WO2019088450A1 - 유-무기 복합 태양전지 및 유-무기 복합 태양전지 제조방법 - Google Patents

유-무기 복합 태양전지 및 유-무기 복합 태양전지 제조방법 Download PDF

Info

Publication number
WO2019088450A1
WO2019088450A1 PCT/KR2018/011245 KR2018011245W WO2019088450A1 WO 2019088450 A1 WO2019088450 A1 WO 2019088450A1 KR 2018011245 W KR2018011245 W KR 2018011245W WO 2019088450 A1 WO2019088450 A1 WO 2019088450A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
sensitive adhesive
electrode
common layer
Prior art date
Application number
PCT/KR2018/011245
Other languages
English (en)
French (fr)
Inventor
박상준
함윤혜
김종석
김용남
김세용
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880070492.8A priority Critical patent/CN111316458B/zh
Priority to JP2020524097A priority patent/JP7188838B2/ja
Priority to US16/760,016 priority patent/US20200350125A1/en
Publication of WO2019088450A1 publication Critical patent/WO2019088450A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/331Metal complexes comprising an iron-series metal, e.g. Fe, Co, Ni
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic-inorganic hybrid solar cell and a method for manufacturing an organic-inorganic hybrid solar cell.
  • a solar cell refers to a cell that generates a current-voltage by utilizing a photovoltaic effect that absorbs light energy from sunlight to generate electrons and holes.
  • formation of the upper electrode is mostly performed through a metal vacuum deposition process or a printing process using a conductive ink, which has a limitation in reducing the process cost and material cost.
  • the organic-inorganic composite perovskite material has recently attracted attention as a light absorbing material for organic / inorganic hybrid solar cells due to its high extinction coefficient and its ability to be easily synthesized through a solution process.
  • the upper electrode of the organic-inorganic hybrid solar cell is also formed through the metal vacuum deposition or the printing process through the conductive ink, the above-described process and cost problems occur in the same manner.
  • the present invention provides a method for manufacturing an organic-inorganic hybrid solar cell and a organic-inorganic hybrid solar cell.
  • One embodiment of the present disclosure includes a first electrode
  • a first common layer provided on the first electrode
  • a light absorbing layer comprising a perovskite material provided on the first common layer
  • a second common layer provided on the light absorbing layer
  • a conductive pressure-sensitive adhesive layer provided to be in contact with the second common layer.
  • a liquid crystal display comprising a first electrode; A first common layer; A light absorbing layer comprising a perovskite material; And forming a first structure including a second common layer;
  • the organic-inorganic hybrid solar cell according to one embodiment of the present invention is excellent in efficiency and stability.
  • Inorganic hybrid solar cell can manufacture a hybrid organic / inorganic solar cell having a simple process and excellent efficiency because the formation of the upper electrode and the encapsulation layer are not performed separately.
  • the organic-inorganic hybrid solar cell according to one embodiment of the present invention is capable of manufacturing a flexible device.
  • FIG. 1 to 3 are views showing a hybrid organic-inorganic hybrid solar cell according to an embodiment of the present invention.
  • FIG. 4 is a view showing a general organic-inorganic hybrid solar cell.
  • FIG. 5 is a graph showing the current density according to the voltage of the organic-inorganic hybrid solar cell manufactured in the embodiment of the present invention.
  • a member when a member is located on another member, it includes not only when a member is in contact with another member but also when there is another member between the two members.
  • One embodiment of the present disclosure includes a first electrode
  • a first common layer provided on the first electrode
  • a light absorbing layer comprising a perovskite material provided on the first common layer
  • a second common layer provided on the light absorbing layer
  • a conductive pressure-sensitive adhesive layer provided to be in contact with the second common layer.
  • FIG. 1 shows the structure of an organic-inorganic hybrid solar cell according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view of an organic-inorganic composite material in which a first electrode 10, a first common layer 20, a light absorbing layer 30, a second common layer 40, and a conductive pressure- Solar cells.
  • a substrate may further be provided on the conductive pressure-sensitive adhesive layer.
  • the substrate comprises a barrier film.
  • the barrier film serves to protect from the external environment (for example, moisture and oxygen).
  • the barrier film may be a metal foil.
  • the metal of the metal foil is selected from the group consisting of silver (Ag), aluminum (Al), copper (Cu), molybdenum (Mo), nickel (Ni), iron (Fe) and palladium Or more, or alloys thereof. Specifically, it may be an alloy of iron and nickel such as Inver, aluminum (Al), copper (Cu), or iron (Fe).
  • the substrate further comprises a protective film.
  • the protective film is positioned at the outermost part of the device, and acts as a scratch, a pollution prevention, and the like.
  • the protective film is made of polytetrafluoroethylene (PTET); (TAC, triacetyl cellulose), polyethylene terephthalate (PET), cycloolefin polymer (COP), acrylic film, and the like, such as polyvinylidene fluoride (PVDF) Can be used alone or in combination.
  • PTET polytetrafluoroethylene
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • COP cycloolefin polymer
  • acrylic film and the like, such as polyvinylidene fluoride (PVDF) Can be used alone or in combination.
  • FIG. 2 shows the structure of an organic-inorganic hybrid solar cell including a substrate on a conductive pressure-sensitive adhesive layer.
  • the first electrode 10, the first common layer 20, the light absorbing layer 30, the second common layer 40, the conductive pressure-sensitive adhesive layer 50, and the substrate 60 are sequentially laminated Inorganic hybrid solar cell.
  • the first electrode 10, the first common layer 20, the light absorbing layer 30, the second common layer 40, the conductive adhesive layer 50, the metal foil 70, and the protection And a film 80 are successively laminated on one another.
  • the organic-inorganic hybrid solar cell may further include a substrate below the first electrode.
  • FIG. 3 shows an organic-inorganic hybrid solar cell having a substrate. 3, the substrate 90, the first electrode 10, the first common layer 20, the light absorption layer 30, the second common layer 40 conductive pressure-sensitive adhesive layer 50, the metal foil 70 ) And a protective film (80) are sequentially laminated.
  • the conductive pressure-sensitive adhesive layer serves as both an upper electrode and an adhesive layer in a conventional organic-inorganic hybrid solar cell.
  • FIG. 4 shows the structure of a conventional organic-inorganic hybrid solar cell.
  • 4 shows a conventional organic-inorganic hybrid solar cell in which a second electrode (upper electrode) and an adhesive layer are separately provided.
  • 4 shows a substrate 90, a first electrode 10, a first common layer 20, a light absorbing layer 30, a second common layer 40, a second electrode 100, Inorganic composite solar cell in which a metal foil 110, a metal foil 70, and a protective film 80 are sequentially formed.
  • the perovskite substance may be a compound represented by the following formula (1) or (2).
  • A, B and B ' is C n H 2n + 1 NH 3 respectively +, NH 4 +, HC ( NH 2) 2 +, Cs +, NF 4 +, NCl 4 +, PF 4 +, PCl 4 +, CH 3 PH 3 + , CH 3 AsH 3 + , CH 3 SbH 3 + , PH 4 + , AsH 4 + and SbH 4 +
  • M and M ' are the same or different and each is independently a 2 + Cu, Ni + 2, Co + 2, Fe + 2, Mn 2+, Cr + 2, Pd + 2, Cd + 2, Ge 2 +, Sn 2 + , Pb 2 +, and Yb 2 + .
  • X, X 'and X &quot are each independently a halogen ion
  • n is an integer of 1 to 9
  • a is a real number of 0 ⁇ a ⁇ 1,
  • z is a real number of 0 ⁇ z ⁇
  • a and B are the same or different from each other.
  • a and B ' are the same or different from each other.
  • the perovskite material of the light absorbing layer may include a single cation.
  • a single cation means that one kind of monovalent cation is used. That is, it means that only one type of monovalent cation is selected as A in Formula (1).
  • a in the above formula (1) may be C n H 2n + 1 NH 3 + , and n may be an integer of 1 to 9.
  • the perovskite structure compound of the light absorbing layer may comprise a composite cation.
  • the complex cation means that two or more monovalent cations are used. That is, in the formula (2), B and B 'mean that monovalent cations different from each other are selected.
  • B in Formula 2 may be C n H 2n + 1 NH 3 +
  • B ' may be HC (NH 2 ) 2 + .
  • the perovskite material is represented by formula (1).
  • the perovskite material is represented by formula (2).
  • A, B and B ' are each C n H 2n + 1 NH 3 + or HC (NH 2 ) 2 + . At this time, B and B 'are different from each other.
  • A is CH 3 NH 3 +, or HC (NH 2 ) 2 + .
  • the A and B are each CH 3 NH 3 +.
  • B ' is HC (NH 2 ) 2 + .
  • X 'and X &quot are different from each other.
  • X, X 'and X &quot are each F or Br.
  • a is a real number of 0 < a ⁇ 1 so that the sum of B and B 'becomes 1. Also, in order that the sum of X 'and X " is 3, z is a real number of 0 < z ⁇
  • the perovskite material is CH 3 NH 3 PbI 3, HC (NH 2) 2 PbI 3, CH 3 NH 3 PbBr 3, HC (NH 2) 2 PbI 3 Or (CH 3 NH 3 ) a (HC (NH 2 ) 2 ) (1-a) I z Br (3-z) , n is an integer of 1 to 9, a is a real number 0 ⁇ Is a real number with 0 ⁇ z ⁇ 3.
  • the first common layer and the second common layer mean an electron transporting layer or a hole transporting layer, respectively.
  • the first common layer and the second common layer are not the same layer.
  • the first common layer is an electron transporting layer
  • the second common layer is a hole transporting layer
  • the first common layer is a hole transporting layer
  • the second common layer is an electron transporting layer.
  • the conductive pressure sensitive adhesive layer includes a conductive material and a sticky material.
  • the mass ratio of the adhesive material to the conductive material in the conductive pressure sensitive adhesive layer may be 1:99 to 99: 1. Specifically, it may be 20:80 to 80:20.
  • the conductive material in the viscous pressure-sensitive adhesive layer may exist in a dispersed form.
  • the conductive material comprises a carbon-based material or metal particles.
  • the carbon-based material can be carbon black, carbon nanotubes (CNT), graphite, graphene, activated carbon, mesoporous carbon, carbon fiber, And a carbon nano wire.
  • CNT carbon nanotubes
  • the metal particles may be commonly used conductive metal particles.
  • the metal particles may be gold (Au), platinum (Pt), silver (Ag), copper (Cu) Ni) or an alloy thereof.
  • the conductive pressure sensitive adhesive layer is formed using a conductive pressure sensitive adhesive composition, and the conductive pressure sensitive adhesive composition includes a conductive substance and an adhesive substance.
  • the content of the conductive material in the conductive pressure sensitive adhesive composition is 1 wt% to 40 wt%. Specifically, it is 10 wt% to 40 wt%. More specifically, it is 15 wt% to 40 wt%.
  • the content of the conductive substance in the conductive pressure sensitive adhesive composition is less than 1 wt%, the conductivity is lowered.
  • the content of the conductive substance is more than 40 wt%, the adhesive strength is lowered.
  • the conductivity of the conductive pressure-sensitive adhesive layer is excellent, and the sheet resistance value of several hundreds of ohms or less can be exhibited.
  • the conductive pressure sensitive adhesive composition may include a solventless adhesive material.
  • the conductive pressure sensitive adhesive composition may include a solvent type adhesive material.
  • the adhesive material comprises a cured product of a pressure-sensitive adhesive composition or a pressure-sensitive adhesive composition.
  • the pressure-sensitive adhesive composition can be used without limitation as long as it is a material used in the art.
  • the pressure-sensitive adhesive composition may be a liquid phase before curing and a solid phase after curing.
  • the pressure-sensitive adhesive composition may be contained in an uncured state.
  • &quot curing " means a process in which the adhesive material is converted into a state capable of exhibiting adhesive performance by chemical or physical action or reaction of components contained in the adhesive layer.
  • the pressure sensitive adhesive composition may comprise a polymer derived from butylene. Since the polymer derived from butylene has a low polarity, is transparent, and has almost no influence of corrosion, it has an effect of realizing excellent moisture barrier properties and durability when used as an adhesive material.
  • polymer derived from butylene means that at least one of the polymerized units of the polymer is composed of butylene.
  • the butylene-derived polymer may be a homopolymer of butylene monomer, a copolymer of butylene monomer and other polymerizable monomer, a reactive oligomer using a butylene monomer, or a mixture thereof Lt; / RTI >
  • the butylene monomer may be, for example, 1-butene, 2-butene or isobutylene, and the other monomers polymerizable with the butylene monomer may be isoprene, styrene or butadiene , But is not limited thereto.
  • the butylene-derived polymer may be, for example, butyl rubber, but is not limited thereto.
  • the pressure-sensitive adhesive composition may comprise a polyfunctional polymerizable compound.
  • the polyfunctional polymerizable compound may specifically be a polyfunctional active energy ray polymerizable compound that can be polymerized by active energy ray irradiation.
  • the polyfunctional active energy ray polymerizable compound includes an ethylenically unsaturated double bond such as a functional group capable of participating in the polymerization reaction, such as an acryloyl group or a methacryloyl group, by irradiation with an active energy ray Functional groups; An epoxy group; Or a compound containing two or more functional groups such as an oxetane group.
  • the polyfunctional active energy ray polymerizable compound is, for example, 1,4-butanediol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,6-hexanediol di Acrylate, 1,8-octanediol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, and trimethylpropane triacrylate.
  • the pressure-sensitive adhesive composition may further include at least one additive material selected from the group consisting of a tackifier, a moisture adsorbent, a moisture barrier, a dispersant, a photoinitiator, a thermal initiator or a radical initiator.
  • the compounding ratio of the additive material is not particularly limited and may be suitably selected in consideration of the viscosity of the intended conductive pressure-sensitive adhesive layer and the adhesive property to be achieved after curing.
  • the tackifier is not limited as long as it is compatible with the pressure-sensitive adhesive composition and has excellent water barrier properties.
  • it may be a hydrogenated hydrocarbon paper, a hydrogenated ester resin, or a hydrogenated dasiraclopentadiene resin, but is not limited thereto.
  • the moisture adsorbent can be used without limitation as long as it is a material used in the art.
  • Organic metal oxides such as aluminum oxide octylate; Sulfates such as magnesium sulfate, sodium sulfate or nickel sulfate; Or a metal oxide such as phosphorous pentoxide (P 2 O 5 ), lithium oxide (Li 2 O), sodium oxide (Na 2 O), barium oxide (BaO), calcium oxide (CaO) or magnesium oxide (MgO) But is not limited thereto.
  • the " moisture barrier " means a material that is not reactive with moisture, is low in reactivity with moisture, or blocks or prevents moisture from moving in the material.
  • the moisture barrier agent include, but are not limited to, clay, silica, zeolite, titania, and zirconia.
  • the photoinitiator, thermal initiator or radical initiator can be used without limitation as long as it is a material used in the art.
  • the content of the adhesive material in the conductive pressure sensitive adhesive composition is 1 wt% to 60 wt%. Specifically, it may be from 5 wt% to 50 wt%, more specifically from 10 wt% to 30 wt%.
  • the content of the adhesive material is more than 60 wt%, the compatibility with the conductive material is lowered, and when the content of the adhesive material is less than 1 wt%, the adhesive property is deteriorated.
  • the conductive pressure-sensitive adhesive layer has a viscosity at room temperature of 10 6 dyne / cm 2 Or more, preferably 10 7 dyne / cm 2 Or more.
  • &quot normal temperature " means a temperature at which the natural temperature is not warmed or attenuated. For example, it is about 15 to 35 DEG C, more specifically about 20 to 25 DEG C, . ≪ / RTI >
  • the viscosity can be measured using an Advanced Rheological Expansion System (ARES).
  • AWS Advanced Rheological Expansion System
  • the viscosity of the conductive pressure-sensitive adhesive layer it is possible to control the viscosity of the conductive pressure-sensitive adhesive layer to the above-described range to form a conductive pressure-sensitive adhesive layer having a uniform thickness and smooth workability in the process of manufacturing the organic- .
  • problems such as shrinkage and volatile gas that can be generated by curing of resin or the like can be greatly reduced, and physical or chemical damage to the organic-inorganic hybrid solar cell can be prevented.
  • the upper limit of the viscosity of the conductive adhesive layer to maintain the state of solid or semi-solid at room temperature is not particularly limited, for example, in consideration of the fairness or the like, of from about 10 9 dyne / cm 2 or less Range can be controlled.
  • the adhesive force of the conductive pressure-sensitive adhesive layer may be preferably not less than 100 gf / cm after peeling the film under pressure at 30 DEG C, 1 MPa, and 1 second to 2 seconds, It may be 300 gf / cm or more, and more preferably 500 gf / cm or more.
  • the peeling force is obtained by leaving a conductive adhesive material (hereinafter referred to as a conductive adhesive film) formed on a PET release film at room temperature (25 ° C) for 1 hour, The film was cut into a standard (film width: 1.5 mm) and pressed against a patternless glass at a measurement temperature of 30 DEG C under a pressure of 1 MPa for 1 second, and then the PET release film was removed. Then, an adhesive tape (Nitto yarn) cut in a length of 5 cm longer than the conductive adhesive film pressed on the glass substrate was placed on the conductive adhesive film from which the PET release film had been removed, and the rubber roller was moved twice So that the adhesive tape and the conductive adhesive film were adhered to each other. Three specimens of the conductive adhesive film were prepared in the same manner as above, and the peel strength was measured using UTM, and the average value thereof was calculated.
  • a conductive adhesive film formed on a PET release film at room temperature (25 ° C) for 1 hour
  • the sheet resistance value of the conductive pressure sensitive adhesive layer is 0.01? / Sq to 100? / Sq. Therefore, it is suitable for use as an electrode of an organic-inorganic hybrid solar cell.
  • the sheet resistance can be measured using a known surface resistor according to the 4-point probe method.
  • the surface resistance (V / I) is measured by measuring the current (I) and the voltage (V) with four probes and the area (cross-sectional area, W) of the sample and the distance between the electrodes (V / I x W / L) and multiplying the resistance correction factor (RCF) to calculate the sheet resistance unit ⁇ / sq.
  • the resistance correction coefficient can be calculated using the size, thickness, and temperature of the sample, which can be calculated by the Poisson equation.
  • the sheet resistance of the entire laminate can be measured and calculated in the laminate itself and the sheet resistance of each layer can be measured before forming the layer of the remaining material except the target layer to be measured in the whole laminate, Or may be measured after removing the layer made of the remaining material except for the target layer to be measured or analyzing the material of the target layer to form a layer having the same condition as the target layer.
  • the sheet resistance value of the conductive pressure-sensitive adhesive layer may be measured using a 4-point probe after separately preparing a conductive adhesive layer.
  • the conductive pressure-sensitive adhesive composition in order to form the conductive pressure-sensitive adhesive layer, may be dissolved in a solvent.
  • the solvent may be any material as long as it is a material used in the art. Examples of the solvent include cyclopentyl methyl ether, di-tert-butyl ether, dibutyl ether, Diethyl ether, diisopropyl ether, 1,4-dioxane, ethyl tert-butyl ether, polyethylene glycol, based solvent such as polyethylene glycol, tetrahydrofuran and the like.
  • the first electrode is a transparent electrode, and the solar cell may absorb light via the first electrode.
  • the first electrode when the first electrode is a transparent electrode, the first electrode may be formed of a material selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), poly (PP), polyimide (PI), polycarbonate (PC), polystyrene (PS), polyoxyethylene (POM), acrylonitrile styrene copolymer acrylonitrile butadiene styrene copolymer, triacetyl cellulose (TAC), polyarylate (PAR), and the like may be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PP poly
  • PI polyimide
  • PC polycarbonate
  • PS polystyrene
  • POM polyoxyethylene
  • TAC triacetyl cellulose
  • PAR polyarylate
  • the first electrode may be formed of indium tin oxide (ITO), fluorine doped tin oxide (FTO), aluminum doped zink oxide (AZO), indium zinc oxide zinc oxide, ZnO-Ga 2 O 3 , ZnOAl 2 O 3, and ATO (antimony tin oxide). More specifically, the first electrode may be ITO.
  • ITO indium tin oxide
  • FTO fluorine doped tin oxide
  • AZO aluminum doped zink oxide
  • indium zinc oxide zinc oxide ZnO-Ga 2 O 3 , ZnOAl 2 O 3, and ATO (antimony tin oxide). More specifically, the first electrode may be ITO.
  • the first electrode may be a translucent electrode.
  • the first electrode may be made of a metal such as silver (Ag), gold (Au), magnesium (Mg), or an alloy thereof.
  • the substrate may be a substrate having excellent transparency, surface smoothness, ease of handling, and waterproofness.
  • a glass substrate, a thin film glass substrate, or a plastic substrate can be used.
  • the plastic substrate may be formed of a flexible film such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether ether ketone and polyimide in the form of a single layer or a multilayer .
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyether ether ketone polyimide
  • the substrate is not limited thereto, and a substrate commonly used in an organic-inorganic hybrid solar cell may be used.
  • One embodiment of the present disclosure includes a first electrode; A first common layer; A light absorbing layer comprising a perovskite material; And forming a first structure including a second common layer;
  • the step of forming the first structure comprises
  • the materials of the first electrode, the first common layer, the perovskite material, and the second common layer are the same as described above.
  • the conductive pressure sensitive adhesive layer may be in a state where a substrate is further provided on a surface opposite to a portion in contact with the second common layer. The description at this time is the same as described above.
  • the step of preparing the conductive pressure-sensitive adhesive layer includes a step of applying the conductive pressure-sensitive adhesive composition on the release film, followed by drying or curing.
  • the releasing film can be used without restriction as long as it is a material used in the art, and it can be a PET film.
  • the step of preparing the conductive pressure-sensitive adhesive layer may be a step of preparing a second structure in which a PET release film, a conductive pressure-sensitive adhesive and a substrate are sequentially laminated.
  • the step of laminating the second common layer and the conductive adhesive layer so as to be in contact may be performed after positioning one surface of the conductive pressure sensitive adhesive layer on the second common layer of the first structure . Specifically, it can be performed after placing one surface of the second common layer of the first structure and the one side of the conductive pressure-sensitive adhesive layer from which the PET release film has been removed so as to be in contact with each other. That is, the second common layer and the conductive pressure-sensitive adhesive layer may be sequentially provided after the lamination, or the second common layer, the conductive pressure-sensitive adhesive layer, and the substrate may be sequentially provided.
  • the efficiency is reduced due to the high resistance characteristic of the material.
  • the upper electrode is formed of a metal through a vacuum deposition method, an increase in the process cost is caused by switching to a vacuum atmosphere at normal pressure or an atmospheric pressure atmosphere in vacuum.
  • the sealing layer needs to be separately adhered to the upper electrode thus formed, there is a problem that a process is added.
  • the term " encapsulating layer" means a layered product of an adhesive layer and a substrate.
  • the sealing layer may be a material in which an adhesive layer, a barrier film, and a protective film are sequentially laminated. More specifically, the sealing layer may be a material in which an adhesive layer, a metal foil, and a protective film are sequentially laminated.
  • the pressure-sensitive adhesive layer may be formed of the pressure-sensitive adhesive composition described above.
  • encapsulation film means that the encapsulation layer is formed into a film.
  • the conductive adhesive layer formed by unifying the upper electrode and the adhesive layer is directly bonded on the second common layer, The efficiency is improved without damaging.
  • the upper electrode is not directly disposed on the upper part of the completed light absorbing layer and the common layer, the range of usable materials can be extended, and in particular, an alcohol solvent can be used, The performance of the film can be effectively improved.
  • the step of joining the second common layer and the conductive pressure sensitive adhesive layer so as to contact with each other is performed using a roll at 20 ⁇ to 100 ⁇ . That is, since the device is completed using the roll-to-roll process, the process is simple and electrodes can be formed under atmospheric pressure conditions, and thus can be used as a continuous production process of organic electronic devices.
  • the step of forming the light absorbing layer comprises the steps of coating a solution containing an organic halide and a solution containing a metal halide on the first common layer, respectively, or a step of coating an organic halide and a metal halide And coating the solution containing all of the cargo.
  • the organic halide may be a material represented by the following formula (3) or (4).
  • A, B and B' is C n H 2n + 1 NH 3 respectively +, NH 4 +, HC ( NH 2) 2 +, Cs +, NF 4 +, NCl 4 +,
  • the cation is a monovalent cation selected from PF 4 + , PCl 4 + , CH 3 PH 3 + , CH 3 AsH 3 + , CH 3 SbH 3 + , PH 4 + , AsH 4 + and SbH 4 +
  • X, X 'and X &quot are each a halogen ion
  • n is an integer of 1 to 9
  • y is a real number satisfying 0 ⁇ y ⁇ 1,
  • z is a real number with 0 ⁇ z ⁇
  • the metal halide may be a material represented by the following general formula (5).
  • M is Cu 2 +, Ni 2 +, Co 2 +, Fe 2 +, Mn 2 +, Cr 2 +, Pd 2 +, Cd 2 +, Ge 2 +, Sn 2 +, Pb 2 + , and from Yb 2 + Is a divalent metal ion to be selected,
  • the A, B and B ' is CH 3 NH 3, respectively Or HC (NH 2) can be two days.
  • M, M 'and M may be Pb 2 + , respectively.
  • X, X ', X "and X' '' may be iodine (I) ions or bromine (Br) ions.
  • the organic halide is selected from the group consisting of CH 3 NH 3 I, HC (NH 2 ) 2 I, CH 3 NH 3 Br, HC (NH 2 ) 2 Br or (CH 3 NH 3 ) a HC (NH 2) 2) ( 1-a) I z Br (1-z) , y is a real number, 0 ⁇ y ⁇ 1 z may be a real number 0 ⁇ z ⁇ 1.
  • the metal halide can be a PbI 2, PbBr 2 or PbIBr.
  • the organic-inorganic hybrid solar cell may have an n-i-p structure.
  • the nip structure of a conventional organic-inorganic hybrid solar cell has a structure in which a first electrode, an electron transport layer, a light absorption layer, a hole transport layer, a second electrode, and an encapsulation layer are sequentially stacked, When the two electrodes are metal electrodes, there is a problem in that the process cost is increased due to the metal vacuum deposition.
  • the nip structure of the organic-inorganic hybrid solar cell according to an embodiment of the present invention has a structure in which a first electrode, an electron transport layer, a light absorption layer, a hole transport layer, and a conductive pressure sensitive adhesive layer are sequentially laminated, The layer is not separately formed, and the process is simple.
  • the organic-inorganic hybrid solar cell may have a p-i-n structure.
  • the pin structure of a conventional organic-inorganic hybrid solar cell has a structure in which a first electrode, a hole transporting layer, a light absorbing layer, an electron transporting layer, a second electrode and an encapsulating layer are sequentially laminated,
  • the two electrodes are metal electrodes, there is a problem in that the process cost is increased due to the metal vacuum deposition.
  • the pin structure of the organic-inorganic hybrid solar cell has a structure in which a first electrode, a hole transport layer, a light absorption layer, an electron transport layer, and a conductive adhesive layer are sequentially laminated, The layer is not separately formed, and the process is simple.
  • the organic-inorganic hybrid solar cell may further include an additional layer provided between the first electrode and the conductive pressure-sensitive adhesive layer.
  • the additional layer may include at least one selected from the group consisting of a hole injection layer, a hole transporting layer, an electron blocking layer, an electron transporting layer, and an electron injecting layer.
  • the hole transporting layer and / or the electron transporting layer material may be a material for increasing the probability that the electrons and holes are efficiently transferred to the electrode by efficiently transferring electrons and holes to the light absorbing layer.
  • the material is not particularly limited.
  • the electron transporting layer may include a metal oxide.
  • the metal oxide include Ti oxide, Zn oxide, In oxide, Sn oxide, W oxide, Nb oxide, Mo oxide, Mg oxide, Zr oxide, Sr oxide, Yr oxide, La oxide, V oxide, , A Sc oxide, a Sm oxide, a Ga oxide, an In oxide, a Ta oxide and a SrTi oxide, or a combination thereof, but is not limited thereto.
  • the electron transporting layer can improve the characteristics of electric charge by using doping, and the surface can be modified by using a fullerene derivative or the like.
  • the electron transport layer may be formed on one side of the first electrode or coated in film form using sputtering, E-beam, thermal evaporation, spin coating, screen printing, inkjet printing, doctor blade or gravure printing .
  • the hole transport layer may be an anode buffer layer.
  • a hole transporting layer may be introduced to the upper portion of the light absorbing layer through a method such as spin coating, dip coating, inkjet printing, gravure printing, spray coating, doctor blade, bar coating, gravure coating, brush painting,
  • the hole transport layer may be formed of a material selected from the group consisting of tertiary butyl pyridine (TBP), lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), poly (3,4-ethylenedioxythiophene ): Poly (4-styrenesulfonate) [PEDOT: PSS], and the like.
  • TBP tertiary butyl pyridine
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • PEDOT Poly (4-styrenesulfonate
  • the first structure means a structure in which a substrate, a first electrode, a first common layer, a light absorbing layer, and a second common layer are sequentially laminated.
  • the first structure may be a structure in which a substrate, a first electrode, an electron transport layer, a light absorption layer, and a hole transport layer are sequentially formed.
  • the second structure means a structure in which a PET release film, a conductive adhesive, and a substrate are sequentially laminated.
  • Example 1 A U-inorganic hybrid solar cell prepared by laminating a first structure and a second structure
  • a substrate was formed with a PI varnish on the substrate and ITO sputtering was performed to form a first electrode of 80? / Sq level.
  • the substrate on which the first electrode was formed was washed with ultrasonic waves in ethanol for 20 minutes.
  • a 2 wt% TiO 2 dispersion solution (Nano New Materials Co., Ltd.) was coated on the ITO substrate by a spin coating method and heat-treated at 150 ° C for 30 minutes to form an electron transport layer.
  • DMF dimethylformamide
  • the adhesive layer solution was adjusted as follows. 50 g of butyl rubber (Br068, EXXON) as a polymer derived from butylene, 24 g of a hydrogenated hydrocarbon resin (Eastotac H-100L) as a tackifier, 15 g of trimethylolpropane triacrylate as a multifunctional active energy ray polymerizable compound And 1 g of 2,2-dimethoxy-1,2-diphenylethane-1-one (Irgacure 651, manufactured by Ciba) as a radical initiator were added thereto to form a pressure-sensitive adhesive composition.
  • a conductive adhesive coating solution 50 parts by weight of carbon flakes were dispersed by adding 100 parts by weight of the above-mentioned materials and diluted with toluene to a solid content of about 20% by weight to prepare a conductive adhesive coating solution.
  • the prepared solution was coated on the release surface of the release PET film and dried in an oven at 100 ° C. for 30 minutes to form a conductive pressure-sensitive adhesive layer having a thickness of 50 ⁇ m.
  • a second structure of a PET release layer, a conductive pressure-sensitive adhesive layer, and a copper film structure was produced by plywooding with a 20 ⁇ ⁇ copper film.
  • a warm type roll laminator was used.
  • the second structure obtained by removing the first structure and the PET release layer at a temperature of 100 ⁇ was lapped and defoaming was carried out under a vacuum of 100 Pa and a pressure of 0.5 MPa under a temperature condition of 25 ⁇ to 100 ⁇ using a vacuum laminator And completed a flexible film type organic-inorganic hybrid solar cell.
  • COMPARATIVE EXAMPLE 1 An organic-inorganic hybrid solar cell prepared by laminating an encapsulating film on an upper electrode
  • a substrate was formed with a PI varnish on the substrate and ITO sputtering was performed to form a first electrode of 80? / Sq level.
  • the substrate on which the first electrode was formed was washed with ultrasonic waves in ethanol for 20 minutes.
  • a 2 wt% TiO 2 dispersion solution (Nano New Materials Co., Ltd.) was coated on the ITO substrate by a spin coating method and heat-treated at 150 ° C for 30 minutes to form an electron transport layer.
  • DMF dimethylformamide
  • a commercial sealing film (FSA DL-01, manufactured by LG Chemical Co., Ltd.) was laminated with a room temperature roll laminator, Deg.] C under a vacuum of 100 Pa and a pressure of 0.5 MPa, thereby completing a flexible film type organic-inorganic hybrid solar cell.
  • the conductive carbon paste carbon flakes were added with a polystyrene resin as a binder, 50 parts by weight of carbon flakes were added to 100 parts by weight of the total resin, and the dispersion was diluted with toluene to a solid content of about 20% Respectively.
  • Table 1 shows the performance of the organic-inorganic hybrid solar cell according to the embodiment of the present invention
  • FIG. 5 is a graph showing the current density according to the voltage of the organic-inorganic hybrid solar cell manufactured in the present embodiment.
  • V oc is the open-circuit voltage
  • J sc is the short-circuit current
  • FF is the fill factor
  • PCE is the energy conversion efficiency.
  • the open-circuit voltage and the short-circuit current are the X-axis and Y-axis intercepts in the fourth quadrant of the voltage-current density curve, respectively. The higher the two values, the higher the efficiency of the solar cell.
  • the fill factor is the width of the rectangle that can be drawn inside the curve divided by the product of the short-circuit current and the open-circuit voltage. The energy conversion efficiency can be obtained by dividing these three values by the intensity of the irradiated light, and a higher value is preferable.
  • the organic-inorganic hybrid solar cell according to one embodiment of the present invention does not use a deposition process, and is excellent in cost competitiveness and performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 명세서는 제1 전극; 상기 제1 전극 상에 구비된 제1 공통층; 상기 제1 공통층 상에 구비된 페로브스카이트 물질을 포함하는 광흡수층; 상기 광흡수층 상에 구비된 제2 공통층; 및 상기 제2 공통층 상에 구비된 전도성 점착제층을 포함하는 유-무기 복합 태양 전지 및 이의 제조방법에 관한 것이다.

Description

유-무기 복합 태양전지 및 유-무기 복합 태양전지 제조방법
본 출원은 2017년 11월 1일에 한국특허청에 제출된 한국 특허 출원 제10-2017-0144643호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 유-무기 복합 태양전지 및 유-무기 복합 태양전지 제조방법에 관한 것이다.
화석 에너지의 고갈과 이의 사용에 의한 지구 환경적인 문제를 해결하기 위해 태양에너지, 풍력, 수력과 같은 재생 가능하며, 청정한 대체 에너지원에 대한 연구가 활발히 진행되고 있다. 이 중에서 태양 빛으로부터 직접 전기적 에너지를 변화시키는 태양전지에 대한 관심이 크게 증가하고 있다. 여기서 태양전지란 태양빛으로부터 광 에너지를 흡수하여 전자와 정공을 발생하는 광기전 효과를 이용하여 전류-전압을 생성하는 전지를 의미한다.
이러한 태양전지의 상용화를 위하여, 제조 단가 저감 및 대면적화 가능이 필요시 되고 있다. 이에 따라 제조 단가 저감을 위하여 롤투롤(roll-to-roll, R2R)공정을 적용한 태양전지의 제조방법이 연구되고 있으며, 그 중에서도 상압 용액형 R2R 공정 개발에 대한 필요성이 대두되고 있다.
그러나, 기존의 태양전지 제작 공정에 있어서, 상부전극의 형성은 대부분 금속 진공증착 또는 전도성 잉크를 통한 인쇄공정을 통해 형성되고 있어, 공정 비용 및 재료 비용의 저감에 한계가 있었다.
한편, 태양전지 중에서도, 유-무기 복합 페로브스카이트 물질은 흡광 계수가 높고, 용액 공정을 통해 쉽게 합성이 가능한 특성 때문에 최근에 유-무기 복합 태양전지 광흡수 물질로서 각광 받고 있다. 그러나, 유-무기 복합 태양전지의 상부전극 역시 금속 진공증착 또는 전도성 잉크를 통한 인쇄공정을 통해 형성되므로, 전술한 공정 및 비용상의 문제점이 동일하게 발생한다.
이에 따라, 저가격 대량생산이 가능한 새로운 상부전극 형성 및 필름형 태양전지 생산에 대한 연구가 필요한 실정이다.
본 명세서는 유-무기 복합 태양전지 및 유-무기 복합 태양전지 제조방법을 제공한다.
본 명세서의 일 실시상태는 제1 전극;
상기 제1 전극 상에 구비된 제1 공통층;
상기 제1 공통층 상에 구비된 페로브스카이트 물질을 포함하는 광흡수층;
상기 광흡수층 상에 구비된 제2 공통층; 및
상기 제2 공통층 상에 접하도록 구비된 전도성 점착제층을 포함하는 유-무기 복합 태양 전지를 제공한다.
본 명세서의 또 다른 일 실시상태는 제1 전극; 제1 공통층; 페로브스카이트 물질을 포함하는 광흡수층; 및 제2 공통층을 포함하는 제1 구조체를 형성하는 단계;
전도성 점착제층을 준비하는 단계; 및
상기 제2 공통층 및 전도성 접착제층이 접하도록 합지하는 단계를 포함하는 유-무기 복합 태양전지 제조방법을 제공한다.
본 명세서의 일 실시상태에 따른 유-무기 복합 태양전지는 효율 및 안정성이 우수하다.
본 명세서의 일 실시상태에 따른 유-무기 복합 태양전지 제조방법은 상부전극 및 봉지층의 형성이 별도로 진행되지 않아 공정이 간단하면서도, 효율이 우수한 유-무기 복합 태양전지의 제조가 가능하다.
본 명세서의 일 실시상태에 따른 유-무기 복합 태양전지는 유연한(flexible) 소자의 제조가 가능하다.
도 1 내지 3은 본 명세서의 일 실시상태에 따른 유-무기 복합태양전지를 나타낸 도이다.
도 4는 일반적인 유-무기 복합 태양전지를 나타낸 도이다.
도 5는 본 명세서의 실시상태에서 제조된 유-무기 복합 태양전지의 전압에 따른 전류 밀도를 나타낸 도이다.
10: 제1 전극
20: 제1 공통층
30: 광흡수층
40: 제2 공통층
50: 전도성 점착제층
60: 기재
70: 금속 호일
80: 보호 필름
90: 기판
100: 제2 전극
110: 점착층
이하 본 명세서를 상세히 설명한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 어떤 부재가 다른 부재 “상에”위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접하여 있는 경우뿐만 아니라, 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서의 일 실시상태는 제1 전극;
상기 제1 전극 상에 구비된 제1 공통층;
상기 제1 공통층 상에 구비된 페로브스카이트 물질을 포함하는 광흡수층;
상기 광흡수층 상에 구비된 제2 공통층; 및
상기 제2 공통층 상에 접하도록 구비된 전도성 점착제층을 포함하는 유-무기 복합 태양 전지를 제공한다.
도 1에는 본 명세서의 일 실시상태에 따른 유-무기 복합 태양전지의 구조를 나타내었다. 구체적으로, 도 1에는 제1 전극(10), 제1 공통층(20), 광흡수층(30), 제2 공통층(40) 및 전도성 점착제층(50)이 순차적으로 적층된 유-무기 복합 태양전지를 나타내었다.
본 명세서의 일 실시상태에 있어서, 상기 전도성 점착제층 상에 기재를 더 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 기재는 배리어 필름을 포함한다. 이때, 상기 배리어 필름은 외부환경(예컨대, 수분 및 산소)으로부터 보호하는 역할을 한다.
본 명세서의 일 실시상태에 있어서, 상기 배리어 필름은 금속 호일(foil)일 수 있다. 상기 금속 호일(foil)의 금속은 은(Ag), 알루미늄(Al), 구리(Cu), 몰리브덴(Mo), 니켈(Ni), 철(Fe) 및 팔라듐(Pd)으로 이루어진 군에서 선택되는 1종 이상 또는 이들의 합금을 포함할 수 있다. 구체적으로, Inver 등의 철과 니켈의 합금, 알루미늄(Al), 구리(Cu) 또는 철(Fe)일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 기재는 보호 필름을 더 포함한다. 이때, 상기 보호필름은 소자의 최외부에 위치하며, 스크레치, 오염 방지 등의 역할을 한다.
본 명세서의 일 실시상태에 있어서, 상기 보호 필름은 폴리테트라플로오로에틸렌(PTET, polytetrafluoroethylene); 폴리비닐리덴 플루오라이드(PVDF, Polyvinylidene fluoride) 등의 테플론계 고분자, 트리아세틸셀룰로오스(TAC, triacetyl cellulose), 폴리에틸렌 테레프탈레이트(PET, polyethylene terephthalate), 싸이클로올레핀 폴리머(COP, cycloolefin polymer) 및 아크릴계 필름 등을 단독 또는 혼합하여 사용할 수 있다.
도 2에는 전도성 점착제층 상이 기재가 포함된 유-무기 복합 태양전지의 구조를 나타내었다. 구체적으로, 도 2에서는 제1 전극(10), 제1 공통층(20), 광흡수층(30), 제2 공통층(40), 전도성 점착제층(50) 및 기재(60)가 순차적으로 적층된 유-무기 복합 태양전지를 나타내었다. 보다 구체적으로, 도 2에서는 제1 전극(10), 제1 공통층(20), 광흡수층(30), 제2 공통층(40), 전도성 점착제층(50), 금속 호일(70) 및 보호 필름(80)이 순차적으로 적층된 유-무기 복합 태양전지를 나타내었다.
본 명세서의 일 실시상태에 있어서, 상기 유-무기 복합태양전지는 제1 전극 하부에 기판을 추가로 포함할 수 있다.
도 3에는 기판이 구비된 유-무기 복합 태양전지를 나타내었다. 구체적으로, 도 3에는 기판(90), 제1 전극(10), 제1 공통층(20), 광흡수층(30), 제2 공통층(40) 전도성 점착제층(50), 금속 호일(70) 및 보호 필름(80)이 순차적으로 적층된 유-무기 복합 태양전지를 나타내었다.
본 명세서의 일 실시상태에 있어서, 상기 전도성 점착제층은 종래의 유-무기 복합 태양전지에서의 상부전극 및 점착층의 역할을 동시에 한다.
도 4에는 종래의 유-무기 복합 태양전지의 구조를 나타내었다. 구체적으로 도 4에는 제2 전극(상부전극) 및 점착층이 별도로 구비된 종래의 유-무기 복합 태양전지를 나타내었다. 보다 구체적으로, 도 4에는 기판(90), 제1 전극(10), 제1 공통층(20), 광흡수층(30), 제2 공통층(40), 제2 전극(100), 점착층(110), 금속 호일(70) 및 보호 필름(80)이 순차적으로 구비된 종래의 유-무기 복합 태양전지의 구조를 나타내었다.
본 명세서의 일 실시상태에 있어서, 상기 페로브스카이트 물질은 하기 화학식 1 또는 화학식 2로 표시되는 화합물일 수 있다.
[화학식 1]
AMX3
[화학식 2]
BaB'(1-a)M'X'zX''(3-z)
상기 화학식 1 또는 2에 있어서,
B 및 B'은 서로 상이하고,
A, B 및 B'은 각각 CnH2n + 1NH3 +, NH4 +, HC(NH2)2 +, Cs+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 + 및 SbH4 +에서 선택되는 1가의 양이온이고,
M 및 M'은 서로 같거나 상이하고, 각각 독립적으로 Cu2 +, Ni2 +, Co2 +, Fe2 +, Mn2+, Cr2 +, Pd2 +, Cd2 +, Ge2 +, Sn2 +, Pb2 + 및 Yb2 +에서 선택되는 2가의 금속 이온이며,
X, X'및 X''은 각각 독립적으로 할로겐 이온이고,
n은 1 내지 9의 정수이고,
a는 0 < a < 1의 실수이며,
z는 0 < z < 3의 실수이다.
본 명세서의 일 실시상태에 있어서, 상기 A와 B는 서로 같거나 상이하다. 또한, A와 B'은 서로 같거나 상이하다.
본 명세서의 일 실시상태에 있어서, 상기 광흡수층의 페로브스카이트 물질은 단일 양이온을 포함할 수 있다. 본 명세서에 있어서 단일 양이온이란, 한 종류의 1가 양이온을 사용한 것을 의미한다. 즉, 화학식 1에 있어서 A로 한 종류의 1가 양이온만 선택된 것을 의미한다. 예컨대, 상기 화학식 1의 A는 CnH2n + 1NH3 + 이고, n은 1 내지 9의 정수일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 광흡수층의 페로브스카이트 구조의 화합물은 복합 양이온을 포함할 수 있다. 본 명세서에 있어서 복합 양이온이란, 두 종류 이상의 1가 양이온을 사용한 것을 의미한다. 즉, 화학식 2에서 B 및 B'가 각각 서로 상이한 1가 양이온이 선택된 것을 의미한다. 예컨대, 상기 화학식 2의 B는 CnH2n+1NH3 +, B'는 HC(NH2)2 +일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 페로브스카이트 물질은 화학식 1으로 표시된다.
본 명세서의 일 실시상태에 있어서, 상기 페로브스카이트 물질은 화학식 2로 표시된다.
본 명세서의 일 실시상태에 있어서, 상기 A, B 및 B'는 각각 CnH2n + 1NH3 + 또는 HC(NH2)2 +이다. 이때, B와 B'는 서로 상이하다.
본 명세서의 일 실시상태에 있어서, 상기 A은 CH3NH3 + 또는 HC(NH2)2 +이다.
본 명세서의 일 실시상태에 있어서, 상기 A 및 B는 각각 CH3NH3 +이다.
본 명세서의 일 실시상태에 있어서, 상기 B'는 HC(NH2)2 +이다.
본 명세서의 일 실시상태에 있어서, 상기 M 및 M'는 Pb2 +이다.
본 명세서의 일 실시상태에 있어서, 상기 X' 및 X''는 서로 상이하다.
본 명세서의 일 실시상태에 있어서, 상기 X, X' 및 X''는 각각 F 또는 Br이다.
본 명세서의 일 실시상태에 있어서, 상기 B 및 B'의 합이 1이 되기 위하여, a는 0<a<1의 실수이다. 또한, 상기 X' 및 X''의 합이 3이 되기 위하여, z는 0<z<3의 실수이다.
본 명세서의 일 실시상태에 있어서, 상기 페로브스카이트 물질은 CH3NH3PbI3, HC(NH2)2PbI3, CH3NH3PbBr3, HC(NH2)2PbI3 또는 (CH3NH3)a(HC(NH2)2)(1-a)IzBr(3-z)이고, n은 1 내지 9의 정수, a는 0<a<1인 실수, z는 0<z<3인 실수이다.
본 명세서의 일 실시상태에 있어서, 제1 공통층 및 제2 공통층은 각각 전자수송층 또는 정공수송층을 의미한다. 이때, 제1 공통층과 제2 공통층은 서로 동일한 층이 아니다. 예컨대, 상기 제1 공통층이 전자수송층일 경우 상기 제2 공통층은 정공수송층이고, 상기 제1 공통층이 정공수송층일 경우 상기 제2 공통층은 전자수송층이다.
본 명세서의 일 실시상태에 있어서, 상기 전도성 점착제층은 전도성 물질 및 점착 물질을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 전도성 점착제층 내에서 점착 물질과 전도성 물질의 질량비는 1:99 내지 99:1일 수 있다. 구체적으로, 20:80 내지 80:20일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 점도성 점착제층 내에 전도성 물질은 분산된 형태로 존재할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전도성 물질은 탄소 기반 물질 또는 금속 입자를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 탄소 기반 물질은 카본블랙, 탄소나노튜브(CNT), 그라파이트(Graphite), 그라핀(Graphene), 활성탄, 다공성 탄소(Mesoporous Carbon), 탄소섬유(Carbon fiber) 및 탄소 나노 와이어(Carbon nano wire) 중 적어도 하나이다.
본 명세서의 일 실시상태에 있어서, 상기 금속 입자는 일반적으로 사용되는 전도성 금속 입자가 사용될 수 있으며, 구체적으로, 금(Au), 백금(Pt), 은(Ag), 구리(Cu), 니켈(Ni) 또는 이들의 합금 중 적어도 하나일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전도성 점착제층은 전도성 점착제 조성물을 이용하여 형성되며, 상기 전도성 점착제 조성물은 전도성 물질 및 점착 물질을 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 전도성 점착제 조성물 내 전도성 물질의 함량은 1wt% 내지 40wt%이다. 구체적으로 10wt% 내지 40wt%이다. 보다 구체적으로, 15wt% 내지 40wt%이다. 전도성 점착제 조성물 내 전도성 물질의 함량이 1wt% 미만일 경우, 전도성이 저하되며, 전도성 물질의 함량이 40wt% 초과일 경우, 점착력이 저하되는 문제점이 있다. 또한, 전도성 물질의 함량이 상기 범위를 만족함으로써, 전도성 점착제층의 전도성이 우수하고, 수백옴 이하의 면저항 값을 나타낼 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전도성 점착제 조성물은, 무용제 타입(solventless)의 점착 물질을 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전도성 점착제 조성물은, 용제 타입의 점착 물질을 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 점착 물질은 점착제 조성물 또는 점착제 조성물의 경화물을 포함한다. 이때, 상기 점착제 조성물은 당업계에서 사용되는 물질이라면 제한 없이 사용 가능하다. 예컨대, 상기 점착제 조성물은 경화 전에는 액상으로 존재하고, 경화된 후에는 고상으로 전환되는 물질일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 점착제 조성물은, 미경화된 상태로 포함되어 있을 수 있다. 본 명세서에 있어서, “경화”는 점착제층 내에 포함된 성분의 화학적 또는 물리적 작용 내지는 반응에 의하여, 점착 물질이 점착 성능을 발현할 수 있는 상태로 전환되는 과정을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 점착제 조성물은 부틸렌으로부터 유도된 고분자를 포함할 수 있다. 상기 부틸렌으로부터 유도된 고분자는 극성이 낮고, 투명하며, 부식의 영향이 거의 없으므로 점착 물질로 사용시 우수한 수분 차단 특성 및 내구성을 구현할 수 있도록 하는 효과가 있다.
본 명세서에 있어서, 상기 “부틸렌으로부터 유도된 고분자”는 상기 고분자의 중합단위 중 하나 이상이 부틸렌으로 이루어진 것을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 부틸렌으로부터 유도된 고분자는 부틸렌 단량체의 단독 중합체, 부틸렌 단량체와 중합 가능한 다른 단량체를 공중합한 공중합체, 부틸렌 단량체를 이용한 반응성 올리고머, 또는 이들의 혼합물일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 부틸렌 단량체는 예컨대, 1-부텐, 2-부텐 또는 이소부틸렌일 수 있으며, 상기 부틸렌 단량체와중합 가능한 다른 단량체는 예컨대, 이소프렌, 스티렌 또는 부타디엔일 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 부틸렌으로부터 유도된 고분자는 예컨대, 부틸고무일 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 점착제 조성물은 다관능성 중합성 화합물을 포함할 수 있다. 상기 다관능성 중합성 화합물은 구체적으로, 활성에너지선 조사에 의해 중합될 수 있는 다관능성 활성에너지선 중합성 화합물일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 다관능성 활성에너지선 중합성 화합물은 활성에너지선의 조사에 의해 중합 반응에 참여할 수 있는 관능기 예컨대, 아크릴로일기 또는 메타크로일기 등의 에틸렌성 불포화 이중결합을 포함하는 관능기; 에폭시기; 또는 옥세탄기 등의 관능기를 2개 이상 포함하는 화합물일 수 있다. 구체적으로, 상기 다관능성 활성 에너지선 중합성 화합물은 예컨대, 1,4-부탄디올디(메타)아크릴레이트, 1,3-부틸렌글리콜디(메타)아크릴레이트, 1,6-헥산디올디(메타)아크릴레이트, 1,8-옥탄디올디(메타)아크릴레이트, 1,12-도데세인디올디(메타)아크릴레이트 및 트리메틸프로판트리아크릴레이트일 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 점착제 조성물은 점착 부여제, 수분 흡착제, 수분 차단제, 분산제, 광개시제, 열개시제 또는 라디칼 개시제 중 1종 이상의 첨가 물질을 더 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 첨가 물질의 배합 비율은 특별히 제한되지 않고, 목적하는 전도성 점착제층의 점도 및 경화 후 구현하고자 하는 점착 물성 등을 고려하여 적절히 선택될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 점착 부여제는 점착제 조성물과 상용성이 좋으면서, 수분차단성이 우수한 물질이라면 제한 없이 사용가능하다. 예컨대, 수첨 탄화수소지, 수소화된 에스테르계 수지 또는 수소화된 다이사클로펜타디엔계 수지일 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 수분 흡착제는 당업계에서 사용하는 물질이라면 제한없이 사용가능하다. 예컨대, 알루미늄 옥사이드 옥틸레이트 등의 유기 금속 산화물; 황상 마그네슘, 황산 나트륨 또는 황상 니켈 등의 황산염; 또는 오산화인(P2O5), 산화리튬(Li2O), 산화나트륨(Na2O), 산화바륨(BaO), 산화칼슘(CaO) 또는 산화마그네슘(MgO)금속 산화물 등 일 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 “수분 차단제”는 수분과 반응성이 없거나, 수분과 반응성이 낮거나, 수분이 물질 내에서 이동하는 것을 차단 또는 방해하는 물질을 의미한다. 상기 수분 차단제로는 예컨대, 클레이, 실리카, 제올라이트, 티타니아 및 지르코니아 중 1종 이상이 사용될 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 광개시제, 열개시제 또는 라디칼 개시제는 당업계에서 사용하는 물질이라면 제한 없이 사용 가능하다.
본 명세서의 일 실시상태에 있어서, 상기 전도성 점착제 조성물 내 점착 물질의 함량은 1wt% 내지 60wt%이다. 구체적으로, 5wt% 내지 50wt%일 수 있으며, 보다 구체적으로 10wt% 내지 30wt%일 수 있다. 상기 점착 물질의 함량이 60wt% 초과인 경우, 전도성 물질과의 상용성이 낮아지며, 상기 점착 물질의 함량이 1wt%이하인 경우 점착 특성이 저하되는 문제점이 있다.
본 명세서 일 실시상태에 있어서, 상기 전도성 점착제층은 상온에서의 점도가 106dyne/cm2 이상, 바람직하게는 107dyne/cm2 이상일 수 있다. 이때의 “상온”은 가온 또는 감온되지 않은 자연 그대로의 온도를 의미하고, 예를 들면, 약 15℃ 내지 35℃, 보다 구체적으로는 약 20℃ 내지 25℃, 더욱 구체적으로는 약 25℃의 온도를 의미할 수 있다. 상기 점도는, ARES(Advanced Rheometric Expansion System)을 사용하여 측정할 수 있다.
본 명세서의 일 실시상태에서는, 전도성 점착제층의 점도를 상기 범위로 조절하여, 유-무기 복합 태양전지의 제조 과정에서, 작업의 공정성이 원활하며 균일한 두께의 전도성 점착제층을 형성하는 것이 가능하다. 또한 수지의 경화 등에 의하여 발생될 수 있는 수축 및 휘발 가스 등의 문제를 대폭 축소시켜, 유-무기 복합 태양전지에 물리적 또는 화학적 손상이 가해지는 것을 방지할 수 있다. 본 발명에서는, 전도성 점착제층이 상온에서 고상 또는 반 고상의 상태를 유지하는 한, 상기 점도의 상한은 특별히 제한되지 않으며, 예를 들면, 공정성 등을 고려하여, 약 109dyne/cm2이하의 범위에서 제어할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전도성 점착제층의 점착력은 필름을 30℃, 1MPa, 1초 내지 2초의 조건에서 가압착한 후의 박리력이 바람직하게는 100gf/cm 이상일 수 있고, 보다 바람직하게는 300gf/cm 이상일 수 있으며, 더욱 바람직하게는 500gf/cm 이상일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 박리력은 PET 이형 필름 상에 형성한 전도성 점착 물질(이하, 전도성 점착필름)을 상온(25℃)에서 1시간 동안 방치시킨 후, 상기 전도성 점착필름을 일정한 규격(필름의 폭 1.5 mm)으로 재단하고 패턴 없는 글래스에 실측 온도 30℃에서 1MPa, 1초의 가압착 조건으로 가압착한 다음, PET 이형 필름을 제거하였다. 그 다음, 폭이 1.5 mm이고 상기 글래스 위에 가압착한 전도성 점착필름보다 길이가 5cm 더 길게 재단한 접착 테이프(Nitto 사)를 상기 PET 이형 필름이 제거된 전도성 점착필름 위에 위치시키고 고무 롤러를 2회 이동시켜 상기 접착 테이프와 전도성 점착필름이 상호 접착되도록 하였다. 상기와 같은 방법으로 전도성 점착필름을 3개의 시편을 준비하고 UTM을 이용하여 필강도를 측정한 후, 그 평균값을 계산하였다.
본 명세서의 일 실시상태에 있어서, 상기 전도성 점착제층의 면저항 값은 0.01Ω/sq 내지 100Ω/sq이다. 따라서, 유-무기 복합 태양전지의 전극으로 사용하기에 적합하다.
본 명세서의 일 실시상태에 있어서, 상기 면저항은 4-point probe 방식에 따라 공지된 면저항기를 이용하여 측정될 수 있다. 면저항은 4개의 탐침으로 전류(I)와 전압(V)을 측정하여 저항값(V/I)을 측정한 후, 여기에 샘플의 면적(단면적, W)과 저항을 측정하기 위한 전극 간의 거리(L)를 이용하여 면저항을 구하고 (V/I x W/L), 면저항 단위인 Ω/sq로 계산하기 위하여 저항보정계수(RCF)를 곱한다.
상기 저항보정계수는 샘플의 사이즈, 두께 및 측정시 온도를 이용하여 산출될 수 있으며, 이는 포아슨 방정식에 의하여 산출될 수 있다. 전체 적층체의 면저항은 적층체 자체에서 측정 및 산출될 수 있고, 각 층의 면저항은 전체 적층체에서 측정하고자 하는 대상층을 제외한 나머지 재료로 이루이진 층을 형성하기 전에 측정되거나, 전체 적층체에서 측정하고자 하는 대상층을 제외한 나머지 재료로 이루어진 층을 제거한 후 측정되거나, 대상층의 재료를 분석하여 대상층과 동일한 조건을 층을 형성한 후 측정될 수 있다. 예컨대, 상기 전도성 점착제층의 면저항 값은 전도성 접착제층만 별도로 제작한 후 4-point probe를 이용하여 측정될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 전도성 점착제층을 형성하기 위하여, 전도성 점착제 조성물을 용매에 녹여 사용할 수 있다. 이때, 용매는 당업계에서 사용하는 물질이라면 제한 없이 사용가능하며, 예컨대 씨클로펜틸메틸에테르(cylcopentyl methyl ether), 디-터트-부틸에테르(di-tert-butyl ether), 디부틸에테르(dibutyl ether), 디에틸에테르(diethyl ether), 디이소프로필에테르(diisopropyl ether), 1,4-다이옥세인(1,4-dioxane), 에틸-터트-부틸에테르(ethyl tert-butyl ether), 폴리에틸렌 글라이콜(polyethylene glycol), 테트라하이드로퓨란(tetrahydrofuran) 등의 에테르(ether)계 용매 일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 투명 전극이고, 상기 태양전지는 상기 제1 전극을 경유하여 빛을 흡수하는 것일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극이 투명전극인 경우, 상기 제1 전극은 유리 및 석영판 이외에 폴리에틸렌테레프탈레이트(polyethylene terephthalate, PET), 폴리에틸렌나프탈레이트(polyethylene naphthelate, PEN), 폴리프로필렌(polyperopylene, PP), 폴리이미드(polyimide, PI), 폴리카보네이트(polycarbornate, PC), 폴리스티렌(polystylene, PS), 폴리옥시에틸렌(polyoxyethlene, POM), AS 수지 (acrylonitrile styrene copolymer), ABS 수지 (acrylonitrile butadiene styrene copolymer), 트리아세틸셀룰로오스(Triacetyl cellulose, TAC) 및 폴리아릴레이트(polyarylate, PAR)등을 포함하는 플라스틱과 같은 유연하고 투명한 물질 위에 전도성을 갖는 물질이 도핑된 것이 사용될 수 있다. 구체적으로, 상기 제1 전극은 산화주석인듐(indium tin oxide, ITO), 불소함유 산화주석 (fluorine doped tin oxide; FTO), 알루미늄이 도핑된 징크 옥사이드 (aluminium doped zink oxide, AZO), IZO (indium zinc oxide), ZnO-Ga2O3, ZnOAl2O3 및 ATO (antimony tin oxide) 등이 될 수 있으며, 보다 구체적으로 상기 제1 전극은 ITO일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 반투명 전극일 수도 있다. 상기 제1 전극이 반투명 전극인 경우, 은(Ag), 금(Au), 마그네슘(Mg) 또는 이들의 합금 같은 금속으로 제조될 수 있다.
본 명세서에 있어서, 상기 기판은 투명성, 표면평활성, 취급 용이성 및 방수성이 우수한 기판을 사용할 수 있다. 구체적으로, 유리 기판, 박막유리 기판 또는 플라스틱 기판을 사용할 수 있다. 상기 플라스틱 기판은 폴리에틸렌테라프탈레이트(polyethylene terephthalate, PET), 폴리에틸렌나프탈레이트(polyehtylene naphthalate, PEN), 폴리에테르에테르케톤(polyether ether ketone) 및 폴리이미드(polyimide) 등의 유연한 필름이 단층 또는 복층의 형태로 포함될 수 있다. 다만, 상기 기판은 이에 한정되지 않으며, 유-무기 복합 태양전지에 통상적으로 사용되는 기판을 사용할 수 있다.
본 명세서의 일 실시상태는 제1 전극; 제1 공통층; 페로브스카이트 물질을 포함하는 광흡수층; 및 제2 공통층을 포함하는 제1 구조체를 형성하는 단계;
전도성 점착제층을 준비하는 단계; 및
상기 제2 공통층 및 전도성 접착제층이 접하도록 합지하는 단계를 포함하는 유-무기 복합 태양전지 제조방법을 제공한다.
본 명세서의 일 실시상태에 있어서, 상기 제1 구조체를 형성하는 단계는
제1 전극을 준비하는 단계;
상기 제1 전극 상에 제1 공통층을 형성하는 단계;
상기 제1 공통층 상에 페로브스카이트 물질을 포함하는 광흡수층을 형성하는 단계; 및
상기 광흡수층 상에 제2 공통층을 형성하는 단계를 포함한다.
이때, 상기 제1 전극, 제1 공통층, 페로브스카이트 물질 및 제2 공통층의 물질은 전술한 바와 동일하다.
본 명세서의 일 실시상태에 있어서, 상기 전도성 점착제층은 제2 공통층과 접하는 부분의 반대면에 기재가 더 구비된 상태일 수 있다. 이때의 기재는 전술한 바와 동일하다.
본 명세서의 일 실시상태에 있어서, 전도성 점착제층을 준비하는 단계는, 이형 필름 상에 전도성 점착제 조성물을 도포한 후 건조 또는 경화하는 단계를 포함한다. 이때, 이형 필름은 당업계에서 사용하는 물질이라면 제한 없이 사용가능하며, PET 필름 일 수 있다.
예컨대, 본 명세서의 일 실시상태에 있어서, 상기 전도성 점착제층을 준비하는 단계는 PET 이형필름, 전도성 점착제 및 기재가 순차적으로 적층된 제2 구조체를 준비하는 단계일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 공통층 및 전도성 접착제층이 접하도록 합지하는 단계는 상기 제1 구조체의 제2 공통층 상에 전도성 점착제층의 일면이 위치하도록 한 후 수행될 수 있다. 구체적으로, 제1 구조체 중 제2 공통층의 일면과, PET 이형필름이 제거된 전도성 점착제층의 일면이 접하도록 위치시킨 후 수행될 수 있다. 즉, 합지 후에 제2 공통층 및 전도성 점착제층이 순차적으로 구비되거나, 제2 공통층, 전도성 점착제층 및 기재가 순차적으로 구비되도록 수행될 수 있다.
일반적으로, 유-무기 복합 태양전지를 제조하는데 있어, 상부전극을 전도성 유기물 또는 잉크로 적용할 경우, 재료의 높은 저항 특성으로 인해 효율이 감소한다. 또한, 진공증착 방법을 통해 금속으로 상부전극을 형성하는 경우, 상압에서의 진공 분위기, 진공에서의 상압 분위기로의 전환에 의한 공정비용 증가가 유발된다. 또한, 이렇게 형성된 상부전극 상에 봉지층을 별도로 점착해야하므로, 공정이 추가되는 문제점이 있었다.
본 명세서에 있어서, "봉지층"은 점착층 및 기재를 적층한 물질을 의미한다. 구체적으로, 상기 봉지층은 점착층, 배리어 필름 및 보호 필름이 순차적으로 적층된 물질일 수 있다. 보다 구체적으로, 상기 봉지층은 점착층, 금속 호일 및 보호 필름이 순차적으로 적층된 물질일 수 있다. 이때, 상기 점착층은 전술한 점착제 조성물로 형성될 수 있다.
본 명세서에 있어서, "봉지필름"은 상기 봉지층을 필름형태로 만든 것을 의미한다.
반면에, 본 명세서의 일 실시상태에 따른 유-무기 복합 태양전지 제조방법은 상부전극과 점착층을 일원화한 전도성 점착제층을 제2 공통층 상에 바로 합지함으로써, 공정이 간단하고, 전도성 물질의 손상 없이 효율이 향상되는 효과가 있다. 또한 광흡수층 및 공통층이 완성된 소자 상부에 상부전극을 직접 처리하지 않기 때문에 사용 가능한 재료의 범위를 확장할 수 있으며, 특히 알코올계 용매 사용이 가능하여, 광흡수층 및 공통층의 열화없이 전도성 점착 필름의 성능을 효과적으로 향상시킬 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 공통층 및 전도성 점착제층이 접하도록 합지하는 단계는 20℃ 내지 100℃에서 롤을 이용하여 제조된다. 즉, 롤투롤 공정을 이용해 소자가 완성되므로, 공정이 간편하고, 상압조건에서 전극을 형성할 수 있어 유기전자소자의 연속생산 공정으로 사용이 가능하다.
본 명세서의 일 실시상태에 있어서, 상기 광흡수층을 형성하는 단계는 제1 공통층 상부에 유기할로겐화물을 포함하는 용액 및 금속할로겐화물을 포함하는 용액을 각각 코팅하는 단계 또는 유기할로겐화물 및 금속할로겐화물을 모두 포함하는 용액을 코팅하는 단계를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기할로겐화물은 하기 화학식 3 또는 4로 표시되는 물질일 수 있다.
[화학식 3]
AX
[화학식 4]
B'aB''(1-a)Xz'X''(1-z)
상기 화학식 3 또는 화학식 4에 있어서,
B 및 B'은 서로 상이하고, A, B 및 B'은 각각 CnH2n + 1NH3 +, NH4 +, HC(NH2)2 +, Cs+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 + 및 SbH4 +에서 선택되는 1가의 양이온이며,
X' 및 X''은 서로 상이하고,
X, X' 및 X''은 각각 할로겐 이온이고,
n은 1 내지 9의 정수이며,
y는 0<y<1인 실수이며,
z는 0<z<1인 실수이다.
본 명세서의 일 실시상태에 있어서, 상기 금속할로겐화물은 하기 화학식 5로 표시되는 물질일 수 있다.
[화학식 5]
MX'''2
상기 화학식 5에 있어서,
M은 Cu2 +, Ni2 +, Co2 +, Fe2 +, Mn2 +, Cr2 +, Pd2 +, Cd2 +, Ge2 +, Sn2 +, Pb2 + 및 Yb2 + 에서 선택되는 2가의 금속 이온이며,
X'''은 할로겐 이온이다.
본 명세서의 일 실시상태에 있어서, 상기 A, B 및 B'은 각각 CH3NH3 또는 HC(NH2)2일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 M, M'및 M''은 각각 Pb2 +일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 X, X', X'' 및 X'''은 요오드(I) 이온 또는 브롬(Br) 이온일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기할로겐화물은 CH3NH3I, HC(NH2)2I, CH3NH3Br, HC(NH2)2Br 또는 (CH3NH3)a(HC(NH2)2)(1-a)IzBr(1-z)이고, y는 0<y<1인 실수, z는 0<z<1인 실수일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 금속할로겐화물은 PbI2 , PbBr2 또는 PbIBr일 수 있다.
본 명세서에 있어서, 상기 유-무기 복합 태양전지는 n-i-p 구조일 수 있다. 종래의 유-무기 복합태양전지의 n-i-p 구조는 제1 전극, 전자수송층, 광흡수층, 정공수송층 및 제2 전극 및 봉지층이 순차적으로 적층된 구조로, 제 2전극의 물질에 따른 효율 감소 및 제2 전극이 금속전극일 경우, 금속 진공증착으로 인한 공정 비용 증가라는 문제점이 있었다.
반면에, 본 명세서의 일 실시상태에 따른 유-무기 복합 태양전지의 n-i-p 구조는 제1 전극, 전자수송층, 광흡수층, 정공수송층 및 전도성 점착제층이 순차적으로 적층된 구조이며, 제2 전극 및 봉지층이 별도로 형성되지 않아, 공정이 간단하다.
본 명세서에 있어서, 상기 유-무기 복합 태양전지는 p-i-n 구조일 수 있다. 종래의 유-무기 복합태양전지의 p-i-n 구조는 제1 전극, 정공수송층, 광흡수층, 전자수송층, 제2 전극 및 봉지층이 순차적으로 적층된 구조로, 제 2전극의 물질에 따른 효율 감소 및 제2 전극이 금속전극일 경우, 금속 진공증착으로 인한 공정 비용 증가라는 문제점이 있었다.
반면에, 본 명세서의 일 실시상태에 따른 유-무기 복합 태양전지의 p-i-n 구조는 제1 전극, 정공수송층, 광흡수층, 전자수송층 및 전도성 점착제층이 순차적으로 적층된 구조이며, 제2 전극 및 봉지층이 별도로 형성되지 않아, 공정이 간단하다.
본 명세서에 있어서, 상기 유-무기 복합 태양전지는 상기 제1 전극 및 전도성 점착제층 사이에 구비된 추가의 층을 더 포함할 수 있다. 구체적으로, 본 명세서의 일 실시상태에 따르면, 상기 추가의 층은 정공주입층, 정공수송층, 전자차단층, 전자수송층 및 전자주입층으로 이루어진 군에서 선택되는 1 이상을 포함할 수 있다.
본 명세서에 있어서, 상기 정공수송층 및/또는 전자수송층 물질은 전자와 정공을 광흡수층으로 효율적으로 전달시킴으로써 생선되는 전하가 전극으로 이동되는 확률을 높이는 물질이 될 수 있으나, 특별히 제한되지는 않는다.
본 명세서에 있어서, 상기 전자수송층은 금속 산화물을 포함할 수 있다. 금속 산화물은 구체적으로, Ti 산화물, Zn 산화물, In 산화물, Sn 산화물, W 산화물, Nb 산화물, Mo 산화물, Mg 산화물, Zr 산화물, Sr 산화물, Yr 산화물, La 산화물, V 산화물, Al 산화물, Y 산화물, Sc 산화물, Sm 산화물, Ga 산화물, In 산화물, Ta 산화물 및 SrTi 산화물 및 이들의 복합물 중에서 1 또는 2 이상 선택된 것이 사용 가능하나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 전자수송층은 도핑을 이용하여 전하의 특성을 개선할 수 있으며, 플러렌 유도체 등을 이용하여 표면을 개질 할 수 있다.
본 명세서에 있어서, 상기 전자수송층은 스퍼터링, E-Beam, 열증착, 스핀 코팅, 스크린 프린팅, 잉크젯 프린팅, 닥터 블레이드 또는 그라비아 프린팅법을 사용하여 제1 전극의 일면에 도포되거나 필름 형태로 코팅됨으로써 형성될 수 있다.
본 명세서에 있어서, 상기 정공수송층은 애노드 버퍼층일 수 있다.
상기 광흡수층의 상부에는 정공수송층이 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 그라비아 프린팅, 스프레이 코팅, 닥터 블레이드, 바 코팅, 그라비아 코팅, 브러쉬 페인팅, 열증착 등의 방법을 통해 도입될 수 있다.
상기 정공수송층은 터셔리부틸피리딘(tertiary butyl pyridine, TBP), 리튬 비스(트리플루오로메탄술포닐)이미드(Lithium Bis(Trifluoro methanesulfonyl)Imide, LiTFSI), 폴리(3,4-에틸렌디옥시티오펜):폴리(4-스티렌설포네이트) [PEDOT:PSS] 등을 사용할 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 제1 구조체는 기판, 제1 전극, 제1 공통층, 광흡수층 및 제2 공통층이 순착적으로 적층된 구조를 의미한다. 구체적으로, 본 명세서의 일 실시상태에 있어서, 상기 제1 구조체는 기판, 제1 전극, 전자수송층, 광흡수층 및 정공수송층이 순차적으로 형성된 구조일 수 있다.
본 명세서에 있어서, 제2 구조체는 PET 이형필름, 전도성 점착제 및 기재가 순차적으로 적층된 구조를 의미한다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1. 제1 구조체와 제2 구조체를 합지하여 제조한 유-무기 복합 태양전지
(1) 제1 구조체의 제조
기판 상에 PI 바니쉬로 기재를 형성하고 ITO 스퍼터링을 통하여 80 Ω/sq 수준의 제1 전극을 형성하였다. 제1 전극이 형성된 기재를 초음파를 이용하여 에탄올에서 20분 동안 세척하였다. 이후, 상기 ITO 기판 상에 2wt% TiO2 분산용액(㈜나노신소재 社)을 스핀 코팅 방법으로 코팅하고, 150℃에서 30분 동안 열처리함으로써 전자수송층을 형성하였다. 전자수송층 상에 약 50wt% 농도의 (HC(NH2)2)0.85(CH3NH3)0.15PbI2.55Br0.45 페로브스카이트(perovskite)가 녹아있는 디메틸포름아미드(DMF) 용액을 스핀 코팅한 후 100℃에서 30분간 열처리하여 검정색의 광흡수층을 형성하였다. 이어, 상기 광흡수층 상에 80mg의 Spiro-OMeTAD(2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene), 28.5μl의 터트-부틸피리딘(tert-butylpyridine, tBP) 및 17.5μl의 LiTFSI(bis(trifluoromethane)sulfonimide lithium salt) 아세토니트릴(acetonitrile) 용액(520mg LiTFSI/1ml acetonitrile)을 1ml의 클로로벤젠(chlorobenzene)에 혼합한 용액을 상기 스핀 코팅하여 정공수송층을 형성함으로써, 제1 구조체를 제조하였다.
(2) 제2 구조체의 제조
점착층 용액을 다음과 같이 조액하였다. 부틸렌으로부터 유도된 고분자로서 부틸 고무(Br068, EXXON 社) 50g, 점착 부여제로서 수첨 탄화수소수지(Eastotac H-100L) 24g, 다관능성의 활성 에너지선 중합성 화합물로서 트리메티롤프로판 트리아크릴레이트 15g 및 라디칼 개시제로서 2,2-디메톡시-1,2-디페닐에탄-1-온 1g (Irgacure651, Ciba 社)을 투입하여 점착제 조성물을 형성하였다. 그후, 전술한 물질들의 100 중량부 대비 50 중량부의 탄소 플레이크를 첨가하여 분산하였으며, 톨루엔으로 고형분이 20 중량% 정도가 되도록 희석하여 전도성 점착 코팅 용액을 제조하였다. 상기 준비된 용액을 이형 PET 필름의 이형면에 도포하고 100℃ 오븐에서 30분간 건조하여 두께 50㎛의 전도성 점착제층을 형성하였다. 그 후, 20㎛ 구리 필름과 합판하여 PET 이형층, 전도성 점착제층, 구리 필름 구조의 제2 구조체을 제작하였다.
(3) 유-무기 복합 태양전지의 완성
상기의 방법으로 제조된 제1 구조체와 제2 구조체를 합지하기 위하여, 가온형 롤 라미기를 이용하였다. 100℃의 온도에서 제1 구조체와 PET 이형층을 제거한 제2 구조체를 합지한 후 진공 합착 기기를 이용하여 25℃ 내지 100℃ 사이의 온도 조건 하에서 100Pa의 진공도와 0.5MPa의 압력하에서 탈포를 진행하여 유연 필름형 유-무기 복합 태양전지를 완성하였다.
비교예 1. 상부전극 상에 봉지필름을 합지하여 제조한 유-무기 복합 태양전지
기판 상에 PI 바니쉬로 기재를 형성하고 ITO 스퍼터링을 통하여 80 Ω/sq 수준의 제1 전극을 형성하였다. 제1 전극이 형성된 기재를 초음파를 이용하여 에탄올에서 20분 동안 세척하였다. 이후, 상기 ITO 기판 상에 2wt% TiO2 분산용액(㈜나노신소재 社)을 스핀 코팅 방법으로 코팅하고, 150℃에서 30분 동안 열처리함으로써 전자수송층을 형성하였다. 전자수송층 상에 약 50wt% 농도의 (HC(NH2)2)0.85(CH3NH3)0.15PbI2.55Br0.45 페로브스카이트(perovskite)가 녹아있는 디메틸포름아미드(DMF) 용액을 스핀 코팅한 후 100℃에서 30분간 열처리하여 검정색의 광흡수층을 형성하였다. 이어, 상기 광흡수층 상에 80mg의 Spiro-OMeTAD(2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene), 28.5μl의 터트-부틸피리딘(tert-butylpyridine, tBP) 및 17.5μl의 LiTFSI(bis(trifluoromethane)sulfonimide lithium salt) 아세토니트릴(acetonitrile) 용액(520mg LiTFSI/1ml acetonitrile)을 1ml의 클로로벤젠(chlorobenzene)에 혼합한 용액을 상기 스핀 코팅하여 정공수송층을 형성하였다. 그 후, 전도성 탄소 페이스트를 바 코팅하여 20㎛ 두께로 상부전극을 형성하고, 마지막으로 상용봉지필름(FSA DL-01, LG 화학 社)을 상온 롤 라미기로 합지한 후 진공 합착 기기를 이용하여 60℃, 100Pa의 진공도와 0.5MPa의 압력하에서 탈포를 진행하여 유연 필름형 유-무기 복합 태양전지를 완성하였다.
이때, 전도성 탄소 페이스트의 경우 폴리스티렌계 수지를 바인더로 탄소 플레이크를 첨가하였고, 전체 수지량 100 중량부 대비 50 중량부의 탄소 플레이크를 첨가하여 분산하였으며, 톨루엔으로 고형분이 20 중량% 정도가 되도록 희석하여 제조하였다.
표 1에는 본 명세서의 실시상태에 따른 유-무기 복합 태양전지의 성능을 나타내었으며, 도 5는 본 명세서의 실시상태에서 제조된 유-무기 복합 태양전지의 전압에 따른 전류 밀도를 나타낸 도이다.
PCE(%) Jsc(mA/cm2) Voc(V) FF(%)
실시예 1 11.6 18.2 1.06 60.6
비교예 1 2.3 8.8 0.64 41.2
표 1에서 Voc는 개방전압을, Jsc는 단락전류를, FF는 충전율(Fill factor)를, PCE는 에너지 변환 효율을 의미한다. 개방전압과 단락전류는 각각 전압-전류 밀도 곡선의 4사분면에서 X축과 Y축 절편이며, 이 두 값이 높을수록 태양전지의 효율은 바람직하게 높아진다. 또한 충전율(Fill factor)은 곡선 내부에 그릴 수 있는 직사각형의 넓이를 단락전류와 개방전압의 곱으로 나눈 값이다. 이 세 가지 값을 조사된 빛의 세기로 나누면 에너지 변환 효율을 구할 수 있으며, 높은 값일수록 바람직하다.
실시예 1과 같이 전도성 점착제층이 포함된 제1 구조체와 제2 구조체를 합지하여 만들어진 소자의 경우, 비교예 1과 같이 상부 전극 형성 후 봉지필름을 적용한 경우에 비하여 우수한 광전 변환효율을 나타냄을 확인할 수 있다. 이를 통해, 본 명세서의 일 실시상태에 따른 유-무기 복합태양전지는 증착공정을 이용하지 않아 가격 경쟁력이 좋으면서, 성능도 우수한 것을 알 수 있다.

Claims (13)

  1. 제1 전극;
    상기 제1 전극 상에 구비된 제1 공통층;
    상기 제1 공통층 상에 구비된 페로브스카이트 물질을 포함하는 광흡수층;
    상기 광흡수층 상에 구비된 제2 공통층; 및
    상기 제2 공통층 상에 접하도록 구비된 전도성 점착제층을 포함하는 유-무기 복합 태양 전지.
  2. 청구항 1에 있어서,
    상기 전도성 점착제층 상에 기재를 더 포함하는 것인 유-무기 복합 태양전지.
  3. 청구항 2에 있어서,
    상기 기재는 배리어 필름을 포함하는 것인 유-무기 복합 태양전지.
  4. 청구항 3에 있어서,
    상기 기재는 보호 필름을 더 포함하는 것인 유-무기 복합 태양전지.
  5. 청구항 1에 있어서,
    상기 페로브스카이트 물질은 하기 화학식 1 또는 화학식 2로 표시되는 화합물인 것인 유-무기 복합 태양전지:
    [화학식 1]
    AMX3
    [화학식 2]
    BaB'(1-a)M'X'zX''(3-z)
    상기 화학식 1 또는 2에 있어서,
    B 및 B'은 서로 상이하고,
    A, B 및 B'은 각각 CnH2n + 1NH3 +, NH4 +, HC(NH2)2 +, Cs+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 + 및 SbH4 +에서 선택되는 1가의 양이온이고,
    M 및 M'은 서로 같거나 상이하고, 각각 독립적으로 Cu2 +, Ni2 +, Co2 +, Fe2 +, Mn2+, Cr2 +, Pd2 +, Cd2 +, Ge2 +, Sn2 +, Pb2 + 및 Yb2 +에서 선택되는 2가의 금속 이온이며,
    X, X'및 X''은 각각 독립적으로 할로겐 이온이고,
    n은 1 내지 9의 정수이고,
    a는 0 < a < 1의 실수이며,
    z는 0 < z < 3의 실수이다.
  6. 청구항 1에 있어서,
    상기 전도성 점착제층은 전도성 물질 및 점착 물질을 포함하는 것인 유-무기 복합 태양전지.
  7. 청구항 6에 있어서,
    상기 전도성 물질은 탄소 기반 물질 또는 금속 입자를 포함하는 것인 유-무기 복합 태양전지.
  8. 청구항 7에 있어서,
    상기 탄소 기반 물질은 카본블랙, 탄소나노튜브(CNT), 그라파이트(Graphite), 그라핀(Graphene), 활성탄, 다공성 탄소(Mesoporous Carbon), 탄소섬유(Carbon fiber) 및 탄소 나노 와이어(Carbon nano wire) 중 적어도 하나인 것인 유-무기 복합 태양전지.
  9. 청구항 1에 있어서,
    상기 전도성 점착제층의 면저항 값은 0.01Ω/sq 내지 100Ω/sq인 것인 유-무기 복합 태양전지.
  10. 제1 전극; 제1 공통층; 페로브스카이트 물질을 포함하는 광흡수층; 및 제2 공통층을 포함하는 제1 구조체를 형성하는 단계;
    전도성 점착제층을 준비하는 단계; 및
    상기 제2 공통층 및 전도성 접착제층이 접하도록 합지하는 단계를 포함하는 청구항 1 내지 9 중 어느 한 항에 따른 유-무기 복합 태양전지 제조방법.
  11. 청구항 10에 있어서,
    상기 제1 구조체를 형성하는 단계는
    제1 전극을 준비하는 단계;
    상기 제1 전극 상에 제1 공통층을 형성하는 단계;
    상기 제1 공통층 상에 페로브스카이트 물질을 포함하는 광흡수층을 형성하는 단계; 및
    상기 광흡수층 상에 제2 공통층을 형성하는 단계를 포함하는 것인 유-무기 복합 태양전지 제조방법.
  12. 청구항 10에 있어서,
    상기 전도성 점착제층이 상기 제2 공통층과 접하는 부분의 반대면에 기재가 더 구비되는 것인 유-무기 복합 태양전지 제조방법.
  13. 청구항 10에 있어서,
    상기 제2 공통층 및 전도성 점착제층이 접하도록 합지하는 단계는 20℃ 내지 100℃에서 롤을 이용하는 것인 유-무기 복합 태양전지 제조방법.
PCT/KR2018/011245 2017-11-01 2018-09-21 유-무기 복합 태양전지 및 유-무기 복합 태양전지 제조방법 WO2019088450A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880070492.8A CN111316458B (zh) 2017-11-01 2018-09-21 有机-无机混合太阳能电池和用于制造有机-无机混合太阳能电池的方法
JP2020524097A JP7188838B2 (ja) 2017-11-01 2018-09-21 有機-無機複合太陽電池および有機-無機複合太陽電池の製造方法
US16/760,016 US20200350125A1 (en) 2017-11-01 2018-09-21 Organic-inorganic hybrid solar cell and method for manufacturing organic-inorganic hybrid solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170144643A KR102283118B1 (ko) 2017-11-01 2017-11-01 유-무기 복합 태양전지 및 유-무기 복합 태양전지 제조방법
KR10-2017-0144643 2017-11-01

Publications (1)

Publication Number Publication Date
WO2019088450A1 true WO2019088450A1 (ko) 2019-05-09

Family

ID=66332152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011245 WO2019088450A1 (ko) 2017-11-01 2018-09-21 유-무기 복합 태양전지 및 유-무기 복합 태양전지 제조방법

Country Status (5)

Country Link
US (1) US20200350125A1 (ko)
JP (1) JP7188838B2 (ko)
KR (1) KR102283118B1 (ko)
CN (1) CN111316458B (ko)
WO (1) WO2019088450A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114695668A (zh) * 2022-03-22 2022-07-01 电子科技大学 一种表面处理提高大面积柔性钙钛矿太阳电池性能的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210009879A (ko) 2019-07-18 2021-01-27 고려대학교 산학협력단 페로브스카이트 입자가 분산된 벌크이종접합 구조의 태양전지용 활성층 및 이의 제조방법
KR102321757B1 (ko) * 2019-09-03 2021-11-03 부산대학교 산학협력단 대면적 페로브스카이트 태양전지를 이용한 버스정류장

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101461641B1 (ko) * 2013-01-10 2014-12-05 한국화학연구원 내구성과 고성능의 무­유기 하이브리드 태양전지
KR20150124413A (ko) * 2014-04-28 2015-11-05 성균관대학교산학협력단 페로브스카이트 태양전지 및 그의 제조 방법
KR101571528B1 (ko) * 2014-07-01 2015-11-25 한국화학연구원 광전변환효율이 향상된 페로브스카이트 태양전지 및 페로브스카이트 태양전지의 제조방법
KR20150135202A (ko) * 2012-12-20 2015-12-02 이슘 리서치 디벨롭먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘, 엘티디. 페로브스카이트 쇼트키 타입 태양 전지

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007217693A (ja) * 2007-02-15 2007-08-30 Shin Etsu Chem Co Ltd シリコーンゴム複合体及びその製造方法
JP2008209584A (ja) * 2007-02-26 2008-09-11 Toppan Printing Co Ltd 電気泳動表示シートモビール
CN102414831B (zh) * 2009-03-11 2015-09-30 信越化学工业株式会社 太阳能电池电极的连接片材、太阳能电池组件的制造方法和太阳能电池组件
JP2011096988A (ja) * 2009-11-02 2011-05-12 Keiwa Inc 太陽電池モジュール裏面保護用粘着シート及びこれを用いた太陽電池モジュール
KR101657260B1 (ko) * 2011-01-03 2016-09-13 주식회사 엘지화학 태양전지용 전극의 제조방법 및 이로부터 제조된 전극
EP2487215B1 (en) * 2011-02-11 2013-07-24 Henkel AG & Co. KGaA Electrically conductive adhesives comprising at least one metal precursor
CN103764752B (zh) * 2011-08-26 2016-03-02 三菱化学株式会社 粘结性密封膜、粘结性密封膜的制造方法和粘结性密封膜用涂布液
KR102189387B1 (ko) * 2012-11-30 2020-12-11 린텍 가부시키가이샤 접착제 조성물, 접착 시트, 전자 디바이스 및 그 제조 방법
CN103903675A (zh) * 2012-12-28 2014-07-02 北京中科纳通科技有限公司 一种高稳定性导电浆料及其制备方法
KR20150016876A (ko) * 2013-08-05 2015-02-13 주식회사 엘지화학 점착제 조성물, 점착 필름 및 이를 이용한 유기전자장치의 봉지방법
DE102014207074A1 (de) * 2014-04-11 2015-10-15 Tesa Se Klebeband für die Kapselung einer organischen elektronischen Anordnung
CN104009159B (zh) * 2014-05-14 2017-11-10 中国科学院物理研究所 钙钛矿基薄膜太阳电池及其制备方法
CN104022226B (zh) * 2014-05-14 2017-07-28 中国科学院物理研究所 钙钛矿基薄膜太阳电池及其制备方法
KR101677798B1 (ko) 2014-06-13 2016-11-18 주식회사 엘지화학 태양전지 및 이의 제조방법
CN104134752B (zh) * 2014-07-08 2017-02-08 中国科学院物理研究所 钙钛矿太阳能电池及其热塑性碳对电极的制备方法
AU2015299748A1 (en) * 2014-08-07 2017-03-09 Flinders Partners Pty Ltd Transparent electrode materials and methods for forming same
JP2016149472A (ja) * 2015-02-13 2016-08-18 ペクセル・テクノロジーズ株式会社 ペロブスカイト化合物を用いた光電変換素子およびその製造方法
JP6030176B2 (ja) * 2015-03-19 2016-11-24 株式会社東芝 光電変換素子とその製造方法
KR20170072079A (ko) * 2015-12-16 2017-06-26 주식회사 엘지화학 태양전지의 광흡수체 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150135202A (ko) * 2012-12-20 2015-12-02 이슘 리서치 디벨롭먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘, 엘티디. 페로브스카이트 쇼트키 타입 태양 전지
KR101461641B1 (ko) * 2013-01-10 2014-12-05 한국화학연구원 내구성과 고성능의 무­유기 하이브리드 태양전지
KR20150124413A (ko) * 2014-04-28 2015-11-05 성균관대학교산학협력단 페로브스카이트 태양전지 및 그의 제조 방법
KR101571528B1 (ko) * 2014-07-01 2015-11-25 한국화학연구원 광전변환효율이 향상된 페로브스카이트 태양전지 및 페로브스카이트 태양전지의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRYANT, D.: "A Transparent Conductive Adhesive Laminate Electrode for High-Efficiency Organic-Inorganic Lead Halide Perovskite Solar Cells", ADV. MATER., 2014, pages 7499 - 7504, XP055422409, DOI: doi:10.1002/adma.201403939 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114695668A (zh) * 2022-03-22 2022-07-01 电子科技大学 一种表面处理提高大面积柔性钙钛矿太阳电池性能的方法
CN114695668B (zh) * 2022-03-22 2023-04-07 电子科技大学 一种表面处理提高大面积柔性钙钛矿太阳电池性能的方法

Also Published As

Publication number Publication date
KR102283118B1 (ko) 2021-07-28
JP7188838B2 (ja) 2022-12-13
KR20190049125A (ko) 2019-05-09
JP2021501478A (ja) 2021-01-14
CN111316458B (zh) 2024-04-16
US20200350125A1 (en) 2020-11-05
CN111316458A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2016126130A1 (ko) 점착제 조성물
WO2015020412A1 (ko) 점착 필름 및 이를 이용한 유기전자장치의 제조방법
WO2013103283A1 (ko) 봉지용 필름
EP3091587B1 (en) Organic electronic device and fabrication method therefor
WO2019088450A1 (ko) 유-무기 복합 태양전지 및 유-무기 복합 태양전지 제조방법
WO2016133361A1 (ko) 봉지 필름
WO2014189292A1 (ko) 봉지 필름 및 이를 이용한 유기전자장치의 봉지 방법
WO2015009129A1 (ko) 봉지 조성물
WO2015050320A1 (ko) 광투과도가 우수한 전극, 이의 제조방법 및 이를 포함하는 전자소자
WO2014204256A2 (ko) 봉지재 필름의 신뢰 수명을 평가하는 방법 및 상기 필름의 신뢰도 평가 장치
WO2014189291A1 (ko) 봉지 필름 및 이를 이용한 유기전자장치의 봉지 방법
WO2013073846A1 (ko) 접착 필름 및 이를 이용한 유기전자장치의 봉지 방법
JP2006310729A (ja) 有機薄膜太陽電池
WO2014204223A1 (ko) 봉지재 필름용 조성물, 봉지재 필름 및 이를 포함하는 전자장치
WO2018135864A1 (ko) Oled 패널 하부 보호필름 및 이를 포함하는 유기발광표시장치
WO2018012825A1 (ko) 유무기 복합 태양전지
WO2016200176A1 (ko) 유기전자장치
WO2015126176A1 (ko) 봉지 필름 및 이를 포함하는 유기전자장치
WO2021125695A1 (ko) 잉크젯용 경화성 조성물 및 이를 포함하는 유기발광 표시장치
WO2014182139A1 (ko) 광활성층, 이를 포함하는 유기 태양 전지 및 이의 제조 방법
CN104040748A (zh) 有机电致发光器件及其制备方法
WO2013002564A2 (ko) 이형방지 조성물, 상기 이형방지 조성물을 포함하는 그래핀 적층체 및 그 제조방법
WO2020060173A1 (ko) 소자의 제조방법
WO2018021869A1 (ko) 유-무기 복합 태양전지 제조방법
WO2021230717A1 (ko) 봉지 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874142

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020524097

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18874142

Country of ref document: EP

Kind code of ref document: A1