WO2020091034A1 - フッ素ゴム組成物および成形品 - Google Patents
フッ素ゴム組成物および成形品 Download PDFInfo
- Publication number
- WO2020091034A1 WO2020091034A1 PCT/JP2019/043005 JP2019043005W WO2020091034A1 WO 2020091034 A1 WO2020091034 A1 WO 2020091034A1 JP 2019043005 W JP2019043005 W JP 2019043005W WO 2020091034 A1 WO2020091034 A1 WO 2020091034A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluororubber
- mass
- crosslinking
- parts
- fluororubber composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0025—Crosslinking or vulcanising agents; including accelerators
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
- C08F214/22—Vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K13/00—Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
- C08K13/02—Organic and inorganic ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3442—Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
- C08K5/3462—Six-membered rings
- C08K5/3465—Six-membered rings condensed with carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/50—Phosphorus bound to carbon only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
- F16L11/06—Hoses, i.e. flexible pipes made of rubber or flexible plastics with homogeneous wall
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/10—Copolymer characterised by the proportions of the comonomers expressed as molar percentages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2810/00—Chemical modification of a polymer
- C08F2810/20—Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
- C08K2003/267—Magnesium carbonate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
- C08K2003/321—Phosphates
- C08K2003/326—Magnesium phosphate
Definitions
- the present disclosure relates to fluororubber compositions and molded articles.
- Fluorine rubber is usually used after being cross-linked, and it is known that a cross-linking agent, a cross-linking accelerator, an acid acceptor or the like is added to the fluoro-rubber in order to cross-link it.
- a polyol-crosslinkable fluororubber composition comprising 0.5 to 2 parts by weight of a hydrate and 1 to 5 parts by weight of an acid acceptor other than a Ca compound has been proposed.
- Molded products obtained by crosslinking fluororubber are generally said to have excellent chemical resistance, but there is room for improvement in durability against organic acids and carboxylic acid ester compounds, the present inventors have studied. Became clear by.
- a polyol cross-linkable fluororubber (b) a cross-linking agent for polyol cross-linking, (c) a cross-linking accelerator, and (d) selected from the group consisting of basic magnesium carbonate and magnesium phosphate.
- a fluororubber composition containing at least one kind of an acid acceptor, wherein the content of the divalent metal oxide is less than 1 part by mass with respect to 100 parts by mass of the fluororubber (a).
- the fluororubber composition of the present disclosure preferably contains 0.5 to 15 parts by mass of the crosslinking agent (b) for polyol crosslinking with respect to 100 parts by mass of the fluororubber (a).
- the fluororubber composition of the present disclosure preferably contains 0.05 to 5 parts by mass of the crosslinking accelerator (c) with respect to 100 parts by mass of the fluororubber (a).
- the fluororubber composition of the present disclosure preferably contains 2 to 40 parts by mass of the acid acceptor (d) per 100 parts by mass of the fluororubber (a).
- the fluororubber (a) preferably contains a vinylidene fluoride unit.
- the magnesium phosphate is preferably trimagnesium phosphate octahydrate.
- a molded article obtained by crosslinking the fluororubber composition has a hardness (value after 3 seconds) measured by a type A durometer according to JIS K6253-3 of 65 or more.
- the fluororubber composition of the present disclosure is preferably a fluororubber composition for hoses.
- a molded article obtained by crosslinking the above fluororubber composition.
- the molded article of the present disclosure is preferably a hose that comes into contact with a fluid containing one or both of an organic acid and a carboxylic acid ester compound.
- the molded article of the present disclosure is preferably a member for biodiesel fuel or a member for an air management system of an internal combustion engine.
- the fluororubber composition of the present disclosure contains (a) a polyol crosslinkable fluororubber, (b) a polyol crosslinking crosslinker, (c) a crosslinking accelerator, and (d) an acid acceptor.
- the polyol-crosslinkable fluororubber used in the present disclosure may be any fluororubber having a polyol-crosslinkable site.
- the site capable of crosslinking with a polyol include a site having a vinylidene fluoride (VdF) unit.
- VdF vinylidene fluoride
- a fluororubber containing a VdF unit is preferable because a molded article having further excellent organic acid resistance and carboxylic acid ester compound resistance can be obtained.
- Non-perfluoro fluororubber is an example of the fluororubber having a polyol crosslinkable site.
- the fluorororubber having a polyol crosslinkable site includes VdF fluororubber, tetrafluoroethylene (TFE) / propylene fluororubber, TFE / propylene / VdF fluororubber, ethylene / hexafluoropropylene (HFP) fluororubber, Examples include ethylene / HFP / VdF-based fluororubber, ethylene / HFP / TFE-based fluororubber, fluorosilicone-based fluororubber, and fluorophosphazene-based fluororubber, each of which is used alone or within a range that does not impair the effects of the present disclosure. Can be used in any combination.
- VdF fluororubber one represented by the following general formula (1) is preferable.
- the structural unit M 1 is a structural unit derived from vinylidene fluoride (m 1 )
- the structural unit M 2 is a structural unit derived from a fluorine-containing ethylenic monomer (m 2 )
- the structural unit N 1 Is a repeating unit derived from the monomer (m 1 ) and the monomer (n 1 ) copolymerizable with the monomer (m 2 ).
- the structural unit M 1 30 ⁇ 85 mol%, preferably not containing a structural unit M 2 55 ⁇ 15 mol%, more preferably a structural unit M 1 50 to 80 mol%, and the structural unit M 2 is 50 to 20 mol%.
- the structural unit N 1 is preferably 0 to 20 mol% with respect to the total amount of the structural unit M 1 and the structural unit M 2 .
- fluorine-containing ethylenic monomer (m 2 ) one kind or two or more kinds of monomers can be used, and examples thereof include TFE, chlorotrifluoroethylene (CTFE), trifluoroethylene, HFP, trifluoropropylene and tetra.
- the monomer (n 1 ) may be any one as long as it is copolymerizable with the monomer (m 1 ) and the monomer (m 2 ), and examples thereof include ethylene, propylene, alkyl vinyl ether, and cross-linking. Examples thereof include a site-providing monomer and a bis-olefin compound. These may be used alone or in any combination.
- Iodine-containing monomers such as 6,6-dihydro-6-iodo-3-oxa-1-hexene) and perfluoro (5-iodo-3-oxa-1-pentene), described in JP-A-4-217936.
- iodine-containing monomers bromine-containing monomers described in JP-A-4-505341, cyano groups as described in JP-A-4-505345 and JP-A-5-500070.
- Inclusion Mer carboxyl group-containing monomers, and alkoxycarbonyl group-containing monomers and the like. These may be used alone or in any combination. Further, as the bis-olefin compound, those described in JP-A-8-12726 can be used.
- the VdF-based fluorororubber is preferably VdF / HFP-based rubber, VdF / HFP / TFE-based rubber, VdF / TFE / PAVE-based fluororubber, VdF / CTFE-based rubber, VdF / CTFE / TFE-based rubber, or the like. can give.
- TFE / propylene-based fluororubber those represented by the following general formula (7) are preferable.
- the structural unit M 3 is a structural unit derived from TFE (m 3 )
- the structural unit M 4 is a structural unit derived from propylene (m 4 )
- the structural unit N 2 is a monomer (m 3 ).
- Formula (7) Among the TFE / propylene type fluorine-containing rubbers represented by the structural unit M 3 40 ⁇ 70 mol%, preferably not containing a structural unit M 4 60 ⁇ 30 mol%, more preferably the structural unit M 3 and 50 to 40 mol% of the structural unit M 4 .
- the structural unit N 2 is preferably 0 to 40 mol% with respect to the total amount of the structural unit M 3 and the structural unit M 4 .
- the monomer (n 2 ) may be any monomer as long as it is copolymerizable with the monomer (m 3 ) and the monomer (m 4 ), but it is a monomer that provides a crosslinking site. Is preferred. For example, VdF and the like can be mentioned.
- the polyol-crosslinkable fluororubber is preferably a fluororubber comprising VdF and at least one other fluorine-containing monomer, and in particular, VdF / HFP fluororubber and VdF / TFE / HFP fluororubber.
- At least one rubber selected from the group consisting of rubber and VdF / TFE / PAVE fluororubber is preferable, and from the group consisting of VdF / HFP fluororubber and VdF / TFE / HFP fluororubber. More preferably, it is at least one rubber selected.
- the above-mentioned fluororubber has a Mooney viscosity at 100 ° C. (ML1 + 10 (100 ° C.)) of preferably 2 or more, more preferably 10 or more, further preferably 20 or more, more preferably 30 or more. Is particularly preferable. Further, it is preferably 200 or less, more preferably 150 or less, further preferably 120 or less, and particularly preferably 100 or less.
- the Mooney viscosity is a value measured according to ASTM-D1646 and JIS K6300.
- the above-mentioned fluororubber preferably has a fluorine concentration of 50 to 75% by mass.
- the content is more preferably 60 to 73% by mass, and further preferably 63 to 72% by mass.
- the above-mentioned fluorine concentration is obtained by calculation from the composition ratio of the monomer units constituting the fluororubber.
- the fluororubber described above can be manufactured by a conventional method.
- the fluororubber composition of the present disclosure further contains a crosslinking agent for polyol crosslinking.
- a crosslinking agent for polyol crosslinking used in the present disclosure, compounds conventionally known as cross-linking agents for fluororubbers can be used.
- polyhydroxy compounds, particularly polyhydroxy aromatic compounds from the viewpoint of excellent heat resistance. Is preferably used.
- Cross-linking with a polyol cross-linking system is preferable in that it has a carbon-oxygen bond at the cross-linking point, has a small compression set, good moldability, and excellent sealability and heat resistance.
- the polyhydroxy aromatic compound is not particularly limited, and examples thereof include 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as bisphenol A) and 2,2-bis (4-hydroxyphenyl) perfluoropropane.
- bisphenol A 2,2-bis (4-hydroxyphenyl) propane
- bisphenol AF 2,2-bis (4-hydroxyphenyl) perfluoropropane
- resorcin 1,3-dihydroxybenzene, 1,7-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 4,4′-dihydroxydiphenyl, 4,4 ′ -Dihydroxystilbene, 2,6-dihydroxyanthracene, hydroquinone, catechol, 2,2-bis (4-hydroxyphenyl) butane (hereinafter referred to as bisphenol B), 4,4-bis (4-hydroxyphenyl) valeric acid, 2 , 2-bis (4-hydroxyphenyl) Trafluorodichloroprop
- the content of the crosslinking agent for polyol cross-linking is 100% by mass of the polyol-crosslinkable fluororubber, since a molded article having more excellent organic acid resistance and carboxylic acid ester compound resistance can be obtained. It is preferably 0.5 to 15 parts by mass, more preferably 0.5 to 5 parts by mass, still more preferably 0.5 to 3 parts by mass.
- (C) Crosslinking accelerator The fluororubber composition of the present disclosure further contains a crosslinking accelerator.
- a crosslinking accelerator When a crosslinking accelerator is used, the crosslinking reaction can be promoted by promoting the formation of intramolecular double bond in the dehydrofluoric acid reaction of the fluororubber main chain.
- An onium compound is generally used as the crosslinking accelerator of the polyol crosslinking system.
- the onium compound is not particularly limited, and examples thereof include ammonium compounds such as quaternary ammonium salts, phosphonium compounds such as quaternary phosphonium salts, oxonium compounds, sulfonium compounds, cyclic amines, and monofunctional amine compounds. Of these, quaternary ammonium salts and quaternary phosphonium salts are preferable.
- the quaternary ammonium salt is not particularly limited, and examples thereof include 8-methyl-1,8-diazabicyclo [5,4,0] -7-undecenium chloride, 8-methyl-1,8-diazabicyclo [5,5] 4,0] -7-undecenium iodide, 8-methyl-1,8-diazabicyclo [5,4,0] -7-undecenium hydroxide, 8-methyl-1,8-diazabicyclo [5 , 4,0] -7-Undecenium methylsulfate, 8-ethyl-1,8-diazabicyclo [5,4,0] -7-undecenium bromide, 8-propyl-1,8-diazabicyclo [5 , 4,0] -7-Undecenium bromide, 8-dodecyl-1,8-diazabicyclo [5,4,0] -7-undecenium chloride, 8-dodecyl-1,8-di
- the quaternary phosphonium salt is not particularly limited, and examples thereof include tetrabutylphosphonium chloride, benzyltriphenylphosphonium chloride (hereinafter referred to as BTPPC), benzyltrimethylphosphonium chloride, benzyltributylphosphonium chloride, tributylallylphosphonium chloride, tributyl. Examples thereof include -2-methoxypropylphosphonium chloride and benzylphenyl (dimethylamino) phosphonium chloride. Among them, benzyltriphenylphosphonium chloride (BTPPC) is preferable from the viewpoint of crosslinkability and physical properties of the crosslinked product.
- BTPPC benzyltriphenylphosphonium chloride
- crosslinking accelerator a quaternary ammonium salt or a chlorine-free crosslinking accelerator disclosed in JP-A-11-147891 may be used.
- a crosslinking agent for crosslinking a polyol and a crosslinking accelerator a solid solution of a quaternary phosphonium salt and bisphenol AF and a benzyltriphenylphosphonium salt of bisphenol AF can also be mentioned.
- the content of the crosslinking accelerator since a molded article further excellent in organic acid resistance and carboxylic acid ester compound resistance can be obtained, based on 100 parts by mass of the polyol-crosslinkable fluororubber, The amount is preferably 0.05 to 5 parts by mass, more preferably 0.05 to 3 parts by mass, and further preferably 0.05 to 2 parts by mass.
- the acid acceptor (d) contained in the fluororubber composition of the present disclosure is at least one selected from the group consisting of basic magnesium carbonate and magnesium phosphate. It has been found by the present inventor that when these compounds which have not been used so far are used as an acid acceptor for a polyol-crosslinkable fluororubber, a molded article excellent in organic acid resistance and carboxylic acid ester compound resistance is obtained. It was newly found. The fluororubber composition of the present disclosure has been completed based on this finding.
- Basic magnesium carbonate is usually represented by the following general formula (8).
- magnesium phosphate examples include magnesium dihydrogen phosphate, magnesium hydrogen phosphate, trimagnesium phosphate, magnesium pyrophosphate, and the like, among which trimagnesium phosphate is preferable.
- the magnesium phosphate may be magnesium phosphate hydrate, for example, trimagnesium phosphate trihydrate, trimagnesium phosphate pentahydrate, trimagnesium phosphate octahydrate, triphosphate trihydrate. Examples thereof include magnesium decahydrate and trimagnesium phosphate dihydrate.
- magnesium phosphate trimagnesium phosphate octahydrate (Mg 3 (PO 4 ) 2 .8H 2 O) is particularly preferable because a molded article having further excellent organic acid resistance and carboxylic acid ester compound resistance can be obtained. preferable.
- the content of the acid acceptor is preferably 100 parts by mass of the polyol-crosslinkable fluororubber, since a molded article having further excellent organic acid resistance and carboxylic acid ester compound resistance can be obtained. Is 2 to 40 parts by mass, more preferably 3 to 30 parts by mass, and further preferably 4 to 25 parts by mass.
- the content of the basic magnesium carbonate As the content of the basic magnesium carbonate, a molded article further excellent in organic acid resistance and carboxylic acid ester compound resistance can be obtained.
- it is preferably 2 to 40 parts by mass, more preferably 2 to 15 parts by mass, and further preferably 4 to 10 parts by mass.
- the content of magnesium phosphate since a molded article further excellent in organic acid resistance and carboxylic acid ester compound resistance can be obtained, based on 100 parts by mass of polyol-crosslinkable fluororubber. It is preferably 2 to 40 parts by mass, more preferably 10 to 30 parts by mass, and further preferably 15 to 25 parts by mass.
- the fluororubber composition of the present disclosure may further contain a metal hydroxide.
- a metal hydroxide include calcium hydroxide.
- the content of the metal hydroxide is preferably 0.5 to 30 parts by mass, more preferably 1 to 15 parts by mass, based on 100 parts by mass of the polyol-crosslinkable fluororubber. And more preferably 1 to 3 parts by mass.
- the crosslinking rate may be supplemented, but if the content of the metal hydroxide is too large, the organic acid resistance and the carboxylic acid ester compound resistance may be impaired.
- the above-mentioned fluororubber composition is a usual additive that is blended with the fluororubber composition as required, such as a filler (carbon black, barium sulfate, etc.), a processing aid (wax, etc.), a plasticizer, and a coloring agent.
- a filler carbon black, barium sulfate, etc.
- a processing aid wax, etc.
- a plasticizer e.g., a plasticizer
- a coloring agent e.g., a coloring agent
- Various additives such as flame retardants can be blended, and one or more conventional cross-linking agents and cross-linking accelerators different from the above may be blended.
- the content of the filler such as carbon black is not particularly limited, but is preferably 0 to 150 parts by mass, and preferably 1 to 100 parts by mass, relative to 100 parts by mass of the polyol-crosslinkable fluororubber. More preferably, it is 2 to 50 parts by mass.
- the content of the processing aid such as wax is preferably 0 to 10 parts by mass based on 100 parts by mass of the polyol-crosslinkable fluororubber.
- the fluororubber composition of the present disclosure may or may not contain a divalent metal oxide, but even when it contains a divalent metal oxide,
- the content is less than 1 part by mass with respect to 100 parts by mass of the polyol-crosslinkable fluororubber.
- the content of the divalent metal oxide is preferably 0.5 parts by mass or less, more preferably 0.2 parts by mass or less, further preferably 0.1 parts by mass or less, and particularly preferably 0. It is also preferably 0.01 part by mass or less and substantially free of a divalent metal oxide.
- the crosslinking rate of the fluororubber composition is not sufficient, the use of a divalent metal oxide may improve the crosslinking rate, but in order to obtain sufficient resistance to organic acid and carboxylic acid ester compound. In particular, it is preferable to avoid the use of divalent metal oxides as much as possible.
- divalent metal oxide oxides of magnesium, calcium, lead, zinc and the like can be mentioned.
- the fluororubber composition may or may not contain hydrotalcites, but even in the case of containing hydrotalcites, the amount is small.
- the content of hydrotalcites is preferably less than 2 parts by mass, more preferably 1 part by mass or less, and further preferably 0.5 parts by mass with respect to 100 parts by mass of the polyol-crosslinkable fluororubber. It is below, particularly preferably 0.1 part by mass or less, and it is also preferable that substantially no hydrotalcites are contained.
- the fluororubber composition may or may not contain an alkali metal silicate, but even when containing an alkali metal silicate, a small amount It is preferable that The content of the alkali metal silicate is preferably less than 5 parts by mass, more preferably 1 part by mass or less, and still more preferably 0.5 part by mass with respect to 100 parts by mass of the polyol-crosslinkable fluororubber. Parts or less, particularly preferably 0.1 parts by mass or less, most preferably 0.01 parts by mass or less, and it is also preferable that substantially no alkali metal silicate is contained.
- the fluororubber composition is generally used with other components such as a fluororubber (a), a crosslinking agent (b) for crosslinking a polyol, a crosslinking accelerator (c), an acid acceptor (d), and a filler. It is obtained by kneading using a rubber kneading device. A roll, a kneader, a Banbury mixer, an internal mixer, a twin-screw extruder, or the like can be used as the rubber kneading device.
- the fluororubber (a), the crosslinking agent for crosslinking the polyol (b) and the crosslinking accelerator (c) were mixed with a kneader or other closed type kneading device to obtain 100 parts.
- a method may be used in which after kneading while melting at a high temperature of up to 200 ° C., other components such as the acid acceptor (d) and the filler are kneaded at a relatively low temperature below this.
- the cross-linking agent (b) for polyol cross-linking and the cross-linking accelerator (c) are once melted and uniformly dispersed by using a solid solution having a lowered melting point.
- the other components such as the fluororubber (a), the crosslinking agent for polyol crosslinking (b), the crosslinking accelerator (c), the acid acceptor (d), and the filler, at room temperature for 12 hours or more.
- the dispersibility can be further enhanced by kneading again after placing.
- the molded article of the present disclosure can be obtained by crosslinking the fluorororubber composition.
- the molded article of the present disclosure can also be obtained by molding and crosslinking the fluororubber composition.
- the fluororubber composition can be molded by a conventionally known method.
- the molding and crosslinking methods and conditions may be within the range of known methods and conditions for molding and crosslinking employed.
- the order of molding and crosslinking is not limited, and molding may be followed by crosslinking, crosslinking may be followed by molding, and molding and crosslinking may be performed simultaneously.
- the molding method examples include, but are not limited to, a compression molding method using a mold, an injection molding method, an injection molding method and an extrusion molding method.
- a steam cross-linking method a usual method in which a cross-linking reaction is initiated by heating, a radiation cross-linking method, or the like can be adopted, and among them, a steam cross-linking method and a cross-linking reaction by heating are preferable.
- cross-linking conditions that are not limited include, usually, a temperature range of 140 to 250 ° C., a cross-linking time of 1 minute to 24 hours, and a cross-linking agent (b), a cross-linking accelerator (c), and a cross-linking accelerator (c) for use. It may be appropriately determined depending on the type of the acid agent (d) and the like.
- the molded product of the present disclosure can also be used by laminating it with another molded product different from the molded product of the present disclosure.
- a laminate including a layer made of the molded article of the present disclosure and a layer made of another molded article is also a preferable embodiment.
- the above-mentioned laminated body may be provided with a layer made of another molded article of one layer, or may be provided with a layer made of two or more other molded articles, and the position of each layer is not particularly limited.
- appropriate materials may be selected according to the required characteristics, intended use, etc.
- the other materials include other rubbers and thermoplastic resins described later.
- acrylonitrile-butadiene rubber or its hydrogenated rubber blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, fluororubber, epichlorohydrin rubber , EPDM, ethylene-acrylic rubber, acrylic rubber, silicone rubber, and fluorosilicone rubber, preferably at least one rubber selected from the group consisting of acrylonitrile-butadiene rubber or hydrogenated rubber thereof, epichlorohydrin rubber, ethylene acrylic rubber, A rubber made of at least one selected from the group consisting of acrylic rubber and silicone rubber is more preferable.
- thermoplastic resin is at least one selected from the group consisting of fluororesin, polyamide resin, polyolefin resin, polyester resin, polyvinyl alcohol resin, polyvinyl chloride resin, and polyphenylene sulfide resin.
- a plastic resin is preferable, and a thermoplastic resin made of at least one selected from the group consisting of a fluororesin, a polyamide resin, a polyvinyl alcohol resin, and a polyphenylene sulfide resin is more preferable.
- the layered product may be one in which a layer made of the molded article of the present disclosure and a layer made of another molded article are directly laminated, but an adhesive layer may be interposed between the two layers. .. By interposing the adhesive layer, the layer made of the molded product of the present disclosure and the layer made of another molded product can be firmly joined and integrated.
- the method for producing the laminate is not particularly limited, and the timing of molding and crosslinking is also not particularly limited.
- the method for producing the laminate when the other material constituting the other molded article is another rubber, for example, after laminating the fluororubber composition of the present disclosure and the other rubber, Method for producing by simultaneously crosslinking layers, one of the fluororubber composition and the other rubber of the present disclosure is molded and crosslinked to produce one crosslinked molded article, and then the other uncrosslinked molded article And a method for producing the other non-crosslinked molded article by further crosslinking, after molding and crosslinking the fluororubber composition of the present disclosure and another rubber, respectively, to prepare a crosslinked molded article separately.
- a method of manufacturing by laminating both molded products, and the like As the method for producing the above-mentioned laminate, when the other material constituting the other molded article is a thermoplastic resin, for example, the fluororubber composition and the thermoplastic resin of the present disclosure are laminated, and then the fluororubber is laminated.
- a method for producing by crosslinking the composition a method for producing a crosslinked molded article by molding and crosslinking the fluororubber composition of the present disclosure, and then laminating it with a molded article of a thermoplastic resin, and the like. Can be mentioned.
- the molded product of the present disclosure or another molded product may be subjected to a surface treatment, if necessary.
- the type of surface treatment is not particularly limited as long as it is a treatment method that enables adhesion, and examples thereof include discharge treatment such as plasma discharge treatment and corona discharge treatment, and metallic sodium / naphthalene liquid treatment of wet method. Etc.
- a primer treatment is also suitable as the surface treatment.
- the primer treatment can be performed according to a conventional method. When applying a primer treatment, it is possible to treat the surface of fluororubber that has not been surface treated, but if plasma treatment, corona discharge treatment, metallic sodium / naphthalene solution treatment, etc. are performed in advance, then further primer treatment , More effective.
- the hardness of the molded article of the present disclosure is usually 50 or more, and from the viewpoint of good mechanical properties of the molded article, it is preferably 65 or more, more preferably 67 or more, and further preferably 70 or more.
- the upper limit is not particularly limited, but may be 100 or less in consideration of flexibility.
- the hardness described here is the hardness (value after 3 seconds) measured by the type A durometer described in JIS K6253-3. However, when the hardness (value after 3 seconds) measured with the type A durometer exceeds 90, it is the hardness (value after 3 seconds) measured with the type D durometer.
- the above-mentioned fluororubber composition can be suitably used as a fluororubber composition for a hose or a fluororubber composition for a sealing material, since a molded article having excellent organic acid resistance and carboxylic acid ester compound resistance can be obtained. Further, since a molded product having a hardness within the above range can be obtained, it can be particularly preferably used as a fluororubber composition for hoses.
- the molded article of the present disclosure is excellent in organic acid resistance and carboxylic acid ester compound resistance, it is preferably a hose or a sealing material, and more preferably a hose.
- it can be suitably used as a hose or a sealing material that comes into contact with a fluid containing one or both of an organic acid and a carboxylic acid ester compound.
- organic acids examples include formic acid, acetic acid, propionic acid, oxalic acid, citric acid and the like.
- the carboxylic acid ester compound may be a carboxylic acid ester compound contained in biodiesel fuel.
- Examples of the carboxylic acid ester compound include rapeseed oil methyl ester, soybean oil methyl ester, sunflower oil methyl ester, coconut oil methyl ester, palm oil methyl ester, and the like.
- the molded article of the present disclosure has excellent organic acid resistance and carboxylic acid ester compound resistance, it can be suitably used as a biodiesel fuel member or an air management system member for an internal combustion engine.
- biodiesel fuel members include hoses for biodiesel fuel.
- Biodiesel fuel is a fuel obtained by esterifying a higher fatty acid obtained by squeezing organisms (biomass), mainly plants, and is a mixture containing light oils, higher fatty acid esters, and / or higher fatty acids. is there.
- the air management system members are the members used for the air management system.
- the air management system is one in which gas circulates inside, and for example, an air filter, a turbocharger, an intercooler, an intake manifold, and the like attached to a general engine (automobile, ship, construction machine, etc.), Examples include an exhaust gas recirculation cooler.
- the members for the air management system are the members that make up the air management system, and also include the members that are directly connected to the air management system. Examples include air ducts, turbocharger hoses, EGR (exhaust gas recirculation) hoses, intercooler hoses and seals, intake manifold seals, oxygen sensor hoses and seals, and other sensor hoses and seals.
- air ducts turbocharger hoses
- EGR exhaust gas recirculation
- the gas circulating inside the air management system is preferably at least one selected from the group consisting of NO x , SO x , and organic acids contained in the combustion gas of gasoline, and in particular, combustion of gasoline It is preferably an organic acid contained in the gas.
- organic acid contained in the combustion gas of gasoline include formic acid and acetic acid.
- the member for an air management system in the present disclosure is preferably a member of the air management system in which the gas circulates, and is, for example, at least one selected from the group consisting of a turbocharger hose and an EGR hose. Is more preferable. From the viewpoint of heat resistance, it is particularly useful as an EGR (exhaust gas recirculation) hose.
- EGR exhaust gas recirculation
- the air management system member of the present disclosure is preferably a turbocharger hose.
- a turbo system is a system that sends exhaust gas from an engine to a turbine to rotate the turbine, thereby moving a compressor connected to the turbine, increasing a compression ratio of air supplied to the engine, and improving output.
- This turbo system which uses the exhaust gas of the engine and obtains a high output, also leads to downsizing of the engine, lower fuel consumption of the automobile, and cleaner exhaust gas.
- a turbocharger hose is used in a turbo system as a hose for sending compressed air to an engine.
- a rubber hose with excellent flexibility and flexibility is advantageous, and typically, rubber with excellent heat aging resistance and oil resistance (especially fluororubber) is used.
- Is used as an inner layer and a hose having a multi-layer structure with silicone rubber or acrylic rubber as an outer layer is adopted.
- the gas circulating inside the turbo system is a condensable acid gas, excellent organic acid resistance is required.
- the member for an air management system according to the present disclosure is particularly useful as a turbocharger hose because it has excellent organic acid resistance in addition to the heat aging resistance and oil resistance of fluororubber.
- the air management system member of the present disclosure is also preferably an EGR (exhaust gas recirculation) hose.
- An EGR (exhaust gas recirculation) hose is used as a hose used for an exhaust gas recirculation cooler.
- a rubber hose excellent in flexibility and flexibility is advantageous, and fluororubber excellent in heat aging resistance is also suitable.
- the gas circulating inside the exhaust gas recirculation cooler is a condensable acid gas
- the EGR hose is required to have excellent organic acid resistance.
- the member of the air management system of the present disclosure is particularly useful as an EGR hose because it has excellent organic acid resistance in addition to the heat aging resistance of fluororubber.
- the molded article of the present disclosure can be suitably used as a biodiesel fuel member or a member for an air management system of an internal combustion engine, but can also be used for other purposes.
- semiconductor manufacturing equipment liquid crystal panel manufacturing equipment, plasma panel manufacturing equipment, plasma addressed liquid crystal panels, field emission display panels, solar cell substrates, and other semiconductor-related fields; automotive fields; aircraft fields; rocket fields; ship fields; Chemicals; Pharmaceuticals such as medicines; Photographs such as developing machines; Printings such as printing machines; Paintings such as painting equipment; Analysis and physical and chemical equipments; Food plant equipments; Nuclear plant equipments; Iron plate processing equipments It can be preferably used in fields such as steel fields; general industrial fields; electrical fields; fuel cells fields, etc., and among these fields, it can be more preferably used in automobile fields, aircraft fields, rocket fields, and ship fields. .. In addition, it is also useful as various paint compositions and coated articles.
- gaskets, shaft seals, valve stem seals, seal materials and hoses can be used in engines and peripheral devices
- hose and seal materials can be used in AT devices, O (square) rings, tubes, packings.
- Valve cores, hoses, seals and diaphragms can be used in fuel systems and peripherals.
- diaphragms In the aircraft field, rocket field, and ship field, there are diaphragms, O (square) rings, valves, tubes, packings, hoses, seal materials, etc., which can be used for fuel systems.
- ⁇ SME resistance> A soaking test was performed at 120 ° C. for 504 hours using a biodiesel fuel (SME (soybean oil methyl ester) fuel (NEXSOL BD-0100 BIODISEL manufactured by PETER CREMER): containing 2% by volume of water).
- SME biodiesel fuel
- NEXSOL BD-0100 BIODISEL manufactured by PETER CREMER containing 2% by volume of water.
- the volume and mass of the test piece before and after the immersion test were measured, and the volume swelling rate ( ⁇ V) and the mass change rate ( ⁇ W) were obtained.
- the volume swelling rate ( ⁇ V) is the rate of change in volume (representing the degree of swelling) after the test piece is dipped under predetermined conditions.
- the original volume of the test piece is Vo, and the volume after the test is V.
- ⁇ V (V ⁇ Vo) / Vo ⁇ 100.
- Examples 1-7, Comparative Examples 1-4 The respective components were blended according to the formulation of Table 1 and kneaded on an open roll to prepare a fluororubber composition.
- the cross-linking characteristics (T90) of the obtained fluororubber composition are shown in Table 1.
- the obtained fluororubber composition was pressed under the molding conditions shown in Table 1 to be crosslinked and then oven crosslinked to prepare a crosslinked sheet (thickness: 2 mm).
- Table 1 shows the evaluation results of the obtained crosslinked sheet.
- the fluororubber composition prepared in Comparative Example 4 could not be crosslinked.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
(a)ポリオール架橋可能なフッ素ゴム、(b)ポリオール架橋用架橋剤、(c)架橋促進剤、ならびに、(d)塩基性炭酸マグネシウムおよびリン酸マグネシウムからなる群より選択される少なくとも1種の受酸剤を含有し、2価金属酸化物の含有量が、フッ素ゴム(a)100質量部に対して、1質量部未満であるフッ素ゴム組成物を提供する。
Description
本開示は、フッ素ゴム組成物および成形品に関する。
フッ素ゴムは、通常、架橋して用いられるものであり、フッ素ゴムを架橋させるために、フッ素ゴムに対して、架橋剤、架橋促進剤、受酸剤などを配合することが知られている。たとえば、特許文献1では、ポリオール架橋可能なフッ素ゴム100重量部当り、一般式F(CF2)2nF(ここで、nは5~30の整数である)で表わされるパーフルオロアルカン、一般式F(CF2)mH(ここで、mは10~30の整数である)で表わされる1H-パーフルオロアルカンまたはこれらの混合物0.5~10重量部、塩基性マグネシウム・アルミニウム・ハイドロオキシカーボネートハイドレート0.5~2重量部およびCa化合物以外の受酸剤1~5重量部を含有してなるポリオール架橋可能なフッ素ゴム組成物が提案されている。
フッ素ゴムを架橋して得られる成形品は、一般的に耐薬品性に優れるとされているが、有機酸やカルボン酸エステル化合物に対する耐久性に改善の余地があることが、本発明者の検討によって明らかとなった。
本開示では、上記の知見に鑑み、耐有機酸性および耐カルボン酸エステル化合物性に優れる成形品を得ることができるフッ素ゴム組成物を提供することを目的とする。
本開示によれば、(a)ポリオール架橋可能なフッ素ゴム、(b)ポリオール架橋用架橋剤、(c)架橋促進剤、ならびに、(d)塩基性炭酸マグネシウムおよびリン酸マグネシウムからなる群より選択される少なくとも1種の受酸剤を含有し、2価金属酸化物の含有量が、フッ素ゴム(a)100質量部に対して、1質量部未満であるフッ素ゴム組成物が提供される。
本開示のフッ素ゴム組成物は、フッ素ゴム(a)100質量部に対し、0.5~15質量部のポリオール架橋用架橋剤(b)を含有することが好ましい。
本開示のフッ素ゴム組成物は、フッ素ゴム(a)100質量部に対し、0.05~5質量部の架橋促進剤(c)を含有することが好ましい。
本開示のフッ素ゴム組成物は、フッ素ゴム(a)100質量部に対し、2~40質量部の受酸剤(d)を含有することが好ましい。
本開示のフッ素ゴム組成物において、フッ素ゴム(a)が、ビニリデンフルオライド単位を含むことが好ましい。
本開示のフッ素ゴム組成物において、リン酸マグネシウムが、リン酸三マグネシウム八水和物であることが好ましい。
本開示のフッ素ゴム組成物において、前記フッ素ゴム組成物を架橋して得られる成形品の、JIS K6253-3に従って、タイプAデュロメータにより測定した硬さ(3秒後の値)が、65以上であることが好ましい。
本開示のフッ素ゴム組成物は、ホース用フッ素ゴム組成物であることが好ましい。
本開示のフッ素ゴム組成物は、フッ素ゴム(a)100質量部に対し、0.05~5質量部の架橋促進剤(c)を含有することが好ましい。
本開示のフッ素ゴム組成物は、フッ素ゴム(a)100質量部に対し、2~40質量部の受酸剤(d)を含有することが好ましい。
本開示のフッ素ゴム組成物において、フッ素ゴム(a)が、ビニリデンフルオライド単位を含むことが好ましい。
本開示のフッ素ゴム組成物において、リン酸マグネシウムが、リン酸三マグネシウム八水和物であることが好ましい。
本開示のフッ素ゴム組成物において、前記フッ素ゴム組成物を架橋して得られる成形品の、JIS K6253-3に従って、タイプAデュロメータにより測定した硬さ(3秒後の値)が、65以上であることが好ましい。
本開示のフッ素ゴム組成物は、ホース用フッ素ゴム組成物であることが好ましい。
また、本開示によれば、上記のフッ素ゴム組成物を架橋して得られる成形品が提供される。
本開示の成形品は、有機酸およびカルボン酸エステル化合物の一方または両方を含む流体と接触するホースであることが好ましい。
本開示の成形品は、バイオディーゼル燃料用部材または内燃機関の空気管理システム用部材であることが好ましい。
本開示の成形品は、バイオディーゼル燃料用部材または内燃機関の空気管理システム用部材であることが好ましい。
本開示によれば、耐有機酸性および耐カルボン酸エステル化合物性に優れる成形品を得ることができるフッ素ゴム組成物を提供することができる。
以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に限定されるものではない。
本開示のフッ素ゴム組成物は、(a)ポリオール架橋可能なフッ素ゴム、(b)ポリオール架橋用架橋剤、(c)架橋促進剤および(d)受酸剤を含有する。
(a)ポリオール架橋可能なフッ素ゴム
本開示で用いるポリオール架橋可能なフッ素ゴムは、ポリオール架橋可能な部位を有するフッ素ゴムであればよい。ポリオール架橋可能な部位としては、ビニリデンフルオライド(VdF)単位を有する部位などをあげることができる。なかでも、耐有機酸性および耐カルボン酸エステル化合物性にさらに優れる成形品が得られることから、VdF単位を含むフッ素ゴムが好ましい。
本開示で用いるポリオール架橋可能なフッ素ゴムは、ポリオール架橋可能な部位を有するフッ素ゴムであればよい。ポリオール架橋可能な部位としては、ビニリデンフルオライド(VdF)単位を有する部位などをあげることができる。なかでも、耐有機酸性および耐カルボン酸エステル化合物性にさらに優れる成形品が得られることから、VdF単位を含むフッ素ゴムが好ましい。
ポリオール架橋可能な部位を有するフッ素ゴムとしては、非パーフルオロフッ素ゴムがあげられる。
ポリオール架橋可能な部位を有するフッ素ゴムとしては、VdF系フッ素ゴム、テトラフルオロエチレン(TFE)/プロピレン系フッ素ゴム、TFE/プロピレン/VdF系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)系フッ素ゴム、エチレン/HFP/VdF系フッ素ゴム、エチレン/HFP/TFE系フッ素ゴム、フルオロシリコーン系フッ素ゴム、またはフルオロホスファゼン系フッ素ゴムなどがあげられ、これらをそれぞれ単独で、または本開示の効果を損なわない範囲で任意に組合わせて用いることができる。
VdF系フッ素ゴムとしては、下記一般式(1)で表されるものが好ましい。
-(M1)-(M2)-(N1)- (1)
(式中、構造単位M1はビニリデンフルオライド(m1)由来の構造単位であり、構造単位M2は含フッ素エチレン性単量体(m2)由来の構造単位であり、構造単位N1は単量体(m1)および単量体(m2)と共重合可能な単量体(n1)由来の繰り返し単位である)
(式中、構造単位M1はビニリデンフルオライド(m1)由来の構造単位であり、構造単位M2は含フッ素エチレン性単量体(m2)由来の構造単位であり、構造単位N1は単量体(m1)および単量体(m2)と共重合可能な単量体(n1)由来の繰り返し単位である)
一般式(1)で表されるVdF系フッ素ゴムの中でも、構造単位M1を30~85モル%、構造単位M2を55~15モル%含むものが好ましく、より好ましくは構造単位M1を50~80モル%、構造単位M2を50~20モル%である。構造単位N1は、構造単位M1と構造単位M2の合計量に対して、0~20モル%であることが好ましい。
含フッ素エチレン性単量体(m2)としては、1種または2種以上の単量体が利用でき、たとえばTFE、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン、HFP、トリフルオロプロピレン、テトラフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、パーフルオロ(アルキルビニルエーテル)(PAVE)、一般式(2):
CF2=CFO(Rf1O)q(Rf2O)rRf3 (2)
(式中、Rf1およびRf2はそれぞれ独立に炭素数1~6の直鎖または分岐したパーフルオロアルキレン基、Rf3は炭素数1~6の直鎖または分岐したパーフルオロアルキル基、qおよびrはそれぞれ独立に0~6の整数(ただし0<q+r≦6を満たす)である)で表される含フッ素単量体、一般式(3):
CHX11=CX12Rf4 (3)
(式中、X11およびX12は、一方がHであり、他方がFであり、Rf4は炭素数1~12の直鎖または分岐したフルオロアルキル基である)で表される含フッ素単量体、フッ化ビニルなどの含フッ素単量体があげられるが、これらのなかでも、TFE、HFP、PAVEが好ましい。
CF2=CFO(Rf1O)q(Rf2O)rRf3 (2)
(式中、Rf1およびRf2はそれぞれ独立に炭素数1~6の直鎖または分岐したパーフルオロアルキレン基、Rf3は炭素数1~6の直鎖または分岐したパーフルオロアルキル基、qおよびrはそれぞれ独立に0~6の整数(ただし0<q+r≦6を満たす)である)で表される含フッ素単量体、一般式(3):
CHX11=CX12Rf4 (3)
(式中、X11およびX12は、一方がHであり、他方がFであり、Rf4は炭素数1~12の直鎖または分岐したフルオロアルキル基である)で表される含フッ素単量体、フッ化ビニルなどの含フッ素単量体があげられるが、これらのなかでも、TFE、HFP、PAVEが好ましい。
単量体(n1)としては、単量体(m1)および単量体(m2)と共重合可能なものであれば、いかなるものでもよいが、たとえばエチレン、プロピレン、アルキルビニルエーテル、架橋部位を与える単量体、ビスオレフィン化合物などをあげることができる。これらをそれぞれ単独で、または任意に組合わせて用いることができる。
このような架橋部位を与える単量体としては、一般式(4):
CY1 2=CY1-Rf5CHR1X1 (4)
(式中、Y1は、独立に、水素原子、フッ素原子または-CH3、Rf5は、フルオロアルキレン基、パーフルオロアルキレン基、フルオロポリオキシアルキレン基またはパーフルオロポリオキシアルキレン基、R1は、水素原子または-CH3、X1は、ヨウ素原子または臭素原子)で表されるヨウ素または臭素含有単量体、一般式(5):
CF2=CFO(CF2CF(CF3)O)m(CF2)n-X2 (5)
(式中、mは、0~5の整数、nは、1~3の整数、X2は、シアノ基、カルボキシル基、アルコキシカルボニル基、臭素原子、ヨウ素原子)で表される単量体、一般式(6):
CH2=CH(CF2)pI (6)
(式中、pは1~10の整数)で表される単量体などがあげられ、たとえば特公平5-63482号公報、特開平7-316234号公報に記載されているようなパーフルオロ(6,6-ジヒドロ-6-ヨード-3-オキサ-1-ヘキセン)やパーフルオロ(5-ヨード-3-オキサ-1-ペンテン)などのヨウ素含有単量体、特開平4-217936号公報記載のCF2=CFOCF2CF2CH2Iなどのヨウ素含有単量体、特開昭61-55138号公報に記載されている4-ヨード-3,3,4,4-テトラフルオロ-1-ブテンなどのヨウ素含有単量体、特開平4-505341号公報に記載されている臭素含有単量体、特開平4-505345号公報、特開平5-500070号公報に記載されているようなシアノ基含有単量体、カルボキシル基含有単量体、アルコキシカルボニル基含有単量体などがあげられる。これらをそれぞれ単独で、または任意に組合わせて用いることができる。
またビスオレフィン化合物としては特開平8-12726号公報に記載されたものを用いることができる。
CY1 2=CY1-Rf5CHR1X1 (4)
(式中、Y1は、独立に、水素原子、フッ素原子または-CH3、Rf5は、フルオロアルキレン基、パーフルオロアルキレン基、フルオロポリオキシアルキレン基またはパーフルオロポリオキシアルキレン基、R1は、水素原子または-CH3、X1は、ヨウ素原子または臭素原子)で表されるヨウ素または臭素含有単量体、一般式(5):
CF2=CFO(CF2CF(CF3)O)m(CF2)n-X2 (5)
(式中、mは、0~5の整数、nは、1~3の整数、X2は、シアノ基、カルボキシル基、アルコキシカルボニル基、臭素原子、ヨウ素原子)で表される単量体、一般式(6):
CH2=CH(CF2)pI (6)
(式中、pは1~10の整数)で表される単量体などがあげられ、たとえば特公平5-63482号公報、特開平7-316234号公報に記載されているようなパーフルオロ(6,6-ジヒドロ-6-ヨード-3-オキサ-1-ヘキセン)やパーフルオロ(5-ヨード-3-オキサ-1-ペンテン)などのヨウ素含有単量体、特開平4-217936号公報記載のCF2=CFOCF2CF2CH2Iなどのヨウ素含有単量体、特開昭61-55138号公報に記載されている4-ヨード-3,3,4,4-テトラフルオロ-1-ブテンなどのヨウ素含有単量体、特開平4-505341号公報に記載されている臭素含有単量体、特開平4-505345号公報、特開平5-500070号公報に記載されているようなシアノ基含有単量体、カルボキシル基含有単量体、アルコキシカルボニル基含有単量体などがあげられる。これらをそれぞれ単独で、または任意に組合わせて用いることができる。
またビスオレフィン化合物としては特開平8-12726号公報に記載されたものを用いることができる。
上記VdF系フッ素ゴムとして具体的には、VdF/HFP系ゴム、VdF/HFP/TFE系ゴム、VdF/TFE/PAVE系フッ素ゴム、VdF/CTFE系ゴム、VdF/CTFE/TFE系ゴムなどが好ましくあげられる。
TFE/プロピレン系フッ素ゴムとしては、下記一般式(7)で表されるものが好ましい。
-(M3)-(M4)-(N2)- (7)
(式中、構造単位M3はTFE(m3)由来の構造単位であり、構造単位M4はプロピレン(m4)由来の構造単位であり、構造単位N2は単量体(m3)および単量体(m4)と共重合可能な単量体(n2)由来の繰り返し単位である)
(式中、構造単位M3はTFE(m3)由来の構造単位であり、構造単位M4はプロピレン(m4)由来の構造単位であり、構造単位N2は単量体(m3)および単量体(m4)と共重合可能な単量体(n2)由来の繰り返し単位である)
一般式(7)で表されるTFE/プロピレン系フッ素ゴムの中でも、構造単位M3を40~70モル%、構造単位M4を60~30モル%含むものが好ましく、より好ましくは構造単位M3を50~60モル%、構造単位M4を50~40モル%含むものである。構造単位N2は、構造単位M3と構造単位M4の合計量に対して、0~40モル%であることが好ましい。
単量体(n2)としては、単量体(m3)および単量体(m4)と共重合可能なものであればいかなるものでもよいが、架橋部位を与える単量体であることが好ましい。たとえば、VdFなどがあげられる。
これらのなかでも、ポリオール架橋可能なフッ素ゴムとしては、VdFと他の少なくとも1種のフッ素含有モノマーからなるフッ素ゴムであることが好ましく、特にVdF/HFP系フッ素ゴム、VdF/TFE/HFP系フッ素ゴム、および、VdF/TFE/PAVE系フッ素ゴムからなる群から選ばれる少なくとも1種のゴムであることが好ましく、VdF/HFP系フッ素ゴム、および、VdF/TFE/HFP系フッ素ゴムからなる群から選ばれる少なくとも1種のゴムであることがより好ましい。
上記フッ素ゴムは、100℃におけるムーニー粘度(ML1+10(100℃))が、2以上であることが好ましく、10以上であることがより好ましく、20以上であることがさらに好ましく、30以上であることが特に好ましい。また、200以下であることが好ましく、150以下であることがより好ましく、120以下であることがさらに好ましく、100以下であることが特に好ましい。ムーニー粘度は、ASTM-D1646およびJIS K6300に準拠して測定した値である。
上記フッ素ゴムは、フッ素濃度が50~75質量%であることが好ましい。より好ましくは、60~73質量%であり、更に好ましくは、63~72質量%である。上記フッ素濃度は、フッ素ゴムを構成する単量体単位の組成比から計算により求められる。
以上説明したフッ素ゴムは、常法により製造することができる。
(b)ポリオール架橋用架橋剤
本開示のフッ素ゴム組成物は、さらに、ポリオール架橋用架橋剤を含む。本開示で用いるポリオール架橋用架橋剤としては、従来、フッ素ゴムの架橋剤として知られている化合物を用いることができ、たとえば、ポリヒドロキシ化合物、特に、耐熱性に優れる点からポリヒドロキシ芳香族化合物が好適に用いられる。
本開示のフッ素ゴム組成物は、さらに、ポリオール架橋用架橋剤を含む。本開示で用いるポリオール架橋用架橋剤としては、従来、フッ素ゴムの架橋剤として知られている化合物を用いることができ、たとえば、ポリヒドロキシ化合物、特に、耐熱性に優れる点からポリヒドロキシ芳香族化合物が好適に用いられる。
ポリオール架橋系により架橋すると、架橋点に炭素-酸素結合を有しており、圧縮永久歪みが小さく、成形性も良く、シール性および耐熱性に優れているという特徴がある点で好適である。
上記ポリヒドロキシ芳香族化合物としては、特に限定されず、たとえば、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、ビスフェノールAという)、2,2-ビス(4-ヒドロキシフェニル)パーフルオロプロパン(以下、ビスフェノールAFという)、レゾルシン、1,3-ジヒドロキシベンゼン、1,7-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、4,4’-ジヒドロキシジフェニル、4,4’-ジヒドロキシスチルベン、2,6-ジヒドロキシアントラセン、ヒドロキノン、カテコール、2,2-ビス(4-ヒドロキシフェニル)ブタン(以下、ビスフェノールBという)、4,4-ビス(4-ヒドロキシフェニル)吉草酸、2,2-ビス(4-ヒドロキシフェニル)テトラフルオロジクロロプロパン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルケトン、トリ(4-ヒドロキシフェニル)メタン、3,3’,5,5’-テトラクロロビスフェノールA、3,3’,5,5’-テトラブロモビスフェノールAなどがあげられる。
これらの中でも、得られる成形品の耐熱性が優れることからビスフェノールAFが好ましい。
これらの中でも、得られる成形品の耐熱性が優れることからビスフェノールAFが好ましい。
上記フッ素ゴム組成物において、ポリオール架橋用架橋剤の含有量としては、耐有機酸性および耐カルボン酸エステル化合物性にさらに優れる成形品が得られることから、ポリオール架橋可能なフッ素ゴム100質量部に対して、好ましくは0.5~15質量部であり、より好ましくは0.5~5質量部であり、さらに好ましくは0.5~3質量部である。
(c)架橋促進剤
本開示のフッ素ゴム組成物は、さらに、架橋促進剤を含む。架橋促進剤を用いると、フッ素ゴム主鎖の脱フッ酸反応における分子内二重結合の形成を促進することにより架橋反応を促進することができる。
本開示のフッ素ゴム組成物は、さらに、架橋促進剤を含む。架橋促進剤を用いると、フッ素ゴム主鎖の脱フッ酸反応における分子内二重結合の形成を促進することにより架橋反応を促進することができる。
ポリオール架橋系の架橋促進剤としては、一般にオニウム化合物が用いられる。オニウム化合物としては特に限定されず、たとえば、第4級アンモニウム塩等のアンモニウム化合物、第4級ホスホニウム塩等のホスホニウム化合物、オキソニウム化合物、スルホニウム化合物、環状アミン、1官能性アミン化合物などがあげられ、これらの中でも第4級アンモニウム塩、第4級ホスホニウム塩が好ましい。
第4級アンモニウム塩としては特に限定されず、たとえば、8-メチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド、8-メチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムアイオダイド、8-メチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムハイドロキサイド、8-メチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムメチルスルフェート、8-エチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムブロミド、8-プロピル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムブロミド、8-ドデシル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド、8-ドデシル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムハイドロキサイド、8-エイコシル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド、8-テトラコシル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド、8-ベンジル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド(以下、DBU-Bとする)、8-ベンジル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムハイドロキサイド、8-フェネチル-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリド、8-(3-フェニルプロピル)-1,8-ジアザビシクロ[5,4,0]-7-ウンデセニウムクロリドなどがあげられる。これらの中でも、架橋性、架橋物の物性の点から、DBU-Bが好ましい。
また、第4級ホスホニウム塩としては特に限定されず、たとえば、テトラブチルホスホニウムクロリド、ベンジルトリフェニルホスホニウムクロリド(以下、BTPPCとする)、ベンジルトリメチルホスホニウムクロリド、ベンジルトリブチルホスホニウムクロリド、トリブチルアリルホスホニウムクロリド、トリブチル-2-メトキシプロピルホスホニウムクロリド、ベンジルフェニル(ジメチルアミノ)ホスホニウムクロリドなどをあげることができ、これらの中でも、架橋性、架橋物の物性の点から、ベンジルトリフェニルホスホニウムクロリド(BTPPC)が好ましい。
また、架橋促進剤として、第4級アンモニウム塩、特開平11-147891号公報に開示されている塩素フリー架橋促進剤を用いることもできる。更に、ポリオール架橋用架橋剤と架橋促進剤とを組合せたものとして、第4級ホスホニウム塩とビスフェノールAFの固溶体、ビスフェノールAFのベンジルトリフェニルホスホニウム塩も挙げられる。
上記フッ素ゴム組成物において、架橋促進剤の含有量としては、耐有機酸性および耐カルボン酸エステル化合物性にさらに優れる成形品が得られることから、ポリオール架橋可能なフッ素ゴム100質量部に対して、好ましくは0.05~5質量部であり、より好ましくは0.05~3質量部であり、さらに好ましくは0.05~2質量部である。
(d)受酸剤
本開示のフッ素ゴム組成物が含有する受酸剤(d)は、塩基性炭酸マグネシウムおよびリン酸マグネシウムからなる群より選択される少なくとも1種である。ポリオール架橋可能なフッ素ゴムの受酸剤として、これまで用いられてこなかったこれらの化合物を用いると、耐有機酸性および耐カルボン酸エステル化合物性に優れる成形品が得られることが、本発明者によって新たに見出された。本開示のフッ素ゴム組成物は、この知見に基づき完成された。
本開示のフッ素ゴム組成物が含有する受酸剤(d)は、塩基性炭酸マグネシウムおよびリン酸マグネシウムからなる群より選択される少なくとも1種である。ポリオール架橋可能なフッ素ゴムの受酸剤として、これまで用いられてこなかったこれらの化合物を用いると、耐有機酸性および耐カルボン酸エステル化合物性に優れる成形品が得られることが、本発明者によって新たに見出された。本開示のフッ素ゴム組成物は、この知見に基づき完成された。
塩基性炭酸マグネシウムは、通常、下記一般式(8)で表されるものである。
mMgCO3・Mg(OH)2・nH2O (8)
(式中、mは3~5、nは3~8である)
(式中、mは3~5、nは3~8である)
リン酸マグネシウムとしては、リン酸二水素マグネシウム、リン酸水素マグネシウム、リン酸三マグネシウム、ピロリン酸マグネシウムなどが挙げられ、なかでも、リン酸三マグネシウムが好ましい。また、リン酸マグネシウムは、リン酸マグネシウム水和物であってよく、たとえば、リン酸三マグネシウム三水和物、リン酸三マグネシウム五水和物、リン酸三マグネシウム八水和物、リン酸三マグネシウム十水和物、リン酸三マグネシウム二十二水和物などが挙げられる。リン酸マグネシウムとしては、耐有機酸性および耐カルボン酸エステル化合物性にさらに優れる成形品が得られることから、リン酸三マグネシウム八水和物(Mg3(PO4)2・8H2O)が特に好ましい。
上記フッ素ゴム組成物において、受酸剤の含有量としては、耐有機酸性および耐カルボン酸エステル化合物性にさらに優れる成形品が得られることから、ポリオール架橋可能なフッ素ゴム100質量部に対し、好ましくは2~40質量部であり、より好ましくは3~30質量部であり、さらに好ましくは4~25質量部である。
また、上記フッ素ゴム組成物において、塩基性炭酸マグネシウムの含有量としては、耐有機酸性および耐カルボン酸エステル化合物性にさらに優れる成形品が得られることから、ポリオール架橋可能なフッ素ゴム100質量部に対し、好ましくは2~40質量部であり、より好ましくは2~15質量部であり、さらに好ましくは4~10質量部である。
また、上記フッ素ゴム組成物において、リン酸マグネシウムの含有量としては、耐有機酸性および耐カルボン酸エステル化合物性にさらに優れる成形品が得られることから、ポリオール架橋可能なフッ素ゴム100質量部に対し、好ましくは2~40質量部であり、より好ましくは10~30質量部であり、さらに好ましくは15~25質量部である。
(e)その他の成分
本開示のフッ素ゴム組成物は、さらに、金属水酸化物を含有してもよい。金属水酸化物としては、水酸化カルシウムが挙げられる。
本開示のフッ素ゴム組成物は、さらに、金属水酸化物を含有してもよい。金属水酸化物としては、水酸化カルシウムが挙げられる。
上記フッ素ゴム組成物において、上記金属水酸化物の含有量は、ポリオール架橋可能なフッ素ゴム100質量部に対して、好ましくは0.5~30質量部であり、より好ましくは1~15質量部であり、さらに好ましくは1~3質量部である。金属水酸化物を用いることにより、架橋速度を補えることがあるが、金属水酸化物の含有量が多すぎると、耐有機酸性および耐カルボン酸エステル化合物性が損なわれるおそれがある。
また、上記フッ素ゴム組成物は、必要に応じてフッ素ゴム組成物に配合される通常の添加物、たとえば充填剤(カーボンブラック、硫酸バリウム等)、加工助剤(ワックス等)、可塑剤、着色剤、安定剤、粘着性付与剤(クマロン樹脂、クマロン・インデン樹脂等)、離型剤、導電性付与剤、熱伝導性付与剤、表面非粘着剤、柔軟性付与剤、耐熱性改善剤、難燃剤などの各種添加剤を配合することができ、前記のものとは異なる常用の架橋剤、架橋促進剤を1種またはそれ以上配合してもよい。
例えば、カーボンブラックなどの充填剤の含有量としては、特に限定されるものではないが、ポリオール架橋可能なフッ素ゴム100質量部に対して0~150質量部であることが好ましく、1~100質量部であることがより好ましく、2~50質量部であることが更に好ましい。
また、ワックス等の加工助剤の含有量としては、ポリオール架橋可能なフッ素ゴム100質量部に対して0~10質量部であることが好ましい。加工助剤、可塑剤や離型剤を使用すると、得られる成形品の機械物性やシール性が下がる傾向があるので、目的とする硬度によってこれらの含有量を調整する必要がある。
例えば、カーボンブラックなどの充填剤の含有量としては、特に限定されるものではないが、ポリオール架橋可能なフッ素ゴム100質量部に対して0~150質量部であることが好ましく、1~100質量部であることがより好ましく、2~50質量部であることが更に好ましい。
また、ワックス等の加工助剤の含有量としては、ポリオール架橋可能なフッ素ゴム100質量部に対して0~10質量部であることが好ましい。加工助剤、可塑剤や離型剤を使用すると、得られる成形品の機械物性やシール性が下がる傾向があるので、目的とする硬度によってこれらの含有量を調整する必要がある。
本開示のフッ素ゴム組成物は、2価金属酸化物を含有してもよいし、含有しなくてもよいが、2価金属酸化物を含有する場合であっても、2価金属酸化物の含有量が、ポリオール架橋可能なフッ素ゴム100質量部に対して、1質量部未満である。2価金属酸化物の含有量としては、好ましくは0.5質量部以下であり、より好ましくは0.2質量部以下であり、さらに好ましくは0.1質量部以下であり、特に好ましくは0.01質量部以下であり、実質的に2価金属酸化物を含有しないことも好ましい。フッ素ゴム組成物の架橋速度が十分でない場合に、2価金属酸化物を用いると、架橋速度を改善させることができる場合があるが、十分な耐有機酸性および耐カルボン酸エステル化合物性を得るためには、2価金属酸化物の使用を可能な限り避けることが好ましい。
2価金属酸化物としては、マグネシウム、カルシウム、鉛、亜鉛などの酸化物をあげることができる。
また、同様の理由により、上記フッ素ゴム組成物は、ハイドロタルサイト類を含有してもよいし、含有しなくてもよいが、ハイドロタルサイト類を含有する場合であっても、少量とすることが好ましい。ハイドロタルサイト類の含有量としては、ポリオール架橋可能なフッ素ゴム100質量部に対して、好ましくは2質量部未満であり、より好ましくは1質量部以下であり、さらに好ましくは0.5質量部以下であり、特に好ましくは0.1質量部以下であり、実質的にハイドロタルサイト類を含有しないことも好ましい。
また、同様の理由により、上記フッ素ゴム組成物は、アルカリ金属ケイ酸塩を含有してもよいし、含有しなくてもよいが、アルカリ金属ケイ酸塩を含有する場合であっても、少量とすることが好ましい。アルカリ金属ケイ酸塩の含有量としては、ポリオール架橋可能なフッ素ゴム100質量部に対して、好ましくは5質量部未満であり、より好ましくは1質量部以下であり、さらに好ましくは0.5質量部以下であり、特に好ましくは0.1質量部以下であり、最も好ましくは0.01質量部以下であり、実質的にアルカリ金属ケイ酸塩を含有しないことも好ましい。
上記フッ素ゴム組成物は、フッ素ゴム(a)、ポリオール架橋用架橋剤(b)、架橋促進剤(c)、受酸剤(d)、充填剤などのその他の成分を、一般に使用されているゴム混練り装置を用いて混練りすることにより得られる。ゴム混練り装置としては、ロール、ニーダー、バンバリーミキサー、インターナルミキサー、二軸押し出し機などを用いることができる。
また、各成分をゴム中に均一に分散させるために、フッ素ゴム(a)、ポリオール架橋用架橋剤(b)および架橋促進剤(c)をニーダーなどの密閉型の混練り装置を用いて100~200℃の高温で溶融させながら混練りした後に、受酸剤(d)および充填剤などのその他の成分をこれ以下の比較的低温で混練りする方法を用いてもよい。また、ポリオール架橋用架橋剤(b)と架橋促進剤(c)を一旦溶融させ融点降下を起こさせた固溶体を用いて均一分散させる方法もある。
さらに、フッ素ゴム(a)、ポリオール架橋用架橋剤(b)、架橋促進剤(c)、受酸剤(d)、充填剤などのその他の成分を混練りした後に、室温にて12時間以上置いた後に再度混練りすることで、さらに分散性を高めることができる。
<成形品>
上記フッ素ゴム組成物を架橋することにより、本開示の成形品を得ることができる。また、上記フッ素ゴム組成物を成形し、架橋することによっても、本開示の成形品を得ることができる。上記フッ素ゴム組成物は、従来公知の方法で成形することができる。成形および架橋の方法および条件としては、採用する成形および架橋において公知の方法および条件の範囲内でよい。成形および架橋の順序は限定されず、成形した後架橋してもよいし、架橋した後成形してもよいし、成形と架橋とを同時に行ってもよい。
上記フッ素ゴム組成物を架橋することにより、本開示の成形品を得ることができる。また、上記フッ素ゴム組成物を成形し、架橋することによっても、本開示の成形品を得ることができる。上記フッ素ゴム組成物は、従来公知の方法で成形することができる。成形および架橋の方法および条件としては、採用する成形および架橋において公知の方法および条件の範囲内でよい。成形および架橋の順序は限定されず、成形した後架橋してもよいし、架橋した後成形してもよいし、成形と架橋とを同時に行ってもよい。
成形方法としては、金型などによる圧縮成形法、注入成形法、インジェクション成形法、押出し成形法などが例示できるが、これらに限定されるものではない。架橋方法としては、スチーム架橋法、加熱により架橋反応が開始される通常の方法、放射線架橋法等が採用でき、なかでも、スチーム架橋法、加熱による架橋反応が好ましい。限定されない具体的な架橋条件としては、通常、140~250℃の温度範囲、1分間~24時間の架橋時間内で、使用するポリオール架橋用架橋剤(b)、架橋促進剤(c)および受酸剤(d)などの種類により適宜決めればよい。
本開示の成形品は、本開示の成形品とは異なる他の成形品と積層して用いることもできる。たとえば、本開示の成形品からなる層および他の成形品からなる層を備える積層体も、好適な態様の一つである。上記積層体は、一層の他の成形品からなる層を備えるものであっても、二層以上の他の成形品からなる層を備えるものであってもよく、各層の位置も特に限定されない。
他の成形品を構成する他の材料としては、要求される特性、予定される用途などに応じて適切なものを選択すればよい。上記他の材料としては、後述する他のゴム、熱可塑性樹脂等が挙げられる。
他のゴムとしては、耐薬品性や柔軟性が特に要求される場合は、アクリロニトリル-ブタジエンゴム又はその水素添加ゴム、アクリロニトリル-ブタジエンゴムとポリ塩化ビニルとのブレンドゴム、フッ素ゴム、エピクロロヒドリンゴム、EPDM、エチレンアクリルゴム、アクリルゴム、シリコーンゴムおよびフルオロシリコーンゴムからなる群より選ばれる少なくとも1種からなるゴムが好ましく、アクリロニトリル-ブタジエンゴム又はその水素添加ゴム、エピクロロヒドリンゴム、エチレンアクリルゴム、アクリルゴムおよびシリコーンゴムからなる群より選ばれる少なくとも1種からなるゴムがより好ましい。
また、熱可塑性樹脂としては、フッ素樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニル系樹脂、ポリフェニレンスルフィド系樹脂からなる群より選ばれる少なくとも1種からなる熱可塑性樹脂が好ましく、フッ素樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、ポリフェニレンスルフィド系樹脂からなる群より選ばれる少なくとも1種からなる熱可塑性樹脂がより好ましい。
上記積層体は、本開示の成形品からなる層と、他の成形品からなる層とを直接積層したものであってもよいが、2つの層の間に接着剤層を介在させてもよい。接着剤層を介在させることによって、本開示の成形品からなる層と他の成形品からなる層とを強固に接合一体化させることができる。
上記積層体の製造方法は、特に限定されず、成形および架橋の時機も特に限定されない。
上記積層体の製造方法としては、他の成形品を構成する他の材料が他のゴムである場合には、たとえば、本開示のフッ素ゴム組成物と他のゴムとを積層してから、両層を同時に架橋させることにより製造する方法、本開示のフッ素ゴム組成物および他のゴムのいずれか一方を成形および架橋して、一方の架橋成形品を作製した後、他方の未架橋の成形品と積層し、他方の未架橋の成形品をさらに架橋させることにより製造する方法、本開示のフッ素ゴム組成物と他のゴムとをそれぞれ成形および架橋して、別個に架橋成形品を作製した後、両成形品を積層することにより製造する方法、などを挙げることができる。
上記積層体の製造方法としては、他の成形品を構成する他の材料が熱可塑性樹脂である場合には、たとえば、本開示のフッ素ゴム組成物および熱可塑性樹脂を積層してから、フッ素ゴム組成物を架橋させることにより製造する方法、本開示のフッ素ゴム組成物を成形および架橋して、架橋成形品を作製した後、熱可塑性樹脂の成形品と積層することにより製造する方法、などを挙げることができる。
上記積層体の製造方法としては、他の成形品を構成する他の材料が他のゴムである場合には、たとえば、本開示のフッ素ゴム組成物と他のゴムとを積層してから、両層を同時に架橋させることにより製造する方法、本開示のフッ素ゴム組成物および他のゴムのいずれか一方を成形および架橋して、一方の架橋成形品を作製した後、他方の未架橋の成形品と積層し、他方の未架橋の成形品をさらに架橋させることにより製造する方法、本開示のフッ素ゴム組成物と他のゴムとをそれぞれ成形および架橋して、別個に架橋成形品を作製した後、両成形品を積層することにより製造する方法、などを挙げることができる。
上記積層体の製造方法としては、他の成形品を構成する他の材料が熱可塑性樹脂である場合には、たとえば、本開示のフッ素ゴム組成物および熱可塑性樹脂を積層してから、フッ素ゴム組成物を架橋させることにより製造する方法、本開示のフッ素ゴム組成物を成形および架橋して、架橋成形品を作製した後、熱可塑性樹脂の成形品と積層することにより製造する方法、などを挙げることができる。
また、積層体を作製する際に、本開示の成形品または他の成形品に対し、必要に応じて表面処理を行ってもよい。この表面処理としては、接着を可能とする処理方法であれば、その種類は特に制限されるものではなく、例えばプラズマ放電処理やコロナ放電処理等の放電処理、湿式法の金属ナトリウム/ナフタレン液処理などがあげられる。また、表面処理としてプライマー処理も好適である。プライマー処理は常法に準じて行うことができる。プライマー処理を施す場合、表面処理を行っていないフッ素ゴムの表面を処理することもできるが、プラズマ放電処理、コロナ放電処理、金属ナトリウム/ナフタレン液処理などを予め施したうえで、更にプライマー処理すると、より効果的である。
本開示の成形品の硬さは、通常、50以上であり、成形品の機械物性が良好である点から、好ましくは65以上であり、より好ましくは67以上であり、さらに好ましくは70以上であり、上限は特に限定されないが、柔軟性を考慮して、100以下であってよい。ここに記載する硬さは、JIS K6253-3に記載のタイプAデュロメータで測定した硬さ(3秒後の値)である。ただしタイプAデュロメータで測定した硬さ(3秒後の値)が90を超える場合は、タイプDデュロメータで測定した硬さ(3秒後の値)である。
上記フッ素ゴム組成物は、耐有機酸性および耐カルボン酸エステル化合物性に優れる成形品を得ることができることから、ホース用フッ素ゴム組成物またはシール材用フッ素ゴム組成物として好適に用いることができ、また、上記範囲の硬さを有する成形品を得ることができることから、ホース用フッ素ゴム組成物として特に好適に用いることができる。
また、本開示の成形品は、耐有機酸性および耐カルボン酸エステル化合物性に優れていることから、ホースまたはシール材であることが好ましく、ホースであることがより好ましい。特に、有機酸およびカルボン酸エステル化合物の一方または両方を含む流体と接触するホースまたはシール材として、好適に利用可能である。
有機酸としては、ギ酸、酢酸、プロピオン酸、シュウ酸、クエン酸などを挙げることができる。
カルボン酸エステル化合物としては、バイオディーゼル燃料に含有されるカルボン酸エステル化合物であってよい。カルボン酸エステル化合物としては、たとえば、菜種油メチルエステル、大豆油メチルエステル、ひまわり油メチルエステル、ココナッツ油メチルエステル、パーム油メチルエステルなどがあげられる。
また、本開示の成形品は、耐有機酸性および耐カルボン酸エステル化合物性に優れていることから、バイオディーゼル燃料用部材または内燃機関の空気管理システム用部材として、好適に利用可能である。
バイオディーゼル燃料用部材としては、たとえば、バイオディーゼル燃料用ホースが挙げられる。バイオディーゼル燃料とは、生物(バイオマス)、主に植物を搾油することによって得られる高級脂肪酸をエステル化して得られる燃料であり、軽油類、高級脂肪酸エステル、および/または高級脂肪酸を含有する混合物である。バイオディーゼル燃料としては、高級脂肪酸をエステル化したものを単品として用いる場合や、軽油と混合し、例えば軽油:バイオディーゼル=90:10(体積%)のように用いる場合などがある。
空気管理システム用部材は、空気管理システムに用いる部材である。上記空気管理システムは、その内部をガスが循環するものであり、例えば、一般的なエンジン(自動車、船舶、建機など)に付帯するエアフィルター、ターボチャージャー、中間冷却器、吸気マニホールド、および、排ガス再循環冷却器などが挙げられる。
上記空気管理システム用部材は、上記空気管理システムを構成する部材であり、空気管理システムに直接接続している部材も含む。例えば、エアダクト、ターボチャージャーホース、EGR(排気再循環)ホース、中間冷却器のホースおよびシール、吸気マニホールドシール、酸素センサーのホースおよびシール、他のセンサーのホースおよびシールなどが挙げられる。
空気管理システムの内部を循環するガスとしては、NOx、SOx、および、ガソリンの燃焼ガスに含まれる有機酸からなる群より選択される少なくとも1種であることが好ましく、特に、ガソリンの燃焼ガスに含まれる有機酸であることが好ましい。ガソリンの燃焼ガスに含まれる有機酸としては、ギ酸、酢酸などが挙げられる。循環するガスが上記のものである場合、耐有機酸性に優れる本開示の空気管理システム用部材は特に有用である。
したがって、本開示における空気管理システム用部材は、上記のガスが循環する空気管理システムの部材であることが好ましく、例えば、ターボチャージャーホースおよびEGRホースからなる群より選択される少なくとも1種であることがより好ましい。耐熱性の観点から、特に、EGR(排気再循環)ホースとして特に有用である。
本開示の空気管理システム用部材は、ターボチャージャーホースであることが好ましい。ターボシステムはエンジンからの排気ガスをタービンに送って回転させることによりタービンに連結されているコンプレッサーを動かし、エンジンに供給する空気の圧縮比を高め、出力を向上させるシステムである。エンジンの排気ガスを利用し、かつ高出力を得るこのターボシステムは、エンジンの小型化、自動車の低燃費化および排気ガスのクリーン化にも繋がる。
ターボチャージャーホースは、圧縮空気をエンジンに送り込むためのホースとしてターボシステムに用いられている。狭いエンジンルームの空間を有効活用するためには、可撓性や柔軟性に優れたゴム製のホースが有利であり、典型的には、耐熱老化性や耐油性に優れたゴム(特にフッ素ゴム)層を内層とし、シリコーンゴムやアクリルゴムを外層とする多層構造のホースが採用されている。しかし、ターボシステムの内部を循環するガスは凝縮性の酸性ガスであるため、優れた耐有機酸性が要求される。
本開示の空気管理システム用部材は、フッ素ゴムの有する耐熱老化性や耐油性に加えて、優れた耐有機酸性をも有するものであるため、ターボチャージャーホースとして特に有用である。
本開示の空気管理システム用部材は、フッ素ゴムの有する耐熱老化性や耐油性に加えて、優れた耐有機酸性をも有するものであるため、ターボチャージャーホースとして特に有用である。
本開示の空気管理システム用部材は、EGR(排気再循環)ホースであることも好ましい。EGR(排気再循環)ホースは、排ガス再循環冷却器に使用されるホースとして用いられている。排ガス再循環冷却器に用いられるホースには、可撓性や柔軟性に優れたゴム製のホースが有利であり、耐熱老化性にも優れたフッ素ゴムが好適である。しかし、排ガス再循環冷却器の内部を循環するガスは凝縮性の酸性ガスであるため、EGRホースには優れた耐有機酸性が要求される。
本開示の空気管理システムの部材は、フッ素ゴムの有する耐熱老化性に加えて、優れた耐有機酸性をも有するものであるため、EGRホースとして特に有用である。
本開示の空気管理システムの部材は、フッ素ゴムの有する耐熱老化性に加えて、優れた耐有機酸性をも有するものであるため、EGRホースとして特に有用である。
本開示の成形品は、バイオディーゼル燃料用部材または内燃機関の空気管理システム用部材として好適に使用できるが、他の用途に使用することも可能である。
たとえば、半導体製造装置、液晶パネル製造装置、プラズマパネル製造装置、プラズマアドレス液晶パネル、フィールドエミッションディスプレイパネル、太陽電池基板等の半導体関連分野;自動車分野;航空機分野;ロケット分野;船舶分野;プラント等の化学品分野;医薬品等の薬品分野;現像機等の写真分野;印刷機械等の印刷分野;塗装設備等の塗装分野;分析・理化学機分野;食品プラント機器分野;原子力プラント機器分野;鉄板加工設備等の鉄鋼分野;一般工業分野;電気分野;燃料電池分野などの分野で好適に用いることができるが、これらのなかでも自動車分野・航空機分野・ロケット分野・船舶分野でより好適に用いることができる。そのほか、各種の塗料用組成物、塗装物品などとしても有用である。
自動車分野では、ガスケット、シャフトシール、バルブステムシール、シール材およびホースはエンジンならびに周辺装置に用いることができ、ホースおよびシール材はAT装置に用いることができ、O(角)リング、チューブ、パッキン、バルブ芯材、ホース、シール材およびダイアフラムは燃料系統ならびに周辺装置に用いることができる。具体的には、エンジンヘッドガスケット、メタルガスケット、オイルパンガスケット、クランクシャフトシール、カムシャフトシール、バルブステムシール、マニホールドパッキン、オイルホース、酸素センサー用シール、ATFホース、インジェクターOリング、インジェクターパッキン、燃料ポンプOリング、ダイアフラム、燃料ホース、クランクシャフトシール、ギアボックスシール、パワーピストンパッキン、シリンダーライナーのシール、バルブステムのシール、自動変速機のフロントポンプシール、リアーアクスルピニオンシール、ユニバーサルジョイントのガスケット、スピードメーターのピニオンシール、フートブレーキのピストンカップ、トルク伝達のOリング、オイルシール、排ガス再燃焼装置のシール、ベアリングシール、EGRチューブ、ツインキャブチューブ、キャブレターのセンサー用ダイアフラム、防振ゴム(エンジンマウント、排気部等)、再燃焼装置用ホース、酸素センサーブッシュ等として用いることができる。
航空機分野、ロケット分野および船舶分野では、ダイアフラム、O(角)リング、バルブ、チューブ、パッキン、ホース、シール材等があげられ、これらは燃料系統に用いることができる。
以上、実施形態を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
つぎに本開示の実施形態について実施例をあげて説明するが、本開示はかかる実施例のみに限定されるものではない。
実施例の各数値は以下の方法により測定した。
<架橋特性(最適架橋時間(T90))>
フッ素ゴム組成物について、一次架橋時に加硫試験機(エムアンドケー株式会社製 MDR H2030)を用いて、表1に記載の温度で架橋曲線を求め、トルクの変化より、最適架橋時間(T90)を求めた。
フッ素ゴム組成物について、一次架橋時に加硫試験機(エムアンドケー株式会社製 MDR H2030)を用いて、表1に記載の温度で架橋曲線を求め、トルクの変化より、最適架橋時間(T90)を求めた。
<引張強さおよび破断時伸び>
実施例および比較例で得られた厚さ2mmの架橋シートを用いて、引張試験機(株式会社エー・アンド・デイ製テンシロンRTG-1310)を使用して、JIS K6251-1:2015に準じて、500mm/分の条件下、ダンベル5号にて、23℃における引張強さおよび破断時伸びを測定した。
実施例および比較例で得られた厚さ2mmの架橋シートを用いて、引張試験機(株式会社エー・アンド・デイ製テンシロンRTG-1310)を使用して、JIS K6251-1:2015に準じて、500mm/分の条件下、ダンベル5号にて、23℃における引張強さおよび破断時伸びを測定した。
<硬さ>
実施例および比較例で得られた厚さ2mmの架橋シートを3枚重ねたものを用いて、タイプAデュロメータを使用して、JIS K6253-3:2012に準拠して、硬さ(Peak値および3秒後の値)を測定した。
実施例および比較例で得られた厚さ2mmの架橋シートを3枚重ねたものを用いて、タイプAデュロメータを使用して、JIS K6253-3:2012に準拠して、硬さ(Peak値および3秒後の値)を測定した。
<密度>
実施例および比較例で得られた厚さ2mmの架橋シートを用いて、JIS K6268に準じて求めた。
実施例および比較例で得られた厚さ2mmの架橋シートを用いて、JIS K6268に準じて求めた。
<耐SME性>
バイオディーゼル燃料(SME(大豆油メチルエステル)燃料(PETER CREMER社製 NEXSOL BD-0100 BIODIESEL):水分2体積%含有)を用いて、120℃で504時間浸漬試験を行った。浸漬試験前後の試験片の体積および質量を測定し、体積膨潤率(ΔV)および質量変化率(ΔW)を求めた。体積膨潤率(ΔV)は、試験片を所定の条件で浸漬した後の体積の変化率(膨潤の程度を表す。)であり、試験片の元の体積をVo、試験後の体積をVとしたとき、ΔV=(V-Vo)/Vo×100で表される。また、質量変化率(ΔW)は、試験片の元の質量をWo、試験後の質量をWとしたとき、ΔW=(W-Wo)/Wo×100で表される。
バイオディーゼル燃料(SME(大豆油メチルエステル)燃料(PETER CREMER社製 NEXSOL BD-0100 BIODIESEL):水分2体積%含有)を用いて、120℃で504時間浸漬試験を行った。浸漬試験前後の試験片の体積および質量を測定し、体積膨潤率(ΔV)および質量変化率(ΔW)を求めた。体積膨潤率(ΔV)は、試験片を所定の条件で浸漬した後の体積の変化率(膨潤の程度を表す。)であり、試験片の元の体積をVo、試験後の体積をVとしたとき、ΔV=(V-Vo)/Vo×100で表される。また、質量変化率(ΔW)は、試験片の元の質量をWo、試験後の質量をWとしたとき、ΔW=(W-Wo)/Wo×100で表される。
<耐有機酸性>
酢酸およびギ酸の水溶液(酢酸/ギ酸/水=0.2/0.8/99(質量比))を用いて、60℃で168時間浸漬試験を行った。浸漬試験前後の試験片の体積および質量を測定し、体積膨潤率(ΔV)および質量変化率(ΔW)を求めた。
酢酸およびギ酸の水溶液(酢酸/ギ酸/水=0.2/0.8/99(質量比))を用いて、60℃で168時間浸漬試験を行った。浸漬試験前後の試験片の体積および質量を測定し、体積膨潤率(ΔV)および質量変化率(ΔW)を求めた。
実施例および比較例では、次の材料を使用した。
プレコンパウンド1:
フッ素ゴム(VdF/HFP=78/22(モル比))100質量部、ビスフェノールAF 0.6質量部およびベンジルトリフェニルホスホニウムのビスフェノールAFの塩とビスフェノールAFの混合物(ビスフェノールAF:ベンジルトリフェニルホスホニウムクロリド=4:1(モル比)から作成された塩素フリー架橋促進剤)1.65質量部の混合物
プレコンパウンド2:
フッ素ゴム(VdF/HFP=78/22(モル比))100質量部、ビスフェノールAF 2質量部およびベンジルトリフェニルホスホニウムクロリド0.43質量部の混合物
プレコンパウンド3:
フッ素ゴム(VdF/HFP=78/22(モル比))100質量部、ビスフェノールAF 1.5質量部および8-ベンジル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド0.3質量部の混合物
プレコンパウンド1:
フッ素ゴム(VdF/HFP=78/22(モル比))100質量部、ビスフェノールAF 0.6質量部およびベンジルトリフェニルホスホニウムのビスフェノールAFの塩とビスフェノールAFの混合物(ビスフェノールAF:ベンジルトリフェニルホスホニウムクロリド=4:1(モル比)から作成された塩素フリー架橋促進剤)1.65質量部の混合物
プレコンパウンド2:
フッ素ゴム(VdF/HFP=78/22(モル比))100質量部、ビスフェノールAF 2質量部およびベンジルトリフェニルホスホニウムクロリド0.43質量部の混合物
プレコンパウンド3:
フッ素ゴム(VdF/HFP=78/22(モル比))100質量部、ビスフェノールAF 1.5質量部および8-ベンジル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド0.3質量部の混合物
MTカーボン(N2SA:8m2/g、DBP:43ml/100g)
軽質塩基性炭酸マグネシウム:富士フイルム和光純薬株式会社製
リン酸三マグネシウム・八水和物:富士フイルム和光純薬株式会社製
水酸化カルシウム:商品名「NICC5000」、井上石灰工業株式会社製
酸化マグネシウム:商品名「キョーワマグ150」、協和化学工業株式会社製
ハイドロタルサイト:商品名「DHT-4A」、協和化学工業株式会社製
珪酸マグネシウム:商品名「ハイトロンA」、竹原化学工業株式会社製
軽質塩基性炭酸マグネシウム:富士フイルム和光純薬株式会社製
リン酸三マグネシウム・八水和物:富士フイルム和光純薬株式会社製
水酸化カルシウム:商品名「NICC5000」、井上石灰工業株式会社製
酸化マグネシウム:商品名「キョーワマグ150」、協和化学工業株式会社製
ハイドロタルサイト:商品名「DHT-4A」、協和化学工業株式会社製
珪酸マグネシウム:商品名「ハイトロンA」、竹原化学工業株式会社製
実施例1~7、比較例1~4
表1の処方に従ってそれぞれの成分を配合し、オープンロール上で混練りして、フッ素ゴム組成物を調製した。得られたフッ素ゴム組成物の架橋特性(T90)を表1に示す。得られたフッ素ゴム組成物を表1に記載の成形条件でプレスすることにより、架橋させた後、オーブン架橋させて、架橋シート(厚さ2mm)を作製した。得られた架橋シートの評価結果を表1に示す。
なお、比較例4で調製したフッ素ゴム組成物は、架橋させることができなかった。
表1の処方に従ってそれぞれの成分を配合し、オープンロール上で混練りして、フッ素ゴム組成物を調製した。得られたフッ素ゴム組成物の架橋特性(T90)を表1に示す。得られたフッ素ゴム組成物を表1に記載の成形条件でプレスすることにより、架橋させた後、オーブン架橋させて、架橋シート(厚さ2mm)を作製した。得られた架橋シートの評価結果を表1に示す。
なお、比較例4で調製したフッ素ゴム組成物は、架橋させることができなかった。
Claims (11)
- (a)ポリオール架橋可能なフッ素ゴム、
(b)ポリオール架橋用架橋剤、
(c)架橋促進剤、ならびに、
(d)塩基性炭酸マグネシウムおよびリン酸マグネシウムからなる群より選択される少なくとも1種の受酸剤を含有し、
2価金属酸化物の含有量が、フッ素ゴム(a)100質量部に対して、1質量部未満であるフッ素ゴム組成物。 - フッ素ゴム(a)100質量部に対し、0.5~15質量部のポリオール架橋用架橋剤(b)を含有する請求項1に記載のフッ素ゴム組成物。
- フッ素ゴム(a)100質量部に対し、0.05~5質量部の架橋促進剤(c)を含有する請求項1または2に記載のフッ素ゴム組成物。
- フッ素ゴム(a)100質量部に対し、2~40質量部の受酸剤(d)を含有する請求項1~3のいずれかに記載のフッ素ゴム組成物。
- フッ素ゴム(a)が、ビニリデンフルオライド単位を含む請求項1~4のいずれかに記載のフッ素ゴム組成物。
- リン酸マグネシウムが、リン酸三マグネシウム八水和物である請求項1~5のいずれかに記載のフッ素ゴム組成物。
- 前記フッ素ゴム組成物を架橋して得られる成形品の、JIS K6253-3に従って、タイプAデュロメータにより測定した硬さ(3秒後の値)が、65以上である請求項1~6のいずれかに記載のフッ素ゴム組成物。
- ホース用である請求項1~7のいずれかに記載のフッ素ゴム組成物。
- 請求項1~8のいずれかに記載のフッ素ゴム組成物を架橋して得られる成形品。
- 有機酸およびカルボン酸エステル化合物の一方または両方を含む流体と接触するホースである請求項9に記載の成形品。
- バイオディーゼル燃料用部材または内燃機関の空気管理システム用部材である請求項9または10に記載の成形品。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19879293.9A EP3875536B1 (en) | 2018-11-02 | 2019-11-01 | Fluororubber composition and molded article |
CN201980070111.0A CN112888742B (zh) | 2018-11-02 | 2019-11-01 | 氟橡胶组合物和成型品 |
US17/289,872 US12037428B2 (en) | 2018-11-02 | 2019-11-01 | Fluororubber composition and molded article |
JP2020554975A JP7032682B2 (ja) | 2018-11-02 | 2019-11-01 | フッ素ゴム組成物および成形品 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018207260 | 2018-11-02 | ||
JP2018-207260 | 2018-11-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020091034A1 true WO2020091034A1 (ja) | 2020-05-07 |
Family
ID=70463401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/043005 WO2020091034A1 (ja) | 2018-11-02 | 2019-11-01 | フッ素ゴム組成物および成形品 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12037428B2 (ja) |
EP (1) | EP3875536B1 (ja) |
JP (1) | JP7032682B2 (ja) |
CN (1) | CN112888742B (ja) |
WO (1) | WO2020091034A1 (ja) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6155138A (ja) | 1984-08-09 | 1986-03-19 | イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー | フルオロポリマー |
JPH04217936A (ja) | 1985-03-28 | 1992-08-07 | Daikin Ind Ltd | 新規フルオロビニルエーテル |
JPH04505341A (ja) | 1989-05-19 | 1992-09-17 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | ヨウ素硬化部位を有するブロモ含有パーフルオロポリマー類の製造 |
JPH05500070A (ja) | 1989-05-19 | 1993-01-14 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | ヨウ素硬化部位を有するシアノ含有パーフルオロポリマー類 |
JPH0563482A (ja) | 1991-02-04 | 1993-03-12 | Motorola Inc | マイクロエレクトロニツク周波数選択部品用密封デバイスパツケージ |
JPH07316234A (ja) | 1994-05-18 | 1995-12-05 | Ausimont Spa | Oリングの製造に特に適した新規の過酸化物硬化性のフッ化エラストマー |
JPH0812726A (ja) | 1993-12-29 | 1996-01-16 | Ausimont Spa | ビスオレフィンに由来するモノマー単位を含む新規フッ素エラストマー |
JPH11147891A (ja) | 1997-11-14 | 1999-06-02 | Nippon Mektron Ltd | 含フッ素エラストマー用加硫促進剤の製造法 |
WO2006120818A1 (ja) * | 2005-05-11 | 2006-11-16 | Nok Corporation | ポリオール架橋可能なフッ素ゴム組成物 |
WO2007135937A1 (ja) * | 2006-05-19 | 2007-11-29 | Daikin Industries, Ltd. | 含フッ素エラストマー組成物および該組成物からなる成形品 |
JP2010024339A (ja) * | 2008-07-18 | 2010-02-04 | Daikin Ind Ltd | 含フッ素エラストマー組成物およびそれからなる成形品 |
JP2011522921A (ja) * | 2008-07-18 | 2011-08-04 | ダイキン工業株式会社 | 含フッ素エラストマー組成物およびそれからなる成形品 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5923577B2 (ja) | 1979-02-10 | 1984-06-02 | エヌオーケー株式会社 | 新規な分子化合物を含有するフルオルエラストマ−加硫配合物 |
ITMI20020598A1 (it) | 2002-03-22 | 2003-09-22 | Ausimont Spa | Fluoroelastomeri vulcanizzabili |
JP3856014B2 (ja) * | 2003-06-05 | 2006-12-13 | ダイキン工業株式会社 | フッ素ゴム加硫用水性組成物及び被覆物品 |
JP5114826B2 (ja) * | 2005-02-04 | 2013-01-09 | ダイキン工業株式会社 | 架橋性組成物およびそれからなる積層体 |
CN101309962B (zh) * | 2005-11-16 | 2012-12-26 | Nok株式会社 | 氟橡胶组合物和氟橡胶交联体的制造方法 |
JP5124945B2 (ja) * | 2006-01-11 | 2013-01-23 | Nok株式会社 | フッ素ゴム架橋体の製造方法 |
EP2607424B1 (en) * | 2010-08-20 | 2019-12-18 | Daikin Industries, Ltd. | Fluoroelastomer composition and molded article |
CN106470836B (zh) * | 2014-07-18 | 2019-03-26 | 日本瑞翁株式会社 | 层积体 |
WO2017046379A1 (en) * | 2015-09-18 | 2017-03-23 | Solvay Specialty Polymers Italy S.P.A. | Fluoroelastomer composition |
-
2019
- 2019-11-01 US US17/289,872 patent/US12037428B2/en active Active
- 2019-11-01 CN CN201980070111.0A patent/CN112888742B/zh active Active
- 2019-11-01 WO PCT/JP2019/043005 patent/WO2020091034A1/ja unknown
- 2019-11-01 JP JP2020554975A patent/JP7032682B2/ja active Active
- 2019-11-01 EP EP19879293.9A patent/EP3875536B1/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6155138A (ja) | 1984-08-09 | 1986-03-19 | イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー | フルオロポリマー |
JPH04217936A (ja) | 1985-03-28 | 1992-08-07 | Daikin Ind Ltd | 新規フルオロビニルエーテル |
JPH04505341A (ja) | 1989-05-19 | 1992-09-17 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | ヨウ素硬化部位を有するブロモ含有パーフルオロポリマー類の製造 |
JPH04505345A (ja) | 1989-05-19 | 1992-09-17 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | ヨウ素硬化部位を有するシアノ含有パーフルオロポリマー類の製造 |
JPH05500070A (ja) | 1989-05-19 | 1993-01-14 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | ヨウ素硬化部位を有するシアノ含有パーフルオロポリマー類 |
JPH0563482A (ja) | 1991-02-04 | 1993-03-12 | Motorola Inc | マイクロエレクトロニツク周波数選択部品用密封デバイスパツケージ |
JPH0812726A (ja) | 1993-12-29 | 1996-01-16 | Ausimont Spa | ビスオレフィンに由来するモノマー単位を含む新規フッ素エラストマー |
JPH07316234A (ja) | 1994-05-18 | 1995-12-05 | Ausimont Spa | Oリングの製造に特に適した新規の過酸化物硬化性のフッ化エラストマー |
JPH11147891A (ja) | 1997-11-14 | 1999-06-02 | Nippon Mektron Ltd | 含フッ素エラストマー用加硫促進剤の製造法 |
WO2006120818A1 (ja) * | 2005-05-11 | 2006-11-16 | Nok Corporation | ポリオール架橋可能なフッ素ゴム組成物 |
JP2006316120A (ja) | 2005-05-11 | 2006-11-24 | Nok Corp | ポリオール架橋可能なフッ素ゴム組成物 |
WO2007135937A1 (ja) * | 2006-05-19 | 2007-11-29 | Daikin Industries, Ltd. | 含フッ素エラストマー組成物および該組成物からなる成形品 |
JP2010024339A (ja) * | 2008-07-18 | 2010-02-04 | Daikin Ind Ltd | 含フッ素エラストマー組成物およびそれからなる成形品 |
JP2011522921A (ja) * | 2008-07-18 | 2011-08-04 | ダイキン工業株式会社 | 含フッ素エラストマー組成物およびそれからなる成形品 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3875536A4 |
Also Published As
Publication number | Publication date |
---|---|
US20210403622A1 (en) | 2021-12-30 |
CN112888742A (zh) | 2021-06-01 |
US12037428B2 (en) | 2024-07-16 |
CN112888742B (zh) | 2023-05-23 |
JPWO2020091034A1 (ja) | 2021-09-30 |
EP3875536A1 (en) | 2021-09-08 |
EP3875536A4 (en) | 2022-08-31 |
EP3875536B1 (en) | 2023-12-20 |
JP7032682B2 (ja) | 2022-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5218048B2 (ja) | 含フッ素エラストマー組成物および該組成物からなる成形品 | |
EP2315806B1 (en) | Fluorine-containing elastomer composition and molded article made of same | |
EP3069870B1 (en) | Laminate, method for manufacturing same, and fluororubber composition | |
JP5892276B1 (ja) | フッ素ゴム組成物及びフッ素ゴム成形品 | |
JP5896068B2 (ja) | フッ素ゴム組成物及びフッ素ゴム成形品 | |
JP2010024339A (ja) | 含フッ素エラストマー組成物およびそれからなる成形品 | |
JP2017008166A (ja) | 含フッ素組成物及び成形品 | |
WO2020080523A1 (ja) | 含フッ素エラストマー、架橋性組成物および成形品 | |
JP2017095592A (ja) | 空気管理システムの部材、及び、フッ素ゴム組成物 | |
JP7549275B2 (ja) | フッ素ゴム架橋用組成物、成形品およびシール材 | |
WO2022210042A1 (ja) | フッ素ゴム架橋用組成物、成形品およびシール材 | |
JP2011190412A (ja) | 架橋性ゴム組成物及びその製造方法、並びに、ゴム成形品及びその製造方法 | |
JP7032682B2 (ja) | フッ素ゴム組成物および成形品 | |
WO2019098064A1 (ja) | 含フッ素エラストマー組成物および成形品 | |
JP2013056979A (ja) | 架橋性フッ素ゴム組成物、及び、フッ素ゴム成形品 | |
JP7385152B2 (ja) | フッ素ゴム架橋用組成物、成形品およびシール材 | |
JP2024157895A (ja) | フッ素ゴム架橋用組成物および成形品 | |
WO2023100589A1 (ja) | フッ素ゴム架橋用組成物および成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19879293 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020554975 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019879293 Country of ref document: EP Effective date: 20210602 |