WO2015093903A1 - 방열성이 우수한 금속 봉지재, 그 제조방법 및 상기 금속 봉지재로 봉지된 유연전자소자 - Google Patents

방열성이 우수한 금속 봉지재, 그 제조방법 및 상기 금속 봉지재로 봉지된 유연전자소자 Download PDF

Info

Publication number
WO2015093903A1
WO2015093903A1 PCT/KR2014/012606 KR2014012606W WO2015093903A1 WO 2015093903 A1 WO2015093903 A1 WO 2015093903A1 KR 2014012606 W KR2014012606 W KR 2014012606W WO 2015093903 A1 WO2015093903 A1 WO 2015093903A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
resin
graphite
coating layer
encapsulation material
Prior art date
Application number
PCT/KR2014/012606
Other languages
English (en)
French (fr)
Other versions
WO2015093903A8 (ko
Inventor
박영준
김경보
김무진
이수철
이재륭
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US15/102,847 priority Critical patent/US10044003B2/en
Priority to CN201480069988.5A priority patent/CN105848882B/zh
Priority to JP2016541231A priority patent/JP6440715B2/ja
Publication of WO2015093903A1 publication Critical patent/WO2015093903A1/ko
Publication of WO2015093903A8 publication Critical patent/WO2015093903A8/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8423Metallic sealing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a metal encapsulation material having excellent heat dissipation property used for encapsulating a device, a method of manufacturing the same, and a flexible electronic device encapsulated with the metal encapsulation material.
  • flat panel display devices examples include liquid crystal display devices (LCDs), plasma display panel devices (PDPs), field emission display devices (FEDs), and electroluminescent displays.
  • LCDs liquid crystal display devices
  • PDPs plasma display panel devices
  • FEDs field emission display devices
  • electroluminescent displays An electroluminescence display device (ELD) is used, and is used for various purposes such as home appliances such as televisions and videos as well as industrial fields such as computers and mobile phones such as laptops.
  • ELD electroluminescence display device
  • These flat panel display devices are rapidly replacing the existing cathode ray tubes (CRTs) because of their excellent performance of thinning, light weight, and low power consumption.
  • CRTs cathode ray tubes
  • OLEDs can emit light by themselves and can be driven at low voltages, OLEDs are rapidly being applied to small display markets such as mobile devices. OLED is also expected to commercialize large TV beyond small display.
  • Such a flat panel display device is a glass material is generally used as the support substrate and the encapsulation layer to prevent moisture permeation of the device, the glass material has a limit in providing light weight, thinning, and flexibility. Therefore, in recent years, flexible display devices that can maintain display functions even when bent like paper using flexible materials such as metals, plastics, and polymers, instead of conventional inflexible glass encapsulation materials, are emerging as next-generation flat panel display devices. have.
  • the plastic or polymer material has a disadvantage in that the life of the OLED is shortened by the transmitted moisture because the moisture permeability is high.
  • the heat dissipation performance is generally low, there is a disadvantage that does not effectively discharge the heat generated inside the display device, there is a need for improvement.
  • the metal encapsulation material is very excellent in preventing moisture due to the characteristics of the material and also excellent heat dissipation.
  • the manufacturing cost increases rapidly as the thickness of the substrate becomes thinner.
  • the thickness of the metal encapsulation material by the conventional rolling method is about 100 ⁇ m level
  • the metal encapsulation material produced by the electroforming method is manufactured to a thickness of 20 to 50 ⁇ m in order to secure the above effect, the heat generated inside When the metal encapsulant is to be absorbed, but is manufactured in the ultra-thin film as described above, there is a disadvantage that the heat capacity is lowered and the heat dissipation is lowered.
  • the present invention provides a metal encapsulation material having excellent heat dissipation, flexible, excellent moisture prevention effect, economical heat dissipation and a method of manufacturing the metal encapsulation material, and a flexible electronic device sealed by the metal encapsulation material. I would like to.
  • a metal foil According to one embodiment of the present invention, a metal foil; And a metal encapsulant having excellent heat dissipation formed on one surface of the metal foil and including a coating layer including a main resin and a metal-graphite composite.
  • the metal foil may have a thickness of 8 to 100 ⁇ m, and the coating layer may have a thickness of 1 to 10 ⁇ m.
  • the metal-graphite composite in the coating layer may be included in 5 to 20% by weight based on the total weight of the coating layer.
  • the metal-graphite composite may be bonded to graphite in an amount of 20 to 70 parts by weight based on 100 parts by weight of graphite.
  • the main resin in the coating layer may be at least one selected from the group consisting of polyurethane resin, polyethylene resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate resin, acrylic resin, silicone resin and fluorine resin.
  • the heat conducting layer may have a thickness of 0.1 to 5 ⁇ m.
  • the metal-graphene composite in the thermal conductive layer may be included in 5 to 20% by weight based on the total weight of the thermal conductive layer.
  • the metal-graphene composite may be bonded to graphene in an amount of 20 to 70 parts by weight based on 100 parts by weight of graphene.
  • the average particle size of the metal may be 10 to 100nm.
  • the main resin in the heat conducting layer may be at least one selected from the group consisting of polyurethane resin, polyethylene resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate resin, acrylic resin, silicone resin and fluorine resin.
  • a flexible electronic device comprising: an adhesive film layer laminated on the flexible electronic device; And a metal encapsulation material stacked on top of the adhesive film layer to encapsulate the flexible electronic device, wherein the metal encapsulation material includes a metal encapsulation material which is disposed so that the coating layer faces the outside air side and is stacked on top of the adhesive film layer.
  • a flexible electronic device encapsulated by ash.
  • a coating layer including a metal-graphite composite is formed on one surface, thereby significantly improving not only flexibility, water resistance, and workability, but also heat dissipation properties, thereby effectively dissipating heat generated from the encapsulated device to the outside, resulting from heat. It is possible to provide a metal encapsulating material having excellent heat dissipation, a method of manufacturing the metal encapsulating material, and a flexible electronic device encapsulated by the metal encapsulating material, which can prevent problems such as a failure.
  • FIG. 1 is a cross-sectional conceptual view of an OLED light emitting layer encapsulated with a metal encapsulant as an example of a flexible electronic device of the present invention.
  • Figure 3 is a SEM analysis of the nickel raw material.
  • Figure 4 is a SEM analysis of the mixture of graphite and nickel.
  • Example 7 is a graph showing the heat release characteristics of Example 1 and Comparative Example 1.
  • the present invention relates to a metal encapsulant for a flexible electronic device such as a thin film solar cell, an OLED lighting, a display device, or a printed circuit board (PCB), specifically, a metal foil; It is formed on one surface of the metal foil, and provides a metal encapsulant having excellent heat dissipation, including a coating layer comprising a main resin and a metal-graphite composite.
  • a metal encapsulant for a flexible electronic device such as a thin film solar cell, an OLED lighting, a display device, or a printed circuit board (PCB), specifically, a metal foil; It is formed on one surface of the metal foil, and provides a metal encapsulant having excellent heat dissipation, including a coating layer comprising a main resin and a metal-graphite composite.
  • the metal foil is manufactured to a thickness of 8 to 100 ⁇ m, more preferably 8 to 50 ⁇ m by rolling or electroforming method
  • the metal component constituting the metal foil is in the technical field to which the metal encapsulant is applied
  • it may vary, for example, it may be made of any one alloy selected from Fe-Ni-based alloys, Fe-Cr-based alloys and Fe-Cu-based alloys, and among them, especially made of Fe-Ni alloys,
  • the Fe-Ni alloy is a material that is easy to secure corrosion resistance, when the electro-casting method, there is an advantage that the formation of the Fe-Ni alloy.
  • the metal encapsulation material provided in the present invention should not only prevent the penetration of moisture and oxygen into the device, but also be able to effectively discharge the heat generated inside the device, it is preferable to have excellent heat dissipation characteristics.
  • the metal-graphite composite is a material having excellent heat dissipation
  • any one side of both sides of the metal foil can be effectively discharged to the outside air heat transferred to the metal foil to the part which comes into contact with the outside air.
  • the coating layer may include a metal-graphite composite, thereby improving heat dissipation and thermal conductivity. That is, the function of the coating layer is not limited to the heat radiation layer.
  • the metal-graphene composite is a material having high thermal conductivity
  • a portion of the metal-graphene composite adjacent to the heat source includes a heat conductive layer including the metal-graphene composite so that heat generated from the heat source can be transferred to the metal foil well. It can be formed additionally.
  • the coating layer preferably has a thickness of 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m.
  • the thickness is less than 1 ⁇ m, the thermal conduction efficiency may be insignificant, and when the thickness is more than 10 ⁇ m, there is a problem that the manufacturing cost is increased due to the excessive thickness.
  • the coating layer may include a main resin and a metal-graphite composite.
  • the metal-graphite composite is preferably included in 5 to 20% by weight, more preferably 8 to 15% by weight based on the total weight of the coating layer.
  • the content of the metal-graphite composite is less than 5% by weight, the effect of improving heat dissipation is less, and when the content is more than 20% by weight, there is a problem of inferior economy.
  • the main resin contained in the coating layer is not particularly limited in kind, for example, made of polyurethane resin, polyethylene resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate resin, acrylic resin, silicone resin and fluorine resin One or more selected from the group can be used.
  • the metal-graphite composite included in the coating layer may be formed by bonding a metal to graphite, and the manufacturing process is not particularly limited.
  • the graphite and the metal powder may be processed in a high temperature plasma at about 14000 ° C. or higher. It can be used that formed by fusion.
  • the metal bonded to the graphite is not particularly limited as long as it is a metal capable of forming a metal-graphite composite, and a metal having an average particle size of 10 to 100 nm may be used.
  • the metal are selected from the group consisting of aluminum (Al), copper (Cu), silver (Ag), gold (Au), iron (Fe), tin (Sn), zinc (Zn) and nickel (Ni). It may consist of a single metal or an alloy containing at least one of these metals.
  • the average particle size of the metal when the average particle size of the metal is less than 10 nm, it may be a raw material cost increase factor as fine particles more than necessary, on the other hand, when the average particle size exceeds 100 nm, the surface area per unit weight is small, which may be disadvantageous to improve heat dissipation.
  • the metal is preferably bonded to graphite in an amount of 20 to 70 parts by weight, more preferably 30 to 50 parts by weight with respect to 100 parts by weight of graphite. If the content is less than 20 parts by weight, the effect of improving the heat dissipation that the metal can contribute may be insignificant, and if the content is more than 70 parts by weight, the heat dissipation may be rather deteriorated due to the remaining metals not being combined with graphite.
  • the present invention as described above, by forming a coating layer on one surface of the metal foil, it is possible to effectively discharge the heat generated inside the device generated by the metal encapsulant to the outside air.
  • a heat conduction layer that can be formed on one surface different from the surface on which the coating layer is formed will be described in detail below.
  • the said heat conductive layer has a thickness of 0.1-5 micrometers, More preferably, it is 1-3 micrometers. If the thickness is less than 0.1 ⁇ m, the thermal conduction efficiency may be insignificant, and if the thickness is more than 5 ⁇ m, there is a problem in that the manufacturing cost is increased due to excessive thickness.
  • the heat conducting layer may include a main resin and a metal-graphene composite.
  • the metal-graphene composite is preferably contained in 5 to 20% by weight, more preferably 8 to 15% by weight based on the total weight of the heat conducting layer.
  • the composite may not be evenly dispersed in the main resin, it is difficult to expect the effect of further improving the thermal conductivity, when less than 5% by weight, the thermal conductivity is improved Less effective
  • the main resin contained in the heat conductive layer is not particularly limited in kind, for example, polyurethane resin, polyethylene resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate resin, acrylic resin, silicone resin and fluorine resin At least one selected from the group consisting of can be used.
  • the metal-graphene composite included in the thermally conductive layer may be formed by bonding a metal to graphene, and the manufacturing process is not particularly limited.
  • the graphene and the metal powder may be approximately 14000 ° C. or more. What is formed by fusion by a special process in a high temperature plasma can be used.
  • the metal bonded to the graphene is not particularly limited as long as it is a metal capable of forming a metal-graphene composite, and a metal having an average particle size of 10 to 100 nm may be used.
  • the metal are selected from the group consisting of aluminum (Al), copper (Cu), silver (Ag), gold (Au), iron (Fe), tin (Sn), zinc (Zn) and nickel (Ni). It may consist of a single metal or an alloy containing at least one of these metals.
  • the average particle size of the metal when the average particle size of the metal is less than 10 nm, it may be a factor of increasing the raw material unit cost as more than necessary fine particles, while when the average particle size exceeds 100 nm, the surface area per unit weight is small, which may be disadvantageous for improving thermal conductivity. have.
  • the metal is preferably bonded to graphene in an amount of 20 to 70 parts by weight, more preferably 30 to 50 parts by weight, based on 100 parts by weight of graphene. If the content is less than 20 parts by weight, the effect of improving the thermal conductivity that the metal can contribute may be insignificant, and if the content is more than 70 parts by weight, the thermal conductivity may be rather deteriorated due to the remaining metals that do not bond with graphene. have.
  • the heat generated from the heat source inside the apparatus can be effectively transferred to the metal foil.
  • a method for manufacturing a metal encapsulant having excellent heat dissipation specifically, preparing a metal foil; It provides a method for producing a metal sealing material having excellent heat dissipation comprising the step of forming a coating layer by applying a heat dissipating composition comprising a main resin and a metal-graphite composite on one surface of the metal foil.
  • the method may further include forming a thermally conductive layer by applying the thermally conductive composition including the main resin and the metal-graphene composite to the other surface of the metal foil.
  • the present invention can prepare a metal foil that can be used to seal the device.
  • the metal foil has a thickness of 8 to 100 ⁇ m, more preferably 8 to 50 ⁇ m, the manufacturing process is not particularly limited, it may be produced by a rolling method or an electroforming method.
  • the metal material constituting the foil is not particularly limited as long as it is capable of effectively dissipating heat generated inside the device to the outside and preventing moisture and oxygen from penetrating into the device, and the metal is not particularly limited.
  • the encapsulant may vary depending on the technical field of the device to which the encapsulant is applied.
  • the material having the above characteristics for example, it may be made of any one alloy selected from Fe-Ni-based alloys, Fe-Cr-based alloys and Fe-Cu-based alloys, in particular Fe-Ni alloys It is possible to optimize the coefficient of thermal expansion by controlling the content of Ni, and the Fe-Ni alloy is a material that is easy to ensure corrosion resistance, and when produced by electroforming, Fe-Ni alloy is easy to form There is an advantage.
  • the present invention may perform a step of forming a coating layer by applying a heat dissipating composition including a main resin and a metal-graphite composite on one surface of the metal foil.
  • the method may further include forming a thermally conductive layer by applying the thermally conductive composition including the main resin and the metal-graphene composite to the other surface of the metal foil.
  • the order in which the thermally conductive composition or the heat dissipating composition is applied to the surface of the metal foil is not particularly limited, and the thermally conductive composition is first applied to any one side of the metal foil, and then to the other side.
  • the heat dissipating composition may be applied, or the heat dissipating composition may be first applied to any one side of the metal foil, and then the heat conductive composition may be applied to the other side. Can be applied at the same time.
  • the step of applying the thermally conductive composition or the heat dissipating composition to the surface of the metal foil is not particularly limited, but is more preferably carried out by a method such as a slot die.
  • the heat dissipating composition may include a main resin and a metal-graphite composite.
  • the metal-graphite composite is preferably contained in 5 to 20% by weight, more preferably 8 to 15% by weight based on the total weight of the heat dissipating composition.
  • the content of the metal-graphite composite is less than 5% by weight, the effect of improving heat dissipation is less, and when the content is more than 20% by weight, there is a problem of inferior economy.
  • the main resin contained in the heat dissipating composition is not particularly limited in kind, for example, polyurethane resin, polyethylene resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate resin, acrylic resin, silicone resin and fluorine resin One or more kinds selected from the group consisting of can be used.
  • the metal-graphite composite included in the heat dissipating composition may be formed by bonding a metal to graphite, and the manufacturing process is not particularly limited.
  • the graphite and the metal powder may be specially prepared in a high temperature plasma of about 14000 ° C. or more. The thing formed by fusion
  • the metal bonded to the graphite is not particularly limited as long as it is a metal capable of forming a metal-graphite composite, and a metal having an average particle size of 10 to 100 nm may be used.
  • the metal are selected from the group consisting of aluminum (Al), copper (Cu), silver (Ag), gold (Au), iron (Fe), tin (Sn), zinc (Zn) and nickel (Ni). It may consist of a single metal or an alloy containing at least one of these metals.
  • the average particle size of the metal when the average particle size of the metal is less than 10 nm, it may be a raw material cost increase factor as fine particles more than necessary, on the other hand, if the average particle size exceeds 100 nm, the surface area per unit weight is small, it may be disadvantageous to improve heat dissipation .
  • the metal is preferably bonded to graphite in an amount of 20 to 70 parts by weight, more preferably 40 to 50 parts by weight with respect to 100 parts by weight of graphite. If the content is less than 20 parts by weight, the effect of improving the heat dissipation that the metal can contribute may be insignificant, and if the content is more than 70 parts by weight, the heat dissipation may be rather deteriorated due to the remaining metals not being combined with graphite.
  • thermally conductive composition used in the production method of the present invention will be described in detail.
  • the thermally conductive composition used in the present invention may include a metal-graphene composite and a main resin, wherein the metal-graphene composite is 5 to 20% by weight, based on the total weight of the composition, more Preferably it is included 8 to 15% by weight.
  • the content of the metal-graphene composite is more than 20% by weight, the composite may not be evenly dispersed in the main resin, it is difficult to expect the effect of further improving the thermal conductivity, when less than 5% by weight, the thermal conductivity is improved Less effective
  • the main resin contained in the thermally conductive composition is not particularly limited in kind, for example, polyurethane resin, polyethylene resin, polystyrene resin, polypropylene resin, ethylene vinyl acetate resin, acrylic resin, silicone resin and fluorine resin At least one selected from the group consisting of can be used.
  • the metal-graphene composite included in the thermally conductive composition may be formed by bonding a metal to graphene, and the manufacturing process is not particularly limited.
  • the graphene and the metal powder may be approximately 14000 ° C. or more. What is formed by fusion by a special process in a high temperature plasma can be used.
  • the metal bonded to the graphene is not particularly limited as long as it is a metal capable of forming a metal-graphene composite, and a metal having an average particle size of 10 to 100 nm may be used.
  • the metal are selected from the group consisting of aluminum (Al), copper (Cu), silver (Ag), gold (Au), iron (Fe), tin (Sn), zinc (Zn) and nickel (Ni). It may consist of a single metal or an alloy containing at least one of these metals.
  • the average particle size of the metal when the average particle size of the metal is less than 10 nm, it may be a factor of increasing the raw material unit cost as more than necessary fine particles, while when the average particle size exceeds 100 nm, the surface area per unit weight is small, which may be disadvantageous for improving thermal conductivity. have.
  • the metal is preferably bonded to graphene in an amount of 20 to 70 parts by weight, more preferably 30 to 50 parts by weight, based on 100 parts by weight of graphene. If the content is less than 20 parts by weight, the effect of improving the thermal conductivity that the metal can contribute may be insignificant, and if the content is more than 70 parts by weight, the thermal conductivity may be rather deteriorated due to the remaining metals that do not bond with graphene. have.
  • the coating layer preferably has a thickness of 1 to 10 ⁇ m, more preferably 3 to 8 ⁇ m.
  • the thickness is less than 1 ⁇ m, the thermal conduction efficiency may be insignificant, and when the thickness is more than 10 ⁇ m, there is a problem that the manufacturing cost is increased due to the excessive thickness.
  • the heat conductive layer preferably has a thickness of 0.1 to 5 ⁇ m, more preferably 1 to 3 ⁇ m. If the thickness is less than 0.1 ⁇ m, the thermal conduction efficiency may be insignificant, and if the thickness is more than 5 ⁇ m, there is a problem in that the manufacturing cost is increased due to excessive thickness.
  • the present invention relates to a flexible electronic device that is encapsulated using the metal encapsulation material of the present invention, which represents an example to which the metal encapsulation material of the present invention can be applied, but is not limited thereto.
  • an adhesive film layer laminated on the flexible electronic device in the flexible electronic device, an adhesive film layer laminated on the flexible electronic device; And stacked on top of the adhesive film layer to encapsulate the flexible electronic device, it may include a metal encapsulant provided in the present invention.
  • the coating layer including the metal-graphite composite having excellent heat dissipation of the metal encapsulation material provided in the present invention is formed, when the encapsulating flexible electronic device using the metal encapsulation material, the coating layer in the metal encapsulation material is Placed on top of the adhesive film layer facing the outside air side, heat generated in the device can be transferred to the metal foil and then discharged to the outside air through the coating layer.
  • the substrate to which the flexible electronic device of the present invention can be applied is not particularly limited, and may be used without limitation as long as it is generally used as a substrate in the flexible electronic device.
  • glass, a polymer film, or a plastic may be used.
  • a flexible electronic device is stacked on the substrate.
  • An example of such a flexible electronic device is an OLED light emitting layer, it will be described taking the OLED light emitting layer as an example.
  • An example of encapsulating such an OLED light emitting layer with a metal encapsulant according to the present invention is shown in FIG. 1.
  • FIG. 1 is a cross-sectional conceptual view of an OLED light emitting layer encapsulated using a metal encapsulant of the present invention, wherein a coating layer including metal-graphite is disposed on one surface of an OLED light emitting layer serving as a heat source through an adhesive film layer.
  • the formed metal encapsulant is laminated.
  • the metal encapsulant is disposed such that the coating layer included in contact with the outside air is such that heat generated in the light emitting layer is effectively transferred to the metal encapsulant and then discharged to the outside air through the coating layer.
  • the adhesive film layer allows the metal encapsulation material to be encapsulated in contact with the flexible electronic device, and the adhesive film layer is cured by heating or irradiating ultraviolet rays, and the laminated structure of the flexible electronic device and the metal encapsulation material is In order to be in close contact, it is preferable to include a thermosetting resin or a photocurable resin.
  • thermosetting resin or the photocurable resin is not particularly limited, and if the thermosetting resin or photocurable resin can be used in general, the present invention may also be applicable to the present invention.
  • the thermosetting resin may be phenol, melamine, epoxy, polyester, or the like. Resins may be used, for example araldite products.
  • epoxy, urethane, polyester resin, etc. can be used as said photocurable resin, For example, XNR5570-B1 etc. which are manufactured and sold by NAGASE company are mentioned.
  • the thickness of the adhesive film layer is not particularly limited, but may be sufficiently bonded to the flexible electronic device and the metal encapsulation material, and may be formed to a thickness of 90 to 110 ⁇ m in a range that does not lower the heat dissipation characteristics of the metal encapsulation material. desirable.
  • FIG. 2 is a graph showing a raw material of graphite
  • FIG. 3 is a nickel raw material
  • FIG. 4 is a mixture of graphite and nickel
  • FIG. 5 is a SEM analysis result of the nickel-graphite composite. From this, when the graphite and nickel are mixed, the shape of the raw material is maintained, but in the case of the nickel-graphite composite, it can be seen that the nanonized nickel particles are uniformly dispersed in the graphite to form a composite.
  • Figure 6 shows the TEM analysis of the nickel-graphite composite, it can be seen that the nanonized nickel particles are uniformly dispersed in the graphite to form a composite.
  • a metal encapsulation material comprising a coating layer comprising a urethane-acrylate and a metal-graphite composite as a main resin on one surface of a 50 ⁇ m thick metal foil (STS 430), and the OLED device encapsulated with the metal encapsulation material Prepared.
  • the metal graphite composite was used Ni-graphite composite containing 30% by weight of nickel and 70% by weight of graphite.
  • a metal encapsulation material comprising a coating layer comprising a urethane-acrylate and a metal-graphite composite as a main resin on one surface of a 50 ⁇ m thick metal foil (STS 430), and the OLED device encapsulated with the metal encapsulation material Prepared.
  • the metal-graphite composite is a Ni-graphite composite including 30 wt% nickel and 70 wt% graphite, and the Ni-graphite composite was mixed to include 5 wt% based on the total weight of the coating layer.
  • Example 2 an OLED device was manufactured in the same manner as in Example 2, except that the Ni-graphite composite was mixed with the Ni-graphite composite to include 10 wt% of the total weight of the coating layer.
  • Example 2 an OLED device was manufactured in the same manner as in Example 2, except that the Ni-graphite composite was mixed with the Ni-graphite composite so as to include 20% by weight based on the total weight of the coating layer.
  • a metal encapsulation material was coated with a 50 ⁇ m thick metal foil (STS 430) with urethane-acrylate, and an OLED device encapsulated with the metal encapsulation material was prepared.
  • a metal encapsulant including a coating layer including urethane-acrylate and gypite was prepared as a main resin on one surface of a 50 ⁇ m thick metal foil (STS 430), and an OLED device encapsulated with the metal encapsulant was manufactured. At this time, the graphite is mixed with graphite to be included in 5% by weight, based on the total weight of the coating layer.
  • Comparative Example 2 an OLED device was manufactured in the same manner as in Comparative Example 2, except that graphite was mixed in an amount of 10 wt% based on the total weight of the coating layer.
  • Comparative Example 2 an OLED device was manufactured in the same manner as in Comparative Example 2, except that graphite was mixed so that 20 wt% was included with respect to the total weight of the coating layer.
  • Example 7 Using the OLED device prepared in Example 1 and Comparative Example 1, the heat emission characteristics were measured, and the results are shown in FIG. As can be seen in Figure 7, the OLED device encapsulated with a metal encapsulant coated only with a general coating of urethane-acrylate, the temperature is increased up to 40.5 °C, while the OLED encapsulated with the metal encapsulation material of Example 1 In this case, the temperature is increased to a maximum of 38 °C, it can be seen that the heat dissipation characteristics are superior to the metal encapsulant of Comparative Example 1.
  • the device of Examples 2 to 4 in which the coating layer includes a metal-graphite composite compared with the devices of Comparative Examples 2 to 4 including graphite in the coating layer, has excellent heat dissipation. It can be seen that the temperature is measured to be low.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

본 발명은 방열성이 우수한 금속 봉지재, 그 제조방법 및 상기 금속 봉지재로 봉지된 유연전자소자에 관한 것으로, 구체적으로는 일면에 금속-그라파이트 복합체를 포함하는 코팅층이 형성되어, 가요성, 내수분성, 작업성 및 방열성이 매우 우수한 금속 봉지재, 그 제조방법 및 상기 금속 봉지재로 봉지된 유연전자소자에 관한 것이다.

Description

방열성이 우수한 금속 봉지재, 그 제조방법 및 상기 금속 봉지재로 봉지된 유연전자소자
본 발명은 일반적으로 박막 태양전지, OLED 조명, 디스플레이 장치 또는 PCB(Printed Circuit Board) 등의 유연전자소자에 수분 및 산소가 침투하는 것을 방지하고, 장치 내부에서 발생된 열을 효과적으로 배출하기 위하여, 상기 소자를 봉지하는 데에 이용되는 방열성이 우수한 금속 봉지재, 그 제조방법 및 상기 금속 봉지재로 봉지된 유연전자소자에 관한 것이다.
근래에 들어, 사회가 본격적인 정보화시대로 접어듦에 따라 대량의 정보를 처리 및 표시하는 디스플레이 분야가 급속도로 발전해 왔고, 이에 부응하여 여러 가지 다양한 평판디스플레이가 개발되어 각광받고 있다.
이 같은 평판디스플레이 장치의 주체적인 예로는 액정 디스플레이장치(Liquid Crystal Display device: LCD), 플라즈마 디스플레이장치(Plasma Display Panel device: PDP), 전계방출 디스플레이장치(Field Emission Display device: FED), 전기발광 디스플레이장치(Electroluminescence Display device: ELD) 등을 들 수 있는데, 텔레비전이나 비디오 등의 가전분야뿐만 아니라 노트북과 같은 컴퓨터나 핸드폰 등과 같은 산업분야 등 다양한 용도로 사용되고 있다. 이들 평판디스플레이장치는 박형화, 경량화, 저소비전력화의 우수한 성능을 보여 기존에 사용되었던 브라운관(Cathode Ray Tube: CRT)을 빠르게 대체하고 있는 실정이다.
특히, OLED는 소자 자체적으로 빛을 발광하며 저전압에서도 구동될 수 있기 때문에 최근 휴대기기 등의 소형 디스플레이 시장에 빠르게 적용되고 있다. 또한 OLED는 소형 디스플레이를 넘어서 대형 TV의 상용화를 목전에 둔 상태이다.
한편, 이러한 평판 디스플레이장치는 소자의 지지 기판 및 수분 투과를 방지하는 봉지층으로 일반적으로 유리소재가 사용되는데, 유리소재는 경량화, 박형화, 및 유연성을 부여하는데 한계가 있다. 따라서, 최근 기존의 유연성이 없는 유리 봉지재 대신에 금속 및 플라스틱이나 폴리머 재질과 같은 유연성이 있는 소재를 사용하여 종이처럼 휘어져도 디스플레이 기능을 그대로 유지할 수 있는 플렉서블 디스플레이 장치가 차세대 평판디스플레이 장치로 부상되고 있다.
그러나, 플라스틱이나 폴리머 재질과 같은 봉재재를 OLED에 적용할 경우 플라스틱이나 폴리머 재질은 수분의 투습성이 높기 때문에 투과된 수분에 의해서 OLED의 수명이 단축되는 단점이 있다. 또한, 대체적으로 열 방출 성능이 낮아 디스플레이 장치 내부에서 발생하는 열을 효과적으로 배출하지 못한다는 단점이 있어, 이에 대한 개선이 요구되고 있다.
한편, 금속 봉지재는 소재의 특성상 수분방지 능력이 매우 뛰어나며 방열성 또한 매우 우수하다. 하지만 종래 압연법에 의하여 박형 봉지재를 제조하는 경우, 기판의 두께가 얇아질수록 제조비용이 급상승하는 단점이 있다.
따라서, 최근에는 전기 주조법을 이용하여 금속 봉지재를 제조하는 기술이 제안되고 있으며, 이러한 전기 주조법은, 종래의 압연 방식에 비하여 제조 원가가 낮아 향후 급속한 확대가 예상된다.
그렇지만, 종래 압연법에 의한 금속 봉지재의 두께가 100㎛ 정도 수준인 반면, 전기 주조법에 의해 제조되는 금속 봉지재는 상기의 효과를 확보하기 위하여 20 내지 50㎛의 두께로 제조되므로, 내부에서 발생된 열을 금속 봉지재가 흡수해야 하는데, 상기와 같이 극박막으로 제조되는 경우, 열용량이 떨어져 방열성이 저하되는 단점이 있다.
본 발명은 방열성이 우수하면서도, 유연하고, 수분방지 효과가 뛰어나며, 경제성이 있는 방열성이 우수한 금속 봉지재 및 상기 금속 봉지재를 제조하는 방법과, 상기 금속 봉지재에 의해 봉지된 유연전자소자를 제공하고자 한다.
본 발명의 일 구현 예에 따르면, 금속 호일; 및 상기 금속 호일의 일면에 형성되며, 주제수지 및 금속-그라파이트 복합체를 포함하는 코팅층을 포함하는 방열성이 우수한 금속 봉지재를 제공한다.
상기 금속 호일은 8 내지 100㎛의 두께를 갖고, 상기 코팅층은 1 내지 10㎛의 두께를 가질 수 있다.
상기 코팅층 내 금속-그라파이트 복합체는 코팅층 총 중량을 기준으로 5 내지 20중량%로 포함될 수 있다.
상기 금속-그라파이트 복합체는 그라파이트 100중량부에 대하여, 금속이 20 내지 70중량부의 양으로 그라파이트에 결합될 수 있다.
상기 코팅층 내 주제수지는 폴리우레탄 수지, 폴리에틸렌 수지, 폴리스티렌 수지, 폴리프로필렌 수지, 에틸렌비닐아세테이트 수지, 아크릴 수지, 실리콘 수지 및 불소 수지로 이루어진 그룹으로부터 선택된 1종 이상일 수 있다.
상기 금속 호일의 다른 일면에 형성되며, 주제수지 및 금속-그래핀 복합체를 포함하는 열 전도층을 더 포함할 수 있다.
상기 열 전도층은 0.1 내지 5㎛의 두께를 가질 수 있다.
상기 열 전도층 내 금속-그래핀 복합체는 열 전도층 총 중량을 기준으로 5 내지 20중량%로 포함될 수 있다.
상기 금속-그래핀 복합체는 그래핀 100 중량부에 대하여, 금속이 20 내지 70중량부의 양으로 그래핀에 결합될 수 있다.
상기 금속의 평균 입도는 10 내지 100nm일 수 있다.
상기 열 전도층 내 주제수지는 폴리우레탄 수지, 폴리에틸렌 수지, 폴리스티렌 수지, 폴리프로필렌 수지, 에틸렌비닐아세테이트 수지, 아크릴 수지, 실리콘 수지 및 불소 수지로 이루어진 그룹으로부터 선택된 1종 이상일 수 있다.
본 발명의 다른 구현 예에 따르면, 유연전자소자에 있어서, 상기 유연전자소자의 상부에 적층되는 접착 필름층; 및 상기 접착 필름층의 상부에 적층되어 유연전자소자를 봉지하는 것으로, 상기 금속 봉지재를 포함하며, 상기 금속 봉지재는 코팅층이 외부 공기 측을 향하도록 배치되어 접착 필름층의 상부에 적층되는 금속 봉지재에 의해 봉지된 유연전자소자를 제공한다.
본 발명은 일면에 금속-그라파이트 복합체를 포함하는 코팅층이 형성됨으로써, 가요성, 내수분성 및 작업성뿐만 아니라, 방열성을 현저히 향상시켜, 봉지되는 소자에서 발생된 열을 효과적으로 외부로 배출하여, 열에 기인한 고장 등의 문제점을 방지할 수 있는 방열성이 우수한 금속 봉지재, 상기 금속 봉지재를 제조하는 방법 및 상기 금속 봉지재에 의해 봉지된 유연전자소자를 제공할 수 있다.
도 1은 본 발명의 유연전자소자의 일 예시로, 금속 봉지재로 봉지된 OLED 발광층의 단면 개념도를 도시한 것이다.
도 2는 그라파이트 원재료에 대한 SEM 분석 사진이다.
도 3은 니켈 원재료에 대한 SEM 분석 사진이다.
도 4는 그라파이트 및 니켈의 혼합물에 대한 SEM 분석 사진이다.
도 5는 니켈-그라파이트 복합체에 대한 SEM 분석 사진이다.
도 6은 니켈-그라파이트 복합체에 대한 TEM 분석 사진이다.
도 7은 실시예 1 및 비교예 1의 열 방출 특성을 나타내는 그래프이다.
도 8은 실시예 2 내지 4 및 비교예 1 내지 4의 열 방출 특성을 나타내는 그래프이다.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 금속 봉지재, 그의 제조방법 및 상기 금속 봉지재에 의해 봉지된 유연전자소자를 상세히 설명한다.
본 발명의 일 구현 예에 따르면, 박막 태양전지, OLED 조명, 디스플레이 장치 또는 PCB(Printed Circuit Board) 등의 유연전자소자용 금속 봉지재에 관한 것으로, 구체적으로는 금속 호일; 상기 금속 호일의 일면에 형성되며, 주제수지 및 금속-그라파이트 복합체를 포함하는 코팅층을 포함하는, 방열성이 우수한 금속 봉지재를 제공한다.
이때, 상기 금속 호일은 압연법 또는 전기 주조법에 의해 8 내지 100㎛, 보다 바람직하게는 8 내지 50㎛ 의 두께로 제조된 것으로, 상기 금속 호일을 이루는 금속 성분은 상기 금속 봉지재가 적용되는 기술 분야에 따라 달라질 수 있으나, 예를 들어, Fe-Ni계 합금, Fe-Cr계 합금 및 Fe-Cu계 합금 중 선택된 어느 하나의 합금으로 이루어질 수 있으며, 그 중에서도 특히 Fe-Ni합금으로 이루어지는 것이, Ni의 함량을 제어함으로써 열팽창 계수를 최적화시킬 수 있으며, 또한, 상기 Fe-Ni합금은 내부식성 확보가 용이한 물질이며, 전기 주조법으로 제조하는 경우, Fe-Ni합금의 형성이 용이하다는 장점이 있다.
한편, 본 발명에서 제공하는 금속 봉지재는 소자에 수분 및 산소가 침투하는 것을 방지할 뿐만 아니라, 장치 내부에서 발생된 열을 효과적으로 배출할 수 있어야 하므로, 우수한 방열성의 특성을 갖는 것이 바람직하다.
그런데, 금속-그라파이트 복합체는 방열성이 우수한 물질이므로, 본 발명에서는, 금속 호일의 양면 중 어느 일면에, 외부 공기와 접촉하게 되는 부분에는 금속 호일로 전달된 열을 외부 공기로 효과적으로 배출할 수 있도록, 금속-그라파이트 복합체가 포함된 코팅층을 형성하여, 금속 봉지재의 방열 특성을 현저히 향상시킬 수 있다. 나아가 상기 코팅층은 금속-그라파이트 복합체를 포함함으로써, 방열성 뿐만아니라, 열 전도성도 향상시킬 수 있다. 즉, 상기 코팅층의 기능이 방열층으로 한정되는 것은 아니다.
또한, 금속-그래핀 복합체는 열 전도도가 높은 물질이므로, 열원과 근접하여 존재하는 부분에는 열원으로부터 발생된 열이 금속 호일로 잘 전달될 수 있도록, 금속-그래핀 복합체가 포함된 열 전도층을 추가적으로 형성할 수 있다.
우선, 본 발명의 금속 봉지재에서, 상기 금속 호일 일면에 형성되는 코팅층에 대하여 이하 구체적으로 설명한다.
상기 코팅층은 1 내지 10㎛, 보다 바람직하게는 2 내지 8㎛의 두께를 갖는 것이 바람직하다. 두께가 1㎛ 미만인 경우, 열 전도 효율이 미미할 수 있고, 두께가 10㎛를 초과하는 경우, 과도한 두께로 인한 제조원가가 상승하는 문제가 있다.
또한, 상기 코팅층은 주제수지 및 금속-그라파이트 복합체를 포함할 수 있다. 이때, 상기 금속-그라파이트 복합체는 코팅층 총 중량을 기준으로 5 내지 20중량%, 보다 바람직하게는 8 내지 15중량%로 포함되는 것이 바람직하다. 상기 금속-그라파이트 복합체의 함량이 5중량% 미만인 경우, 방열성 향상의 효과가 적고, 상기 함량이 20중량%를 초과하는 경우, 경제성이 떨어지는 문제가 있다.
또한, 상기 코팅층 내 포함된 주제수지는 종류를 특별히 한정하지는 않으나, 예를 들어, 폴리우레탄 수지, 폴리에틸렌 수지, 폴리스티렌 수지, 폴리프로필렌 수지, 에틸렌비닐아세테이트 수지, 아크릴 수지, 실리콘 수지 및 불소 수지로 이루어진 그룹으로부터 선택된 1종 이상을 사용할 수 있다.
또한, 상기 코팅층 내 포함된 금속-그라파이트 복합체는 그라파이트에 금속이 결합되어 형성된 것일 수 있으며, 그 제조 공정을 특별히 한정하지는 않으나, 예를 들어, 그라파이트와 금속 파우더를 대략 14000℃ 이상의 고열 플라즈마에서 특수 공정으로 융착하여 형성된 것을 사용할 수 있다.
상기 그라파이트에 결합된 금속은 금속-그라파이트 복합체를 형성할 수 있는 금속이라면 특별히 한정되지 않으며, 평균 입도가 10 내지 100nm인 금속을 사용할 수 있다. 금속의 일례로는, 알루미늄(Al), 구리(Cu), 은(Ag), 금(Au), 철(Fe), 주석(Sn), 아연(Zn) 및 니켈(Ni)로 이루어진 그룹으로부터 선택된 단일 금속, 또는 이들 금속을 1종 이상 포함하는 합금으로 이루어질 수 있다.
상기에서, 금속의 평균 입도가 10nm 미만인 경우, 필요 이상의 미립자로서 원자재 단가상승 요인이 될 수 있고, 반면, 평균 입도가 100nm를 초과하는 경우, 단위 중량당 표면적이 적어 방열성 향상에 불리할 수 있다.
또한, 상기 금속은, 그라파이트 100 중량부에 대하여, 20 내지 70중량부, 보다 바람직하게는 30 내지 50중량부의 양으로 그라파이트에 결합되는 것이 바람직하다. 함량이 20중량부 미만인 경우, 금속이 기여할 수 있는 방열성 향상의 효과가 미미할 수 있고, 함량이 70중량부를 초과하는 경우, 그라파이트와 결합되지 못하고 잔류하는 금속으로 인하여 방열성이 오히려 저하될 수 있다.
본 발명은 상기한 바와 같이, 금속 호일의 일면에는 코팅층을 형성함으로써, 장치 내부에서 발생되어 금속 봉지재로 발생된 열을 외부 공기로 효과적으로 배출될 수 있도록 한다.
다음으로, 본 발명의 금속 봉지재에서, 상기 코팅층이 형성된 면과는 다른 일면에 형성될 수 있는 열 전도층에 대하여 이하 구체적으로 설명한다.
상기 열 전도층은 0.1 내지 5㎛, 보다 바람직하게는 1 내지 3㎛ 의 두께를 갖는 것이 바람직하다. 두께가 0.1㎛ 미만인 경우, 열 전도 효율이 미미할 수 있고, 두께가 5㎛를 초과하는 경우, 과도한 두께로 인한 제조원가가 상승하는 문제가 있다.
또한, 상기 열 전도층은 주제수지 및 금속-그래핀 복합체를 포함할 수 있다. 이때, 상기 금속-그래핀 복합체는 열 전도층 총 중량을 기준으로 5 내지 20중량%, 보다 바람직하게는 8 내지 15중량%로 포함되는 것이 바람직하다. 상기 금속-그래핀 복합체의 함량이 20 중량%를 초과하는 경우, 주제수지에 복합체가 고르게 분산되지 못할 수 있으며, 더 이상의 열 전도도 향상의 효과를 기대하기 어렵고, 5중량% 미만인 경우, 열전도성 향상 효과가 적다.
또한, 상기 열 전도층 내 포함된 주제수지는 종류를 특별히 한정하지는 않으나, 예를 들어, 폴리우레탄 수지, 폴리에틸렌 수지, 폴리스티렌 수지, 폴리프로필렌 수지, 에틸렌비닐아세테이트 수지, 아크릴 수지, 실리콘 수지 및 불소 수지로 이루어진 그룹으로부터 선택된 1종 이상을 사용할 수 있다.
또한, 상기 열 전도층 내 포함된 금속-그래핀 복합체는 그래핀에 금속이 결합되어 형성된 것일 수 있으며, 그 제조 공정을 특별히 한정하지는 않으나, 예를 들어, 그래핀과 금속 파우더를 대략 14000℃ 이상의 고열 플라즈마에서 특수 공정으로 융착되어 형성된 것을 사용할 수 있다.
상기 그래핀에 결합된 금속은 금속-그래핀 복합체를 형성할 수 있는 금속이라면 특별히 한정되지 않으며, 평균 입도가 10 내지 100nm인 금속을 사용할 수 있다. 금속의 일례로는, 알루미늄(Al), 구리(Cu), 은(Ag), 금(Au), 철(Fe), 주석(Sn), 아연(Zn) 및 니켈(Ni)로 이루어진 그룹으로부터 선택된 단일 금속, 또는 이들 금속을 1종 이상 포함하는 합금으로 이루어질 수 있다.
상기에서, 금속의 평균 입도가 10nm 미만인 경우, 필요 이상의 미립자로서 원자재 단가상승 요인이 될 수 있고, 반면, 평균 입도가 100nm를 초과하는 경우, 단위 중량당 표면적이 적어, 열전도성 향상에 불리할 수 있다.
또한, 상기 금속은, 그래핀 100 중량부에 대하여, 20 내지 70중량부, 보다 바람직하게는 30 내지 50중량부의 양으로 그래핀에 결합되는 것이 바람직하다. 함량이 20중량부 미만인 경우, 금속이 기여할 수 있는 열 전도도 향상의 효과가 미미할 수 있고, 함량이 70중량부를 초과하는 경우, 그래핀과 결합되지 못하고 잔류하는 금속으로 인하여 열 전도성이 오히려 저하될 수 있다.
본 발명은 상기한 바와 같이, 금속 호일의 일면에 열 전도층을 형성함으로써, 장치 내부의 열원으로부터 발생된 열을 금속 호일로 효과적으로 전달될 수 있다.
본 발명의 다른 구현 예에 따르면, 방열성이 우수한 금속 봉지재의 제조방법에 관한 것으로, 구체적으로는 금속 호일을 준비하는 단계; 상기 금속 호일의 일면에 주제수지 및 금속-그라파이트 복합체를 포함하는 방열성 조성물을 도포하여 코팅층을 형성하는 단계를 포함하는 방열성이 우수한 금속 봉지재의 제조방법을 제공한다.
또한, 상기 금속 호일의 다른 일면에 주제수지 및 금속-그래핀 복합체를 포함하는 열 전도성 조성물을 도포하여 열 전도층을 형성하는 단계를 더 포함할 수 있다.
먼저, 본 발명은 소자를 봉지하는 데에 사용할 수 있는 금속 재질의 호일을 준비할 수 있다. 이때, 상기 금속 호일은 8 내지 100㎛, 보다 바람직하게는 8 내지 50㎛의 두께를 갖는 것으로, 제조 공정은 특별히 한정하지 않으나, 압연법 또는 전기 주조법에 의해 제조될 수 있다.
또한, 상기 호일을 이루는 금속 소재는, 장치 내부에서 발생되는 열을 효과적으로 외부로 배출할 수 있으며, 소자에 수분 및 산소가 침투하는 것을 방지할 수 있는 것이라면, 그 종류를 특별히 한정하지는 않으며, 상기 금속 봉지재가 적용되는 장치의 기술 분야에 따라 달라질 수 있다. 다만, 상기의 특성을 갖는 재질로, 예를 들어, Fe-Ni계 합금, Fe-Cr계 합금 및 Fe-Cu계 합금 중 선택된 어느 하나의 합금으로 이루어질 수 있으며, 그 중에서도 특히 Fe-Ni합금으로 이루어지는 것이, Ni의 함량을 제어함으로써 열팽창 계수를 최적화시킬 수 있으며, 또한, 상기 Fe-Ni합금은 내부식성 확보가 용이한 물질이며, 전기 주조법으로 제조하는 경우, Fe-Ni합금의 형성이 용이하다는 장점이 있다.
이렇게, 금속 호일이 준비되면, 본 발명은 상기 금속 호일의 일면에 주제수지 및 금속-그라파이트 복합체를 포함하는 방열성 조성물을 도포하여 코팅층을 형성하는 단계를 수행할 수 있다. 또한, 상기 금속 호일의 다른 일면에 주제수지 및 금속-그래핀 복합체를 포함하는 열 전도성 조성물을 도포하여 열 전도층을 형성하는 단계를 더 포함할 수 있다.
단, 본 발명의 제조방법에서, 상기 열 전도성 조성물 또는 방열성 조성물을 금속 호일의 표면에 도포하는 순서는 특별히 한정하지 않으며, 금속 호일의 임의의 일면에 열 전도성 조성물을 먼저 도포한 뒤, 다른 일면에 방열성 조성물을 도포할 수 있고, 또는 금속 호일의 임의의 일면에 방열성 조성물을 먼저 도포한 뒤, 다른 일면에 열 전도성 조성물을 도포할 수 있으며, 경우에 따라서는 양면에 각각 열 전도성 조성물 및 방열성 조성물을 동시에 도포할 수 있다.
본 발명의 제조방법에서, 상기 열 전도성 조성물 또는 방열성 조성물을 금속 호일의 표면에 도포하는 공정은 특별히 한정하지는 않으나, 슬롯 다이(slot die) 등과 같은 방법에 의하여 수행되는 것이 보다 바람직하다.
이하, 본 발명의 제조방법에서 사용되는 방열성 조성물에 대하여 이하 구체적으로 설명한다.
상기 방열성 조성물은 주제수지 및 금속-그라파이트 복합체를 포함할 수 있다. 이때, 상기 금속-그라파이트 복합체는 방열성 조성물 총 중량을 기준으로 5 내지 20중량%, 보다 바람직하게는 8 내지 15중량%로 포함되는 것이 바람직하다. 상기 금속-그라파이트 복합체의 함량이 5중량% 미만인 경우, 방열성 향상의 효과가 적고, 상기 함량이 20중량%를 초과하는 경우, 경제성이 떨어지는 문제가 있다.
또한, 상기 방열성 조성물 내 포함된 주제수지는 종류를 특별히 한정하지는 않으나, 예를 들어, 폴리우레탄 수지, 폴리에틸렌 수지, 폴리스티렌 수지, 폴리프로필렌 수지, 에틸렌비닐아세테이트 수지, 아크릴 수지, 실리콘 수지 및 불소 수지로 이루어진 그룹으로부터 선택된 1종 이상을 사용할 수 있다.
또한, 상기 방열성 조성물 내 포함된 금속-그라파이트 복합체는 그라파이트에 금속이 결합되어 형성된 것일 수 있으며, 그 제조 공정을 특별히 한정하지는 않으나, 예를 들어, 그라파이트와 금속 파우더를 대략 14000℃ 이상의 고열 플라즈마에서 특수 공정으로 융착하여 형성된 것을 사용할 수 있다.
상기 그라파이트에 결합된 금속은 금속-그라파이트 복합체를 형성할 수 있는 금속 이라면 특별히 한정되지 않으며, 평균 입도가 10 내지 100nm인 금속을 사용할 수 있다. 금속의 일례로는, 알루미늄(Al), 구리(Cu), 은(Ag), 금(Au), 철(Fe), 주석(Sn), 아연(Zn) 및 니켈(Ni)로 이루어진 그룹으로부터 선택된 단일 금속, 또는 이들 금속을 1종 이상 포함하는 합금으로 이루어질 수 있다.
상기에서, 금속의 평균 입도가 10nm 미만인 경우, 필요 이상의 미립자로서 원자재 단가상승 요인이 될 수 있고, 반면, 평균 입도가 100nm를 초과하는 경우, 단위 중량당 표면적이 적어, 방열성 향상에 불리할 수 있다.
또한, 상기 금속은, 그라파이트 100 중량부에 대하여, 20 내지 70중량부, 보다 바람직하게는 40 내지 50중량부의 양으로 그라파이트에 결합되는 것이 바람직하다. 함량이 20중량부 미만인 경우, 금속이 기여할 수 있는 방열성 향상의 효과가 미미할 수 있고, 함량이 70중량부를 초과하는 경우, 그라파이트와 결합되지 못하고 잔류하는 금속으로 인하여 방열성이 오히려 저하될 수 있다.
다음으로, 본 발명의 제조방법에서 사용하는 열 전도성 조성물을 자세히 설명한다.
상기한 바와 같이, 본 발명에서 사용되는 열 전도성 조성물은 금속-그래핀 복합체 및 주제수지를 포함할 수 있고, 이때, 상기 금속-그래핀 복합체는 조성물 총 중량을 기준으로 5 내지 20중량%, 보다 바람직하게는 8 내지 15중량%로 포함되는 것이 바람직하다. 상기 금속-그래핀 복합체의 함량이 20 중량%를 초과하는 경우, 주제수지에 복합체가 고르게 분산되지 못할 수 있으며, 더 이상의 열 전도도 향상의 효과를 기대하기 어렵고, 5중량% 미만인 경우, 열전도성 향상 효과가 적다.
또한, 상기 열 전도성 조성물 내 포함된 주제수지는 종류를 특별히 한정하지는 않으나, 예를 들어, 폴리우레탄 수지, 폴리에틸렌 수지, 폴리스티렌 수지, 폴리프로필렌 수지, 에틸렌비닐아세테이트 수지, 아크릴 수지, 실리콘 수지 및 불소 수지로 이루어진 그룹으로부터 선택된 1종 이상을 사용할 수 있다.
또한, 상기 열 전도성 조성물 내 포함된 금속-그래핀 복합체는 그래핀에 금속이 결합되어 형성된 것일 수 있으며, 그 제조 공정을 특별히 한정하지는 않으나, 예를 들어, 그래핀과 금속 파우더를 대략 14000℃ 이상의 고열 플라즈마에서 특수 공정으로 융착하여 형성된 것을 사용할 수 있다.
상기 그래핀에 결합된 금속은 금속-그래핀 복합체를 형성할 수 있는 금속 이라면 특별히 한정되지 않으며, 평균 입도가 10 내지 100nm인 금속을 사용할 수 있다. 금속의 일례로는, 알루미늄(Al), 구리(Cu), 은(Ag), 금(Au), 철(Fe), 주석(Sn), 아연(Zn) 및 니켈(Ni)로 이루어진 그룹으로부터 선택된 단일 금속, 또는 이들 금속을 1종 이상 포함하는 합금으로 이루어질 수 있다.
상기에서, 금속의 평균 입도가 10nm 미만인 경우, 필요 이상의 미립자로서 원자재 단가상승 요인이 될 수 있고, 반면, 평균 입도가 100nm를 초과하는 경우, 단위 중량당 표면적이 적어, 열전도성 향상에 불리할 수 있다.
또한, 상기 금속은, 그래핀 100 중량부에 대하여, 20 내지 70중량부, 보다 바람직하게는 30 내지 50중량부의 양으로 그래핀에 결합되는 것이 바람직하다. 함량이 20중량부 미만인 경우, 금속이 기여할 수 있는 열 전도도 향상의 효과가 미미할 수 있고, 함량이 70중량부를 초과하는 경우, 그래핀과 결합되지 못하고 잔류하는 금속으로 인하여 열 전도성이 오히려 저하될 수 있다.
본 발명의 제조방법은 상기 방열성 조성물을 금속 호일의 표면에 도포하여, 금속 호일의 일면에 코팅층을 형성함으로써, 유연전자소자 내부에서 발생된 열을 금속 봉지재로 전달하여, 외부 공기로 효과적으로 배출할 수 있도록 하여, 장치 내부에서 발생되는 열이 방출되지 못함에 기인한 고장 등의 문제점을 방지할 수 있다.
이때, 상기 코팅층은 1 내지 10㎛, 보다 바람직하게는 3 내지 8㎛의 두께를 갖는 것이 바람직하다. 두께가 1㎛ 미만인 경우, 열 전도 효율이 미미할 수 있고, 두께가 10㎛를 초과하는 경우, 과도한 두께로 인한 제조원가가 상승하는 문제가 있다.
또한, 상기 열 전도층은 0.1 내지 5㎛, 보다 바람직하게는 1 내지 3㎛의 두께를 갖는 것이 바람직하다. 두께가 0.1㎛ 미만인 경우, 열 전도 효율이 미미할 수 있고, 두께가 5㎛를 초과하는 경우, 과도한 두께로 인한 제조원가가 상승하는 문제가 있다.
본 발명의 또 다른 구현 예에 따르면, 본 발명의 금속 봉지재를 사용하여 봉지되는 유연전자소자에 관한 것으로, 이는 본 발명의 금속 봉지재가 적용될 수 있는 일 예를 나타내는 것으로서, 이로서 한정되는 것은 아니다.
본 발명에서 제공하는 유연전자소자로는, 구체적으로 유연전자소자에 있어서, 상기 유연전자소자의 상부에 적층되는 접착 필름층; 및 상기 접착 필름층의 상부에 적층되어 유연전자소자를 봉지하는 것으로, 본 발명에서 제공하는 금속 봉지재를 포함할 수 있다.
단, 본 발명에서 제공하는 금속 봉지재의 방열성이 우수한 금속-그라파이트 복합체를 포함하는 코팅층이 형성되므로, 본 발명은 상기 금속 봉지재를 사용하여 유연전자소자를 봉지하는 경우, 상기 금속 봉지재 내 코팅층은 외부 공기 측을 향하도록, 접착 필름층 상부에 배치하는 것이, 소자에서 발생된 열이 금속 호일로 전달된 뒤, 코팅층을 통해 외부 공기로 배출될 수 있다.
한편, 본 발명의 유연전자소자가 적용될 수 있는 기판은 특별히 한정하는 것이 아니며, 유연전자소자에 있어서 기판으로서 일반적으로 사용되는 것이라면 제한없이 사용될 수 있다. 예를 들어, 유리, 고분자 필름 또는 플라스틱 등을 사용할 수 있다.
또한, 상기 기판 위에는 유연전자소자가 적층된다. 이와 같은 유연전자소자의 일 예로서 OLED 발광층을 들 수 있으며, 상기 OLED 발광층을 예로 들어 설명한다. 이와 같은 OLED 발광층을 본 발명에 따른 금속 봉지재로 봉지한 예를 도 1에 나타내었다.
도 1은 본 발명의 금속 봉지재를 사용하여 봉지한 OLED 발광층의 단면 개념도를 도시한 것으로, 열원으로 작용하는 OLED 발광층의 상부에 접착 필름층을 매개로, 금속-그라파이트를 포함하는 코팅층이 일면에 형성된 금속 봉지재가 적층된다. 단, 상기 금속 봉지재는 그에 포함된 상기 코팅층이 외부 공기에 접촉되도록 배치되어, 발광층에서 발생된 열이 금속 봉지재에 효과적으로 전달된 뒤, 코팅층을 통해 외부 공기로 배출될 수 있도록 한다.
또한, 본 발명에서 상기 접착 필름층은 금속 봉지재가 유연전자소자에 접촉되어 봉지할 수 있게 하는 것으로, 상기 접착 필름층은 가열하거나, 자외선을 조사함으로써 경화하며 유연전자소자 및 금속 봉지재의 적층 구조가 밀착될 수 있도록, 열 경화성 수지 또는 광 경화성 수지를 포함하는 것이 바람직하다.
이때, 상기 열경화성 수지 또는 광경화성 수지는 특별히 한정하는 것은 아니며, 통상적으로 사용될 수 있는 것이라면 본 발명에서도 적용할 수 있는 것으로서, 예를 들어, 상기 열경화성 수지로는 페놀, 멜라민, 에폭시, 폴리에스터 등의 수지를 사용할 수 있으며, 예를 들어 아랄다이트 제품을 사용할 수 있다. 나아가, 상기 광경화성 수지로는 에폭시, 우레탄, 폴리에스터 수지 등을 사용할 수 있으며, 예를 들어, NAGASE사에서 제조 판매되는 XNR5570-B1 등을 들 수 있다.
또한, 상기 접착 필름층의 두께는 특별히 한정하지는 않으나, 유연전자소자와 금속 봉지재를 충분히 접착시킬 수 있으며, 금속 봉지재의 방열 특성을 저하시키지 않는 범위로, 90 내지 110㎛의 두께로 형성되는 것이 바람직하다.
<분석예: 금속-그라파이트 복합체 분석>
도 2는 그라파이트 원재료, 도 3은 니켈 원재료, 도 4는 그라파이트 및 니켈의 혼합 및 도 5는 니켈-그라파이트 복합체의 SEM 분석 결과를 나타낸 도면이다. 이로부터, 상기 그라파이트 및 니켈이 혼합된 경우, 원재료의 형상은 유지되고 있으나, 니켈-그라파이트 복합체의 경우, 나노화된 니켈 입자가 그라파이트에 균일하게 분산되어 복합체를 형성하고 있음을 알 수 있다.
구체적으로, 도 6은 상기 니켈-그라파이트 복합체의 TEM 분석 결과로, 나노화된 니켈 입자가 그라파이트에 균일하게 분산되어 복합체를 형성하고 있음을 확인할 수 있다.
<실시예 1>
50㎛ 두께의 금속 호일(STS 430)의 일면에 주제수지로 우레탄-아크릴레이트 및 금속-그파이트 복합체를 포함하는 코팅층을 포함하는 금속 봉지재를 제조하고, 상기 금속 봉지재로 봉지한 OLED 소자를 제조하였다. 이때, 상기 금속 그라파이트 복합체는 30중량%의 니켈 및 70중량%의 그라파이트를 포함하는 Ni-그라파이트 복합체를 사용하였다.
<실시예 2>
50㎛ 두께의 금속 호일(STS 430)의 일면에 주제수지로 우레탄-아크릴레이트 및 금속-그파이트 복합체를 포함하는 코팅층을 포함하는 금속 봉지재를 제조하고, 상기 금속 봉지재로 봉지한 OLED 소자를 제조하였다. 이때, 상기 금속-그라파이트 복합체는 30중량%의 니켈 및 70중량%의 그라파이트를 포함하는 Ni-그라파이트 복합체이고, 상기 코팅층 총 중량에 대하여, 5중량%로 포함되도록 Ni-그라파이트 복합체를 혼합하였다.
<실시예 3>
상기 실시예 2에 있어서, 상기 Ni-그라파이트 복합체는, 상기 코팅층 총 중량에 대하여, 10중량% 포함되도록 Ni-그라파이트 복합체를 혼합한 것을 제외하고, 실시예 2와 동일하게 OLED 소자를 제조하였다.
<실시예 4>
상기 실시예 2에 있어서, 상기 Ni-그라파이트 복합체는, 상기 코팅층 총 중량에 대하여, 20중량% 포함되도록 Ni-그라파이트 복합체를 혼합한 것을 제외하고, 실시예 2와 동일하게 OLED 소자를 제조하였다.
<비교예 1>
50㎛ 두께의 금속 호일(STS 430)을 우레탄-아크릴레이트로 코팅한 금속 봉지재를 제조하고, 상기 금속 봉지재로 봉지한 OLED 소자를 제조하였다.
<비교예 2>
50㎛ 두께의 금속 호일(STS 430)의 일면에 주제수지로 우레탄-아크릴레이트 및 그파이트를 포함하는 코팅층을 포함하는 금속 봉지재를 제조하고, 상기 금속 봉지재로 봉지한 OLED 소자를 제조하였다. 이때, 상기 그라파이트는 상기 코팅층 총 중량에 대하여, 5중량%로 포함되도록 그라파이트를 혼합하였다.
<비교예 3>
상기 비교예 2에 있어서, 상기 그라파이트는, 상기 코팅층 총 중량에 대하여, 10중량% 포함되도록 그라파이트를 혼합한 것을 제외하고, 비교예 2와 동일하게 OLED 소자를 제조하였다.
<비교예 4>
상기 비교예 2에 있어서, 상기 그라파이트는, 상기 코팅층 총 중량에 대하여, 20중량% 포함되도록 그라파이트를 혼합한 것을 제외하고, 비교예 2와 동일하게 OLED 소자를 제조하였다.
<실험예>
상기 실시예 1 및 비교예 1에서 제조된 OLED 소자를 이용하여, 열 방출 특성을 측정하고, 그 결과를 도 7에 나타내었다. 도 7에서 알 수 있듯이, 일반 도료인 우레탄-아크릴레이트만 코팅된 금속 봉지재로 봉지된 OLED 소자의 경우 온도가 최대 40.5℃까지 상승된 반면, 실시예 1의 금속 봉지재로 봉지된 OLED 소자의 경우 온도가 최대 38℃까지 상승되어, 비교예 1의 금속 봉지재에 비하여 열 방출 특성이 우수한 것을 확인할 수 있다.
또한, 상기 실시예 2 내지 4 및 비교예 1 내지 4에서 제조된 OLED 소자의 열 방출 특성을 측정하고, 그 결과를 하기 표 1 및 도 8에 나타내었다.
표 1
코팅층 내 방열성분 함량(중량%) 온도(℃)
실시예 2 Ni-그라파이트 5 45.25
실시예 3 Ni-그라파이트 10 43.99
실시예 4 Ni-그라파이트 20 43.34
비교예 1 - - 46.23
비교예 2 그라파이트 5 45.5
비교예 3 그라파이트 10 44.77
비교예 4 그라파이트 20 43.58
상기 표 1의 결과에서 알 수 있듯이, 코팅층에 금속-그라파이트 복합체를 포함하고 있는 실시예 2 내지 4의 소자의 경우, 코팅층에 그라파이트를 포함하고 있는 비교예 2 내지 4의 소자에 비하여, 우수한 열 방출 특성을 나타내어 온도가 낮게 측정되었음을 알 수 있다.
[부호의 설명]
11: 코팅층(1~10㎛, 금속-그라파이트) 12: 금속 호일(20~100㎛)
13: 접착필름층(90~110㎛) 14: OLED 발광층

Claims (12)

  1. 금속 호일; 및
    상기 금속 호일의 일면에 형성되며, 주제수지 및 금속-그라파이트 복합체를 포함하는 코팅층을 포함하는 금속 봉지재.
  2. 제1항에 있어서, 상기 금속 호일은 8 내지 100㎛의 두께를 갖고,
    상기 코팅층은 1 내지 10㎛의 두께를 갖는 방열성이 우수한 금속 봉지재.
  3. 제1항에 있어서, 상기 코팅층 내 금속-그라파이트 복합체는 코팅층 총 중량을 기준으로 5 내지 20중량%로 포함되는 방열성이 우수한 금속 봉지재.
  4. 제1항에 있어서, 상기 금속-그라파이트 복합체는 그라파이트 100중량부에 대하여, 금속이 20 내지 70중량부의 양으로 그라파이트에 결합되는 방열성이 우수한 금속 봉지재.
  5. 제1항에 있어서, 상기 코팅층 내 주제수지는 폴리우레탄 수지, 폴리에틸렌 수지, 폴리스티렌 수지, 폴리프로필렌 수지, 에틸렌비닐아세테이트 수지, 아크릴 수지, 실리콘 수지 및 불소 수지로 이루어진 그룹으로부터 선택된 1종 이상인 방열성이 우수한 금속 봉지재.
  6. 제1항에 있어서, 상기 금속 호일의 다른 일면에 형성되며, 주제수지 및 금속-그래핀 복합체를 포함하는 열 전도층을 더 포함하는 방열성이 우수한 금속 봉지재.
  7. 제6항에 있어서, 상기 열 전도층은 0.1 내지 5㎛의 두께를 갖는 방열성이 우수한 금속 봉지재.
  8. 제6항에 있어서, 상기 열 전도층 내 금속-그래핀 복합체는 열 전도층 총 중량을 기준으로 5 내지 20중량%로 포함되는 방열성이 우수한 금속 봉지재.
  9. 제6항에 있어서, 상기 금속-그래핀 복합체는 그래핀 100 중량부에 대하여, 금속이 20 내지 70중량부의 양으로 그래핀에 결합되는 방열성이 우수한 금속 봉지재.
  10. 제4항 또는 제9항에 있어서, 상기 금속의 평균 입도는 10 내지 100nm인 방열성이 우수한 금속 봉지재.
  11. 제6항에 있어서, 상기 열 전도층 내 주제수지는 폴리우레탄 수지, 폴리에틸렌 수지, 폴리스티렌 수지, 폴리프로필렌 수지, 에틸렌비닐아세테이트 수지, 아크릴 수지, 실리콘 수지 및 불소 수지로 이루어진 그룹으로부터 선택된 1종 이상인 방열성이 우수한 금속 봉지재.
  12. 유연전자소자에 있어서,
    상기 유연전자소자의 상부에 적층되는 접착 필름층; 및
    상기 접착 필름층의 상부에 적층되어 유연전자소자를 봉지하는 것으로, 청구항 제1항 내지 제11항 중 어느 한 항의 금속 봉지재를 포함하며,
    상기 금속 봉지재는 코팅층이 외부 공기 측을 향하도록 배치되어 접착 필름층의 상부에 적층되는 금속 봉지재에 의해 봉지된 유연전자소자.
PCT/KR2014/012606 2013-12-20 2014-12-19 방열성이 우수한 금속 봉지재, 그 제조방법 및 상기 금속 봉지재로 봉지된 유연전자소자 WO2015093903A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/102,847 US10044003B2 (en) 2013-12-20 2014-12-19 Metal encapsulant having good heat dissipation properties, method of manufacturing same, and flexible electronic device encapsulated in said metal encapsulant
CN201480069988.5A CN105848882B (zh) 2013-12-20 2014-12-19 散热性优异的金属封装材料、其制备方法及用所述金属封装材料来封装的柔性电子器件
JP2016541231A JP6440715B2 (ja) 2013-12-20 2014-12-19 放熱性に優れた金属封止材、その製造方法、及び上記金属封止材で封止された柔軟電子素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130160819A KR101543888B1 (ko) 2013-12-20 2013-12-20 방열성이 우수한 금속 봉지재, 그 제조방법 및 상기 금속 봉지재로 봉지된 유연전자소자
KR10-2013-0160819 2013-12-20

Publications (2)

Publication Number Publication Date
WO2015093903A1 true WO2015093903A1 (ko) 2015-06-25
WO2015093903A8 WO2015093903A8 (ko) 2015-08-20

Family

ID=53403153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012606 WO2015093903A1 (ko) 2013-12-20 2014-12-19 방열성이 우수한 금속 봉지재, 그 제조방법 및 상기 금속 봉지재로 봉지된 유연전자소자

Country Status (5)

Country Link
US (1) US10044003B2 (ko)
JP (1) JP6440715B2 (ko)
KR (1) KR101543888B1 (ko)
CN (1) CN105848882B (ko)
WO (1) WO2015093903A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895825A (zh) * 2016-06-15 2016-08-24 上海天马有机发光显示技术有限公司 一种封装结构、封装方法及电子器件

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102359778B1 (ko) * 2015-11-16 2022-02-08 주식회사 아모그린텍 방열성 및 전자파 차폐성을 갖는 플라스틱 사출성형체
US9799584B2 (en) * 2015-11-16 2017-10-24 Intel Corporation Heat spreaders with integrated preforms
KR102383291B1 (ko) * 2016-02-05 2022-04-07 주식회사 아모그린텍 플라스틱 사출성형체
KR101856528B1 (ko) * 2016-04-12 2018-06-20 최훈석 유기발광표시모듈용 복합 시트
KR102008227B1 (ko) * 2017-08-03 2019-10-21 주식회사 알파머티리얼즈 멀티 히트 스프레더
KR102073270B1 (ko) * 2017-08-24 2020-03-02 장연 Oled 봉지재, 그 제조방법 및 oled 봉지방법
KR102398555B1 (ko) * 2017-09-29 2022-05-17 엘지디스플레이 주식회사 열전도율이 높은 봉지 기판을 포함하는 유기 발광 표시 장치
FR3074965B1 (fr) 2017-12-07 2019-12-20 Commissariat A L'energie Atomique Et Aux Energies Alternatives Fabrication d'un sous-module a concentration integrant un materiau dissipateur de chaleur
KR102271843B1 (ko) * 2017-12-18 2021-07-01 주식회사 엘지화학 봉지 필름
CN208078031U (zh) * 2017-12-29 2018-11-09 云谷(固安)科技有限公司 封装结构及包括封装结构的显示装置
WO2019235850A1 (ko) * 2018-06-05 2019-12-12 주식회사 엘지화학 봉지 필름
KR102119752B1 (ko) * 2018-10-02 2020-06-05 주식회사 이엠따블유 연성회로기판 모듈 및 이의 제조방법
KR102566706B1 (ko) * 2018-10-24 2023-08-16 에스케이온 주식회사 이차전지용 파우치 외장재 및 이를 포함하는 파우치형 이차전지
JP7014207B2 (ja) 2019-06-10 2022-02-01 セイコーエプソン株式会社 波長変換素子、光源装置およびプロジェクター
KR20230036332A (ko) 2021-09-07 2023-03-14 와이엠티 주식회사 유기발광소자용 금속계 봉지재 및 이의 제조방법
CN114420865B (zh) * 2022-01-10 2024-02-13 深圳市华星光电半导体显示技术有限公司 Oled显示模组和oled显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120006844A (ko) * 2010-07-13 2012-01-19 포항공과대학교 산학협력단 물리적 박리 방법을 이용한 플렉서블 전자소자의 제조방법, 플렉서블 전자소자 및 플렉서블 기판
KR20120089935A (ko) * 2010-12-28 2012-08-16 주식회사 포스코 열전도와 방열을 동시에 향상시킨 이종수지 코팅 강판
KR20130105021A (ko) * 2012-03-16 2013-09-25 에스케이씨 주식회사 방열시트
KR101332362B1 (ko) * 2012-09-21 2013-12-02 재단법인 철원플라즈마 산업기술연구원 나노금속―그래핀을 이용한 열 확산기 및 이의 제조방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3440181A (en) * 1965-03-22 1969-04-22 Dow Chemical Co Metal coated vermicular expanded graphite and polymer composition containing same
US4545914A (en) * 1984-08-31 1985-10-08 Dow Corning Corporation Conductive elastomers from electrically conductive fibers in silicone emulsion
KR100307504B1 (ko) 1998-11-10 2001-11-30 이상율 크로마이징(chromizing)과이온질화처리에의한금속표면처리방법
US7027304B2 (en) * 2001-02-15 2006-04-11 Integral Technologies, Inc. Low cost thermal management device or heat sink manufactured from conductive loaded resin-based materials
JP3751280B2 (ja) 2002-12-16 2006-03-01 北川工業株式会社 導電性熱伝導シート
US20080023665A1 (en) * 2006-07-25 2008-01-31 Weiser Martin W Thermal interconnect and interface materials, methods of production and uses thereof
WO2008078679A1 (ja) * 2006-12-22 2008-07-03 Toyo Tanso Co., Ltd. 黒鉛材料及びその製造方法
US8299159B2 (en) * 2009-08-17 2012-10-30 Laird Technologies, Inc. Highly thermally-conductive moldable thermoplastic composites and compositions
TWI589042B (zh) 2010-01-20 2017-06-21 半導體能源研究所股份有限公司 發光裝置,撓性發光裝置,電子裝置,照明設備,以及發光裝置和撓性發光裝置的製造方法
JP2011222334A (ja) 2010-04-09 2011-11-04 Dainippon Printing Co Ltd 熱伝導性封止部材および素子
KR101116390B1 (ko) 2010-04-12 2012-03-09 한국생산기술연구원 다층구조를 갖는 열저항필름 및 그 제조방법
KR101099478B1 (ko) 2010-05-25 2011-12-27 재단법인 철원플라즈마 산업기술연구원 플라즈마 토치 및 이를 포함하는 나노 분말 제조 장치
US20120009415A1 (en) 2010-07-08 2012-01-12 Shao Richard L Carbon Foam Tooling With Durable Skin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120006844A (ko) * 2010-07-13 2012-01-19 포항공과대학교 산학협력단 물리적 박리 방법을 이용한 플렉서블 전자소자의 제조방법, 플렉서블 전자소자 및 플렉서블 기판
KR20120089935A (ko) * 2010-12-28 2012-08-16 주식회사 포스코 열전도와 방열을 동시에 향상시킨 이종수지 코팅 강판
KR20130105021A (ko) * 2012-03-16 2013-09-25 에스케이씨 주식회사 방열시트
KR101332362B1 (ko) * 2012-09-21 2013-12-02 재단법인 철원플라즈마 산업기술연구원 나노금속―그래핀을 이용한 열 확산기 및 이의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105895825A (zh) * 2016-06-15 2016-08-24 上海天马有机发光显示技术有限公司 一种封装结构、封装方法及电子器件

Also Published As

Publication number Publication date
US20160359134A1 (en) 2016-12-08
CN105848882B (zh) 2017-08-25
CN105848882A (zh) 2016-08-10
KR101543888B1 (ko) 2015-08-11
US10044003B2 (en) 2018-08-07
WO2015093903A8 (ko) 2015-08-20
KR20150073026A (ko) 2015-06-30
JP6440715B2 (ja) 2018-12-19
JP2017504500A (ja) 2017-02-09

Similar Documents

Publication Publication Date Title
WO2015093903A1 (ko) 방열성이 우수한 금속 봉지재, 그 제조방법 및 상기 금속 봉지재로 봉지된 유연전자소자
WO2012060621A2 (ko) 접착 필름 및 이를 이용한 유기전자장치의 봉지 방법
WO2016126131A1 (ko) 봉지 필름
WO2013073846A1 (ko) 접착 필름 및 이를 이용한 유기전자장치의 봉지 방법
WO2018128368A1 (ko) 절연성 방열 코팅조성물 및 이를 통해 구현된 절연성 방열 물품
WO2015147449A1 (ko) 전자기파 차폐시트, 및 이의 제조방법
WO2016200180A1 (ko) 접착 필름 및 이를 포함하는 유기전자장치
WO2015020413A1 (ko) 점착제 조성물, 점착 필름 및 이를 이용한 유기전자장치의 제조방법
WO2015009129A1 (ko) 봉지 조성물
WO2017204565A1 (ko) 절연성 방열 코팅조성물 및 이를 통해 형성된 절연성 방열유닛
WO2016003026A1 (ko) 유기전자장치용 접착필름 및 이를 포함하는 유기전자장치용 봉지재
WO2016099067A1 (ko) 유기발광소자
WO2018135864A1 (ko) Oled 패널 하부 보호필름 및 이를 포함하는 유기발광표시장치
WO2015174797A1 (ko) 유기발광소자
WO2017179906A1 (ko) 봉지 필름
WO2017095005A1 (ko) 유기전자장치용 접착필름 및 이를 포함하는 유기전자장치용 봉지재
WO2018110929A1 (ko) 투명 절연성 방열 코팅조성물, 이를 통해 형성된 방열유닛 및 방열 회로기판
WO2018117564A1 (ko) 금속 복합시트
WO2019088450A1 (ko) 유-무기 복합 태양전지 및 유-무기 복합 태양전지 제조방법
WO2018040236A1 (zh) 双面0led显示装置
WO2013176519A1 (en) Semiconductor package substrate, package system using the same and method for manufacturing thereof
WO2015126176A1 (ko) 봉지 필름 및 이를 포함하는 유기전자장치
WO2021125695A1 (ko) 잉크젯용 경화성 조성물 및 이를 포함하는 유기발광 표시장치
WO2019112175A1 (ko) 접착제 키트, 이를 포함하는 접착필름 및 봉지재, 및 유기전자장치의 봉지방법
WO2019235850A1 (ko) 봉지 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873076

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15102847

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016541231

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873076

Country of ref document: EP

Kind code of ref document: A1