイミド、光学フィルムおよび表示装置、ならびにそれらの製造方法 | |
KR101961512B1 (ko) | 폴리이미드 전구체 수용액 조성물, 및 폴리이미드 전구체 수용액 조성물의 제조 방법 | |
CN112334511B (zh) | 聚酰亚胺树脂及其制造方法、以及聚酰亚胺薄膜及其制造方法 | |
Hsiao et al. | Synthesis and characterization of novel fluorinated polyimides derived from 1, 3-bis (4-amino-2-trifluoromethylphenoxy) naphthalene and aromatic dianhydrides | |
WO2014046180A9 (ja) | ポリイミド及びその成形体 | |
JP2016531997A (ja) | ポリイミド系溶液、及びこれを用いて製造されたポリイミド系フィルム | |
US9657140B2 (en) | Polyimide and film using same | |
KR20160094086A (ko) | 폴리(이미드-아미드)를 포함하는 성형품 제조용 조성물, 상기 조성물의 제조 방법, 및 폴리(이미드-아미드)를 포함하는 성형품 | |
KR102422752B1 (ko) | 신규 테트라카르복시산 이무수물, 및 산이무수물로부터 얻어지는 폴리이미드 및 폴리이미드 공중합체 | |
JPWO2019188380A1 (ja) | ポリアミド酸およびその製造方法、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびその製造方法、ならびにフレキシブルデバイスおよびその製造方法 | |
Chen et al. | Novel organosoluble and colorless poly (ether imide) s based on 1, 1-bis [4-(3, 4-dicarboxyphenoxy) phenyl] cyclohexane dianhydride and trifluoromethyl-substituted aromatic bis (ether amine) s | |
CN115803364A (zh) | 聚酰胺、聚酰胺酰亚胺和它们的衍生物、光学薄膜和显示装置以及它们的制造方法 | |
JP7359602B2 (ja) | ジアミン化合物及びその製造方法 | |
TWI776968B (zh) | 聚醯亞胺樹脂及其製造方法、聚醯亞胺溶液、與聚醯亞胺膜及其製造方法 | |
JP2016196630A (ja) | 新規なポリイミド共重合体 | |
KR20170063920A (ko) | 유기 일렉트로루미네선스용 기판 및 그것을 이용한 유기 일렉트로루미네선스 디스플레이 | |
WO2016052311A1 (ja) | 有機エレクトロルミネッセンス用基板およびそれを用いた有機エレクトロルミネッセンスディスプレイ | |
CN114222778A (zh) | 树脂原料用组合物 | |
JP2019119829A (ja) | ポリイミドフィルムおよびそれを用いた光学部材 | |
JP3027383B2 (ja) | 無色有機可溶性芳香族ポリ(エ―テルイミド)、その有機溶液、およびその調製 | |
JP6765093B2 (ja) | ポリイミド | |
TWI820294B (zh) | 新穎之二胺類、由該二胺類所衍生之新穎的聚醯亞胺及其成形體 | |
JP7265113B2 (ja) | 電子部品用ポリイミド基板 | |
WO2016052312A1 (ja) | 有機エレクトロルミネッセンス用基板およびそれを用いた有機エレクトロルミネッセンスディスプレイ | |
US20150094430A1 (en) | Dinitro compound, diamine compound, and aromatic polyimide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20752101 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020571191 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217027909 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20752101 Country of ref document: EP Kind code of ref document: A1 |