WO2016122223A1 - 스퍼터링용 불소계고분자 복합 타겟 - Google Patents

스퍼터링용 불소계고분자 복합 타겟 Download PDF

Info

Publication number
WO2016122223A1
WO2016122223A1 PCT/KR2016/000927 KR2016000927W WO2016122223A1 WO 2016122223 A1 WO2016122223 A1 WO 2016122223A1 KR 2016000927 W KR2016000927 W KR 2016000927W WO 2016122223 A1 WO2016122223 A1 WO 2016122223A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
based polymer
polymer composite
composite target
sputtering
Prior art date
Application number
PCT/KR2016/000927
Other languages
English (en)
French (fr)
Inventor
이상진
이재흥
최우진
김철환
김성현
조성근
함동석
김광제
박동순
박재성
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150099731A external-priority patent/KR20160092896A/ko
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to CN201680007687.9A priority Critical patent/CN107208254B/zh
Priority to US15/547,015 priority patent/US10861685B2/en
Priority to JP2017539574A priority patent/JP6877347B2/ja
Publication of WO2016122223A1 publication Critical patent/WO2016122223A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Definitions

  • the present invention relates to a fluorine-based polymer composite target for sputtering, and in more detail, has a complex functionality and can stably form a plasma by improving the bonding force with the electrode, and in the RF sputtering process that can stably form the plasma by improving the bonding force with the electrode.
  • the present invention relates to a fluorine-based polymer composite target capable of rapidly depositing even at low deposition energy of MF or DC.
  • flat panel display devices such as liquid crystal display devices, plasma display devices, and organic light emitting display devices are commercially available.
  • demand for flat panel display panels and touch screens is increasing with the launch of various digital devices such as smartphones, digital TVs, tablet PCs, laptops, PMPs, and navigation devices.
  • the flat panel display panel examples include LCD, PDP, and OLED. They are widely used as display devices of various digital devices because of their light weight, thinness, low power drive, full-color and high resolution.
  • the touch screen is an input device installed on a display surface of various flat panel display devices and used to allow a user to select desired information while viewing the display device.
  • Such a flat panel display panel or a touch screen is exposed to the outside and is easily contaminated by contaminants containing moisture or moisture, and has a problem that it is not easy to wipe off contaminants when it is left standing for a long time with contaminants. Moreover, the display panel or touch screen needs to be protected from moisture because moisture may adversely affect the function of the product.
  • a method of forming a hydrophobic film by forming a protective film containing fluorine on the surface of these display devices is mainly used.
  • a method of forming a thin film of the compound on a substrate by heating a solution containing an organosilicon compound containing a fluorine-substituted alkyl group as it is (Patent Document 001, Japanese Patent Application Laid-Open) 2009-175500) and a method of applying a PTFE (polytetrafluoroethylene) powder dispersion (dispersion) on a heat resistant substrate and then heating it to a melting point or more to bind the powder to form a thin film (Patent Document 002) And JP-A-1993-032810.
  • Patent Document 003 Japanese Patent Application Laid-Open No. 199-215905
  • Patent Document 003 Japanese Patent Application Laid-Open No. 199-215905
  • Patent Document 001 has a problem that when the raw material is heated for a predetermined time or more, the durability of the thin film is reduced, so that the thickness of the film that can be produced is limited or a thin film having high durability cannot be stably produced.
  • the invention disclosed in Patent Document 002 is limited due to the high melting point of PTFE and can be a cause of high cost.
  • the invention disclosed in Patent Document 003 is stable because the raw material used as the deposition source before being introduced into the deposition apparatus becomes unstable. There is a problem that can not produce a thin film.
  • another method for implementing a hydrophobic surface is a method using a fluorine-based surfactant.
  • a fluorine-based surfactant may be introduced to adjust the fluorine carbide portion well on the surface, but there is a problem causing durability.
  • durability is improved, but it is difficult to implement hydrophobicity, and it is not preferable because it may cause appearance problems on the surface due to phase separation from the coating matrix.
  • sputtering which is a method of coating a fluorine-based polymer by a dry process, and a strong plasma is formed on the surface of the fluorine-based polymer, and the generated plasma gives strong energy to the surface of the fluorine-based polymer, and molecular-level fluorine-based polymer is separated from the surface and deposited on the opposite side. It is a process that is deposited and coated on the surface of the ash.
  • the high frequency power method must use RF (Radio Frequency Suppertering Power) and smoothly plasma with low energy such as mid-range frequency sputtering power (MF) or direct current sputtering power (DC). It cannot be deposited by generating.
  • RF Radio Frequency Suppertering Power
  • high frequency power supply alternately applies positive and negative voltages to high frequency of several tens of MHz (generally 13.56MHz) using RF, and sputtering occurs when negative voltage is applied.
  • MHz generally 13.56MHz
  • sputtering occurs when negative voltage is applied.
  • it has the effect of preventing the adhesion of cations on the target surface, so that it is possible to sputter the target of the insulator without generating an arc.
  • application of a negative voltage is not easy, and there is still a problem in that the deposition rate of the thin film is decreased.
  • MF and DC have a relatively low frequency of tens of KHz or less than RF having a frequency of several tens of MHz, so no separate impedance matching is required, the device is simple, and sputtering is continuous. It has the advantage of being capable of production, and is a highly industrial method.
  • the inventors of the present invention intend to coat fluorine-based polymers by using a dry process, and arc generation on the surface of fluorine-based polymers by using a conventional RF power source, target damage due to heat, and arcs between fluorine-based polymers and metal electrodes applying voltage.
  • the present invention has been completed by developing a new technology capable of excellent deposition efficiency even at low energy such as DC or MF sputtering as well as solving the problem of low deposition rate due to the generation of plasma having low efficiency compared to the applied voltage.
  • the inventors of the present invention are the super water-repellent fluorine-based polymer, the arc of the surface of the fluorine-based polymer by using a conventional RF power source, the target damage caused by heat, the fluorine-based polymer and the arc between the metal electrode applying voltage and the like between the electrode and the target
  • a new fluorine-based polymer composite target capable of depositing with excellent deposition efficiency even at low energy, such as DC or MF sputtering, as well as the problem of incomplete deposition due to desorption and low deposition rate due to low efficiency plasma generation compared to applied voltage.
  • the present invention provides a novel sputtering fluoropolymer composite target capable of sputtering superhydrophobic and highly insulating fluoropolymer thin films even at low energy, such as MF or DC.
  • the present invention in the fluorine-based polymer thin film deposition process having a disadvantage that can not easily apply the electrical energy as a representative insulator, only to improve the problem in the RF sputtering process, which had to be adopted in the past had the above various problems. Rather, it provides a new fluorine-based polymer composite target that can be stably sputtered even in MF and DC power sources, which are lower than RF.
  • the present invention is the damage of the fluorine-based polymer target, fluorine-based polymer due to deterioration of the fluorine-based polymer by using the radio frequency (Radio Frequency) in the sputtering to form a thin film of fluorine-based polymer that requires high energy as a conventional non-conductive It is to provide a new fluorine-based polymer composite target for sputtering that improves the problem that the deposition rate is lowered due to the generation of an arc or the like between the metal electrode to which the voltage is applied and the generation of the plasma having a lower efficiency than the applied voltage.
  • Radio Frequency Radio Frequency
  • the present invention improves the poor bonding strength, such as separation of the bonding surface due to poor adhesion to the electrode fluorine-based polymer target placed on the electrode in the sputtering chamber, it is possible to perform a sputtering process stably, stable plasma formation
  • the present invention provides a new fluorine-based polymer composite target for sputtering, which exhibits insulation breakdown and high deposition rate of fluorine-based polymer. This problem is particularly significant in the RF sputtering method.
  • Still another object of the present invention is to provide a sputtering deposition system for using the fluorine-based polymer composite target according to the present invention and a molded product deposited and manufactured by the fluorine-based polymer composite target.
  • the present invention is to provide a sputtering method using a fluorine-based polymer composite target capable of stably sputtering deposition of the fluorine-based polymer to the adherend. Specifically, fixing the fluorine-based polymer composite target of various embodiments according to the present invention in a chamber and generating and depositing a plasma by any one method selected from RF, MF and DC to the fluorine-based polymer composite target It is to provide a sputtering method.
  • the present invention solves the above problems in the RF deposition system by producing a fluorine-based polymer composite target containing at least one component selected from a conductive material (functionalizing agent) and a metal compound in the fluorine-based polymer,
  • a fluorine-based polymer composite target containing at least one component selected from a conductive material (functionalizing agent) and a metal compound in the fluorine-based polymer
  • a conductive material or a mixed component of a conductive material and a metal compound in the fluorine-based polymer it is possible to deposit fluorine-based polymer, which has been substantially impossible in the DC and MF deposition systems, and to deposit at a high deposition efficiency at a remarkable speed.
  • the present invention has been completed.
  • the present invention is a functionalizing agent comprising any one or two or more selected from (1) conductive particles, conductive polymers and metal components in the fluorine-based polymer, (2) metal organic matter, metal oxide, metal carbon body, metal One or more components selected from one or more metallic chemicals selected from hydroxides, metal carbonates, metal bicarbonates, metal nitrides and metal fluorides, or (3) mixed components of one or more of (1) and (2)
  • the present invention has been completed by providing a fluorine-based polymer composite target for deposition comprising a.
  • the sputtering fluorine-based polymer composite target according to the present invention is smoothly bonded to the electrode of the deposition chamber, and is not deformed by generating high plasma by applying high energy, such as RF, and stably. It is possible to deposit fluorine-based polymer at high deposition rate on the adherend, and at the same time, it is possible to deposit on the adherend at a very high deposition rate even in MF or DC power supply, which is lower than RF.
  • the fluorine-based polymer composite target for sputtering is a high frequency radio frequency (Radio Frequency, RF) when mixing a functionalizing agent of one or two or more conductive materials selected from conductive particles, conductive polymers and metal components, etc.
  • RF Radio Frequency
  • the damage of the fluorine-based polymer target due to the deterioration of the fluorine-based polymer due to the use does not occur even in the long-term use, and minimizes the occurrence of arcs between the fluorine-based polymer and the metal electrode to which voltage is applied, and high efficiency compared to the applied voltage.
  • the plasma generation of the very high deposition rate, etc. will have an amazing effect.
  • the fluorine-based polymer composite target imparts conductivity in the target, thereby stably depositing the fluorine-based polymer not only in RF but also in MF and DC, which are lower voltages, as well as the adherend at an incredibly impossible speed.
  • the present invention has been completed by knowing that sputtering deposition is possible and insulation breakage can be prevented.
  • an aspect of the present invention provides a fluorine-based polymer composite target for sputtering containing a fluorine-based polymer and a functionalizing agent that imparts conductivity.
  • the functionalizing agent which is the conductive material in the present invention
  • significant effects can be achieved in all of RF, DC, and MF, and thus the embodiment of the present invention does not limit the power applied.
  • the present invention relates to (1) functionalizing agent and / or (2) metal organic matter, metal oxide, metal carbon body, metal hydroxide, metal carbonate, metal bicarbonate, It may be prepared by including one or two or more metal compounds selected from metal nitrides and metal fluorides. That is, in the RF application method, even if only a metal compound is included, the adhesion to the electrode is improved, and the problem occurring in the target manufactured by the fluorine-based polymer alone can be solved, and thus belongs to the aspect of the present invention. However, when only the metal compound is included, the effect is inferior to the case of including the conductive functionalizing agent. Therefore, in the RF application method, the conductive functionalizing agent or the mixture of the conductive functionalizing agent and the metal compound is given priority in the present invention.
  • the deposition efficiency when deposition is performed by applying low deposition energy of DC and MF, when only the metal compound alone is included, the deposition efficiency is not or is significantly lowered, so that the deposition efficiency is substantially lowered.
  • the fluorine-based polymer composite target manufactured by mixing the metal compound alone is deposited by applying RF, the surface on which the metal compound is mixed corresponds to the electrode surface (the electrode surface).
  • the fluorine-based polymer composite target containing the conductive functionalizing agent or the fluorine-based polymer composite target prepared by containing a mixed component of the conductive functionalizing agent and a metal compound is much lower than the fluorine-based polymer composed of only conventional fluorine-based polymers. It is within the scope of the present invention because it exhibits superior performance than polymer targets.
  • the fluorine-based polymer composite target of the present invention when RF is applied and deposited, includes all of the embodiments of the present invention including all of the conductive functionalizing agent, the metal compound, or a mixed component thereof, but the relative composition such as DC or MF.
  • the fluorine-based polymer composite target may include a conductive functionalizer or a mixed component of the conductive functionalizer and a metal compound.
  • the fluorine-based polymer composite target according to an aspect of the present invention significantly improves the surface adhesion of the fluorine-based polymer to the electrode surface inside the sputtering chamber for MF or DC sputtering as well as RF, thereby generating and depositing plasma by applying energy.
  • the adhesive surface of the electrode surface and the fluorine-based polymer composite target is detached and serves to fix firmly so that deformation of the fluorine-based polymer composite target does not occur.
  • the fluorine-based polymer component to be deposited may be evenly and uniformly deposited on the adherend.
  • the fluorine-based polymer composite target according to the present invention can be sputtered with high deposition rate on the adherend stably even at low voltage MF or DC as well as RF, and the fluorine-based polymer composite target according to the present invention, it can effectively prevent dielectric breakdown have.
  • the fluorine-based polymer composite target according to an aspect of the present invention may have a stacking gradient or a continuous content gradient formed by stacking two or more layers including different or identical functionalizing agents and / or metal compounds.
  • the gradient is to increase the content of the functionalizing agent and / or the metal compound in the thickness direction, the content of the functionalizing agent may be reduced in the direction of the adherend or vice versa, but is not limited thereto.
  • the present invention provides a bonding layer including a conductive functionalizing agent and / or a metal compound formed on one surface of an electrode surface of a deposition chamber and a fluorine-based polymer and functionalizing agent and / or metal compound formed on the other surface of the bonding layer.
  • a bonding layer including a conductive functionalizing agent and / or a metal compound formed on one surface of an electrode surface of a deposition chamber and a fluorine-based polymer and functionalizing agent and / or metal compound formed on the other surface of the bonding layer.
  • It may be a fluorine-based polymer composite target including a functional layer comprising a.
  • the present invention may provide a fluorine-based polymer composite target composed of a functional agent and / or a metal compound and a fluorine-based polymer including conductive particles, a conductive polymer, a metal component, or a mixed component thereof in contact with an electrode surface.
  • the functionalizing agent is not limited as long as it has conductivity, but means, for example, conductive particles, conductive polymers and metal components.
  • a non-limiting example of the conductive particles selected from carbon nanotubes, carbon nanofibers, carbon black, graphene (graphene), graphite and carbon fibers There may be more than one.
  • the non-limiting example of the conductive polymer in the present invention polyaniline (polyaniline), polyacetylene (polyacetylene), polythiophene (polythiophene), polypyrrole (polypyrrole), polyfluorene (polyfluorene), polypyrene (polypyrene) , Polyazulene, polynaphthalene, polyphenylene, polyphenylene vinylene, polycarbazole, polyindole, polyazephine, It may be one or more selected from polyethylene, polyethylene vinylene, polyphenylene sulfide, polyfuran, polyselenophene, polytellurophene, and the like. .
  • the metal component is a non-limiting example, Cu, Al, Ag, Au, W, Mg, Ni, Mo, V, Nb, Ti, Pt At least one metal selected from Cr, Ta, and the like.
  • the metal compound is at least one metal selected from metal organic matter, metal oxide, metal carbon body, metal hydroxide, metal carbonate, metal bicarbonate, metal nitride and metal fluoride
  • the compound may further include, but the metal compound is not limited, for example, SiO 2 , Al 2 O 3 , ITO, IGZO, ZnO, In 2 O 3 , SnO 2 , TiO 2 , AZO, ATO, SrTiO 3 , CeO 2 , MgO, NiO, CaO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , MgF 2 , CuF 2 , Si 3
  • the fluorinated polymer of the present invention is polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidenedifluoride, fluorinated ethylene propylene copolymer, ethylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoro
  • the fluorine-based polymer composite target according to an embodiment of the present invention may contain 0.01 to 2000 parts by weight of a functionalizing agent and / or a metal compound based on 100 parts by weight of the fluorine-based polymer.
  • the metal compound is mixed with the functionalizing agent, the composition ratio is not limited as long as it exhibits the conductivity of the present invention, and the ratio may be represented by a weight ratio of 0.1 to 99.9% to 99.9% to 0.1%, but is not limited thereto.
  • the fluorine-based polymer composite target may be manufactured by continuously increasing or decreasing the content of the functionalizing agent and / or the metal compound from one surface to the other surface to give a content gradient of the functionalizing agent.
  • the gradient may mean a form in which a gradient is given by continuously changing the content of the functionalizing agent in the thickness direction between the plane and the plane or changing the content into a plurality of layers of two or more layers.
  • the fluorine-based polymer composite target which can maximize the adhesion between the electrode and the surface and minimizes the content of the functionalizing agent and / or the metal compound deposited on the adherend is very good. .
  • the first layer to be bonded to the metal electrode surface to increase the content of the functionalizing agent and / or the metal compound, and vice versa
  • the second layer having a non-functionalizing agent and / or the content of the metal compound may be prepared by lowering the content of the components than the content of the first layer, it is possible to appropriately modify the content of the components according to the purpose Of course.
  • the fluorine-based polymer composite target may be manufactured to have a gradient of the content of the functionalizing agent and / or the metal compound in the thickness direction, and particularly the gradient is a functionalizing agent and / or toward the electrode surface. Or a high content of the metal compound and adhered on the electrode surface in order to reduce the content of the functionalizing agent and / or the metal compound in the direction of the adherend to improve adhesion with the electrode surface, resulting in high sputtering efficiency and firm adhesion. Since the fixed fluorine-based polymer composite target is not deformed, the uniformity of the thickness deposited on the adherend during sputtering may be improved. Of course, as long as the gradient includes the functionalizing agent and / or the metal compound, the adhesive may be included in the opposite direction.
  • the sputtering apparatus of the present invention is not particularly limited, but for example, a sputtering chamber for sputtering, a first electrode applying portion formed inside the chamber, and a sputtering according to the present invention located on an upper surface of the first electrode applying portion.
  • a sputtering deposition system including a fluorine-based polymer composite target, a second electrode applying unit, an adherend located between the fluorine-based polymer composite target and the second electrode applying unit or at an appropriate position.
  • one aspect of the present invention provides a molded article produced using the fluorine-based polymer composite target described above.
  • the molded body may be a high quality transparent fluorocarbon thin film having a high water contact angle.
  • an aspect of the present invention provides a sputtering method capable of stably depositing a fluorine-based polymer on the adherend using the above-described fluorine-based polymer composite target.
  • the sputtering method includes the step of fixing the fluorine-based polymer composite target to the deposition chamber and generating and depositing a plasma by any one of an application method selected from RF, MF, and DC to the fluorine-based polymer composite target. to provide.
  • the fluorine-based polymer composite target for sputtering according to the present invention can realize excellent adhesion between the fluorine-based polymer and the electrode by lowering the surface contact angle between the metal electrode applying the voltage, and suppressing the occurrence of warpage caused by strong energy. The occurrence of bonding defects with and electrodes can be reduced.
  • the fluorine-based polymer composite target for sputtering according to the present invention provides conductivity to prevent breakdown of the target that may occur during RF sputtering, and has the advantage that sputtering is possible at high deposition rates in MF and DC as well as RF.
  • the target for thin film sputtering is fixed to a metal electrode to which a voltage is applied.
  • the method of fixing conventional methods such as soldering, brazing, diffusion bonding, mechanical quenching, or epoxy bonding are used, but shear defects are shown at the edge edges of the bonding interface due to the difference in thermal expansion between the target and the metal electrode.
  • the adhesive may have a problem of separation. This problem may generate an arc or the like between the metal electrode and the target, thereby generating a low efficiency plasma compared to the applied voltage, thereby exhibiting a low deposition efficiency.
  • the surface contact angle between the metal electrode and the target is high due to the hydrophobic and insulating properties, and various chemical treatments are required to fix them.
  • the fluorine-based polymer target exhibits a very large insulation property, in order to sputter, high frequency energy of RF (radio-frequency) must be applied, so that the fluorine-based polymer target is not only deformed as it is but also at the junction with the electrode surface. Inevitably, deformation or defects at the junction were inevitably generated, and therefore, the deposition efficiency was not very uniform even on the surface of the adherend.
  • the present applicant has intensified the research on the fluorine-based polymer target for sputtering, and thus, by containing at least one component selected from conductive materials (functionalizing agents) such as conductive particles, conductive polymers, metal components, and metal compounds in the fluorine-based polymer target.
  • conductive materials functionalizing agents
  • the present invention has been found to have excellent deposition efficiency.
  • the present invention provides a fluorine-based polymer composite target for sputtering containing a fluorine-based polymer, a functionalizing agent and / or a metal compound.
  • the present invention is to provide a fluorine-based polymer composite target that is continuously gradient by increasing or decreasing the content of the functionalizing agent and / or metal compound from one surface to the other surface.
  • the gradient may give a gradient by continuously varying the content of the functionalizing agent and / or the metal compound in the thickness direction between the surfaces of the fluorine-based polymer composite target, the functionalizing agent of each layer in multiple layers of two or more layers and / Alternatively, it may be prepared in a form giving a gradient by changing the content of the metal compound, which can be manufactured by adjusting according to various purposes or functions.
  • the thickness of the portion (bonding layer) in contact with the electrode surface is 1 to 80% of the total thickness of the fluorine-based polymer composite target It may be a thickness, preferably may have a thickness of 5 to 20%, but is not limited thereto.
  • the adherend refers to a substrate on which the fluorine-based polymer is deposited by the fluorine-based polymer composite target.
  • the layer in contact with the electrode surface includes a functionalizing agent and / or a metal compound, but is a part (functional layer) deposited on the opposite side.
  • the second layer may have only fluorine-based polymers containing no functionalizing agent and / or metal compound.
  • the first layer and the second layer may also have the same component and the same amount of functionalizing agent, and it is generally preferable to include a functionalizing agent having conductivity in the first layer in contact with the electrode surface, but is not limited thereto. no.
  • the fluorine-based polymer composite target according to an aspect of the present invention may contain 0.01 to 2000 parts by weight of at least one conductive material selected from the conductive particles, the conductive polymer, and the metal component, based on 100 parts by weight of the fluorine-based polymer, and has excellent bonding strength. It is preferable to contain 0.5 to 1500 parts by weight, more preferably 1 to 1000 parts by weight in terms of having a.
  • One aspect of the present invention provides a fluorine-based polymer composite target comprising a functionalizing agent which is a conductive material selected from conductive particles, conductive polymers, metal components and the like.
  • the second aspect of the present invention is a fluorine-based polymer composite target further comprising at least one metal compound selected from metal organic matter, metal oxide, metal carbon body, metal hydroxide, metal carbonate, metal bicarbonate, metal nitride, metal fluoride, etc. To provide.
  • Three embodiments of the present invention also include a fluorine-based polymer composite target containing only a metal compound when deposited by RF application.
  • the fourth aspect of the present invention includes a fluorine-based polymer composite target which gives a continuous gradient or gives a step gradient to a plurality of layers by varying the content of the functionalizing agent and / or metal compound in the thickness direction of the fluorine-based polymer composite target.
  • the functional agent and / or the metal compound are included in the direction of contact with the electrode surface, and the functionalizing agent and / or is provided on the other side of the fluoropolymer composite target. It also includes having a functional layer which is a fluorine-based polymer layer containing no metal compound.
  • the components of the functionalizing agent and / or the metal compound of each layer in the fluorine-based polymer composite target having the stacked gradient formed of the plurality of layers may be the same or different. Includes all aspects.
  • the fluoropolymer composite target in the MF or DC application method necessarily includes a functionalizing agent that is a conductive material.
  • the fluorine-based polymer composite target of the present invention includes one or two or more functionalizing agents and / or metal compounds selected from conductive particles, conductive polymers, metal components, and the like in the fluorine-based polymer, thereby providing a surface with an electrode to which a voltage is applied. It is possible to have a high surface energy by lowering the contact angle, so even when high energy is applied, the fluorine-based polymer composite target has a surprising effect that deformation does not occur. In addition, even in a power supply system such as MF or DC, it is easily deposited by the role of the functionalizing agent, and brings a surprising increase in deposition efficiency.
  • the fluorine-based polymer composite target according to an aspect of the present invention may not only sputter even in MF or DC power supply by surprisingly providing conductivity to the fluorine-based polymer composite target by containing a functionalizing agent as a conductive material in the fluorine-based polymer having insulation properties. High deposition rates can be achieved by increasing plasma formation efficiency.
  • the fluorine-based polymer according to an aspect of the present invention is not limited to fluorine-containing resins, but preferably polytetrafluoroethylene (PTFE, polytetrafluoroethylene) and polychlorotrifluoro, which are synthetic resins polymerized with fluorine-containing olefins.
  • PTFE polytetrafluoroethylene
  • polychlorotrifluoro which are synthetic resins polymerized with fluorine-containing olefins.
  • PCTFE Polychlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • FEP fluorinated ethylene propylene copolymer
  • ETFE ethylene tetrafluoroethylene copolymer
  • At least one fluorine-based polymer selected from ethylene chlorotrifluoroethylene copolymer (ECTFE, ethylene chlorotrifluoroethylene copolymer), perfluoroalkoxy copolymer (PFA), etc .
  • At least one fluororubber selected from vinyl fluoride homopolymer rubber, vinyl fluoride copolymer rubber, vinylidene fluoride homopolymer rubber, vinylidene fluoride copolymer rubber, and the like; It may be at least one selected from, more preferably polytetrafluoroethylene (PTFE, polytetrafluoroethylene), fluorinated ethylene propylene copolymer (FEP, fluorinated ethylene propylene copolymer), perfluoro
  • the metal component may be Cu, Al, Ag, Si, Au, W, Mg, Ni, Mo, V, Nb, Ti, Pt, Cr, Ta, etc., preferably Cu , Al, Ag, Si, Au, W, Mg or mixed metals thereof, but is not limited thereto.
  • the conductive particles and the conductive polymer are not limited as long as they have a conductive material.
  • the non-limiting examples of the conductive particles include carbon nanotubes, carbon nanofibers, and carbon blacks. black, graphene, graphite, carbon fiber, or mixtures thereof, and may also include other organic conductive particles.
  • the conductivity can be provided while maintaining the fluorine carbide component.
  • non-limiting examples of the conductive polymer include polyaniline, polyacetylene, polythiophene, polypyrrole, polyfluorene, polypyrene, polypyrene, polyazulene ( polyazulene, polynaphthalene, polyphenylene, poly phenylene vinylene, polycarbazole, polyindole, polyazephine, polyethylene , Polyethylene vinylene, polyphenylene sulfide, polyfuran, polyselenophene, polytellurophene, and the like, but may be one or more selected from the above. It is not.
  • specific examples of the metal compound of the present invention is SiO 2 , Al 2 O 3 , ITO, IGZO, ZnO, In 2 O 3 , SnO 2 , TiO 2 , AZO, ATO, SrTiO 3 , CeO 2 , MgO, NiO , CaO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , MgF 2 , CuF 2 , Si 3 N 4 , CuN, may be one or more selected from AlN, but is not limited thereto.
  • the functional layer of the fluorine-based polymer composite target may additionally impart the functionality of the thin film formed by controlling the type and content of the functionalizing agent and / or the metal compound to be mixed.
  • the thin film formed by using the fluorine-based polymer composite target according to an aspect of the present invention is basically excellent in optical properties while maintaining superhydrophobicity and high transparency, and excellent in pollution prevention, antireflection, chemical resistance and lubricity, etc.
  • the physical properties such as conductivity and strength of the thin film prepared according to the type or content of the fluorine-based polymer and functionalizing agent and / or metal compound can be significantly improved.
  • the fluorine-based polymer composite target has the advantage of being able to produce a high quality fluorine carbide-containing thin film at a low cost because it can be sputtered at a lower voltage due to improved conductivity in the target.
  • the fluorine-based polymer composite target according to the present invention is provided with conductivity so that not only RF (radio frequency) but also MF (Midrange Frequency) or DC (direct) current) can be sputtered smoothly and also have a surprisingly high effect on the efficiency.
  • the fluorine-based polymer composite target according to the invention is characterized in that it comprises a functionalizing agent and / or a metal compound necessarily having a conductivity on the surface adhered to the electrode surface inside the sputtering chamber.
  • the conductive functionalizing agent should be included on the opposite side of the electrode to which the fluoropolymer composite target is bonded, and the electrode surface preferably contains the functionalizing agent and / or the metal compound.
  • the fluorine-based polymer composite target having a lamination or gradient not included also does not show a significant deposition effect due to poor adhesion with the electrode, but may be included in the present invention because it has a very good increase effect in terms of deposition rate.
  • the mixing ratio of the first mixture and the second mixture is not only adjustable according to the purpose, but also to form a bonding layer facing the electrode surface in terms of imparting adhesion and conductivity to the metal electrode
  • One mixture may contain 0.1 to 2000 parts by weight of one or more functionalizing agents and / or metal compounds selected from the conductive particles, conductive polymers and metal components based on 100 parts by weight of the fluorine-based polymer, preferably 10 to 1000 parts by weight Part, more preferably 20 to 500 parts by weight is preferably included, but is not limited thereto.
  • the second mixture forming the functional layer which is a layer on the opposite side of the electrode surface, is based on 100 parts by weight of the fluorine-based polymer, and is the same as the component of the bonding layer. Or it may contain 0.1 to 1000 parts by weight of the heterogeneous component, preferably from 0.1 to 300 parts by weight, more preferably from 0.1 to 100 parts by weight in terms of improving the high conductivity and durability of the thin film produced using the same. It is good to be not limited to this.
  • the conductive particles, conductive polymers, metal components and metal compounds if the size is enough to have a suitable compatibility and uniform composition with the fluorine-based polymer powder is not limited, but preferably 10 nm to 1000 ⁇ m, preferably 10 It is preferred to have an average particle size in the range of nm to 100 ⁇ m, but is not limited thereto.
  • the compression molding is not limited, but may be preferably performed at 100 to 500 kgf / cm 2, preferably at 150 to 400 kgf / cm 2 in terms of achieving a uniform and smooth target surface.
  • it is not limited in the intended range of the present invention but may be preferably performed at 250 to 450 °C, compression molding and heat treatment time can be appropriately adjusted according to the shape and size of the mold.
  • Highly conductive fluorine-based polymer composite target according to an aspect of the present invention can be deposited at a high deposition rate not only RF voltage, but also MF or DC voltage, excellent plasma formation efficiency, it is possible to stably deposit sputtered on the adherend, When the thin film is deposited, it is possible to realize a high deposition rate and to prevent insulation breakdown by applying the existing high energy voltage.
  • the adherend according to an aspect of the present invention may be selected from silicon, metal, ceramic, resin, paper, glass, quartz, fiber, plastic, organic polymer, and the like, but is not limited thereto.
  • the shape of the electrode according to the present invention is not limited, even when applied to a metal electrode having a non-uniform surface can form a uniform and smooth thin film.
  • the conventional fluorine-based polymer target has to be sputtered by applying a high energy voltage of high frequency due to the insulating property of the fluorine-based polymer, and thus it is deformed and uniform sputtering is impossible. Problems such as arcing occurred between the weak metal electrodes, which resulted in low film deposition rate, making it difficult to apply to mass production.
  • the present invention can improve the defect of the target by applying a conventional high energy voltage, and can implement the same thin film in the MF or DC power supply.
  • the present invention provides a sputtering method comprising the step of fixing the fluorine-based polymer composite target in the chamber according to the above-described various embodiments and applying RF, DC and MF to the fluorine-based polymer composite target.
  • RF, MF, and DC applied voltages used in the sputtering method were performed at 13.56 MHz, 50 KHz, and 100 V, respectively, but the present invention is not limited thereto.
  • the present invention also provides a molded article produced by the above-described fluorine-based polymer composite target.
  • the molded body may be a high quality transparent fluorocarbon thin film having a high water contact angle, it is possible to manufacture a thin film having a variety of physical properties according to the type and content of the functionalizing agent to be added.
  • the physical properties of the fluoropolymer composite target and the prepared thin film were measured as follows.
  • the water contact angle of the completed thin film was measured using a contact angle measuring instrument (PHOEIX 300 TOUCH, SEO).
  • the transmittance of visible light (550 nm) was measured by irradiating light on the finished thin film using a spectrophotometer (U-4100, Hitachi).
  • the surface sheet resistance of the finished target was measured using a 4-point probe (MCP-T610, Mitsubishi Chemical Analytech).
  • a bonding layer (thickness 1.0 mm) bonded to the electrode surface is a deposition layer formed on the bonding layer.
  • the layer was 5.0 mm thick using 80 wt% PTFE and 20 wt% copper powder, and then compression-molded under 300 kgf / cm 2 conditions by sequentially placing the mold (120 mm wide, 55 mm long and 30 mm thick) on top of the mold. , And then slowly cooled after heat treatment at 370 °C to prepare a fluorine-based polymer composite target (4 inches in diameter, 6 mm thick).
  • the thin film was deposited by RF magnetron sputtering using the prepared fluorine-based polymer composite target.
  • the substrate was prepared by washing and drying a 1 X 2 cm 2 Si wafer substrate with an acetone and alcohol for 5 minutes using an ultrasonic cleaner.
  • the prepared substrate was attached to a substrate holder made of aluminum using a heat resistant tape, and the substrate holder was mounted on a substrate stage in the chamber, the chamber was closed, and a rotary pump was applied to 50 mtorr.
  • the vacuum was evacuated and high vacuum was formed with a cryogenic pump after the low vacuum operation was completed.
  • a distance between the substrate and the target was fixed at 24 cm at room temperature (25 ° C.), and a 100 nm thin film was manufactured using a power (200 W) and a gas (Ar, partial pressure) of 10 mtorr.
  • 20 wt% of powder PTFE (DuPont 7AJ) and 80 wt% of copper powder (average particle diameter 25um) is a deposition layer formed on the bonding layer, which is a bonding layer (thickness of 1.0 mm).
  • the layer was made 5.0 mm thick using 85 wt% PTFE and 15 wt% carbon nanotube, and then sequentially put on top of the mold (120 mm wide, 55 mm long and 30 mm thick) to 300 kgf / cm2 After compression molding under the conditions, and after heat treatment at 370 °C gradually cooled to prepare a fluorine-based polymer composite target (4 inches in diameter, 6 mm thick).
  • a thin film was deposited by DC (Direct Current) magnetron sputtering power supply method.
  • the substrate was prepared by washing and drying a 1 X 2 cm 2 Si wafer substrate with an acetone and alcohol for 5 minutes using an ultrasonic cleaner.
  • the prepared substrate was attached to a substrate holder made of aluminum using a heat resistant tape, and the substrate holder was mounted on a substrate stage in the chamber, the chamber was closed, and a rotary pump was used to reach 50 mtorr.
  • the vacuum was evacuated and high vacuum was formed with a cryogenic pump after the low vacuum operation was completed.
  • the distance between the substrate and the target was fixed at 24 cm at room temperature (25 ° C.), and a 100 nm thin film was manufactured using a power (200 W) and a gas partial pressure (10 mtorr).
  • Example 8 Using the fluorine-based polymer composite target of Example 8, a 100 nm thin film was prepared in the same manner as in Example 8 under the condition of 200 W of power using a MF (Mid-range Frequency) magnetron sputtering power method. Produced.
  • MF Mod-range Frequency
  • a fluorinated polymer composite target (4 inches in diameter, 6 mm thick) was prepared using 85 wt% of powder PTFE (polytetrafluoroethylene, DuPont 7AJ) and 15 wt% of graphite. And 100 nm thin film (thin film) was produced in 200W conditions by the MF power supply method as in Example 9.
  • a fluorinated polymer composite target (4 inches in diameter, 6 mm thick) was prepared using 90 wt% of a powdered Fluorinated Ethylene Propylene Copolymer (3M Dyneon FEP 6338Z) and 10 wt% of carbon nanotubes. And 100 nm thin film (thin film) was produced in 200W conditions by the MF power supply method as in Example 9.
  • a fluoropolymer composite target (4 inches in diameter, 6 mm thick) was manufactured using 80 wt% of powder PTFE (polytetrafluoroethylene, DuPont 7AJ), 10 wt% of carbon nanotube, and 10 wt% of silica oxide (SiO 2 ). It was. And 100 nm thin film (thin film) was produced in 200W conditions by the MF power supply method as in Example 9.
  • Example 9 a 100 nm thin film was manufactured under the MF power supply at 300 W.
  • Example 8 instead of the functional layer composition of Example 8 PTFE 65 wt%, carbon nanotubes (Carbon Nanotube) 15 wt%, Silver (Ag) 20 wt% by changing, fluorine-based polymer composite target (4 inches in diameter, 6 mm thick) was prepared. And 100 nm thin film (thin film) was produced in 200W conditions by the MF power supply method as in Example 9.
  • a thin film was deposited by using a fluorine-based polymer target prepared by the above method by RF (magnetron sputtering). In this case, a 100 nm thin film was manufactured in the same manner as described in Example 1.
  • the contact angle, visible light transmittance, target adhesion, and surface sheet resistance of the target were measured, and the results are shown in Table 1, and the RF (Radio Frequency) magnetron sputtering method was performed.
  • the thin film deposition rate at 200 and 300 W was confirmed, and the results are shown in Table 2.
  • Example Comparative example One 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
  • One Power method RF DC MF RF Contact angle (°) 105 112 100 110 111 113 115 105 109 110 115 113 116 115 114 112 105 Transmittance (%) 92.13 91.11 91.47 91.35 92.27 92.14 91.00 91.90 92.40 90.70 91.70 92.50 92.16 92.57 92.34 91.98 91.20
  • Non-adhesive Surface Resistance of Target ( ⁇ / ⁇ ) 100 ⁇ 250 ⁇ ⁇ ⁇ 10 0.3 0.3 60 150 5 7 100
  • the fluorine-based polymer composite target according to the present invention not only has a high surface contact angle and excellent visible light transmittance, but also contains conductive particles and a functionalizing agent having conductivity, thereby providing excellent bonding and sheet resistance to the metal electrode.
  • Example 1 Example 7 Example 8 Example 9 Comparative Example 1 RF RF DC MF RF Power 200 W 190 nm / hr 250 nm / hr 630 nm / hr 310 nm / hr 95 nm / hr Power 300 W 570 nm / hr 630 nm / hr 1980 nm / hr 740nm / hr 220 nm / hr
  • the fluorine-based polymer composite target according to the present invention solves the problems of conventional RF sputtering and at the same time, it is possible to deposit with a lower energy band of MF or DC magnetron sputtering, and shows that the deposition rate is much higher than that of the RF power system.
  • MF or DC magnetron sputtering it is possible to deposit with a lower energy band of MF or DC magnetron sputtering, and shows that the deposition rate is much higher than that of the RF power system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명에 따른 스퍼터링용 불소계고분자 복합 타겟은 전압을 인가하는 금속 전극과의 접합력이 우수하고, 휨 발생을 억제할 수 있으며, 전도성을 부여함으로써 산업적으로 널리 사용되는 DC 및 MF 전원 방식으로도 안정적으로 플라즈마의 형성이 가능하여 불소계고분자를 효과적으로 피착체에 스퍼터링 증착을 가능케 한다.

Description

스퍼터링용 불소계고분자 복합 타겟
본 발명은 스퍼터링용 불소계고분자 복합 타겟에 관한 것으로, 보다 상세하게 복합기능성을 가지며 전극과 접합력을 개선하여 안정적으로 플라즈마 형성이 가능하고, 전극과 접합력을 개선하여 안정적으로 플라즈마 형성이 가능한 RF 스퍼터링 공정에서 사용할 수 있을 뿐만 아니라, MF 또는 DC의 낮은 증착 에너지에서도 신속히 증착 가능한 불소계고분자 복합 타겟에 관한 것이다.
최근, 디스플레이 장치는 멀티미디어의 발달과 함께 그 중요성이 증대되고 있다. 이에 부응하여 액정 디스플레이 장치, 플라즈마 디스플레이 장치 및 유기 발광 디스플레이 장치 등의 평판 디스플레이 장치가 상용화되고 있다. 또한, 스마트폰, 디지털 TV, 테블릿 PC, 노트북, PMP, 네비게이션 등 다양한 디지털 기기가 출시되면서 평판 디스플레이 패널이나 터치 스크린의 수요가 증가하고 있다.
상기 평판 디스플레이 패널로는 LCD, PDP, OLED 등을 들 수 있다. 이들은 경량, 박형, 저전력구동, 풀-컬러 및 고해상도 구현 등의 특징으로 인해 각종 디지털 기기의 디스플레이 장치로 널리 사용되고 있다. 상기 터치 스크린은 각종 평판 표시 장치의 표시 면에 설치되어 사용자가 표시 장치를 보면서 원하는 정보를 선택하도록 하는데 이용되는 입력장치로 그 수요가 증가하고 있다.
이러한 평판 디스플레이 패널이나 터치 스크린은 전면이 외부로 노출되어 있어서 수분이나 수분을 함유한 오염물에 의해 오염되기 쉬우며, 오염물이 묻은 상태로 장시간 방치되어 고착되면 오염물을 닦아내기가 쉽지 않다는 문제점을 가진다. 더욱이, 디스플레이 패널이나 터치 스크린은 수분이 묻으면 제품의 기능에 악영향을 줄 수 있으므로 수분으로부터 보호될 필요가 있다.
이러한 문제점을 해결하기 위해, 이들 디스플레이 장치 표면에 불소를 함유하는 보호막을 형성하여 소수성화 시키는 방법이 주로 이용되고 있다. 소수성 표면의 구현을 위한 불소계 화합물 코팅의 구체적인 일예로는 불소 치환 알킬기 함유 유기 규소 화합물 함유 용액을 그대로 용기에 넣어 가열하여 기재 상에 그 화합물의 박막을 형성하는 방법(특허문헌 001, 일본공개특허공보2009-175500호), PTFE(polytetrafluoroethylene) 분체 분산액(디스퍼젼)을 내열성 기판 상에 도포 후, 융점 이상으로 가열하여 분체(粉體)를 결착(結着)시켜 박막을 형성하는 방법(특허문헌 002, 일본공개특허공보1993-032810호)이 있다. 또한 불소 함유의 실라잔계 유기 규소 화합물을 진공하에서 가열해 광학부재 위에 증착 해 성막하는 방법(특허문헌 003, 일본공개특허공보1993-215905호) 등이 개시되어 있다.
그러나, 특허문헌 001에 개시된 발명은 원료를 소정 시간 이상 가열했을 경우, 박막의 내구성이 저하되기 때문에, 생산할 수 있는 막의 두께가 제한되거나, 안정적으로 내구성이 높은 박막을 생산할 수 없다는 문제점을 가진다. 특허문헌 002 에 개시된 발명은 PTFE의 높은 용융점 때문에 사용할 수 있는 장치가 한정되고 고비용의 원인이 되며, 특허문헌 003 에 개시된 발명은 증착장치에 도입하기 전에 증착원으로 사용한 원료 물질이 불안정해지기 때문에 안정적으로 박막을 생산할 수 없다는 문제점을 가진다.
또한 소수성 표면의 구현을 위한 또 다른 방법으로는 불소계 계면활성제를 이용하는 방법이 있다. 소수성 표면 특성을 구현하기 위해 저분자량의 불소계 계면활성제를 도입하여 탄화불소 부분이 표면에 잘 나올 수 있도록 조절할 수 있으나 내구성에 문제를 야기하는 문제가 있다. 또한 고분자량의 불소계 계면활성제 도입 시 내구성은 좋아지나 소수성 구현에 어려움이 생기고 코팅 매트릭스와의 상분리 문제로 표면에 외관 문제를 일으킬 수 있어서 바람직하지 않다.
상기와 같은 문제점들을 극복하고자, 최근에는 습식공정이 아닌 불소계고분자를 건식공정을 이용하여 코팅하고자 하는 기술 개발이 이뤄지고 있다.
불소계고분자를 건식공정으로 코팅하는 방법으로 가장 대표적인 예가 스퍼터링이며, 이는 불소계고분자 표면에 강한 플라즈마를 형성하여 발생된 플라즈마가 불소계고분자 표면에 강한 에너지를 부여하여 분자 레벨의 불소계고분자가 표면에서 떨어져서 반대편 피착재 표면에 증착되어 코팅되는 공정이다.
그러나 고분자수지와 같은 절연특성을 가지는 스퍼터링 타겟의 경우에는 직류 전원을 인가할 경우 타겟 표면에 양전하들이 모이게 되어 인가전압을 약화시키게 되어 입사되는 충돌 입자의 에너지가 감소하므로, 증착율이 아주 낮거나 플라즈마 자체가 생성되지 않는 문제점이 있다. 따라서, 고 에너지가 필요하고, 이를 위해서는 고주파 전원 방식은 RF (Radio Frequency Suppertering Power)을 사용할 수밖에 없고 MF(Mid-range Frequency Sputtering Power)나 DC(direct current sputtering Power)와 같은 낮은 에너지로 원활하게 플라즈마를 발생시켜 증착할 수는 없다.
이와 더불어, 절연특성이 높은 스퍼터링 타겟을 이용하여 고에너지의 RF로 스퍼터링하게 될 경우에도 여전히 문제점이 존재한다. 즉, 고주파 전원 방식은 RF를 이용하여 정(+)과 부(-)의 전압을 수십 MHz (일반적으로 13.56MHz)의 높은 주파수로 교대로 인가하게 되어 부전압의 인가 시에는 스퍼터링이 발생하고 정전압의 인가 시에는 타겟 표면의 양이온의 부착을 막아주는 효과를 가져오게 되어 아크의 발생 없이 절연체의 타겟을 스퍼터링 할 수 있게 되어 많이 사용하는 방식이다. 하지만 절연특성이 높은 불소계고분자 타겟을 RF로 스퍼터링 하게 될 경우 부전압의 인가가 용이하지 못하여 박막의 증착율이 떨어지게 되어 여전히 문제점이 있다. 이를 해결하기 위하여는 또 다른 고가의 장비인 별도의 임피던스(Impedance, 교류저항)를 조절해주는 매칭박스(Matching Box)의 설치가 필수적으로 요구되지만 여전히 상기 문제점을 완전히 해결하지 못하는 문제점이 있고 공정의 비용이 지나치게 과대해 지는 문제점으로 여전히 상업화하는 것에는 품질적인 문제 및 비용에서 제한이 된다.
즉, 고발수성의 고절연성인 불소계고분자 타켓을 이용하여 증착할 경우, 고에너지가 필요한 RF공정을 채택할 수밖에 없으며, 이를 채택하는 경우 증착율이 낮고, 타겟 표면의 온도가 높아 타겟 손상이 되고, 전력을 인가해주는 전원공급장치의 비용이 고가이고, 공정이 어렵고 복잡하여, 이에 대한 문제 해결이 필요하다.
나아가, 불소계고분자 증착공정에서 고주파 전원 방식인 RF 전원을 인가함에 따른 불소계고분자 표면의 아크 발생, 열로 인한 타겟 손상, 불소계고분자와 전압을 인가하는 금속전극 사이에서 아크 등이 발생하고 인가 전압에 비해 낮은 효율의 플라즈마 발생으로 증착율 또한 낮다는 문제점 등을 동시에 해결하여야 한다.
상기의 문제점을 해결하기 위해, MF나 DC와 같은 낮은 에너지를 이용하여 스퍼터링하는 방법을 들 수 있지만, 현실적으로, 초발수성이고 초절연성의 불소계고분자를 증착하기 위한 기존의 불소계고분자 타켓으로는 정상적으로 상업화할 수 있는 정도의 품질 또는 증착효율이 불가능 하였다. 즉, MF나 DC와 같은 낮은 에너지를 이용한 기존의 불소계고분자 타켓을 이용한 스퍼터링 방법은 증착효율이 지나치게 낮거나 작동(스퍼터링)이 되지않아 정상적인 증착이 이루어지지 않는 등의 문제점을 가지고 있다.
하지만, 불소계고분자의 증착을 위한 불소계고분자 타켓에 있어서, 종래 RF로 스퍼터링하는 방법의 문제점을 해결함과 동시에 MF(Mid-range Frequency Sputtering Power) 및 DC(Direct Current Sputtering Power)를 이용한 증착이 가능하도록 하는 기술을 개발한다면, 매우 상업성이 우수하고, 다양한 방면으로 적용 가능성이 높아, 이의 개발이 강력히 대두되고 있다. 상술한 바와 같은 MF와 DC는 수십 MHz의 주파수를 가지는 RF에 비해, 비교적 낮은 수십 KHz의 주파수 또는 그 이하의 주파수를 가지기 때문에 별도의 임피던스 매칭이 필요 없고, 장치가 간단하며, 스퍼터링이 가능하다면 연속생산도 가능하다는 장점 등을 가져, 산업적으로 활용도가 높은 방식이다.
이에 본 발명자들은 불소계고분자를 건식공정을 이용하여 코팅하고자 하는 기술로써, 종래 RF 전원을 사용함에 따른 불소계고분자 표면의 아크 발생, 열로 인한 타겟 손상, 불소계고분자와 전압을 인가하는 금속전극 사이에서 아크 등이 발생하고, 인가 전압에 비해 낮은 효율의 플라즈마 발생으로 증착율 또한 낮은 문제 등의 해결과 더불어 DC 또는 MF 스퍼터링과 같은 낮은 에너지에서도 우수한 증착효율이 가능한 새로운 기술을 개발함으로써, 본 발명을 완성하게 되었다.
이에 본 발명자들은 초발수성을 가지는 불소계고분자를 종래 RF 전원을 사용함에 따른 불소계고분자 표면의 아크 발생, 열로 인한 타겟 손상, 불소계고분자와 전압을 인가하는 금속전극 사이에서 아크 등이 발생하고 전극과 타겟 사이의 탈리로 인한 불완전 증착 문제, 인가 전압에 비해 낮은 효율의 플라즈마 발생으로 증착율 또한 낮은 문제 등의 해결과 더불어 DC 또는 MF 스퍼터링과 같은 낮은 에너지에서도 우수한 증착효율로 증착이 가능한 새로운 불소계고분자 복합 타겟 및 이의 증착방법을 개발함으로써, 본 발명을 완성하게 되었다.
즉, 본 발명은 초발수성 및 고절연성의 불소계고분자 박막을 MF나 DC와 같은 낮은 에너지에서도 효과적으로 스퍼터링 가능한 새로운 스퍼터링용 불소계고분자 복합 타켓을 제공하는 것이다.
또한 본 발명은 대표적인 절연체로서 전기에너지를 쉽게 인가할 수 없는 단점을 가지는 불소계고분자 박막 증착 공정에서, 이전에는 상기의 다양한 문제점을 가지는 것임에도 채택할 수밖에 없었던, RF 스퍼터링 공정에서의 문제점의 개선 뿐 만이 아니라, RF 보다 낮은 에너지인 MF 및 DC 전원방식에서 조차도 안정적으로 스퍼터링이 가능한 새로운 불소계고분자 복합 타겟을 제공하는 것이다.
구체적으로, 본 발명은 기존의 비전도성으로서 고에너지가 필요한 불소계고분자 박막을 형성하는 스퍼터링에서 고주파수인 라디오주파수 (Radio Frequency)를 사용함에 따른 불소계고분자의 열화현상으로 인한 불소계고분자 타겟의 손상, 불소계고분자와 전압을 인가하는 금속 전극 사이에서 아크 등의 발생으로, 인가 전압에 비해 낮은 효율의 플라즈마 발생으로 증착율이 낮은 문제가 발생하고 있는 점을 개선한 새로운 스퍼터링용 불소계고분자 복합 타겟을 제공하는 것이다.
또한 본 발명은 스퍼터링 챔버에서 전극상에 놓이는 불소계고분자 타겟이 전극과의 접착력 불량으로 접합면이 분리되는 등의 불량한 접합력을 개선함으로써, 안정적으로 스퍼터링 공정을 수행할 수 있으며, 안정적으로 플라즈마 형성이 가능하여 불소계고분자의 절연파괴 방지 및 높은 증착율을 나타내는 새로운 스퍼터링용 불소계고분자 복합 타겟을 제공하는 것이다. 이러한 문제점은 특히 RF스퍼터링 방법에서 더욱 현저한 효과를 보여주고 있다.
본 발명의 또 다른 목적은 RF(Radio Frequency) 뿐 아니라 MF(Mid-range Frequency) 또는 DC(direct current)에서도 불소계고분자를 안정적으로 피착체에 스퍼터링 증착 가능한 불소계고분자 복합 타겟의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 본 발명에 따른 불소계고분자 복합 타겟을 이용하기 위한 스퍼터링 증착시스템 및 상기 불소계고분자 복합 타겟에 의해 증착되어 제조되는 성형체를 제공하는 것이다.
또한, 본 발명은 불소계고분자를 안정적으로 피착체에 스퍼터링 증착이 가능한 불소계고분자 복합 타겟을 이용한 스퍼터링 방법을 제공하는 것이다. 구체적으로는 본 발명에 따른 다양한 양태의 불소계고분자 복합 타겟을 챔버 내에 고정하는 단계와 상기 불소계고분자 복합 타겟에 RF, MF 및 DC에서 선택되는 어느 하나의 인가방식으로 플라즈마를 발생시켜 증착하는 단계를 포함하는 스퍼터링 방법을 제공하는 것이다.
상기의 문제점을 해결하기 위하여 본 발명은 불소계고분자에 도전성 물질(기능화제)과 금속화합물에서 선택되는 하나 이상의 성분을 포함하는 불소계고분자 복합타겟을 제조함으로써 RF 증착시스템에서의 상기 문제를 해결하였으며, 또한 불소계고분자에 도전성 물질 또는 도전성 물질과 금속화합물의 혼합성분을 함유시킴으로써 상기 DC 및 MF 증착시스템에서 그 동안 실질적으로 불가능하였던, 불소계고분자의 증착이 가능하고, 현저한 속도로 높은 증착효율로 증착 가능하게 함으로서 본 발명을 완성하였다.
즉, 본 발명은 불소계 고분자에 (1)전도성입자, 전도성 고분자 및 금속성분에서 선택되는 어느 하나 또는 둘 이상을 도전성 물질을 포함하는 기능화제, (2)금속유기물, 금속산화물, 금속탄소체, 금속수산화물, 금속카보네이트, 금속바이카보네이트, 금속질화물 및 금속불화물 등에서 선택되는 하나 이상의 금속화합물(metallic chemical)에서 선택되는 하나 이상의 성분 또는(3) 상기 (1) 및 (2)의 하나 이상의 성분들의 혼합성분을 포함하여 제조되는 증착용 불소계고분자 복합타겟을 제공함으로써 본 발명을 완성하였다.
상기 수단에 의해, 본 발명에 따른 스퍼터링용 불소계고분자 복합 타켓은 증착 챔버의 전극과 접합이 원활하게 되어, RF와 같은 고에너지를 인가하여 플라즈마를 발생시킴에 의해서도 변형이 되지 않을 뿐 아니라, 안정적으로 피착체에 높은 증착율로 불소계고분자의 증착이 가능하며, 동시에 RF 보다 낮은 인가 에너지인 MF 또는 DC 전원방식에서도 피착체에 현저히 높은 증착률로 증착이 가능하다.
본 발명의 일 양태에 따른 스퍼터링용 불소계고분자 복합 타겟은 전도성입자, 전도성고분자 및 금속성분 등에서 선택되는 하나 또는 둘 이상의 도전성 물질인 기능화제를 혼합하는 경우, 고주파수인 라디오주파수 (Radio Frequency, RF)를 사용함에 따른 불소계고분자의 열화현상으로 인한 불소계고분자 타겟의 손상이 장기적으로 사용하여도 발생하지 않고, 불소계고분자와 전압을 인가하는 금속 전극 사이에서 아크 등의 발생을 최소화하고, 인가 전압에 비해 높은 효율의 플라즈마 발생하여 증착율이 매우 증가하는 등이 놀라운 효과를 가지게 된다. 또한 상기 구성을 채택함에 의해, 불소계고분자 복합 타겟은 타겟 내 전도성을 부여함으로써, RF 뿐 아니라 이보다 낮은 전압인 MF 및 DC에서도 불소계고분자를 안정적으로 증착이 가능할 뿐 아니라 기존에 불가능하였던 놀라운 속도로 피착체에 스퍼터링 증착이 가능하며, 절연파괴를 방지할 수 있음을 알게 되어 본 발명을 완성하게 되었다.
따라서, 본 발명의 일 양태로는 불소계고분자와 도전성을 부여하는 기능화제(performing dopant)를 함유하는 스퍼터링용 불소계고분자 복합 타겟을 제공한다. 본 발명에서 상기 도전성 물질인 기능화제를 포함하는 경우는 RF, DC, 및 MF 모두에서 현저한 효과를 달성할 수 있으므로, 상기 발명이 양태는 인가하는 파워를 한정하지 않는다.
본 발명은 또 다른 양태로는 특히 RF 방식으로 증착하는 경우 불소계고분자에 상기 (1)기능화제 및/또는 (2)금속유기물, 금속산화물, 금속탄소체, 금속수산화물, 금속카보네이트, 금속바이카보네이트, 금속질화물 및 금속불화물 등에서 선택되는 하나 또는 둘 이상의 금속화합물을 포함하여 제조되는 것일 수 있다. 즉, RF 인가방식에서는 금속화합물만을 포함하여도 전극과의 접착이 개선되고, 상기 불소계고분자 단독으로 제조한 타겟에서 발생하는 문제점을 해결할 수 있으므로, 본 발명의 양태에 속한다. 그러나 금속화합물만을 포함할 경우 상기 도전성 기능화제를 포함하는 경우에 비하여 효과에서 열세를 나타내므로, 본 발명에서 특히 RF 인가 방식에서는 도전성 기능화제 또는 도전성 기능화제와 금속화합물의 혼합물을 더 우선 한다.
본 발명에서 낮은 증착에너지인 DC와 MF를 인가하여 증착하는 경우, 상기 금속화합물 단독 성분만을 포함하는 경우에는 증착효율이 없거나 현저히 낮아져서 실질적으로 증착효율이 현저히 저하되어 좋지 않다.
그러나 상기에서 설명드린 바와 같이, 상기 금속화합물을 단독으로 혼합하여 제조된 불소계고분자 복합 타겟이라 하여도 RF를 인가하여 증착하는 경우에는, 그 금속화합물이 혼합된 면이 전극면과 대응(전극면에 배치)될 때는, 상기 도전성 기능화제를 함유한 불소계고분자 복합 타겟이나 상기 도전성 기능화제와 금속화합물의 혼합성분을 포함하여 제조되는 불소계고분자 복합 타겟보다는 성능이 많이 낮지만, 기존의 불소계고분자만으로 이루어지는 불소계고분자 타겟보다는 우수한 성능을 발휘하므로 본 발명의 범주에 속한다.
따라서 본 발명에서 RF를 인가하여 증착하는 경우, 본 발명의 불소계고분자 복합 타겟은 상기 도전성 기능화제, 금속화합물 또는 이들의 혼합성분을 모두 포함하는 발명의 양태를 모두 포함하지만, DC 또는 MF와 같은 상대적으로 RF보다 낮은 에너지를 조사하는 증착방법에서는 도전성 기능화제 또는 도전성 기능화제와 금속화합물의 혼합성분이 포함되는 불소계고분자 복합 타겟을 의미할 수 있다.
그러므로 본 발명의 일 양태에 따른 불소계고분자 복합 타겟은 RF 뿐 아니라 MF 또는 DC 스퍼터링을 위한 스퍼터링 챔버 내부의 전극면에 대한 불소계고분자의 표면 접착력을 현저하게 향상시킴으로써, 에너지 인가에 의해 플라즈마가 발생하여 증착하는 과정에서 전극면과 불소계고분자 복합 타겟의 접착면이 탈리되어 불소계고분자 복합 타겟의 변형이 일어나지 않도록 단단히 고정하는 역할을 하므로, 증착되는 불소계고분자 성분이 피착체에 고르고 균일하게 증착될 수 있다.
또한 본 발명에 따른 불소계고분자 복합 타겟은 타겟 내 도전성이 부여되어 RF 뿐 아니라 이보다 낮은 전압인 MF나 DC에서도 불소계고분자를 안정적으로 피착체에 높은 증착율로 스퍼터링될 수 있으며, 절연파괴를 효과적으로 방지할 수 있다.
이하, 본 발명에서는 특별히 RF와 MF, DC 플라즈마 인가방식에서 사용하는 불소계고분자 복합 타겟을 상기에서 설명하는 발명의 양태로 구분하는 한에서는 이를 별도로 분리하여 설명하지 않으므로 이를 참고하여야 한다.
본 발명의 일 양태에 따른 불소계고분자 복합 타겟은 상이하거나 동일한 기능화제 및/또는 금속화합물을 포함하는 2개 층 이상의 층이 적층되어 형성되는 적층 구배를 가지거나 연속적인 함량의 구배를 가질 수 있다. 상기 구배는 두께 방향으로 기능화제 및/또는 금속화합물의 함량을 높이는 것으로서, 피착체의 방향으로는 기능화제의 함량이 감소되거나 그 반대로 형성되는 것일 수 있으나 이에 한정되는 것은 아니다.
본 발명은 일 예를 든다면, 증착 챔버의 전극면의 일면에 형성된 도전성 기능화제 및/또는 금속화합물을 포함하는 접합층과 상기 접합층의 다른 일면에 형성된 불소계고분자와 기능화제 및/또는 금속화합물을 포함하는 기능층을 포함하는 불소계고분자 복합 타겟일 수 있다.
따라서 본 발명은 전극면과 접하여 전도성입자, 전도성 고분자, 금속성분 또는 이들의 혼합성분을 포함하는 기능화제 및/또는 금속화합물과 불소계고분자로 이루어진 불소계고분자 복합 타겟을 제공할 수 있다.
본 발명에서 상기 기능화제는 도전성을 가지는 한에서는 제한하지 않지만 예를 들면 전도성 입자, 전도성 고분자 및 금속성분 등을 의미한다.
본 발명의 일 양태에 따른 상기 불소계고분자 복합 타겟에 있어, 상기 전도성입자의 비한정적인 일 예로는, 카본나노튜브, 카본나노섬유, 카본블랙, 그래핀(Graphene), 그라파이트 및 탄소섬유 등에서 선택되는 하나 이상일 수 있다.
또한 본 발명에서 상기 전도성 고분자의 비한정적인 일 예로는, 폴리아닐린(polyaniline), 폴리아세틸렌(polyacetylene), 폴리티오펜(polythiophene), 폴리피롤(polypyrrole), 폴리플루렌(polyfluorene), 폴리피렌(polypyrene), 폴리아줄렌(polyazulene), 폴리나프탈렌(polynaphthalene), 폴리페닐렌(polyphenylene), 폴리페닐렌비닐렌(poly phenylene vinylene), 폴리카르바졸(polycarbazole), 폴리인돌(polyindole), 폴리아제핀(polyazephine), 폴리에틸렌(polyethylene), 폴리에틸렌비닐렌(polyethylene vinylene), 폴리페닐렌설파이드(polyphenylene sulfide), 폴리퓨란(polyfuran), 폴리셀레노펜(polyselenophene), 폴리텔루로펜(polytellurophene) 등으로부터 선택되는 하나 이상일 수 있다.
또한 본 발명의 일 양태에 따른 상기 불소계고분자 복합 타겟에 있어, 상기 금속성분은 비한정적인 일 예로는, Cu, Al, Ag, Au, W, Mg, Ni, Mo, V, Nb, Ti, Pt, Cr 및 Ta 등에서 선택되는 하나 이상의 금속일 수 있다.
본 발명의 일 양태에 따른 상기 불소계고분자 복합 타겟에 있어, 상기 금속화합물은 금속유기물, 금속산화물, 금속탄소체, 금속수산화물, 금속카보네이트, 금속바이카보네이트, 금속질화물 및 금속불화물 등에서 선택되는 하나 이상의 금속화합물을 더 포함할 수 있으며, 상기 금속화합물은 제한하지 않지만 예를 들면 SiO2, Al2O3, ITO, IGZO, ZnO, In2O3, SnO2, TiO2, AZO, ATO, SrTiO3, CeO2, MgO, NiO, CaO, ZrO2, Y2O3, Al2O3 , MgF2, CuF2 , Si3N4, CuN, AlN 등에서 선택되는 하나 이상의 금속화합물일 수 있으나 이에 한정되는 것은 아니다.
또한 본 발명의 상기 불소계고분자는 폴리테트라 플루오로에틸렌, 폴리클로로트리플루오로에틸렌, 폴리비닐리덴디플루오라이드, 플로린화 에틸렌 프로필렌 공중합체, 에틸렌-테트라플루오로에틸렌 공중합체 , 에틸렌-클로로트리플루오로 에틸렌 공중합체, 퍼플루오로알콕시 공중합체, 비닐플루오라이드 단일중합체 고무, 비닐플루오라이드 공중합체 고무, 비닐리덴플루오라이드 단일중합체 고무 및 비닐리덴플루오라이드 공중합체 고무 등에서 선택되는 하나 이상일 수 있으나 이에 한정되는 것은 아니다.
본 발명의 일 양태에 따른 상기 불소계고분자 복합 타겟은 불소계고분자 100 중량부 기준으로, 0.01 내지 2000 중량부의 기능화제 및/또는 금속화합물을 함유하는 것일 수 있다. 상기 기능화제에 금속화합물을 혼합하는 경우에는 그 조성비는 본 발명의 도전성을 띄는 한에서는 제한하지 않으며, 그 비는 0.1~99.9% 대 99.9% 내지 0.1%의 중량비로 나타낼 수 있지만 이에 제한하지 않는다.
또한 본 발명의 또 다른 양태로는 상기 불소계고분자 복합 타겟이 일측 표면으로부터 타측 표면으로 상기 기능화제 및/또는 금속화합물의 함량을 증가 또는 감소시켜 연속적으로 기능화제의 함량 구배를 주어 제작될 수 있다, 상기 구배의 의미는 면과 면사이의 두께 방향으로 상기 기능화제의 함량을 연속적으로 구배 또는 2 층 이상의 복수층으로 함량을 변화시켜 구배를 주는 형태를 의미하는 것일 수 있다. 특히 본 발명에서 상기 구배를 주는 경우, 전극과 표면과의 접착을 최대로 할 수 있으면서도 피착체에 증착되는 기능화제 및/또는 금속화합물의 함량을 최소화하는 불소계고분자 복합 타겟을 제조할 수 있어서 매우 좋다.
본 발명의 일 양태에서 2단계로 구배를 주는 경우의 예를 들어 설명하면, 금속 전극면과 접착되는 제 1층은 기능화제 및/또는 금속화합물의 함량을 높게 하고, 그 반대의 증착되어지는 면을 가지는 제 2층은 기능화제 및/또는 금속화합물의 함량을 없게 하거나 또는 상기 성분들의 함량을 제 1층의 함량보다 낮게 하여 제조될 수 있으며, 목적에 따라 상기 성분들의 함량을 적절하게 변형 가능함은 물론이다.
본 발명의 일 양태로서 상기 불소계고분자 복합 타겟은 두께 방향으로 상기 기능화제 및/또는 금속화합물의 함량이 구배를 가지도록 제조되는 것이 좋으며, 특히 상기 구배(gradient)는 전극면을 향하여 기능화제 및/또는 금속화합물의 함량이 높고, 피착체의 방향으로는 기능화제 및/또는 금속화합물의 함량이 감소되도록 전극면상에 접착되는 것이 전극면과의 접착성이 개선되어 스퍼터링 효율이 높고, 접착면이 단단히 고정되어 불소계고분자 복합 타겟이 변형되지 않으므로, 스퍼터링 시 피착체에 증착되는 두께의 균일성이 개선되어 좋다. 물론 구배가 상기 기능화제 및/또는 금속화합물을 포함하는 한에서는 그 반대로 접착된 것도 포함할 수 있음은 물론이다.
이하 본 발명의 스퍼터링 장치에 대하여 설명한다. 본 발명의 스퍼터링장치는 특별히 제한하는 것은 아니지만, 예를 들면 스퍼터링을 위한 스퍼터링 챔버, 상기 챔버 내부에 형성되는 제 1전극 인가부, 상기 제 1전극 인가부 상부면에 위치하는 본 발명에 따른 스퍼터링용 불소계고분자 복합 타겟, 제 2전극 인가부, 상기 불소계고분자 복합 타겟과 제 2전극 인가부 사이 또는 적절한 위치에 위치하는 피착체를 포함하는 스퍼터링 증착시스템을 제공한다.
또한 본 발명의 일 양태는 상술된 불소계고분자 복합 타겟을 이용하여 제조된 성형체를 제공한다. 이때, 상기 성형체는 높은 수접촉각을 가지는 고품질의 투명 탄화불소 박막일 수 있다.
또한 본 발명의 일 양태는 상술된 불소계고분자 복합 타겟을 이용하여 불소계고분자를 안정적으로 피착체에 증착 가능한 스퍼터링 방법을 제공한다. 즉 구체적으로는 상기 불소계고분자 복합 타겟을 증착챔버에 고정하는 단계와 상기 불소계고분자 복합 타겟에 RF, MF 및 DC에서 선택되는 어느 하나의 인가방식으로 플라즈마를 발생시켜 증착하는 단계를 포함하는 스퍼터링 방법을 제공한다.
본 발명에 따른 상기 스퍼터링용 불소계고분자 복합 타겟은 전압을 인가하는 금속 전극과의 표면 접촉각을 낮추어 불소계고분자와 전극과의 우수한 접착력을 구현할 수 있으며, 강한 에너지에 의해 발생되는 휨 발생을 억제하여 불소계고분자와 전극과의 접합 결함 발생을 줄일 수 있다.
또한 본 발명에 따른 상기 스퍼터링용 불소계고분자 복합 타겟은 전도성을 부여함으로써 RF 스퍼터링시 발생될 수 있는 타겟의 절연파괴를 방지하고, RF 뿐 아니라 MF 및 DC에서도 높은 증착율로 스퍼터링이 가능하다는 장점을 가진다.
본 발명에 따른 스퍼터링용 불소계고분자 복합 타겟에 대하여 이하 상술하나, 이때 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
일반적으로 박막 스퍼터링용 타겟은 전압을 인가하는 금속 전극에 고정하여 사용하게 된다. 상기 고정의 방법으로 종래에는 납땜, 브레이징, 확산 접착, 기계적인 채결 또는 에폭시 접착 등의 방법을 사용하였으나, 타겟과 금속 전극 사이의 열팽창율의 차이로 인해 접착 계면의 가장자리 엣지에서 전단 결함을 보이거나 접착부가 분리되는 문제점을 가질 수 있다. 이러한 문제점은 금속 전극과 타겟 사이에서 아크 등을 발생시킬 수 있으며, 이로 인해 인가되는 전압에 비해 낮은 효율의 플라즈마를 발생시킴으로써, 낮은 증착 효율을 나타낸다.
더구나 종래의 불소계고분자 타겟의 경우, 소수성의 특성 및 절연 특성을 가짐에 따라 금속 전극과 타겟의 표면 접촉각이 높아 이들을 고정화하기 위해서는 다양한 화학적 처리가 수반되어야 한다. 또한 상기 불소계고분자 타겟은 매우 큰 절연성을 나타내므로, 스퍼터링하기 위해서는, RF(radio-frequency)의 고주파 에너지가 인가되어야 하며, 이에 따라 불소계고분자 타겟은 그자체로서 변형될 뿐만 아니라 전극면과의 접합부위에 필연적으로 변형이 발생하거나 접합부위의 결함이 발생될 수 밖에 없었으며, 따라서, 피착체의 표면에 균일하게 증착되지 않기도 하거니와 증착효율이 매우 열악할 수 밖에 없었다.
이에, 본 출원인은 스퍼터링용 불소계고분자 타겟에 대한 연구를 심화한 결과, 불소계고분자 타겟 내에 전도성입자, 전도성 고분자, 금속성분 등의 도전성 물질(기능화제) 및 금속화합물 등에서 선택되는 하나 이상의 성분을 함유시킴으로써, 전극에 대한 높은 접합력을 부여할 수 있어서 RF를 이용한 종래의 증착에서도 변형이 발생하지 않고 피착체에 균일하게 증착이 될 뿐만 아니라, MF나 DC와 같은 보다 산업적으로 유용한 전원방식에서도 증착이 매우 잘되고, 우수한 증착효율을 가지게 됨을 알게되어 본 발명을 완성하였다.
본 발명은 불소계고분자와 기능화제 및/또는 금속화합물을 함유하는 스퍼터링용 불소계고분자 복합 타겟을 제공하는 것이다.
또한 본 발명은 상기 불소계고분자 복합 타겟이 일측 표면으로부터 타측 표면으로 상기 기능화제 및/또는 금속화합물의 함량을 증가 또는 감소시켜 연속적으로 구배를 주는 불소계고분자 복합 타겟을 제공하는 것이다. 상기 구배는 불소계고분자 복합 타겟의 면과 면사이의 두께 방향으로 상기 기능화제 및/또는 금속화합물의 함량을 연속적으로 달리하여 구배를 줄 수도 있고, 2 층 이상의 복수층으로 각 층의 기능화제 및/또는 금속화합물의 함량을 변화시켜 구배를 주는 형태로 제조할 수도 있는데 이는 다양한 목적이나 기능에 따라 조절하여 제조 가능함은 물론이다.
또한 본 발명에서 구배를 가지는 불소계고분자 복합 타겟일 경우, 기능화제 및/또는 금속화합물의 함량이 많은 부분이 전극과 접합하고 그 반대면이 증착되어 피착체와 결합하게 된다. 또한 단계적 구배를 주는 경우, 예를 들어 불소계고분자 복합 타겟 두께방향으로 2단계 구배를 주는 경우, 전극면과 접하는 부분(접합층)의 두께는 불소계고분자 복합 타겟 전체 두께를 기준으로 1 내지 80 %의 두께일 수 있으며, 바람직하게는 5 내지 20 %의 두께를 가질 수 있으나 이에 한정되는 것은 아니다. 이때, 상기 피착체는 불소계고분자 복합 타겟에 의해 불소계고분자가 증착되는 기재를 의미한다.
물론 2층으로 단계적 구배를 가지는 불소계고분자 복합 타겟의 경우, RF 증착방식의 경우에는 전극면과 접하는 층에는 기능화제 및/또는 금속화합물을 포함하지만, 반대면의 증착되는 부분(기능층)인 제 2층은 기능화제 및/또는 금속화합물를 포함하지 않는 불소계고분자만을 가질 수도 있다. 또한 상기 제 1층과 제 2층은 동일한 성분 및 동일한 함량의 기능화제를 또한 가질 수도 있으며, 통상적으로는 전극표면과 접촉하는 제 1층에 전도성을 가지는 기능화제를 포함하는 것이 좋지만 이에 한정하는 것은 아니다.
본 발명의 일 양태에 따른 상기 불소계고분자 복합 타겟은 불소계고분자 100 중량부 기준으로, 상기 전도성입자, 전도성 고분자 및 금속성분 등에서 선택되는 하나 이상의 도전성 물질을 0.01 내지 2000 중량부로 함유할 수 있으며, 우수한 접합력을 가지기 위한 측면에서 바람직하게는 0.5 내지 1500 중량부, 보다 바람직하게는 1 내지 1000 중량부로 함유되는 것이 좋다.
이하는 본 발명의 양태를 보여주는 것으로 이는 본 발명을 원활하게 이해하고 설명하기 위한 몇가지의 형태를 보여주는 것일 뿐, 본 발명의 기술적 사상의 범위 내에서는 다양하게 변경하여 실시할 수 있으므로, 이에 한정하여 본 발명을 해석하여서는 안 된다.
본 발명의 1양태는 전도성입자, 전도성고분자, 금속성분 등에서 선택되는 도전성 물질인 기능화제를 포함하는 불소계고분자 복합 타겟을 제공한다.
본 발명의 2양태는 상기 1양태에 금속유기물, 금속산화물, 금속탄소체, 금속수산화물, 금속카보네이트, 금속바이카보네이트, 금속질화물 및 금속불화물 등에서 선택되는 하나 이상의 금속화합물을 더 포함하는 불소계고분자 복합 타겟을 제공한다.
본 발명의 3양태는 RF 인가방식으로 증착하는 경우 금속화합물만을 포함하는 불소계고분자 복합 타겟도 포함한다.
본 발명의 4양태는 불소계고분자 복합 타겟의 두께방향으로 상기 기능화제 및/또는 금속화합물의 함량을 변화시켜 연속적으로 구배를 주거나 또는 복수의 층으로 단계적 구배를 주는 불소계고분자 복합 타겟을 포함한다.
본 발명의 5양태는 RF 인가방식 있어서, 상기 4양태의 경우 전극면과 접촉하는 방향에는 상기 기능화제 및/또는 금속화합물을 포함하고, 불소계고분자 복합 타겟의 그 반대면에는 상기 기능화제 및/또는 금속화합물을 포함하지 않는 불소계고분자층인 기능층을 가지는 것도 포함한다.
본 발명의 6양태는 상기 4양태에 있어서, 상기 복수의 층으로 형성되는 적층형 구배를 가지는 불소계고분자 복합 타겟에서 각 층의 기능화제 및/또는 금속화합물의 성분들은 동일할 수도 있고, 상이할 수도 있는 양태를 모두 포함한다.
본 발명의 구체적인 7의 양태로는 MF나 DC 인가방식에서 불소계고분자 복합타겟은 도전성 물질인 기능화제를 반드시 포함하는 양태이다.
상술한 바와 같이, 본 발명의 불소계고분자 복합 타겟은 불소계고분자에 전도성입자, 전도성 고분자, 금속성분 등에서 선택되는 하나 또는 둘 이상의 기능화제 및/또는 금속화합물을 포함함으로써, 전압을 인가하는 전극과의 표면 접촉각을 낮추어 높은 표면 에너지를 가질 수 있어서 고에너지를 인가하는 경우에라도 불소계고분자 복합 타겟이 변형이 일어나지 않는 놀라운 효과를 가진다. 또한, MF나 DC등의 전원방식에서도 상기 기능화제의 역할에 의해서 쉽게 증착이 되고 또한 증착효율에서도 놀라운 증대를 가져온다.
본 발명의 일 양태에 따른 불소계고분자 복합 타겟은 절연 특성을 가지는 불소계고분자에 도전성 물질인 기능화제를 함유함으로써 불소계고분자 복합 타겟에 전도성을 부여함으로써 놀랍게도 MF 또는 DC 전원방식에서도 스퍼터링이 가능할 수 있을 뿐 아니라 플라즈마 형성 효율을 증가시켜 높은 증착율을 구현할 수 있다.
본 발명의 일 양태에 따른 상기 불소계고분자는 불소를 함유한 수지류 라면 한정되는 것은 아니나 바람직하게는 불소를 함유하는 올레핀을 중합시킨 합성수지인 폴리테트라 플루오로에틸렌(PTFE, polytetrafluoroethylene), 폴리클로로트리플루오로에틸렌(PCTFE, polychlorotrifluoroethylene), 폴리비닐리덴디플루오라이드(PVDF, polyvinylidene fluoride), 플로린화 에틸렌 프로필렌 공중합체 (FEP, fluorinated ethylene propylene copolymer), 에틸렌-테트라플루오로에틸렌 공중합체 (ETFE, ethylene tetrafluoroethylene copolymer), 에틸렌-클로로트리플루오로 에틸렌 공중합체 (ECTFE, ethylene chlorotrifluoroethylene copolymer), 퍼플루오로알콕시 공중합체 (PFA, perfluoroalkoxy copolymer) 등에서 선택되는 하나 이상의 불소계고분자; 비닐플루오라이드 단일중합체 고무, 비닐플루오라이드 공중합체 고무, 비닐리덴플루오라이드 단일중합체 고무 및 비닐리덴플루오라이드 공중합체 고무 등에서 선택되는 하나 이상의 불소고무; 로부터 선택되는 하나 이상일 수 있으며, 보다 바람직하게는 폴리테트라 플루오로에틸렌(PTFE, polytetrafluoroethylene), 플로린화 에틸렌 프로필렌 공중합체 (FEP, fluorinated ethylene propylene copolymer), 퍼플루오로알콕시 공중합체 (PFA, perfluoroalkoxy copolymer) 등 일 수 있지만 이에 한정하는 것은 아니다.
본 발명에서, 상기 금속성분의 구체적인 일예로는 Cu, Al, Ag, Si, Au, W, Mg, Ni, Mo, V, Nb, Ti, Pt, Cr, Ta 등 일 수 있으며, 바람직하게는 Cu, Al, Ag, Si, Au, W, Mg 또는 이들의 혼합 금속일 수 있으나 이에 한정되는 것은 아니다.
또한 상기 전도성입자 및 전도성고분자는 전도성을 가지는 물질이라면 한정되는 것은 아니며, 상기 전도성입자의 비한정적인 일예로는 카본나노튜브(Carbon nano tube), 카본나노섬유 (Carbon nano fiber), 카본블랙(Carbon black), 그래핀(Graphene), 그라파이트(Graphite), 탄소섬유(Carbon fiber) 또는 이들의 혼합물일 수 있으며, 기타 유기 전도성입자도 포함할 수 있다. 이때, 상기 전도성입자의 일예인 탄소계 전도성입자를 사용할 경우 탄화 불소 성분을 유지하면서 전도성을 부여할 수 있어 바람직하다.
또한 상기 전도성고분자의 비한정적인 일예로는 폴리아닐린(polyaniline), 폴리아세틸렌(polyacetylene), 폴리티오펜(polythiophene), 폴리피롤(polypyrrole), 폴리플루렌(polyfluorene), 폴리피렌(polypyrene), 폴리아줄렌(polyazulene), 폴리나프탈렌(polynaphthalene), 폴리페닐렌(polyphenylene), 폴리페닐렌비닐렌(poly phenylene vinylene), 폴리카르바졸(polycarbazole), 폴리인돌(polyindole), 폴리아제핀(polyazephine), 폴리에틸렌(polyethylene), 폴리에틸렌비닐렌(polyethylene vinylene), 폴리페닐렌설파이드(polyphenylene sulfide), 폴리퓨란(polyfuran), 폴리셀레노펜(polyselenophene), 폴리텔루로펜(polytellurophene) 등으로부터 선택되는 하나 이상 일 수 있으나 이에 한정되는 것은 아니다.
또한 본 발명의 상기 금속화합물의 구체적인 일예로는 SiO2, Al2O3, ITO, IGZO, ZnO, In2O3, SnO2, TiO2, AZO, ATO, SrTiO3, CeO2, MgO, NiO, CaO, ZrO2, Y2O3, Al2O3 , MgF2, CuF2, Si3N4, CuN, AlN등에서 선택되는 하나 이상일 수 있으나 이에 한정되는 것은 아니다.
상술한 바와 같이 상기 불소계고분자 복합 타겟의 기능층은 혼합되는 기능화제 및/또는 금속화합물의 종류 및 함량을 조절함에 따라, 이를 이용하여 형성된 박막의 기능성을 추가적으로 부여할 수 있다.
보다 상세하게, 본 발명의 일 양태에 따른 불소계고분자 복합 타겟을 이용하여 형성된 박막은 기본적으로 초소수성, 고투명성을 유지하면서 광학적 특성이 우수하며, 오염 방지, 반사방지, 내화학성 및 윤활성 등이 우수할 뿐 아니라 불소계고분자와 기능화제 및/또는 금속화합물의 종류나 함량에 따라 제조되는 박막의 전도성 및 강도 등의 물성을 현저히 증진시킬 수 있다. 또한 상기 불소계고분자 복합 타겟은 타겟 내 향상된 전도성으로 인해 보다 낮은 전압에서도 스퍼터링이 가능하여 낮은 비용으로 고품질의 탄화불소 함유 박막을 제조할 수 있다는 장점을 가진다.
이는 종래 불소계고분자 타겟을 스퍼터링하기 위해 고주파의 전원을 인가해야만 하는 공정과는 달리, 본 발명에 따른 불소계고분자 복합 타겟에는 전도성이 부여되어 RF(radio frequency)뿐만 아니라 MF(Midrange Frequency) 또는 DC(direct current)에서도 원활히 스퍼터링이 가능하고 또한 그 효율에 있어서도 매우 높은 놀라운 효과를 가지게 된다.
본 발명의 일 실시예에 따른 불소계고분자 복합 타겟의 일 제조예를 설명하면 다음과 같다.
불소계고분자와 전도성입자, 전도성 고분자 및 금속성분에서 선택되는 하나 또는 둘 이상의 전도성을 가지는 기능화제 및/또는 금속화합물을 일정 혼합비로 혼합하여 제1혼합물을 제조하는 단계, 불소계고분자와 상기 제1혼합물에 포함된 기능화제와 동일하거나 상이한 기능화제 및/또는 금속화합물을 일정 혼합비로 혼합하여 제2혼합물을 제조하는 단계, 및 상기 제1혼합물 및 제2혼합물을 압축성형 및 열처리하여 타겟을 제조하는 단계, 를 포함하는 방법으로 2단 구배 또는 기타 복수의 층을 형성되는 구배를 가지는 불소계고분자 복합 타겟을 제조할 수 있다. 상기 제1혼합물 및 제2혼합물의 기능화제 및/또는 금속화합물의 종류 및 혼합비가 동일한 경우, 제2혼합물을 제조하는 단계는 수행되지 않아도 된다.
또한 연속구배를 가지는 경우, 불소계고분자 분말층의 상부에 기능화제 또는 기능화제와 금속화합물을 혼합한 후 약하게 진동시켜 표면의 기능화제가 침투하도록 한 후 압축 열처리하여 연속 구배를 가지는 불소계고분자 복합 타겟을 제조할 수 있다. 이때, 본 발명에 따른 불소계고분자 복합 타겟은 스퍼터링 챔버 내부의 전극면에 접착되는 면에 반드시 전도성을 가지는 기능화제 및/또는 금속화합물를 포함하는 것을 특징으로 한다. 이때 MF 및 DC 인가방식의 경우, 도전성 기능화제가 불소계고분자 복합 타겟이 접착되는 전극의 반대면에 포함되어야 하고, 전극면에는 기능화제 및/또는 금속화합물이 포함되는 것이 좋고 극단적으로는 이러한 성분이 포함되지 않은 적층 또는 구배를 가지는 불소계고분자 복합 타겟도 전극과 접착불량으로 현저히 좋은 증착효과를 나타내지는 않지만 증착 속도면에서는 매우 우수한 증대 효과를 가지므로 본 발명에 포함될 수 있다.
상술한 방법에 있어, 상기 제1혼합물과 제2혼합물의 혼합비는 목적에 따라 조절 가능함은 물론이며, 금속 전극에 대한 접착력 및 전도성을 부여하기 위한 측면에서 상기 전극면으로 향하는 접합층을 형성하는 제1혼합물은 불소계고분자 100 중량부 기준으로, 상기 전도성입자, 전도성 고분자 및 금속성분에서 선택되는 하나 이상의 기능화제 및/또는 금속화합물을 0.1 내지 2000 중량부로 함유할 수 있으며, 바람직하게는 10 내지 1000 중량부, 보다 바람직하게는 20 내지 500 중량부로 함유되는 것이 좋으나 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따른 상기 불소계고분자 복합 타겟에 있어, 상기 전극면의 반대면에 위차하는 층인 기능층을 형성하는 제2혼합물은 불소계고분자 100 중량부 기준으로, 상기 접합층의 성분과 동종 또는 이종의 성분을 0.1 내지 1000 중량부로 함유할 수 있으며, 높은 전도성 및 이를 이용해 제조되는 박막의 내구성을 향상시키기 위한 측면에서 바람직하게는 0.1 내지 300 중량부, 보다 바람직하게는 0.1 내지 100 중량부로 혼합되는 것이 좋으나 이에 한정되는 것은 아니다.
또한 상기 전도성입자, 전도성 고분자, 금속성분 및 금속화합물의 경우, 불소계고분자 분말과 적절한 혼화성 및 균일한 조성을 가질 수 있는 정도의 크기라면 한정되는 것은 아니나 바람직하게는 10 nm 내지 1000 ㎛, 좋게는 10 nm 내지 100 ㎛범위의 평균 입도를 가지는 것이 좋으나 이에 한정되는 것은 아니다.
또한 상기 압축성형은 제한되지 않지만, 바람직하게는 100 내지 500 kgf/㎠에서 수행될 수 있으며, 균일하고 매끄러운 타겟 표면을 구현하기 위한 측면에서 150 내지 400 kgf/㎠에서 수행되는 것이 좋으며, 상기 열처리는 또한 본 발명의 목적하는 범위에서는 제한되지 않지만 좋게는 250 내지 450 ℃에서 수행될 수 있으며, 금형의 모양 및 크기에 따라 압축성형 및 열처리 시간은 적절하게 조절될 수 있음은 물론이다.
본 발명의 일 양태에 따른 전도성을 높인 불소계고분자 복합 타겟은 RF 전압뿐 아니라 MF 또는 DC 전압으로도 높은 증착율로 증착이 가능하며, 플라즈마 형성 효율이 우수하여 안정적으로 피착체에 스퍼터링 증착이 가능하며, 박막 증착시 높은 증착율을 구현할 수 있으며, 기존 높은 에너지대의 전압을 인가함에 따른 절연파괴를 방지할 수 있다는 장점을 가진다.
본 발명의 일 양태에 따른 상기 피착체는 실리콘, 금속, 세라믹, 수지, 종이, 유리, 수정, 섬유, 플라스틱, 유기 고분자 등에서 선택될 수 있으며, 이에 한정되는 것은 아니다. 또한 본 발명에 따른 전극의 모양은 제한 받지 않으며, 불균일한 표면을 가지는 금속 전극에 적용할 경우에도 균일하고 매끄러운 박막을 형성할 수 있다.
전술한 바와 같이 종래 불소계고분자 타겟은 불소계고분자의 절연 특성으로 인해, 고주파의 높은 에너지대의 전압을 인가함으로써 스퍼터링이 수행되어야만 하였고 따라서 변형되어 균일한 스퍼터링이 불가능하였으며, 전압을 인가하는 금속 전극과의 접착력이 약해 금속 전극 사이에서 아크 등의 문제점이 발생하여 낮은 박막 증착율을 가져 양산화에 적용하기 어려움이 있었다.
이에, 본 발명은 종래 높은 에너지대의 전압을 인가함에 따른 타겟의 결함을 개선하고, MF 또는 DC 전원방식에서도 동일한 박막을 구현할 수 있다. 또한, 매우 단시간 내에 대면적 박막의 제조가 가능한 롤투롤 공정의 구현이 가능하며, 기존 롤투롤 장비에서 별도의 개조 비용 없이 타겟의 교환으로 바로 적용이 가능하여 상업성 또한 우수하고, 공정의 단순화 및 제조 원가 절감이 가능한 장점을 가질 수 있다.
본 발명은 상술된 다양한 양태에 따른 불소계고분자 복합 타겟을 챔버 내에 고정하는 단계와 상기 불소계고분자 복합 타겟에 RF, DC 및 MF를 인가하여 증착하는 단계를 포함하는 스퍼터링 방법을 제공한다. 이때, 상기 스퍼터링 방법에서 사용된 인가전압인 RF, MF 및 DC는 각각 13.56 MHz, 50 KHz 및 100 V에서 수행되었으나 이는 본 발명의 일 양태에 해당하는 것일 뿐 이에 한정되지 않는다.
또한 본 발명은 상술한 불소계고분자 복합 타겟에 의해 제조되는 성형체를 제공한다. 이때, 상기 성형체는 높은 수접촉각을 가지는 고품질의 투명 탄화불소 박막일 수 있으며, 추가되는 기능화제의 종류 및 함량 등에 따라 다양한 물성을 가지는 박막의 제조가 가능하다.
이하, 본 발명을 하기 실시예에 의해 더욱 구체적으로 설명한다. 그러나 이들 실시예는 본 발명에 대한 이해를 돕기 위한 것일 뿐, 어떤 의미로든 본 발명의 범위가 이들에 의해 제한되는 것은 아니다.
본 발명에서 불소계고분자 복합타겟 및 제조된 박막의 물성은 다음과 같이 측정하였다.
1. 접촉각 측정
완성된 박막의 수접촉각을 접촉각 측정기(PHOEIX 300 TOUCH, SEO 사)를 사용하여 측정하였다.
2. 가시광선 투과율 측정
완성된 박막에 Spectrophotometer(U-4100, Hitachi사)를 이용하여 빛을 조사하여 가시광선(550 nm)의 투과율을 측정하였다.
3. 타겟 부착력
완성된 타겟을 Cu 백킹플레이트와 Si 엘라스토머(Hankel, Loctite ABLESTIK ICP 4298)를 이용하여 접착한 후 접착 유지 시간을 측정하였다.
4. 타겟 표면 면저항
완성된 타겟의 표면 면저항을 4-point probe (MCP-T610, Mitsubishi Chemical Analytech)를 이용하여 측정하였다.
(실시예 1)
분말 PTFE(polytetrafluoroethylene, DuPont 7AJ) 20 wt%, 구리분말(평균입경 25um) 80 wt%를 이용하여 전극면과 접합하는 접합층(두께 1.0 mm)을, 상기 접합층 상부에 형성되는 증착층인 기능층은 PTFE 80 wt%, 구리분말 20 wt%을 이용하여 두께 5.0 mm로 한 후, 금형(가로 120 mm, 세로 55 mm, 두께 30 mm) 상부에 순차적으로 넣어 300 kgf/㎠ 조건에서 압축성형하고, 370 ℃에서 열처리 후 서서히 냉각하여 가공한 후 불소계고분자 복합 타겟(직경 4인치, 두께 6 mm)을 제조하였다.
상기 제조된 불소계고분자 복합 타겟을 이용하여 RF 마그네트론 스퍼터링법(Radio Frequency magnetron sputtering)으로 박막을 증착하였다. 이때, 기판은 1 X 2 ㎠ 크기의 Si wafer 기판을 아세톤과 알코올로 각각 5분간 초음파 세척기를 사용하여 세척하고 건조하여 준비하였다. 준비된 기판은 알루미늄으로 제작된 기판 홀더(holder)에 내열 테이프를 사용하여 부착하였고, 기판 홀더를 챔버 내의 기판 스테이지(stage)에 거치한 후 챔버를 닫고 로터리(rotary) 펌프(pump)로 50 mtorr까지 진공(vacuum)을 배기하였고, 저진공 작업을 완료한 후 cryogenic 펌프로 고진공을 형성하였다. 상온(25 ℃)에서 기판과 타겟 사이의 거리를 24 cm로 고정하고, 파워(200 W)와 가스(gas, Ar) 분압(10 mtorr)으로 100 nm 박막(thin film)을 제작하였다.
상기 방법으로 제조된 박막의 물성을 확인하기 위하여 접촉각, 가시광선 투과율, 타겟 부착력 및 타겟의 표면 면저항을 측정하여, 그 결과를 표 1에 나타내었다. 그 결과, 상기 방법으로 제조된 불소계고분자 복합 타겟은 전극과의 접착유지 시간이 현저히 상승하여, 우수한 증착효율의 구현이 가능함을 알 수 있었다. 이는 전극과의 접합력이 불량하여 불완전 증착이 되는 불소계고분자만의 타겟인 비교예 1의 결과와 비교시 완전히 상이한 놀라운 효과임을 알 수 있다.
또한 RF 마그네트론 스퍼터링법(Radio Frequency magnetron sputtering)으로 박막 증착시, 파워값에 따른 효과를 확인하기 위하여 200, 300 W에서의 박막증착율을 확인하여, 그 결과를 표 2에 나타내었다. 그 결과, 박막 증착효율에 있어서 상기 구리성분을 사용하지 않은 비교예 1에 비하여 동일시간 및 동일 인가에너지에 따라 2.0 배 및 2.63 배의 증착효율(증착두께의 차이)을 나타냄을 알 수 있었다.
(실시예 2)
분말 PTFE(polytetrafluoroethylene) 20 wt% 및 구리 80 wt%를 이용하여 접합층(두께 1.0mm)을, 상기 접합층 상부에 PTFE(polytetrafluoroethylene) 100 wt%을 이용하여 기능성층(두께 5.0mm)을 가지는 불소계고분자 복합 타겟(직경 4인치, 두께 6 mm)을 제조한 후 상기 실시예 1 의 방법과 동일하게 100 nm 박막(thin film)을 제작하였다.
상기 실시예 1과 동일한 방법으로 제조된 박막의 물성을 확인하기 위하여 접촉각, 가시광선 투과율, 타겟 부착력 및 타겟의 표면 면저항을 측정하여, 그 결과를 표 1에 나타내었다.
(실시예 3)
분말 PTFE(polytetrafluoroethylene) 80 wt% 및 Silver (Ag) 20 wt%를 균일하게 혼합한 후 금형(120 mm, 세로 55 mm, 두께 30 mm) 상부에 넣어 300 kgf/㎠ 조건에서 압축성형하고, 370 ℃에서 열처리 후 서서히 냉각하여 가공한 후 불소계고분자 복합 타겟(직경 4인치, 두께 6 mm)을 제조한 후 상기 실시예 1 의 방법과 동일하게 100 nm 박막(thin film)을 제작하였다.
상기 실시예 1과 동일한 방법으로 제조된 박막의 물성을 확인하기 위하여 접촉각, 가시광선 투과율, 타겟 부착력 및 타겟의 표면 면저항을 측정하여, 그 결과를 표 1에 나타내었다.
(실시예 4)
분말 PTFE(polytetrafluoroethylene, DuPont 7AJ) 80 wt% 및 구리(평균입경 25um) 10 wt%와 TiO2(평균입경 20um) 10 wt%를 균일하게 혼합한 후 금형(120 mm, 세로 55 mm, 두께 30 mm) 상부에 넣어 300 kgf/㎠ 조건에서 압축성형하고, 370 ℃에서 열처리 후 서서히 냉각하여 가공한 후 불소계고분자 복합 타겟(직경 4인치, 두께 6 mm)을 제조한 후 상기 실시예 1 의 방법과 동일하게 100 nm 박막(thin film)을 제작하였다.
상기 실시예 1과 동일한 방법으로 제조된 박막의 물성을 확인하기 위하여 접촉각, 가시광선 투과율, 타겟 부착력 및 타겟의 표면 면저항을 측정하여, 그 결과를 표 1에 나타내었다.
(실시예 5)
분말 PTFE(polytetrafluoroethylene, DuPont 7AJ) 80 wt% 및 실리콘 금속(Si, 평균입경 20um) 20 wt%를 균일하게 혼합한 후 금형(120 mm, 세로 55 mm, 두께 30 mm) 상부에 넣어 300 kgf/㎠ 조건에서 압축성형하고, 370 ℃에서 열처리 후 서서히 냉각하여 가공한 후 불소계고분자 복합 타겟(직경 4인치, 두께 6 mm)을 제조한 후 상기 실시예 1 의 방법과 동일하게 100 nm 박막(thin film)을 제작하였다.
상기 실시예 1과 동일한 방법으로 제조된 박막의 물성을 확인하기 위하여 접촉각, 가시광선 투과율, 타겟 부착력 및 타겟의 표면 면저항을 측정하여, 그 결과를 표 1에 나타내었다.
(실시예 6)
분말 PFA(perfluoroalkoxy copolymer, 3M Dyneon PFA 6503) 80 wt% 및 알루미나 (Al2O3) 20 wt%를 균일하게 혼합한 후 금형(120 mm, 세로 55 mm, 두께 30 mm) 상부에 넣어 300 kgf/㎠ 조건에서 압축성형하고, 370 ℃에서 열처리 후 서서히 냉각하여 가공한 후 불소계고분자 복합 타겟(직경 4인치 그 결과를 표 1에 나타내었다. 이때, 상기 조성의 불소계고분자 복합 타겟을 이용하여 박막 제작시 증착율이 다소 떨어져 동일 두께의 박막을 형성하기 위해 실시예 1의 증착시간 보다 2배의 시간이 소요되었다.
(실시예 7)
분말 FEP(Fluorinated Ethylene Propylene Copolymer, 3M Dyneon FEP 6338Z) 80 wt% 및 카본 블랙 (Carbon Black) 20 wt%를 균일하게 혼합한 후 금형(120 mm, 세로 55 mm, 두께 30 mm) 상부에 넣어 300 kgf/㎠ 조건에서 압축성형하고, 370 ℃에서 열처리 후 서서히 냉각하여 가공한 후 불소계고분자 복합 타겟(직경 4인치, 두께 6 mm)을 제조한 후 상기 실시예 1 의 방법과 동일하게 100 nm 박막(thin film)을 제작하였다.
상기 실시예 1과 동일한 방법으로 제조된 박막의 물성을 확인하기 위하여 접촉각, 가시광선 투과율, 타겟 부착력 및 타겟의 표면 면저항을 측정하여, 그 결과를 표 1에 나타내었다.
또한 RF(Radio Frequency) 마그네트론 스퍼터링법(magnetron sputtering)으로 박막 증착시, 파워값에 따른 효과를 확인하기 위하여 200, 300 W에서의 박막증착율을 확인하여, 그 결과를 표 2에 나타내었다. 그 결과, 박막 증착효율에 있어서 상기 카본 블랙 성분을 사용하지 않은 비교예 1에 비하여 동일시간 및 동일 인가에너지에 따라 2.59 배 및 2.86 배의 증착효율(증착두께의 차이)을 나타냄을 알 수 있었다.
(실시예 8)
분말PTFE(polytetrafluoroethylene, DuPont 7AJ) 20 wt%, 구리분말(평균입경 25um) 80 wt%를 이용하여 전극면과 접합하는 접합층(두께 1.0 mm)을, 상기 접합층 상부에 형성되는 증착층인 기능층은 PTFE 85 wt%, 탄소나노튜브 (Carbon Nanotube) 15 wt%을 이용하여 두께 5.0 mm로 한 후, 금형(가로 120 mm, 세로 55 mm, 두께 30 mm) 상부에 순차적으로 넣어 300 kgf/㎠ 조건에서 압축성형하고, 370 ℃에서 열처리 후 서서히 냉각하여 가공한 후 불소계고분자 복합 타겟(직경 4인치, 두께 6 mm)을 제조하였다.
상기 제조된 불소계고분자 복합 타겟을 이용하여, DC(Direct Current) 마그네트론 스퍼터링(magnetron sputtering) 전원 방식으로 박막을 증착하였다. 이때, 기판은 1 X 2 ㎠ 크기의 Si wafer 기판을 아세톤과 알코올로 각각 5분간 초음파 세척기를 사용하여 세척하고 건조하여 준비하였다. 준비된 기판은 알루미늄으로 제작된 기판 홀더(holder)에 내열 테이프를 사용하여 부착하였고, 기판 홀더를 챔버내의 기판 스테이지(stage)에 거치한 후 챔버를 닫고 로터리(rotary) 펌프(pump)로 50 mtorr까지 진공(vacuum)을 배기하였고, 저진공 작업을 완료한 후 cryogenic 펌프로 고진공을 형성하였다. 상온(25 ℃)에서 기판과 타겟 사이의 거리를 24 cm로 고정하고, 파워(200 W)와 가스(gas) 분압(10 mtorr)으로 100 nm 박막(thin film)을 제작하였다.
상기 방법으로 제조된 박막의 물성을 확인하기 위하여 접촉각, 가시광선 투과율, 타겟 부착력 및 타겟의 표면 면저항을 측정하여, 그 결과를 표 1에 나타내었다. 그 결과, 상기 방법으로 제조된 불소계고분자 복합 타겟은 우수한 접착유지시간 및 면저항에서 도전성을 충분히 유지하면서도 전극과의 접착유지 시간이 현저히 상승함을 알 수 있었다. 이는 도전성을 띄지 않아 실질적으로 증착이 되지 않거나 불완전 증착이 되는 불소계고분자만의 타겟인 비교예 1의 결과와 비교시 완전히 상이한 놀라운 효과임을 알 수 있다.
또한 DC(Direct Current) 마그네트론 스퍼터링법(magnetron sputtering)으로 박막 증착시, 파워값에 따른 효과를 확인하기 위하여 200, 300 W에서의 박막증착율을 확인하여, 그 결과를 표 2에 나타내었다. 그 결과, 박막 증착효율에 있어서 상기 탄소나노튜브와 구리성분을 사용하지 않은 비교예 1에 비하여 동일시간 및 동일 인가에너지에 따라 6.6 배 및 9 배의 놀라운 증착효율(증착두께의 차이)을 나타냄을 알 수 있었다.
(실시예 9)
상기 실시예 8의 불소계고분자 복합 타겟을 이용하여, MF(Mid-range Frequency) 마그네트론 스퍼터링(magnetron sputtering) 전원 방식으로 파워 200W 조건으로 상기 실시예 8의 방법과 동일하게 100 nm 박막(thin film)을 제작하였다.
상기 방법으로 제조된 박막의 물성을 확인하기 위하여 접촉각, 가시광선 투과율, 타겟 부착력 및 타겟의 표면 면저항을 측정하여, 그 결과를 표 1에 나타내었다.
또한 MF 마그네트론 스퍼터링법(Mid-range Frequency magnetron sputtering)으로 박막 증착시, 파워값에 따른 효과를 확인하기 위하여 200, 300 W에서의 박막증착율을 확인하여, 그 결과를 표 2에 나타내었다. 그 결과, 박막 증착효율에 있어서 상기 탄소나노튜브와 구리성분을 사용하지 않은 비교예 1에 비하여 동일시간 및 동일 인가에너지에 따라 3.2 배 및 3.3 배의 놀라운 증착효율(증착두께의 차이)을 나타냄을 알 수 있었다.
(실시예 10)
분말PTFE(polytetrafluoroethylene, DuPont 7AJ) 85 wt%, 그라파이트(Graphite) 15 wt%를 이용하여 불소계고분자 복합 타겟(직경 4인치, 두께 6 mm)을 제조하였다. 그리고 실시예 9와 같이 MF 전원 방식으로 200W 조건에서 100 nm 박막(thin film)을 제작하였다.
상기 방법으로 제조된 박막의 물성을 확인하기 위하여 접촉각, 가시광선 투과율, 타겟 부착력 및 타겟의 표면 면저항을 측정하여, 그 결과를 표 1에 나타내었다.
(실시예 11)
분말 FEP(Fluorinated Ethylene Propylene Copolymer, 3M Dyneon FEP 6338Z) 90 wt%, 탄소나노튜브(Carbon Nanotube) 10 wt%를 이용하여 불소계고분자 복합 타겟(직경 4인치, 두께 6 mm)을 제조하였다. 그리고 실시예 9와 같이 MF 전원 방식으로 200W 조건에서 100 nm 박막(thin film)을 제작하였다.
상기 방법으로 제조된 박막의 물성을 확인하기 위하여 접촉각, 가시광선 투과율, 타겟 부착력 및 타겟의 표면 면저항을 측정하여, 그 결과를 표 1에 나타내었다.
(실시예 12)
분말 PTFE(polytetrafluoroethylene, DuPont 7AJ) 80 wt%, 탄소나노튜브(Carbon Nanotube) 10 wt%, 산화실리카 (SiO2) 10 wt%를 이용하여 불소계고분자 복합 타겟(직경 4인치, 두께 6 mm)을 제조하였다. 그리고 실시예 9와 같이 MF 전원 방식으로 200W 조건에서 100 nm 박막(thin film)을 제작하였다.
상기 방법으로 제조된 박막의 물성을 확인하기 위하여 접촉각, 가시광선 투과율, 타겟 부착력 및 타겟의 표면 면저항을 측정하여, 그 결과를 표 1에 나타내었다.
(실시예 13)
분말 PFA(perfluoroalkoxy copolymer, 3M Dyneon PFA 6503) 60 wt%, 분말 PTFE(polytetrafluoroethylene, DuPont 7AJ) 30 wt%, 탄소나노튜브(Carbon Nanotube) 10 wt%를 이용하여 불소계고분자 복합 타겟(직경 4인치, 두께 6 mm)을 제조하였다. 그리고 실시예 9와 같이 MF 전원 방식으로 300W 조건에서 100 nm 박막(thin film)을 제작하였다.
상기 방법으로 제조된 박막의 물성을 확인하기 위하여 접촉각, 가시광선 투과율, 타겟 부착력 및 타겟의 표면 면저항을 측정하여, 그 결과를 표 1에 나타내었다.
(실시예 14)
분말 PFA(perfluoroalkoxy copolymer, 3M Dyneon PFA 6503) 99 wt%, 탄소나노튜브(Carbon Nanotube) 1 wt%를 이용하여 불소계고분자 복합 타겟(직경 4인치, 두께 6 mm)을 제조하였다. 그리고 실시예 9와 같이 MF 전원 방식으로 200W 조건에서 100 nm 박막(thin film)을 제작하였다.
상기 방법으로 제조된 박막의 물성을 확인하기 위하여 접촉각, 가시광선 투과율, 타겟 부착력 및 타겟의 표면 면저항을 측정하여, 그 결과를 표 1에 나타내었다.
(실시예 15)
분말 PTFE(polytetrafluoroethylene, DuPont 7AJ) 95 wt%, 폴리피롤(polypyrrole) 5 wt%, 그리고 도펀트(dopant)로 DBSA (Dodecyl Benzene Sulfonic Acid) 0.1 mol%를 이용하여 불소계고분자 복합 타겟(직경 4인치, 두께 6 mm)을 제조하였다. 그리고 실시예 9와 같이 MF 전원 방식으로 200W 조건에서 100 nm 박막(thin film)을 제작하였다.
상기 방법으로 제조된 박막의 물성을 확인하기 위하여 접촉각, 가시광선 투과율, 타겟 부착력 및 타겟의 표면 면저항을 측정하여, 그 결과를 표 1에 나타내었다.
(실시예 16)
상기 실시예 8의 기능층의 조성 대신 PTFE 65 wt%, 탄소나노튜브 (Carbon Nanotube) 15 wt%, Silver (Ag) 20 wt%으로 변경하여, 불소계고분자 복합 타겟(직경 4인치, 두께 6 mm)을 제조하였다. 그리고 실시예 9와 같이 MF 전원 방식으로 200W 조건에서 100 nm 박막(thin film)을 제작하였다.
상기 방법으로 제조된 박막의 물성을 확인하기 위하여 접촉각, 가시광선 투과율, 타겟 부착력 및 타겟의 표면 면저항을 측정하여, 그 결과를 표 1에 나타내었다.
(비교예 1)
반응용기에 PTFE(polytetrafluoroethylene) 100 wt% 를 균일하게 혼합한 후 금형(120 mm, 세로 55 mm, 두께 30 mm) 상부에 넣어 300 kgf/㎠ 조건에서 압축성형하고, 370 ℃에서 열처리 후 서서히 냉각하여 가공한 후 불소계고분자 타겟(직경 4인치, 두께 6 mm)을 제조하였다.
상기 방법으로 제조된 불소계고분자 타겟을 이용하여 RF(Radio Frequency) 마그네트론 스퍼터링법(magnetron sputtering)으로 박막을 증착하였다. 이때, 실시예 1에서 기술한 바와 동일한 방법으로 100 nm 박막(thin film)을 제작하였다.
또한 동일한 타겟으로 MF와 DC 방식으로 스퍼터링을 시도하였지만 플라즈마 방전이 발생하지 않아 박막 증착이 불가하였다.
상기 방법으로 제조된 박막의 물성을 확인하기 위하여 접촉각, 가시광선 투과율, 타겟 부착력 및 타겟의 표면 면저항을 측정하여, 그 결과를 표 1에 나타내었으며, RF(Radio Frequency) 마그네트론 스퍼터링법(magnetron sputtering)으로 박막 증착시, 파워값에 따른 효과를 확인하기 위하여 200, 300 W에서의 박막증착율을 확인하여, 그 결과를 표 2에 나타내었다.
실시예 비교예
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1
전원방식 RF DC MF RF
접촉각(°) 105 112 100 110 111 113 115 105 109 110 115 113 116 115 114 112 105
투과율(%) 92.13 91.11 91.47 91.35 92.27 92.14 91.00 91.90 92.40 90.70 91.70 92.50 92.16 92.57 92.34 91.98 91.20
접착유지시간 >30hr >30hr >30hr >20hr >20hr >15hr >20hr >30hr >30hr >20hr >20hr >20hr >20hr >20hr >10hr >20hr 접착불가
타겟의 면저항(Ω/□) 100 250 10 0.3 0.3 60 150 5 7 100 200 0.1
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 불소계고분자 복합 타겟은 높은 표면 접촉각과 우수한 가시광선 투과율을 가질 뿐 아니라 전도성입자, 전도성을 가지는 기능화제를 함유함으로써 금속 전극에 대한 우수한 접합력과 면저항성을 가짐을 확인함으로써, 향상된 스퍼터링 효율을 갖는 스퍼터링용 불소계고분자 복합 타겟을 제조할 수 있음을 확인 할 수 있었다.
또한 본 발명에 따른 불소계고분자 복합 타겟의 경우 고 에너지를 인가하는 스퍼터링 이후에도 형태의 변형이 없었으나, 비교예 1의 경우 타겟의 휨 정도가 커 육안으로도 금속 전극과의 접합성이 떨어짐을 알 수 있었다.
실시예 1 실시예 7 실시예 8 실시예 9 비교예 1
RF RF DC MF RF
Power 200 W 190 nm/hr 250nm/hr 630 nm/hr 310 nm/hr 95 nm/hr
Power 300 W 570 nm/hr 630nm/hr 1980 nm/hr 740nm/hr 220 nm/hr
상기 표 2에 나타낸 바와 같이, 본 발명에 따른 불소계고분자 복합 타겟을 증착 챔버의 전극과의 접합력이 향상된 불소계고분자 복합 타겟을 이용함으로써, 고 에너지를 인가하여 플라즈마를 발생시킴에 의해서도 변형이 일어나지 않고 안정적으로 고정됨은 물론이며, 전도성을 부여함으로써 향상된 플라스마 효율을 가져 피착체에 대한 월등히 높은 증착율을 보임을 확인할 수 있었다.
즉, 본 발명에 따른 불소계고분자 복합 타겟은 종래 RF 스퍼터링시의 문제점을 해결함과 동시에 보다 낮은 에너지대의 MF 또는 DC 마그네트론 스퍼터링으로도 증착이 가능할 뿐 아니라 RF 전원 방식에 비해 월등히 높은 증착율을 보임을 확인할 수 있었다.

Claims (17)

  1. 스퍼터링 챔버 내부에 투입되어 증착되는 불소계고분자 복합 타겟으로서, 상기 불소계고분자 복합 타겟은 불소계고분자와 도전성 물질 및 금속화합물에서 선택되는 하나 이상의 성분을 포함하는 스퍼터링용 불소계고분자 복합 타겟.
  2. 제1항에 있어서,
    상기 도전성 물질은 전도성입자, 전도성 고분자 및 금속성분에서 선택되는 하나 이상인 스퍼터링용 불소계고분자 복합 타겟.
  3. 제2항에 있어서,
    상기 전도성입자는 카본나노튜브, 카본나노섬유, 카본블랙, 그래핀, 그라파이트 및 탄소섬유에서 선택되는 하나 이상인 스퍼터링용 불소계고분자 복합 타겟.
  4. 제2항에 있어서,
    상기 전도성 고분자는 폴리아닐린, 폴리아세틸렌, 폴리티오펜, 폴리피롤, 폴리플루렌, 폴리피렌, 폴리아줄렌, 폴리나프탈렌, 폴리페닐렌, 폴리페닐렌비닐렌, 폴리카르바졸, 폴리인돌, 폴리아제핀, 폴리에틸렌, 폴리에틸렌비닐렌, 폴리페닐렌설파이드, 폴리퓨란, 폴리셀레노펜, 폴리텔루로펜 또는 이들의 혼합물에서 선택되는 하나 이상인 스퍼터링용 불소계고분자 복합 타겟.
  5. 제2항에 있어서,
    상기 금속성분은 Cu, Al, Ag, Au, W, Mg, Ni, Mo, V, Nb, Ti, Pt, Cr 및 Ta 에서 선택되는 하나 이상인 스퍼터링용 불소계고분자 복합 타겟.
  6. 제1항에 있어서,
    상기 금속화합물은 금속유기물, 금속산화물, 금속탄소체, 금속수산화물, 금속카보네이트, 금속바이카보네이트, 금속질화물 및 금속불화물에서 선택되는 하나 이상인 스퍼터링용 불소계고분자 복합 타겟.
  7. 제1항에 있어서,
    상기 불소계고분자는 폴리테트라 플루오로에틸렌, 폴리클로로트리플루오로에틸렌, 폴리비닐리덴디플루오라이드, 플로린화 에틸렌 프로필렌 공중합체, 에틸렌-테트라플루오로에틸렌 공중합체, 에틸렌-클로로트리플루오로 에틸렌 공중합체, 퍼플루오로알콕시 공중합체, 비닐플루오라이드 단일중합체 고무, 비닐플루오라이드 공중합체 고무, 비닐리덴플루오라이드 단일중합체 고무 및 비닐리덴플루오라이드 공중합체 고무에서 선택되는 하나 이상인 스퍼터링용 불소계고분자 복합 타겟.
  8. 제1항에 있어서,
    상기 불소계고분자 복합 타겟은 동일하거나 상이한 도전성 물질 또는 도전성 물질과 금속화합물의 혼합성분을 포함하는 2층 이상의 복수층으로 구배를 가지거나 연속적인 함량의 구배를 가지는 것인 스퍼터링용 불소계고분자 복합 타겟.
  9. 제1항에 있어서,
    상기 불소계고분자 복합 타겟은 도전성 물질을 포함하는 DC 또는 MF 인가형 스퍼터링에 사용하는 스퍼터링용 불소계고분자 복합 타겟.
  10. 불소계고분자와 도전성 물질 및 금속화합물에서 선택되는 하나 이상의 성분을 포함하는 스퍼터링용 불소계고분자 복합 타겟의 제조방법.
  11. 제 10항에 있어서,
    상기 불소계고분자 복합 타겟은 전극면의 일면에 불소계고분자와 도전성 물질을 포함하는 접합층 및 불소계고분자를 포함하는 기능층이 적층된 형태로 열성형되어 제조되거나 불소계고분자에 도전성 기능화제가 연속적인 함량의 구배를 가지도록 열성형되어 제조되는 것인 스퍼터링용 불소계고분자 복합 타겟의 제조방법.
  12. 제11항에 있어서,
    상기 기능층은 도전성 물질 및 금속화합물에서 선택되는 하나 이상을 더 포함하는 것인 스퍼터링용 불소계고분자 복합 타겟의 제조방법.
  13. 제 10항에 있어서,
    상기 불소계고분자 복합 타겟은 두께 방향으로 도전성 물질 또는 도전성 물질과 금속화합물의 혼합성분의 함량이 높고, 피착체의 방향으로는 도전성 물질 또는 도전성 물질과 금속화합물의 혼합성분의 함량이 감소되도록 전극면 상에 접착되는 것 또는 그 반대로 접착되는 것인 스퍼터링용 불소계고분자 복합 타겟의 제조방법.
  14. 제10항에 있어서,
    상기 불소계고분자 복합 타겟은 불소계고분자 100 중량부에 대하여 상기 도전성 물질 또는 도전성 물질과 금속화합물의 혼합성분을 0.01 내지 2000 중량부로 함유하는 것인 스퍼터링용 불소계고분자 복합 타겟의 제조방법.
  15. 스퍼터링 챔버, 상기 챔버 내부에 형성되는 제 1전극 인가부, 상기 제 1전극 인가부 상부면에 위치하는 제1항에 따른 불소계고분자 복합 타겟, 제 2전극 인가부 및 피착체를 포함하는 스퍼터링 증착시스템.
  16. 제1항에 따른 불소계고분자 복합 타겟을 증착챔버 내에 공정하는 단계와 상기 불소계고분자 복합 타겟에 RF, DC 및 MF에서 선택되는 어느 하나의 인가방식으로 플라즈마를 발생시켜 증착하는 단계를 포함하는 불소계고분자 복합 타겟을 이용하는 스퍼터링 방법.
  17. 제15항에 있어서,
    상기 인가방식이 DC 및 MF에서 선택되는 어느 하나의 인가방식으로 플라즈마발생시켜 증착하는 단계를 포함하는 불소계고분자 복합 타겟을 이용하는 스퍼터링 방법.
PCT/KR2016/000927 2015-01-28 2016-01-28 스퍼터링용 불소계고분자 복합 타겟 WO2016122223A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680007687.9A CN107208254B (zh) 2015-01-28 2016-01-28 溅射用氟类高分子复合靶
US15/547,015 US10861685B2 (en) 2015-01-28 2016-01-28 Fluoro-based polymer composite target for sputtering
JP2017539574A JP6877347B2 (ja) 2015-01-28 2016-01-28 スパッタリング用フッ素系高分子複合ターゲット

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20150013556 2015-01-28
KR10-2015-0013556 2015-01-28
KR10-2015-0099822 2015-07-14
KR10-2015-0099731 2015-07-14
KR1020150099731A KR20160092896A (ko) 2015-01-28 2015-07-14 증착용 불소계고분자 복합 타겟
KR1020150099822A KR20160092897A (ko) 2015-01-28 2015-07-14 증착용 불소계고분자 복합 타겟
KR10-2015-0131751 2015-09-17
KR1020150131751A KR20160092904A (ko) 2015-01-28 2015-09-17 증착용 불소계고분자 복합 타겟

Publications (1)

Publication Number Publication Date
WO2016122223A1 true WO2016122223A1 (ko) 2016-08-04

Family

ID=56543754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000927 WO2016122223A1 (ko) 2015-01-28 2016-01-28 스퍼터링용 불소계고분자 복합 타겟

Country Status (1)

Country Link
WO (1) WO2016122223A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142830A1 (ja) * 2018-01-18 2019-07-25 株式会社表面・界面工房 有機無機ハイブリッド膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100120598A (ko) * 2009-05-06 2010-11-16 (주)태광테크 스퍼터링용 타겟 및 그 제조방법
KR20110108178A (ko) * 2010-03-26 2011-10-05 주식회사 소로나 다성분 무기물 박막 형성방법 및 이를 적용하는 스퍼터링 장치
KR20120047873A (ko) * 2009-06-02 2012-05-14 인테그란 테크놀로지즈 인코포레이티드 금속-피복 중합체 제품
KR20150007865A (ko) * 2013-07-12 2015-01-21 삼성디스플레이 주식회사 스퍼터링 타겟의 제조 방법, 그 방법으로 제조된 스퍼터링 타겟 및 그 스퍼터링 타겟을 이용하여 유기 발광 표시 장치를 제조하는 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100120598A (ko) * 2009-05-06 2010-11-16 (주)태광테크 스퍼터링용 타겟 및 그 제조방법
KR20120047873A (ko) * 2009-06-02 2012-05-14 인테그란 테크놀로지즈 인코포레이티드 금속-피복 중합체 제품
KR20110108178A (ko) * 2010-03-26 2011-10-05 주식회사 소로나 다성분 무기물 박막 형성방법 및 이를 적용하는 스퍼터링 장치
KR20150007865A (ko) * 2013-07-12 2015-01-21 삼성디스플레이 주식회사 스퍼터링 타겟의 제조 방법, 그 방법으로 제조된 스퍼터링 타겟 및 그 스퍼터링 타겟을 이용하여 유기 발광 표시 장치를 제조하는 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAUCH ET AL.: "Mixing of PTFE and Oxides by Sputtering Techniques: A Comparison of Different Approaches", PROCEDIA TECHNOLOGY, vol. 15, 2014, pages 540 - 548 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142830A1 (ja) * 2018-01-18 2019-07-25 株式会社表面・界面工房 有機無機ハイブリッド膜
JP2019123872A (ja) * 2018-01-18 2019-07-25 株式会社表面・界面工房 有機無機ハイブリッド膜
US11655347B2 (en) 2018-01-18 2023-05-23 Hyomen Kaimen Kobo Corporation Organic-inorganic hybrid membrane
JP7324442B2 (ja) 2018-01-18 2023-08-10 株式会社表面・界面工房 有機無機ハイブリッド膜

Similar Documents

Publication Publication Date Title
KR102020319B1 (ko) 증착용 불소계고분자 복합 타겟
WO2015093903A1 (ko) 방열성이 우수한 금속 봉지재, 그 제조방법 및 상기 금속 봉지재로 봉지된 유연전자소자
WO2012157960A2 (ko) 다층 플라스틱 기판 및 이의 제조방법
EP2981413A1 (en) Polyimide cover substrate
CN1881052A (zh) 透明导电性层叠体
WO2013081424A1 (ko) 투명 전극 필름 제조용 기재 필름
WO2015065162A1 (ko) 전도성 구조체 및 이의 제조방법
WO2016167583A1 (ko) 그래핀의 도핑 방법, 그래핀 복합 전극의 제조 방법 및 이를 포함하는 그래핀 구조체
WO2020138642A1 (ko) 수지 조성물, 이를 이용한 금속 적층체와 인쇄회로기판 및 상기 금속 적층체의 제조방법
WO2010147393A2 (en) Solar cell and method of fabricating the same
WO2015098888A1 (ja) ガラス積層体、および電子デバイスの製造方法
WO2017065472A1 (ko) 전기 변색 소자 및 이의 제조방법
WO2016122223A1 (ko) 스퍼터링용 불소계고분자 복합 타겟
WO2017039342A1 (ko) 탄화불소 박막을 포함하는 배리어 필름 및 이의 제조방법
KR102361083B1 (ko) 탄화불소 박막의 제조방법 및 이의 제조장치
WO2017039339A1 (ko) 탄화불소 박막의 제조방법
KR20180036950A (ko) 스퍼터링용 불소계고분자 복합 타겟의 부착방법 및 이로부터 제조된 장치
WO2017078247A1 (ko) 필름 터치 센서
WO2020060173A1 (ko) 소자의 제조방법
WO2019117363A1 (ko) 고이동도 산화물 소결체 및 이를 포함하는 박막 트랜지스터
CN114296577B (zh) 一种降低石墨烯层内电阻率的方法
KR102043305B1 (ko) 발수 발유 코팅막 및 이의 제조방법
WO2015088208A1 (ko) 미세 구조체를 갖는 기판, 그 제조 방법, 미세 구조체의 정제 방법, 미세 구조체 네트워크 제조 방법, 및 그 제조 장치
KR20170138722A (ko) 스퍼터링용 불소계고분자 복합 타겟의 부착방법 및 이로부터 제조된 장치
WO2023204501A1 (ko) 전기 변색 소자 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539574

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15547015

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743701

Country of ref document: EP

Kind code of ref document: A1