WO2018021869A1 - 유-무기 복합 태양전지 제조방법 - Google Patents

유-무기 복합 태양전지 제조방법 Download PDF

Info

Publication number
WO2018021869A1
WO2018021869A1 PCT/KR2017/008155 KR2017008155W WO2018021869A1 WO 2018021869 A1 WO2018021869 A1 WO 2018021869A1 KR 2017008155 W KR2017008155 W KR 2017008155W WO 2018021869 A1 WO2018021869 A1 WO 2018021869A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
solar cell
layer
formula
light absorbing
Prior art date
Application number
PCT/KR2017/008155
Other languages
English (en)
French (fr)
Inventor
김세용
박상준
김종석
이재인
김용남
이상권
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018568305A priority Critical patent/JP6835417B2/ja
Priority to CN201780046372.XA priority patent/CN109564977B/zh
Priority to US16/319,238 priority patent/US11004617B2/en
Publication of WO2018021869A1 publication Critical patent/WO2018021869A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/331Metal complexes comprising an iron-series metal, e.g. Fe, Co, Ni
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • H01G9/2063Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution comprising a mixture of two or more dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present specification relates to an organic-inorganic composite solar cell manufacturing method.
  • the solar cell refers to a battery that generates current-voltage using a photovoltaic effect of absorbing light energy from sunlight and generating electrons and holes.
  • Organic-inorganic composite perovskite materials have recently been spotlighted as light absorbing materials for organic-inorganic composite solar cells because of their high absorption coefficient and easy synthesis through solution process.
  • the absorption layer configuration used in the organic-inorganic hybrid solar cell is composed of a single cation, a metal ion and a halogen ion based on the AMX3 component, in this case there is a low efficiency and stability problems due to moisture, ultraviolet rays and the like.
  • phase transition temperature is lower than room temperature to 50 ° C., so that phase transition occurs during driving or storage at room temperature. There is a problem with this change.
  • the lattice spacing due to the phase transition is known to be the main cause of the deterioration of stability.
  • the present specification provides a method for manufacturing an organic-inorganic hybrid solar cell having a simple process and excellent stability and energy conversion efficiency.
  • One embodiment of the present specification comprises the steps of forming a first electrode
  • first perovskite precursor solution including a first organic halide and a first metal halide on the first common layer
  • It provides an organic-inorganic hybrid solar cell manufacturing method comprising the step of forming a second electrode on the second common layer.
  • the organic-inorganic composite solar cell manufacturing method has a simple manufacturing process, and has an effect of forming a light absorption layer even with a low concentration of organic halides.
  • the crystal structure of the base layer serves as a binder of the upper layer crystal, the lattice separation phenomenon caused by temperature change is suppressed, thereby increasing the stability of the device. There is an advantage to manufacture a battery.
  • the organic-inorganic composite solar cell manufacturing method has an advantage of manufacturing an organic-inorganic composite solar cell having improved current density and energy conversion efficiency by improving the interfacial properties of the light absorbing layer.
  • the organic-inorganic hybrid solar cell manufacturing method has the advantage of absorbing a wide spectrum of light to reduce the optical energy loss, the production of organic-inorganic hybrid solar cell with improved energy conversion efficiency. .
  • a further coating process is required, but this may be omitted to simplify the process.
  • 1 to 4 illustrate the structure of the organic-inorganic hybrid solar cell according to the exemplary embodiment of the present specification.
  • FIG 5 shows the current density according to the voltage of the organic-inorganic hybrid solar cell manufactured in the embodiment of the present specification.
  • Figure 6 shows after 48 hours of the organic-inorganic hybrid solar cell prepared in the embodiment of the present specification.
  • An organic-inorganic hybrid solar cell manufacturing method comprises the steps of forming a first electrode
  • first perovskite precursor solution including a first organic halide and a first metal halide on the first common layer
  • the method may further include forming a third light absorption layer by applying the precursor precursor solution.
  • the precursor refers to a substance before becoming a specific substance in any metabolism or reaction.
  • the perovskite precursor means a material before the perovskite material
  • the perovskite precursor solution means a solution containing the perovskite precursor.
  • the first common layer and the second common layer mean an electron transport layer or a hole transport layer, respectively.
  • the first common layer and the second common layer are not the same layer.
  • the first common layer is an electron transport layer
  • the second common layer is a hole transport layer
  • the first common layer is a hole transport layer
  • the second common layer is an electron transport layer.
  • the first organic halide may be a compound represented by the following Formula 1.
  • A is C n H 2n + 1 NH 3 + , HC (NH 2 ) 2 + , NH 4 + , Cs + , NF 4 + , NCl 4 + , PF 4 + , PCl 4 + , CH 3 PH 3 + , CH Is a monovalent cation selected from 3 AsH 3 + , CH 3 SbH 3 + , PH 4 + , AsH 4 + and SbH 4 + ,
  • X is a halogen ion
  • n is an integer from 1 to 9.
  • the first metal halide may be a compound represented by Formula 2 below.
  • M is Cu 2 +, Ni 2 +, Co 2 +, Fe 2 +, Mn 2 +, Cr 2 +, Pd 2 +, Cd 2 +, Ge 2 +, Sn 2 +, Pb 2 + , and from Yb 2 + Is a divalent metal ion selected,
  • X is a halogen ion.
  • the concentration of the first organic halide in the first perovskite precursor solution may be 0.01M to 0.15M.
  • the concentration of the first metal halide in the first perovskite precursor solution may be 0.5M to 1.5M.
  • the first light absorption layer may include a compound having a perovskite structure represented by Formula 3 below.
  • A is C n H 2n + 1 NH 3 + , NH 4 + , HC (NH 2 ) 2 + , Cs + , NF 4 + , NCl 4 + , PF 4 + , PCl 4 + , CH 3 PH 3 + , CH It is a monovalent cation selected from 3 AsH 3 + , CH 3 SbH 3 + , PH 4 + , AsH 4 + and SbH 4 + ,
  • M is Cu 2 +, Ni 2 +, Co 2 +, Fe 2 +, Mn 2 +, Cr 2 +, Pd 2 +, Cd 2 +, Ge 2 +, Sn 2 +, Pb 2 + , and from Yb 2 + Is a divalent metal ion selected,
  • X is a halogen ion
  • n is an integer from 1 to 9
  • the second organic halide may be a compound represented by the following Chemical Formula 4 or Chemical Formula 5.
  • R 'and R'' are different from each other, and R, R', R '' are C n H 2n + 1 NH 3 + , NH 4 + , HC (NH 2 ) 2 + , Cs + , NF 4 + , It is a monovalent cation selected from NCl 4 + , PF 4 + , PCl 4 + , CH 3 PH 3 + , CH 3 AsH 3 + , CH 3 SbH 3 + , PH 4 + , AsH 4 + and SbH 4 + ,
  • n is an integer from 1 to 9
  • the concentration of the second organic halide in the second perovskite precursor solution may be 0.1M to 2M.
  • the second light absorbing layer includes a compound having a perovskite structure represented by Chemical Formula 6 or 7.
  • R 'and R'' are different from each other, and R, R', and R '' are C n H 2n + 1 NH 3 + , NH 4 + , HC (NH 2 ) 2 + , CS + , NF 4 + , It is a monovalent cation selected from NCl 4 + , PF 4 + , PCl 4 + , CH 3 PH 3 + , CH 3 AsH 3 + , CH 3 SbH 3 + , PH 4 + , AsH 4 + and SbH 4 + ,
  • M ' is Cu 2 +, Ni 2 +, Co 2 +, Fe 2 +, Mn 2 +, Cr 2 +, Pd 2 +, Cd 2 +, Ge 2 +, Sn 2 +, Pb 2 + , and Yb 2 + Divalent metal ions selected from
  • X 'and X' ' are each halogen ion ions
  • n is an integer from 1 to 9
  • the third organic halide includes a compound represented by the following Formula 8.
  • E is C n H 2n + 1 NH 3 + , HC (NH 2 ) 2 + , NH 4 + , Cs + , NF 4 + , NCl 4 + , PF 4 + , PCl 4 + , CH 3 PH 3 + , CH Is a monovalent cation selected from 3 AsH 3 + , CH 3 SbH 3 + , PH 4 + , AsH 4 + and SbH 4 + ,
  • n is an integer from 1 to 9.
  • the concentration of the third organic halide in the third perovskite precursor solution may be 0.01M to 0.15M.
  • the third light absorbing layer may include a compound having a perovskite structure represented by Formula 9 below.
  • E is C n H 2n + 1 NH 3 + , NH 4 + , HC (NH 2 ) 2 + , CS + , NF 4 + , NCl 4 + , PF 4 + , PCl 4 + , CH 3 PH 3 + , CH It is a monovalent cation selected from 3 AsH 3 + , CH 3 SbH 3 + , PH 4 + , AsH 4 + and SbH 4 + ,
  • M '' is Cu 2 +, Ni 2 +, Co 2 +, Fe 2 +, Mn 2 +, Cr 2 +, Pd 2 +, Cd 2 +, Ge 2 +, Sn 2 +, Pb 2 + , and Yb 2 A divalent metal ion selected from + ,
  • n is an integer from 1 to 9.
  • the first light absorption layer forming process for forming the light absorption layer into a three-layer structure the process and each step of the two steps consisting of coating the first metal halide and coating the first organic halide A suitable heat treatment at is required.
  • the first organic halide is added to the first metal halide coating step to form the first light absorption layer, two materials are simultaneously coated. Since the first organic halide coating step and the heat treatment process can be omitted, the process is simple. That is, the first light absorption layer may be formed by only one step process.
  • the first metal halide is coated (step 1), the first organic halide is coated (step 2), and the second organic halide is coated ( Step 3), if a four-step process of coating the third organic halide (four steps) is required, in the present specification, the process of forming the light absorption layer into a three-layer structure includes a first metal halide and a first organic halide Coating step (step 1) at the same time, coating a second organic halide (step 2), coating a third organic halide (step 3), and thus consists of only three simple steps.
  • the cost of the raw materials can be lowered.
  • the perovskite precursor solution is a dimethylformamide (dimethylformamide, DMF), isopropyl alcohol (isopropyl alcohol, IPA), dimethylsulfoxide (dimethylsulfoxide, DMSO), gamma butyrolactone ( But-butyrolactone (GBL), n-methylpyrrolidone (NMP), propylene glycol methyl ether (PGME) and propylene glycol monomethyl ether acetate (PGMEA) It may include at least one.
  • the perovskite precursor solution may include all of the first perovskite precursor solution, the second perovskite precursor solution, and the third perovskite precursor solution unless otherwise stated.
  • FIG. 1 illustrates the structure of an organic-inorganic hybrid solar cell manufactured by a method of manufacturing an organic-inorganic hybrid solar cell according to an exemplary embodiment of the present specification.
  • FIG. 1 illustrates that a first electrode 102 is provided on a substrate 101, an electron transporting layer 103 is provided on the first electrode 102, and a first light absorbing layer (ie, on the electron transporting layer 103).
  • 104 is provided, the second light absorbing layer 105 is provided on the first light absorbing layer 104, the hole transport layer 107 is provided on the second light absorbing layer 105, the hole transport layer 107 on the
  • the structure of the organic-inorganic hybrid solar cell provided with the second electrode 108 is illustrated.
  • FIG. 2 illustrates the structure of an organic-inorganic hybrid solar cell manufactured by a method of manufacturing an organic-inorganic hybrid solar cell according to an exemplary embodiment of the present specification.
  • FIG. 2 illustrates a first electrode 102 on a substrate 101, an electron transport layer 103 on a first electrode 102, and a first light absorbing layer on the electron transport layer 103.
  • 104 is provided, the second light absorbing layer 105 is provided on the first light absorbing layer 104, the third light absorbing layer 106 is provided on the second light absorbing layer 105, the third light absorbing layer
  • the hole transport layer 107 is provided on the 106 and the organic-inorganic hybrid solar cell structure in which the second electrode is provided on the hole transport layer 107 is illustrated.
  • FIG. 3 illustrates the structure of an organic-inorganic hybrid solar cell manufactured by a method of manufacturing an organic-inorganic hybrid solar cell according to an exemplary embodiment of the present specification.
  • FIG. 1 illustrates a first electrode 102 on a substrate 101, a hole transport layer 107 on a first electrode 102, and a first light absorption layer on a hole transport layer 107.
  • 104 is provided, the second light absorption layer 105 is provided on the first light absorption layer 104, the electron transport layer 103 is provided on the second light absorption layer 105, the electron transport layer 103 on The structure of the organic-inorganic hybrid solar cell provided with the second electrode 108 is illustrated.
  • FIG. 4 illustrates the structure of an organic-inorganic hybrid solar cell manufactured by the method of manufacturing an organic-inorganic hybrid solar cell according to an exemplary embodiment of the present specification.
  • FIG. 1 illustrates a first electrode 102 on a substrate 101, a hole transport layer 107 on a first electrode 102, and a first light absorption layer on a hole transport layer 107.
  • 104 is provided, the second light absorbing layer 105 is provided on the first light absorbing layer 104, the third light absorbing layer 106 is provided on the second light absorbing layer 105, the third light absorbing layer
  • the structure of the organic-inorganic hybrid solar cell having the electron transport layer 103 provided on the 106 and the second electrode 108 provided on the electron transport layer 103 is illustrated.
  • the organic-inorganic composite solar cell according to the present disclosure is not limited to the laminated structure of FIGS. 1 to 4, and further members may be further included.
  • the thickness of the first light absorbing layer may be manufactured to 1 nm to 100 nm.
  • the first light absorbing layer has an effect of adjusting the energy level with the common layer and acting as a base layer of the second light absorbing layer.
  • the thickness of the first light absorbing layer means a width between a surface of the first light absorbing layer in contact with the first common layer and a surface of the first light absorbing layer in contact with the second light absorbing layer.
  • the thickness of the second light absorbing layer may be manufactured to 1 nm to 600 nm.
  • the second light absorbing layer may function as the main light absorbing layer.
  • the thickness of the second light absorbing layer means a width between a surface of the second light absorbing layer in contact with the first light absorbing layer and a surface of the second light absorbing layer in contact with the second common layer.
  • the thickness of the third light absorbing layer may be manufactured to 1 nm to 100 nm.
  • the thickness of the third light absorbing layer is manufactured as described above, the surface defect of the second light absorbing layer is reduced, thereby improving the interfacial property between the light absorbing layer and the common layer, and the energy level between the light absorbing layer and the common layer. There is an effect of increasing the open voltage by reducing the offset.
  • the thickness of the third light absorbing layer means a width between a surface of the third light absorbing layer in contact with the second light absorbing layer and a surface of the third light absorbing layer in contact with the second common layer.
  • the light absorbing layer means at least one or both of the first light absorbing layer, the second light absorbing layer, and the third light absorbing layer.
  • the light absorbing layer may be formed through spin coating, slit coating, dip coating, inkjet printing, gravure printing, spray coating, doctor blade, bar coating, brush painting or thermal deposition.
  • the first organic halide includes a single cation.
  • a single cation means using one type of cation. That is, in the formula (1) means that only one type of monovalent cation is selected as A.
  • a in Formula 1 may be C n H 2n + 1 NH 3 + , and n may be an integer of 1 to 9.
  • the compound of the perovskite structure of the first light absorption layer includes a single cation.
  • a in Formula 3 may be C n H 2n + 1 NH 3 + , and n may be an integer of 1 to 9.
  • the second organic halide includes a single cation.
  • R in Formula 4 may be HC (NH 2 ) 2 + .
  • the compound of the perovskite structure of the second light absorption layer includes a single cation.
  • R in Chemical Formula 6 is HC (NH 2 ) 2 + Can be.
  • the second organic halide includes a complex cation.
  • a complex cation means using two or more types of cations. That is, in Formula 5, R 'and R''means that monovalent cations different from each other are selected.
  • R ′ of Formula 5 may be C n H 2n + 1 NH 3 +
  • R ′′ may be HC (NH 2 ) 2 +
  • n may be an integer of 1 to 9.
  • the compound of the perovskite structure of the second light absorption layer includes a composite cation.
  • R ′ of Formula 7 may be C n H 2n + 1 NH 3 +
  • R ′′ may be HC (NH 2 ) 2 +
  • n may be an integer of 1 to 9.
  • the third organic halide includes a single cation.
  • E of Chemical Formula 8 is C n H 2n + 1 NH 3 + , and n may be an integer of 1 to 9.
  • the compound of the perovskite structure of the third light absorbing layer includes a single cation.
  • E of Formula 9 may be C n H 2n + 1 NH 3 + , and n may be an integer of 1 to 9.
  • M, M 'and M'' may be Pb + 2.
  • the organic-inorganic hybrid solar cell manufacturing method of the first organic halide is C n H 2n + 1 NH 3 I
  • the first metal halide is PbI 2
  • n is 1 to 9 Can be an integer.
  • the organic-inorganic hybrid solar cell manufacturing method of the second organic halide is HC (NH 2 ) 2 I, C n H 2n + 1 NH 3 Br or (C n H 2n + 1 NH 3 ) y (HC (NH 2 ) 2 ) (1-y) I z Br (1-z) , n is an integer from 1 to 9, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1 have.
  • the organic-inorganic hybrid solar cell manufacturing method of the third organic halide is C n H 2n + 1 NH 3 I, n may be an integer of 1 to 9.
  • the organic-inorganic hybrid solar cell manufacturing method of the first light absorption layer comprises C n H 2n + 1 NH 3 PbI 3
  • the second light absorbing layer may include HC (NH 2 ) 2 PbI 3
  • the third light absorbing layer may include C n H 2n + 1 NH 3 PbI 3
  • n may be an integer of 1 to 9.
  • the first light absorbing layer includes CH 3 NH 3 PbI 3 (methylammonium lead iodide, MAPbI 3 ), and the second light absorbing layer includes HC (NH 2 ) 2 PbI 3 (formamidinium lead iodide, FAPbI 3 )
  • the third light absorption layer may be prepared to include CH 3 NH 3 PbI 3 .
  • the first light absorption layer includes C n H 2n + 1 NH 3 PbI 3
  • the second light absorption layer is (C n H 2n + 1 NH 3).
  • y HC (NH 2 ) 2
  • (1-y) PbI z Br (3-z)
  • the third light absorption layer comprises C n H 2n + 1 NH 3 PbI 3
  • n is 1 to 1
  • the first light absorption layer comprises CH 3 NH 3 PbI 3
  • the second light absorption layer (C n H 2n + 1 NH 3 ) y (HC (NH 2 ) 2 ) (1-y) PbI z Br (3-z)
  • the third light absorbing layer may be prepared to include CH 3 NH 3 PbI 3 .
  • the organic-inorganic composite solar cell may be manufactured further including a substrate.
  • the substrate may be provided under the first electrode.
  • the substrate may be a substrate excellent in transparency, surface smoothness, ease of handling and waterproof.
  • a glass substrate, a thin film glass substrate, or a plastic substrate may be used.
  • the plastic substrate may include a film such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether ether ketone, and polyimide in the form of a single layer or a multilayer. Can be.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyether ether ketone polyimide in the form of a single layer or a multilayer.
  • the substrate is not limited thereto, and a substrate commonly used in an organic-inorganic hybrid solar cell may be used.
  • the first electrode may be an anode
  • the second electrode may be a cathode
  • the first electrode may be a cathode
  • the second electrode may be an anode
  • the first electrode may be a transparent electrode, and the organic-inorganic hybrid solar cell may absorb light through the first electrode.
  • the first electrode When the first electrode is a transparent electrode, the first electrode is conductive such as indium-tin oxide (ITO) or indium zinc oxide (IZO), fluorine-doped tin oxide (FTO), or the like. It may be an oxide. Further, the first electrode may be a translucent electrode. When the first electrode is a translucent electrode, the first electrode may be made of a translucent metal such as silver (Ag), gold (Au), magnesium (Mg), or an alloy thereof. When the translucent metal is used as the first electrode, the organic-inorganic composite solar cell may have a microcavity structure.
  • ITO indium-tin oxide
  • IZO indium zinc oxide
  • FTO fluorine-doped tin oxide
  • the first electrode may be a translucent electrode.
  • the first electrode When the first electrode is a translucent electrode, the first electrode may be made of a translucent metal such as silver (Ag), gold (Au), magnesium (Mg), or an alloy thereof.
  • the translucent metal is used as the first
  • the electrode when the electrode is a transparent conductive oxide layer, the electrode is polyethylene terephthalate (PET) polyethylene naphthelate (PEN), polypropylene ((polyperopylene, PP), Polyimide (PI), polycarbonate (polycarbornate, PC), polystyrene (polystylene, PS), polyoxyethlene (POM), AS resin (acrylonitrile styrene copolymer), ABS resin (acrylonitrile butadiene styrene copolymer) and Doped conductive materials may be used on flexible and transparent materials such as plastics including triacetyl cellulose (TAC), polyarylate (PAR), and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthelate
  • PP polypropylene
  • PI polyimide
  • PC polycarbonate
  • PC polystyrene
  • POM polyoxyethlene
  • AS resin acrylonitrile styrene copolymer
  • ITO indium tin oxide
  • FTO fluorine doped tin oxide
  • AZO aluminum doped zink oxide
  • IZO indium zink oxide
  • ZnO-Ga 2 O 3 ZnOAl 2 O 3 and antimony tin oxide (ATO)
  • ATO antimony tin oxide
  • the second electrode may be a metal electrode.
  • the metal electrode may be silver (Ag), aluminum (Al), platinum (Pt), tungsten (W), copper (Cu), molybdenum (Mo), gold (Au), nickel (Ni), palladium (Pd). ),
  • Magnesium (Mg), chromium (Cr), calcium (Ca), samarium (Sm) and lithium (Li) may include one or two or more selected from the group consisting of.
  • the organic-inorganic hybrid solar cell may have a nip structure.
  • the second electrode may be a metal electrode.
  • the second electrode is gold (Au), silver (Ag), aluminum (Al), MoO 3 / Au, MoO 3 / Ag MoO 3 / Al, V 2 O 5 / Au, V 2 O 5 / Ag, V 2 O 5 / Al, WO 3 / Au, WO 3 / Ag or WO 3 / Al.
  • the n-i-p structure refers to a structure in which the first electrode, the electron transport layer, the light absorption layer, the hole transport layer, and the second electrode are sequentially stacked.
  • the organic-inorganic hybrid solar cell may have a p-i-n structure.
  • the second electrode may be a metal electrode.
  • the p-i-n structure refers to a structure in which the first electrode, the hole transport layer, the light absorption layer, the electron transport layer, and the second electrode are sequentially stacked.
  • the organic-inorganic hybrid solar cell may further include an additional layer provided between the first electrode and the second electrode.
  • the additional layer may include one or more selected from the group consisting of a hole injection layer, a hole transport layer, an electron blocking layer, an electron transport layer, and an electron injection layer.
  • the hole transport layer and / or electron transport layer material may be a material that increases the probability that the charge is transferred to the electrode by efficiently transferring electrons and holes to the light absorbing layer, but is not particularly limited.
  • the electron transport layer may include a metal oxide.
  • Metal oxides specifically include Ti oxide, Zn oxide, In oxide, Sn oxide, W oxide, Nb oxide, Mo oxide, Mg oxide, Zr oxide, Sr oxide, Yr oxide, La oxide, V oxide, Al oxide, Y oxide , Sc oxides, Sm oxides, Ga oxides, In oxides, Ta oxides and SrTi oxides and combinations thereof may be selected from one or two or more, but is not limited thereto.
  • the electron transport layer may improve the characteristics of the charge by using doping, and may modify the surface by using a fullerene derivative or the like.
  • the electron transport layer is formed by sputtering, E-Beam, thermal evaporation, spin coating, screen printing, inkjet printing, doctor blade or gravure printing method to be applied to one surface of the first electrode or coated in the form of a film Can be.
  • the hole transport layer may be an anode buffer layer.
  • the hole transport layer may be introduced on the light absorbing layer through spin coating, dip coating, inkjet printing, gravure printing, spray coating, doctor blade, bar coating, gravure coating, brush painting, and thermal deposition.
  • the hole transport layer is tertiary butyl pyridine (TBP), lithium bis (trifluoro methanesulfonyl) Imide, LiTFSI) poly (3, 4- ethylene dioxythiophene) : Poly (4-styrenesulfonate) [PEDOT: PSS] and the like can be used, but is not limited thereto.
  • ITO Indium tin oxide
  • IPA isopropyl alchol
  • the first light absorption layer was formed by spin coating on the transport layer and heat-treated at 100 ° C. for 10 minutes.
  • spiro-OMeTAD 2,2 ′, 7,7′-tetrakis (N, N-di-p-methoxyphenylamine) -9,9′-spirobifluorene
  • a hole transport layer was formed by spin coating a solution of acetonitrile solution mixed with pyridine (tert-butylpyridine, tBP) and 17.5 ⁇ l of LiTFSI in 1 ml of chlorobenzene. At this time, the LiTFSI was dissolved in acetonitrile at a concentration of 520 mg / mL and added in solution.
  • the organic-inorganic composite solar cell was completed by depositing silver (Ag) at a thickness of 150 nm at a pressure of 10 ⁇ 8 torr on the hole transport layer to form a second electrode.
  • the second light absorption layer 300 ⁇ l of a solution formed by mixing (HC (NH 2 ) 2 ) I and CH 3 NH 3 Br in a molar ratio of 0.7: 0.3 and dissolving in 1 ml of isopropyl alcohol was formed in the first light absorption layer.
  • An organic-inorganic composite solar cell was manufactured in the same manner as in the manufacturing method of Example 1, except that the coating was spin-coated on the top and heat-treated at 100 ° C. for 30 minutes.
  • ITO Indium tin oxide
  • IPA isopropyl alchol
  • the first light absorption layer was formed by spin coating on the transport layer and heat-treated at 100 ° C. for 10 minutes.
  • the third light absorbing layer was formed by spin coating a solution formed by dissolving 10 mg of CH 3 NH 3 I (MAI) in 1 ml of isopropyl alcohol on the second light absorbing layer and performing heat treatment at 100 ° C. for 30 minutes.
  • spiro-OMeTAD 2,2 ′, 7,7′-tetrakis (N, N-di-p-methoxyphenylamine) -9,9′-spirobifluorene
  • a hole transport layer was formed by spin coating a solution of acetonitrile solution mixed with pyridine (tert-butylpyridine, tBP) and 17.5 ⁇ l of LiTFSI in 1 ml of chlorobenzene. At this time, the LiTFSI was dissolved in acetonitrile at a concentration of 520 mg / mL and added in solution.
  • the organic-inorganic composite solar cell was completed by depositing silver (Ag) at a thickness of 150 nm at a pressure of 10 ⁇ 8 torr on the hole transport layer to form a second electrode.
  • ITO Indium tin oxide
  • IPA isopropyl alchol
  • PbI 2 lead iodide
  • DMF dimethylformamide
  • spiro-OMeTAD (2,2 ', 7,7'-tetrakis (N, N-di-p-methoxyphenylamine) -9,9'-spirobifluorene)
  • acetonitrile solution mixed with 17.5 ⁇ l of LiTFSI were mixed with 1 ml of chlorobenzene to spin-coat to form a hole transport layer.
  • the LiTFSI was dissolved in acetonitrile at a concentration of 520 mg / mL and added in solution.
  • the organic-inorganic composite solar cell was completed by depositing silver (Ag) at a thickness of 150 nm at a pressure of 10 ⁇ 8 torr on the hole transport layer to form a second electrode.
  • Table 1 shows the performance of the organic-inorganic hybrid solar cell according to the exemplary embodiment of the present specification
  • FIG. 5 shows the current density according to the voltage of the organic-inorganic hybrid solar cell manufactured in the exemplary embodiment of the present specification.
  • V oc is the open voltage
  • J sc is the short-circuit current
  • FF is the fill factor
  • PCE is the energy conversion efficiency.
  • the open-circuit and short-circuit currents are the X- and Y-axis intercepts in the four quadrants of the voltage-current density curve, respectively. The higher these two values, the higher the efficiency of the solar cell.
  • the fill factor is the area of the rectangle drawn inside the curve divided by the product of the short circuit current and the open voltage. By dividing these three values by the intensity of the emitted light, the energy conversion efficiency can be obtained, and higher values are preferable.
  • FIG. 6 shows an organic-inorganic hybrid solar cell prepared in an exemplary embodiment of the present specification after 48 hours of storage in a nitrogen atmosphere. While the organic-inorganic composite solar cell according to Examples 1 to 3 does not change over time, the organic-inorganic composite solar cell according to Comparative Example 1 can be confirmed that the change in appearance occurs after 48 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 명세서는 제1 전극을 형성하는 단계; 상기 제1 전극 상에 제1 공통층을 형성하는 단계; 상기 제1 공통층 상에 제1 유기할로겐화물과 제1 금속할로겐화물을 포함하는 제1 페로브스카이트 전구체 용액을 도포하여 제1 광흡수층을 형성하는 단계; 상기 제1 광흡수층 상에 제2 유기할로겐화물을 포함하는 제2 페로브스카이트 전구체 용액을 도포하여 제2 광흡수층을 형성하는 단계; 상기 제2 광흡수층 상에 제2 공통층을 형성하는 단계; 및 상기 제2 공통층 상에 제2 전극을 형성하는 단계를 포함하는 유-무기 복합 태양전지 제조방법에 관한 것이다.

Description

유-무기 복합 태양전지 제조방법
본 출원은 2016년 07월 29일에 한국특허청에 제출된 한국 특허 출원 제10-2016-0097517호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 유-무기 복합 태양전지 제조방법에 관한 것이다.
화석 에너지의 고갈과 이의 사용에 의한 지구 환경적인 문제를 해결하기 위해 태양에너지, 풍력, 수력과 같은 재생 가능하며, 청정한 대체 에너지원에 대한 연구가 활발히 진행되고 있다. 이 중에서 태양 빛으로부터 직접 전기적 에너지를 변화시키는 태양전지에 대한 관심이 크게 증가하고 있다. 여기서 태양전지란 태양빛으로부터 광 에너지를 흡수하여 전자와 정공을 발생하는 광기전 효과를 이용하여 전류-전압을 생성하는 전지를 의미한다.
유-무기 복합 페로브스카이트 물질은 흡광계수가 높고, 용액 공정을 통해 쉽게 합성이 가능한 특성 때문에 최근에 유-무기 복합 태양전지 광흡수 물질로서 각광 받고 있다.
일반적으로, 유-무기 복합 태양전지에 사용되는 흡수층 구성은 AMX3 성분을 기본 구조로 단일 양이온, 금속 이온 및 할로겐 이온으로 구성되나, 이 경우 낮은 효율 및 수분, 자외선 등에 의한 안정성 문제가 있다.
또한, 상기 언급한 단일 양이온을 적용한 페로브스카이트 중 HC(NH2)2 + 및 Cs+가 사용되면 상전이 온도가 상온 내지는 50℃ 이하를 가짐으로 인하여, 구동 중 혹은 상온 보관 중 상전이가 일어나 결정형이 바뀌는 문제가 있다. 이러한 상전이에 따른 격자 이격이 안정성 저하의 주원인으로 알려져 있다.
본 명세서는 공정이 간단하고, 안정성 및 에너지 변환 효율이 우수한 유-무기 복합 태양전지 제조방법을 제공한다.
본 명세서의 일 실시상태는 제1 전극을 형성하는 단계;
상기 제1 전극 상에 제1 공통층을 형성하는 단계;
상기 제1 공통층 상에 제1 유기할로겐화물과 제1 금속할로겐화물을 포함하는 제1 페로브스카이트 전구체 용액을 도포하여 제1 광흡수층을 형성하는 단계;
상기 제1 광흡수층 상에 제2 유기할로겐화물을 포함하는 제2 페로브스카이트 전구체 용액을 도포하여 제2 광흡수층을 형성하는 단계;
상기 제2 광흡수층 상에 제2 공통층을 형성하는 단계; 및
상기 제2 공통층 상에 제2 전극을 형성하는 단계를 포함하는 유-무기 복합 태양전지 제조방법을 제공한다.
본 명세서의 일 실시상태에 따른 유-무기 복합 태양전지 제조방법은 제조공정이 간단하며, 저농도의 유기할로겐화물로도 광흡수층을 형성할 수 있는 효과가 있다.
본 명세서의 일 실시상태에 따른 유-무기 복합 태양전지 제조방법은 기저층의 결정구조가 상부층 결정의 바인더 역할을 함으로써 온도변화에 의한 격자 이격 현상을 억제하여 소자의 안정성이 상승된 유-무기 복합 태양전지를 제조할 수 있는 장점이 있다.
또한, 본 명세서의 일 실시상태에 따른 유-무기 복합 태양전지 제조방법은 광흡수층의 계면특성이 향상되어 전류 밀도 및 에너지 변환 효율이 향상된 유-무기 복합 태양전지를 제조할 수 있는 장점이 있다.
또한, 본 명세서의 일 시시상태에 따른 유-무기 복합 태양전지 제조방법은 넓은 광스펙트럼을 흡수하여 광 에너지 손실이 줄고, 에너지 변환 효율이 향상된 유-무기 복합 태양전지를 제조할 수 있는 장점이 있다. 또한, 기저층을 형성하기 위하여 추가 코팅하는 공정이 필요하나, 이를 생략하여 공정을 단순화시킬 수 있는 효과가 있다.
도 1 내지 4는 본 명세서의 실시상태에 따른 유-무기 복합 태양전지의 구조를 예시한 것이다.
도 5는 본 명세서의 실시상태에서 제조된 유-무기 복합 태양전지의 전압에 따른 전류 밀도를 나타낸 것이다.
도 6은 본 명세서의 실시상태에서 제조된 유-무기 복합 태양전지의 48시간 후를 나타낸 것이다.
101: 기판
102: 제1 전극
103: 전자수송층
104: 제1 광흡수층
105: 제2 광흡수층
106: 제3 광흡수층
107: 정공수송층
108: 제2 전극
이하 본 명세서를 상세히 설명한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서, 어떤 부재가 다른 부재 "상에"위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접하여 있는 경우뿐만 아니라, 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서의 일 실시상태에 따른 유-무기 복합 태양전지 제조방법은 제1 전극을 형성하는 단계;
상기 제1 전극 상에 제1 공통층을 형성하는 단계;
상기 제1 공통층 상에 제1 유기할로겐화물과 제1 금속할로겐화물을 포함하는 제1 페로브스카이트 전구체 용액을 도포하여 제1 광흡수층을 형성하는 단계;
상기 제1 광흡수층 상에 제2 유기할로겐화물을 포함하는 제2 페로브스카이트 전구체 용액을 도포하여 제2 광흡수층을 형성하는 단계;
상기 제2 광흡수층 상에 제2 공통층을 형성하는 단계; 및
상기 제2 공통층 상에 제2 전극을 형성하는 단계를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 제2 광흡수층을 형성하는 단계와 상기 제2 공통층을 형성하는 단계 사이에 상기 제2 광흡수층 상에 제3 유기할로겐화물을 포함하는 제3 페로브스카이트 전구체 용액을 도포하여 제3 광흡수층을 형성하는 단계를 더 포함할 수 있다.
본 명세서에 있어서, 전구체란 어떤 물질대사나 반응에서 특정 물질이 되기 전 단계의 물질을 의미한다. 예컨대, 페로브스카이트 전구체란 페로브스카이트 물질이 되기 전 단계의 물질을 의미하며, 페로브스카이트 전구체 용액이란, 페로브스카이트 전구체가 포함된 용액을 의미한다.
본 명세서에 있어서, 제1 공통층 및 제2 공통층은 각각 전자수송층 또는 정공수송층을 의미한다. 이때, 제1 공통층과 제2 공통층은 서로 동일한 층이 아니며, 예컨대, 상기 제1 공통층이 전자수송층일 경우 상기 제2 공통층은 정공수송층이고, 상기 제1 공통층이 정공수송층일 경우 상기 제2 공통층은 전자수송층이다.
본 명세서의 일 실시상태에 있어서, 상기 제1 유기할로겐화물은 하기 화학식 1로 표시되는 화합물일 수 있다.
[화학식 1]
AX
상기 화학식 1에 있어서,
A는 CnH2n + 1NH3 +, HC(NH2)2 +, NH4 +, Cs+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 + 및 SbH4 + 에서 선택되는 1가의 양이온이고,
X는 할로겐 이온이며,
n은 1 내지 9의 정수이다.
본 명세서의 일 실시상태에 있어서, 상기 제1 금속할로겐화물은 하기 화학식 2로 표시되는 화합물일 수 있다.
[화학식 2]
MX2
상기 화학식 2에 있어서,
M은 Cu2 +, Ni2 +, Co2 +, Fe2 +, Mn2 +, Cr2 +, Pd2 +, Cd2 +, Ge2 +, Sn2 +, Pb2 + 및 Yb2 + 에서 선택되는 2가의 금속 이온이며,
X는 할로겐 이온이다.
본 명세서의 일 실시상태에 있어서, 상기 제1 페로브스카이트 전구체 용액에서 제1 유기할로겐화물의 농도는 0.01M 내지 0.15M일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 페로브스카이트 전구체 용액에서 제1 금속할로겐화물의 농도는 0.5M 내지 1.5M일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 광흡수층은 하기 화학식 3으로 표시되는 페로브스카이트 구조의 화합물을 포함할 수 있다,
[화학식 3]
AMX3
상기 화학식 3에 있어서,
A는 CnH2n + 1NH3 +, NH4 +, HC(NH2)2 +, Cs+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 + 및 SbH4 +에서 선택되는 1가의 양이온이며,
M은 Cu2 +, Ni2 +, Co2 +, Fe2 +, Mn2 +, Cr2 +, Pd2 +, Cd2 +, Ge2 +, Sn2 +, Pb2 + 및 Yb2 + 에서 선택되는 2가의 금속 이온이며,
X는 할로겐 이온이고,
n은 1 내지 9의 정수이다
본 명세서의 일 실시상태에 있어서, 상기 제2 유기할로겐화물은 하기 화학식 4 또는 화학식 5로 표시되는 화합물일 수 있다.
[화학식 4]
RX'
[화학식 5]
R'yR''(1-y)X'zX''(1-z)
상기 화학식 4 또는 화학식 5에 있어서,
R' 및 R''은 서로 상이하고, R, R', R''은 각각 CnH2n + 1NH3 +, NH4 +, HC(NH2)2 +, Cs+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 + 및 SbH4 +에서 선택되는 1가의 양이온이며,
X' 및 X''은 할로겐 이온이온이고,
n은 1 내지 9의 정수이며,
0<y<1 이고,
0<z<1 이다.
본 명세서의 일 실시상태에 있어서, 상기 제2 페로브스카이트 전구체 용액에서 제2 유기할로겐화물의 농도는 0.1M 내지 2M일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제2 광흡수층은 하기 화학식 6 또는 화학식 7로 표시되는 페로브스카이트 구조의 화합물을 포함한다.
[화학식 6]
RM'X'
[화학식 7]
R'yR''(1-y)M' X'zX''(3-z)
상기 화학식 6 또는 7에 있어서,
R' 및 R''은 서로 상이하고, R, R', R''은 각각 CnH2n + 1NH3 +, NH4 +, HC(NH2)2 +, CS+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 + 및 SbH4 +에서 선택되는 1가의 양이온이며,
M'은 Cu2 +, Ni2 +, Co2 +, Fe2 +, Mn2 +, Cr2 +, Pd2 +, Cd2 +, Ge2 +, Sn2 +, Pb2 + 및 Yb2 + 에서 선택되는 2가의 금속 이온이고,
X'및 X''은 각각 할로겐 이온이온이며,
n은 1 내지 9의 정수이고,
0<y<1 이고,
0<z<3 이다.
본 명세서의 일 실시상태에 있어서, 상기 제3 유기할로겐화물은 하기 화학식 8로 표시되는 화합물을 포함한다.
[화학식 8]
EX'''
상기 화학식 8에 있어서,
E는 CnH2n + 1NH3 +, HC(NH2)2 +, NH4 +, Cs+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 + 및 SbH4 + 에서 선택되는 1가의 양이온이고,
X'''은 할로겐 이온이며,
n은 1 내지 9의 정수이다.
본 명세서의 일 실시상태에 있어서, 상기 제3 페로브스카이트 전구체 용액에서 제3 유기할로겐화물의 농도는 0.01M 내지 0.15M 일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제3 광흡수층은 하기 화학식 9로 표시되는 페로브스카이트 구조의 화합물을 포함할 수 있다.
[화학식 9]
EM''X'''3
상기 화학식 9에 있어서,
E는 CnH2n + 1NH3 +, NH4 +, HC(NH2)2 +, CS+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 + 및 SbH4 +에서 선택되는 1가의 양이온이며,
M''은 Cu2 +, Ni2 +, Co2 +, Fe2 +, Mn2 +, Cr2 +, Pd2 +, Cd2 +, Ge2 +, Sn2 +, Pb2 + 및 Yb2 + 에서 선택되는 2가의 금속 이온이며,
X'''은 할로겐 이온이고,
n은 1 내지 9의 정수이다.
일반적으로, 광흡수층을 3층 구조로 형성하기 위한 제1 광흡수층 형성 과정은, 제1 금속할로겐화물을 코팅하는 단계와 제1 유기할로겐화물을 코팅하는 단계로 구성되는 2 단계의 과정 및 각 단계에서의 적합한 열처리가 필요하다.
그러나 본 명세서에 있어서, 상기 유-무기 복합 태양전지 제조방법은 제1 광흡수층을 형성하는데 있어, 제1 금속할로겐화물 코팅 단계에 제1 유기할로겐화물을 첨가하여 두 물질을 동시에 코팅하기 때문에 별도의 제1 유기할로겐화물 코팅 단계 및 열처리 과정을 생략할 수 있으므로, 공정이 간단하다. 즉 1단계의 공정만으로도 제1 광흡수층을 형성할 수 있다.
따라서, 일반적으로 광흡수층을 3층 구조로 형성하기 위해서 제1 금속할로겐화물을 코팅하고(1단계), 제1 유기할로겐화물을 코팅한 후(2단계), 제2 유기할로겐화물을 코팅하고(3단계), 제3 유기할로겐화물을 코팅(4단계)하는 4단계의 공정이 필요하다면 본 명세서에 있어서, 광흡수층을 3층 구조로 형성하는 과정은 제1 금속할로겐화물과 제1 유기할로겐화물을 동시에 코팅하는 단계(1단계), 제2 유기할로겐화물을 코팅하는 단계(2단계), 제3 유기할로겐화물을 코팅하는 단계(3단계), 이렇게 3단계의 간단한 공정만으로 이루어진다.
또한, 1단계에서 소량의 제1 유기할로겐화물만 필요하고, 3단계에서 저농도의 제3 유기할로겐화물을 사용하므로, 원재료의 비용을 낮출 수 있는 장점이 있다.
본 명세서에 있어서, 상기 페로브스카이트 전구체 용액은 용매로 다이메틸폼아마이드(dimethylformamide, DMF), 이소프로필알콜(isopropyl alcohol, IPA), 다이메틸술폭사이드(dimethylsulfoxide, DMSO), 감마부티로락톤(Υ-butyrolactone, GBL), n-메틸프롤리돈(n-methylpyrrolidone, NMP), 프로필렌 글리콜 메틸 에테르 (propylene glycol methyl ether, PGME) 및 프로필렌 글리콜 모노메틸 에테르 아세테이트 (propylene glycol monomethyl ether acetate, PGMEA) 중 적어도 하나를 포함할 수 있다.
본 명세서에 있어서, 페로브스카이트 전구체 용액은 다른 언급이 없는 한 제1 페로브스카이트 전구체 용액, 제2 페로브스카이트 전구체 용액 및 제3 페로브스카이트 전구체 용액을 모두 포함할 수 있다.
도 1은 본 명세서의 일 실시상태에 따른 유-무기 복합 태양전지의 제조방법에 의하여 제조된 유-무기 복합 태양전지 구조를 예시하였다. 구체적으로 도 1은 기판(101) 상에 제1 전극(102)이 구비되고, 제1 전극(102) 상에 전자수송층이(103) 구비되고, 전자수송층(103) 상에 제1 광흡수층(104)이 구비되고, 제1 광흡수층(104) 상에 제2 광흡수층(105)이 구비되고, 제2 광흡수층(105) 상에 정공수송층(107)이 구비되고, 정공수송층(107) 상에 제2 전극(108)이 구비된 유-무기 복합 태양전지 구조를 예시한 것이다.
도 2는 본 명세서의 일 실시상태에 따른 유-무기 복합 태양전지의 제조방법에 의하여 제조된 유-무기 복합 태양전지 구조를 예시하였다. 구체적으로 도 2는 기판(101) 상에 제1 전극(102)이 구비되고, 제1 전극(102) 상에 전자수송층(103)이 구비되고, 전자수송층(103) 상에 제1 광흡수층(104)이 구비되고, 제1 광흡수층(104) 상에 제2 광흡수층(105)이 구비되고, 제2 광흡수층(105) 상에 제3 광흡수층(106)이 구비되고, 제3 광흡수층(106) 상에 정공수송층(107)이 구비되고, 정공수송층(107) 상에 제2 전극이 구비된 유-무기 복합 태양전지 구조를 예시한 것이다.
도 3은 본 명세서의 일 실시상태에 따른 유-무기 복합 태양전지의 제조방법에 의하여 제조된 유-무기 복합 태양전지 구조를 예시하였다. 구체적으로 도 1은 기판(101) 상에 제1 전극(102)이 구비되고, 제1 전극(102) 상에 정공수송층(107)이 구비되고, 정공수송층(107) 상에 제1 광흡수층(104)이 구비되고, 제1 광흡수층(104) 상에 제2 광흡수층(105)이 구비되고, 제2 광흡수층(105) 상에 전자수송층(103)이 구비되고, 전자수송층(103) 상에 제2 전극(108)이 구비된 유-무기 복합 태양전지 구조를 예시한 것이다.
도 4는 본 명세서의 일 실시상태에 따른 유-무기 복합 태양전지의 제조방법에 의하여 제조된 유-무기 복합 태양전지 구조를 예시하였다. 구체적으로 도 1은 기판(101) 상에 제1 전극(102)이 구비되고, 제1 전극(102) 상에 정공수송층(107)이 구비되고, 정공수송층(107) 상에 제1 광흡수층(104)이 구비되고, 제1 광흡수층(104) 상에 제2 광흡수층(105)이 구비되고, 제2 광흡수층(105) 상에 제3 광흡수층(106)이 구비되고, 제3 광흡수층(106) 상에 전자수송층(103)이 구비되고, 전자수송층(103) 상에 제2 전극(108)이 구비된 유-무기 복합 태양전지 구조를 예시한 것이다.
본 명세서에 따른 유-무기 복합 태양전지는 도 1 내지 4의 적층 구조에 한정되지 않으며, 추가의 부재가 더 포함될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 제1 광흡수층의 두께는 1nm 내지 100nm로 제조될 수 있다. 제1 광흡수층의 두께를 상기와 같이 제조할 경우, 제1 광흡수층이 공통층과의 에너지 준위 조정 및 제2 광흡수층의 기저층으로 작용하도록 하는 효과가 있다.
본 명세서에 있어서 제1 광흡수층의 두께는 제1 광흡수층이 제1 공통층에 접하는 표면과, 제1 광흡수층이 제2 광흡수층에 접하는 표면 사이의 너비를 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 제2 광흡수층의 두께는 1nm 내지 600nm로 제조될 수 있다. 제2 광흡수층의 두께를 상기와 같이 제조할 경우, 주 광흡수층으로의 작용을 할 수 있다.
본 명세서에 있어서 제2 광흡수층의 두께는 제2 광흡수층이 제1 광흡수층에 접하는 표면과, 제2 광흡수층이 제2 공통층에 접하는 표면 사이의 너비를 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 제3 광흡수층의 두께는 1nm 내지 100nm로 제조될 수 있다. 제3 광흡수층의 두께를 상기와 같이 제조할 경우, 제2 광흡수층의 표면결함을 감소시켜줌으로써, 광흡수층과 공통층과의 계면특성을 향상시키며, 광흡수층과 공통층과의 에너지 준위 사이의 오프셋을 감소시켜 개방전압을 증가시키는 효과가 있다.
본 명세서에 있어서 제3 광흡수층의 두께는 제3 광흡수층이 제2 광흡수층에 접하는 표면과, 제3 광흡수층이 제2 공통층에 접하는 표면 사이의 너비를 의미한다.
본 명세서에 있어서, 광흡수층은 제1 광흡수층, 제2 광흡수층 및 제3 광흡수층 중 적어도 하나 또는 모두를 의미한다.
본 명세서에 있어서, 상기 광흡수층은 스핀 코팅, 슬릿 코팅, 딥 코팅, 잉크젯 프린팅, 그라비아 프린팅, 스프레이 코팅, 닥터 블레이드, 바 코팅, 브러쉬 페인팅 또는 열증착 방법을 통하여 형성될 수 있다.
본 명세서에 있어서, 상기 제1 유기할로겐화물은 단일 양이온을 포함한다. 본 명세서에 있어서 단일 양이온이란, 한 종류의 양이온을 사용한 것을 의미한다. 즉, 화학식 1에 있어서 A로 한 종류의 1가 양이온만 선택된 것을 의미한다. 예컨대, 상기 화학식 1의 A는 CnH2n + 1NH3 + 이고, n은 1 내지 9의 정수일 수 있다.
본 명세서에 있어서, 상기 제1 광흡수층의 페로브스카이트 구조의 화합물은 단일 양이온을 포함한다. 예컨대, 상기 화학식 3의 A는 CnH2n + 1NH3 + 이고, n은 1 내지 9의 정수일 수 있다.
본 명세서에 있어서, 상기 제2 유기할로겐화물은 단일 양이온을 포함한다. 예컨대, 상기 화학식 4의 R은 HC(NH2)2 + 일 수 있다.
본 명세서에 있어서, 상기 제2 광흡수층의 페로브스카이트 구조의 화합물은 단일 양이온을 포함한다. 예컨대, 본 명세서에 이어서 상기 화학식 6의 R은 HC(NH2)2 + 일 수 있다.
본 명세서에 있어서, 상기 제2 유기할로겐화물은 복합 양이온을 포함한다. 본 명세서에 있어서 복합 양이온이란, 두 종류 이상의 양이온을 사용한 것을 의미한다. 즉, 화학식 5에 있어서 R'및 R''으로 각각 서로 상이한 1가 양이온이 선택된 것을 의미한다. 예컨대, 상기 화학식 5의 R'은 CnH2n + 1NH3 +, R''은 HC(NH2)2 +이고, n은 1 내지 9의 정수일 수 있다.
본 명세서에 있어서, 상기 제2 광흡수층의 페로브스카이트 구조의 화합물은 복합 양이온을 포함한다. 예컨대, 상기 화학식 7의 R'은 CnH2n + 1NH3 +, R''은 HC(NH2)2 +이고, n은 1 내지 9의 정수일 수 있다.
본 명세서에 있어서, 상기 제3 유기할로겐화물은 단일 양이온을 포함한다. 예컨대, 상기 화학식 8의 E는 CnH2n + 1NH3 + 이고, n은 1 내지 9의 정수일 수 있다.
본 명세서에 있어서, 상기 제3 광흡수층의 페로브스카이트 구조의 화합물은 단일 양이온을 포함한다. 예컨대, 상기 화학식 9의 E는 CnH2n + 1NH3 + 이고, n은 1 내지 9의 정수일 수 있다.
본 명세서에 있어서, 상기 M, M'및 M''은 Pb2 +일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유-무기 복합 태양전지 제조방법은 제1 유기할로겐화물이 CnH2n + 1NH3I, 제1 금속할로겐화물이 PbI2이고, n은 1 내지 9의 정수 일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유-무기 복합 태양전지 제조방법은 제2 유기할로겐화물이 HC(NH2)2I, CnH2n + 1NH3Br 또는 (CnH2n + 1NH3)y (HC(NH2)2)(1-y)IzBr(1-z)이고, n은 1 내지 9의 정수이며, 0<y<1이고, 0<z<1일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유-무기 복합 태양전지 제조방법은 제3 유기할로겐화물이 CnH2n + 1NH3I이고, n은 1 내지 9의 정수일 수 있다.
본 명세서에 있어서, 상기 유-무기 복합 태양전지 제조방법은 제1 광흡수층이 CnH2n + 1NH3PbI3을 포함하고, 제2 광흡수층이 HC(NH2)2PbI3을 포함하며, 제3 광흡수층이 CnH2n + 1NH3PbI3을 포함하고, n은 1 내지 9의 정수일 수 있다. 구체적으로, 상기 제1 광흡수층은 CH3NH3PbI3(methylammonium lead iodide, MAPbI3)을 포함하고, 제2 광흡수층은 HC(NH2)2PbI3(formamidinium lead iodide, FAPbI3)을 포함하며, 제3 광흡수층은 CH3NH3PbI3을 포함하도록 제조될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유-무기 복합 태양전지는 제1 광흡수층이 CnH2n + 1NH3PbI3을 포함하고, 제2 광흡수층은 (CnH2n + 1NH3)y (HC(NH2)2)(1-y)PbIzBr(3-z)을 포함하며, 제3 광흡수층은 CnH2n + 1NH3PbI3을 포함하고, n은 1 내지 9의 정수이며, 0<y<1이고, 0<z<3일 수 있다. 구체적으로, 상기 제1 광흡수층은 CH3NH3PbI3을 포함하고, 제2 광흡수층은 (CnH2n + 1NH3)y (HC(NH2)2)(1-y)PbIzBr(3-z)을 포함하며, 제3 광흡수층은 CH3NH3PbI3을 포함하도록 제조될 수 있다.
일반적으로, 광흡수층이 단일층으로 제조된 유-무기 복합 태양전지의 경우, 흡수층이 온도의존성이 큰 상전이에 따른 격자 이격으로 인하여 안정성이 저하 및 성상 변화의 문제점이 있다.
본 명세서에 있어서, 상기 유-무기 복합 태양전지는 기판을 더 포함하여 제조될 수 있다. 구체적으로, 상기 기판은 제1 전극의 하부에 구비될 수 있다.
본 명세서에 있어서, 상기 기판은 투명성, 표면평활성, 취급 용이성 및 방수성이 우수한 기판을 사용할 수 있다. 구체적으로, 유리 기판, 박막유리 기판 또는 플라스틱 기판을 사용할 수 있다. 상기 플라스틱 기판은 폴리에틸렌테라프탈레이트(polyethylene terephthalate, PET), 폴리에틸렌나프탈레이트(polyehtylene naphthalate, PEN), 폴리에테르에테르케톤(polyether ether ketone) 및 폴리이미드(polyimide) 등의 필름이 단층 또는 복층의 형태로 포함될 수 있다. 다만, 상기 기판은 이에 한정되지 않으며, 유-무기 복합 태양전지에 통상적으로 사용되는 기판을 사용할 수 있다.
본 명세서에 있어서, 상기 제1 전극은 애노드이고, 상기 제2 전극은 캐소드일 수 있다. 또한 상기 제1 전극은 캐소드이고, 상기 제2 전극은 애노드일 수 있다.
본 명세서에 있어서, 상기 제1 전극은 투명전극이고, 상기 유-무기 복합 태양전지는 상기 제1 전극을 경유하여 빛을 흡수하는 것일 수 있다.
상기 제1 전극이 투명전극인 경우, 상기 제1 전극은 인듐주석산화물(indium-tin oxide, ITO) 또는 인듐아연산화물(IZO), 불소함유 산화주석(flourine-doped tin oxide, FTO)등과 같은 전도성 산화물일 수 있다. 나아가, 상기 제1 전극은 반투명전극일 수도 있다 상기 제1 전극이 반투명 전극인 경우, 은(Ag), 금(Au), 마그네슘(Mg) 또는 이들의 합금 같은 반투명 금속으로 제조될 수 있다. 반투명 금속이 제1 전극으로 사용되는 경우, 상기 유-무기 복합 태양전지는 미세공동구조를 가질 수 있다.
본 명세서에 있어서, 상기 전극이 투명 전도성 산화물층인 경우 상기 전극은 유리 및 석영판 이외에 폴리에틸렌테레프탈레이트(polyethylene terephthalate, PET) 폴리에틸렌나프탈레이트(polyethylene naphthelate, PEN), 폴리프로필렌((polyperopylene, PP), 폴리이미드(polyimide, PI), 폴리카보네이트((polycarbornate, PC), 폴리스티렌(polystylene, PS), 폴리옥시에틸렌(polyoxyethlene, POM), AS 수지 (acrylonitrile styrene copolymer), ABS 수지 (acrylonitrile butadiene styrene copolymer) 및 트리아세틸셀룰로오스(Triacetyl cellulose, TAC), 폴리아릴레이트(polyarylate, PAR)등을 포함하는 플라스틱과 같은 유연하고 투명한 물질 위에 도전성을 갖는 물질이 도핑된 것이 사용될 수 있다.
구체적으로, 산화주석인듐(indium tin oxide, ITO), 플루오린이 도핑된 틴 옥사이드 (fluorine doped tin oxide; FTO), 알루미늄이 도핑된 징크 옥사이드 (aluminium doped zink oxide, AZO), IZO (indium zink oxide), ZnO-Ga2O3, ZnOAl2O3 및 ATO (antimony tin oxide) 등이 될 수 있으며, 보다 구체적으로 ITO일 수 있다.
본 명세서에 있어서, 상기 제2 전극은 금속 전극일 수 있다. 구체적으로, 상기 금속 전극은 은(Ag), 알루미늄(Al), 백금(Pt), 텅스텐(W), 구리(Cu), 몰리브덴(Mo), 금(Au), 니켈(Ni), 팔라듐(Pd), 마그네슘(Mg), 크롬(Cr), 칼슘(Ca), 사마륨(Sm) 및 리튬(Li)으로 이루어진 군에서 선택되는 1종 또는 2종 이상을 포함할 수 있다.
본 명세서에 있어서, 상기 유-무기 복합 태양전지가 n-i-p 구조일 수 있다. 본 명세서 따른 유-무기 복합 태양전지가 n-i-p 구조인 경우, 상기 제2 전극은 금속 전극일 수 있다. 구체적으로, 본 명세서의 일 실시상태에 따른 유-무기 복합 태양전지가 n-i-p 구조인 경우, 상기 제2 전극은 금(Au), 은(Ag), 알루미늄(Al), MoO3/Au, MoO3/Ag MoO3/Al, V2O5/Au, V2O5/Ag, V2O5/Al, WO3/Au, WO3/Ag 또는 WO3/Al을 포함할 수 있다.
본 명세서에 있어서, n-i-p 구조는 제1 전극, 전자수송층, 광흡수층, 정공수송층 및 제2 전극이 순차적으로 적층된 구조를 의미한다.
본 명세서에 있어서, 상기 유-무기 복합 태양전지가 p-i-n 구조일 수 있다. 본 명세서의 따른 유-무기 복합 태양전지가 p-i-n 구조인 경우, 상기 제2 전극은 금속 전극일 수 있다.
본 명세서에 있어서, p-i-n 구조는 제1 전극, 정공수송층, 광흡수층, 전자수송층 및 제2 전극이 순차적으로 적층된 구조를 의미한다.
본 명세서에 있어서, 상기 유-무기 복합 태양전지는 상기 제1 전극 및 상기 제2 전극 사이에 구비된 추가의 층을 더 포함할 수 있다. 구체적으로, 본 명세서의 일 실시상태에 따르면, 상기 추가의 층은 정공주입층, 정공수송층, 전자차단층, 전자수송층 및 전자주입층으로 이루어진 군에서 선택되는 1 이상을 포함할 수 있다.
본 명세서에 있어서, 상기 정공수송층 및/또는 전자수송층 물질은 전자와 정공을 광흡수층으로 효율적으로 전달시킴으로써 생선되는 전하가 전극으로 이동되는 확률을 높이는 물질이 될 수 있으나, 특별히 제한되지는 않는다.
본 명세서에 있어서, 상기 전자수송층은 금속 산화물을 포함할 수 있다. 금속 산화물은 구체적으로, Ti 산화물, Zn 산화물, In 산화물, Sn 산화물, W 산화물, Nb 산화물, Mo 산화물, Mg 산화물, Zr 산화물, Sr 산화물, Yr 산화물, La 산화물, V 산화물, Al 산화물, Y 산화물, Sc 산화물, Sm 산화물, Ga 산화물, In 산화물, Ta 산화물 및 SrTi 산화물 및 이들의 복합물 중에서 1 또는 2 이상 선택된 것이 사용 가능하나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 전자수송층은 도핑을 이용하여 전하의 특성을 개선할 수 있으며, 플러렌 유도체 등을 이용하여 표면을 개질 할 수 있다.
본 명세서에 있어서, 상기 전자수송층은 스퍼터링, E-Beam, 열증착, 스핀코팅, 스크린 프린팅, 잉크젯 프린팅, 닥터 블레이드 또는 그라비아 프린팅법을 사용하여 제1 전극의 일면에 도포되거나 필름 형태로 코팅됨으로써 형성될 수 있다.
본 명세서에 있어서, 상기 정공수송층은 애노드 버퍼층일 수 있다.
상기 광흡수층의 상부에는 정공수송층이 스핀 코팅, 딥 코팅, 잉크젯 프린팅, 그라비아 프린팅, 스프레이 코팅, 닥터 블레이드, 바 코팅, 그라비아 코팅, 브러쉬 페인팅, 열증착 등의 방법을 통해 도입될 수 있다.
상기 정공수송층은 터셔리부틸피리딘(tertiary butyl pyridine, TBP), 리튬 비스(트리플루오로메탄술포닐)이미드(Lithium Bis(Trifluoro methanesulfonyl)Imide, LiTFSI) 폴리(3,4-에틸렌디옥시티오펜):폴리(4-스티렌설포네이트) [PEDOT:PSS] 등을 사용할 수 있으나, 이에만 한정되는 것은 아니다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
실시예 1
산화주석인듐(indium tin oxide, ITO)이 코팅된 유기 기판(40Ω/sq)을 아세톤 및 이소프로필알콜(isopropyl alchol, IPA)로 순차적으로 초음파세정기를 이용하여 1시간씩 세척하였다. 상기 ITO 기판 상에 이산화티타늄(TiO2)을 포함하는 용액을 스핀 코팅하고 150℃에서 30분간 열처리하는 과정을 3회 반복하여 TiO2(이하 전자수송층)가 코팅된 ITO 기판을 제조하였다.
1mM의 요오드화납(PbI2)(순도 99%, Sigma Aldrich사)과 10mg의 CH3NH3I(MAI)를 1ml의 다이메틸포름아마이드(dimethylformamide, DMF)에 용해시켜 형성한 황색 용액을 상기 전자수송층 상에 스핀 코팅하고, 100℃에서 10분간 열처리함으로써 제1 광흡수층을 형성하였다.
그 후, (HC(NH2)2)I 72mg을 소분하여 1ml의 이소프로필알콜에 녹여 형성한 용액 200μl를 상기 제1 광흡수층 상부에 스핀 코팅하고, 100℃에서 30분간 열처리 하여 제2 광흡수층을 형성하였다.
상기 제2 광흡수층 상에 80mg의 spiro-OMeTAD(2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene), 28.5μl의 터트-부틸피리딘(tert-butylpyridine, tBP) 및 17.5μl의 LiTFSI를 혼합한 아세토나이트릴(acetonitrile) 용액을 1ml의 클로로벤젠(chlorobenzene)에 혼합한 용액을 스핀 코팅하여 정공수송층을 형성하였다. 이때 상기 LiTFSI는 520mg/mL의 농도로 아세토나이트릴에 녹인 후 용액상태로 첨가하였다.
상기 정공수송층 상에 은(Ag)을 10-8 torr의 압력에서 150nm의 두께로 증착하여 제2 전극을 형성함으로써 유-무기 복합 태양전지를 완성하였다.
실시예 2.
제2 광흡수층을 형성하기 위하여, (HC(NH2)2)I 및 CH3NH3Br를 0.7:0.3의 몰비로 혼합한 후 1ml의 이소프로필알콜에 녹여 형성한 용액 300μl를 제1 광흡수층 상부에 스핀 코팅하고 100℃에서 30분간 열처리한 것을 제외하고는, 실시예 1의 제조방법과 동일한 방법으로 유-무기 복합 태양전지를 제조하였다.
실시예 3.
산화주석인듐(indium tin oxide, ITO)이 코팅된 유기 기판(40Ω/sq)을 아세톤 및 이소프로필알콜(isopropyl alchol, IPA)로 순차적으로 초음파세정기를 이용하여 1시간씩 세척하였다. 상기 ITO 기판 상에 이산화티타늄(TiO2)을 포함하는 용액을 스핀 코팅하고 150℃에서 30분간 열처리하는 과정을 3회 반복하여 TiO2(이하 전자수송층)가 코팅된 ITO 기판을 제조하였다.
1mM의 요오드화납(PbI2)(순도 99%, Sigma Aldrich사)과 10mg의 CH3NH3I(MAI)를 1ml의 다이메틸포름아마이드(dimethylformamide, DMF)에 용해시켜 형성한 황색 용액을 상기 전자수송층 상에 스핀 코팅하고, 100℃에서 10분간 열처리함으로써 제1 광흡수층을 형성하였다.
그 후 (HC(NH2)2)I 및 CH3NH3Br를 0.7:0.3의 몰비로 혼합한 후 1ml의 이소프로필알콜에 녹여 형성한 용액 300μl를 제1 광흡수층 상부에 스핀 코팅하고 100℃에서 30분간 열처리하여 제2 광흡수층을 형성하였다.
제2 광흡수층 상에 10mg의 CH3NH3I(MAI)를 1ml의 이소프로필알콜에 녹여 형성한 용액을 스핀 코팅하고, 100℃에서 30분간 열처리함으로써 제3 광흡수층을 형성하였다.
상기 제3 광흡수층 상에 80mg의 spiro-OMeTAD(2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene), 28.5μl의 터트-부틸피리딘(tert-butylpyridine, tBP) 및 17.5μl의 LiTFSI를 혼합한 아세토나이트릴(acetonitrile) 용액을 1ml의 클로로벤젠(chlorobenzene)에 혼합한 용액을 스핀 코팅하여 정공수송층을 형성하였다. 이때 상기 LiTFSI는 520mg/mL의 농도로 아세토나이트릴에 녹인 후 용액상태로 첨가하였다.
상기 정공수송층 상에 은(Ag)을 10-8 torr의 압력에서 150nm의 두께로 증착하여 제2 전극을 형성함으로써 유-무기 복합 태양전지를 완성하였다.
비교예 1.
산화주석인듐(indium tin oxide, ITO)이 코팅된 유기 기판(40Ω/sq)을 아세톤 및 이소프로필알콜(isopropyl alchol, IPA)로 순차적으로 초음파세정기를 이용하여 1시간씩 세척하였다. 상기 ITO 기판 상에 이산화티타늄(TiO2)을 포함하는 용액을 스핀 코팅하고 150℃에서 30분간 열처리하는 과정을 3회 반복하여 TiO2(이하 전자수송층)가 코팅된 ITO 기판을 제조하였다.
1mM의 요오드화납(PbI2)(순도 99%, Sigma Aldrich사)을 1ml의 다이메틸포름아마이드(dimethylformamide, DMF)에 용해시켜 형성한 황색 용액을 상기 전자수송층 상에 스핀 코팅하였다. 그 후 72mg의 HC(NH2)2(FAI)를 1ml의 이소프로필알콜에 녹여 형성한 용액을 스핀 코팅하고, 100℃에서 10분간 열처리함으로써 광흡수층을 형성하였다.
상기 광흡수층 상에 80mg의 spiro-OMeTAD(2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene), 28.5μl의 터트-부틸피리딘(tert-butylpyridine, tBP) 및 17.5μl의 LiTFSI를 혼합한 아세토나이트릴(acetonitrile) 용액을 1ml의 클로로벤젠(chlorobenzene)에 혼합한 용액을 스핀 코팅하여 정공수송층을 형성하였다. 이때 상기 LiTFSI는 520mg/mL의 농도로 아세토나이트릴에 녹인 후 용액상태로 첨가하였다.
상기 정공수송층 상에 은(Ag)을 10-8 torr의 압력에서 150nm의 두께로 증착하여 제2 전극을 형성함으로써 유-무기 복합 태양전지를 완성하였다.
표 1에는 본 명세서의 실시상태에 따른 유-무기 복합 태양전지의 성능을 나타내었으며, 도 5는 본 명세서의 실시상태에서 제조된 유-무기 복합 태양전지의 전압에 따른 전류 밀도를 나타내었다.
PCE(%) Jsc(mA/cm2) Voc(V) FF(%)
실시예 1 13.6 25.2 1.04 51.3
실시예 2 17.8 23.7 1.09 68.8
실시예 3 18.7 23.2 1.12 71.5
비교예 1 5.8 16.0 1.04 34.5
표 1에서 Voc는 개방전압을, Jsc는 단락전류를, FF는 충전율(Fill factor)를, PCE는 에너지 변환 효율을 의미한다. 개방전압과 단락전류는 각각 전압-전류 밀도 곡선의 4사분면에서 X축과 Y축 절편이며, 이 두 값이 높을수록 태양전지의 효율은 바람직하게 높아진다. 또한 충전율(Fill factor)은 곡선 내부에 그릴 수 있는 직사각형의 넓이를 단락전류와 개방전압의 곱으로 나눈 값이다. 이 세 가지 값을 조사된 빛의 세기로 나누면 에너지 변환 효율을 구할 수 있으며, 높은 값일수록 바람직하다.
도 6에는 본 명세서의 실시상태에서 제조된 유-무기 복합 태양전지를 질소분위기하에서 48시간 보관한 후를 나타내었다. 실시예 1 내지 3에 따른 유-무기 복합 태양전지는 시간이 지나도 변화가 없는 반면에, 비교예 1에 따른 유-무기 복합 태양전지는 48시간이 지난 후 성상변화가 발생하는 것을 확인할 수 있다.

Claims (18)

  1. 제1 전극을 형성하는 단계;
    상기 제1 전극 상에 제1 공통층을 형성하는 단계;
    상기 제1 공통층 상에 제1 유기할로겐화물과 제1 금속할로겐화물을 포함하는 제1 페로브스카이트 전구체 용액을 도포하여 제1 광흡수층을 형성하는 단계;
    상기 제1 광흡수층 상에 제2 유기할로겐화물을 포함하는 제2 페로브스카이트 전구체 용액을 도포하여 제2 광흡수층을 형성하는 단계;
    상기 제2 광흡수층 상에 제2 공통층을 형성하는 단계; 및
    상기 제2 공통층 상에 제2 전극을 형성하는 단계를 포함하는 유-무기 복합 태양전지 제조방법.
  2. 청구항 1에 있어서,
    상기 제2 광흡수층을 형성하는 단계와 상기 제2 공통층을 형성하는 단계 사이에, 상기 제2 광흡수층 상에 제3 유기할로겐화물을 포함하는 제3 페로브스카이트 전구체 용액을 도포하여 제3 광흡수층을 형성하는 단계를 더 포함하는 유-무기 복합태양전지 제조방법.
  3. 청구항 1 또는 2에 있어서,
    상기 제1 유기할로겐화물은 하기 화학식 1로 표시되는 화합물인 것인 유-무기 복합 태양전지 제조방법:
    [화학식 1]
    AX
    상기 화학식 1에 있어서,
    A는 CnH2n + 1NH3 +, HC(NH2)2 +, NH4 +, Cs+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 + 및 SbH4 + 에서 선택되는 1가의 양이온이고,
    X는 할로겐 이온이며,
    n은 1 내지 9의 정수이다.
  4. 청구항 1 또는 2에 있어서,
    상기 제1 금속할로겐화물은 하기 화학식 2로 표시되는 화합물인 것인 유-무기 복합 태양전지 제조방법:
    [화학식 2]
    MX2
    상기 화학식 2에 있어서,
    M은 Cu2 +, Ni2 +, Co2 +, Fe2 +, Mn2 +, Cr2 +, Pd2 +, Cd2 +, Ge2 +, Sn2 +, Pb2 + 및 Yb2 + 에서 선택되는 2가의 금속 이온이며,
    X는 할로겐 이온이다.
  5. 청구항 1 또는 2에 있어서,
    상기 제1 페로브스카이트 전구체 용액에서, 상기 제1 유기할로겐화물의 농도는 0.01M 내지 0.15M인 것인 유-무기 복합 태양전지 제조방법.
  6. 청구항 1 또는 2에 있어서,
    상기 제1 페로브스카이트 전구체 용액에서, 상기 제1 금속할로겐화물의 농도는 0.5M 내지 1.5M인 것인 유-무기 복합 태양전지 제조방법.
  7. 청구항 1 또는 2에 있어서,
    상기 제1 광흡수층은 하기 화학식 3으로 표시되는 페로브스카이트 구조의 화합물을 포함하는 유-무기 복합 태양전지 제조방법:
    [화학식 3]
    AMX3
    상기 화학식 3에 있어서,
    A는 CnH2n + 1NH3 +, NH4 +, HC(NH2)2 +, Cs+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 + 및 SbH4 +에서 선택되는 1가의 양이온이며,
    M은 Cu2 +, Ni2 +, Co2 +, Fe2 +, Mn2 +, Cr2 +, Pd2 +, Cd2 +, Ge2 +, Sn2 +, Pb2 + 및 Yb2 + 에서 선택되는 2가의 금속 이온이며,
    X는 할로겐 이온이고,
    n은 1 내지 9의 정수이다.
  8. 청구항 1 또는 2에 있어서,
    상기 제2 유기할로겐화물은 하기 화학식 4 또는 화학식 5로 표시되는 화합물인 것인 유-무기 복합 태양전지 제조방법:
    [화학식 4]
    RX'
    [화학식 5]
    R'yR''(1-y)Xz'X''(1-z)
    화학식 4 또는 화학식 5에 있어서,
    R' 및 R''은 서로 상이하고, R, R', R''은 각각 CnH2n + 1NH3 +, NH4 +, HC(NH2)2 +, Cs+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 + 및 SbH4 +에서 선택되는 1가의 양이온이며,
    X' 및 X''은 각각 할로겐 이온이고,
    n은 1 내지 9의 정수이며,
    0<y<1이고,
    0<z<3이다.
  9. 청구항 1 또는 2에 있어서,
    상기 제2 광흡수층은 하기 화학식 6 또는 화학식 7로 표시되는 페로브스카이트 구조의 화합물을 포함하는 것인 유-무기 복합 태양전지 제조방법:
    [화학식 6]
    RM'X'3
    [화학식 7]
    R'yR''(1-y)M' X'zX''(3-z)
    상기 화학식 6 또는 7에 있어서,
    R' 및 R''은 서로 상이하고, R, R', R''은 각각 CnH2n + 1NH3 +, NH4 +, HC(NH2)2 +, Cs+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 + 및 SbH4 +에서 선택되는 1가의 양이온이며,
    M'은 Cu2 +, Ni2 +, Co2 +, Fe2 +, Mn2 +, Cr2 +, Pd2 +, Cd2 +, Ge2 +, Sn2 +, Pb2 + 및 Yb2 + 에서 선택되는 2가의 금속 이온이고,
    X'및 X''은 각각 할로겐 이온이며,
    n은 1 내지 9의 정수이고,
    0<y<1 이고,
    0<z<3 이다.
  10. 청구항 2에 있어서,
    상기 제3 유기할로겐화물은 하기 화학식 8로 표시되는 화합물인 것인 유-무기 복합 태양전지 제조방법:
    [화학식 8]
    EX'''
    상기 화학식 8에 있어서,
    E는 CnH2n + 1NH3 +, HC(NH2)2 +, NH4 +, Cs+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 + 및 SbH4 + 에서 선택되는 1가의 양이온이고,
    X'''은 할로겐 이온이며,
    n은 1 내지 9의 정수이다.
  11. 청구항 2에 있어서,
    상기 제3 페로브스카이트 전구체 용액에서, 상기 제3 유기할로겐화물의 농도는 0.01M 내지 0.15M인 것인 유-무기 복합 태양전지 제조방법.
  12. 청구항 2에 있어서,
    상기 제3 광흡수층은 하기 화학식 9로 표시되는 페로브스카이트 구조의 화합물을 포함하는 것인 유-무기 복합 태양전지 제조방법:
    [화학식 9]
    EM''X'''3
    상기 화학식 9에 있어서,
    E는 CnH2n + 1NH3 +, NH4 +, HC(NH2)2 +, CS+, NF4 +, NCl4 +, PF4 +, PCl4 +, CH3PH3 +, CH3AsH3 +, CH3SbH3 +, PH4 +, AsH4 + 및 SbH4 +에서 선택되는 1가의 양이온이며,
    M''은 Cu2 +, Ni2 +, Co2 +, Fe2 +, Mn2 +, Cr2 +, Pd2 +, Cd2 +, Ge2 +, Sn2 +, Pb2 + 및 Yb2 + 에서 선택되는 2가의 금속 이온이며,
    X'''은 할로겐 이온이고,
    n은 1 내지 9의 정수이다.
  13. 청구항 1 또는 2에 있어서,
    상기 제1 광흡수층의 두께를 1nm 내지 100nm로 형성하는 것인 유-무기 복합 태양전지 제조방법.
  14. 청구항 1 또는 2에 있어서,
    상기 제2 광흡수층의 두께를 1nm 내지 600nm로 형성하는 것인 유-무기 복합 태양전지 제조방법.
  15. 청구항 2에 있어서,
    상기 제3 광흡수층의 두께를 1nm 내지 100nm로 형성하는 것인 유-무기 복합 태양전지 제조방법.
  16. 청구항 1 또는 2에 있어서,
    상기 제1 유기할로겐화물은 CnH2n + 1NH3I이고,
    상기 제1 금속할로겐화물은 PbI2이며,
    n은 1 내지 9의 정수인 것인 유-무기 복합 태양전지 제조방법.
  17. 청구항 1 또는 2에 있어서,
    상기 제2 유기할로겐화물은 HC(NH2)2I, CnH2n + 1NH3Br 또는 (CnH2n + 1NH3)y (HC(NH2)2)(1-y)IzBr(1-z)이고,
    n은 1 내지 9의 정수이며,
    0<y<1이고,
    0<z<1인 것인 유-무기 복합 태양전지 제조방법.
  18. 청구항 2에 있어서,
    상기 제3 유기할로겐화물은 CnH2n + 1NH3I이고,
    n은 1 내지 9의 정수인 것인 유-무기 복합 태양전지 제조방법.
PCT/KR2017/008155 2016-07-29 2017-07-28 유-무기 복합 태양전지 제조방법 WO2018021869A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018568305A JP6835417B2 (ja) 2016-07-29 2017-07-28 有機−無機複合太陽電池の製造方法
CN201780046372.XA CN109564977B (zh) 2016-07-29 2017-07-28 用于制造有机-无机杂化太阳能电池的方法
US16/319,238 US11004617B2 (en) 2016-07-29 2017-07-28 Method for manufacturing organic-inorganic hybrid solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160097517A KR102141264B1 (ko) 2016-07-29 2016-07-29 유무기 복합 태양전지 제조방법
KR10-2016-0097517 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021869A1 true WO2018021869A1 (ko) 2018-02-01

Family

ID=61017331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008155 WO2018021869A1 (ko) 2016-07-29 2017-07-28 유-무기 복합 태양전지 제조방법

Country Status (5)

Country Link
US (1) US11004617B2 (ko)
JP (1) JP6835417B2 (ko)
KR (1) KR102141264B1 (ko)
CN (1) CN109564977B (ko)
WO (1) WO2018021869A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6382781B2 (ja) * 2015-09-15 2018-08-29 株式会社東芝 半導体素子の製造方法および製造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101461641B1 (ko) * 2013-01-10 2014-12-05 한국화학연구원 내구성과 고성능의 무­유기 하이브리드 태양전지
KR20150124413A (ko) * 2014-04-28 2015-11-05 성균관대학교산학협력단 페로브스카이트 태양전지 및 그의 제조 방법
KR101571528B1 (ko) * 2014-07-01 2015-11-25 한국화학연구원 광전변환효율이 향상된 페로브스카이트 태양전지 및 페로브스카이트 태양전지의 제조방법
KR20150135202A (ko) * 2012-12-20 2015-12-02 이슘 리서치 디벨롭먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘, 엘티디. 페로브스카이트 쇼트키 타입 태양 전지
KR20160004389A (ko) * 2013-05-06 2016-01-12 그레이트셀 솔라 에스.에이. 유기-무기 페로브스카이트 기반 태양 전지

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161270A (ja) 2009-01-09 2010-07-22 Konica Minolta Holdings Inc 有機光電変換素子とその製造方法
KR101144246B1 (ko) 2012-01-02 2012-05-10 한국기계연구원 습식공정용 알루미늄 전구체 잉크 및 이의 제조방법
WO2014109610A1 (ko) * 2013-01-10 2014-07-17 한국화학연구원 고효율 무-유기 하이브리드 태양전지의 제조 방법
EP2838095A1 (en) * 2013-08-15 2015-02-18 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Light harvesting photovoltaic device
WO2015116297A2 (en) * 2013-11-12 2015-08-06 The Regents Of The University Of California Sequential processing with vapor treatment of thin films of organic-inorganic perovskite materials
CN103700769B (zh) * 2013-12-03 2016-05-04 常州大学 一种有机/无机杂化钙钛矿太阳能电池及其制备方法
CN103762315B (zh) 2014-01-16 2016-08-17 中国科学院物理研究所 钙钛矿基薄膜太阳电池及其制备方法
JP2016025170A (ja) * 2014-07-18 2016-02-08 学校法人桐蔭学園 有機無機ハイブリッド構造からなる光電変換素子
JP2016051891A (ja) * 2014-08-28 2016-04-11 公立大学法人 滋賀県立大学 太陽電池およびその太陽電池の製造方法
KR101574658B1 (ko) 2014-11-06 2015-12-07 재단법인대구경북과학기술원 페로브스카이트 기반의 3차원 태양전지 및 이의 제조 방법
KR101626929B1 (ko) 2014-11-25 2016-06-02 한국에너지기술연구원 화합물 박막을 이용한 다중접합 태양전지 제조 방법 및 다중접합 태양전지
CN107431128B (zh) 2015-01-08 2020-12-25 韩国化学研究院 包括有机、无机杂化钙钛矿化合物膜的器件的制备方法及包括有机、无机杂化钙钛矿化合物膜的器件
US9997707B2 (en) * 2015-02-26 2018-06-12 Nanyang Technological University Perovskite thin films having large crystalline grains
JP2017022354A (ja) * 2015-07-14 2017-01-26 パナソニック株式会社 ペロブスカイト太陽電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150135202A (ko) * 2012-12-20 2015-12-02 이슘 리서치 디벨롭먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘, 엘티디. 페로브스카이트 쇼트키 타입 태양 전지
KR101461641B1 (ko) * 2013-01-10 2014-12-05 한국화학연구원 내구성과 고성능의 무­유기 하이브리드 태양전지
KR20160004389A (ko) * 2013-05-06 2016-01-12 그레이트셀 솔라 에스.에이. 유기-무기 페로브스카이트 기반 태양 전지
KR20150124413A (ko) * 2014-04-28 2015-11-05 성균관대학교산학협력단 페로브스카이트 태양전지 및 그의 제조 방법
KR101571528B1 (ko) * 2014-07-01 2015-11-25 한국화학연구원 광전변환효율이 향상된 페로브스카이트 태양전지 및 페로브스카이트 태양전지의 제조방법

Also Published As

Publication number Publication date
KR102141264B1 (ko) 2020-08-04
CN109564977B (zh) 2022-11-18
US20190287733A1 (en) 2019-09-19
CN109564977A (zh) 2019-04-02
JP6835417B2 (ja) 2021-02-24
US11004617B2 (en) 2021-05-11
KR20180013588A (ko) 2018-02-07
JP2019521523A (ja) 2019-07-25

Similar Documents

Publication Publication Date Title
WO2018012825A1 (ko) 유무기 복합 태양전지
KR101717430B1 (ko) 페로브스카이트 기반 태양전지
WO2011102673A2 (ko) 전고체상 이종 접합 태양전지
WO2011102677A2 (ko) 나노구조 무기-유기 이종 접합 태양전지의 제조방법
WO2015050320A1 (ko) 광투과도가 우수한 전극, 이의 제조방법 및 이를 포함하는 전자소자
WO2019017522A1 (ko) 페로브스카이트 태양전지 및 이를 포함하는 탬덤 태양전지
WO2014109610A1 (ko) 고효율 무-유기 하이브리드 태양전지의 제조 방법
WO2014200312A1 (ko) 유기태양전지 및 이의 제조방법
WO2017090862A1 (ko) 페로브스카이트 태양전지 및 이의 제조방법
WO2014200309A1 (ko) 유기태양전지 및 이의 제조방법
WO2017209384A1 (ko) 유기 전자 소자 및 이의 제조 방법
WO2015167225A1 (ko) 유기태양전지 및 이의 제조방법
WO2022215990A1 (ko) 페로브스카이트 태양 전지 및 이를 포함하는 탠덤 태양 전지
WO2015167285A1 (ko) 태양 전지 및 이의 제조 방법
WO2016148456A1 (ko) 3차원 나노 리플 구조의 금속산화물 박막, 이의 제조방법 및 이를 포함하는 유기태양전지
WO2021162215A1 (ko) 페로브스카이트 용액, 이를 이용한 페로브스카이트 막의 제조방법 및 이를 이용한 페로브스카이트 태양전지의 제조방법
WO2018088797A1 (ko) 스피로비플루오렌 화합물 및 이를 포함하는 페로브스카이트 태양전지
WO2019039779A1 (ko) 유기 태양전지
WO2019039762A1 (ko) 태양전지 및 태양전지의 제조 방법
WO2015163658A1 (ko) 적층형 유기태양전지
WO2017217727A1 (ko) 유기 태양전지 및 이의 제조 방법
WO2019088450A1 (ko) 유-무기 복합 태양전지 및 유-무기 복합 태양전지 제조방법
WO2018021869A1 (ko) 유-무기 복합 태양전지 제조방법
WO2014182139A1 (ko) 광활성층, 이를 포함하는 유기 태양 전지 및 이의 제조 방법
WO2023234601A1 (ko) 대면적 페로브스카이트 박막 형성용 코팅제 및 이를 이용한 대면적 페로브스카이트 박막 형성 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568305

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834810

Country of ref document: EP

Kind code of ref document: A1