WO2019142830A1 - 有機無機ハイブリッド膜 - Google Patents
有機無機ハイブリッド膜 Download PDFInfo
- Publication number
- WO2019142830A1 WO2019142830A1 PCT/JP2019/001129 JP2019001129W WO2019142830A1 WO 2019142830 A1 WO2019142830 A1 WO 2019142830A1 JP 2019001129 W JP2019001129 W JP 2019001129W WO 2019142830 A1 WO2019142830 A1 WO 2019142830A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic
- inorganic hybrid
- hybrid film
- transmittance
- less
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/304—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/006—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
- C03C17/007—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/006—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
- C03C17/008—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/42—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/0005—Other surface treatment of glass not in the form of fibres or filaments by irradiation
- C03C23/006—Other surface treatment of glass not in the form of fibres or filaments by irradiation by plasma or corona discharge
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F14/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F14/18—Monomers containing fluorine
- C08F14/26—Tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D127/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
- C09D127/02—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
- C09D127/12—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C09D127/18—Homopolymers or copolymers of tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60J—WINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
- B60J1/00—Windows; Windscreens; Accessories therefor
- B60J1/02—Windows; Windscreens; Accessories therefor arranged at the vehicle front, e.g. structure of the glazing, mounting of the glazing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60J—WINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
- B60J1/00—Windows; Windscreens; Accessories therefor
- B60J1/08—Windows; Windscreens; Accessories therefor arranged at vehicle sides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60J—WINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
- B60J1/00—Windows; Windscreens; Accessories therefor
- B60J1/18—Windows; Windscreens; Accessories therefor arranged at the vehicle rear
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/74—UV-absorbing coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
- C03C2218/154—Deposition methods from the vapour phase by sputtering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
- C03C2218/154—Deposition methods from the vapour phase by sputtering
- C03C2218/155—Deposition methods from the vapour phase by sputtering by reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/18—Homopolymers or copolymers of tetrafluoroethylene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2427/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2427/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2427/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2427/18—Homopolymers or copolymers of tetrafluoroethylene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/221—Oxides; Hydroxides of metals of rare earth metal
- C08K2003/2213—Oxides; Hydroxides of metals of rare earth metal of cerium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- E—FIXED CONSTRUCTIONS
- E06—DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
- E06B—FIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
- E06B5/00—Doors, windows, or like closures for special purposes; Border constructions therefor
- E06B5/10—Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
Definitions
- the present invention relates to organic-inorganic hybrid membranes. More specifically, the present invention relates to an organic-inorganic hybrid film having a low ultraviolet light transmittance and a high visible light transmittance.
- inorganic glass-based articles have been used to meet the required properties such as the properties.
- inorganic glass has the disadvantage of low impact resistance and cracking. Therefore, conventionally, a resin film is attached to an inorganic glass and used for the purpose of protecting the inorganic glass from impact and preventing the inorganic glass from scattering when it breaks.
- a resin film When a resin film is attached to a window or the like of a building, it is generally attached to the indoor side from the viewpoint of weather resistance and antifouling property.
- a working space is required indoors; there is a disadvantage that a sufficient working space can not be secured and the work may be restricted.
- the resin film which has the weather resistance which can be stuck on the outdoor side, such as a window, and antifouling property is calculated
- the weather resistance which can be stuck on the vehicle outer side of a window, and antifouling property from the same viewpoint and the viewpoint that the direction of sticking on the outer side of a window is easy. Is required.
- image display devices have been developed for car navigation and applications used in places exposed to direct sunlight (in an environment exposed to ultraviolet light) such as digital signage. Therefore, weather resistance and stain resistance that can be developed for such applications are also required for resin films used in image display devices.
- the resin film is inferior to the inorganic glass in weatherability.
- resin films have insufficient weather resistance for use in environments exposed to ultraviolet light (outside the window of a building, outside a car window, etc.). Therefore, improvement of the weather resistance of the resin film is an urgent issue.
- An object of the present invention is to provide a novel organic-inorganic hybrid membrane.
- a further object of the present invention is to provide a novel organic-inorganic hybrid film having a low ultraviolet light transmittance, a high visible light transmittance, and a water repellent function.
- An organic-inorganic hybrid film of cerium oxide and an organic fluorine compound wherein Organic-inorganic hybrid film satisfying the following (a), (b) and (c): (A) visible light transmittance is 70% or more; (B) The transmittance of ultraviolet light having a wavelength of 380 nm is 60% or less; and (c) the water contact angle of the surface of the organic-inorganic hybrid film is 80 degrees or more. [2].
- An organic-inorganic hybrid film of cerium oxide and an organic fluorine compound wherein Organic-inorganic hybrid film satisfying the following (a), (b) and (c ′): (A) visible light transmittance is 70% or more; (B) The transmittance of ultraviolet light having a wavelength of 380 nm is 60% or less; and (c ') the water contact angle of the surface of the organic-inorganic hybrid film is 90 degrees or more. [3].
- a laminate comprising the organic-inorganic hybrid film according to any one of the above items [1] to [3].
- An article comprising the organic-inorganic hybrid film according to any one of the above items [1] to [3].
- the organic-inorganic hybrid film of the present invention has a low ultraviolet light transmittance, a high visible light transmittance, and a water repellent function (as a result, antifouling property). Therefore, the organic-inorganic hybrid film of the present invention is an outdoor side such as a window of a building, and a place exposed to direct sunlight of an article such as a car exterior of a car window; It can be suitably used for articles etc. used in a place exposed to direct light (environment exposed to ultraviolet light).
- FIG. 1 is a spectrum obtained by XPS analysis of the organic-inorganic hybrid film of Example 4.
- FIG. 2 is a conceptual view showing an example of a two-pole sputtering apparatus.
- the term "compound” is used as a term also including a mixture containing two or more compounds.
- the term “resin” is used as a term also including resin mixtures containing two or more resins, and resin compositions containing components other than resins.
- the term “film” is used as a term also including a sheet.
- the term “sheet” is used as a term also including film.
- the terms “film” and “sheet” are used in what can be industrially rolled up.
- the term “plate” is used for those which can not be rolled up industrially.
- sequentially stacking one layer and another layer means directly laminating those layers, and interposing one or more other layers such as an anchor coat between the layers. Including both stacking.
- the term “over” in the numerical range is used in the sense of a certain numerical value or a certain numerical value. For example, 20% or more means 20% or more than 20%.
- the term “or less” in relation to a numerical range is used to mean a certain numerical value or less than a certain numerical value. For example, 20% or less means 20% or less than 20%.
- the symbol “to” relating to a numerical range is used in the meaning of a certain numerical value, more than a certain numerical value and less than another certain numerical value, or some other numerical value.
- some other numerical value is larger than a certain numerical value. For example, 10-90% means 10%, more than 10% and less than 90%, or 90%.
- Organic-inorganic hybrid film of the present invention is, in one aspect, an organic-inorganic hybrid film of a cerium oxide and an organic fluorine compound, and an organic compound satisfying the following (i), (ii) and (iii) It is an inorganic hybrid membrane.
- the visible light transmittance is 70% or more.
- the transmittance of ultraviolet light with a wavelength of 380 nm is 60% or less.
- the water contact angle of the surface of the organic-inorganic hybrid film is 80 degrees or more.
- the organic-inorganic hybrid film of the present invention is, in another aspect, an organic-inorganic hybrid film of cerium oxide and an organic fluorine compound, and the organic-inorganic hybrid satisfying the following (i), (ii) and (iii ') It is a membrane.
- the visible light transmittance is 70% or more.
- the transmittance of ultraviolet light with a wavelength of 380 nm is 60% or less.
- the water contact angle of the surface of the organic-inorganic hybrid film is 90 degrees or more. It is possible to obtain an improved weatherability by the fact that the transmittance of ultraviolet light with a wavelength of 380 nm falls within the above range. In addition, the antifouling property improved by the fact that the water contact angle of the membrane surface falls within the above range can be obtained.
- the "organic-inorganic hybrid film” refers to an atom derived from an inorganic compound (herein at least an atom derived from a cerium oxide), and an atom derived from an organic compound (here, at least an organic fluorine compound A film containing an atom derived from The organic-inorganic hybrid film is usually an atom derived from an inorganic compound (here, at least containing an atom derived from cerium oxide), and an atom derived from an organic compound (here, derived from at least an organic fluorine compound) (Comprises atoms), which means a film having a low ultraviolet light transmittance and a high visible light transmittance.
- the organic-inorganic hybrid film typically contains an atom derived from an inorganic compound (here, at least an atom derived from cerium oxide), and an atom derived from an organic fluorine compound, and has ultraviolet light with a wavelength of 380 nm. It is a film having a low ultraviolet light transmittance of 60% or less and a high visible light transmittance of 70% or more.
- Cerium Oxide functions to lower the ultraviolet light transmittance of the organic-inorganic hybrid film of the present invention and to enhance the weather resistance. In addition, it functions to enhance the scratch resistance of the organic-inorganic hybrid film.
- cerium oxide used for producing the organic-inorganic hybrid film of the present invention is not particularly limited, but from the viewpoint of lowering the ultraviolet light transmittance and increasing the visible light transmittance, cerium dioxide and cerium dioxide are preferable, Cerium dioxide is more preferred.
- cerium oxide used for producing the organic-inorganic hybrid film of the present invention a mixture of one or more of these can be used.
- part or all of the cerium oxide used for producing the organic-inorganic hybrid film may form a cerium compound other than the cerium oxide.
- the oxidation number of the cerium compound in the organic-inorganic hybrid film of the present invention is not particularly limited (it may be any of +2, +3, and +4), but lowers the ultraviolet light transmittance and increases the visible light transmittance.
- it may be +4 from the viewpoint of In the organic-inorganic hybrid film of the present invention, the proportion of the cerium compound having an oxidation number of +4 is usually 1 at% or more, preferably 10 at% or more, based on the atomic ratio, assuming that the total of all the cerium compounds is 100 at% (atomic%). More preferably, it may be 30 at% or more, more preferably 50 at% or more, and most preferably 80 at% or more.
- the percentage of cerium compounds with an oxidation number + 4 may be 100 at%.
- the proportion of the cerium compound which is a cerium compound and has an oxidation number of +4 is preferably as high as possible.
- XPS analysis X-ray photoelectron spectroscopy
- MgK ⁇ rays for example, MgK ⁇ rays with a beam diameter of 1.1 mm generated under conditions of power 400 W and voltage 15 kV
- MgK ⁇ rays for example, MgK ⁇ rays with a beam diameter of 1.1 mm generated under conditions of power 400 W and voltage 15 kV
- the wide scan is, for example, an electron extraction angle (hereinafter sometimes referred to as “measurement angle”) 15 degrees or 45 degrees, pass energy 178.95 eV, measurement range 0 to 1100 eV, energy step 1.000 eV, one step It can be performed under the conditions of time 20 ms and three measurements.
- the composition and state analysis data by XPS analysis at a measurement angle of 15 degrees is an average value of the depth 1.3 nm to 1.5 nm from the surface, and at a measurement angle of 45 degrees, the depth of 4 to 5 nm from the surface It is an average value.
- the narrow scan is, for example, a measurement angle of 15 degrees or 45 degrees, a pass energy of 178.95 eV, a measurement range of 278 to 310 eV, an energy step of 0.100 eV, a time of 20 ms for one step, and 10 measurements. It can be done under the conditions of the times.
- the element to be measured is O1s, for example, measurement angle 15 degrees or 45 degrees, pass energy 35.75 eV, measurement range 523 to 553 eV, energy step 0.100 eV, time of one step 20 ms, and the number of times of measurement 5 times It can be carried out.
- the measurement angle is 15 degrees or 45 degrees
- the pass energy is 35.75 eV
- the measurement range is 876 to 926 eV
- the energy step is 0.100 eV
- the time of one step is 20 ms
- the number of measurements is 5 times. It can be carried out.
- the element to be measured is F1s, for example, the measurement angle is 15 or 45 degrees
- the pass energy is 35.75 eV
- the measurement range is 679 to 709 eV
- the energy step is 0.100 eV
- the time of one step is 20 ms
- the number of measurements is 5 times. It can be carried out.
- the element to be measured is Si2p, for example, measurement angle 15 degrees or 45 degrees, pass energy 35.75 eV, measurement range 94 to 124 eV, energy step 0.100 eV, time of one step 20 ms, and measurement 5 times It can be carried out.
- FIG. 1 shows an example of measurement of XPS analysis.
- FIG. 1 shows the measurement of the organic-inorganic hybrid film of Example 4 of the embodiment described later.
- a peak derived from cerium dioxide appears around 882.5 eV
- a shoulder peak derived from cerium trifluoride appears around 884.0 eV
- Organic fluorine compound is a compound having a fluorine-carbon bond, and typically has a structure in which one or more hydrogen atoms of an organic compound such as hydrocarbon are substituted by a fluorine atom. It is.
- the organic fluorine compound functions to impart a water repellent function and an antifouling property to the organic-inorganic hybrid film of the present invention.
- a fluorine-based resin is preferable from the viewpoint of environmental problems and the viewpoint of work safety.
- the above-mentioned fluorine-based resin is a resin containing a constituent unit derived from a monomer containing a fluorine atom (a compound having a fluorine-carbon bond and having polymerizability).
- the above-mentioned fluorine-based resin can function to impart crack resistance and flexibility to the organic-inorganic hybrid film of the present invention in addition to the water repellent function and the antifouling property.
- the above-mentioned fluorine-based resin works to suppress the deterioration of the organic-inorganic hybrid film due to the A wave of ultraviolet light (wavelength: 315 to 380 nm).
- the fluorine-based resin used for producing the organic-inorganic hybrid film of the present invention includes, for example, a structural unit derived from a monomer having a structure in which one or more hydrogen atoms of ⁇ -olefin are substituted by fluorine atoms. Resin can be mentioned.
- the fluorine-based resin include, as one of main monomers, a constituent unit derived from a monomer having a structure in which one or more hydrogen atoms of an ⁇ -olefin are substituted by a fluorine atom Assuming that the total of structural units derived from monomers is 100 mol%, it is usually 20 mol% or more, preferably 40 mol% or more, more preferably 60 mol% or more, still more preferably 80 mol% or more, most preferably 90 mol% or more Resin) can be mentioned.
- Examples of the monomer having a structure in which one or more hydrogen atoms of the ⁇ -olefin are substituted by a fluorine atom include, for example, tetrafluoroethylene, trifluoroethylene, vinylidene fluoride, vinyl fluoride, hexafluoropropylene, Mention may be made of pentafluoropropylene, tetrafluoropropylene, trifluoropropylene, chlorotrifluoroethylene and the like.
- a monomer having a structure in which one or more hydrogen atoms of the ⁇ -olefin are substituted by a fluorine atom a mixture of one or more of them can be used.
- fluorine-based resin used for producing the organic-inorganic hybrid film of the present invention examples include polytetrafluoroethylene, polyhexafluoropropylene, polyvinylidene fluoride, polyvinyl fluoride, tetrafluoroethylene / hexafluoropropylene copolymer, Examples thereof include tetrafluoroethylene / ethylene copolymer, tetrafluoroethylene / perfluoroalkylvinylether copolymer, chlorotrifluoroethylene / ethylene copolymer, and polychlorotrifluoroethylene.
- polytetrafluoroethylene and polyvinylidene fluoride are preferable from the viewpoints of weather resistance, stain resistance, transparency, scratch resistance, crack resistance, and flexibility.
- fluorine-type resin 1 type (s) or 2 or more types of mixtures of these can be used.
- the ratio of atoms derived from the cerium oxide in the organic-inorganic hybrid film of the present invention is the atomic ratio of the atom derived from the cerium oxide to the organic fluorine compound from the viewpoint of the weatherability of the organic-inorganic hybrid film.
- the above-mentioned cerium oxide is cerium dioxide and the above-mentioned organic fluorine compound is polytetrafluoroethylene (homopolymer of tetrafluoroethylene)
- the total of the atoms derived is 100 at%, usually 60 at% or more, preferably May be 70 at% or more, more preferably 75 at% or more, still more preferably 80 at% or more, and most preferably 82 at% or more.
- this ratio is usually 99.9 at% or less, preferably 99.5% or less, more preferably 99 at% or less, from the viewpoints of antifouling property, crack resistance and flexibility of the organic-inorganic hybrid film. Preferably, it may be 98 at% or less, most preferably 97 at% or less.
- this ratio is usually 60 at% or more and 99.9 at% or less, preferably, 60 at% or more and 99.5% or less, 60 at% or more and 99 at% or less, 60 at% or more and 98 at% or less, 60 at% or more and 97 at% or less 70 at% to 99.9 at%, 70 at% to 99.5%, 70 at% to 99 at%, 70 at% to 98 at%, 70 at% to 97 at%, 75 at% to 99.9 at%, 75 at% % % To 99.5% or less, 75 at% to 99 at%, 75 at% to 98 at%, 75 at% to 97 at%, 80 at% to 99.9 at%, 80 at% to 99.5%, 80 at% or more 99 at% or less, 80 at% or more and 98 at% or less, 80 at% or more and 97 at% or less, 82 a % Or more 99.9 at% or less, more 82At% 99.5% or less, more 82At% 99
- the atomic ratio is a value determined by energy dispersive X-ray analysis (hereinafter sometimes abbreviated as "EDX analysis”).
- EDX analysis uses, for example, a device in which an EDX analyzer is attached to a scanning electron microscope (hereinafter sometimes abbreviated as "SEM"), an acceleration voltage of 9 kV, an emission current of 15 ⁇ A, a focal length of 15 mm, and a magnification of 600 times It can be done on condition.
- SEM scanning electron microscope
- an apparatus in which an EDX analyzer is attached to a scanning electron microscope for example, an apparatus in which an EMAX ENERGY type EDX analyzer by Horiba, Ltd. is attached to an S-4300 SEM by Hitachi, Ltd. can be mentioned. In the following examples, EDX analysis was performed using such conditions and apparatus.
- the thickness of the organic-inorganic hybrid film of the present invention is not particularly limited, but is usually 1 nm or more, preferably 10 nm or more, more preferably 20 nm or more, still more preferably 30 nm or more from the viewpoint of lowering the ultraviolet transmittance of the organic-inorganic hybrid film. And most preferably 40 nm or more.
- the thickness of the organic-inorganic hybrid film of the present invention is usually 1 ⁇ m or less, preferably 500 nm or less, more preferably 200 nm or less, still more preferably 100 nm or less, most preferably 50 nm from the viewpoint of crack resistance of the organic-inorganic hybrid film. It may be the following.
- the thickness of the organic-inorganic hybrid film is usually 1 nm to 1 ⁇ m, preferably 1 nm to 500 nm, preferably 1 nm to 200 nm, 1 nm to 100 nm, 1 nm to 50 nm, 10 nm to 1 ⁇ m, 10 nm to 500 nm.
- the visible light transmittance of the organic-inorganic hybrid film of the present invention is usually 70% or more, preferably 75% or more, more preferably 80% or more, still more preferably 85% or more, and most preferably 90% or more.
- the visible light transmittance is the transmission spectrum when the transmittance is assumed to be 100% in the entire wavelength range of 400 to 780 nm of the area obtained by integrating the transmission spectrum for the wavelength of 400 to 780 nm.
- the ratio to the area integrated for the interval of The visible light transmittance may be measured, for example, using a spectrophotometer “SolidSpec-3700” (trade name) manufactured by Shimadzu Corporation in accordance with the 6.4 visible light transmittance test of JIS A5759: 2016. it can.
- the transmittance of ultraviolet light having a wavelength of 380 nm is usually 60% or less, preferably 50% or less, more preferably 40% or less, still more preferably 30% or less, still more preferably 20% or less Most preferably, it is 10% or less.
- the transmittance of the ultraviolet light having a wavelength of 380 nm is a ratio of the transmitted light intensity at a wavelength of 380 nm to the transmitted light intensity when the transmittance at a wavelength of 380 nm is assumed to be 100%.
- the transmittance of ultraviolet light with a wavelength of 380 nm is measured, for example, using a spectrophotometer “SolidSpec-3700” (trade name) manufactured by Shimadzu Corporation, in accordance with 6.7 ultraviolet transmittance test of JIS A 5759: 2016. be able to.
- the transmittance of ultraviolet light ("ultraviolet light” referred to without specifying a wavelength in the context of the present invention means ultraviolet light having a wavelength of 300 to 380 nm) is usually 30% or less Preferably, it may be 20% or less, more preferably 10% or less, still more preferably 5% or less, and most preferably 1% or less. The lower the transmittance of ultraviolet light, the better.
- the transmittance of the ultraviolet light is the transmission spectrum when the transmittance is assumed to be 100% in the entire wavelength range of 300 to 380 nm of the area obtained by integrating the transmission spectrum for the wavelength of 300 to 380 nm.
- the ratio to the area integrated for the interval of The transmittance of ultraviolet light can be measured, for example, using a spectrophotometer “SolidSpec-3700” (trade name) manufactured by Shimadzu Corporation in accordance with 6.7 ultraviolet transmittance test of JIS A5759: 2008. .
- the water contact angle of the surface of the organic-inorganic hybrid film of the present invention is usually 80 degrees or more, preferably 85 degrees or more.
- the water contact angle of the surface is more preferably 90 degrees or more, and further preferably, because water repellency can be further enhanced by forming fine irregularities on the surface of the organic-inorganic hybrid film of the present invention in consideration of the Wenzel's equation. May be 95 degrees or more, most preferably 100 degrees or more.
- the water contact angle is preferably as high as possible from the viewpoint of the antifouling property of the organic-inorganic hybrid film.
- the water contact angle can be measured, for example, using a KRUSS automatic contact angle meter “DSA 20” (trade name), and calculated from the width and height of a water droplet (see JIS R 3257: 1999).
- the organic-inorganic hybrid film of the present invention has a visible light transmittance of 70% or more, 75% or more, 80% or more, 85% or more, or 90% or more, and a transmittance of ultraviolet light having a wavelength of 380 nm is 60% or less 50% or less, 40% or less, 30% or less, 20% or less, or 10% or less, and the water contact angle on the surface is 80 degrees or more, 85 degrees or more, 90 degrees or more, 95 degrees or more Or it may be 100 degrees or more.
- the laminate of the present invention comprises the organic-inorganic hybrid film of the present invention.
- the laminate of the present invention is usually a laminate in which the organic-inorganic hybrid film of the present invention is formed on at least one surface of any substrate.
- the substrate is usually a film, a sheet or a plate.
- the above substrate is preferably transparent from the viewpoint of utilizing the high visible light transmittance of the organic-inorganic hybrid film of the present invention, but is not limited thereto, and may be opaque.
- the substrate may be colored and transparent or colored and opaque.
- the visible light transmittance of the substrate is usually 80% or more, preferably 85% or more, more preferably 88% or more, from the viewpoint of utilizing the high visible light transmittance of the organic-inorganic hybrid film of the present invention. Preferably, it may be 90% or more, and most preferably 92% or more. The higher the visible light transmittance, the better.
- the visible light transmittance is the transmission spectrum when the transmittance is assumed to be 100% in the entire wavelength range of 400 to 780 nm of the area obtained by integrating the transmission spectrum for the wavelength of 400 to 780 nm.
- the ratio to the area integrated for the interval of The visible light transmittance may be measured, for example, using a spectrophotometer “SolidSpec-3700” (trade name) manufactured by Shimadzu Corporation in accordance with the 6.4 visible light transmittance test of JIS A5759: 2008. it can.
- the substrate is not particularly limited, and examples thereof include inorganic glass films such as soda lime glass, borosilicate glass, and quartz glass, inorganic glass sheets, and inorganic glass plates.
- the substrate is not particularly limited, but, for example, cellulose ester resins such as triacetyl cellulose; polyester resins such as polyethylene terephthalate; cyclic hydrocarbon resins such as ethylene norbornene copolymer; polymethyl methacrylate, poly Acrylic resins such as ethyl methacrylate and vinyl cyclohexane / methyl (meth) acrylate copolymer; aromatic polycarbonate resins; polyolefin resins such as polypropylene and 4-methyl-pentene-1; polyamide resins; Alilate resins; polymer type urethane acrylate resins; and resin films such as polyimide resins, resin sheets, or resin plates.
- cellulose ester resins such as triacetyl cellulose
- polyester resins such as polyethylene terephthalate
- cyclic hydrocarbon resins such as ethylene norbornene copolymer
- polymethyl methacrylate poly Acrylic resins such as ethyl methacrylate and
- These resin films include non-oriented films, uniaxially oriented films, and biaxially oriented films. Moreover, these resin films include the laminated resin film which laminated
- the laminated body of the above-mentioned inorganic glass film, an inorganic glass sheet, or an inorganic glass board, and the above-mentioned resin film, a resin sheet, or a resin board can be mentioned.
- seat, or an inorganic glass plate is not restrict
- the thickness of the inorganic glass as the substrate may be usually 20 ⁇ m or more, preferably 50 ⁇ m or more, from the viewpoint of the handleability of the laminate of the present invention.
- the thickness of the inorganic glass as the substrate may be preferably 1 mm or more, more preferably 1.5 mm or more, from the viewpoint of the impact resistance of the inorganic glass.
- the thickness of the inorganic glass as the substrate may be usually 6 mm or less, preferably 4.5 mm or less, more preferably 3 mm or less, from the viewpoint of reducing the weight of the article using the laminate of the present invention.
- the thickness in particular of a resin film, a resin sheet, or a resin board is not restrict
- the thickness of the resin as the substrate may be generally 20 ⁇ m or more, preferably 50 ⁇ m or more, from the viewpoint of the handleability of the laminate of the present invention.
- the thickness of the resin as the substrate may be usually 250 ⁇ m or less, preferably 150 ⁇ m or less, from the economical point of view.
- the thickness of the resin as the substrate is usually 300 ⁇ m or more, preferably 500 ⁇ m or more, more preferably 600 ⁇ m or more from the viewpoint of maintaining rigidity. May be there.
- the thickness of the resin as the substrate may be usually 1,500 ⁇ m or less, preferably 1200 ⁇ m or less, more preferably 1000 ⁇ m or less, from the viewpoint of meeting the demand for thinning of the article using the laminate of the present invention.
- the laminate of the present invention may have a visible light transmittance of usually 70% or more, preferably 75% or more, more preferably 80% or more, still more preferably 85% or more, and most preferably 90% or more.
- the visible light transmittance is the transmission spectrum when the transmittance is assumed to be 100% in the entire wavelength range of 400 to 780 nm of the area obtained by integrating the transmission spectrum for the wavelength of 400 to 780 nm.
- the ratio to the area integrated for the interval of The visible light transmittance may be measured, for example, using a spectrophotometer “SolidSpec-3700” (trade name) manufactured by Shimadzu Corporation in accordance with the 6.4 visible light transmittance test of JIS A5759: 2008. it can.
- the transmittance of ultraviolet light having a wavelength of 380 nm is usually 60% or less, preferably 50% or less, more preferably 40% or less, still more preferably 30% or less, still more preferably 20% or less, most preferably May be 10% or less.
- the transmittance of the ultraviolet light having a wavelength of 380 nm is a ratio of the transmitted light intensity at a wavelength of 380 nm to the transmitted light intensity when the transmittance at a wavelength of 380 nm is assumed to be 100%.
- the transmittance of ultraviolet light having a wavelength of 380 nm was measured using, for example, a spectrophotometer “SolidSpec-3700” (trade name) manufactured by Shimadzu Corporation in accordance with 6.7 ultraviolet transmittance test of JIS A 5759: 2008. It can be determined by reading the transmittance at a wavelength of 380 nm from the transmittance spectrum.
- the indentation hardness of its surface is usually 100 N / mm 2 or more, preferably 200 N / mm 2 or more, more preferably 300 N / mm 2 or more, and still more preferably 400 N / mm 2 or more May be there.
- the indentation hardness is preferably as high as possible from the viewpoint of the abrasion resistance of the organic-inorganic hybrid film.
- the indentation hardness is, for example, a surface microhardness tester "PICODENTER HM500" (trade name) of Fischer Instruments, Inc., and a Berkovich indenter (eg, Berkovich diamond indenter (model number HB) of Tech Diamond Co., Ltd., etc.). Can be measured under the following conditions: maximum load 0.1 mN, load increase rate 0.1 mN / 20 seconds, holding time 5 seconds, and load removal rate 0.1 mN / 20 seconds.
- the laminate of the present invention has a transmittance of generally 30% or less, preferably 30% or less, of ultraviolet light ("ultraviolet light” referred to without specifying the wavelength in the present invention means ultraviolet light having a wavelength of 300 to 380 nm). It may be 20% or less, more preferably 10%, still more preferably 5% or less, and most preferably 1% or less. The lower the transmittance of ultraviolet light, the better.
- the transmittance of the ultraviolet light is the transmission spectrum when the transmittance is assumed to be 100% in the entire wavelength range of 300 to 380 nm of the area obtained by integrating the transmission spectrum for the wavelength of 300 to 380 nm.
- the ratio to the area integrated for the interval of The transmittance of ultraviolet light can be measured, for example, using a spectrophotometer “SolidSpec-3700” (trade name) manufactured by Shimadzu Corporation in accordance with 6.7 ultraviolet transmittance test of JIS A5759: 2008. .
- the laminate including the organic-inorganic hybrid film of the present invention has a visible light transmittance of 70% or more, 75% or more, 80% or more, 85% or more, or 90% or more, and is ultraviolet light having a wavelength of 380 nm.
- Permeability is 60% or less, 50% or less, 40% or less, 30% or less, 20% or less, and 10% or less, and the water contact angle of the organic-inorganic hybrid film surface is 80 degrees or more, 85 degrees The angle may be 90 degrees or more, 95 degrees or more, or 100 degrees or more.
- Article The article of the present invention comprises the organic-inorganic hybrid membrane of the present invention.
- the organic-inorganic hybrid film of the present invention is usually formed on the surface of the article of the present invention. Typically, it is formed on the surface of the article of the present invention, particularly at a portion that is exposed to direct sunlight, to impart weatherability and antifouling properties to the article of the present invention.
- the article of the present invention is not particularly limited except for including the organic-inorganic hybrid film of the present invention.
- the articles of the present invention include, for example, windows and windshields of automobiles; windows and doors of buildings, etc .; protective plates and display plates of image display devices; members such as solar cells and their housings and front plates;
- the member (For example, a hard-coat laminated film, a transparent resin laminated body, etc.) used for these articles
- the organic-inorganic hybrid film of the present invention is produced using cerium oxide and an organic fluorine compound.
- the organic-inorganic hybrid film of the present invention uses cerium oxide and an organic fluorine compound, and any method, for example, sputtering methods such as bipolar sputtering method, magnetron sputtering method, reactive sputtering method, etc .; vacuum evaporation method; Chemical vapor deposition methods such as low temperature plasma chemical vapor deposition, plasma chemical vapor deposition, thermal chemical vapor deposition, and photochemical vapor deposition; sol gel method, electrolytic method, emulsion method, etc. It can produce using methods, such as a liquid phase method, and these combination. The production method is not limited to the means listed here.
- the cerium oxide may be cerium oxide itself, may be a mixture, composition or compound containing cerium oxide, and may be a solution, sol, gel or solid containing cerium oxide. It may be.
- the organic fluorine compound may be the organic fluorine compound itself, may be a mixture or composition containing the organic fluorine compound, or may be a solution, a sol, a gel or a solid containing these.
- FIG. 2 is a conceptual view showing an example of a sputtering apparatus capable of performing two-pole sputtering.
- the apparatus shown in FIG. 2 has a sputtering chamber 1 provided with a sputtering gas inlet 2 and an exhaust port 3.
- the sputtering chamber 1 can introduce the sputtering gas from the sputtering gas inlet 2.
- the sputtering chamber 1 is exhausted from the exhaust port 3 by an exhaust device (not shown), and can be maintained at a predetermined pressure.
- the exhaust system is not particularly limited as long as it has an ability to maintain the predetermined pressure.
- rotary pumps such as a gear pump, a vane pump, and a screw pump, Cryopump, and these combination etc. can be mentioned, for example.
- a target 4 of cerium dioxide and a target 5 of polytetrafluoroethylene are provided in the lower part of the sputtering chamber 1.
- the target 4 and the target 5 have different impedance matching so that the composition of the organic-inorganic hybrid film (the ratio of the atom derived from cerium dioxide to the atom derived from polytetrafluoroethylene) can be appropriately adjusted.
- a device (not shown) and a high frequency power supply (not shown) are connected so that the power supplied to the target can be individually controlled.
- a sputtering table 6 is disposed at a position facing the target 4 and the target 5 in the upper part of the sputtering chamber 1, and a substrate 7 is attached.
- the sputtering table 6 is rotatable at a predetermined rotational speed.
- a shutter 8 is provided between the target 4 and the base 7, and a shutter 9 is provided between the target 5 and the base 7.
- pillar of the shutter 8 and the shutter 9 etc. is not shown in figure.
- the distance between the target 4 and the target 5 and the substrate 7 is not particularly limited, but may be usually about 1 to 10 cm, preferably about 3 to 7 cm.
- a method of producing the organic-inorganic hybrid film of the present invention by the bipolar sputtering method will be described using FIG. First, a target 4 of cerium dioxide and a target 5 of polytetrafluoroethylene are attached to a sputtering apparatus.
- the target 4 of cerium dioxide it is preferable to use a sintered body obtained by sintering cerium dioxide in advance from the viewpoint of handling.
- the shape of the sintered body as the target 4 is not particularly limited, and can be appropriately selected according to the specifications of the sputtering apparatus to be used.
- the shape of the sintered body may be, for example, a disc having a diameter of usually 10 to 200 mm, preferably 20 to 100 mm, and a thickness of usually 1 to 20 mm, preferably 2 to 10 mm.
- the target 5 of polytetrafluoroethylene it is preferable to use a molded body obtained by forming polytetrafluoroethylene in advance by a method such as injection molding, from the viewpoint of handleability.
- the shape of the above-mentioned molded product as the target 5 is not particularly limited, and can be appropriately selected according to the specifications of the sputtering apparatus to be used.
- the shape of the molded article may be, for example, a disc having a diameter of usually 10 to 200 mm, preferably 20 to 100 mm, and a thickness of usually 1 to 20 mm, preferably 2 to 10 mm.
- the predetermined rotation speed of the sputtering table 6 may be usually 1 to 1000 rotations / minute, preferably 2 to 50 rotations / minute.
- the rotation speed may be constant, and the rotation speed may be changed as desired.
- said base material 7, what was mentioned above in description of the laminated body of this invention can be used, for example.
- the sputtering chamber 1 is exhausted from the exhaust port 3 by an exhaust device so as to be equal to or less than a predetermined pressure of the sputtering chamber 1 at the time of film formation.
- the predetermined pressure may be usually about 10 -3 to 10 -5 Pa, preferably about 10 -4 Pa.
- a sputtering gas is introduced into the sputtering chamber 1 from the sputtering gas inlet 2 so that the sputtering chamber 1 has a predetermined pressure during film formation.
- inert gas such as argon and krypton
- mixed gas with these, oxygen, nitrogen, etc., etc. can be mentioned, for example.
- argon and mixed gas of argon and oxygen are preferable, and mixed gas of argon and oxygen is more preferable, from the viewpoint of lowering the ultraviolet light transmittance of the organic-inorganic hybrid film and increasing the visible light transmittance.
- the proportion of cerium having an oxidation number of +4 can be increased in the organic-inorganic hybrid film, and the ultraviolet light transmittance can be lowered.
- the volumetric flow rate of the oxygen gas may be usually 1 to 20%, preferably 2 to 10%, where the volumetric flow rate of the argon gas is 100%.
- the predetermined pressure of the sputtering chamber 1 at the time of the film formation may be usually 0.5 to 5 Pa, preferably 0.5 to 1 Pa from the viewpoint of stabilizing discharge and enabling continuous film formation. .
- predetermined power usually, high frequency power
- predetermined power usually, high frequency power
- the composition of the organic-inorganic hybrid film (the ratio of the atom derived from cerium dioxide to the atom derived from polytetrafluoroethylene) is carried out by adjusting the power supplied to the target.
- the relationship between the amount of input electric power and the film forming rate is preliminarily obtained in advance by preliminary experiments to obtain each of cerium dioxide and polytetrafluoroethylene.
- a mixture of cerium dioxide and polytetrafluoroethylene may be used as a target.
- the composition of the organic-inorganic hybrid film is adjusted by the compounding ratio of the mixture.
- the relationship between the blend ratio of the mixture and the composition of the organic-inorganic hybrid film is determined in advance by preliminary experiments.
- the temperature after the formation of the organic-inorganic hybrid film is preferably 50 ° C. or higher, preferably 80.
- annealing is preferably performed at a temperature of 150 ° C. or less, preferably at a temperature of not less than ° C., more preferably 100 ° C. or more, and considering the heat resistance of the substrate.
- the characteristics of the organic-inorganic hybrid film can be stabilized.
- the water repellent function of the organic-inorganic hybrid film can be improved.
- UV transmittance 1 (transmittance of ultraviolet light of wavelength 380 nm): Read the transmittance at a wavelength of 380 nm from the transmittance spectrum measured according to JIS A 5759: 2008, 6.7 ultraviolet transmittance test using a spectrophotometer "SolidSpec-3700" (trade name) of Shimadzu Corporation. This value was taken as UV transmittance 1.
- UV transmittance 2 (transmittance of ultraviolet light with a wavelength of 300 to 380 nm) The transmittance measured using a spectrophotometer “SolidSpec-3700” (trade name) manufactured by Shimadzu Corporation according to 6.7 ultraviolet transmittance test of JIS A5759: 2008 was defined as UV transmittance 2.
- V Hardness (Pushing hardness) Using a surface microhardness tester "PICODENTER HM500” (trade name) of Fisher Instruments Co., Ltd. and using a Berkovich diamond indenter (model number HB) of Tech Diamond Co., Ltd., maximum load 0.1 mN, load increase rate 0.1 mN The hardness was measured under the following conditions: / 20 seconds, holding time 5 seconds, and load removal rate 0.1 mN / 20 seconds.
- cerium oxide (A-1) A disc having a diameter of 76.2 mm and a thickness of 5 mm obtained by sintering cerium dioxide. High Purity Chemical Laboratory Co., Ltd.
- (B) Organic fluorine compound (B-1) A disc having a diameter of 76.2 mm and a thickness of 5 mm of polytetrafluoroethylene (homopolymer of tetrafluoroethylene). High Purity Chemical Laboratory Co., Ltd.
- C Base material (C-1) Inorganic glass substrate "Eagle XG" (trade name) manufactured by Corning. Thickness 0.7mm.
- the UV transmittance at a wavelength of 380 nm was 94%, the visible light transmittance was 91%, the UV transmittance at a wavelength of 300 to 380 nm was 93%, and the yellowness index was 0.5.
- Example 1 (1) Using the atmospheric pressure plasma processing apparatus “MyPL Auto 200” (trade name) of the above company (C-1), argon gas (argon gas) containing 0.5 volume% of oxygen (O 2 ) Discharge gas using 6 l / min volumetric flow rate, oxygen (O 2 ) at 30 ml / min volumetric flow rate, input power 180 W, scan frequency 0.5 reciprocation, scan speed 20 mm / sec, electrode and treatment The surface treatment was performed under the condition of a distance of 2 mm to the surface.
- MyPL Auto 200 trade name of the above company (C-1)
- the film formation speed of (A-1) was 4.7 nm / min at an input power of 200 W
- the film formation speed of (B-1) was 5.0 nm / min at an input power of 100 W.
- annealing was performed at a temperature of 100 ° C. for one hour to obtain a laminate in which the organic-inorganic hybrid film was formed on the above (C-1).
- the organic-inorganic hybrid film of the laminate obtained in the above step (3) was subjected to EDX analysis to confirm the composition of the film.
- EDX analysis uses an S-4300 SEM from Hitachi, Ltd.
- Examples 2 to 7 The manufacture of the laminate including the organic-inorganic hybrid film and the measurement and evaluation of physical properties were performed in the same manner as in Example 1 except that the input power at the time of film formation was changed as shown in Table 1. The results are shown in Table 1.
- the organic-inorganic hybrid film of the present invention having a low ultraviolet light transmittance and a high visible light transmittance was obtained.
- the organic-inorganic hybrid film of the present invention had a water repellent function.
- a laminate including the organic-inorganic hybrid film of the present invention was obtained using a glass plate as a base material.
- the organic-inorganic hybrid film of the present invention has a low ultraviolet light transmittance, a high visible light transmittance, and a water repellent function
- a resin film, a resin sheet, or a resin plate can be used by those skilled in the art.
- the hardness of the organic-inorganic hybrid film of the present invention is higher than that of the glass plate as the substrate (the hardness of (v) of (C-1) was measured to be 6.4 KN / mm 2 ). Therefore, even if a person skilled in the art forms the organic-inorganic hybrid film of the present invention on the surface of a resin film, a resin sheet, or a resin plate to produce a laminate, the surface hardness of these resin films etc. Thus, it will be readily understood that the scratch resistance can be greatly improved.
- Example 8 Hard coat laminated film "REPTY DC100N” (trade name) of Riken Technos Co., Ltd. (trade name) (total thickness 250 ⁇ m, hardness of the organic / inorganic hybrid film formation surface as the substrate) And the physical properties of the laminate including the organic-inorganic hybrid film in the same manner as in Example 1 except that the value of 0.52 KN / mm 2 ) was used and the input power during film formation was changed to the same as Example 3. Were measured and evaluated. The characteristics of the obtained laminate were as follows.
- Visible light transmittance 80% UV transmission 1 (transmission of ultraviolet light at a wavelength of 380 nm) 36%, Water contact angle 116 degrees,
- the UV transmittance 2 (transmittance of UV light with a wavelength of 300 to 380 nm) 8%, and the above-mentioned (v) hardness value of the surface of the organic-inorganic hybrid film was 0.66 KN / mm 2 .
- Example 9 A biaxially stretched polyethylene terephthalate film (total thickness 250 ⁇ m, hardness value of the organic-inorganic hybrid film formation surface is 0.54 KN / mm 2 ) instead of (C-1) as the substrate.
- the production and measurement and evaluation of physical properties of the laminate including the organic-inorganic hybrid film were performed in the same manner as in Example 1 except that the power supplied during film formation was changed to the same as in Example 3.
- the characteristics of the obtained laminate were as follows.
- Visible light transmittance 81% Ultraviolet transmission 1 (transmission of ultraviolet light at a wavelength of 380 nm) 45%, Water contact angle 121 degrees,
- the UV transmittance 2 (transmittance of UV light with a wavelength of 300 to 380 nm) of 23%, and the above-mentioned (v) hardness value of the surface of the organic-inorganic hybrid film were 0.62 KN / mm 2 .
- the laminate of the present invention is produced by forming the organic-inorganic hybrid film of the present invention on the surface of a resin film, a resin sheet, or a resin plate according to Examples 8 and 9, the weather resistance, antifouling, etc. It was confirmed that the property can be greatly improved, and the surface hardness, and hence the abrasion resistance, can be greatly improved.
- Sputtering chamber 2 Sputtering gas inlet 3: Exhaust port 4: Cerium dioxide target 5: Polytetrafluoroethylene target 6: Sputtering table 7: Substrate 8: Shutter on target 4 side 9: Shutter on target 5 side
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Dispersion Chemistry (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Plasma & Fusion (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Surface Treatment Of Glass (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本発明は、一態様において、セリウム酸化物と有機弗素化合物との有機無機ハイブリッド膜であって、下記(a)、(b)、及び(c)を満たす有機無機ハイブリッド膜である:(a)可視光線透過率が70%以上である;(b)波長380nmの紫外線の透過率が60%以下である;および(c)上記有機無機ハイブリッド膜の表面の水接触角が80度以上である。本発明は、別の態様において、セリウム酸化物と有機弗素化合物との有機無機ハイブリッド膜であって、下記(a)、(b)、及び(c')を満たす有機無機ハイブリッド膜である:(a)可視光線透過率が70%以上である;(b)波長380nmの紫外線の透過率が60%以下である;および(c')上記有機無機ハイブリッド膜の表面の水接触角が90度以上である。有機弗素化合物は弗素系樹脂を含んでよい。有機無機ハイブリッド膜を含む積層体および物品も開示される。
Description
本発明は、有機無機ハイブリッド膜に関する。更に詳しくは、本発明は、紫外線透過率が低く、かつ可視光線透過率が高い有機無機ハイブリッド膜に関する。
従来、自動車のウィンドウや風防等、建築物の窓や扉等、及び画像表示装置の保護板やディスプレイ面板等には、化学的安定性に優れ、かつ透明性、剛性、耐傷付性、及び耐候性などの要求特性に合致することから、無機ガラスを基材とする物品が使用されてきた。一方、無機ガラスには、耐衝撃性が低く割れ易いという不都合がある。そこで従来から、無機ガラスを衝撃から保護したり、無機ガラスが割れた際に飛散するのを防止したりすることを目的として、樹脂フィルムが無機ガラスに貼られて用いられている。
建築物の窓等に樹脂フィルムを貼る場合、耐候性、及び防汚性の観点から、屋内側に貼るのが一般的である。しかし、樹脂フィルムを屋内側に貼る場合には、屋内に作業スペースが必要になる;十分な作業スペースを確保できず、作業に制約を受けることがあるなどの不都合がある。そこで窓等の屋外側に貼ることのできる耐候性、及び防汚性を有する樹脂フィルムが求められている。また、自動車のウィンドウ等に用いる樹脂フィルムについても、同様の観点、及びウィンドウの外側に貼る方が施工が容易であるという観点から、ウィンドウの車外側に貼ることのできる耐候性、及び防汚性が求められている。更に近年、画像表示装置はカーナビゲーション、及びデジタルサイネージなどの太陽光の直射を受ける場所(紫外線に曝される環境下)で使用される用途に展開されている。そこで画像表示装置に用いる樹脂フィルムについても、このような用途に展開することのできる耐候性、及び防汚性が求められている。
しかし、樹脂フィルムは無機ガラスと比較して耐候性に劣る。特に、樹脂フィルムは、紫外線に曝される環境下(建築物の窓の屋外側、自動車ウィンドウの外側など)で使用するには耐候性が不十分である。そのため、樹脂フィルムの耐候性の改善が喫緊の課題となっている。
また樹脂フィルムを、特に建築物の窓の屋外側、自動車ウィンドウの外側などに貼る場合には、外部環境から飛来する汚染物質(汚染水、油膜など)の付着による透明性の低下、外部視認性の低下が大きな問題となる。そこで樹脂フィルムへの汚染物質の付着を防ぐ技術として、表面エネルギーの低い材料、例えば、弗素系樹脂を表面保護層として用いることが提案されている(例えば、特許文献3参照)。しかし、弗素系樹脂の耐擦傷性は、建築物の窓の屋外側や自動車ウィンドウの外側に用いるには不十分である。
またガラスには、耐衝撃性が低く割れ易いこと以外にも、加工性が低い;ハンドリングが難しい;比重が高く重い;物品の曲面化やフレキシブル化の要求に応えることが難しいなどの不都合がある。そこでガラスに替わる材料が盛んに研究されており、ポリカーボネート系樹脂やアクリル系樹脂などの透明樹脂のシート又は板にハードコートを積層した透明樹脂積層体が提案されている(例えば、特許文献4及び5参照)。しかし、その耐候性、及び防汚性、特に耐候性は、紫外線に曝される環境下で使用される用途には不十分である。
本発明の課題は、新規な有機無機ハイブリッド膜を提供することにある。本発明の更なる課題は、新規な有機無機ハイブリッド膜であって、紫外線透過率が低く、可視光線透過率の高く、かつ撥水機能を有する有機無機ハイブリッド膜を提供することにある。
上記課題を解決するための本発明の諸態様は、以下のとおりである。
[1].
セリウム酸化物と有機弗素化合物との有機無機ハイブリッド膜であって、
下記(a)、(b)、及び(c)を満たす有機無機ハイブリッド膜:
(a)可視光線透過率が70%以上である;
(b)波長380nmの紫外線の透過率が60%以下である;および
(c)上記有機無機ハイブリッド膜の表面の水接触角が80度以上である。
[2].
セリウム酸化物と有機弗素化合物との有機無機ハイブリッド膜であって、
下記(a)、(b)、及び(c’)を満たす有機無機ハイブリッド膜:
(a)可視光線透過率が70%以上である;
(b)波長380nmの紫外線の透過率が60%以下である;および
(c’)上記有機無機ハイブリッド膜の表面の水接触角が90度以上である。
[3].
上記有機弗素化合物が弗素系樹脂を含む、上記[1]又は[2]項に記載の有機無機ハイブリッド膜。
[4].
上記[1]~[3]項のいずれか1項に記載の有機無機ハイブリッド膜を含む積層体。
[5].
上記[1]~[3]項のいずれか1項に記載の有機無機ハイブリッド膜を含む物品。
[1].
セリウム酸化物と有機弗素化合物との有機無機ハイブリッド膜であって、
下記(a)、(b)、及び(c)を満たす有機無機ハイブリッド膜:
(a)可視光線透過率が70%以上である;
(b)波長380nmの紫外線の透過率が60%以下である;および
(c)上記有機無機ハイブリッド膜の表面の水接触角が80度以上である。
[2].
セリウム酸化物と有機弗素化合物との有機無機ハイブリッド膜であって、
下記(a)、(b)、及び(c’)を満たす有機無機ハイブリッド膜:
(a)可視光線透過率が70%以上である;
(b)波長380nmの紫外線の透過率が60%以下である;および
(c’)上記有機無機ハイブリッド膜の表面の水接触角が90度以上である。
[3].
上記有機弗素化合物が弗素系樹脂を含む、上記[1]又は[2]項に記載の有機無機ハイブリッド膜。
[4].
上記[1]~[3]項のいずれか1項に記載の有機無機ハイブリッド膜を含む積層体。
[5].
上記[1]~[3]項のいずれか1項に記載の有機無機ハイブリッド膜を含む物品。
本発明の有機無機ハイブリッド膜は、紫外線透過率が低く、可視光線透過率が高く、かつ撥水機能(その結果として防汚性)を有する。そのため、本発明の有機無機ハイブリッド膜は、建築物の窓等の屋外側、及び自動車のウィンドウの車外側などの物品の太陽光の直射を受ける箇所;カーナビゲーション、及びデジタルサイネージなどの太陽光の直射を受ける場所(紫外線に曝される環境)で使用される物品などに好適に用いることができる。
本明細書において、「化合物」の用語は、2種以上の化合物を含む混合物をも含む用語として使用する。「樹脂」の用語は、2種以上の樹脂を含む樹脂混合物や、樹脂以外の成分を含む樹脂組成物をも含む用語として使用する。本明細書において、「フィルム」の用語はシートをも含む用語として使用する。同様に「シート」の用語は、フィルムをも含む用語として使用する。本明細書において、「フィルム」及び「シート」の用語は、工業的にロール状に巻き取ることのできるものに使用する。「板」の用語は、工業的にロール状に巻き取ることのできないものに使用する。また本明細書において、ある層と他の層とを順に積層することは、それらの層を直接積層すること、及び、それらの層の間にアンカーコートなどの別の層を1層以上介在させて積層することの両方を含む。
数値範囲に係る「以上」の用語は、ある数値又はある数値超の意味で使用する。例えば、20%以上は、20%又は20%超を意味する。数値範囲に係る「以下」の用語は、ある数値又はある数値未満の意味で使用する。例えば、20%以下は、20%又は20%未満を意味する。更に数値範囲に係る「~」の記号は、ある数値、ある数値超かつ他のある数値未満、又は他のある数値の意味で使用する。ここで、他のある数値は、ある数値よりも大きい数値とする。例えば、10~90%は、10%、10%超かつ90%未満、又は90%を意味する。
実施例以外において、又は別段に指定されていない限り、本明細書及び特許請求の範囲において使用されるすべての数値は、「約」という用語により修飾されるものとして理解されるべきである。特許請求の範囲に対する均等論の適用を制限しようとすることなく、各数値は、有効数字に照らして、及び通常の丸め手法を適用することにより解釈されるべきである。
1.有機無機ハイブリッド膜
本発明の有機無機ハイブリッド膜は、一態様において、セリウム酸化物と有機弗素化合物との有機無機ハイブリッド膜であって、下記(i)、(ii)、及び(iii)を満たす有機無機ハイブリッド膜である。
(i)可視光線透過率が70%以上である。
(ii)波長380nmの紫外線の透過率が60%以下である。
(iii)上記有機無機ハイブリッド膜の表面の水接触角が80度以上である。
本発明の有機無機ハイブリッド膜は、一態様において、セリウム酸化物と有機弗素化合物との有機無機ハイブリッド膜であって、下記(i)、(ii)、及び(iii)を満たす有機無機ハイブリッド膜である。
(i)可視光線透過率が70%以上である。
(ii)波長380nmの紫外線の透過率が60%以下である。
(iii)上記有機無機ハイブリッド膜の表面の水接触角が80度以上である。
本発明の有機無機ハイブリッド膜は、他の態様において、セリウム酸化物と有機弗素化合物との有機無機ハイブリッド膜であって、下記(i)、(ii)、及び(iii’)を満たす有機無機ハイブリッド膜である。
(i)可視光線透過率が70%以上である。
(ii)波長380nmの紫外線の透過率が60%以下である。
(iii’)上記有機無機ハイブリッド膜の表面の水接触角が90度以上である。
波長380nmの紫外線の透過率が上記範囲内に入る程度に低いことによって向上した耐候性を得ることができる。また、膜表面の水接触角が上記範囲内に入る程度に高いことによって向上した防汚性を得ることができる。
(i)可視光線透過率が70%以上である。
(ii)波長380nmの紫外線の透過率が60%以下である。
(iii’)上記有機無機ハイブリッド膜の表面の水接触角が90度以上である。
波長380nmの紫外線の透過率が上記範囲内に入る程度に低いことによって向上した耐候性を得ることができる。また、膜表面の水接触角が上記範囲内に入る程度に高いことによって向上した防汚性を得ることができる。
ここで「有機無機ハイブリッド膜」とは、無機化合物に由来する原子(本明細書では少なくともセリウム酸化物に由来する原子を含む)、及び有機化合物に由来する原子(本明細書では少なくとも有機弗素化合物に由来する原子を含む)を含む膜を意味する。有機無機ハイブリッド膜は、通常、無機化合物に由来する原子(本明細書では少なくともセリウム酸化物に由来する原子を含む)、及び有機化合物に由来する原子(本明細書では少なくとも有機弗素化合物に由来する原子を含む)を含み、紫外線透過率が低く、可視光線透過率が高い膜を意味する。有機無機ハイブリッド膜は、典型的には、無機化合物に由来する原子(本明細書では少なくともセリウム酸化物に由来する原子を含む)、及び有機弗素化合物に由来する原子を含み、波長380nmの紫外線の透過率が60%以下という低い紫外線透過率を有し、かつ70%以上の高い可視光線透過率を有する膜である。
セリウム酸化物
上記セリウム酸化物は、本発明の有機無機ハイブリッド膜の紫外線透過率を低くし、耐候性を高める働きをする。また、有機無機ハイブリッド膜の耐擦傷性を高める働きをする。
上記セリウム酸化物は、本発明の有機無機ハイブリッド膜の紫外線透過率を低くし、耐候性を高める働きをする。また、有機無機ハイブリッド膜の耐擦傷性を高める働きをする。
本発明の有機無機ハイブリッド膜の生産に用いるセリウム酸化物としては、特に限定されないが、紫外線透過率を低く、かつ可視光線透過率を高くする観点から、三酸化二セリウム、及び二酸化セリウムが好ましく、二酸化セリウムがより好ましい。
本発明の有機無機ハイブリッド膜の生産に用いるセリウム酸化物としては、これらの1種又は2種以上の混合物を用いることができる。
なお、有機無機ハイブリッド膜の生産に用いられたセリウム酸化物は、本発明の有機無機ハイブリッド膜中において、その一部又は全部がセリウム酸化物以外のセリウム化合物を形成していてもよい。
本発明の有機無機ハイブリッド膜中のセリウム化合物の酸化数は、特に制限されない(+2、+3、及び+4の何れであってもよい)が、紫外線透過率を低くし、かつ可視光線透過率を高くする観点から、好ましくは+4であってよい。本発明の有機無機ハイブリッド膜中において、酸化数が+4であるセリウム化合物の割合は、原子比で、全セリウム化合物の総和を100at%(原子%)として、通常1at%以上、好ましくは10at%以上、より好ましくは30at%以上、更に好ましくは50at%以上、最も好ましくは80at%以上であってよい。一態様において、酸化数+4のセリウム化合物の割合は100at%であってよい。本発明の有機無機ハイブリッド膜中において、セリウム化合物であって酸化数が+4であるセリウム化合物の割合は、高いほど好ましい。
有機無機ハイブリッド膜中において、セリウムがどのような化合物を形成しているかは、エックス線光電子分光法(以下、「XPS分析」と略すことがある)により確認することができる。XPS分析は、例えば、アルバック・ファイ社のESCA5400型XPS分析装置を使用し、エックス線としてMgKα線(例えば、電力400W、電圧15kVの条件で発生させたビーム直径1.1mmのMgKα線)を使用して測定することができる。
ワイドスキャンは、例えば、電子取り出し角度(以下、「測定角度」と記載することがある)15度又は45度、パスエネルギー178.95eV、測定範囲0~1100eV、エネルギーステップ1.000eV、1ステップの時間20ms、及び測定回数3回の条件で行うことができる。なお、測定角度15度におけるXPS分析による組成、状態分析データは、表面からの深さ1.3nm~1.5nmの平均値であり、測定角度45度においては表面からの深さ4~5nmの平均値である。
参考文献:M.P.Seah and W.A.Derch, Surface and Interface Analysis 1,2(1979)
参考文献:M.P.Seah and W.A.Derch, Surface and Interface Analysis 1,2(1979)
ナロースキャンは、測定元素がC1sのときは、例えば、測定角度15度又は45度、パスエネルギー178.95eV、測定範囲278~310eV、エネルギーステップ0.100eV、1ステップの時間20ms、及び測定回数10回の条件で行うことができる。測定元素がO1sのときは、例えば、測定角度15度又は45度、パスエネルギー35.75eV、測定範囲523~553eV、エネルギーステップ0.100eV、1ステップの時間20ms、及び測定回数5回の条件で行うことができる。測定元素がCe3dのときは、例えば、測定角度15度又は45度、パスエネルギー35.75eV、測定範囲876~926eV、エネルギーステップ0.100eV、1ステップの時間20ms、及び測定回数5回の条件で行うことができる。測定元素がF1sのときは、例えば、測定角度15度又は45度、パスエネルギー35.75eV、測定範囲679~709eV、エネルギーステップ0.100eV、1ステップの時間20ms、及び測定回数5回の条件で行うことができる。測定元素がSi2pのときは、例えば、測定角度15度又は45度、パスエネルギー35.75eV、測定範囲94~124eV、エネルギーステップ0.100eV、1ステップの時間20ms、及び測定回数5回の条件で行うことができる。
図1にXPS分析の測定例を示す。図1は後述する実施例の例4の有機無機ハイブリッド膜を測定したものである。882.5eV付近に二酸化セリウムに由来するピーク、884.0eV付近に三弗化セリウムに由来するショルダーピークが現れており、二酸化セリウムの一部が有機弗素化合物に由来する弗素原子との別の化合物、三弗化セリウムに変性していることが分かる。
有機弗素化合物
上記有機弗素化合物は、弗素・炭素結合を有する化合物であり、典型的には炭化水素などの有機化合物の1つ又は2つ以上の水素原子が弗素原子に置換された構造を有する化合物である。上記有機弗素化合物は、本発明の有機無機ハイブリッド膜に撥水機能、防汚性を付与する働きをする。
上記有機弗素化合物は、弗素・炭素結合を有する化合物であり、典型的には炭化水素などの有機化合物の1つ又は2つ以上の水素原子が弗素原子に置換された構造を有する化合物である。上記有機弗素化合物は、本発明の有機無機ハイブリッド膜に撥水機能、防汚性を付与する働きをする。
本発明の有機無機ハイブリッド膜の生産に用いる有機弗素化合物としては、環境問題の観点、及び作業安全性の観点から、弗素系樹脂が好ましい。上記弗素系樹脂は、弗素原子を含有するモノマー(弗素・炭素結合を有する化合物であって、重合性を有するもの)に由来する構成単位を含む樹脂である。上記弗素系樹脂は、本発明の有機無機ハイブリッド膜に、撥水機能、防汚性に加え、耐クラック性、及び可撓性を付与する働きをすることができる。また上記弗素系樹脂は、紫外線のA波(波長315~380nm)による有機無機ハイブリッド膜の劣化を抑制する働きをする。
本発明の有機無機ハイブリッド膜の生産に用いる弗素系樹脂としては、例えば、α-オレフィンの1つ又は2つ以上の水素原子が弗素原子に置換された構造を有するモノマーに由来する構成単位を含む樹脂を挙げることができる。弗素系樹脂の好ましい例としては、α-オレフィンの1つ又は2つ以上の水素原子が弗素原子に置換された構造を有するモノマーに由来する構成単位を、主要なモノマーの1つとして含む(各種モノマーに由来する構成単位の総和を100モル%として、通常20モル%以上、好ましくは40モル%以上、より好ましくは60モル%以上、更に好ましくは80モル%以上、最も好ましくは90モル%以上含む)樹脂を挙げることができる。
上記α-オレフィンの1つ又は2つ以上の水素原子が弗素原子に置換された構造を有するモノマーとしては、例えば、テトラフルオロエチレン、トリフルオロエチレン、弗化ビニリデン、弗化ビニル、ヘキサフルオロプロピレン、ペンタフルオロプロピレン、テトラフルオロプロピレン、トリフルオロプロピレン、及びクロロトリフルオロエチレンなどを挙げることができる。上記α-オレフィンの1つ又は2つ以上の水素原子が弗素原子に置換された構造を有するモノマーとしては、これらの1種又は2種以上の混合物を用いることができる。
本発明の有機無機ハイブリッド膜の生産に用いる弗素系樹脂としては、例えば、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリ弗化ビニリデン、ポリ弗化ビニル、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン・エチレン共重合体、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、クロロトリフルオロエチレン・エチレン共重合体、及びポリクロロトリフルオロエチレンなどを挙げることができる。これらの中で、耐候性、防汚性、透明性、耐擦傷性、耐クラック性、及び可撓性の観点から、ポリテトラフルオロエチレン、及びポリ弗化ビニリデンが好ましい。上記弗素系樹脂としては、これらの1種又は2種以上の混合物を用いることができる。
本発明の有機無機ハイブリッド膜中の上記セリウム酸化物に由来する原子の割合は、有機無機ハイブリッド膜の耐候性の観点から、原子比で、上記セリウム酸化物に由来する原子と上記有機弗素化合物に由来する原子の総和を100at%として、上記セリウム酸化物が二酸化セリウムであり、上記有機弗素化合物がポリテトラフルオロエチレン(テトラフルオロエチレンの単独重合体)である場合には、通常60at%以上、好ましくは70at%以上、より好ましくは75at%以上、更に好ましくは80at%以上、最も好ましくは82at%以上であってよい。一方、この割合は、有機無機ハイブリッド膜の防汚性、耐クラック性、及び可撓性の観点から、通常99.9at%以下、好ましくは99.5%以下、より好ましくは99at%以下、更に好ましくは98at%以下、最も好ましくは97at%以下であってよい。一態様において、この割合は、通常60at%以上99.9at%以下、好ましくは、60at%以上99.5%以下、60at%以上99at%以下、60at%以上98at%以下、60at%以上97at%以下、70at%以上99.9at%以下、70at%以上99.5%以下、70at%以上99at%以下、70at%以上98at%以下、70at%以上97at%以下、75at%以上99.9at%以下、75at%以上99.5%以下、75at%以上99at%以下、75at%以上98at%以下、75at%以上97at%以下、80at%以上99.9at%以下、80at%以上99.5%以下、80at%以上99at%以下、80at%以上98at%以下、80at%以上97at%以下、82at%以上99.9at%以下、82at%以上99.5%以下、82at%以上99at%以下、82at%以上98at%以下、または82at%以上97at%以下であってよい。
上記セリウム酸化物に由来する原子の好ましい割合は、本発明の有機無機ハイブリッド膜の生産に用いるセリウム酸化物と有機弗素化合物の種類、組み合わせにも依存する。
上記セリウム酸化物に由来する原子の好ましい割合は、本発明の有機無機ハイブリッド膜の生産に用いるセリウム酸化物と有機弗素化合物の種類、組み合わせにも依存する。
本明細書において、原子比はエネルギー分散型エックス線分析(以下、「EDX分析」と略すことがある)により求めた値である。EDX分析は、例えば、走査電子顕微鏡(以下、「SEM」と略すことがある)にEDX分析装置が付属した装置を使用し、加速電圧9kV、エミッション電流15μA、焦点距離15mm、及び倍率600倍の条件で行うことができる。走査電子顕微鏡にEDX分析装置が付属した装置としては、例えば、株式会社日立製作所のS-4300型SEMに、株式会社堀場製作所のEMAX ENERGY型EDX分析装置が付属した装置を挙げることができる。
後述の実施例では、このような条件及び装置を用いてEDX分析を行った。
後述の実施例では、このような条件及び装置を用いてEDX分析を行った。
本発明の有機無機ハイブリッド膜の厚みは、特に制限されないが、有機無機ハイブリッド膜の紫外線透過率を低くする観点から、通常1nm以上、好ましくは10nm以上、より好ましくは20nm以上、更に好ましくは30nm以上、最も好ましくは40nm以上であってよい。一方、本発明の有機無機ハイブリッド膜の厚みは、有機無機ハイブリッド膜の耐クラック性の観点から、通常1μm以下、好ましくは500nm以下、より好ましくは200nm以下、更に好ましくは100nm以下、最も好ましくは50nm以下であってよい。一態様において、有機無機ハイブリッド膜の厚みは、通常1nm以上1μm以下、好ましくは、1nm以上500nm以下、1nm以上200nm以下、1nm以上100nm以下、1nm以上50nm以下、10nm以上1μm以下、10nm以上500nm以下、10nm以上200nm以下、10nm以上100nm以下、10nm以上50nm以下、20nm以上1μm以下、20nm以上500nm以下、20nm以上200nm以下、20nm以上100nm以下、20nm以上50nm以下、30nm以上1μm以下、30nm以上500nm以下、30nm以上200nm以下、30nm以上100nm以下、30nm以上50nm以下、40nm以上1μm以下、40nm以上500nm以下、40nm以上200nm以下、40nm以上100nm以下、40nm以上50nm以下であってよい。
本発明の有機無機ハイブリッド膜は、可視光線透過率が通常70%以上、好ましくは75%以上、より好ましくは80%以上、更に好ましくは85%以上、最も好ましくは90%以上である。可視光線透過率は高いほど好ましい。ここで可視光線透過率は、透過スペクトルを波長400~780nmの区間について積分した面積の、波長400~780nmの全範囲において透過率が100%であると仮定した場合の透過スペクトルを波長400~780nmの区間について積分した面積に対する割合である。可視光線透過率は、例えば、JIS A5759:2016の6.4可視光線透過率試験に準拠し、島津製作所株式会社の分光光度計「SolidSpec-3700」(商品名)を使用して測定することができる。
本発明の有機無機ハイブリッド膜は、波長380nmの紫外線の透過率が通常60%以下、好ましくは50%以下、より好ましくは40%以下、更に好ましくは30%以下、更により好ましくは20%以下、最も好ましくは10%以下である。波長380nmの紫外線の透過率は低いほど好ましい。ここで波長380nmの紫外線の透過率は、波長380nmにおける透過光強度の、波長380nmにおける透過率が100%であると仮定した場合の透過光強度に対する割合である。波長380nmの紫外線の透過率は、例えば、JIS A5759:2016の6.7紫外線透過率試験に準拠し、島津製作所株式会社の分光光度計「SolidSpec-3700」(商品名)を使用して測定することができる。
本発明の有機無機ハイブリッド膜は、紫外線(本発明に関連して波長を特定せずに言及する「紫外線」は、波長300~380nmの紫外線を意味する)の透過率が、通常30%以下、好ましくは20%以下、より好ましくは10%以下、更に好ましくは5%以下、最も好ましくは1%以下であってよい。紫外線の透過率は低いほど好ましい。ここで紫外線の透過率は、透過スペクトルを波長300~380nmの区間について積分した面積の、波長300~380nmの全範囲において透過率が100%であると仮定した場合の透過スペクトルを波長300~380nmの区間について積分した面積に対する割合である。紫外線の透過率は、例えば、JIS A5759:2008の6.7紫外線透過率試験に準拠し、島津製作所株式会社の分光光度計「SolidSpec-3700」(商品名)を使用して測定することができる。
本発明の有機無機ハイブリッド膜は、その表面の水接触角が、通常80度以上、好ましくは85度以上である。Wenzelの式を考慮し、本発明の有機無機ハイブリッド膜の表面に微細凹凸を形成することにより撥水性を更に高めることができるので、表面の水接触角は、より好ましくは90度以上、更に好ましくは95度以上、最も好ましくは100度以上であってよい。有機無機ハイブリッド膜の防汚性の観点から、水接触角は高いほど好ましい。水接触角は、例えば、KRUSS社の自動接触角計「DSA20」(商品名)を使用し、水滴の幅と高さとから算出する方法(JIS R3257:1999を参照)で測定することができる。
本発明の有機無機ハイブリッド膜は、可視光線透過率が70%以上、75%以上、80%以上、85%以上、または90%以上であり、かつ、波長380nmの紫外線の透過率が60%以下、50%以下、40%以下、30%以下、20%以下、または10%以下であり、かつ、その表面の水接触角が、80度以上、85度以上、90度以上、95度以上、または100度以上であってよい。
2.積層体
本発明の積層体は、本発明の有機無機ハイブリッド膜を含む。本発明の積層体は、通常は、任意の基材の少なくとも一方の表面の上に、本発明の有機無機ハイブリッド膜が形成された積層体である。
本発明の積層体は、本発明の有機無機ハイブリッド膜を含む。本発明の積層体は、通常は、任意の基材の少なくとも一方の表面の上に、本発明の有機無機ハイブリッド膜が形成された積層体である。
上記基材は、通常は、フィルム、シート、又は板である。上記基材は、本発明の有機無機ハイブリッド膜の可視光線透過率の高さを活用する観点から、好ましくは透明であるが、これに制限されず、不透明であってもよい。また、上記基材は、着色透明であってもよいし、着色不透明であってもよい。
上記基材の可視光線透過率は、本発明の有機無機ハイブリッド膜の可視光線透過率の高さを活用する観点から、通常80%以上、好ましくは85%以上、より好ましくは88%以上、更に好ましくは90%以上、最も好ましくは92%以上であってよい。可視光線透過率は高いほど好ましい。ここで可視光線透過率は、透過スペクトルを波長400~780nmの区間について積分した面積の、波長400~780nmの全範囲において透過率が100%であると仮定した場合の透過スペクトルを波長400~780nmの区間について積分した面積に対する割合である。可視光線透過率は、例えば、JIS A5759:2008の6.4可視光線透過率試験に準拠し、島津製作所株式会社の分光光度計「SolidSpec-3700」(商品名)を使用して測定することができる。
上記基材としては、特に限定されないが、例えば、ソーダライムガラス、硼珪酸ガラス、及び石英ガラスなどの無機ガラスフィルム、無機ガラスシート又は無機ガラス板を挙げることができる。
上記基材としては、特に限定されないが、例えば、トリアセチルセルロース等のセルロースエステル系樹脂;ポリエチレンテレフタレート等のポリエステル系樹脂;エチレンノルボルネン共重合体等の環状炭化水素系樹脂;ポリメタクリル酸メチル、ポリメタクリル酸エチル、及びビニルシクロヘキサン・(メタ)アクリル酸メチル共重合体等のアクリル系樹脂;芳香族ポリカーボネート系樹脂;ポリプロピレン、及び4-メチル-ペンテン-1等のポリオレフィン系樹脂;ポリアミド系樹脂;ポリアリレート系樹脂;ポリマー型ウレタンアクリレート系樹脂;及びポリイミド系樹脂などの樹脂フィルム、樹脂シート、又は樹脂板を挙げることができる。これらの樹脂フィルムは、無延伸フィルム、一軸延伸フィルム、及び二軸延伸フィルムを包含する。また、これらの樹脂フィルムは、これらの1種又は2種以上を、2層以上積層した積層樹脂フィルムを包含する。これらの樹脂シートは、無延伸シート、一軸延伸シート、及び二軸延伸シートを包含する。またこれらの樹脂シートは、これらの1種又は2種以上を、2層以上積層した積層樹脂シートを包含する。これらの樹脂板は、これらの1種又は2種以上を、2層以上積層した積層樹脂板を包含する。
上記基材としては、特に限定されないが、例えば、上述の無機ガラスフィルム、無機ガラスシート又は無機ガラス板と、上述の樹脂フィルム、樹脂シート、又は樹脂板との積層体を挙げることができる。
上記基材として無機ガラスを用いる場合、無機ガラスフィルム、無機ガラスシート又は無機ガラス板の厚みは特に制限されず、所望により任意の厚みにすることができる。基材としての無機ガラスの厚みは、本発明の積層体の取扱性の観点からは、通常20μm以上、好ましくは50μm以上であってよい。また、基材としての無機ガラスの厚みは、無機ガラスの耐衝撃性の観点からは、好ましくは1mm以上、より好ましくは1.5mm以上であってよい。基材としての無機ガラスの厚みは、本発明の積層体を使用された物品の軽量化の観点から、通常6mm以下、好ましくは4.5mm以下、より好ましくは3mm以下であってよい。
上記基材として樹脂を用いる場合、樹脂フィルム、樹脂シート、又は樹脂板の厚みは、特に制限されず、所望により任意の厚みにすることができる。基材としての樹脂の厚みは、本発明の積層体の取扱性の観点からは、通常20μm以上、好ましくは50μm以上であってよい。本発明の積層体を高い剛性を必要としない用途に用いる場合には、基材としての樹脂の厚みは、経済性の観点から、通常250μm以下、好ましくは150μm以下であってよい。本発明の積層体を高い剛性を必要とする用途に用いる場合には、基材としての樹脂の厚みは、剛性を保持する観点から、通常300μm以上、好ましくは500μm以上、より好ましくは600μm以上であってよい。また、基材としての樹脂の厚みは、本発明の積層体を使用された物品の薄型化の要求に応える観点から、通常1500μm以下、好ましくは1200μm以下、より好ましくは1000μm以下であってよい。
本発明の積層体は、可視光線透過率が通常70%以上、好ましくは75%以上、より好ましくは80%以上、更に好ましくは85%以上、最も好ましくは90%以上であってよい。可視光線透過率は高いほど好ましい。ここで可視光線透過率は、透過スペクトルを波長400~780nmの区間について積分した面積の、波長400~780nmの全範囲において透過率が100%であると仮定した場合の透過スペクトルを波長400~780nmの区間について積分した面積に対する割合である。可視光線透過率は、例えば、JIS A5759:2008の6.4可視光線透過率試験に準拠し、島津製作所株式会社の分光光度計「SolidSpec-3700」(商品名)を使用して測定することができる。
本発明の積層体は、波長380nmの紫外線の透過率が通常60%以下、好ましくは50%以下、より好ましくは40%以下、更に好ましくは30%以下、更により好ましくは20%以下、最も好ましくは10%以下であってよい。波長380nmの紫外線の透過率は低いほど好ましい。ここで波長380nmの紫外線の透過率は、波長380nmにおける透過光強度の、波長380nmにおける透過率が100%であると仮定した場合の透過光強度に対する割合である。波長380nmの紫外線の透過率は、例えば、JIS A5759:2008の6.7紫外線透過率試験に準拠し、島津製作所株式会社の分光光度計「SolidSpec-3700」(商品名)を使用して測定した透過率スペクトルから波長380nmにおける透過率を読み取ることで求めることができる。
本発明の有機無機ハイブリッド膜は、その表面の押込み硬さが、通常100N/mm2以上、好ましくは200N/mm2以上、より好ましくは300N/mm2以上、更に好ましくは400N/mm2以上であってよい。押込み硬さは、有機無機ハイブリッド膜の耐擦傷性の観点からは、高いほど好ましい。押込み硬さは、例えば、フィッシャーインスツルメンツ社の表面微小硬度試験機「PICODENTER HM500」(商品名)を使用し、バーコビッチ圧子(例えば、テクダイヤモンド株式会社のバーコビッチダイヤモンド圧子(型番HB)などを使用することができる)、最大荷重0.1mN、荷重増加速度0.1mN/20秒、保持時間5秒、及び荷重除去速度0.1mN/20秒の条件で測定することができる。
本発明の積層体は、紫外線(本発明に関連して波長を特定せずに言及する「紫外線」は、波長300~380nmの紫外線を意味する)の透過率が、通常30%以下、好ましくは20%以下、より好ましくは10%、更に好ましくは5%以下、最も好ましくは1%以下であってよい。紫外線の透過率は低いほど好ましい。ここで紫外線の透過率は、透過スペクトルを波長300~380nmの区間について積分した面積の、波長300~380nmの全範囲において透過率が100%であると仮定した場合の透過スペクトルを波長300~380nmの区間について積分した面積に対する割合である。紫外線の透過率は、例えば、JIS A5759:2008の6.7紫外線透過率試験に準拠し、島津製作所株式会社の分光光度計「SolidSpec-3700」(商品名)を使用して測定することができる。
なお、本発明の有機無機ハイブリッド膜を含む積層体は、可視光線透過率が70%以上、75%以上、80%以上、85%以上、または90%以上であり、かつ、波長380nmの紫外線の透過率が60%以下、50%以下、40%以下、30%以下、20%以下、または10%以下であり、かつ、その有機無機ハイブリッド膜面の水接触角が、80度以上、85度以上、90度以上、95度以上、または100度以上であってよい。
なお、本発明の有機無機ハイブリッド膜を含む積層体は、可視光線透過率が70%以上、75%以上、80%以上、85%以上、または90%以上であり、かつ、波長380nmの紫外線の透過率が60%以下、50%以下、40%以下、30%以下、20%以下、または10%以下であり、かつ、その有機無機ハイブリッド膜面の水接触角が、80度以上、85度以上、90度以上、95度以上、または100度以上であってよい。
3.物品
本発明の物品は、本発明の有機無機ハイブリッド膜を含む。本発明の有機無機ハイブリッド膜は、通常は本発明の物品の表面に形成される。典型的には、本発明の物品の表面であって、特に太陽光の直射を受ける部分に形成され、本発明の物品に耐候性、及び防汚性を付与する。
本発明の物品は、本発明の有機無機ハイブリッド膜を含む。本発明の有機無機ハイブリッド膜は、通常は本発明の物品の表面に形成される。典型的には、本発明の物品の表面であって、特に太陽光の直射を受ける部分に形成され、本発明の物品に耐候性、及び防汚性を付与する。
本発明の物品としては、本発明の有機無機ハイブリッド膜を含むこと以外は特に制限されない。本発明の物品としては、例えば、自動車のウィンドウや風防等;建築物の窓や扉等;画像表示装置の保護板やディスプレイ面板等;太陽電池、及びその筐体や前面板などの部材、及び、これらの物品に用いる部材(例えば、ハードコート積層フィルム、及び透明樹脂積層体など)を挙げることができる。
4.有機無機ハイブリッド膜の生産方法
本発明の有機無機ハイブリッド膜は、セリウム酸化物と有機弗素化合物を用いて生産される。本発明の有機無機ハイブリッド膜は、セリウム酸化物と有機弗素化合物を用い、任意の方法、例えば、2極スパッタリング法、マグネトロンスパッタリング法、及び反応性スパッタリング法などのスパッタリング法;真空蒸着法;イオンプレーティング法;低温プラズマ化学気相成長法、プラズマ化学気相成長法、熱化学気相成長法、及び光化学気相成長法などの化学気相成長法;ゾルゲル法、電解法、及びエマルジョン法などの液相法、及び、これらの組み合わせなどの方法を使用して生産することができる。生産方法は、ここに列挙した手段に限定されない。
本発明の有機無機ハイブリッド膜は、セリウム酸化物と有機弗素化合物を用いて生産される。本発明の有機無機ハイブリッド膜は、セリウム酸化物と有機弗素化合物を用い、任意の方法、例えば、2極スパッタリング法、マグネトロンスパッタリング法、及び反応性スパッタリング法などのスパッタリング法;真空蒸着法;イオンプレーティング法;低温プラズマ化学気相成長法、プラズマ化学気相成長法、熱化学気相成長法、及び光化学気相成長法などの化学気相成長法;ゾルゲル法、電解法、及びエマルジョン法などの液相法、及び、これらの組み合わせなどの方法を使用して生産することができる。生産方法は、ここに列挙した手段に限定されない。
ここで、セリウム酸化物は、セリウム酸化物そのものであってもよく、セリウム酸化物を含む混合物、組成物、又は化合物であってもよく、セリウム酸化物を含む溶液、ゾル、ゲル、又はソリッドであってもよい。ここで有機弗素化合物は、有機弗素化合物そのものであってもよく、有機弗素化合物を含む混合物又は組成物であってもよく、これらを含む溶液、ゾル、ゲル、又はソリッドであってもよい。
スパッタリング法により本発明の有機無機ハイブリッド膜を生産する場合について、以下、セリウム酸化物として二酸化セリウムを、有機弗素化合物としてポリテトラフルオロエチレン(テトラフルオロエチレンの単独重合体)を用いた例を説明する。
スパッタリング装置としては、特に制限されず、公知のスパッタリング装置を使用することができる。図2は、2極スパッタリングを行うことのできるスパッタリング装置の一例を示す概念図である。図2の装置は、スパッタガス導入口2、排気口3を備えるスパッタ室1を有する。
スパッタ室1は、スパッタガス導入口2から、スパッタガスを導入することができるようになっている。
スパッタ室1は、排気装置(図示せず)により排気口3から排気され、所定の圧力に保つことができるようになっている。上記排気装置としては、上記所定の圧力を保つことのできる能力を有するものであれば、特に制限されない。上記排気装置としては、例えば、ギヤポンプ、ベーンポンプ、及びねじポンプなどのロータリーポンプ;クライオポンプ、及び、これらの組み合わせなどを挙げることができる。
スパッタ室1の下部には、二酸化セリウムのターゲット4、及びポリテトラフルオロエチレンのターゲット5が設けられている。ターゲット4及びターゲット5は、有機無機ハイブリッド膜の組成(二酸化セリウムに由来する原子とポリテトラフルオロエチレンに由来する原子との比)を適宜調整することができるようにするため、それぞれ別のインピーダンス整合装置(図示せず)、高周波電源(図示せず)に接続されており、ターゲットへの投入電力を個別に制御することができるようになっている。
スパッタ室1の上部の、ターゲット4及びターゲット5に対向する位置には、スパッタテーブル6が配置され、基材7が取り付けられている。スパッタテーブル6は所定の回転速度で回転可能になっている。またターゲット4と基材7との間にはシャッター8が、ターゲット5と基材7との間にはシャッター9が設けられている。なお、シャッター8、シャッター9の支柱等は図示していない。
ターゲット4及びターゲット5と基材7との距離は、特に制限されないが、通常1~10cm、好ましくは3~7cm程度であってよい。
2極スパッタリング法により本発明の有機無機ハイブリッド膜を生産する方法を、図2を使用して説明する。先ず、スパッタリング装置に二酸化セリウムのターゲット4、及びポリテトラフルオロエチレンのターゲット5を取り付ける。
二酸化セリウムのターゲット4としては、取扱性の観点から、二酸化セリウムを予め焼結した焼結体を用いることが好ましい。ターゲット4としての上記焼結体の形状は、特に制限されず、使用するスパッタ装置の仕様に応じて適宜選択することができる。上記焼結体の形状は、例えば、直径が通常10~200mm、好ましくは20~100mm、厚みが通常1~20mm、好ましくは2~10mmの円盤状であってよい。
ポリテトラフルオロエチレンのターゲット5は、取扱性の観点から、ポリテトラフルオロエチレンを予め射出成形などの方法で成形した成形体を用いることが好ましい。ターゲット5としての上記成形体の形状は、特に制限されず、使用するスパッタ装置の仕様に応じて適宜選択することができる。上記成形体の形状は、例えば、直径が通常10~200mm、好ましくは20~100mm、厚みが通常1~20mm、好ましくは2~10mmの円盤状であってよい。
次に、スパッタテーブル6に基材7を取り付け、所定の回転速度で回転させる。スパッタテーブル6の上記所定の回転速度は、通常1~1000回転/分、好ましくは2~50回転/分であってよい。また有機無機ハイブリッド膜の成膜中、一定の回転速度であってもよく、所望により、回転速度を変化させてもよい。上記基材7としては、例えば、本発明の積層体の説明において上述したものを用いることができる。
次に、スパッタ室1を、排気装置により排気口3から排気して、成膜時のスパッタ室1の所定の圧力以下にする。上記所定の圧力は、通常10-3~10-5Pa程度、好ましくは10-4Pa程度であってよい。
次に、スパッタ室1に、スパッタガス導入口2からスパッタガスを、成膜時にスパッタ室1が所定の圧力となるように導入する。
上記スパッタガスとしては、例えば、アルゴン、クリプトンなどの不活性ガス、及び、これらと酸素、窒素などとの混合ガス等を挙げることができる。これらの中で、有機無機ハイブリッド膜の紫外線透過率を低くし、かつ可視光線透過率を高くする観点から、アルゴン、及びアルゴンと酸素の混合ガスが好ましく、アルゴンと酸素の混合ガスがより好ましい。アルゴンと酸素の混合ガスを用いることにより、有機無機ハイブリッド膜中において、酸化数が+4であるセリウムの割合を高め、紫外線透過率を低くすることができる。
上記スパッタガスとして、アルゴンと酸素との混合ガスを用いる場合、酸素ガスの体積流量は、アルゴンガスの体積流量を100%として、通常1~20%、好ましくは2~10%であってよい。
上記成膜時のスパッタ室1の所定の圧力は、放電を安定化し、連続的な成膜ができるようにする観点から、通常0.5~5Pa、好ましくは0.5~1Paであってよい。
続いて、二酸化セリウムのターゲット4、及びポリテトラフルオロエチレンのターゲット5にそれぞれ所定の電力(通常、高周波数電力)を投入し、放電を行わせる。放電状態が安定したところでシャッター8、及びシャッター9を開き、各ターゲットをスパッタリングし、基材7の上に有機無機ハイブリッド膜を成膜する。
有機無機ハイブリッド膜の組成(二酸化セリウムに由来する原子とポリテトラフルオロエチレンに由来する原子との比)は、ターゲットに投入する電力を調整することにより行う。なお、投入電力量と成膜速度との関係は、事前に予備実験を行い、二酸化セリウムとポリテトラフルオロエチレンのそれぞれについて求めておく。
1極スパッタリング用の装置を使用する場合には、二酸化セリウムとポリテトラフルオロエチレンとの混合物をターゲットとして用いればよい。この場合は、有機無機ハイブリッド膜の組成は、混合物の配合比により調整する。なお、混合物の配合比と有機無機ハイブリッド膜の組成との関係は、事前に予備実験を行い、求めておく。
スパッタリング法、化学気相成長法、及び液相法などの何れの方法で有機無機ハイブリッド膜を成膜する場合であっても、有機無機ハイブリッド膜を成膜後、温度50℃以上、好ましくは80℃以上、より好ましくは100℃以上、かつ基材の耐熱性を勘案した温度以下において、作業性や生産性の観点から、好ましくは150℃以下の温度において、アニール処理することは好ましい。これにより、有機無機ハイブリッド膜の特性を安定化することができる。また、有機無機ハイブリッド膜の撥水機能を向上させることができる。
以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。
有機無機ハイブリッド膜を含む積層体の物性の測定・評価方法
(i)可視光線透過率
JIS A5759:2008の6.4可視光線透過率試験に準拠し、島津製作所株式会社の分光光度計「SolidSpec-3700」(商品名)を使用して、可視光線透過率を測定した。
(i)可視光線透過率
JIS A5759:2008の6.4可視光線透過率試験に準拠し、島津製作所株式会社の分光光度計「SolidSpec-3700」(商品名)を使用して、可視光線透過率を測定した。
(ii)紫外線透過率1(波長380nmの紫外線の透過率):
JIS A5759:2008の6.7紫外線透過率試験に準拠し、島津製作所株式会社の分光光度計「SolidSpec-3700」(商品名)を使用して測定した透過率スペクトルから波長380nmにおける透過率を読み取り、この値を紫外線透過率1とした。
JIS A5759:2008の6.7紫外線透過率試験に準拠し、島津製作所株式会社の分光光度計「SolidSpec-3700」(商品名)を使用して測定した透過率スペクトルから波長380nmにおける透過率を読み取り、この値を紫外線透過率1とした。
(iii)水接触角
積層体の有機無機ハイブリッド膜面について、KRUSS社の自動接触角計「DSA20」(商品名)を使用し、水滴の幅と高さとから算出する方法(JIS R3257:1999を参照)で水接触角を測定した。
積層体の有機無機ハイブリッド膜面について、KRUSS社の自動接触角計「DSA20」(商品名)を使用し、水滴の幅と高さとから算出する方法(JIS R3257:1999を参照)で水接触角を測定した。
(iv)紫外線透過率2(波長300~380nmの紫外線の透過率)
JIS A5759:2008の6.7紫外線透過率試験に準拠し、島津製作所株式会社の分光光度計「SolidSpec-3700」(商品名)を使用して測定した透過率を紫外線透過率2とした。
JIS A5759:2008の6.7紫外線透過率試験に準拠し、島津製作所株式会社の分光光度計「SolidSpec-3700」(商品名)を使用して測定した透過率を紫外線透過率2とした。
(v)硬さ(押込み硬さ)
フィッシャーインスツルメンツ社の表面微小硬度試験機「PICODENTER HM500」(商品名)を使用し、テクダイヤモンド株式会社のバーコビッチダイヤモンド圧子(型番HB)を使用し、最大荷重0.1mN、荷重増加速度0.1mN/20秒、保持時間5秒、及び荷重除去速度0.1mN/20秒の条件で硬さを測定した。
フィッシャーインスツルメンツ社の表面微小硬度試験機「PICODENTER HM500」(商品名)を使用し、テクダイヤモンド株式会社のバーコビッチダイヤモンド圧子(型番HB)を使用し、最大荷重0.1mN、荷重増加速度0.1mN/20秒、保持時間5秒、及び荷重除去速度0.1mN/20秒の条件で硬さを測定した。
使用した原材料
(A)セリウム酸化物
(A-1)二酸化セリウムを焼結して得た直径76.2mm、厚み5mmの円盤。株式会社高純度化学研究所製。
(A)セリウム酸化物
(A-1)二酸化セリウムを焼結して得た直径76.2mm、厚み5mmの円盤。株式会社高純度化学研究所製。
(B)有機弗素化合物
(B-1)ポリテトラフルオロエチレン(テトラフルオロエチレンの単独重合体)の直径76.2mm、厚み5mmの円盤。株式会社高純度化学研究所製。
(B-1)ポリテトラフルオロエチレン(テトラフルオロエチレンの単独重合体)の直径76.2mm、厚み5mmの円盤。株式会社高純度化学研究所製。
(C)基材
(C-1)コーニング社の無機ガラス基板「イーグルXG」(商品名)。厚み0.7mm。波長380nmの紫外線の透過率は94%、可視光線透過率は91%、波長300~380nmの紫外線の透過率は93%、黄色度指数は0.5であった。
(C-1)コーニング社の無機ガラス基板「イーグルXG」(商品名)。厚み0.7mm。波長380nmの紫外線の透過率は94%、可視光線透過率は91%、波長300~380nmの紫外線の透過率は93%、黄色度指数は0.5であった。
例1
(1)上記(C-1)を、APP社の大気圧プラズマ処理装置「MyPL Auto200」(商品名)を使用し、0.5体積%の酸素(O2)を含むアルゴンガス(アルゴンガスを6リットル/分の体積流量、酸素(O2)を30ミリリットル/分の体積流量で使用)を放電ガスとし、投入電力180W、スキャン回数0.5往復、スキャン速度20mm/秒、電極と被処理面との距離2mmの条件で表面処理を行った。
(2)次にVICインターナショナル社の2極スパッタリング装置を使用し、上記(A-1)、及び上記(B-1)をターゲットとして、成膜圧力1Pa、導入ガスは100体積%のアルゴンガス(表には「Ar」と表記した)、導入ガスの体積流量10sccm、上記(C-1)とターゲットとの距離は何れも5cm、投入電力(周波数13.56MHz)は上記(A-1)側540W、上記(B-1)側1.3Wの条件で同時スパッタ成膜を行った。なお、予備実験では上記(A-1)は投入電力200Wで4.7nm/分の成膜速度、上記(B-1)は投入電力100Wで5.0nm/分の成膜速度であった。
(3)続いて、温度100℃で1時間のアニール処理を行い、上記(C-1)の上に有機無機ハイブリッド膜の形成された積層体を得た。
(4)上記工程(3)において得た積層体の有機無機ハイブリッド膜について、EDX分析を行い、膜の組成を確認した。EDX分析は、株式会社日立製作所のS-4300型SEMに、株式会社堀場製作所のEMAX ENERGY型EDX分析装置が付属した装置を使用し、加速電圧9kV、エミッション電流15μA、焦点距離15mm、及び倍率600倍の条件で行った。更に上記試験(i)~(v)を行った。結果を表1に示す。
(1)上記(C-1)を、APP社の大気圧プラズマ処理装置「MyPL Auto200」(商品名)を使用し、0.5体積%の酸素(O2)を含むアルゴンガス(アルゴンガスを6リットル/分の体積流量、酸素(O2)を30ミリリットル/分の体積流量で使用)を放電ガスとし、投入電力180W、スキャン回数0.5往復、スキャン速度20mm/秒、電極と被処理面との距離2mmの条件で表面処理を行った。
(2)次にVICインターナショナル社の2極スパッタリング装置を使用し、上記(A-1)、及び上記(B-1)をターゲットとして、成膜圧力1Pa、導入ガスは100体積%のアルゴンガス(表には「Ar」と表記した)、導入ガスの体積流量10sccm、上記(C-1)とターゲットとの距離は何れも5cm、投入電力(周波数13.56MHz)は上記(A-1)側540W、上記(B-1)側1.3Wの条件で同時スパッタ成膜を行った。なお、予備実験では上記(A-1)は投入電力200Wで4.7nm/分の成膜速度、上記(B-1)は投入電力100Wで5.0nm/分の成膜速度であった。
(3)続いて、温度100℃で1時間のアニール処理を行い、上記(C-1)の上に有機無機ハイブリッド膜の形成された積層体を得た。
(4)上記工程(3)において得た積層体の有機無機ハイブリッド膜について、EDX分析を行い、膜の組成を確認した。EDX分析は、株式会社日立製作所のS-4300型SEMに、株式会社堀場製作所のEMAX ENERGY型EDX分析装置が付属した装置を使用し、加速電圧9kV、エミッション電流15μA、焦点距離15mm、及び倍率600倍の条件で行った。更に上記試験(i)~(v)を行った。結果を表1に示す。
例2~7
成膜時の投入電力を表1に示すように変更したこと以外は、例1と同様に有機無機ハイブリッド膜を含む積層体の製造及び物性の測定・評価を行った。結果を表1に示す。
成膜時の投入電力を表1に示すように変更したこと以外は、例1と同様に有機無機ハイブリッド膜を含む積層体の製造及び物性の測定・評価を行った。結果を表1に示す。
これらの結果から、紫外線透過率が低く、かつ可視光線透過率が高い本発明の有機無機ハイブリッド膜が得られたことが実証された。また、本発明の有機無機ハイブリッド膜は、撥水機能を有していた。
なお、上記の実施例では、ガラス板を基材として本発明の有機無機ハイブリッド膜を含む積層体を得た。しかし、本発明の有機無機ハイブリッド膜は紫外線透過率が低く、可視光線透過率が高く、かつ撥水機能を有しているので、当業者であれば、樹脂フィルム、樹脂シート、又は樹脂板を基材として当該膜を含む積層体を製造した場合においても、これら樹脂フィルム等の耐候性、及び防汚性を大きく向上させることのできることをたちどころに理解するであろう。また、本発明の有機無機ハイブリッド膜の硬さが、基材であるガラス板(上記(C-1)の(v)硬さの値は6.4KN/mm2と測定された)よりも高いことから、当業者であれば、樹脂フィルム、樹脂シート、又は樹脂板の表面の上に本発明の有機無機ハイブリッド膜を形成して積層体を製造した場合においても、これら樹脂フィルム等の表面硬度、ひいては耐擦傷性を大きく向上させることのできることをたちどころに理解するであろう。
なお、上記の実施例では、ガラス板を基材として本発明の有機無機ハイブリッド膜を含む積層体を得た。しかし、本発明の有機無機ハイブリッド膜は紫外線透過率が低く、可視光線透過率が高く、かつ撥水機能を有しているので、当業者であれば、樹脂フィルム、樹脂シート、又は樹脂板を基材として当該膜を含む積層体を製造した場合においても、これら樹脂フィルム等の耐候性、及び防汚性を大きく向上させることのできることをたちどころに理解するであろう。また、本発明の有機無機ハイブリッド膜の硬さが、基材であるガラス板(上記(C-1)の(v)硬さの値は6.4KN/mm2と測定された)よりも高いことから、当業者であれば、樹脂フィルム、樹脂シート、又は樹脂板の表面の上に本発明の有機無機ハイブリッド膜を形成して積層体を製造した場合においても、これら樹脂フィルム等の表面硬度、ひいては耐擦傷性を大きく向上させることのできることをたちどころに理解するであろう。
例8
(C)基材として上記(C-1)の替わりにリケンテクノス株式会社のハードコート積層フィルム「REPTY DC100N」(商品名)(全厚み250μm、有機無機ハイブリッド膜形成面の上記(v)硬さの値は0.52KN/mm2)を使用し、成膜時の投入電力を例3と同じに変更したこと以外は、例1と同様にして、有機無機ハイブリッド膜を含む積層体の製造及び物性の測定・評価を行った。得られた積層体の特性は、以下のとおりであった。
可視光線透過率80%、
紫外線透過率1(波長380nmの紫外線の透過率)36%、
水接触角116度、
紫外線透過率2(波長300~380nmの紫外線の透過率)8%、及び
該有機無機ハイブリッド膜の表面の上記(v)硬さの値は0.66KN/mm2であった。
(C)基材として上記(C-1)の替わりにリケンテクノス株式会社のハードコート積層フィルム「REPTY DC100N」(商品名)(全厚み250μm、有機無機ハイブリッド膜形成面の上記(v)硬さの値は0.52KN/mm2)を使用し、成膜時の投入電力を例3と同じに変更したこと以外は、例1と同様にして、有機無機ハイブリッド膜を含む積層体の製造及び物性の測定・評価を行った。得られた積層体の特性は、以下のとおりであった。
可視光線透過率80%、
紫外線透過率1(波長380nmの紫外線の透過率)36%、
水接触角116度、
紫外線透過率2(波長300~380nmの紫外線の透過率)8%、及び
該有機無機ハイブリッド膜の表面の上記(v)硬さの値は0.66KN/mm2であった。
例9
(C)基材として上記(C-1)の替わりに二軸延伸ポリエチレンテレフタレートフィルム(全厚み250μm、有機無機ハイブリッド膜形成面の上記(v)硬さの値は0.54KN/mm2)を使用し、成膜時の投入電力を例3と同じに変更したこと以外は、例1と同様にして、有機無機ハイブリッド膜を含む積層体の製造及び物性の測定・評価を行った。得られた積層体の特性は、以下のとおりであった。
可視光線透過率81%、
紫外線透過率1(波長380nmの紫外線の透過率)45%、
水接触角121度、
紫外線透過率2(波長300~380nmの紫外線の透過率)23%、及び
該有機無機ハイブリッド膜の表面の上記(v)硬さの値は0.62KN/mm2であった。
(C)基材として上記(C-1)の替わりに二軸延伸ポリエチレンテレフタレートフィルム(全厚み250μm、有機無機ハイブリッド膜形成面の上記(v)硬さの値は0.54KN/mm2)を使用し、成膜時の投入電力を例3と同じに変更したこと以外は、例1と同様にして、有機無機ハイブリッド膜を含む積層体の製造及び物性の測定・評価を行った。得られた積層体の特性は、以下のとおりであった。
可視光線透過率81%、
紫外線透過率1(波長380nmの紫外線の透過率)45%、
水接触角121度、
紫外線透過率2(波長300~380nmの紫外線の透過率)23%、及び
該有機無機ハイブリッド膜の表面の上記(v)硬さの値は0.62KN/mm2であった。
例8、9により、樹脂フィルム、樹脂シート、又は樹脂板の表面の上に本発明の有機無機ハイブリッド膜を形成して積層体を製造した場合においても、これら樹脂フィルム等の耐候性、防汚性を大きく向上させることができること、表面硬度、ひいては耐擦傷性を大きく向上させることができることが、確認された。
1:スパッタ室
2:スパッタガス導入口
3:排気口
4:二酸化セリウムのターゲット
5:ポリテトラフルオロエチレンのターゲット
6:スパッタテーブル
7:基材
8:ターゲット4側のシャッター
9:ターゲット5側のシャッター
2:スパッタガス導入口
3:排気口
4:二酸化セリウムのターゲット
5:ポリテトラフルオロエチレンのターゲット
6:スパッタテーブル
7:基材
8:ターゲット4側のシャッター
9:ターゲット5側のシャッター
Claims (5)
- セリウム酸化物と有機弗素化合物との有機無機ハイブリッド膜であって、
下記(a)、(b)、及び(c)を満たす有機無機ハイブリッド膜:
(a)可視光線透過率が70%以上である;
(b)波長380nmの紫外線の透過率が60%以下である;および
(c)上記有機無機ハイブリッド膜の表面の水接触角が80度以上である。 - セリウム酸化物と有機弗素化合物との有機無機ハイブリッド膜であって、
下記(a)、(b)、及び(c’)を満たす有機無機ハイブリッド膜:
(a)可視光線透過率が70%以上である;
(b)波長380nmの紫外線の透過率が60%以下である;および
(c’)上記有機無機ハイブリッド膜の表面の水接触角が90度以上である。 - 上記有機弗素化合物が弗素系樹脂を含む、請求項1又は2に記載の有機無機ハイブリッド膜。
- 請求項1~3のいずれか1項に記載の有機無機ハイブリッド膜を含む積層体。
- 請求項1~3のいずれか1項に記載の有機無機ハイブリッド膜を含む物品。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/962,095 US11655347B2 (en) | 2018-01-18 | 2019-01-16 | Organic-inorganic hybrid membrane |
EP19740979.0A EP3741797A4 (en) | 2018-01-18 | 2019-01-16 | ORGANIC-INORGANIC HYBRID MEMBRANE |
CN201980006696.XA CN111511814B (zh) | 2018-01-18 | 2019-01-16 | 有机无机杂化膜 |
KR1020207020611A KR102667938B1 (ko) | 2018-01-18 | 2019-01-16 | 유기 무기 하이브리드 막 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018006079 | 2018-01-18 | ||
JP2018-006079 | 2018-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019142830A1 true WO2019142830A1 (ja) | 2019-07-25 |
Family
ID=67301046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/001129 WO2019142830A1 (ja) | 2018-01-18 | 2019-01-16 | 有機無機ハイブリッド膜 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11655347B2 (ja) |
EP (1) | EP3741797A4 (ja) |
JP (1) | JP7324442B2 (ja) |
KR (1) | KR102667938B1 (ja) |
CN (1) | CN111511814B (ja) |
TW (1) | TWI791739B (ja) |
WO (1) | WO2019142830A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022255179A1 (ja) * | 2021-06-04 | 2022-12-08 | リケンテクノス株式会社 | 複合膜の製造方法、及び有機無機ハイブリッド膜の製造方法 |
EP4212491A4 (en) * | 2020-07-14 | 2024-07-24 | Nippon Sheet Glass Co Ltd | GLASS ARTICLE PROVIDED WITH A WATER-REPELLENT FILM AND METHOD FOR MANUFACTURING IT |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12119613B2 (en) | 2019-08-21 | 2024-10-15 | Hamamatsu Photonics K.K. | Sintered body, sputtering target, film, quantum cascade laser, and method of film formation |
JP7370278B2 (ja) | 2019-08-21 | 2023-10-27 | 浜松ホトニクス株式会社 | 焼結体、スパッタリング用ターゲット、膜、量子カスケードレーザ、及び、成膜方法 |
WO2022039268A1 (ja) * | 2020-08-21 | 2022-02-24 | 日本板硝子株式会社 | イージークリーンコーティング付きガラス物品 |
JP2023103139A (ja) * | 2022-01-13 | 2023-07-26 | 日本板硝子株式会社 | ガラス物品 |
JP2024127335A (ja) * | 2023-03-09 | 2024-09-20 | 日本板硝子株式会社 | イージークリーンコーティング付きガラス物品及びイージークリーンコーティング付きガラス物品の製造方法 |
JP2024127336A (ja) * | 2023-03-09 | 2024-09-20 | 日本板硝子株式会社 | イージークリーンコーティング付きガラス物品 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04300644A (ja) * | 1991-03-28 | 1992-10-23 | Taki Chem Co Ltd | 酸化第二セリウムゾル |
JPH0837942A (ja) * | 1994-08-03 | 1996-02-13 | Nippon Carbide Ind Co Inc | 耐久性に優れた農業用被覆材 |
JPH10147681A (ja) * | 1996-11-15 | 1998-06-02 | Nippon Carbide Ind Co Inc | 耐久性に優れたフッ素樹脂フィルム |
JPH10292056A (ja) * | 1997-04-18 | 1998-11-04 | Asahi Glass Co Ltd | フッ素樹脂フィルム |
JP2000287559A (ja) * | 1999-04-08 | 2000-10-17 | Asahi Glass Green Tekku Kk | 防曇持続性と耐久性に優れた農業用被覆資材 |
JP2007301976A (ja) * | 2006-04-12 | 2007-11-22 | Asahi Glass Co Ltd | 膜構造物用フィルム |
JP2008231304A (ja) | 2007-03-22 | 2008-10-02 | Teijin Chem Ltd | コーティング用アクリル樹脂組成物およびこれを用いたプラスチック成形体 |
JP2014040017A (ja) | 2012-08-21 | 2014-03-06 | Mitsubishi Rayon Co Ltd | 樹脂フィルム、樹脂積層体及びその製造方法 |
JP2014043101A (ja) | 2012-08-03 | 2014-03-13 | Mazda Motor Corp | 透明積層体およびその製造方法 |
JP2015156377A (ja) * | 2007-02-05 | 2015-08-27 | エルジー・ケム・リミテッド | 多孔性活性層がコーティングされた有機/無機複合分離膜及びこれを備えた電気化学素子 |
JP2016068423A (ja) | 2014-09-30 | 2016-05-09 | 繁樹 飯田 | 窓外面用耐候性遮熱フィルム |
WO2016122223A1 (ko) * | 2015-01-28 | 2016-08-04 | 한국화학연구원 | 스퍼터링용 불소계고분자 복합 타겟 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3518110A (en) * | 1964-07-23 | 1970-06-30 | Gillette Co | Razor blade and method of making same |
GB1126012A (en) * | 1967-04-11 | 1968-09-05 | Du Pont | Process of applying a fluoropolymeric coating to a polyimide film |
JP2656804B2 (ja) | 1988-07-20 | 1997-09-24 | 電気化学工業株式会社 | フツ素樹脂系多層フイルム |
JPH06306591A (ja) | 1993-04-28 | 1994-11-01 | Sekisui Chem Co Ltd | 撥水性ハードコート皮膜の製造方法 |
JPH07102207A (ja) | 1993-10-07 | 1995-04-18 | Nissan Motor Co Ltd | 撥油撥水性コーティング液 |
JPH07166324A (ja) | 1993-12-13 | 1995-06-27 | Sekisui Chem Co Ltd | 撥水性ハードコート被膜の製造方法 |
JP3785731B2 (ja) * | 1997-04-11 | 2006-06-14 | 旭硝子株式会社 | フッ素樹脂フィルム |
DE60221780T2 (de) | 2001-12-11 | 2008-06-05 | Asahi Glass Co., Ltd. | Wärmestrahlen blockierender Fluorharzfilm |
JP4224290B2 (ja) * | 2002-11-28 | 2009-02-12 | 三菱樹脂株式会社 | 剥離性フィルム |
WO2006086081A1 (en) * | 2004-12-30 | 2006-08-17 | 3M Innovative Properties Company | Fluoropolymer nanoparticle coating composition |
JP3996632B2 (ja) * | 2007-01-09 | 2007-10-24 | 旭硝子株式会社 | フッ素樹脂フィルム |
EP2135737B1 (en) * | 2007-04-06 | 2017-01-25 | Asahi Glass Company, Limited | Wavelength conversion film, film for agricultural use, structure, and composition for forming coating film |
FR2927005B1 (fr) * | 2008-02-05 | 2011-12-23 | Commissariat Energie Atomique | Materiau hybride organique-inorganique, couche mince optique de ce materiau, materiau optique les comprenant, et leur procede de fabrication |
JP5541285B2 (ja) * | 2009-07-29 | 2014-07-09 | 旭硝子株式会社 | フッ素樹脂フィルムおよびその製造方法 |
JPWO2012090674A1 (ja) * | 2010-12-27 | 2014-06-05 | 旭硝子株式会社 | 太陽電池用表面材、太陽電池用被覆材及び太陽電池モジュール |
KR102001119B1 (ko) * | 2012-12-28 | 2019-07-17 | 도레이첨단소재 주식회사 | 액정 디스플레이 반사판용 적층형 백색 폴리에스테르 필름 |
WO2016199867A1 (ja) * | 2015-06-12 | 2016-12-15 | 旭硝子株式会社 | フィルムまたはシートおよびスクリーン |
EP3352895B8 (en) * | 2015-09-23 | 2020-11-04 | Rhodia Operations | Compostion comprising hydrophobically-modified cerium oxide particles |
CN107353545A (zh) * | 2016-05-09 | 2017-11-17 | 日本泰克斯株式会社 | 氟树脂‑金属氧化物混合分散液及其制备方法 |
CN105977515B (zh) * | 2016-05-19 | 2018-10-02 | 南京理工大学 | 一种磁控溅射制备CeO2/PTFE/Nafion复合膜的方法 |
-
2019
- 2019-01-15 TW TW108101454A patent/TWI791739B/zh active
- 2019-01-16 US US16/962,095 patent/US11655347B2/en active Active
- 2019-01-16 EP EP19740979.0A patent/EP3741797A4/en active Pending
- 2019-01-16 WO PCT/JP2019/001129 patent/WO2019142830A1/ja unknown
- 2019-01-16 CN CN201980006696.XA patent/CN111511814B/zh active Active
- 2019-01-16 KR KR1020207020611A patent/KR102667938B1/ko active IP Right Grant
- 2019-01-17 JP JP2019005620A patent/JP7324442B2/ja active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04300644A (ja) * | 1991-03-28 | 1992-10-23 | Taki Chem Co Ltd | 酸化第二セリウムゾル |
JPH0837942A (ja) * | 1994-08-03 | 1996-02-13 | Nippon Carbide Ind Co Inc | 耐久性に優れた農業用被覆材 |
JPH10147681A (ja) * | 1996-11-15 | 1998-06-02 | Nippon Carbide Ind Co Inc | 耐久性に優れたフッ素樹脂フィルム |
JPH10292056A (ja) * | 1997-04-18 | 1998-11-04 | Asahi Glass Co Ltd | フッ素樹脂フィルム |
JP2000287559A (ja) * | 1999-04-08 | 2000-10-17 | Asahi Glass Green Tekku Kk | 防曇持続性と耐久性に優れた農業用被覆資材 |
JP2007301976A (ja) * | 2006-04-12 | 2007-11-22 | Asahi Glass Co Ltd | 膜構造物用フィルム |
JP2015156377A (ja) * | 2007-02-05 | 2015-08-27 | エルジー・ケム・リミテッド | 多孔性活性層がコーティングされた有機/無機複合分離膜及びこれを備えた電気化学素子 |
JP2008231304A (ja) | 2007-03-22 | 2008-10-02 | Teijin Chem Ltd | コーティング用アクリル樹脂組成物およびこれを用いたプラスチック成形体 |
JP2014043101A (ja) | 2012-08-03 | 2014-03-13 | Mazda Motor Corp | 透明積層体およびその製造方法 |
JP2014040017A (ja) | 2012-08-21 | 2014-03-06 | Mitsubishi Rayon Co Ltd | 樹脂フィルム、樹脂積層体及びその製造方法 |
JP2016068423A (ja) | 2014-09-30 | 2016-05-09 | 繁樹 飯田 | 窓外面用耐候性遮熱フィルム |
WO2016122223A1 (ko) * | 2015-01-28 | 2016-08-04 | 한국화학연구원 | 스퍼터링용 불소계고분자 복합 타겟 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3741797A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4212491A4 (en) * | 2020-07-14 | 2024-07-24 | Nippon Sheet Glass Co Ltd | GLASS ARTICLE PROVIDED WITH A WATER-REPELLENT FILM AND METHOD FOR MANUFACTURING IT |
WO2022255179A1 (ja) * | 2021-06-04 | 2022-12-08 | リケンテクノス株式会社 | 複合膜の製造方法、及び有機無機ハイブリッド膜の製造方法 |
US20240240305A1 (en) * | 2021-06-04 | 2024-07-18 | Riken Technos Corporation | Composite film manufacturing method and organic/inorganic hybrid film manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
KR102667938B1 (ko) | 2024-05-21 |
TWI791739B (zh) | 2023-02-11 |
JP2019123872A (ja) | 2019-07-25 |
CN111511814B (zh) | 2023-06-27 |
TW201932515A (zh) | 2019-08-16 |
EP3741797A4 (en) | 2021-09-22 |
KR20200110336A (ko) | 2020-09-23 |
JP7324442B2 (ja) | 2023-08-10 |
US20200339772A1 (en) | 2020-10-29 |
EP3741797A1 (en) | 2020-11-25 |
US11655347B2 (en) | 2023-05-23 |
CN111511814A (zh) | 2020-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019142830A1 (ja) | 有機無機ハイブリッド膜 | |
KR101143281B1 (ko) | 투명 도전성 적층체 및 투명 터치 패널 | |
JPWO2005100014A1 (ja) | 透明ガスバリア性積層フィルム | |
JP5090197B2 (ja) | 積層体の製造方法、バリア性フィルム基板、デバイスおよび光学部材 | |
JP2012073542A (ja) | 反射防止膜及びその製造方法、光学部材、並びにプラスチックレンズ | |
JPWO2007111076A1 (ja) | 透明バリア性シートおよび透明バリア性シートの製造方法 | |
JP2003340971A (ja) | ガスバリア性プラスチックフィルム | |
JP2010049050A (ja) | 透明樹脂積層体及びその製造方法 | |
JP4056342B2 (ja) | カールが低減した積層フィルム | |
EP3872226B1 (en) | Barrier film | |
US20200369908A1 (en) | Gas barrier film and method for producing same | |
WO2022255179A1 (ja) | 複合膜の製造方法、及び有機無機ハイブリッド膜の製造方法 | |
JP4316868B2 (ja) | 透明導電積層体 | |
JP4167023B2 (ja) | タッチパネル用透明導電積層体 | |
JP3840080B2 (ja) | ガスバリアフィルム | |
JP4153185B2 (ja) | 高分子樹脂フィルム、及びこれを用いたガスバリアフィルム | |
WO2022181371A1 (ja) | 多層膜付透明基体及び画像表示装置 | |
EP3872225A1 (en) | Barrier film | |
JP2024132893A (ja) | 多層薄膜、及び積層体 | |
TW202330249A (zh) | 顯示裝置用積層體及顯示裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19740979 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019740979 Country of ref document: EP Effective date: 20200818 |