WO2017090862A1 - 페로브스카이트 태양전지 및 이의 제조방법 - Google Patents

페로브스카이트 태양전지 및 이의 제조방법 Download PDF

Info

Publication number
WO2017090862A1
WO2017090862A1 PCT/KR2016/007798 KR2016007798W WO2017090862A1 WO 2017090862 A1 WO2017090862 A1 WO 2017090862A1 KR 2016007798 W KR2016007798 W KR 2016007798W WO 2017090862 A1 WO2017090862 A1 WO 2017090862A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
perovskite
transport layer
perovskite solar
fullerene
Prior art date
Application number
PCT/KR2016/007798
Other languages
English (en)
French (fr)
Inventor
최만수
윤희태
강성민
안남영
이종권
Original Assignee
재단법인 멀티스케일 에너지시스템 연구단
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 멀티스케일 에너지시스템 연구단, 서울대학교산학협력단 filed Critical 재단법인 멀티스케일 에너지시스템 연구단
Priority to CN201680068270.3A priority Critical patent/CN108521829A/zh
Priority to US15/778,267 priority patent/US20180342630A1/en
Publication of WO2017090862A1 publication Critical patent/WO2017090862A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a perovskite solar cell, and more particularly, to provide a perovskite solar cell including a fullerene or a fullerene derivative as an electron transport layer, and a method of manufacturing the same.
  • a perovskite material used as a light absorption layer of a perovskite (CH 3 NH 3 PbI 3 ) solar cell was formed through a liquid spin coating process to achieve a high efficiency of 15% or more.
  • the uniformity and quality of the thin film were low, and as a result, it was difficult to manufacture an ultra high efficiency solar cell of more than 19%.
  • a method of manufacturing a perovskite light absorbing layer having high density and excellent crystallinity is required by improving the uniformity and quality of the perovskite light absorbing layer.
  • the present invention is to provide a perovskite solar cell and a method of manufacturing the same having improved performance and efficiency than conventional.
  • a first electrode comprising a conductive transparent substrate
  • It provides a perovskite solar cell comprising a second electrode formed on the hole transport layer.
  • the present invention provides a method for manufacturing a perovskite solar cell comprising the electron transport layer.
  • the present invention includes a fullerene or a fullerene derivative as an electron transport layer, but does not include a block layer (block layer) represented by bartocuproin (BCP), perovskite exhibiting improved cell stability and low hysteresis It can provide a solar cell.
  • the present invention provides a more optimized method for producing an electron transport layer comprising a fullerene or a fullerene derivative.
  • FIG. 1 is a conceptual diagram illustrating the potential of a structure of a solar cell including a BCP and a C60 layer.
  • Figure 3 is a J-V curve graph showing the hysteresis of the perovskite solar cells prepared according to the Examples and Comparative Examples.
  • FIG. 7 is a FIB-SEM image of a cross section of a perovskite solar cell including (a) 10 nm (b) 20 nm (c) 30 nm (d) 35 nm (e) 40 nm deposited C60 layers, respectively.
  • a first electrode comprising a conductive transparent substrate
  • It includes a second electrode formed on the hole transport layer.
  • the present invention provides a method for producing a perovskite comprising the layer of the fullerene or fullerene derivative as an electron transport layer.
  • the present invention is characterized by including a layer of fullerene or a fullerene derivative as an electron transporting layer and not including a blocking layer such as bartocuproin (BCP).
  • BCP bartocuproin
  • the energy band of the BCP has a higher energy level LUMO than the perovskite in the process of transferring electrons generated in the perovskite to the transparent electrode, thereby preventing the movement of the electrons smoothly.
  • the fullerene or fullerene derivative electron transport layer has LUMO of lower energy level than LUMO of perovskite to facilitate electron transfer to the transparent electrode, and has a lower HOMO level than HOMO of perovskite, Holes generated in the perovskite may be blocked from moving to the transparent electrode, so that the holes may be smoothly moved to the metal electrode.
  • the fullerene or fullerene derivative layer should be formed to a thickness of more than a certain thickness, specifically, to be deposited to a thickness of more than 20 nm, for example, may be 25 nm or more. At about 20 nm or less, the efficiency characteristic may be lowered, and the electron movement may be smooth, but the blocking effect on the hole is reduced, thereby reducing the photoelectric conversion efficiency.
  • the thickness of the fullerene or fullerene derivative layer is too thick, internal resistance to electron transfer may occur, so that the thickness may be adjusted to about 100 nm or less. Preferably it may be 70 nm or less, or 60 nm or less, and more preferably 40 nm or less.
  • the fullerene or fullerene derivative is at least one selected from C60, C70 or derivatives thereof.
  • fullerenes such as phenyl-C61-butyric acid methyl ester (PCBM) and C60 may be used as electron selective layers in perovskite solar cells.
  • the fullerene prepared by the solution process is an excellent passivating material for CH 3 NH 3 PbI 3 , which can effectively passivate grain boundaries and reduce the density of trap states.
  • the low cost C60 has no large side chains and can be more densely stacked, which can facilitate intermolecular electron transport.
  • Solar cells with inverted perovskite structures based on C60's interfacial layer fabricated by solution process show much better performance than solar cells based on PCBM and indene-C60 double additive interfaces. Therefore, the C60 layer can be used as a material that is very suitable for the electron transport layer of perovskite solar cells.
  • the solar cell according to the present invention does not include a BCP layer, thereby improving electron mobility, which may improve electrical characteristics such as Jsc and Voc.
  • the solar cell according to the present invention exhibits a high Jsc value, which indicates an excellent ability to absorb light, from which the photoelectric conversion efficiency may be high.
  • the solar cell comprising the above-described structure is Jsc value of 20 mA / cm 2 may represent a more, preferably 22 mA / cm 2 or more of current density, it can represent more than 16% conversion efficiency, preferably Preferably, 16.5% or more, more preferably 17% or more can exhibit a photoelectric conversion efficiency, it is possible to provide a high efficiency solar cell.
  • the solar cell according to the present invention by producing a smooth movement of electrons and holes as described above, it is possible to manufacture a solar cell with little hysteresis, for example, 5% or less, or 2 Hysteresis of less than or equal to%, or less than or equal to 1%, preferably less than or equal to 0.5% may be preferred.
  • the solar cell according to the present invention may have an Rsc resistance (resistance at Jsc) of about 8000 ohm or more, preferably 8500 ohm, more preferably 9,000 ohm or more, or 10,000 Rsc resistance. Can be.
  • the solar cell according to the present invention may have a series resistivity of about 200 ohm or less, preferably 150 ohm or less, and more preferably 100 ohm or less.
  • the Rs resistance value is a series resistance and may be an indicator of interfacial resistance between each layer and device defects, and the smaller the value, the smoother the condition for the movement of the interlayer electrons, and the higher photoelectric conversion efficiency is derived. Can be.
  • the solar cell according to the present invention may use a perovskite represented by the following formula (1):
  • A is independently an organic cation and / or an inorganic cation
  • X is independently F - is a halogen ion -, Cl -, Br - or I.
  • the perovskite may change the composition by mixing a cation and a halogen anion as described above, the crystal structure may be a cube (Cubic).
  • the cubic perovskite can maintain a more stable image under light irradiation conditions, and the stability by exposure can be very excellent.
  • the structure of the crystal may become unstable under exposure conditions, for example, a phase transition may occur, and thus the stability of the structure may be significantly reduced.
  • the stability gap between the perovskite and the tetragonal structure of the cubic structure can increase the decrease over time.
  • a in Formula 1 may be at least one selected from organic cations represented by Formula 2 or Formula 3, Cs + cations, or a combination thereof.
  • R 1 , R 2 , R 3 and R 4 are independently selected from hydrogen and unsubstituted or substituted C1-C6 alkyl
  • R 5 , R 6 , R 7 and R 8 are independently hydrogen, unsubstituted or substituted C1-C20 alkyl or unsubstituted or substituted aryl.
  • each A may be independently at least one selected from CH 3 NH 3 + (MA, Methyl Ammonium, methylammonium), CH (NH 2 ) 2 + (FA, Formamidinium, formamidinium) or Cs + have.
  • MA Methyl Ammonium, methylammonium
  • CH (NH 2 ) 2 + (FA, Formamidinium, formamidinium) or Cs + have.
  • a and X may be a mixed structure containing two or more kinds of cations and two or more kinds of anions, and in such a mixed structure, the mixed anions may form a skeleton of the perovskite. It can be controlled, which can be controlled by adjusting the individual components in the material, and according to the present invention, it is possible to prepare perovskite having a cubic structure. Therefore, by using a mixture of anions, the properties of the perovskite can be easily adjusted, and the performance of the optoelectronic device including the same can be improved.
  • alteration of the organic cation (or organic cations) in the perovskite can typically affect the structural and / or physical properties of the perovskite.
  • the electronic and optical properties of the material can be controlled and are particularly useful for controlling the properties of optoelectronic devices comprising such perovskite.
  • the conductivity of the material can be increased or decreased.
  • alteration of the organic cations can alter the band structure of the material and thus, for example, control the band gap of the semiconducting material.
  • an adduct compound represented by the following Chemical Formula 4 may be used as a precursor to prepare the perovskite.
  • A is an organic compound cation or an inorganic cation
  • Halogen ions, - X ' is F -, Cl -, Br - or I
  • Y is F - is a halogen ion, -, Cl -, Br - or I
  • Q is a Lewis base compound containing the functional group which makes the atom which has a lone pair an electron pair donor.
  • Q is a Lewis base compound containing a functional group having a nitrogen (N), oxygen (O) or sulfur (S) atom as an electron pair donor having an unshared electron pair, and the peak of the FT-IR of the functional group is
  • the compound of Formula 5 may be red shifted by 1 to 10 cm ⁇ 1 from the compound of Formula 4.
  • the present invention also provides a method for producing the adduct compound.
  • the present invention also provides a perovskite prepared using the adduct compound.
  • Q is a Lewis base compound having a functional group in which electron (N), oxygen (O) or sulfur (S) atoms are electron pair donors, and more specifically Q is nitrogen, oxygen, sulfur atoms in electron pair donors Thioamide group, thiocyanate group, thioether group, thioketone group, thiol group, thiophene group, thiourea group, thiosulfate group, thioacetamide group, carbonyl group, aldehyde group, carboxyl group, ether group, Ester group, sulfonyl group, sulfo group, sulfinyl group, thiocyanato group, pyrrolidinone group, peroxy group, amide group, amine group, amide group, imide group, imine group, azide group, pyridine group, pyrrole group, nitro It may be a Lewis base compound containing at least one functional group selected from the group consisting of a group, a nitroso group
  • DMSO dimethylsulfoxide
  • DMA N-dimethylacetamide
  • DMA N-methyl-2-pyrrolidione
  • N-Methyl-2-pyrrolidione N-Methyl-2-pyrrolidione
  • MPLD N-Methyl-2-pyridine
  • DMP 2,6-dimethyl- ⁇ -pyrone
  • acetamide Acetamide
  • Urea Thiourea (Thiourea (TU)), N, N-Dimethylthioacetamide (NTA), Thioacetamide (TAM), Ethylenediamine (Ethylenediamine (EN)), Tetramethylethylenediamine (TMEN), 2,2'-Bipyridine (BIPY), 1,10-Piperidine , At least one compound selected from the group consisting of aniline, pyrrolidine, diethylamine, N-methylpyrrolidine, and n-propylamine
  • the FT-IR peak corresponding to the functional group of the electron-pair donor atom in which the Lewis base compound represented by Q is bonded to Pb is 10 to 30 cm in the compound represented by Formula 5 than the Q compound. It may appear red shifted by -1 . This is because the Lewis base compound bonded to the Pb metal atom forms an adduct, thereby weakening the bonding force of the functional group including the electron pair donor of the Lewis base, which is strongly coupled to the Lewis base and the Pb as the functional group of the electron pair donor part This may be a result of affecting the cohesion of.
  • the lead halide according to the present invention acts as a Lewis acid to form an adduct by the Lewis base compound and the Lewis acid-base reaction, and thus the combination of the lead halide and the Lewis base results in a non-covalent electron of the Lewis base. It may be because by showing a covalent bond with each other, it is possible to provide a more stable phase lead halide adduct compound.
  • the Lewis base compound may be in a liquid state, preferably nonvolatile or low volatility, and a boiling point of 120 ° C. or higher, for example, a boiling point of 150 ° C. or higher may be used.
  • Preparing a precursor solution by dissolving a lead halide, an organic halide compound or an inorganic halide compound, and a Lewis base compound containing nitrogen (N), oxygen (O), or sulfur (S) atoms in an electron pair donor in a first solvent;
  • It provides a method for producing a lead halide adduct compound comprising the step of filtering the precipitate produced by adding a second solvent to the precursor solution.
  • the lead halide, a halogenated compound containing a divalent cation, and an organic material including a ligand may be mixed in a molar ratio of 1: 1: 1 to 1: 1: 1.5, and may be mixed in a molar ratio of 1: 1: 1. Most preferred.
  • the first solvent comprises an organic material including the lead halide, an organic halide compound or an inorganic halide compound and a functional group having an electron pair donor of nitrogen (N), oxygen (O) or sulfur (S) atoms.
  • organic solvents that can dissolve, propanediol-1,2-carbonate (PDC), ethylene carbonate (EC), diethylene glycol, propylene carbonate (PC), propylene carbonate (PC), hexamethyl phosphate triamide (HMPA ), Ethyl acetate, nitrobenzene, formamide, ⁇ -butyrolactone (GBL), benzyl alcohol, N-methyl-2-pyrrolidone (NMP), acetophenone, ethylene glycol, trifluorophosphate, benzonitrile ( BN), valeronitrile (VN), acetonitrile (AN), 3-methoxy propionitrile (MPN), dimethyl sulfoxide (DMSO), dimethyl sulfate, aniline
  • the first solvent may be added in excess, and preferably, may be added in a weight ratio of 1: 1 to 1: 3 (lead halide: first solvent) with respect to the weight of the lead halide.
  • the second solvent may be a non-polar or weak polar solvent that can selectively remove the first solvent, for example, acetone, C1-C3 alcohol, ethyl acetate, diethyl ether And solvents selected from the group consisting of alkylene chlorides, cyclic ethers, and mixtures thereof.
  • perovskite prepared from a lead halide adduct compound may exhibit low reproducibility when using toluene and chlorobenzene, which are used as common volatile solvents, which indicates that the perovskite quality is This is because when using one volatile solvent, the amount of dripping and / or the spinning speed of the cleaning liquid and the solubility difference between the cleaning liquid and the precursor solution can be greatly influenced.
  • a second solvent according to the present invention preferably a diethyl ether solvent
  • the lead halide duct compound thin film prepared as described above may form a transparent thin film
  • the lead halide duct compound formed of the thin film may be subjected to a heating step at a temperature of 30 °C or more, preferably May be heated at a temperature above 40 ° C. or 50 ° C. or higher, and for example, may be heated in a temperature range of 30 ° C. or higher and 150 ° C. or lower to form perovskite.
  • the heating process may be heated in a stepwise manner of being heated at a temperature of 30 to 80 °C and further heated at 90 to 150 °C, perovskite crystals having a more compact structure by an additional heating process Can be obtained.
  • the perovskite is formed by removing the ligand organic material represented by Q of Formula 1 from the crystal structure of the lead halide adduct compound.
  • the manufactured perovskite thin film is dark brown and Likewise, a thin film having a dark color can be formed.
  • the perovskite according to the present invention has high stability under light irradiation conditions, increases the amount of light absorption and can quickly transfer electrons and holes, thereby providing a highly efficient solar cell.
  • the present invention uses a spin coating process to form a lead halide adduct compound of Formula 4 in a thin film form on the first electrode including a transparent electrode, the transparent electrode as a transparent conductive Materials of the oxide layer may be used, for example, tin oxide (FTO) doped with fluorine, indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), aluminum zinc oxide (AZO) ), Indium tin oxide-silver-indium tin oxide (ITO-Ag-ITO), indium zinc oxide-silver-indium zinc oxide (IZO-Ag-IZO), indium zinc tin oxide-silver-indium zinc tin oxide (IZTO- Ag-IZTO), aluminum zinc oxide-silver-aluminum zinc oxide (AZO-Ag-AZO), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), magnesium oxide (MgO) and graphene (graphene)
  • FTO
  • the present invention can provide a perovskite battery having excellent electron mobility by forming a fullerene or a fullerene derivative as an electron transporting layer without forming a blocking layer such as BCP on the transparent electrode.
  • the electron transport layer may be manufactured by thermal deposition at a constant deposition rate using the organic vapor deposition on the transparent electrode, more specifically, the deposition rate of fullerenes in ultra-high vacuum of 10 -7 Pa or less constant It can be prepared by a method comprising the step of adjusting the thermal evaporation.
  • the structure of the fullerene layer may be affected depending on the speed of depositing the fullerene. This may affect the resistance characteristics of the cell itself, such as Rs.
  • Rs the resistance characteristics of the cell itself
  • the deposition rate is about 0.01 kPa / s to 0.15 kPa / s, or about 0.02 kPa / s to 0.1 kPa / s, preferably about 0.03 kPa / s to 0.08 kPa / s, Or at a deposition rate of about 0.04 to 0.1 dl / s.
  • the second electrode may be selected from the group consisting of Pt, Au, Ni, Cu, Ag, In, Ru, Pd, Rh, Ir, Os, and C and combinations thereof.
  • ITO glass substrates (AMG, 9.5 ⁇ cm ⁇ 2 , 25 ⁇ 25 mm 2 ) were washed with an isopropyl alcohol, acetone, distilled water for 20 minutes in an ultrasonic bath and stored in an oven at 120 ° C.
  • C60 was thermally deposited at a rate of 0.05 mW / s using an organic vapor deposition machine to form a final C60 electron transport layer having a thickness of 35 nm.
  • a MAI.PbI 2 .DMSO adduct compound was prepared by mixing 461 mg, 159 mg MAI, and 78 mg (molar ratio 1: 1: 1) of DMSO with 600 mg of DMF solution at room temperature for 1 hour. The completely dissolved solution was spin-coated on the C60 layer at 4000 rpm for 25 seconds, and 0.5 ml of diethyl ether was slowly dropped within 10 seconds before the surface became cloudy due to evaporation of DMF on the rotating substrate. A PbI 2 DMSO adduct compound film was obtained. The prepared transparent MAI.PbI 2 .DMSO adduct film was heated at 65 ° C. for 1 minute, and further heated at 100 ° C. for 2 minutes to obtain a dense structure, resulting in dark brown MAPbI 3. A membrane was obtained.
  • Au electrodes were deposited by thermal evaporation at a constant deposition rate.
  • ITO glass substrates (AMG, 9.5 ⁇ cm -2 , 25 ⁇ 25 mm 2 ) were washed with an isopropyl alcohol, acetone, distilled water for 20 minutes in an ultrasonic bath and stored in an oven at 120 ° C. UVO treatment for 30 minutes before use.
  • a blocking layer including a BCP having a thickness of 10 nm was formed on the ITO electrode.
  • C60 was thermally deposited at a rate of 0.05 mW / s using an organic vapor deposition machine to form a final C60 electron transport layer having a thickness of 35 nm.
  • the subsequent process is the same as the manufacturing method of Example 1.
  • ITO glass substrates (AMG, 9.5 ⁇ cm -2 , 25 ⁇ 25 mm 2 ) were washed with an isopropyl alcohol, acetone, distilled water for 20 minutes in an ultrasonic bath and stored in an oven at 120 ° C. UVO treatment for 30 minutes before use.
  • a blocking layer including a BCP having a thickness of 20 nm was formed on the ITO electrode.
  • C60 was thermally deposited at a constant deposition rate using an organic vapor deposition machine to form a final C60 electron transport layer having a thickness of 35 nm.
  • the subsequent process is the same as the manufacturing method of Example 1.
  • J-V hysteresis was evaluated by measuring the scan direction test of the solar cells prepared in Example 1 and Comparative Examples 1,2. 2 shows the measured current density-voltage curves. The values measured in the scan direction tests of Example 1 and Comparative Examples 1 and 2 are listed in Table 1 below.
  • the solar cell of Example 1 showed an improved current density and an open circuit voltage compared to the solar cell of Comparative Example 2, and the filling factor (% Fill Factor) was also improved.
  • the photovoltaic conversion efficiency was significantly higher than that of the solar cell including BCP.
  • C60 may simultaneously serve as an electron transport layer and an electron transport layer
  • the BCP layer may interfere with the movement of electrons supplied from the photoactive layer when the blocking layer is formed. Can be. Therefore, this may affect the performance of the cell, from which hysteresis may occur.
  • C60 has a potential range capable of blocking electrons at the same time as having a potential to move electrons, and can perform the role of an electron transport layer and a blocking layer at the same time, thereby interfacing resistance and process steps by forming a blocking layer. It is possible to manufacture a more efficient perovskite solar cell in that it can be reduced.
  • Example 3 C60 Manufactured at a Deposition Rate of 0.05 Pa / s
  • Example 4 C60 Manufactured at a Deposition Rate of 0.1 Pa / s
  • Example 5 C60 Manufactured at a Deposition Rate of 0.8 Pa / s
  • Comparative Example 3 C60 deposited to a thickness of 10 nm
  • a C60 was prepared in the same manner as in Example 1 except that a deposition rate of 0.05 nm / s was deposited at a thickness of 10 nm.
  • Example 6 C60 deposited to a thickness of 20 nm
  • Example 7 C60 deposited to a thickness of 30 nm
  • Example 8 C60 deposited to a thickness of 35 nm
  • Example 9 C60 deposited to a thickness of 40 nm
  • the thickness of C60 shows an effect of improving efficiency and electrical characteristics such as Jsc and Voc when deposited to a thickness of 10 nm or more, in particular, a cell of 15 nm or less based on the result of Rs. It can be seen that there may be a defect in the cell itself, which may be due to the C60 does not form the film again.
  • Rsc has a significantly small value, from which a cell including a C60 layer having a low thickness of 20 nm or less may exhibit low photoelectric conversion efficiency of less than 15%.
  • a range of thicknesses that can exhibit optimal electron transport characteristics and blocking layer effects when using a single C60 may be derived, specifically, may be thicker than 20 nm, for example, about 20 to 60 nm, preferably Can be optimized when having a thickness of about 25 nm to 50 nm, more preferably about 25 nm to 40 nm.
  • FIG. 7 shows a cross section of a cell including a C60 layer deposited by thickness, and a 10 nm C60 layer may be too thin to serve as a barrier and transport layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명의 페로브스카이트 태양전지는, 전도성 투명 기재를 포함하는 제 1전극상에 풀러렌 또는 풀러렌 유도체를 포함하는 전자수송층이 형성되어 있고, BCP와 같은 차단층을 함께 포함하지 않음으로써, 보다 향상된 전자 이동특성을 나타낼 수 있으며, 풀러렌 또는 풀러렌 유도체 자체로서 차단층의 역할을 수행할 수 있어 보다 신속한 제조공정으로 고효율의 페로브스카이트를 제조하는 방법을 제공한다.

Description

페로브스카이트 태양전지 및 이의 제조방법
본 발명은 페로브스카이트(perovskite) 태양전지에 관한 것으로, 보다 구체적으로는 전자수송층으로 풀러렌 또는 풀러렌 유도체를 포함하는 페로브스카이트 태양전지 및 이의 제조방법을 제공하는 것이다.
종래기술에서는 페로브스카이트(CH3NH3PbI3) 태양전지의 광흡수층으로 사용하는 페로브스카이트 물질을 액상 스핀코팅 공정을 통해서 박막을 형성하여 15% 이상의 고효율에 도달하였으나, 기존에 알려진 단순한 스핀코팅 공정을 통해 만들어진 페로브스카이트 광흡수층의 경우, 박막의 균일도와 품질이 낮았고 결과적으로 19% 이상의 초고효율의 태양전지 제조에 어려움이 있었다. 19% 이상의 초고효율 태양전지의 제조를 위해서는 페로브스카이트 광흡수층의 균일도와 품질을 개선하여 밀도가 높고 결정성이 우수한 페로브스카이트 광흡수층을 제조할 수 있는 방법이 요구된다.
MAPbI3(여기서, MA=CH3NH3) 및 스피로-MeOTAD를 사용하는 9.7% 고체 페로브스카이트 태양전지가 보고되면서 MAPbI3가 액체전해질에 용해되는 문제점이 극복되었다. 이는 거시적인 구조 및 평면 구조 모두에서 용이한 제조공정 및 뛰어난 광전효율을 나타냄으로써 페로브스카이트 태양전지의 연구에 급격한 성장을 가져왔다. 그 결과 201.1%의 전력 변환 효율(PCE)도 미국 국립 재생 가능 에너지 연구소에 의해 확인되었다.
종래에 사용되는 대부분의 계면층은 용액공정에 의해 증착되고 상기 층의 일부는 고온소결을 필요로 한다. 이러한 고온소결 공정은 페로브스카이트 셀을 손상하거나, 성능을 저하시킬 수 있어, 이러한 층들의 사용은 제한되어 왔다.
따라서, 보다 향상된 셀 안정성 및 낮은 히스테리시스를 나타내는 페로브스카이트 태양전지에 대한 연구가 계속되고 있다.
본 발명은 기존보다 향상된 성능 및 효율을 갖는 페로브스카이트 태양전지 및 이의 제조방법을 제공하고자 한다.
본 발명의 과제를 해결하기 위해,
전도성 투명 기재를 포함하는 제1전극;
상기 제1전극 상에 직접적으로 형성되며, 풀러렌 또는 풀러렌 유도체의 층을 포함하며, 상기 층의 두께가 20nm 이상인 전자수송층;
상기 전자수송층 상에 직접적으로 형성된 페로브스카이트층;
상기 페로브스카이트층 상에 형성된 정공전달층; 및
상기 정공전달층 상에 형성된 제2전극을 포함하는 페로브스카이트 태양전지를 제공한다.
또한, 본 발명은, 상기 전자수송층을 포함하는 페로브스카이트 태양전지를 제조하는 방법을 제공한다.
본 발명은 풀러렌 또는 풀러렌 유도체를 전자수송층으로 포함하되, 바토큐프로인(BCP)으로 대표되는 차단층(block layer)를 포함하지 않는 구조로써, 보다 향상된 셀 안정성 및 낮은 히스테리시스를 나타내는 페로브스카이트 태양전지를 제공할 수 있다. 또한 본 발명은 풀러렌 또는 풀러렌 유도체를 포함하는 전자수송층을 제조하는데 보다 최적화된 제조방법을 제공한다.
도 1은 BCP와 C60 층을 함께 포함하는 태양전지의 구조의 전위를 나타내는 개념도이다.
도 2는 C60 및 C70 층을 포함하는 태양전지의 Rs를 나타내는 것이다.
도 3은 실시예 및 비교예에 따라 제조된 페로브스카이트 태양전지의 히스테리시스를 나타내는 J-V 곡선 그래프이다.
도 4는 C60층 증착 속도에 따른 태양전지의 Rs변화를 나타낸다.
도 5는 C60층의 두께에 따른 태양전지의 (a) Voc 및 (b)Jsc를 나타낸다.
도 6은 C60층의 두께에 따른 태양전지의 (c)PCE%, (d)Rsc 및 (e)Rs를 나타낸다.
도 7은 (a) 10nm (b)20nm (c)30nm (d)35nm (e)40nm로 각각 증착된 C60층을 포함하는 페로브스카이트 태양전지 셀 단면의 FIB-SEM 이미지이다.
이하 본 발명에 대한 내용을 보다 구체적으로 설명한다.
본 발명의 페로브스카이트 태양전지는,
전도성 투명 기재를 포함하는 제 1 전극;
상기 제 1전극 상에 직접적으로 형성되며, 풀러렌 또는 풀러렌 유도체의 층을 포함하며, 상기 풀러렌 또는 풀러렌 유도체 층의 두께가 20nm 이상인 전자수송층;
상기 전자수송층 상에 직접적으로 형성된 페로브스카이트층;
상기 페로브스카이트층 상에 형성된 정공전달층; 및
상기 정공전달층 상에 형성된 제2전극을 포함한다.
또한, 본 발명은 상기 풀러렌 또는 풀러렌 유도체의 층을 전자수송층으로 포함하는 페로브스카이트를 제조하는 제조방법을 제공한다.
본 발명은 풀러렌 또는 풀러렌 유도체의 층을 전자수송층으로 포함함과 동시에 바토큐프로인(BCP) 등과 같은 차단층을 포함하지 않는 것을 특징으로 한다. 도 1은 C60와 BCP를 함께 사용하는 페로브스카이트 태양전지의 에너지 밴드 다이어그램을 나타낸다.
도 1에 나타낸 바와 같이 BCP의 에너지 밴드는 페로브스카이트에서 발생된 전자를 투명전극으로 이동시키는 과정에서 페로브스카이트보다 높은 에너지 준위의 LUMO를 가지고 있어 전자의 이동이 원활하지 않게 할 수 있다. 반면, 풀러렌 또는 풀러렌 유도체 전자 수송층은 페로브스카이트의 LUMO보다 낮은 에너지 준위의 LUMO를 가져 투명전극으로의 전자이동을 용이하게 할 수 있으며, 페로브스카이트의 HOMO보다 낮은 HOMO 준위를 가짐으로써, 페로브스카이트에서 발생된 정공이 투명전극으로 이동하는 것을 차단할 수 있어 상기 정공이 금속 전극으로 원활히 이동될 수 있다.
상기와 같은 효과는 전자수송층의 두께에 따라 차이가 날 수 있으며, 상기 전자 수송층의 두께가 너무 얇은 경우에는 차단층으로서의 효과가 저하될 수 있다. 따라서, 상기 풀러렌 또는 풀러렌 유도체 층은 일정이상의 두께로 형성되어야 하며, 구체적으로, 20 nm 초과의 두께로 증착되어야 하고, 예를 들면 25 nm 이상일 수 있다. 약 20 nm 이하에서는 효율특성이 저하될 수 있으며, 전자 이동은 원활할 수 있으나, 정공에 대한 차단효과가 저하됨으로써, 광전변환효율이 감소할 수 있다. 또한, 상기 풀러렌 또는 풀러렌 유도체 층의 두께가 너무 두꺼워지면 전자이동에 대해 내부저항이 발생할 수 있어 약 100 nm 이하의 두께로 조절할 수 있다. 바람직하게는 70 nm이하, 또는 60 nm이하 일 수 있으며, 보다 바람직하게는 40nm이하로 조절하는 것이 좋을 수 있다.
일 구현예에 따르면, 상기 풀러렌 또는 풀러렌 유도체는 C60, C70 또는 이들의 유도체로부터 선택된 하나 이상이다.
예를 들어, PCBM(phenyl-C61-butyric acid methyl ester) 및 C60와 같은 풀러렌(Fullerene)은 페로브스카이트 태양전지에서 전자수송층(electron selective layers)으로 사용될 수 있다. 용액공정으로 제조된 풀러렌은 CH3NH3PbI3에 대한 우수한 부동태 물질이며, 이는 효과적으로 결정립계를 부동태화 시킬 수 있고, 트랩상태(trap state)의 밀도를 줄일 수 있다. PCBM와 비교하여, 저가의 C60는 큰 측쇄가 없으며, 보다 조밀하게 쌓일 수 있으며, 이는 분자간 전자수송을 보다 용이하게 할 수 있다. 용액공정으로 제조된 C60의 계면층을 기초로 하는 반전 페로브스카이트 구조를 갖는 태양전지는 PCBM 및 indene-C60 이중첨가물 계면을 기초로 하는 태양전지보다 훨씬 더 나은 성능을 나타낸다. 그러므로, C60층은 페로브스카이트 태양전지의 전자수송층에 매우 적합한 물질로서 사용될 수 있다.
본 발명에 따른 태양전지는 BCP층을 포함하지 않음으로써, 전자의 이동도가 향상되며, 이는 Jsc 및 Voc 등과 같은 전기적 특성이 향상시킬 수 있다. 특히, 본 발명에 따른 태양전지는 높은 Jsc값을 나타내며, 이는 빛을 흡수하는 능력이 우수함을 나타내며, 이로부터 광전변환효율이 높게 나타날 수 있다. 예를 들면, 상기 구조를 포함하는 태양전지는 Jsc값이 20 mA/cm2 이상, 바람직하게는 22 mA/cm2이상의 전류밀도를 나타낼 수 있으며, 16%이상의 광전변환효율을 나타낼 수 있으며, 바람직하게는 16.5% 이상, 보다 바람직하게는 17% 이상의 광전변환 효율을 나타낼 수 있어, 고효율의 태양전지를 제공할 수 있다.
일 실시예에 따르면, 본 발명에 따른 태양전지는 상기와 같이 전자 및 정공의 이동을 원활히 함으로써, 히스테리시스가 거의 발생하지 않는 태양전지 셀을 제조할 수 있으며, 예를 들면, 5% 이하, 또는 2% 이하, 또는 1% 이하, 바람직하게는 0.5% 이하 보다 바람직하게는 0.4% 이하의 히스테리시스를 나타낼 수 있다.
일 실시예에 따르면, 본 발명에 따른 태양전지는 Rsc저항이(Jsc에서의 저항) 약 8000 ohm 이상일 수 있으며, 바람직하게는 8500 ohm, 보다 바람직하게는 9,000 ohm이상, 또는 10,000이상의 Rsc저항을 나타낼 수 있다.
일 실시예에 따르면, 본 발명에 따른 태양전지는 Rs저항(series resist)이 약 200 ohm 이하 일 수 있으며, 바람직하게는 150 ohm이하, 보다 바람직하게는 100 ohm 이하의 저항값을 나타낼 수 있다. Rs 저항값은 직렬저항으로서 각 층간의 계면저항 및 소자의 결함 등을 나타내는 지표가 될 수 있으며, 상기 값이 작을수록 층간 전자의 이동하는데 보다 원활한 조건일 수 있으며, 이로부터 높은 광전변환효율이 도출될 수 있다.
본 발명에 따른 태양전지는 하기 화학식 1로 표시되는 페로브스카이트를 사용할 수 있다:
[화학식 1]
APbX3
상기 식에 있어서,
A 는 독립적으로 유기 양이온 및/또는 무기 양이온 이며,
X 는 독립적으로 F-, Cl-, Br- 또는 I-의 할로겐 이온이다.
일 실시예에 따르면, 페로브스카이트는 상기와 같이 양이온 및 할로겐 음이온을 혼성하여 조성을 변화시킬 수 있고, 상기 결정 구조가 입방체(Cubic)일 수 있다.
상기 입방정계의 페로브스카이트는 광 조사 조건에서 보다 안정한 상을 유지할 수 있어, 노광에 의한 안정성이 매우 우수하게 나타날 수 있다. 예를 들면 정방정계(tetragonal)와 같은 결정 구조를 갖는 페로브스카이트의 경우에는 노광 조건에서 결정의 구조가 불안정해질 수 있으며, 예를 들면 상전이가 일어날 수 있어, 구조의 안정성이 현저히 감소할 수 있으며, 이러한 입방정계 구조의 페로브스카이트와 정방정계의 안정성은 시간이 지남에 따라 그 감소 격차가 더 커질 수 있다.
일 실시예에 따르면 상기 화학식 1의 A 는 각각 하기 화학식 2 또는 화학식 3로 표시되는 유기양이온, Cs+ 양이온 또는 이들의 조합으로부터 선택되는 하나 이상일 수 있다.
[화학식 2]
(R1R2N=CH-NR3R4)+
상기 식에 있어서,
R1, R2, R3 및 R4는 독립적으로 수소 및 비치환 또는 치환된 C1-C6 알킬로부터 선택되는 것이고,
[화학식 3]
(R5R6R7R8N)+
상기 식에 있어서,
R5, R6, R7 및 R8은 독립적으로 수소, 비치환 또는 치환된 C1-C20 알킬 또는 비치환 또는 치환된 아릴이다.
보다 구체적으로 상기 A 는 각각 독립적으로 CH3NH3 + (MA, Methyl Ammonium, 메틸암모늄), CH(NH2)2 + (FA, Formamidinium, 포름아미디늄) 또는 Cs+에서 선택되는 하나 이상일 수 있다.
본 발명에 따른 페로브스카이트에 있어서, 상기 A 및 X는 2종 이상의 양이온 및 2종 이상의 음이온을 포함하는 혼합구조 일 수 있으며, 이러한 혼합구조에 있어서, 혼합 음이온은 페로브스카이트의 골격을 조절할 수 있으며, 이는 상기 물질 내의 개별적인 성분을 조절함으로써 골격이 조절될 수 있으며, 본 발명에 따르면, 입방정계 구조를 갖는 페로브스카이트를 제조할 수 있게 된다. 따라서, 음이온을 혼합해서 사용함으로써 페로브스카이트의 특성을 쉽게 조절할 수 있고, 이를 포함하는 광전자 장치의 성능을 향상시킬 수 있다.
또한, 페로브스카이트 중의 유기 양이온(또는 유기 양이온들)의 변경은 통상적으로 페로브스카이트의 구조적 및/또는 물리적 특성에 영향을 미칠 수 있다. 사용되는 유기 양이온을 제어함으로써, 재료의 전자 특성 및 광학 특성이 제어될 수 있으며, 상기 페로브스카이트를 포함하는 광전자 장치의 특성을 조절하는 데 특히 유용하다. 예를 들어, 유기 양이온을 변경함으로써, 재료의 전도도가 증가하거나 감소할 수 있다. 또한, 유기 양이온의 변경은 재료의 밴드 구조를 변경할 수 있고 이에 따라, 예를 들어, 반도체성 재료의 밴드 갭을 제어할 수 있다.
본 발명은, 상기 페로브스카이트를 제조하기 위해 전구물질로서 하기 화학식 4로 표시되는 어덕트(adduct) 화합물을 사용할 수 있다.
[화학식 4]
AX'·PbY2 ·Q
상기 식에 있어서,
A 는 유기화합물 양이온 또는 무기 양이온이며,
X' 은 F-, Cl-, Br- 또는 I-의 할로겐 이온이고,
Y는 F-, Cl-, Br- 또는 I-의 할로겐 이온이고,
Q는 비공유 전자쌍을 갖는 원자를 전자쌍 주개로 하는 작용기를 포함하는 루이스 염기(Lewis base) 화합물이다.
상기 식에 있어서, A 는 상기 화학식 1의 설명과 동일하다.
상기 Q는 비공유 전자쌍을 갖는 질소(N), 산소(O) 또는 황(S) 원자를 전자쌍 주개로 하는 작용기를 포함하는 루이스 베이스(Lewis base) 화합물이고, 상기 작용기의 FT-IR의 피크는 하기 화학식 5의 화합물보다 화학식 4의 화합물에서 1~10 cm-1만큼 적색 이동(red shift)되어 나타나는 것일 수 있다.
[화학식 5]
PbYQ
상기 Y 및 Q의 정의는 화학식 4의 설명과 동일하다.
또한, 본 발명은 상기 어덕트 화합물을 제조하는 제조방법을 제공한다.
또한, 본 발명은 상기 어덕트 화합물을 사용하여 제조된 페로브스카이트를 제공한다.
상기 Q는 질소(N), 산소(O) 또는 황(S) 원자를 전자쌍 주개로하는 작용기를 갖는 루이스 염기(Lewis base) 화합물이고, 보다 구체적으로 Q는 질소, 산소, 황 원자를 전자쌍 주개로 하는 티오아미드기, 티오시아네이트기, 티오에테르기, 티오케톤기, 티올기, 싸이오펜기, 티오우레아기, 티오설페이트기, 티오아세트아미드기, 카보닐기, 알데하이드기, 카복실기, 에테르기, 에스테르기, 설포닐기, 설포기, 설파이닐기, 티오시아네이토기, 피롤리디논기, 페록시기, 아마이드기, 아민기, 아미드기, 이미드기, 이민기, 아지드기, 피리딘기, 피롤기, 니트로기, 니트로소기, 시아노기, 니트록시기 및 이소시아노기로 이루어진 군 선택되는 하나 이상의 작용기를 포함하는 루이스 염기(Lewis base) 화합물일 수 있으며, S원자를 전자쌍 주개로 하는 티오아미드기, 티오시아네이트기, 티오에테르기, 티오케톤기, 티올기, 싸이오펜기, 티오우레아기, 티오아세트아미드기 및 티오설페이트기로 이루어진 군에서 선택되는 하나 이상을 작용기로서 포함하는 화합물이 납 할라이드와 보다 강한 결합을 이룰 수 있어 본 발명에 보다 바람직할 수 있다.
예를 들면, 디메틸설폭사이드(Dimethylsulfoxide(DMSO)), N,N-디메틸아세트아미드(N,N-Dimethylacetamide(DMA)), N-메틸-2-피롤리디온(N-Methyl-2-pyrrolidione(MPLD)), N-메틸-2-피리딘(N-Methyl-2-pyridine(MPD)), 2,6-디메틸- γ-피론(2,6-Dimethyl-γ-pyrone(DMP)), 아세트아미드(Acetamide), 우레아(Urea), 티오우레아(Thiourea(TU)), N,N-디메틸티오아세트아미드(N,N-Dimethylthioacetamide(DMTA)), 티오아세트아미드(Thioacetamide(TAM)), 에틸렌이아민(Ethylenediamine(EN)), 테트라에틸렌디아민(Tetramethylethylenediamine(TMEN)), 2,2'-바이피리딘(2,2'-Bipyridine(BIPY)), 1,10-피페리딘(1,10-Piperidine), 아닐린(Aniline), 피롤리딘(Pyrrolidine), 디에틸아민(Diethylamine), N-메틸피롤리딘(N-Methylpyrrolidine), n-프로필아민(n-Propylamine)으로 이루어진 군에서 선택되는 하나 이상의 화합물일 수 있으며, 바람직하게는, S 전자쌍 주개를 포함하는 티오우레아(Thiourea(TU)), N,N-디메틸티오아세트아미드(N,N-Dimethylthioacetamide(DMTA)), 티오아세트아미드(Thioacetamide(TAM))에서 선택되는 것 일 수 있다.
본 발명에 따르면, 상기 Q로 표시되는 루이스 베이스(Lewis base) 화합물이 Pb와 결합하는 전자쌍 주개 원자의 작용기에 해당하는 FT-IR 피크가 Q 화합물보다 상기 화학식 5로 표시되는 화합물에서 10 내지 30 cm-1 만큼 적색 이동(red shift)되어 나타날 수 있다. 이는 Pb 금속 원자와 결합된 루이스 염기 화합물이 어덕트를 형성함으로써, 상기 루이스 염기의 전자쌍 주개가 포함된 작용기의 결합력이 약해지며, 이는 루이스 염기와 Pb와의 결합이 강하게 이루어짐에 따라 전자쌍 주개 부분의 작용기의 결합력에 영향을 줌으로써 나타나는 결과일 수 있다. 이는 본 발명에 따른 납 할라이드가 루이스 산으로서 작용하여 루이스 염기 화합물과 루이스 산-염기 반응에 의한 어덕트 화합물(adduct)을 형성함에 따라, 상기 납 할라이드와 루이스 염기의 결합이 루이스 염기의 비공유 전자를 서로 공유하는 결합을 나타냄으로써, 보다 안정한 상의 납 할라이드 어덕트 화합물(adduct)을 제공할 수 있기 때문일 수 있다.
상기 루이스 염기 화합물은 액상일 수 있으며, 비휘발성 또는 저휘발성인 것이 바람직하고, 비점이 120 ℃ 이상, 예를 들어 비점이 150 ℃ 이상인 것을 사용할 수 있다.
본 발명에 따르면, 상기 화학식 4로 표현되는 할로겐화 납 어덕트 화합물의 제조방법에 있어서,
할로겐화 납, 유기할라이드 화합물 또는 무기할라이드 화합물 및 질소(N), 산소(O) 또는 황(S) 원자를 전자쌍 주개로 포함하는 루이스 염기 화합물을 제1용매에 용해하여 전구체 용액을 제조하는 단계;
상기 전구체 용액에 제2 용매를 투입하여 생성된 침전물을 여과하는 단계를 포함하는 할로겐화 납 어덕트 화합물의 제조방법을 제공한다.
상기 할로겐화 납, 2가의 양이온을 포함하는 할로겐화 화합물 및 리간드를 포함하는 유기물질은 1:1:1 내지 1:1:1.5의 몰비로 혼합될 수 있으며, 1:1:1의 몰비로 혼합되는 것이 가장 바람직하다.
일 실시예에 따르면, 상기 제1용매는 상기 할로겐화 납, 유기할라이드 화합물 또는 무기할라이드 화합물 및 질소(N), 산소(O) 또는 황(S) 원자를 전자쌍 주개로 하는 작용기를 포함하는 유기물질을 모두 용해 할 수 있는 유기용매 이며, 프로판디올-1,2-카보네이트(PDC), 에틸렌 카보네이트(EC), 디에틸렌 글리콜, 프로필렌 카보네이트 (PC), 프로필렌 카보네이트 (PC), 헥사메틸인산 트리아미드 (HMPA), 에틸 아세테이트, 니트로벤젠, 포름아미드, γ-부티로락톤 (GBL), 벤질 알코올, N-메틸-2-피롤리돈 (NMP), 아세토페논, 에틸렌 글리콜, 트리플루오로포스페이트, 벤조니트릴 (BN), 발레로니트릴(VN), 아세토니트릴(AN), 3-메톡시 프로피오니트릴(MPN), 디메틸술폭사이드 (DMSO), 디메틸 설페이트, 아닐린, N-메틸포름아미드(NMF), 페놀, 1,2-디클로로벤젠, 트리-n-부틸 포스페이트, o-디클로로벤젠, 셀레늄 옥시클로라이드, 에틸렌 설페이트, 벤젠티올, 디메틸 아세트아미드, 디에틸 아세트아미드, N,N-디메틸에탄아미드(DMEA), 3-메톡시프로피온니트릴(MPN), 디글라임(diglyme), 시클로헥산올, 브로모벤젠, 시클로헥사논, 아니솔(Anisole), 디에틸포름아미드(DEF), 디메틸포름아미드(DMF), 1-헥산티올, 과산화수소, 브로모포름(Bromoform), 에틸 클로로아세테이트, 1-도데칸티올, 디-n-부틸에테르, 디부틸 에테르, 아세틱 무수화물(acetic anhydride), m-자일렌, p-자일렌, 클로로벤젠, 모폴린(morpholine), 디이소프로필 에텔아민, 디에틸 카보네이트(DEC), 1-펜탄디올, n-부틸 아세테이트1-헥사데칸티올 등이 있으며, 상기 유기 용매는 1종 단독 또는 2종 이상 혼합하여 사용하는 것이 가능하다.
상기 제1용매는 과량으로 첨가될 수 있으며, 바람직하게는 상기 할로겐화 납의 중량에 대해 1:1 내지 1:3 (할로겐화 납: 제1용매)의 중량비로 첨가되는 것일 수 있다.
일 실시예에 따르면, 상기 제2용매는 제1용매를 선택적으로 제거할 수 있는 비극성 또는 약한 극성용매일 수 있으며, 예를 들면, 아세톤계, C1-C3 알콜계, 에틸 아세테이트계, 디에틸에테르계, 알킬렌 클로라이드계, 환형 에테르계 및 이들의 혼합물로 구성되는 그룹에서 선택되는 용매일 수 있다.
일 실시예에 따르면, 할로겐화 납 어덕트 화합물로부터 제조된 페로브스카이트가 일반적인 휘발성 용매로 사용되는 톨루엔 및 클로로벤젠을 사용하는 경우에는 낮은 재현성을 나타낼 수 있으며, 이는 페로브스카이트의 품질이 상기한 휘발성용매를 사용하는 경우에는 드립핑되는 양 및/또는 세정액의 스피닝 속도 및 세정액과 전구물질 용액간의 용해도 차이에 의해 크게 좌우될 수 있기 때문이다. 그러나 본 발명에 따른 제2용매, 바람직하게는 디에틸에테르계 용매를 사용하는 경우에는 스핀코팅 조건에 상관없이 완전히 용해시킨 제1용매에 충분한 양의 제2용매를 사용함으로써 높은 재현성을 갖는 페로브스카이트 막을 얻을 수 있다.
상기 할로겐화 납 어덕트 화합물의 제조에 있어, 제 1용매 및 제2용매를 함께 사용하였을 때, 보다 치밀한 구조의 생성물을 제조할 수 있으며, 이는 휘발성이 있는 제2용매를 이용하여 빠르게 제1용매를 제거하여 결정화가 신속하고 균일하게 일어날 수 있기 때문이다.
일 실시예에 따르면, 상기와 같이 제조된 할로겐화 납 어덕트 화합물 박막은 투명한 박막을 형성할 수 있으며, 상기 박막으로 형성된 할로겐화 납 어덕트 화합물은 30℃이상의 온도에서 가열공정을 거칠 수 있으며, 바람직하게는, 40℃ 또는 50℃ 이상의 온도 이상의 온도에서 가열될 수 있고, 예를 들면, 30℃ 이상 150℃ 이하의 온도 범위에서 가열되어 페로브스카이트를 형성할 수 있다. 또한, 상기 가열공정은 30 내지 80℃ 온도에서 가열된 후 90 내지 150℃에서 추가로 가열되는 식의 단계적인 방법으로 가열될 수 있으며, 추가 가열공정에 의해 보다 치밀한 구조를 갖는 페로브스카이트 결정을 얻을 수 있다. 상기 어닐링 공정에서 상기 화학식 1의 Q로 나타나는 리간드 유기물질이 할로겐화 납 어덕트 화합물의 결정구조에서 제거됨으로써 페로브스카이트가 형성되며, 일 실시예에 따르면, 제조된 페로브스카이트 박막은 암갈색과 같이 어두운 색을 띄는 박막을 형성할 수 있다.
본 발명에 따른 페로브스카이트는 광 조사 조건에서 안정성이 높아, 광 흡수 양이 늘고 전자와 정공을 빠르게 이송할 수 있어, 고효율의 태양전지를 제공할 수 있다.
일 실시예에 따르면, 본 발명은 상기 화학식 4의 할로겐화 납 어덕트 화합물을 투명전극을 포함하는 제1전극 상에 박막형태로 형성하는 방법으로 스핀코팅공정을 사용하며, 상기 투명전극으로는 투명 전도성 산화물층의 소재가 사용될 수 있으며, 예를 들면, 불소가 도핑된 틴 옥사이드(FTO), 인듐틴옥사이드(ITO), 인듐징크옥사이드(IZO), 인듐징크틴옥사이드(IZTO), 알루미늄징크옥사이드 (AZO), 인듐틴옥사이드-은-인듐틴옥사이드(ITO-Ag-ITO), 인듐징크옥사이드-은-인듐징크옥사이드(IZO-Ag-IZO), 인듐징크틴옥사이드-은-인듐징크틴옥사이드 (IZTO-Ag-IZTO), 알루미늄징크옥사이드-은-알루미늄징크옥사이드(AZO-Ag-AZO), 알루미늄옥사이드(Al2O3), 산화아연(ZnO), 산화마그네슘(MgO) 및 그래핀(graphene) 등을 사용할 수 있으며, 특히 인듐틴옥사이드(ITO) 또는 그래핀(graphene)이 바람직할 수 있으며, 이는 ITO의 표면이 보다 균일하여 필름이 목표로하는 두께로 보다 고르게 형성될 수 있기 때문이다.
본 발명은 상기 투명전극 상에 BCP와 같은 차단층을 형성하지 않고, 풀러렌 또는 풀러렌 유도체를 전자수송층으로서 형성함으로써, 전자이동도가 우수한 페로브스카이트 전지를 제공할 수 있다.
본 발명에 따르면, 상기 전자수송층은 상기 투명전극상에 유기 증착기를 이용하여 일정한 증착 속도로 열 증착하여 제조될 수 있으며, 보다 구체적으로, 10-7Pa 이하의 초고진공 안에서 풀러렌의 증착속도가 일정하도록 조절하여 열증착 되는 단계를 포함하는 방법으로 제조될 수 있다.
본 발명에 따르면, 상기 증착방법에 있어서, 풀러렌를 증착하는 속도에 따라 풀러렌층의 구조에 영향을 줄 수 있다. 이는 Rs와 같은 셀 자체의 저항 특성에 영향을 줄 수 있다. 특히, 증착 속도 빠를수록 풀러렌 층의 균일도가 저하될 수 있으며, 이로부터 기인하는 투명전극 및 페로브스카이트의 계면 저항이 커짐에 따라 Rs저항이 증착속도에 비례하여 커지는 경향을 나타낼 수 있다. 따라서, 상기와 같은 방법으로 풀러렌 층의 모폴로지에 영향을 주지 않는 범위를 도출 할 수 있으며, 이로부터 풀러렌 층의 증착속도를 최적화함으로써 보다 신속하게 고효율을 갖는 태양전지를 제조하는 방법을 제공할 수 있다. 본 발명의 바람직한 실시예에 따르면, 상기 증착 속도는 약 0.01Å/s 내지 0.15Å/s, 또는 약 0.02 Å /s 내지 0.1 Å /s, 바람직하게는 약 0.03 Å /s 내지 0.08 Å /s, 또는 약 0.04 내지 0.1 Å /s 의 증착속도로 증착될 수 있다.
상기 제2전극은 Pt, Au, Ni, Cu, Ag, In, Ru, Pd, Rh, Ir, Os및 C 및 이들의 조합들로 이루어지는 군에서 선택되는 것일 수 있다.
이하에서는 실시예 및 실험예로부터 본 발명에 따른 할로겐화 납 어덕트 화합물의 제조방법 및 이로부터 제조된 페로브스카이트를 포함하는 태양전지를 보다 구체적으로 설명한다. 단, 하기의 실시예는 본 발명의 예시일 뿐이므로 본 발명의 보호범위를 제한하는 것으로 해석되어서는 안된다.
< 실시예1 : 페로브스카이트 태양전지 셀 조립-C60>
ITO 유리기판 (AMG, 9.5 Ω cm-2, 25 × 25 mm2)을 이소프로필알콜, 아세톤, 증류수로 20분씩 초음파 배스에서 세척하여, 120℃ 오븐에 보관하였다. C60 를 유기증착기를 이용하여 0.05 Å /s속도로 열 증착하여 최종 35nm 두께의 C60 전자수송층 형성하였다.
PbI2 461 ㎎, MAI 159 ㎎, 및 DMSO의 78 mg의 (몰비 1 : 1 : 1)를 DMF 용액600 mg에 실온에서 1 시간 동안 교반하여 혼합시킴으로써, MAIㆍPbI2ㆍDMSO 어덕트 화합물을 제조하였다. 상기 완벽히 용해된 용액을 C60층에 4000rpm으로 25초 동안 스핀 코팅하였으며, 회전하는 기판상에 DMF의 증발로 인해 표면이 혼탁하게 변하기 전에 0.5ml의 디에틸에테르를 10초 이내로 천천히 떨어뜨려 투명 MAIㆍPbI2ㆍDMSO어덕트 화합물 막을 얻었다. 제조된 투명 MAIㆍPbI2ㆍDMSO 어덕트 막을 65 ℃에서 1 분 가열시키고, 치밀한 구조를 얻기 위해 100℃에서 2분 동안 더 가열시켜 암갈색을 띄는 MAPbI3 막을 얻었다.
*20 ㎕ 의 spiro-MeOTAD 용액을 1ml 의 클로로벤젠(chlorobenzen)에 72.3 mg spiro-MeOTAD (Merck), 28.8 ㎕ 4-tert-부틸 피리딘(4-tert-butyl pyridine) 및 17.5 ㎕ 리튬-비스(트리플루오로메탄설포닐)이미드(lithium bis(trifl uoromethanesulfonyl)imide (Li-TFSI) 용액 (520 mg Li-TSFI in 1 ml acetonitrile (Sigma-Aldrich, 99.8 %)으로 구성되어있으며, 상기 spiro-MeOTAD를 페로브스카이트층 상에 3000rpm으로 3초 동안 스핀 코팅하였다.
마지막으로, Au 전극은 일정한 증착 속도로 열 증착으로 증착되었다.
<실시예2: 페로브스카이트 태양전지 셀 조립-C70>
C70를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 제조되었다.
상기 실시예1, 2 에서 제조된 태양전지의 Rs를 측정하여 도 2에 나타내었다.
<비교예1: 페로브스카이트 태양전지 셀 조립-BCP 10/C60>
ITO 유리기판 (AMG, 9.5Ωcm-2, 25×25 mm2)을 이소프로필알콜, 아세톤, 증류수로 20분씩 초음파 배스에서 세척하여, 120℃ 오븐에 보관하였다. 사용 전에 30 분 동안 UVO 처리하였다. 상기 ITO 전극상에 두께가 10 nm 인 BCP를 포함하는 차단층을 형성하였다. C60를 유기증착기를 이용하여 0.05 Å /s속도로 열 증착하여 최종 35nm 두께의 C60 전자수송층 형성하였다. 이 후의 공정은 실시예 1의 제조방법과 동일하다.
<비교예 2: 페로브스카이트 태양전지 셀 조립-BCP 20/C60>
ITO 유리기판 (AMG, 9.5Ωcm-2, 25×25 mm2)을 이소프로필알콜, 아세톤, 증류수로 20분씩 초음파 배스에서 세척하여, 120℃ 오븐에 보관하였다. 사용 전에 30 분 동안 UVO 처리 하였다. 상기 ITO 전극 상에 두께가 20nm인 BCP를 포함하는 차단층을 형성하였다. C60를 유기증착기를 이용하여 일정한 증착 속도로 열 증착하여 최종 35nm 두께의 C60 전자수송층 형성하였다. 이 후의 공정은 실시예 1의 제조방법과 동일하다.
<실험예 1: 태양전지 셀의 히스테리시스 평가>
실시예 1 및 비교예 1,2에서 제조된 태양전지의 주사 방향 시험(scan direction test)를 측정하여 J-V 히스테리시스를 평가하였다. 도 2는 측정된 전류밀도-전압 곡선을 나타내었다. 실시예 1 및 비교예 1,2의 주사 방향 시험에서 측정된 값들을 하기 표 1에 기재하였다.
Device # V oc (V) J sc (mA/cm 2 ) FF PCE ( % ) R @ Voc R @ Isc Power W Hysteresis ( % )
실시예1 Fwd 1.04 22.79 71.35 16.90 56.41 8913.28 0.0019 0.26
Rev 1.04 22.66 71.72 16.95 52.04 13049.19 0.0019
비교예 1 Fwd 1.04 19.52 60.35 12.20 77.42 2433.99 0.0015 8.60
Rev 1.03 19.27 66.97 13.35 72.19 8456.13 0.0016
비교예 2 Fwd 0.98 21.97 35.14 7.56 226.28 656.73 0.0011 39.06
Rev 1.01 21.40 57.30 12.40 94.63 4005.60 0.0016
상기 결과로부터 실시예 1의 태양전지가 비교예 2의 태양전지에 비해 전류밀도 및 개방 회로 전압이 향상된 결과를 나타내었으며, 그에 따른 충전률%(Fill Factor) 또한 향상되는 효과를 나타내었다. 또한, BCP를 포함하는 태양전지에 비해 현저히 높은 광전 변환효율 값을 나타내었다.
실시예 1의 BCP를 포함하지 않는 태양전지의 J-V곡선에서는 전류-전압 측정 동안, 정방향(Jsc 에서 Voc)와 역방향 (Voc 에서 Jsc)사이의 히스테리시스가 거의 나타나지 않는 것을 발견하였다. 반면, 비교에 1 및 비교예 2는 히스테리시스가 발생하며, 비교예 2에서는 히스테리시스가 매우 크게 나타낸다.
이는 도 1에 나타나 있듯이, C60 가 전자 수송층의 역할과 동시에 전자 전달층의 역할을 동시에 수행할 수 있음에도 불구하고, BCP층이 차단층이 형성될 경우 광활성층으로부터 공급되는 전자의 이동을 방해하게 될 수 있다. 따라서, 이는 cell의 성능에 영향을 줄 수 있으며, 이로부터 히스테리시스가 발생할 수 있다. 반면, C60는 전자이동이 가능한 전위를 가짐과 동시에 정공을 차단할 수 있는 전위 범위를 포함하고 있어, 전자수송층 및 차단층의 역할을 동시에 수행할 수 있어, 차단층 형성에 의한 계면 저항 및 공정 단계를 감소시킬 수 있다는 점에서 보다 효율적인 페로브스카이트 태양전지의 제조가 가능하다.
<실시예 3: 증착속도 0.05 Å/s에서 제조된 C60>
C60의 증착속도를 0.05 Å/s로 한 것을 제외하고는 실시예 1의 제조방법과 동일하다.
<실시예 4: 증착속도 0.1 Å/s에서 제조된 C60>
C60의 증착속도를 0.1 Å/s로 한 것을 제외하고는 실시예 1의 제조방법과 동일하다.
<실시예 5: 증착속도 0.8 Å/s에서 제조된 C60>
C60의 증착속도를 0.8 Å/s로 한 것을 제외하고는 실시예 1의 제조방법과 동일하다.
<실험예 2: C60 증착속도에 따른 태양전지의 성능비교>
실시예 3,4 및 5에서 제조된 태양전지 cell의 Rs을 측정하여 도 4에 나타내었다.
도 4은 증착속도가 증가함에 따라 Rs가하는 경향을 나타내었으며, 이는 증착 속도가 증가함에 따라 C60의 균일도 등과 같은 필름의 구조적 결함이 발생할 수 있음을 나타낸다. 따라서, 상기 결과를 바탕으로 cell 특성에 영향을 미치지 않는 범위에서 보다 신속하게 증착할 수 있는 범위를 도출할 수 있다.
<비교예 3 : 10nm의 두께로 증착된 C60>
C60를 증착속도 0.05 Å/s 로 10nm의 두께로 증착한 것 이외에는 실시예 1과 동일하게 제조되었다.
<실시예 6: 20nm의 두께로 증착된 C60>
C60를 증착속도 0.05 Å/s로 20nm의 두께로 증착한 것 이외에는 실시예 1과 동일하게 제조되었다.
<실시예 7: 30nm의 두께로 증착된 C60>
C60를 증착속도 0.05 Å/s로 30nm의 두께로 증착한 것 이외에는 실시예 1과 동일하게 제조되었다.
<실시예8: 35nm의 두께로 증착된 C60>
C60를 증착속도 0.05 Å/s로 35nm의 두께로 증착한 것 이외에는 실시예 1과 동일하게 제조되었다.
<실시예 9: 40nm의 두께로 증착된 C60>
C60를 증착속도 0.05 Å/s로 40nm의 두께로 증착한 것 이외에는 실시예 1과 동일하게 제조되었다.
<실험예 3: C60 두께에 따른 태양전지 성능비교>
상기 비교예 3 및 실시예 6, 7, 8, 9에서 제조된 태양전지의 (a) 개방 회로 전압 (Voc), (b) 단락 전류 (Jsc) 를 측정하여 도 5에 나타내었으며, (c)변환효율% (PCE%), (d)Rsc(R at Isc) 및 (e)Rs(직렬저항)을 측정하여 도 6에 나타내었다.
도 5 및 도 6의 결과에 따르면, C60의 두께는 10nm 이상의 두께로 증착된 경우 효율 및 Jsc, Voc와 같은 전기적 특성이 향상되는 효과를 나타내며, 특히, Rs의 결과값을 바탕으로 15nm이하의 cell에서는 cell자체의 결함이 있을 수 있음을 알 수 있으며, 이는 C60가 필름을 재대로 형성하지 못함에서 비롯되는 것일 수 있다. 또한, Rsc가 현저히 작은 값을 가지며, 이로부터 20nm이하의 낮은 두께의 C60층을 포함하는 셀은 15% 미만의 낮은 광전변환효율을 나타낼 수 있다.
상기 결과를 바탕으로 C60 단일 사용시 최적의 전자수송 특성 및 차단층 효과를 나타낼 수 있는 두께의 범위를 도출 할 수 있으며, 구체적으로, 20nm 보다 두꺼울 수 있으며, 예를 들면, 약 20 내지 60nm, 바람직하게는 약 25nm 내지 50nm, 보다 바람직하게는 약 25nm 내지 40nm의 두께를 가질 때 최적화될 수 있다.
도 7은 두께별로 증착된 C60 층을 포함하는 셀의 단면을 나타내며, 10nm의 C60 층은 그 두께가 너무 얇아 차단층 및 수송층으로서의 역할을 재대로 하지 못할 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (17)

  1. 전도성 투명 기재를 포함하는 제 1 전극;
    상기 제 1전극상에 직접적으로 형성되며, 풀러렌 또는 풀러렌 유도체의 층을 포함하며, 상기 층의 두께가 20nm 이상인 전자수송층;
    상기 전자수송층 상에 형성된 페로브스카이트층;
    상기 페로브스카이트층 상에 형성된 정공전달층; 및
    상기 정공전달층 상에 형성된 제2전극을 포함하는 페로브스카이트 태양전지.
  2. 제1항에 있어서,
    상기 전자수송층이 C60, C70 및 이들의 유도체로부터 선택되는 하나 이상을 포함하는 페로브스카이트 태양전지
  3. 제1항에 있어서,
    상기 전자수송층의 두께가 100nm 이하인 페로브스카이트 태양전지.
  4. 제1항에 있어서,
    상기 전자수송층의 두께가 20nm 내지 60nm인 페로브스카이트 태양전지.
  5. 제1항에 있어서,
    히스테리시스가 5% 이하인 페로브스카이트 태양전지.
  6. 제1항에 있어서,
    광전변환효율이 16% 이상인 페로브스카이트 태양전지.
  7. 제1항에 있어서,
    상기 전도성 투명 기재가 인듐틴옥사이드(ITO) 또는 그래핀(Graphene)인 것인 페로브스카이트 태양전지.
  8. 제1항에 있어서,
    상기 전자수송층을 포함하는 태양전지의 Rs 저항(series resist)이 200ohm 이하인 페로브스카이트 태양전지.
  9. 전도성 투명 기재를 포함하는 제 1 전극 상에 풀러렌 또는 풀러렌 유도체를 20nm 이상의 두께로 증착하여 전자수송층을 형성하는 단계;
    상기 전자수송층 상에 페로브스카이트층을 형성하는 단계;
    상기 페로브스카이트층 상에 형성된 정공전달층을 형성하는 단계; 및
    상기 정공전달층 상에 형성된 제2전극을 형성하는 단계
    를 포함하는 제1항 내지 제8항 중 어느 한 항의 페로브스카이트 태양전지의 제조방법.
  10. 제9항에 있어서,
    상기 제1전극 상에 풀러렌 또는 풀러렌 유도체가 열 증착법으로 증착되는 것인 페로브스카이트 태양전지의 제조방법.
  11. 제9항에 있어서,
    전도성 투명 기재를 포함하는 제 1 전극 상에 풀러렌 또는 풀러렌 유도체를 증착하여 전자수송층을 형성하되, 증착속도를 2.0 nm/s 이하로 조절하는 것인 페로브스카이트 태양전지의 제조방법.
  12. 제9항에 있어서,
    전도성 투명 기재를 포함하는 제 1 전극 상에 풀러렌 또는 풀러렌 유도체를 증착하여 전자수송층을 형성하되, 증착속도를 0.01 내지 0.15 Å/s 로 조절하는 것인 페로브스카이트 태양전지의 제조방법.
  13. 제1항에 있어서,
    상기 페로브스카이트가 하기 화학식 1로 표시되는 것인 페로브스카이트 태양전지:
    [화학식 1]
    APbX3
    상기 식에 있어서,
    A 는 유기 양이온 또는 무기 양이온이며,
    X 는 F-, Cl-, Br- 또는 I-의 할로겐 이온이다.
  14. 제13항에 있어서,
    A는 하기 화학식 3 또는 화학식 4로 표시되는 유기 양이온 및 Cs+ 에서 선택되는 하나 이상인 것인 페로브스카이트 태양전지:
    [화학식 3]
    (R1R2N=CH-NR3R4)+
    상기 식에 있어서,
    R1, R2, R3 및 R4는 독립적으로 수소 및 비치환 또는 치환된 C1-C6 알킬로부터 선택되는 것이고,
    [화학식 4]
    (R5R6R7R8N)+
    상기 식에 있어서,
    R5, R6, R7 및 R8은 수소, 비치환 또는 치환된 C1-C20 알킬 또는 비치환 또는 치환된 아릴이다.
  15. 제13항에 있어서,
    A가 CH3NH3 +, CH(NH2)2 + 및Cs+ 에서 선택되는 하나 이상인 것인 페로브스카이트 태양전지.
  16. 제13항에 있어서,
    상기 페로브스카이트의 A가 2종 이상의 양이온 이고, X가 2종 이상의 할로겐 이온인 혼합구조를 포함하는 것인 페로브스카이트 태양전지.
  17. 제13항에 있어서,
    상기 페로브스카이트가 하기 화학식 4의 어덕트(adduct) 화합물로부터 제조된 것인 페로브스카이트 태양전지:
    [화학식 4]
    AX'·PbY2 ·Q
    상기 식에 있어서,
    A 는 유기화합물 양이온 또는 무기 양이온이며,
    X',Y는 각각 독립적으로 F-, Cl-, Br- 또는 I-의 할로겐 이온이며,
    Q는 비공유 전자쌍을 갖는 원자를 전자쌍 주개로 하는 작용기를 포함하는 루이스 염기(Lewis base) 화합물이다.
PCT/KR2016/007798 2015-11-25 2016-07-18 페로브스카이트 태양전지 및 이의 제조방법 WO2017090862A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680068270.3A CN108521829A (zh) 2015-11-25 2016-07-18 钙钛矿太阳能电池及其生产方法
US15/778,267 US20180342630A1 (en) 2015-11-25 2016-07-18 Perovskite solar battery and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0165149 2015-11-25
KR1020150165149A KR101853342B1 (ko) 2015-11-25 2015-11-25 페로브스카이트 태양전지 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2017090862A1 true WO2017090862A1 (ko) 2017-06-01

Family

ID=58763268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007798 WO2017090862A1 (ko) 2015-11-25 2016-07-18 페로브스카이트 태양전지 및 이의 제조방법

Country Status (4)

Country Link
US (1) US20180342630A1 (ko)
KR (1) KR101853342B1 (ko)
CN (1) CN108521829A (ko)
WO (1) WO2017090862A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359253A (zh) * 2017-06-09 2017-11-17 东南大学 一种杂化钙钛矿材料的制备方法
CN109004049A (zh) * 2018-07-24 2018-12-14 上海集成电路研发中心有限公司 光电探测器及其制作方法
CN110707217A (zh) * 2018-07-10 2020-01-17 松下知识产权经营株式会社 太阳能电池
CN111613727A (zh) * 2020-07-02 2020-09-01 中国科学技术大学 含阴极缓冲层的反型钙钛矿太阳能电池及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109585661B (zh) * 2018-12-07 2022-10-11 郑州大学 一种界面增强型高光-热稳定钙钛矿薄膜的制备方法
CN109802039A (zh) * 2019-01-16 2019-05-24 暨南大学 一种掺杂2,2′-二联吡啶及其衍生物的钙钛矿型太阳能电池及其制备方法
WO2020246057A1 (ja) * 2019-06-05 2020-12-10 パナソニックIpマネジメント株式会社 太陽電池モジュール
CN110391337A (zh) * 2019-08-01 2019-10-29 深圳先进技术研究院 一种碱金属氢氧化物界面修饰层及其在钙钛矿太阳能电池中的应用
CN113106552B (zh) * 2020-01-13 2024-01-02 吉林大学 表面掺杂改性钙钛矿单晶、制备方法、应用、太阳能电池
TWI785686B (zh) * 2020-07-23 2022-12-01 國立臺灣大學 鈣鈦礦太陽能電池之製備方法
WO2022039522A1 (ko) * 2020-08-19 2022-02-24 한국화학연구원 부동화된 결정입계를 갖는 페로브스카이트 박막, 이의 제조방법 및 이를 포함하는 전자소자
CN112864329B (zh) * 2021-01-08 2023-10-20 苏州大学张家港工业技术研究院 一种钙钛矿太阳能电池及其制备方法
KR102526084B1 (ko) 2022-02-25 2023-04-26 주식회사 코스텔코리아 유기 광전도성 재료 및 이를 이용한 광변환 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140007045A (ko) * 2012-07-05 2014-01-16 한국화학연구원 나노구조 유-무기 하이브리드 태양전지
KR20150010021A (ko) * 2013-07-17 2015-01-28 주식회사 유라코퍼레이션 양방향 마킹기
JP2015191913A (ja) * 2014-03-27 2015-11-02 株式会社リコー ペロブスカイト型太陽電池
KR20150122598A (ko) * 2014-04-23 2015-11-02 주식회사 엘지화학 유-무기 하이브리드 태양 전지
KR20150124413A (ko) * 2014-04-28 2015-11-05 성균관대학교산학협력단 페로브스카이트 태양전지 및 그의 제조 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661065B2 (ja) * 2004-03-22 2011-03-30 セイコーエプソン株式会社 相補型有機半導体装置
JP2006245073A (ja) * 2005-02-28 2006-09-14 Dainippon Printing Co Ltd 有機薄膜太陽電池
WO2010036805A2 (en) * 2008-09-24 2010-04-01 Massachusetts Institute Of Technology Photon processing with nanopatterned materials
PL2850627T3 (pl) * 2012-05-18 2016-10-31 Urządzenie optoelektroniczne zawierające porowaty materiał rusztowania oraz perowskity
KR102607292B1 (ko) * 2012-09-18 2023-11-29 옥스포드 유니버시티 이노베이션 리미티드 광전자 디바이스
KR101561284B1 (ko) * 2014-04-17 2015-10-16 국립대학법인 울산과학기술대학교 산학협력단 페로브스카이트 구조 화합물, 이의 제조방법 및 이를 포함하는 태양전지
KR101571528B1 (ko) * 2014-07-01 2015-11-25 한국화학연구원 광전변환효율이 향상된 페로브스카이트 태양전지 및 페로브스카이트 태양전지의 제조방법
US9997707B2 (en) * 2015-02-26 2018-06-12 Nanyang Technological University Perovskite thin films having large crystalline grains
US10005800B2 (en) * 2015-03-12 2018-06-26 Korea Research Institute Of Chemical Technology Mixed metal halide perovskite compound and semiconductor device including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140007045A (ko) * 2012-07-05 2014-01-16 한국화학연구원 나노구조 유-무기 하이브리드 태양전지
KR20150010021A (ko) * 2013-07-17 2015-01-28 주식회사 유라코퍼레이션 양방향 마킹기
JP2015191913A (ja) * 2014-03-27 2015-11-02 株式会社リコー ペロブスカイト型太陽電池
KR20150122598A (ko) * 2014-04-23 2015-11-02 주식회사 엘지화학 유-무기 하이브리드 태양 전지
KR20150124413A (ko) * 2014-04-28 2015-11-05 성균관대학교산학협력단 페로브스카이트 태양전지 및 그의 제조 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359253A (zh) * 2017-06-09 2017-11-17 东南大学 一种杂化钙钛矿材料的制备方法
CN110707217A (zh) * 2018-07-10 2020-01-17 松下知识产权经营株式会社 太阳能电池
CN109004049A (zh) * 2018-07-24 2018-12-14 上海集成电路研发中心有限公司 光电探测器及其制作方法
CN111613727A (zh) * 2020-07-02 2020-09-01 中国科学技术大学 含阴极缓冲层的反型钙钛矿太阳能电池及其制备方法
CN111613727B (zh) * 2020-07-02 2022-09-09 中国科学技术大学 含阴极缓冲层的反型钙钛矿太阳能电池及其制备方法

Also Published As

Publication number Publication date
US20180342630A1 (en) 2018-11-29
KR101853342B1 (ko) 2018-04-30
KR20170060693A (ko) 2017-06-02
CN108521829A (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
WO2017090862A1 (ko) 페로브스카이트 태양전지 및 이의 제조방법
WO2017090861A1 (ko) 페로브스카이트, 이의 제조방법 및 이를 포함하는 태양전지
Liu et al. Pyridine solvent engineering for high quality anion-cation-mixed hybrid and high performance of perovskite solar cells
WO2014109610A1 (ko) 고효율 무-유기 하이브리드 태양전지의 제조 방법
WO2018021794A1 (ko) 고효율 페로브스카이트 화합물계 막의 제조방법 및 이를 포함하는 태양전지
WO2014119962A1 (ko) 고효율 유기 박막 태양전지를 위한 신규의 고분자 재료 및 이를 이용한 유기 박막 태양전지
WO2018012825A1 (ko) 유무기 복합 태양전지
Reshma et al. Non-fullerene organic solar cells with 7% efficiency and excellent air stability through morphological and interfacial engineering
WO2020009506A1 (ko) 광안정성이 강화된 이중층 형태의 전하수송층을 포함하는 유기태양전지 및 이의 제조방법
WO2016209005A1 (ko) 그래핀을 전도성 투명전극으로 사용하는 페로브스카이트 기반 태양전지
WO2015167225A1 (ko) 유기태양전지 및 이의 제조방법
WO2021162215A1 (ko) 페로브스카이트 용액, 이를 이용한 페로브스카이트 막의 제조방법 및 이를 이용한 페로브스카이트 태양전지의 제조방법
Wang et al. A highly stable hole-conductor-free CsxMA1-xPbI3 perovskite solar cell based on carbon counter electrode
WO2015163658A1 (ko) 적층형 유기태양전지
Zhang et al. Efficient ternary organic solar cells with small aggregation phases and low bimolecular recombination using ICBA: ITIC double electron acceptors
KR20180059011A (ko) 첨가제를 함유하는 인쇄공정용 광활성 잉크 및 이를 이용한 광활성층의 제조방법
Koiry et al. Improving perovskite/P3HT interface without an interlayer: Impact of perovskite surface topography on photovoltaic performance of P3HT-based perovskite solar cells
KR20150137139A (ko) 광활성층 제조용 코팅조성물 및 이를 이용한 고효율 태양전지의 제조방법
WO2023234601A1 (ko) 대면적 페로브스카이트 박막 형성용 코팅제 및 이를 이용한 대면적 페로브스카이트 박막 형성 방법
WO2014182139A1 (ko) 광활성층, 이를 포함하는 유기 태양 전지 및 이의 제조 방법
WO2023167441A1 (ko) 고순도 세슘할라이드 제조방법 및 페로브스카이트 복합재
Kong et al. Improving the efficiency of bulk heterojunction polymer solar cells via binary-solvent treatment
WO2018080050A1 (ko) 대면적 페로브스카이트 태양전지
Zhang et al. Toward efficient polymer solar cells with thick bulk heterojunction by introducing iridium complex as an aggregation reshaping auxiliary
WO2018131957A1 (ko) 안정성이 향상된 페로브스카이트 태양전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868763

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15778267

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868763

Country of ref document: EP

Kind code of ref document: A1