WO2018110929A1 - 투명 절연성 방열 코팅조성물, 이를 통해 형성된 방열유닛 및 방열 회로기판 - Google Patents

투명 절연성 방열 코팅조성물, 이를 통해 형성된 방열유닛 및 방열 회로기판 Download PDF

Info

Publication number
WO2018110929A1
WO2018110929A1 PCT/KR2017/014512 KR2017014512W WO2018110929A1 WO 2018110929 A1 WO2018110929 A1 WO 2018110929A1 KR 2017014512 W KR2017014512 W KR 2017014512W WO 2018110929 A1 WO2018110929 A1 WO 2018110929A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
insulating heat
coating composition
transparent
resin
Prior art date
Application number
PCT/KR2017/014512
Other languages
English (en)
French (fr)
Inventor
이환구
황승재
김범준
황문영
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Publication of WO2018110929A1 publication Critical patent/WO2018110929A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes

Definitions

  • the present invention relates to a coating composition, and more particularly to a transparent insulating heat dissipation coating composition, and a heat dissipation unit and a heat dissipation circuit board formed through the same.
  • a heat radiating member is mounted to the component having heat.
  • Heat dissipation members such as heat sinks or heat sinks, are typically made of metals with high thermal conductivity so that heat within the device or components can be quickly released to the outside.
  • the heat sink is a plurality of heat dissipation fins that are uniformly protruded on the front surface by heating and melting aluminum, copper and its alloy material at a high temperature state, and then extrusion molding using a mold having a predetermined shape. Structure has been generally employed.
  • an object of the present invention is to provide a coating composition that can implement a heat dissipation coating layer that exhibits excellent heat dissipation performance as well as thermal conductivity.
  • the present invention has a heat dissipation and at the same time having an insulating property to provide a coating composition that can implement an insulating heat dissipation coating layer that can be provided in direct contact with various electrical and electronic components or devices that require both heat dissipation and insulation at the same time. have.
  • the present invention provides a coating composition that is excellent in adhesion to the surface to be coated, and can realize an insulating heat-dissipating coating layer that is not damaged or peeled off even by physical and chemical stimuli such as external heat, organic solvent, moisture, and impact. There is another purpose.
  • the present invention is another object to provide a coating composition that can realize an insulating heat dissipation coating layer having a very smooth surface, excellent smoothness and excellent surface quality.
  • another object of the present invention is to provide a transparent insulating heat-dissipating coating composition capable of forming a transparent coating layer to visually identify the surface to be coated.
  • Another object of the present invention is to provide a heat dissipation unit and a heat dissipation circuit board implemented through the transparent insulating heat dissipation coating composition having the characteristics as described above.
  • a transparent coating layer forming component comprising a main resin; It provides a transparent insulating heat-dissipating coating composition comprising; and an insulating heat dissipation filler contained in 5 to 30 parts by weight based on 100 parts by weight of the main resin.
  • the main resin is an epoxy resin, an acrylic resin, a polyamide resin, a urethane resin, a urea resin, a melamine resin, a polyester resin, a phenoxy resin, a phenol resin, a silicone resin , Polyethylene resins, polypropylene resins, polystyrene resins, polyvinyl chloride resins, chlorinated polyethylene resins, polybutyral chloride resins and ethylene vinyl acetate resins.
  • the main resin may be an amorphous resin.
  • the main resin may be a curable resin
  • the transparent coating layer forming component may further include a curing agent in an amount of 15 to 35 parts by weight based on 100 parts by weight of the main resin.
  • the insulating heat dissipation filler is silicon carbide, magnesium oxide, titanium dioxide, aluminum nitride, silicon nitride, boron nitride, aluminum oxide, silica, zinc oxide, barium titanate, strontium titanate, beryllium oxide, manganese oxide, zirconia oxide and boron oxide It may include one or more selected from the group consisting of.
  • the average particle diameter of the insulating heat insulating filler may be 10nm ⁇ 15 ⁇ m.
  • the transparent insulating heat-dissipating coating composition may further include a physical property enhancing component for improving adhesion.
  • the physical property enhancing component is 3- [N- anyl-N- (2-aminoethyl)] aminopropyl trimethoxysilane, 3- (N- anyl-N- glycidyl) aminopropyl trimethoxy silane, 3- (N-anyl-N-methacrylonyl] aminopropyltrimethoxysilane, 3-glycidyl oxypropylmethylethoxysilane, N, N-Bis [3- (trimethoxycinyl) propyl] Methacrylamide, ⁇ -glycidoxycitrimethyldimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropylmethylmethoxysilane, Beta (3,4-epoxy cyclohexyl) ethyltrimethoxysilane, 3-methacryloxypropyltri
  • the physical property enhancing component may be included in 0.5 to 20 parts by weight based on 100 parts by weight of the main resin.
  • the average particle diameter of the insulating heat dissipation filler may be 10nm ⁇ 15 ⁇ m.
  • the transparent insulating coating composition for heat dissipation may be a viscosity of 5 ⁇ 2000 cps at 25 °C.
  • the transparent insulating coating composition for heat dissipation may further comprise 0.5 to 20 parts by weight based on 100 parts by weight of the insulating heat dissipation filler.
  • the transparent insulating heat-dissipating coating composition may further include a UV stabilizer for preventing yellowing by UV.
  • the UV stabilizer may be included in 0.05 to 2 parts by weight based on 100 parts by weight of the main resin.
  • the transparent insulating heat-resistant coating composition may further comprise 0.1 to 3 parts by weight of antioxidant based on 100 parts by weight of the main resin.
  • the heat dissipation unit comprising a transparent coating layer having a thickness of 25 ⁇ m hardened by applying the transparent insulating heat dissipation coating composition to an aluminum plate having a thickness of 1.5 mm may satisfy the following condition (1).
  • the transparency of the transparent coating layer is ⁇ 60%.
  • the present invention is a heat radiation member or a support member; And a transparent insulating heat dissipation coating layer applied to at least a portion of an outer surface of the heat dissipation member or the support member and cured by a transparent insulating heat dissipation coating composition according to the present invention.
  • the thickness of the transparent insulating heat dissipation coating layer may be 5 ⁇ 55 ⁇ m.
  • the present invention is a circuit board mounted element; And a transparent insulating heat dissipation coating composition applied to at least a portion of the outer surface of the circuit board by the transparent insulating heat dissipation coating composition according to the present invention.
  • the transparent insulating heat-dissipating coating composition of the present invention exhibits excellent heat dissipation as well as thermal conductivity, and can realize an excellent heat dissipation coating layer and at the same time have an insulating heat dissipation coating layer having insulation.
  • the heat-dissipating coating layer implemented through this has excellent adhesion to the surface to be coated, which significantly prevents peeling of the coating layer during use.
  • physical and chemical stimuli such as external heat, organic solvent, moisture, and impact Even the durability of the coating layer can be maintained.
  • the transparent coating layer can be formed, the post-process required for visual identification of the surface to be coated after coating has an easy effect.
  • the surface of the formed insulating heat dissipation coating layer is very smooth and excellent in smoothness, the surface of the insulating heat dissipation coating layer is excellent, and thus, the insulating heat dissipation coating layer may be widely applied to an industry in which insulation and heat dissipation are simultaneously required.
  • FIG. 1 and 2 are a perspective view and a partial cross-sectional view of the insulating heat dissipation unit according to an embodiment of the present invention
  • FIG. 3 is a photograph of a substrate on which a general coating layer is formed.
  • FIG. 4 is a photograph of a substrate on which a transparent coating layer is formed according to an embodiment of the present invention.
  • Transparent insulating heat dissipation coating composition is a transparent coating layer forming component comprising a main resin; And an insulating heat dissipating filler.
  • the transparent coating layer forming component may include a main resin, and when the main resin is a curable resin, may further include a curing agent, and may further include other curing accelerators and curing catalysts.
  • the main resin may be used without limitation in the case of components known in the art to form a transparent coating layer. However, at the same time, it is possible to improve the heat dissipation performance due to improved adhesion to the substrate to be coated, heat resistance not embrittled by heat of the heat-generating substrate, insulation not embrittled by electrical stimulation, and compatibility with an insulating heat dissipation filler, and at the same time, a transparent coating layer
  • the main resin is epoxy resin, acrylic resin, polyamide resin, urethane resin, urea resin, melamine resin, polyester resin, phenoxy resin, phenol resin, silicone resin , Polyethylene resins, polypropylene resins, polystyrene resins, polyvinyl chloride resins, chlorinated polyethylene resins, polybutyral chloride resins and ethylene vinyl acetate resins.
  • the main resin may be an epoxy resin. Specific types corresponding to each of the above resins may be resins known in the art,
  • the resin when the resin is an epoxy resin, a glycidyl ether type epoxy resin, a glycidylamine type epoxy resin, a glycidyl ester type epoxy resin, a linear aliphatic type epoxy resin, a rubber modified epoxy resin, and derivatives thereof It may include any one or more epoxy resin selected from the group.
  • the glycidyl ether type epoxy resin includes glycidyl ethers of phenols and glycidyl ethers of alcohols.
  • glycidyl ethers of the phenols bisphenol A type, bisphenol B type, bisphenol AD type, and bisphenol Bisphenol-based epoxys such as S-type, bisphenol-F and resorcinol, phenol novolac epoxy, aralkylphenol novolac, phenolic novolacs and terpene-phenol novolacs and o-cresolnovolac
  • cresol novolak-type epoxy resins such as epoxy, and these can be used individually or in combination of 2 or more types.
  • the glycidyl ester type epoxy resin may be an epoxy resin such as hydroxycarboxylic acid such as p-hydroxybenzoic acid or ⁇ -hydroxy naphthoic acid, and polycarboxylic acid such as phthalic acid or terephthalic acid. can do.
  • linear aliphatic epoxy resins examples include 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, cyclohexanedimethanol, glycerin, trimethylolethane, thirimethylolpropane, pentaerythritol, and dodecahydro bisphenol A.
  • glycidyl ethers based on dodecahydro bisphenol F ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, and the like, and may be used alone or in combination of two or more thereof.
  • the rubber-modified epoxy resin is not particularly limited as long as it is an epoxy resin having rubber and / or polyether in its skeleton.
  • an epoxy resin CBN-modified compound
  • CBR-modified epoxy resins acrylonitrile-butadiene rubber-modified epoxy resins
  • silicone-modified epoxy resins such as silicone-modified epoxy resins, and may be used alone or in combination of two or more.
  • the main resin is 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate, bis (3,4-epoxycyclohexylmethyl, which is a resin having high transparency in order to secure transparency of the transparent coating layer.
  • the main resin may be a resin having high amorphousness in order to secure transparency of the transparent coating layer.
  • the main resin may be a bisphenol A type amorphous solid epoxy.
  • a curing agent may be further included in the coating layer forming component.
  • the curing agent may be different according to the specific type of the selected epoxy resin, and the specific type may be used a curing agent known in the art, preferably an acid anhydride, amine, imidazole, polyamide It may include any one or more components of the system and the polymercaptan system.
  • the acid anhydride may be phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic acid, ethylene glycol bistrimellitate, glycerol tristrimellitate, maleic anhydride, tetrahydrophthalic anhydride, methyl Tetrahydrophthalic anhydride, endo methylene tetrahydro phthalic anhydride, methyl endo methylene tetrahydro phthalic anhydride, methyl butenyl tetrahydro phthalic anhydride, dodecenyl anhydrous succinic acid, hexahydro phthalic anhydride, methyl hexahydro phthalic anhydride, succinic anhydride, methylcyclohexene Dicarboxylic acid
  • the amine system may be aromatic amines, aliphatic amines, or modified substances thereof.
  • aromatic amines for example, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, azomethylphenol and the like may be used alone or in combination of two or more.
  • the aliphatic amines can be used alone or in combination of two or more diethylenetriamine, triethylenetetramine, for example.
  • the polyamides may be, for example, a reactant produced by condensation of a dimer acid and a polyamine having a fatty acid dimer, and may be a polyamideamine having a plurality of amino groups in a molecule and having at least one amide group.
  • the imidazole type is, for example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl imidazolium trimellitate and epoxyimidazole adduct. (adduct) and the like.
  • the polymercaptan-based may be, for example, a mercaptan group is present at the end of the polypropylene glycol chain, or a mercaptan group is present at the end of the polyethylene glycol chain.
  • a known curing agent such as a phenol resin, an amino resin, a polysulfide resin or the like may be included depending on the purpose instead of or in combination with the curing agent described above.
  • the coating layer forming component is a polyamide exhibiting the effect of improving the adhesive strength, water resistance and chemical resistance as a curing agent It may further include a curing agent, through which is very advantageous to improve the compatibility with the insulating heat dissipation filler described later, advantageous in all physical properties such as adhesion, durability, surface quality of the coating layer, and the coating to which the insulating heat dissipation coating composition is applied If the surface is not a smooth flat surface or if a step is formed, there is an advantage of further preventing cracking or peeling of the coating layer formed on the corresponding portion.
  • the transparent coating layer forming component is a main resin provided, for example, when the main resin is an epoxy resin, the polyamide curing agent 15 to 35 parts by weight based on 100 parts by weight of the epoxy resin, preferably 20 to 30 It may be provided in parts by weight, most preferably 30 parts by weight. If the polyamide curing agent is provided in less than 15 parts by weight uncured and / or durability may be lowered. In addition, when the polyamide curing agent exceeds 30 parts by weight, cracking may occur due to excessive curing.
  • the above-described coating layer forming component may further include a curing accelerator in addition to the above-mentioned curing agent when the main resin and the main resin is a curable resin.
  • the curing accelerator plays a role for adjusting the curing rate, the properties of the cured product, etc., and may be used by selecting a known curing accelerator according to the type of curing agent selected, and as a non-limiting example, amines, imidazoles , Organic phosphines, Lewis acid curing accelerators.
  • the addition amount may be appropriately changed in consideration of the equivalent of the epoxy resin.
  • the curing catalyst may be selected from the known curing catalyst in consideration of the type of the main resin, the type of curing agent, etc., the addition amount may be appropriately changed in consideration of the content of the main resin and the curing agent, curing conditions, etc. Is not particularly limited thereto.
  • the insulating heat dissipating filler may be selected without limitation as long as it has insulating and heat dissipating properties in its material.
  • the shape and size of the insulating heat dissipation filler is not limited, and may also be porous or nonporous in structure, and may be differently selected according to the purpose, and thus the present invention is not particularly limited thereto.
  • the insulating heat dissipating filler may be silicon carbide, magnesium oxide, titanium dioxide, aluminum nitride, silicon nitride, boron nitride, aluminum oxide, silica, zinc oxide, barium titanate, strontium titanate, beryllium oxide, manganese oxide, zirconia oxide, and boron oxide. It may include one or more selected from the group consisting of.
  • the insulating heat dissipating filler may have an average particle diameter of 10 nm to 15 ⁇ m, preferably, an average particle diameter of 0.1 to 13 ⁇ m.
  • the insulating heat dissipation filler may have an average particle diameter of 5 ⁇ m. If the average particle diameter is less than 10nm, there is a fear that the cost of the product increases, the amount of the insulating heat-radiating filler buried on the surface after being implemented as a coating layer may increase the heat dissipation performance and insulation.
  • the average particle diameter exceeds 15 ⁇ m, light transmittance may decrease as light scattering and / or light reflection increases to increase haze, and uniformity of the surface of the coating layer may decrease.
  • a filler whose surface is modified with a functional group such as a silane group, an amino group, an amine group, a hydroxy group, or a carboxyl group may be used, wherein the functional group may be directly bonded to the surface of the filler, or It may be indirectly bonded to the filler via a substituted or unsubstituted aliphatic hydrocarbon having 1 to 20 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon having 6 to 14 carbon atoms.
  • a functional group such as a silane group, an amino group, an amine group, a hydroxy group, or a carboxyl group
  • the functional group may be directly bonded to the surface of the filler, or It may be indirectly bonded to the filler via a substituted or unsubstituted aliphatic hydrocarbon having 1 to 20 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon having 6 to 14 carbon atoms.
  • the insulating heat dissipation filler may be a core shell type filler having a known conductive heat dissipation filler such as carbon-based metal or the like as a core and an insulating component surrounding the core.
  • the insulating heat dissipating filler may be included in an amount of 5 to 30 parts by weight, preferably 10 to 25 parts by weight, and most preferably 16 parts by weight based on 100 parts by weight of the above-described main resin. If the insulating heat dissipation filler is included in less than 5 parts by weight based on 100 parts by weight of the main resin, the thermal conductivity may be low and may not exhibit a desired level of heat dissipation performance. In addition, if the insulating heat dissipation filler exceeds 30 parts by weight, the adhesion of the implemented coating layer is weakened, so that peeling occurs easily, and the hardness of the coating layer is increased, which may be vulnerable to physical impact.
  • the surface roughness may increase, thereby reducing the surface quality of the coating layer.
  • the degree of improvement in heat dissipation performance may be insignificant. As the light scattering and / or light reflection is excessive due to the excessive insulation heat dissipation filler, the amount of light passing through the coating layer is reduced, and thus the transparency is lowered. Therefore, a post-process requiring visual identification after forming the coating layer is required. It may not be easy.
  • the physical property enhancing component is responsible for improving durability by expressing improved insulation / heat resistance and at the same time excellent adhesiveness when the transparent insulating heat dissipating coating composition according to the present invention is coated on the coated surface.
  • the physical property enhancing component may be included in 0.5 to 20 parts by weight, preferably 0.5 to 15 parts by weight, most preferably 1.5 parts by weight with respect to 100 parts by weight of the main resin. If the physical property enhancing component is provided in less than 0.5 parts by weight, it may not be possible to achieve the desired physical properties simultaneously to the desired level, such as heat dissipation and adhesion through the physical property enhancing component. In addition, when provided in excess of 20 parts by weight may be weakened the adhesion with the surface to be coated.
  • the above-described transparent insulating heat dissipation coating composition may further include a dispersant and a solvent for improving the dispersibility of the insulating heat dissipation filler, to implement a uniform coating layer.
  • the dispersant may be a known component employed in the art as a dispersant of the insulating heat-insulating filler.
  • silicone dispersant polyester dispersant, polyphenylene ether dispersant; Polyolefin dispersant, acrylonitrile-butadiene-styrene copolymer dispersant, polyarylate dispersant, polyamide dispersant, polyamideimide dispersant, polyarylsulfone dispersant, polyetherimide dispersant, polyethersulfone dispersant, poly Phenylene sulfide dispersant, polyimide dispersant, polyether ketone dispersant, polybenzoxazole dispersant, polyoxadiazole dispersant, polybenzothiazole dispersant, polybenzimidazole dispersant, polypyridine dispersant, polytria Sol type dispersants, polypyrrolidine type dispersants, polydibenzofuran type dispersants, polysulfone type dispersants,
  • the dispersant may be included in an amount of 0.5 to 20 parts by weight, preferably 1 to 10 parts by weight, and most preferably 3 parts by weight, based on 100 parts by weight of the insulating heat-dissipating filler. If the dispersant is less than 0.5 parts by weight based on 100 parts by weight of the insulating heat dissipation filler, the heat dissipation filler may not be dispersed to a desired level, and when the dispersant is provided in excess of 20 parts by weight, the adhesion strength of the adherend becomes weak or Pin holes and orange peels may occur on the surface of the coating film.
  • the solvent may be selected according to the selected main resin, the curing agent and the like, and the present invention is not particularly limited thereto, and the solvent may be used any solvent that enables the proper dissolution of each component, For example, at least one selected from the group consisting of an aqueous solvent such as water, an alcohol solvent, a ketone solvent, an amine solvent, an ester solvent, an amide solvent, a halogenated hydrocarbon solvent, an ether solvent, and a furan solvent Can be used.
  • an aqueous solvent such as water, an alcohol solvent, a ketone solvent, an amine solvent, an ester solvent, an amide solvent, a halogenated hydrocarbon solvent, an ether solvent, and a furan solvent.
  • the above-described insulating heat-dissipating coating composition may be a leveling agent, a pH adjusting agent, an ion trapping agent, a viscosity adjusting agent, a thixotropic agent, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a colorant, a dehydrating agent, a flame retardant, and an electrification agent.
  • a leveling agent a pH adjusting agent, an ion trapping agent, a viscosity adjusting agent, a thixotropic agent, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a colorant, a dehydrating agent, a flame retardant, and an electrification agent.
  • One kind or two or more kinds of various additives such as an inhibitor, a preservative, and an antiseptic may be added.
  • the various additives described above may use those known in the art and are not particularly limited in the present invention.
  • the transparent insulating heat dissipation coating composition according to the embodiment of the present invention described above may have a viscosity of 5 to 2000 cps at 25 ° C., preferably a viscosity of 100 to 1800 cps at 25 ° C., and most preferably a viscosity of 1,500 cps at 25 ° C. have. If the viscosity of the transparent insulating heat-dissipating coating composition is less than 5 cps, it may be difficult to generate the coating layer due to the flow down of the composition, and even after the production, the adhesion to the coated surface may be weakened.
  • the coating process may not be easy, especially in the case of spraying coating may be more difficult coating process.
  • the dispersibility of the insulating heat-insulating filler in the coating layer may be reduced.
  • the above-mentioned transparent insulating heat-dissipating coating composition may further include a UV stabilizer for improving the transparency by preventing yellowing due to UV.
  • the UV stabilizer may be a known component employed in the art as a UV stabilizer of the insulating heat dissipation coating composition.
  • the UV stabilizer may be included in an amount of 0.05 to 2 parts by weight, preferably 0.1 to 1.5 parts by weight, most preferably 0.5 parts by weight based on 100 parts by weight of the main resin. If the UV stabilizer is provided in less than 0.05 parts by weight based on 100 parts by weight of the main resin may not express the desired effect, if the UV stabilizer is provided in excess of 2 parts by weight of the coating layer adhesion strength and impact resistance Can be degraded.
  • the above-mentioned transparent insulating heat-dissipating coating composition may further include an antioxidant for preventing discoloration of the coating dry coating, brittleness by oxidation, deterioration of physical properties such as adhesion strength.
  • the antioxidant may be a known component employed in the art as an antioxidant of the insulating heat dissipation coating composition.
  • the antioxidant is tri-methylphosphate, tri-phenylphosphate, tris (2,4-di-tert-butylphenyl) phosphate, triethyleneglycol-bis-3- (3-tert-butyl-4-hydro Hydroxy-5-methylphenyl) propionate, 1, 6-hexane-diol-3 (3, 5-di-tert-butyl-4-hydroxyphenyl) propionate, pentaerythryl-tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2-hydroxybenzophenone, 2-hydroxyphenylbenzothiazole, hindered amine, organic nickel compound, salicylate, cinnamate
  • the derivative may include at least one selected from the group consisting of resorcinol monobenzoate, oxanilide, and p-hydroxy
  • the antioxidant may be further included in 0.1 to 3 parts by weight, preferably 0.1 to 1.5 parts by weight, most preferably 0.5 parts by weight based on 100 parts by weight of the main resin. If the antioxidant is provided in less than 0.1 part by weight with respect to 100 parts by weight of the main resin, discoloration may occur, and if the antioxidant is provided in excess of 3 parts by weight, brittleness and adhesion strength may be weakened.
  • the heat dissipation unit according to the present invention comprising a transparent coating layer having a thickness of 25 ⁇ m hardened by applying the transparent insulating heat-dissipating coating composition to an aluminum plate of 1.5mm thickness can satisfy the following condition (1).
  • the transparency of the transparent coating layer may be 60%, and preferably the transparency of the transparent coating layer may be 70%.
  • the transparent coating layer can be formed by satisfying the above condition (2), there is an easy effect after the process that requires visual identification of the surface to be coated after coating.
  • the present invention is a transparent insulating heat-dissipating coating layer 10b is applied to the substrate 10a and the outer surface of the substrate 10a and the transparent insulating heat-dissipating coating composition according to the present invention is cured as shown in FIG. It includes a heat dissipation unit 100 comprising.
  • a heat dissipation unit 100 comprising.
  • the coating layer is formed of the transparent insulating heat dissipation coating composition of the present invention.
  • the substrate 10a may be used without limitation if the substrate 10a has a mechanical strength enough to form a coating layer after the insulating heat dissipation coating composition according to the present invention is applied, regardless of whether it has a heat dissipation characteristic.
  • the substrate 10a may be at least one of a metal, a nonmetal, and a polymer organic compound.
  • the metal may be molded of any one metal material selected from the group consisting of aluminum, copper, zinc, silver, gold, iron, oxides thereof, and alloys of the metals.
  • the base metal may be a component commonly referred to as aluminum oxide, commonly ceramic.
  • the polymer organic compound is polyethylene, polypropylene, polystyrene, polyvinyl chloride, acrylonitrile-butadiene-styrene resin (ABS), acrylonitrile-styrene resin (AN), methacryl resin (PMMA), polyamide, Polyacetal, polycarbonate, polyethylene terephthalate (PET), polybutylene terephthalate (PBT).
  • Plastics such as fluororesins, phenoxy resins, phenolic resins (PE), urea resins (UF), melamine resins (MF), unsaturated polyester resins (UP), epoxy resins, polyurethane resins Can be.
  • the shape of the substrate 10a is not limited.
  • the substrate 10a may have a structure in which a plurality of peaked heat dissipation fins 10a 1 are provided as shown in FIG.
  • both side ends of the bottom plate may be bent upward to face each other, and thus may be a substrate 11a having a function of performing a heat radiation fin.
  • the transparent insulating heat dissipation coating layer (10b, 11b) formed of a transparent insulating heat dissipation coating composition according to an embodiment of the present invention exhibits improved heat dissipation performance, the heat dissipation unit 100 'as shown in FIG.
  • the heat dissipation fin may be superior in heat dissipation performance to a heat dissipation base material having only the shape as shown in FIG. 1 having a structurally increased surface area without the transparent insulating heat dissipation coating layer. Accordingly, as shown in FIG. 1, it is difficult to mold structurally, and there is an advantage in that a desired level of heat dissipation performance can be achieved without employing the substrate 10a having a structure in which manufacturing time and manufacturing cost can be increased.
  • the base material (10a) with a plurality of radiating fins (10a 1) complex shapes even transparent insulating heat dissipation coating adhesion is excellent bent outer surface to the transparent insulation radiation coating a step formed in accordance with the case having a as shown in Figure 1 Peeling or cracking may not occur.
  • the thickness, length, width, etc. of the substrates 10a and 11a may be variously changed according to the size and location of the application where the heat dissipation units 100 and 100 'are provided, and thus the present invention is not particularly limited thereto. .
  • the base material 11a may further include a functional layer 11c between the outer surface and the transparent insulating heat dissipation coating layer 11b, and the functional layer may have an adhesive property of the transparent insulating heat dissipation coating layer 11b. It may be a separate primer layer for improving the or an oxide film formed by modifying the outer surface of the substrate (11a), such as anodizing to improve the heat dissipation performance.
  • the transparent insulating heat dissipating coating composition according to the present invention is coated on at least one region of the above-described substrates 10a and 11a to form a heat dissipating coating layer, and unlike the FIGS. 1 and 2, only a portion of the substrate 10a and 11a is transparent insulating heat dissipating coating layer. This can be formed. This is because the area covered in some coating may vary depending on the desired level of heat dissipation performance, so the present invention is not particularly limited thereto.
  • the transparent insulating heat dissipating coating layers 10b and 11b are formed by curing the transparent insulating heat dissipating coating composition according to the present invention on the outer surface of the substrate.
  • Specific methods for forming the transparent insulating heat dissipation coating layer (10b, 11b) can be used by selecting a known method for coating a transparent insulating heat dissipation coating composition on a substrate, non-limiting examples of spray, dip coating, silk screen It may be prepared by coating on a variety of substrates by a method such as roll coating, dip coating or spin coating.
  • the coating composition may be realized as a transparent coating layer by treating heat and / or light according to the type of curing agent provided together.
  • the temperature of heat applied and / or the light intensity and treatment time may vary depending on the type of main resin used, the type of curing agent, their content, coating thickness, and the like.
  • the above-mentioned epoxy resin is included as the main resin, and the polyamide curing agent is provided, it may be treated for 1 minute to 60 minutes under a temperature of 130 ° C. to 150 ° C., which is below the strain point of the substrate.
  • the treatment temperature is less than 130 °C, it is difficult to coat the transparent insulating heat-dissipating coating composition on the substrate, and if the treatment temperature exceeds 150 °C, the deformation of the substrate or breakage of the heat dissipation layer and the manufacturing cost may be increased.
  • the treatment process time is less than 1 minute, it is difficult to coat the transparent heat dissipation coating composition on the substrate, and when the surface treatment process time exceeds 60 minutes, the manufacturing time of the insulating heat dissipation device is unnecessarily increased to 1 minute. It is preferable that the surface treatment process proceeds for 60 minutes.
  • the transparent insulating heat-dissipating coating composition used in the present invention is exposed to air after being in contact with a solid substrate, especially a metal substrate, to form a film that quickly cures without sticking in moisture at room temperature or a temperature of 50 ° C. or less. It is less likely to be contaminated by dust, and the final curing can be performed at a relatively low temperature, so that the workability is excellent and the deformation of the metal substrate can be prevented during curing.
  • the formed transparent insulating heat dissipation coating layers 10b and 11b may have a thickness of 5 to 55 ⁇ m, and more preferably 10 to 50 ⁇ m.
  • the transparent insulating heat dissipation coating layer may have a thickness of 25 ⁇ m. If the thickness exceeds 55 ⁇ m boiling phenomenon may occur on the surface of the coating, if the thickness is less than 5 ⁇ m may reduce the heat dissipation characteristics.
  • the transparent insulating heat dissipation coating layers 10b and 11b may include 15 to 40% by weight of the insulating heat dissipation filler, preferably 20 to 25% by weight, based on the total weight of the heat dissipation coating layer.
  • the transparent insulating heat dissipation coating layers 10b and 11b may include 27% by weight of an insulating heat dissipation filler based on the total weight of the heat dissipation coating layer. If the insulating heat dissipation filler is provided in less than 15% by weight in the implemented transparent coating layer may not exhibit the desired level of heat dissipation performance.
  • the insulating heat dissipation filler exceeds 40% by weight, the adhesive force of the coating layer is weakened, so that peeling occurs easily, and the hardness of the coating layer increases, so that it may be easily broken or crushed by physical impact.
  • the surface roughness may increase, thereby decreasing the surface quality of the coating layer.
  • the degree of improvement in heat dissipation performance may be insignificant.
  • the present invention includes an insulating heat dissipation circuit board including an insulating heat dissipation coating layer hardened by applying the insulating heat dissipation coating composition according to the invention on at least a portion of the outer surface of the circuit board on which the device is mounted.
  • the device may be a known device mounted on a circuit board in an electronic device such as a driving chip, and may be a device that generates electromagnetic waves and / or heat or is sensitive to electromagnetic waves to easily malfunction.
  • the circuit board may be a known circuit board provided in the electronic device, for example, may be a PCB, FPCB.
  • the size and thickness of the circuit board can be changed according to the internal design of the electronic device to be implemented, so the present invention is not particularly limited thereto.
  • the substrate formed with a transparent coating layer through the transparent heat-resistant heat-dissipating coating composition of the present invention can be visually identified on the surface to be coated, such as the surface of the surface to be coated, the surface to be coated after coating Post-processing is required for visual identification of the effect is easy.
  • the transparent heat dissipation coating composition for forming the transparent insulating heat dissipation coating layer of the present invention can improve the excellent adhesion between the coating layer and the substrate, improved moisture resistance and weather resistance, the wettability of the insulating heat dissipation filler, viscosity reduction and insulating heat dissipation coating layer during compounding
  • the formed substrate surface ductility can be increased.
  • excellent heat dissipation and insulation, excellent solvent resistance to the organic solvent, there is no discoloration during curing, and easy to control the thermal conductivity insulating heat dissipation unit comprising an insulating heat dissipation coating layer implemented by this continuously expresses improved physical properties can do.
  • the transparent coating layer can be formed, the post-process required for visual identification of the surface to be coated after the coating has an easy effect. Accordingly, it can be widely applied to a wide range of electric and electronic, automotive, energy and aerospace industries such as circuit boards, lighting devices such as LED lamps, display devices, and the like, in which various electrical and electronic components requiring transparency, insulation, and heat dissipation are simultaneously required.
  • a polyamide resin as a curing agent
  • 3-aminopropyltriepoxy silane as a property-promoting component 1.5 parts by weight
  • 0.5 parts by weight of 2-hydroxy phenyl benzotriazole as UV stabilizer and antioxidant
  • a wet dispersant BYK, DISPERBYK-145) was mixed to prepare a transparent insulating heat dissipation coating composition.
  • the mixing was performed for 30 minutes under a condition of agitation speed 800rpm in a sealed stirrer in which external air is blocked, the prepared transparent insulating coating composition was a viscosity of 1,500cps at 25 °C.
  • the transparent insulating heat-dissipating coating composition prepared according to the Examples and Comparative Examples was spray-coated on the entire surface of the base material having a thickness of 1.5 mm and a width ⁇ length of 35 mm ⁇ 34 mm, respectively, of aluminum material (Al 1050). After the heat treatment at 150 °C temperature for 10 minutes to prepare a heat dissipation unit formed with an insulating heat dissipation coating layer was evaluated in the following physical properties are shown in Table 1 to Table 3.
  • the temperature in the chamber and the temperature of the heat dissipation unit were adjusted to be 25 ⁇ 0.2 ° C.
  • the test specimens were prepared by attaching 20 mm ⁇ 20 mm LEDs, respectively, to the heat dissipation unit as a heat source, using a TIM (thermally conductive tape: 1 W / mk).
  • Heat was generated by applying an input power of 2.1 W (DC 3.9 V, 0.53 A) to the heat source of the prepared specimen, and after maintaining for 90 minutes, the thermal conductivity was evaluated by measuring the temperature of the heat dissipation unit.
  • the thermal conductivity was calculated according to the following Equation 1 on the basis of the temperature measured under the same conditions for the substrate having no transparent coating layer.
  • the temperature in the chamber and the temperature of the heat dissipation unit were adjusted to be 25 ⁇ 0.2 ° C. Then, the test specimens were prepared by attaching 20 mm ⁇ 20 mm LEDs, respectively, to the heat dissipation unit as a heat source, using a TIM (thermally conductive tape: 1 W / mk).
  • Heat was generated by applying an input power of 2.1 W (DC 3.9 V, 0.53 A) to the heat source of the prepared specimen, and after maintaining for 90 minutes, the thermal emissivity was evaluated by measuring the temperature at the top 5 cm of the center of the heat dissipation unit. Specifically, the thermal emissivity was calculated according to the following Equation 2 on the basis of the temperature measured under the same conditions for the substrate having no transparent coating layer.
  • the heat dissipation unit Place the heat dissipation unit in the center of the acrylic chamber 32, 30 and 30 cm in height, width, length and height respectively, and adjust the temperature inside the chamber and the temperature of the heat dissipation unit to 25 ⁇ 0.2 °C and the humidity inside the chamber to 50%. It was. Then, the test specimens were prepared by attaching 20 mm ⁇ 20 mm LEDs, respectively, to the heat dissipation unit as a heat source, using a TIM (thermally conductive tape: 1 W / mk).
  • Heat is generated by applying 2.1W (DC 3.9V, 0.53A) input power to the heat source of the manufactured specimens, and after maintaining for 90 minutes, randomly on a circle with a radius of 15 mm around the center of the upper surface of the heat dissipation unit By measuring the temperature at 10 points of the calculated error of the exothermic temperature according to the following equation (3).
  • the smaller the error the more the heat dissipation performance can be regarded as uniform, and the heat dissipation filler dispersibility of the transparent coating layer can be interpreted as high.
  • the maximum value of the error of the exothermic temperature is shown in Tables 1 to 4 below.
  • the surface state of the heat dissipation unit was visually evaluated after 480 hours. As a result of the evaluation, cracks and peelings (floating) of the transparent coating layer were confirmed, and when no abnormality occurred, ⁇ was indicated as x when abnormality occurred.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 6 Heat dissipation filler Content (parts by weight) 16 10 25 16 16 16 Average particle size ( ⁇ m) 5 5 5 0.003 0.1 13 Dispersant Content (parts by weight) 3 3 3 3 3 3 3 3
  • Example 12 Heat dissipation filler Content (parts by weight) 16 16 16 16 16 16 16 Average particle size ( ⁇ m) 20 5 5 5 5 5 5 5 5 Dispersant Content (parts by weight) 3 0.1 One 10 25 3 Viscosity (cps) 1500 1500 1500 1500 1500 3 Thermal conductivity (%) 16.87 17.21 17.63 17.58 17.39 17.25 Thermal radiation efficiency (%) 87 86 88 89 87 87 Error of Exothermic Temperature (%) 2.7 5.2 1.4 0.4 0.3 0.4 durability ⁇ ⁇ ⁇ ⁇ ⁇ Adhesive 3B 5B 5B 5B 3B 2B Surface quality 0 5 5 5 5 5 5 transparency(%) 53 75 74 74 57 73
  • Examples 1 to 3, 5, 6, 9, 10, 13 and 14 satisfying the content of the heat radiation filler, the average particle diameter, the curing agent content, the dispersant content and the viscosity of the composition according to the present invention are all missing.
  • the thermal conductivity, heat radiation property, heat dissipation performance uniformity, durability, adhesiveness and surface quality is excellent, and the haze is low, the transparency is high, It can be seen that the heat dissipation performance is remarkably excellent due to the low temperature reduction rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

투명 절연성 방열 코팅조성물이 제공된다. 본 발명의 일 실시예에 따른 투명 절연성 방열 코팅조성물은 주제수지를 포함하는 투명코팅층 형성성분; 및 상기 주제수지 100 중량부에 대하여 5 ~ 30 중량부로 포함되는 절연성 방열필러;를 포함하는 투명 절연성 방열 코팅조성물을 포함한다. 이에 의하면, 투명 절연성 방열 코팅조성물은 열전도성뿐만 아니라 열방사성이 매우 우수하여 뛰어난 방열성능을 발현하고, 동시에 절연성을 갖는 절연성 방열코팅층을 구현할 수 있다. 또한, 이를 통해 구현된 방열코팅층은 피코팅면과의 접착성이 매우 우수하여 사용 중 코팅층의 박리가 현저히 방지되며, 코팅층으로 형성된 후 외부의 열, 유기용제, 수분, 충격 등의 물리적, 화학적 자극에도 코팅층의 내구성이 유지될 수 있다. 그리고, 투명한 코팅층을 형성할 수 있기 때문에 코팅층을 형성한 후, 피코팅면에 대한 육안식별이 요구되는 후 공정이 용이한 효과가 있다. 나아가, 형성된 절연성 방열코팅층의 표면이 매우 매끄럽고, 평활성이 우수하여 표면품질이 뛰어남에 따라서, 절연 및 방열이 동시에 요구되는 산업 전반에 널리 응용될 수 있다.

Description

투명 절연성 방열 코팅조성물, 이를 통해 형성된 방열유닛 및 방열 회로기판
본 발명은 코팅조성물에 관한 것으로, 더욱 상세하게는 투명 절연성 방열 코팅조성물, 이를 통해 형성된 방열유닛 및 방열 회로기판에 관한 것이다.
일반적으로 전자장치의 사용 중에 장치내 구비되는 각종 부품에서 발생하는 열에 의한 오작동을 방지하기 위하여 발열이 있는 부품에는 방열부재를 장착한다. 방열판이나 히트싱크 등의 방열부재는 통상적으로 열전도율이 높은 금속을 사용하여 장치나 부품 내의 열을 외부로 빠르게 방출될 수 있도록 한다.
일예로, 상기 히트싱크는 알루미늄, 구리 및 그 합금소재를 고온의 상태로 가열, 용융시킨 후, 일정한 형상을 갖는 금형을 이용하여 압출 성형하는 방법을 통해 전면에 일정하게 돌출되는 다수의 방열핀이 배열되는 구조가 일반적으로 채용되어 왔다.
최근에는 방열부재에 방열코팅층을 형성시켜 방열성능의 향상을 도모하는 시도들이 있었으나, 이와 같은 기존의 방열코팅층이 형성된 제품들에서는 방열코팅층에 사용되는 필러들이 도전성을 가짐으로써, 전기적 절연이 요구되는 적용처에는 사용하기 어려운 문제가 있다. 그리고, 코팅층 형성 후에 투명하지 않은 코팅층으로 인해 피코팅면이 육안으로 식별되지 못함에 따라서 피코팅면에 대한 육안식별이 요구되는 후 공정이 용이하지 않은 문제가 있다.
또한, 절연성 및 방열성을 동시에 발현하더라도 구현된 절연성 방열코팅층의 내구성, 방열성능, 피코팅면과의 접착력 등의 물성을 동시에 달성하기 어렵고, 절연성 방열코팅층의 표면이 울퉁불퉁하거나 필러가 표면에 돌출되는 등 절연성 방열코팅층의 표면품질이 매우 좋지 않은 문제가 있다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 열전도성뿐만 아니라 열방사성이 매우 우수하여 뛰어난 방열성능을 발현하는 방열 코팅층을 구현할 수 있는 코팅조성물을 제공하는데 목적이 있다.
또한, 본 발명은 방열성을 갖는 동시에 절연성을 가짐에 따라서 방열과 절연이 동시에 요구되는 각종 전기전자 부품이나 장치에 직접 접촉하여 구비될 수 있는 절연성 방열 코팅층을 구현할 수 있는 코팅조성물을 제공하는데 다른 목적이 있다.
또한, 본 발명은 피코팅면과의 접착성이 매우 우수하고, 외부의 열, 유기용제, 수분, 충격 등의 물리적, 화학적 자극에도 손상되거나 박리되지 않는 절연성 방열 코팅층을 구현할 수 있는 코팅조성물을 제공하는데 또 다른 목적이 있다.
또한, 본 발명은 코팅된 표면이 매우 매끄럽고, 평활성이 우수하여 표면품질이 뛰어난 절연성 방열 코팅층을 구현할 수 있는 코팅조성물을 제공하는데 또 다른 목적이 있다.
또한, 본 발명은 피코팅면의 육안 식별이 가능하도록 투명한 코팅층을 형성할 수 있는 투명 절연성 방열 코팅조성물을 제공하는데 또 다른 목적이 있다.
또한, 본 발명은 상술한 바와 같은 특징을 갖는 투명 절연성 방열 코팅조성물을 통하여 구현되는 방열유닛 및 방열 회로기판을 제공하는데 또 다른 목적이 있다.
상술한 과제를 해결하기 위해 본 발명은, 주제수지를 포함하는 투명코팅층 형성성분; 및 상기 주제수지 100 중량부에 대하여 5 ~ 30 중량부로 포함되는 절연성 방열필러;를 포함하는 투명 절연성 방열 코팅조성물을 제공한다.
본 발명의 일 실시예에 의하면, 상기 주제수지는 에폭시 수지, 아크릴계 수지, 폴리아마이드계 수지, 우레탄계 수지, 우레아계 수지, 멜라민계 수지, 폴리에스테르계 수지, 페녹시 수지, 페놀계 수지, 실리콘계 수지, 폴리에틸렌 수지, 폴리프로필렌 수지, 폴리스티렌 수지, 폴리염화비닐 수지, 염소화 폴리에틸렌 수지, 폴리염화부티랄 수지 및 에틸렌비닐아세테이트 수지로 이루어진 군에서 선택된 1종 이상을 구비할 수 있다.
또한, 상기 주제수지는 비결정성 수지일 수 있다.
또한, 상기 주제수지는 경화형 수지일 수 있으며, 상기 투명코팅층 형성성분은 상기 주제수지 100 중량부에 대하여 15 ~ 35 중량부로 경화제 더 포함할 수 있다.
또한, 상기 절연성 방열필러는 탄화규소, 산화마그네슘, 이산화티타늄, 질화알루미늄, 질화규소, 질화붕소, 산화알루미늄, 실리카, 산화아연, 티탄산바륨, 티탄산스트론튬, 산화베릴륨, 산화망간, 산화지르코니아 및 산화붕소로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있다.
또한, 상기 절연성 방열필러의 평균입경은 10㎚ ~ 15㎛일 수 있다.
또한, 상기 투명 절연성 방열 코팅조성물은 부착성 향상을 위한 물성증진성분을 더 포함할 수 있다.
또한, 상기 물성증진성분은 3-[N-아닐-N-(2-아미노에틸)] 아미노프로필트리메톡시실란, 3-(N-아닐-N-글리시딜)아미노프로필트리메톡시실란, 3-(N-아닐-N-메타아크릴로닐]아미노프로필트리메톡시실란, 3-글리시딜 옥시프로필메틸에톡시실란, N,N-Bis[3-(트리메톡시시닐)프로필]메타아크릴아마이드, γ-글리시독시트리메틸디메톡시실란, 3-글리시딜옥시프로필트리메톡시실란, 3-글리시딜옥시프로필트리에톡시실란, 3-글리시딜옥시프로필메틸메톡시실란, 베타(3, 4 -에폭시 사이클로헥실)에틸트리메톡시실란, 3-메타아크릴록시프로필트리메톡시실란, 3-글리시독시프로필메틸디메톡시실란, 헵타데카플루오로데시트리메톡시실란, 3-메타아크릴록시프로필메틸디메톡시실란, 3-메타아크릴록시프로필트리스 (트리메틸실록시)실란, 메틸트리스(디메틸시록시)실란, 3-아미노프로필트리에폭시 실란, 3-메르캅토프로필트리메톡시 실란 및 N-(β-아미노에틸)-γ-아미노프로필트리메톡시실란으로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.
또한, 상기 물성증진성분은 주제수지 100 중량부에 대하여 0.5 ~ 20 중량부로 포함될 수 있다.
또한, 상기 절연성 방열필러의 평균입경은 10㎚ ~ 15㎛ 일 수 있다.
또한, 상기 투명 절연성 방열 코팅용 조성물은 25℃에서의 점도가 5 ~ 2000 cps 일 수 있다.
또한, 상기 투명 절연성 방열 코팅용 조성물은 분산제를 상기 절연성 방열필러 100 중량부에 대하여 0.5 ~ 20 중량부 더 포함할 수 있다.
또한, 상기 투명 절연성 방열 코팅조성물은 UV에 의한 황변을 방지하기 위한 UV안정제를 더 포함할 수 있다.
또한, 상기 UV 안정제는 주제수지 100 중량부에 대하여 0.05 ~ 2 중량부로 포함될 수 있다.
또한, 상기 투명 절연성 방열 코팅용 조성물은 산화방지제를 상기 주제수지 100 중량부에 대하여 0.1 ~ 3 중량부 더 포함할 수 있다.
또한, 두께 1.5mm의 알루미늄 플레이트에 상기 투명 절연성 방열 코팅조성물을 도포하여 경화된 두께 25 ㎛의 투명코팅층을 포함하는 방열유닛이 하기 조건 (1)을 만족할 수 있다.
(1) 투명코팅층의 투명도 ≥ 60% 임.
한편, 본 발명은 방열부재 또는 지지부재; 및 본 발명에 따른 투명 절연성 방열 코팅조성물이 상기 방열부재 또는 지지부재 외부면의 적어도 일부분에 도포되어 경화된 투명 절연성 방열 코팅층;을 포함하는 절연성 방열유닛을 제공한다.
본 발명의 일 실시예에 의하면, 상기 투명 절연성 방열 코팅층의 두께는 5 ~ 55 ㎛ 일 수 있다.
한편, 본 발명은 소자가 실장된 회로기판; 및 본 발명에 따른 투명 절연성 방열 코팅조성물이 상기 회로기판 외부면의 적어도 일부분에 도포되어 경화된 투명 절연성 방열 코팅층;을 포함하는 절연성 방열 회로기판을 제공한다.
본 발명의 투명 절연성 방열 코팅조성물은 열전도성뿐만 아니라 열방사성이 매우 우수하여 뛰어난 방열성능을 발현하고, 동시에 절연성을 갖는 절연성 방열코팅층을 구현할 수 있다.
또한, 이를 통해 구현된 방열코팅층은 피코팅면과의 접착성이 매우 우수하여 사용 중 코팅층의 박리가 현저히 방지되며, 코팅층으로 형성된 후 외부의 열, 유기용제, 수분, 충격 등의 물리적, 화학적 자극에도 코팅층의 내구성이 유지될 수 있다.
그리고, 투명한 코팅층을 형성할 수 있기 때문에 코팅 후 피코팅면에 대한 육안식별이 요구되는 후 공정이 용이한 효과가 있다.
나아가, 형성된 절연성 방열코팅층의 표면이 매우 매끄럽고, 평활성이 우수하여 표면품질이 뛰어남에 따라서, 절연 및 방열이 동시에 요구되는 산업 전반에 널리 응용될 수 있다.
도 1 및 도 2는 본 발명의 일실시예에 따른 절연성 방열유닛의 사시도 및 부분단면도를 나타낸 도면,
도 3은 일반적인 코팅층이 형성된 기판에 대한 사진, 그리고
도 4는 본 발명의 일실시예에 따른 투명코팅층이 형성된 기판에 대한 사진이다.
이하 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명의 일 실시예에 따른 투명 절연성 방열 코팅조성물은 주제수지를 포함하는 투명코팅층 형성성분; 및 절연성 방열필러;를 포함한다.
먼저, 투명코팅층 형성성분에 대하여 설명한다.
상기 투명코팅층 형성성분은 주제수지를 포함하고, 상기 주제수지가 경화형 수지일 경우 경화제를 더 포함할 수 있고, 기타 경화촉진제, 경화촉매를 더 포함할 수 있다.
상기 주제수지는 투명코팅층을 형성할 수 있는 것으로 당업계에 공지된 성분의 경우 제한 없이 사용될 수 있다. 다만, 피코팅 기재와의 접착성, 발열 기재의 열에 의해 취화 되지 않는 내열성, 전기적 자극에 의해 취화되지 않는 절연성, 기계적 강도, 절연성 방열필러와의 상용성 개선에 따른 방열성능 향상과 동시에 투명한 코팅층을 형성할 수 있는 효과를 달성하기 위하여 상기 주제수지는 에폭시 수지, 아크릴계 수지, 폴리아마이드계 수지, 우레탄계 수지, 우레아계 수지, 멜라민계 수지, 폴리에스테르계 수지, 페녹시 수지, 페놀계 수지, 실리콘계 수지, 폴리에틸렌 수지, 폴리프로필렌 수지, 폴리스티렌 수지, 폴리염화비닐 수지, 염소화 폴리에틸렌 수지, 폴리염화부티랄 수지 및 에틸렌비닐아세테이트 수지로 이루어진 군에서 선택된 1종 이상을 구비할 수 있다. 일예로, 상기 주제수지는 에폭시 수지일 수 있다. 상기 각 수지에 해당하는 구체적인 종류는 당업계에 공지된 수지들일 수 있어서 본 발명은 이에 대한 구체적 설명은 생략한다.
일예로, 상기 수지가 에폭시 수지일 경우 글리시딜에테르형 에폭시 수지, 글리시딜아민형 에폭시수지, 글리시딜에스테르형 에폭시 수지, 선형 지방족형 에폭시 수지, 고무변성 에폭시 수지 및 이들의 유도체로 이루어지는 군으로부터 선택되는 어느 하나 이상의 에폭시 수지를 포함할 수 있다.
구체적으로 상기 글리시딜에테르형 에폭시 수지는 페놀류의 글리시딜에테르와 알코올류의 글리시딜에테르를 포함하며, 상기 페놀류의 글리시딜 에테르로 비스페놀 A형, 비스페놀 B형, 비스페놀AD형, 비스페놀 S형, 비스페놀 F형 및 레조르시놀 등과 같은 비스페놀계 에폭시, 페놀 노볼락(Phenol novolac) 에폭시, 아르알킬페놀 노볼락, 테르펜페놀 노볼락과 같은 페놀계 노볼락 및 o-크레졸 노볼락(Cresolnovolac) 에폭시와 같은 크레졸 노볼락계 에폭시 수지 등이 있고, 이들을 단독 또는 2 종 이상 병용할 수 있다.
상기 글리시딜 아민형 에폭시 수지로 디글리시딜아닐린, 테트라글리시딜디아미노디페닐메탄, N,N,N',N'-테트라글리시딜-m-크실릴렌디아민, 1,3-비스(디글리시딜아미노메틸)시클로헥산, 글리시딜에테르와 글리시딜아민의 양구조를 겸비한 트리글리시딜-m-아미노페놀, 트리글리시딜-p-아미노페놀 등이 있으며, 단독 또는 2 종 이상 병용할 수 있다.
상기 글리시딜에스테르형 에폭시수지로 p-하이드록시벤조산, β-하이드록시나프토에산과 같은 하이드록시카본산과 프탈산, 테레프탈산과 같은 폴리카본산 등에 의한 에폭시 수지일 수 있으며, 단독 또는 2 종 이상 병용할 수 있다.
상기 선형 지방족형 에폭시 수지로 1,4-부탄디올, 1,6-헥산디올, 네오펜틸글리콜, 시클로헥산디메탄올, 글리세린, 트리메틸올에탄, 티리메틸올프로판, 펜타에리트리롤, 도데카히드로 비스페놀 A, 도데카히드로 비스페놀 F, 에틸렌글리콜, 프로필렌글리콜, 폴리에틸렌글리콜, 폴리프로필렌글리콜 등에 의한 글리시딜 에테르일 수 있으며, 단독 또는 2 종 이상 병용할 수 있다.
상기 고무변성 에폭시 수지는 골격에 고무 및/또는 폴리에테르를 갖는 에폭시 수지이면 특별히 한정되지 않으며, 일예로, 카르복시기 변성 부타다이엔-아크릴로나이트릴 엘라스토머와 분자 내에서 화학적으로 결합한 에폭시 수지(CTBN 변성 에폭시 수지), 아크릴로나이트릴-부타다이엔 고무 변성 에폭시 수지(NBR 변성 에폭시수지), 우레탄 변성 에폭시 수지, 실리콘 변성 에폭시 수지 등의 고무 변성 에폭시 수지일 수 있으며, 단독 또는 2종 이상 병용할 수 있다.
한편, 일례로 상기 주제수지는 투명코팅층의 투명성을 확보하기 위하여 투명성이 높은 수지인 3,4-에폭시사이클로헥실메틸 3,4-에폭시사이클로헥세인 카르복시레이트, 비스(3,4-에폭시사이클로헥실메틸) 아디페이트, 3,4-에폭시-사이클로메틸-아크릴레이트로 이루어진 군에서 선택된 1종 이상을 수비하는 지환족 에폭시계 수지, 불포화 폴리에스테르계 수지, 아크릴계 수지, 폴리카보네이트, 폴리아미드 및 폴리스티렌 수지로 이루어진 군에서 선택된 1종 이상을 구비할 수 있다. 그리고, 상기 주제수지는 투명코팅층의 투명성을 확보하기 위하여 비결정성이 높은 수지일 수 있다. 일예로, 상기 주제수지는 비스페놀A 타입의 비결정화된 고상 에폭시일 수 있다.
상술한 주제수지가 경화형 수지인 경우 코팅층 형성성분에 경화제를 더 포함할 수 있다. 상기 경화제는 선택되는 에폭시 수지의 구체적인 종류에 따라 그 종류를 달리 할 수 있으며, 구체적인 종류는 당업계에 공지된 경화제를 사용할 수 있고, 바람직하게는 산무수물계, 아민계, 이미다졸계, 폴리아미드계 및 폴리메르캅탄계 중 어느 하나 이상의 성분을 포함할 수 있다.
구체적으로 상기 산무수물계의 경우 일 분자 중에 복수의 카르복실기를 갖는 화합물의 무수물이 바람직하다. 일예로, 상기 산무수물은 무수프탈산, 무수트리멜리트산, 무수피로멜리트산, 무수벤조페논테트라카르본산, 에틸렌글리콜비스트리멜리테이트, 글리세롤트리스트리멜리테이트, 무수말레산, 테트라하이드로무수프탈산, 메틸테트라하이드로무수프탈산, 엔도메틸렌테트라하이드로무수프탈산, 메틸엔도메틸렌테트라하이드로무수프탈산, 메틸부테닐테트라하이드로무수프탈산, 도데세닐무수숙신산, 헥사하이드로무수프탈산, 메틸헥사하이드로무수프탈산, 무수숙신산, 메틸시클로헥센디카르본산 무수물, 클로렌드산 무수물 등을 단독 또는 2종 이상 병용할 수 있다.
또한, 상기 아민계는 방향족 아민류, 지방족 아민류, 또는 이들의 변성물일 수 있다. 상기 방향족 아민류는 일 예로써, 메타페닐렌디아민, 디아미노디페닐메탄, 디아미노디페닐술폰, 아조메틸페놀 등을 단독 또는 2종 이상 병용할 수 있다. 또한, 상기 지방족 아민류는 일예로써, 디에틸렌트리아민, 트리에틸렌테트라민 등을 단독 또는 2종 이상 병용할 수 있다.
또한, 상기 폴리아미드류는 일예로, 지방산이 이량체인 다이머산과 폴리아민의 축합에 의해 생성된 반응물로 분자 중 복수의 아미노기를 갖고, 아미드기를 1개 이상 갖는 폴리아미드아민일 수 있다.
또한, 상기 이미다졸계는 일예로, 2-메틸이미다졸, 2-에틸-4-메틸이미다졸, 1-시아노에틸-2-운데실이미다졸리움트리멜리테이트 및 에폭시이미다졸 어덕트(adduct) 등일 수 있다.
또한, 상기 폴리메르캅탄계는 일예로, 폴리프로필렌글리콜쇄의 말단에 메르캅탄기가 존재하거나, 폴리에틸렌글리콜쇄의 말단에 메르캅탄기가 존재하는 것일 수 있다.
또한, 상술한 경화제 대신 또는 이와 병용하여 페놀 수지, 아미노수지, 폴리설파이드 수지 등의 공지된 경화제를 목적에 따라 포함할 수 있다.
한편, 본 발명의 일 실시예에 의하면, 상기 주제수지로 비스페놀 A 타입의 비결정화된 고상 에폭시 수지를 포함할 경우 상기 코팅층 형성성분은 경화제로써 접착강도 향상, 내수성 및 내약품성 향상 효과를 나타내는 폴리아미드 경화제를 더 포함할 수 있고, 이를 통해 후술하는 절연성 방열필러와의 상용성 향상에 매우 유리하고, 코팅층의 접착성, 내구성, 표면품질 등 모든 물성에 있어서 유리하며, 더불어 절연성 방열 코팅조성물이 적용될 피착면이 평활한 평면이 아닌 굴곡지거나 단차가 형성된 경우에 해당 부분에 형성된 코팅층에 크랙이 발생하거나 박리되는 것을 더욱 방지하는 이점이 있다.
또한, 상기 투명코팅층 형성성분은 구비되는 주제수지, 일예로 주제수지가 에폭시계 수지일 경우 에폭시계 수지 100 중량부에 대하여 상기 폴리아미드 경화제를 15 ~ 35의 중량부로, 바람직하게는 20 ~ 30의 중량부로, 가장 바람직하게는 30 중량부로 구비할 수 있다. 만일 폴리아미드 경화제가 15 중량부 미만으로 구비되는 경우 미경화 및/또는 내구성이 저하될 수 있다. 또한, 폴리아미드 경화제가 30 중량부를 초과할 경우 지나친 경화로 깨짐 현상 등이 발생할 수 있다.
한편, 상술한 코팅층 형성성분은 주제수지, 상기 주제수지가 경화형 수지일경우 상술한 경화제 이외에 경화촉진제를 더 포함할 수 있다. 상기 경화촉진제는 경화 속도나 경화물의 물성 등을 조정하기 위한 역할을 하며, 선택되는 경화제의 종류에 맞추어 공지된 경화촉진제를 선택하여 사용할 수 있고, 이에 대한 비제한적인 예로써, 아민류, 이미다졸류, 유기 포스핀류, 루이스산 경화촉진제 일 수 있다. 경화촉진제의 사용 일예는, 폴리아미드계 경화제를 사용할 경우 예를 들면 페놀류나 아민류의 경화 촉진제가 병용될 수 있고, 이때, 첨가량은 에폭시 수지의 당량 등을 고려하여 적절히 변경될 수 있다. 또한, 경화촉매 역시 선택되는 주제수지의 종류, 경화제의 종류 등을 고려하여 공지된 경화촉매를 선택할 수 있으며, 첨가량은 주제수지와 경화제의 함량, 경화조건 등을 고려하여 적절히 변경될 수 있어서 본 발명은 이에 대해 특별히 한정하지 않는다.
다음으로, 절연성 방열필러에 대하여 설명한다.
상기 절연성 방열필러는 그 재질에 있어서 절연성 및 방열성을 동시에 가지는 것이라면 제한 없이 선택할 수 있다. 또한, 상기 절연성 방열 필러의 형상, 크기는 제한이 없으며, 구조에 있어서도 다공질이거나 비다공질일 수 있고, 목적에 따라 달리 선택할 수 있어서 본 발명에서 이를 특별히 한정하지 않는다. 일예로, 상기 절연성 방열 필러는 탄화규소, 산화마그네슘, 이산화티타늄, 질화알루미늄, 질화규소, 질화붕소, 산화알루미늄, 실리카, 산화아연, 티탄산바륨, 티탄산스트론튬, 산화베릴륨, 산화망간, 산화지르코니아 및 산화붕소로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있다.
또한, 상기 절연성 방열필러는 평균입경이 10㎚ ~ 15㎛, 바람직하게는 평균입경이 0.1 ~ 13㎛일 수 있다. 일예로, 상기 절연성 방열필러는 평균입경이 5㎛일 수 있다. 만일 평균입경이 10㎚미만일 경우 제품단가의 상승 우려가 있고, 코팅층으로 구현된 후 표면에 묻어 나오는 절연성 방열필러의 양이 증가하여 방열성능 및 절연성이 저하될 수 있다. 또한, 평균입경이 15㎛를 초과하는 경우 광산란 및/또는 광반사가 증가하여 헤이즈가 높아짐에 따라서 광투과도가 저하될 수 있고, 코팅층 표면의 균일성이 저하될 수 있다.
또한, 상기 절연성 방열필러의 경우 표면이 실란기, 아미노기, 아민기, 히드록시기, 카르복실기 등의 관능기로 개질시킨 필러를 사용할 수 있고, 이때, 상기 관능기는 직접 필러의 표면에 결합되어 있을 수 있고, 또는 탄소수 1 ~ 20개의 치환 또는 비치환의 지방족 탄화수소나 탄소수 6 ~ 14개의 치환 또는 비치환의 방향족 탄화수소를 매개로 필러에 간접적으로 결합되어 있을 수 있다.
또한, 상기 절연성 방열 필러는 카본계, 금속 등의 공지된 전도성 방열필러를 코어로 하고, 절연성 성분이 상기 코어를 둘러싸는 코어쉘 타입의 필러일 수도 있다.
상기 절연성 방열필러는 상술한 주제수지 100 중량부에 대하여 5 ~ 30 중량부로 포함되고, 바람직하게는 10 ~ 25 중량부로, 가장 바람직하게는 16 중량부로 포함될 수 있다. 만일 상기 절연성 방열필러가 주제수지 100 중량부에 대하여 5 중량부 미만으로 포함되는 경우 열전도도가 낮기 때문에 목적하는 수준의 방열성능을 발현하지 못할 수 있다. 또한, 만일 절연성 방열필러가 30 중량부를 초과할 경우 구현된 코팅층의 접착력이 약화되어 박리가 쉽게 발생하고, 코팅층의 경도가 커져 물리적 충격에 취약할 수 있다. 또한, 코팅층의 표면에 돌출된 절연성 방열 필러가 많아짐에 따라서 표면거칠기가 증가하여 코팅층의 표면품질이 저하될 수 있다. 더불어 절연성 방열필러가 더 구비되더라도 방열성능의 향상 정도는 미미할 수 있다. 그리고 과량의 절연성 방열필러로 인하여 광산란 및/또는 광반사가 현저함에 따라서 코팅층을 투과하는 빛의 양이 저하되고, 이에 따라 투명도가 저하되기 때문에 코팅층을 형성한 이후의 육안식별이 요구되는 후 공정이 용이하지 않을 수 있다.
다음으로 투명 절연성 방열 코팅조성물에 더 포함될 수 있는 물성증진성분에 대해 설명한다.
상기 물성증진성분은 본 발명에 따른 투명 절연성 방열 코팅조성물이 피코팅면에 코팅되었을 때 보다 향상된 절연성/방열성을 발현시키고 동시에 뛰어난 접착성을 발현시켜 내구성을 향상시키는 기능을 담당한다.
상기 물성증진성분은 상술한 투명코팅층 형성성분의 주제수지와 함께 사용될 경우 목적한 물성의 상승작용을 일으켜 현저한 내구성과 방열성을 발현할 수 있도록, 3-[N-아닐-N-(2-아미노에틸)] 아미노프로필트리메톡시실란, 3-(N-아닐-N-글리시딜)아미노프로필트리메톡시실란, 3-(N-아닐-N-메타아크릴로닐]아미노프로필트리메톡시실란, 3-글리시딜 옥시프로필메틸에톡시실란, N,N-Bis[3-(트리메톡시시닐)프로필]메타아크릴아마이드, γ-글리시독시트리메틸디메톡시실란, 3-글리시딜옥시프로필트리메톡시실란, 3-글리시딜옥시프로필트리에톡시실란, 3-글리시딜옥시프로필메틸메톡시실란, 베타(3, 4 -에폭시 사이클로헥실)에틸트리메톡시실란, 3-메타아크릴록시프로필트리메톡시실란, 3-글리시독시프로필메틸디메톡시실란, 헵타데카플루오로데시트리메톡시실란, 3-메타아크릴록시프로필메틸디메톡시실란, 3-메타아크릴록시프로필트리스 (트리메틸실록시)실란, 메틸트리스(디메틸시록시)실란, 3-아미노프로필트리에폭시 실란, 3-메르캅토프로필트리메톡시 실란 및 N-(β-아미노에틸)-γ-아미노프로필트리메톡시실란으로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.
또한, 상기 물성증진성분은 바람직하게는 주제수지 100 중량부에 대하여 0.5 ~ 20 중량부로, 바람직하게는 0.5 ~ 15 중량부로, 가장 바람직하게는 1.5 중량부로 포함될 수 있다. 만일 물성증진성분이 0.5 중량부 미만으로 구비되는 경우 물성증진성분을 통한 방열성 및 접착성 향상 등 목적하는 물성을 동시에 목적하는 수준까지 달성하지 못할 수 있다. 또한, 20 중량부를 초과하여 구비되는 경우 피코팅면과의 부착력이 약화될 수 있다.
한편, 상술한 투명 절연성 방열 코팅조성물은 절연성 방열필러의 분산성을 향상시키고, 균일한 코팅층을 구현하기 위한 분산제, 용매를 더 포함할 수 있다.
상기 분산제는 절연성 방열필러의 분산제로 당업계에서 채용하는 공지된 성분을 사용할 수 있다. 일예로, 실리콘계 분산제, 폴리에스테르계 분산제, 폴리페닐렌에테르계 분산제; 폴리올레핀계 분산제, 아크릴로니트릴-부타디엔-스티렌 공중합체 분산제, 폴리아릴레이트계 분산제, 폴리아미드계 분산제, 폴리아미드이미드계 분산제, 폴리아릴설폰계 분산제, 폴리에테르이미드계 분산제, 폴리에테르설폰계 분산제, 폴리페닐렌 설피드계 분산제, 폴리이미드계 분산제, 폴리에테르케톤계분산제, 폴리벤족사졸계 분산제, 폴리옥사디아졸계 분산제, 폴리벤조티아졸계 분산제, 폴리벤즈이미다졸계 분산제, 폴리피리딘계 분산제, 폴리트리아졸계 분산제, 폴리피롤리딘계 분산제, 폴리디벤조퓨란계 분산제, 폴리설폰계 분산제, 폴리우레아계 분산제, 폴리우레탄계 분산제, 또는 폴리포스파젠계 분산제, 등을 들 수 있으며, 이들의 단독 또는 이들 중에 선택된 2종 이상의 혼합물 또는 공중합체를 사용할 수도 있다. 또한, 일예로, 상기 분산제는 실리콘계 분산제 일 수 있다.
또한, 상기 분산제는 바람직하게는 절연성 방열필러 100 중량부에 대하여 0.5 ~ 20 중량부로, 바람직하게는 1 ~ 10 중량부로, 가장 바람직하게는 3 중량부로 포함될 수 있다. 만일 분산제가 절연성 방열필러 100 중량부에 대하여 0.5 중량부 미만으로 구비될 경우 목적하는 수준으로 방열필러가 분산되지 않을 수 있고, 분산제가 20 중량부를 초과하여 구비될 경우 피착제의 부착 강도가 약해지거나 코팅 도막 표면에 핀홀(Pin hole) 및 오렌지 필(Orange Peel)이 발생할 수 있다.
또한, 상기 용매는 선택되는 주제수지, 경화제 등에 따라 이에 맞는 용매를 선택할 수 있어 본 발명에서는 이를 특별히 한정하는 것은 아니며, 상기 용매로는 각 성분의 적절한 용해를 가능케 하는 임의의 용매를 사용할 수 있고, 예를 들어, 물 등의 수계 용매, 알코올계 용매, 케톤계 용매, 아민계 용매, 에스테르계 용매, 아미드계 용매, 할로겐화 탄화수소계 용매, 에테르계 용매 및 퓨란계 용매로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.
또한, 상술한 절연성 방열 코팅조성물은 레벨링제, pH 조절제, 이온포착제, 점도조정제, 요변성(搖變性) 부여제, 산화방지제, 열안정제, 광안정제, 자외선흡수제, 착색제, 탈수제, 난연제, 대전방지제, 방미제(防黴劑), 방부제, 등의 각종 첨가제의 1 종류 또는 2 종류 이상이 첨가될 수도 있다. 상기 기재된 각종 첨가제는 당업계에 공지된 것을 사용할 수 있어 본 발명에서 특별히 한정하지 않는다.
상술한 본 발명의 일 실시예에 따른 투명 절연성 방열 코팅조성물은 점도가 25℃에서 5 ~ 2000cps, 바람직하게는 점도가 25℃에서 100 ~ 1800cps, 가장 바람직하게는 점도가 25℃에서 1,500cps일 수 있다. 만일 투명 절연성 방열 코팅조성물의 점도가 5 cps 미만일 경우 조성물의 흘러내림 등으로 코팅층의 생성이 어려울 수 있고, 생성 후에도 피코팅면과의 접착력이 약화될 수 있고, 2000 cps를 초과할 경우 얇은 두께의 코팅층으로 제조하기 어렵고, 제조되더라도 표면이 균일하지 않을 수 있으며, 코팅공정이 용이하지 않을 수 있고, 특히 스프레잉 방식의 코팅일 경우 더욱 코팅공정이 어려울 수 있다. 또한, 코팅층 내 절연성 방열필러의 분산성이 저하될 수 있다.
한편, 상술한 투명 절연성 방열 코팅조성물은 UV에 의한 황변을 방지하여 투명성을 향상시키기 위한 UV 안정제를 더 포함할 수 있다.
상기 UV 안정제는 절연성 방열 코팅조성물의 UV 안정제로 당업계에서 채용하는 공지된 성분을 사용할 수 있다. 일예로, 2-(2'-하이드록시-3, 5'-디(1, 1-디메틸벤질-페닐)-벤조트리아졸, 2-(2'-하이드록시- 3', 5'-디-터-부틸페닐)-벤조트리아졸, 2-(2'-하이드록시-3'-터부틸-5'-메틸페닐)-5-클로로-벤조트리아졸, 2-(2-하이드록시-5-터-옥틸페닐)-벤조트리아졸, 2-(5-메틸-2-하이드록시-페닐)-벤조트리아졸, 2,6-디-t-부틸-4-메틸페놀, 테트라키스[메틸렌-3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트]메탄, 옥타데실-3,5-디-t-부틸-4-하이드록시하이드로신나메이트, 2,2-메틸렌비스(4-메틸-6-t-부틸페놀), 트리스(2,4-디-t-부틸페닐)-포스파이트, 비스(2,4-디-t-부틸), 펜타에리스리톨-디-포스파이트 알킬에스터 포스파이트, 디라우릴 티오-디-프로피오네이트, 디-스테아릴 티오-디-프로피오네이트 및 디미리스틸 티오-디-프로피오네이트로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. 또한, 일예로, 상기 UV 안정제는 2-(2'-하이드록시-3, 5'-디(1, 1-디메틸벤질-페닐)-벤조트리아졸 일 수 있다.
또한, 상기 UV 안정제는 바람직하게는 주제수지 100 중량부에 대하여 0.05 ~ 2 중량부로, 바람직하게는 0.1 ~ 1.5 중량부로, 가장 바람직하게는 0.5 중량부로 포함될 수 있다. 만일 UV 안정제가 주제수지 100 중량부에 대하여 0.05 중량부 미만으로 구비될 경우 목적하는 효과를 발현할 수 없을 수 있고, 만일 UV 안정제가 2 중량부를 초과하여 구비되는 경우 코팅층의 부착 강도 및 내충격성이 저하될 수 있다.
한편, 상술한 투명 절연성 방열 코팅조성물은 코팅 건조 도막의 변색 방지, 산화에 의한 취성, 부착 강도 등의 물성 저하를 방지하기 위한 산화방지제를 더 포함할 수 있다.
상기 산화방지제는 절연성 방열 코팅조성물의 산화방지제로 당업계에서 채용하는 공지된 성분을 사용할 수 있다. 일예로, 상기 산화방지제는 트리-메틸포스페이트, 트리-페닐포스페이트, 트리스(2, 4-디-터트-부틸페닐)포스페이트, 트리에틸렌글리콜-비스-3-(3-터트-부틸-4-하이드록시-5-메틸페닐)프로피오네이트, 1, 6-헥세인-디올-3(3, 5-디-터트-부틸-4-하이드록시페닐)프로피오네이트, 펜타에리스리틸-테트라키스(3-(3, 5-디-터트-부틸-4-하이드록시페닐)프로피오네이트, 2-하이드록시벤조페논, 2-하이드록시페닐벤조티아졸, 힌더드 아민, 유기 니켈 화합물, 살리실산염, 신나메이트 유도체, 레조르시놀 모노벤조에이트, 옥사닐리드 및 p-하이드록시벤조에이트로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. 또한, 일예로, 상기 산화방지제는 2-하이드록시페닐벤조티아졸 일 수 있다.
또한, 상기 산화방지제는 바람직하게는 상기 주제수지 100 중량부에 대하여 0.1 ~ 3 중량부, 바람직하게는 0.1 ~ 1.5 중량부, 가장 바람직하게는 0.5 중량부로 더 포함될 수 있다. 만일 산화방지제가 주제수지 100 중량부에 대하여 0.1 중량부 미만으로 구비될 경우 변색이 발생할 수 있고, 만일 산화방지제가 3 중량부를 초과하여 구비되는 경우 취성 및 부착 강도가 약해질 수 있다.
한편, 두께 1.5mm의 알루미늄 플레이트에 상기 투명 절연성 방열 코팅조성물을 도포하여 경화된 두께 25 ㎛의 투명코팅층을 포함하는 본 발명에 따른 방열유닛은 하기 조건 (1)을 만족할 수 있다.
조건 (1)로써, 투명코팅층의 투명도 ≥ 60%일 수 있고, 바람직하게는 투명코팅층의 투명도 ≥ 70%일 수 있다.
상기 조건 (2)를 만족함에 따라 투명한 코팅층을 형성할 수 있기 때문에 코팅 후 피코팅면에 대한 육안식별이 요구되는 후 공정이 용이한 효과가 있다.
한편, 본 발명은 도 1에 도시된 것과 같이 기재(10a) 및 상기 기재(10a)의 외부면 적어도 일부분에 본 발명에 따른 투명 절연성 방열 코팅조성물이 도포되어 경화된 투명 절연성 방열 코팅층(10b)을 포함하는 방열유닛(100)을 포함한다. 방열성능의 향상을 위하여 회로기판에 금속 재질로 성형된 방열유닛을 직접 접촉하도록 적용하게 되면 전기적인 쇼트가 발생하는 등의 문제가 생길 수 있는데, 본 발명의 투명 절연성 방열 코팅조성물로 코팅층을 형성한 방열유닛의 경우 회로기판에 직접 접촉하도록 배치되는 경우에도 전기적 단락 등의 우려가 해소됨과 동시에 회로기판에서 발생하는 열을 효과적으로 외기로 방출시킬 수 있는 이점이 있다.
상기 기재(10a)는 기능적으로 방열특성의 유무와 관계없이 본 발명에 따른 절연성 방열 코팅조성물이 도포된 후 코팅층을 형성할 수 있을 정도의 기계적 강도를 갖는 경우 제한 없이 채용될 수 있다. 이에 재질적으로 상기 기재(10a)는 금속, 비금속 및 고분자 유기화합물 중 어느 하나 이상일 수 있다. 상기 금속의 경우 알루미늄, 구리, 아연, 은, 금, 철, 이들의 산화물 및 상기 금속들의 합금으로 이루어진 군으로부터 선택된 어느 하나의 금속 재질로 성형된 것일 수 있다.
또한, 상기 비금속은 산화알루미늄, 통상적으로 세라믹으로 통칭되는 성분일 수 있다. 또한, 상기 고분자 유기화합물은 폴리에틸렌, 폴리프로필렌, 폴리스티렌, 폴리염화비닐, 아크릴로니트릴-부타디엔-스티렌 수지(ABS), 아크릴로니트릴-스티렌 수지(AN), 메타크릴수지(PMMA), 폴리아미드, 폴리아세탈, 폴리카보네이트, 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트(PBT). 불소수지, 페녹시 수지, 페놀수지(PE), 유레아 수지(UF), 멜라민수지(MF), 불포화 폴리에스테르 수지(UP), 에폭시 수지, 폴리우레탄 수지와 같은 통상적으로 플라스틱으로 통칭되는 고분자 유기화합물일 수 있다.
상기 기재(10a)의 형상은 제한이 없다. 상기 기재(10a)가 방열특성을 갖는 기재일 경우 외부로 열을 방사시키기 위한 표면적을 넓히기 위하여 도 1과 같이 다수개의 첨상의 방열핀(10a1)이 구비된 구조일 수 있다. 또는, 도 2와 같이 밑판의 양 측단이 서로 대향하도록 상부로 절곡되어 방열핀의 기능을 수행하는 구조의 기재(11a)일 수 있다. 한편, 본 발명의 일 실시예에 의한 투명 절연성 방열 코팅조성물로 형성된 투명 절연성 방열코팅층(10b, 11b)은 향상된 방열성능을 발현함에 따라서 도 2와 같은 방열유닛(100')은 기재(11a)의 방열핀 개수가 도 1보다 적음에도 불구하고, 투명 절연성 방열코팅층이 구비되지 않은 채로 구조적으로 표면적이 증가된 도 1과 같은 형상만을 갖는 방열기재보다도 방열성능에서 월등히 우수할 수 있다. 이에 따라서 도 1과 같이 구조적으로 성형하기 어렵고, 제조시간과 제조단가가 상승할 수 있는 구조의 기재(10a)를 채용하지 않더라도 목적하는 수준의 방열성능을 달성할 수 있는 이점이 있다.
또한, 도 1과 같이 기재(10a)가 다수개의 방열핀(10a1)을 구비하는 복잡한 형상의 경우에도 투명 절연성 방열 코팅층의 접착성이 우수함에 따라서 구부러지거나 단차가 형성된 외부면에도 투명 절연성 방열코팅층이 박리되거나 크랙이 발생하지 않을 수 있다.
상기 기재(10a, 11a)의 두께, 길이, 폭 등은 방열유닛(100, 100')이 구비되는 적용처의 크기, 위치에 따라서 다양하게 변경될 수 있음에 따라서 본 발명은 이에 대해 특별히 한정하지 않는다.
또한, 도 2와 같이 상기 기재(11a)는 외부면과 투명 절연성 방열코팅층(11b) 사이에 기능층(11c)을 더 구비할 수 있고, 상기 기능층은 투명 절연성 방열코팅층(11b)의 접착성을 향상시키기 위한 별도의 프라이머층이거나 또는 방열성능의 향상을 위하여 기재(11a)의 외부면을 아노다이징 등의 표면 개질시켜 형성된 산화피막일 수 있다.
본 발명에 따른 투명 절연성 방열 코팅 조성물은 상술한 기재(10a, 11a)의 적어도 일영역에 피복되어 방열 코팅층을 형성하며, 도 1 및 도 2과 다르게 기재(10a, 11a) 일부분에만 투명 절연성 방열코팅층이 형성될 수 있다. 이는 일부 피복시 피복되는 면적은 목적하는 수준의 방열성능에 따라 달라질 수 있음에 따라서 본 발명은 이에 대해 특별히 한정하지 않는다.
상기 투명 절연성 방열코팅층(10b, 11b)은 본 발명에 따른 투명 절연성 방열 코팅조성물이 기재의 외부면 상에서 경화되어 형성된다. 상기 투명 절연성 방열코팅층(10b, 11b)을 형성시키는 구체적인 방법은 투명 절연성 방열 코팅조성물을 기재에 코팅시키는 공지된 방법을 선택하여 사용할 수 있고, 이에 대한 비제한적인 예로써 스프레이, 딥 코팅, 실크 스크린, 롤 코팅, 침적 코팅 또는 스핀 코팅 등의 방법으로 다양한 기재 위에 도포하여 제조할 수 있다.
상기 코팅 후 경화 시 사용되는 투명코팅층 형성성분의 주제수지 종류, 경화형 주제 수지일 경우 함께 구비되는 경화제의 종류에 따라서 열 및/또는 광을 처리하여 코팅조성물을 투명코팅층으로 구현시킬 수 있다. 가해지는 열의 온도 및/또는 광의 세기와 처리 시간 등은 사용되는 주제수지 종류, 경화제의 종류, 이들의 함량, 도막두께 등에 따라 차이가 있을 수 있다. 일예로, 상술한 에폭시 수지를 주제수지로 포함하고, 폴리아미드 경화제를 구비하는 경우 기재의 변형점 미만의 온도인 130℃ 내지 150℃의 온도 하에서 1분 내지 60분간 처리될 수 있다. 만일 처리온도가 130℃ 미만일 경우, 투명 절연성 방열 코팅조성물이 기재상에 피복되기 어렵고, 처리온도가 150℃를 초과할 경우 기재의 변형이나 방열층의 파괴 및 제조단가가 상승될 수 있다. 또한, 처리 공정시간이 1분 미만일 경우 역시 기재상에 투명 방열 코팅 조성물이 피복되기 어렵고, 표면처리 공정시간이 60분을 초과할 경우, 상기 절연성 방열장치의 제조시간이 불필요하게 증가하기 때문에 1분 내지 60분간 표면처리 공정이 진행되는 것이 바람직하다.
또한, 본 발명에 사용되는 투명 절연성 방열 코팅조성물은 고체 기재, 특히 금속기재와 접촉시킨 후 공기 중에 노출시켜 상온 또는 50℃ 이하의 온도에서 수분 내에 끈적거림이 없이 신속하게 경화하는 피막을 형성함으로써 작업장에서 먼지 등에 의한 오염 가능성이 적고 최종 경화도 비교적 낮은 온도에서 수행할 수 있어 작업성이 우수할 뿐만 아니라 경화 중에 금속기재의 변형도 방지할 수 있다.
형성된 투명 절연성 방열 코팅층(10b, 11b)은 두께가 5 ~ 55㎛일 수 있고, 보다 바람직하게는 10 ~ 50㎛일 수 있다. 일예로 형성된 투명 절연성 방열 코팅층은 두께가 25㎛일 수 있다. 만일 두께가 55㎛를 초과하는 경우 코팅 표면에 끓음 현상 등이 발생할 수 있고, 두께가 5㎛ 미만일 경우 방열 특성이 저하될 수 있다.
또한, 상기 투명 절연성 방열 코팅층(10b, 11b)은 방열 코팅층 전체 중량에 대하여 절연성 방열필러를 15 ~ 40 중량%로, 바람직하게는 20 ~ 25 중량%로 포함할 수 있다. 일예로, 상기 투명 절연성 방열 코팅층(10b, 11b)은 방열 코팅층 전체 중량에 대하여 절연성 방열필러를 27 중량%로 포함할 수 있다. 구현된 투명코팅층 내에 절연성 방열필러가 15 중량% 미만으로 구비되는 경우 목적하는 수준의 방열성능을 발현하지 못할 수 있다. 또한, 만일 절연성 방열필러가 40 중량%를 초과할 경우 코팅층의 접착력이 약화되어 박리가 쉽게 발생하고, 코팅층의 경도가 커져 물리적 충격에 쉽게 깨지거나 부스러질 수 있다. 또한, 코팅층의 표면에 돌출된 절연성 방열필러가 많아짐에 따라서 표면거칠기가 증가하여 코팅층의 표면품질이 저하될 수 있다. 더불어 절연성 방열 필러가 더 구비되더라도 방열성능의 향상 정도는 미미할 수 있다. 또한, 광산란 및/또는 광반사가 현저함에 따라서 코팅층을 투과하는 빛의 양이 저하되고, 이에 따라 투명도가 저하되기 때문에 코팅층을 형성한 이후의 육안식별이 요구되는 후 공정이 용이하지 않을 수 있다.
한편, 본 발명은 소자가 실장된 회로기판 외부면의 적어도 일부분에 본 발명에 따른 절연성 방열 코팅조성물이 도포되어 경화된 절연성 방열 코팅층을 포함하는 절연성 방열 회로기판을 포함한다.
상기 소자는 구동칩과 같은 전자기기내 회로기판에 실장되는 공지된 소자일 수 있으며, 전자파 및/또는 열을 발생하거나 전자파에 민감하여 쉽게 오작동 되는 소자일 수 있다.
또한, 상기 회로기판은 전자기기에 구비되는 공지된 회로기판일 수 있으며, 일예로 PCB, FPCB일 수 있다. 상기 회로기판의 크기, 두께는 구현하고자 하는 전자기기의 내부설계에 따라 변경이 가능함에 따라서 본 발명은 이에 대해 특별히 한정하지 않는다.
한편, 도 3에서 볼 수 있듯이 일반적인 방열 절연 코팅을 수행할 경우 피코팅면이 육안으로 식별이 불가하기 때문에 육안식별이 요구되는 후 공정이 용이하지 않을 수 있다. 반면에, 도 4에서 볼 수 있듯이 본 발명의 투명 절열성 방열 코팅조성물을 통해 투명코팅층을 형성한 기판은 피코팅면의 글씨가 보이는 등 피코팅면의 육안식별이 가능하기 때문에 코팅 후 피코팅면에 대한 육안식별이 요구되는 후 공정이 용이한 효과가 있다.
한편, 본 발명의 투명 절연성 방열 코팅층을 형성시키는 투명 방열 코팅 조성물은 코팅층과 기재간의 우수한 접착력, 향상된 내습성 및 내후성, 절연성 방열필러의 습윤성을 향상시킬 수 있으며, 컴파운딩 시 점도저하 및 절연성 방열 코팅층이 형성된 기재 표면 연성을 증가시킬 수 있다. 또한, 우수한 방열성 및 절연성, 유기용매에 대해 뛰어난 내용매성을 발현하며, 경화시 변색이 없고, 열전도의 조절이 용이함에 따라 이로 구현된 절연성 방열코팅층을 포함하는 절연성 방열유닛은 향상된 물성을 지속적으로 발현할 수 있다. 또한, 투명한 코팅층을 형성할 수 있기 때문에 코팅 후 피코팅면에 대한 육안식별이 요구되는 후 공정이 용이한 효과가 있다. 이에 따라서 투명성, 절연성 및 방열성이 동시에 요구되는 각종 전기전자 부품이 실장된 회로기판, LED 램프 등의 조명장치, 디스플레이 장치 등의 전기전자, 자동차, 에너지, 항공우주 산업 전반에 널리 응용될 수 있다.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.
<실시예 1>
주제수지로 에폭시 수지 100 중량부에 대하여, 경화제로 폴리아마이드 수지를 30 중량부, 절연성 방열필러로 평균입경이 5㎛인 탄화규소를 16 중량부, 물성증진성분으로 3-아미노프로필트리에폭시 실란을 1.5 중량부, UV 안정제로 2-하이드록시 페닐 벤조트리아졸을 0.5 중량부 및 산화방지제로 페놀계 산화방지제(BASF사, IRGANOX 3114)를 0.5 중량부, 상기 절연성 방열필러 100 중량부에 대하여 분산제로 습윤분산제(BYK사, DISPERBYK-145)를 3 중량부 혼합하여 투명 절연성 방열 코팅조성물을 제조하였다. 이때, 상기 혼합은 외부공기가 차단된 밀폐된 교반기에서 교반속도 800rpm의 조건으로 30분 동안 수행하였고, 제조된 투명 절연성 방열 코팅조성물는 25℃에서의 점도가 1,500cps 였다.
<실시예 2 ~ 15 및 비교예 1 ~ 3>
실시예 1과 동일하게 실시하여 제조하되, 하기 표 1 내지 표 3과 같이 방열필러의 함량, 평균입경, 분산제 함량 및 조성물의 점도 등을 변경하여 표 1 내지 표 3과 같은 투명 절연성 방열 코팅조성물을 제조하였다.
<실험예>
실시예 및 비교예에 따라 제조한 투명 절연성 방열 코팅조성물을 알루미늄 재질(Al 1050)의 두께 1.5㎜, 가로×세로가 각각 35㎜×34㎜인 기재 전면에 최종 두께가 25㎛가 되도록 스프레잉 코팅하여 처리 후 150℃ 온도로 10분간 열처리하여 절연성 방열코팅층이 형성된 방열유닛을 제조한 후 하기의 물성을 평가하여 표 1 내지 표 3에 나타내었다.
1. 열전도성 평가
가로, 세로, 높이 각각 32㎝×30㎝×30㎝인 아크릴 챔버 중앙에 방열유닛을 위치시킨 후 챔버 내부의 온도와 방열유닛의 온도를 25±0.2℃가 되도록 조절하였다. 이후 방열유닛에 열원으로 가로, 세로 각각 20㎜×20㎜의 LED를 TIM(열전도성 테이프 : 1W/mk)을 사용하여 붙여서 시험시편을 제조하였다. 제조된 시편의 열원에 2.1W(DC 3.9V, 0.53A)의 입력전력을 인가하여 열을 발생시키고, 90분 유지한 후 방열유닛의 온도를 측정하여 열전도율을 평가하였다. 구체적으로 열전도율은 투명코팅층이 구비되지 않은 기재에 대해 동일 조건에서 측정한 온도를 기준으로 하여 하기 수학식 1에 따라서 계산하였다.
[수학식 1]
Figure PCTKR2017014512-appb-I000001
2. 열방사효율 평가
가로, 세로, 높이 각각 32㎝×30㎝×30㎝인 아크릴 챔버 중앙에 방열유닛을 위치시킨 후 챔버 내부의 온도와 방열유닛의 온도를 25±0.2℃가 되도록 조절하였다. 이후 방열유닛에 열원으로 가로, 세로 각각 20㎜×20㎜의 LED를 TIM(열전도성 테이프 : 1W/mk)을 사용하여 붙여서 시험시편을 제조하였다. 제조된 시편의 열원에 2.1W(DC 3.9V, 0.53A)의 입력전력을 인가하여 열을 발생시키고, 90분 유지한 후 방열유닛 정중앙의 상부 5cm 지점의 온도를 측정하여 열방사율을 평가하였다. 구체적으로 열방사율은 투명코팅층이 구비되지 않은 기재에 대해 동일 조건에서 측정한 온도를 기준으로 하여 하기 수학식 2에 따라서 계산하였다.
[수학식 2]
Figure PCTKR2017014512-appb-I000002
3. 방열성능의 균일성 평가
가로, 세로, 높이 각각 32㎝×30㎝×30㎝인 아크릴 챔버 중앙에 방열유닛을 위치시킨 후 챔버 내부의 온도와 방열유닛의 온도를 25±0.2℃, 챔버 내부의 습도를 50%가 되도록 조절하였다. 이후 방열유닛에 열원으로 가로, 세로 각각 20㎜×20㎜의 LED를 TIM(열전도성 테이프 : 1W/mk)을 사용하여 붙여서 시험시편을 제조하였다. 제조된 시편의 열원에 2.1W(DC 3.9V, 0.53A)의 입력전력을 인가하여 열을 발생시키고, 90분 유지한 후, 방열유닛 상부면 정중앙을 중심점으로 하는 반경 15㎜의 원 위의 임의의 10개 점에서의 온도를 측정하여 하기 수학식 3에 따라 발열온도의 오차를 계산하였다. 오차가 작을수록 방열성능이 균일하다고 볼 수 있고, 투명코팅층의 방열필러 분산성이 높다고 해석할 수 있다. 발열온도의 오차 중 최대 값을 하기 표 1 내지 4에 나타내었다.
[수학식 3]
Figure PCTKR2017014512-appb-I000003
4. 내구성 평가
온도가 60℃, 상대습도가 90%인 챔버내 방열유닛을 배치한 후 480시간 경과 후 방열유닛의 표면상태를 육안으로 평가하였다. 평가결과 투명코팅층의 크랙, 박리(들뜸) 유무를 확인하여 이상이 없는 경우 ○, 이상이 발생한 경우 ×로 나타내었다.
5. 접착성 평가
내구성을 평가한 시편에 대하여 1㎜ 간격이 되도록 나이프로 크로스 컷팅을 했다. 이후 컷팅된 면에 스카치테이프를 부착하고 60° 각도로 잡아당겨 투명코팅층이 박리되는 상태를 확인한다. 평가기준은 ISO 2409에 의거하여 평가했다. (5B: 0%, 4B: 5%이하, 3B: 5~15%, 2B: 15~35%, 1B: 35~65%, 0B: 65%이상)
6. 표면품질평가
방열유닛의 표면품질을 확인하기 위하여, 손으로 표면을 만져보아 울퉁불퉁하거나 거친 느낌이 있는지 확인하였다. 매끄러운 느낌이 있는 경우 5, 거친느낌이 있는 부분의 면적이 방열유닛 외부면 전체 면적 중 2% 이하일 경우 4, 2% 초과 5% 이하의 면적일 경우 3, 5%초과 10% 이하의 면적일 경우 2, 10%초과 20% 이하의 면적일 경우 1, 20%초과의 면적일 경우 0으로 나타내었다.
7. 투명도 평가
ASTM D 1003에 의거하여 투명도 측정장비(Nippon Denshoku사, SH7000)로 투명도를 평가하였다.
구분 실시예1 실시예2 실시예3 실시예4 실시예5 실시예6
방열필러 함량(중량부) 16 10 25 16 16 16
평균입경(㎛) 5 5 5 0.003 0.1 13
분산제 함량(중량부) 3 3 3 3 3 3
점도(cps) 1500 1500 1500 1500 1500 1500
열전도율(%) 17.83 17.29 18.20 12.03 17.22 17.51
열방사효율(%) 89 83 94 61 89 90
발열온도의 오차(%) 0.5 0.6 0.4 0.5 0.5 0.4
내구성
접착성 5B 5B 5B 3B 5B 5B
표면품질 5 5 5 5 5 4
투명도(%) 74 79 70 75 74 70
구분 실시예7 실시예8 실시예9 실시예10 실시예11 실시예12
방열필러 함량(중량부) 16 16 16 16 16 16
평균입경(㎛) 20 5 5 5 5 5
분산제 함량(중량부) 3 0.1 1 10 25 3
점도(cps) 1500 1500 1500 1500 1500 3
열전도율(%) 16.87 17.21 17.63 17.58 17.39 17.25
열방사효율(%) 87 86 88 89 87 87
발열온도의 오차(%) 2.7 5.2 1.4 0.4 0.3 0.4
내구성 × ×
접착성 3B 5B 5B 5B 3B 2B
표면품질 0 5 5 5 5 5
투명도(%) 53 75 74 74 57 73
구분 실시예13 실시예14 실시예15 비교예1 비교예2 비교예3
방열필러 함량(중량부) 16 16 16 1 35 -
평균입경(㎛) 5 5 5 5 5 -
분산제 함량(중량부) 3 3 3 3 3 -
점도(cps) 100 1800 2300 1500 1500 1500
열전도율(%) 17.51 17.43 17.49 13.17 18.33 4.49
열방사효율(%) 88 87 87 61 96 3
발열온도의 오차(%) 0.5 1.5 3.2 7.3 0.5 0
내구성 ×
접착성 5B 5B 4B 5B 1B 5B
표면품질 5 5 2 5 1 5
투명도(%) 72 74 73 88 47 80
상기 표 1 내지 표 3에서 알 수 있듯이,
본 발명에 따른 방열필러의 함량, 평균입경, 경화제 함량, 분산제 함량 및 조성물의 점도 등을 모두 만족하는 실시예 1 ~ 3, 5, 6, 9, 10, 13 및 14가, 이 중에서 하나라도 누락된 실시예 4, 7, 8, 11, 12, 15 및 비교예 1 ~ 3에 비하여 열전도율, 열방사성, 방열성능의 균일성, 내구성, 접착성 및 표면품질이 우수한 동시에 헤이즈가 낮아서 투명도가 높고, 온도감소율이 낮아서 방열성능이 현저히 우수한 것을 알 수 있다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (18)

  1. 주제수지를 포함하는 투명코팅층 형성성분; 및
    상기 주제수지 100 중량부에 대하여 5 ~ 30 중량부로 포함되는 절연성 방열필러;를 포함하는 투명 절연성 방열 코팅조성물.
  2. 제1항에 있어서,
    상기 주제수지는 에폭시 수지, 아크릴계 수지, 폴리아마이드계 수지, 우레탄계 수지, 우레아계 수지, 멜라민계 수지, 폴리에스테르계 수지, 페녹시 수지, 페놀계 수지, 실리콘계 수지, 폴리에틸렌 수지, 폴리프로필렌 수지, 폴리스티렌 수지, 폴리염화비닐 수지, 염소화 폴리에틸렌 수지, 폴리염화부티랄 수지 및 에틸렌비닐아세테이트 수지로 이루어진 군에서 선택된 1종 이상을 구비하는 투명 절연성 방열 코팅조성물.
  3. 제1항에 있어서,
    상기 주제수지는 비결정성 수지인 투명 절연성 방열 코팅조성물.
  4. 제1항에 있어서,
    상기 주제수지는 경화형 수지이며, 상기 투명코팅층 형성성분은 상기 주제수지 100 중량부에 대하여 15 ~ 35 중량부로 경화제를 더 포함하는 투명 절연성 방열 코팅조성물.
  5. 제1항에 있어서,
    상기 절연성 방열필러는 탄화규소, 산화마그네슘, 이산화티타늄, 질화알루미늄, 질화규소, 질화붕소, 산화알루미늄, 실리카, 산화아연, 티탄산바륨, 티탄산스트론튬, 산화베릴륨, 산화망간, 산화지르코니아 및 산화붕소로 이루어진 군에서 선택된 1 종 이상을 포함하는 투명 절연성 방열 코팅조성물.
  6. 제1항에 있어서,
    상기 절연성 방열필러의 평균입경은 10㎚ ~ 15㎛인 투명 절연성 방열 코팅조성물.
  7. 제1항에 있어서,
    상기 투명 절연성 방열 코팅조성물은 부착성 향상을 위한 물성증진성분을 더 포함하는 투명 절연성 방열 코팅조성물.
  8. 제7항에 있어서,
    상기 물성증진성분은 3-[N-아닐-N-(2-아미노에틸)] 아미노프로필트리메톡시실란, 3-(N-아닐-N-글리시딜)아미노프로필트리메톡시실란, 3-(N-아닐-N-메타아크릴로닐]아미노프로필트리메톡시실란, 3-글리시딜 옥시프로필메틸에톡시실란, N,N-Bis[3-(트리메톡시시닐)프로필]메타아크릴아마이드, γ-글리시독시트리메틸디메톡시실란, 3-글리시딜옥시프로필트리메톡시실란, 3-글리시딜옥시프로필트리에톡시실란, 3-글리시딜옥시프로필메틸메톡시실란, 베타(3, 4 -에폭시 사이클로헥실)에틸트리메톡시실란, 3-메타아크릴록시프로필트리메톡시실란, 3-글리시독시프로필메틸디메톡시실란, 헵타데카플루오로데시트리메톡시실란, 3-메타아크릴록시프로필메틸디메톡시실란, 3-메타아크릴록시프로필트리스 (트리메틸실록시)실란, 메틸트리스(디메틸시록시)실란, 3-아미노프로필트리에폭시 실란, 3-메르캅토프로필트리메톡시 실란 및 N-(β-아미노에틸)-γ-아미노프로필트리메톡시실란으로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함하는 투명 절연성 방열 코팅조성물.
  9. 제7항에 있어서,
    상기 물성증진성분은 주제수지 100 중량부에 대하여 0.5 ~ 20 중량부로 포함되는 투명 절연성 방열 코팅조성물.
  10. 제1항에 있어서,
    상기 투명 절연성 방열 코팅조성물은 25℃에서의 점도가 5 ~ 2000 cps인 투명 절연성 방열 코팅조성물.
  11. 제1항에 있어서,
    상기 투명 절연성 방열 코팅조성물은 분산제를 상기 절연성 방열필러 100 중량부에 대하여 0.5 ~ 20 중량부 더 포함하는 투명 절연성 방열 코팅조성물.
  12. 제1항에 있어서,
    상기 투명 절연성 방열 코팅조성물은 UV에 의한 황변을 방지하기 위한 UV 안정제를 더 포함하는 투명 절연성 방열 코팅조성물.
  13. 제12항에 있어서,
    상기 UV 안정제는 주제수지 100 중량부에 대하여 0.05 ~ 2 중량부로 포함되는 투명 절연성 방열 코팅조성물.
  14. 제1항에 있어서,
    상기 투명 절연성 방열 코팅조성물은 산화방지제를 상기 주제수지 100 중량부에 대하여 0.1 ~ 3 중량부 더 포함하는 투명 절연성 방열 코팅조성물.
  15. 제1항에 있어서,
    두께 1.5mm의 알루미늄 플레이트에 상기 투명 절연성 방열 코팅조성물을 도포하여 경화된 두께 25 ㎛의 투명코팅층을 포함하는 방열유닛이 하기 조건 (1)을 만족하는 투명 절연성 방열 코팅조성물:
    (1) 투명코팅층의 투명도 ≥ 60% 임.
  16. 방열부재 또는 지지부재; 및
    제1항 내지 제15항 중 어느 한 항에 따른 투명 절연성 방열 코팅조성물이 상기 방열부재 또는 지지부재 외부면의 적어도 일부분에 도포되어 경화된 투명 절연성 방열 코팅층;을 포함하는 절연성 방열유닛.
  17. 제16항에 있어서,
    상기 투명 절연성 방열 코팅층의 두께는 5 ~ 55㎛인 절연성 방열유닛.
  18. 소자가 실장된 회로기판; 및
    제1항 내지 제15항 중 어느 한 항에 따른 투명 절연성 방열 코팅조성물이 상기 회로기판 외부면의 적어도 일부분에 도포되어 경화된 투명 절연성 방열 코팅층;을 포함하는 절연성 방열 회로기판.
PCT/KR2017/014512 2016-12-12 2017-12-12 투명 절연성 방열 코팅조성물, 이를 통해 형성된 방열유닛 및 방열 회로기판 WO2018110929A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0168631 2016-12-12
KR20160168631 2016-12-12

Publications (1)

Publication Number Publication Date
WO2018110929A1 true WO2018110929A1 (ko) 2018-06-21

Family

ID=62559056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014512 WO2018110929A1 (ko) 2016-12-12 2017-12-12 투명 절연성 방열 코팅조성물, 이를 통해 형성된 방열유닛 및 방열 회로기판

Country Status (2)

Country Link
KR (1) KR20180067455A (ko)
WO (1) WO2018110929A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109921143A (zh) * 2019-03-15 2019-06-21 福建南平南孚电池有限公司 一种具有改进的散热结构的可充电电池
CN110240841A (zh) * 2019-04-30 2019-09-17 太仓巨仁光伏材料有限公司 一种太阳能电池片黑色焊带及其制作方法
CN112226135A (zh) * 2020-09-23 2021-01-15 深圳市艾比森光电股份有限公司 防水散热涂覆材料和led显示屏
CN116496652A (zh) * 2023-06-29 2023-07-28 优美特(北京)环境材料科技股份公司 一种丙烯酸粉末涂料及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102354305B1 (ko) * 2019-06-20 2022-01-21 주식회사 포스코 열전도-전기절연성 도료 조성물 및 이를 포함하는 태양전지용 외장재 강판
KR102645116B1 (ko) * 2023-11-30 2024-03-07 (주)알피전자 세라믹 방열부재 및 세라믹 방열부재의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100454A (ja) * 2011-10-14 2013-05-23 Jnc Corp 放熱塗料組成物とそれを用いた放熱部材
JP2013121903A (ja) * 2011-12-12 2013-06-20 Sumitomo Bakelite Co Ltd フィラー、絶縁層形成用組成物、絶縁層形成用フィルムおよび基板
WO2014084555A1 (ko) * 2012-11-30 2014-06-05 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판
KR20160014971A (ko) * 2014-07-30 2016-02-12 한국전기연구원 고투명, 내열성 및 절연성을 갖는 하이브리드 코팅소재의 제조방법
KR20160131955A (ko) * 2015-05-06 2016-11-16 주식회사 아모그린텍 디스플레이 장치용 방열유닛 및 이를 포함하는 디스플레이 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783263B1 (ko) 2007-01-08 2007-12-06 권병일 히트싱크 제조용 프레스장치 및 히트싱크 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100454A (ja) * 2011-10-14 2013-05-23 Jnc Corp 放熱塗料組成物とそれを用いた放熱部材
JP2013121903A (ja) * 2011-12-12 2013-06-20 Sumitomo Bakelite Co Ltd フィラー、絶縁層形成用組成物、絶縁層形成用フィルムおよび基板
WO2014084555A1 (ko) * 2012-11-30 2014-06-05 엘지이노텍 주식회사 에폭시 수지 조성물 및 이를 이용한 절연층을 포함하는 인쇄 회로 기판
KR20160014971A (ko) * 2014-07-30 2016-02-12 한국전기연구원 고투명, 내열성 및 절연성을 갖는 하이브리드 코팅소재의 제조방법
KR20160131955A (ko) * 2015-05-06 2016-11-16 주식회사 아모그린텍 디스플레이 장치용 방열유닛 및 이를 포함하는 디스플레이 장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109921143A (zh) * 2019-03-15 2019-06-21 福建南平南孚电池有限公司 一种具有改进的散热结构的可充电电池
CN109921143B (zh) * 2019-03-15 2023-12-26 福建南平南孚电池有限公司 一种具有改进的散热结构的可充电电池
CN110240841A (zh) * 2019-04-30 2019-09-17 太仓巨仁光伏材料有限公司 一种太阳能电池片黑色焊带及其制作方法
CN112226135A (zh) * 2020-09-23 2021-01-15 深圳市艾比森光电股份有限公司 防水散热涂覆材料和led显示屏
CN116496652A (zh) * 2023-06-29 2023-07-28 优美特(北京)环境材料科技股份公司 一种丙烯酸粉末涂料及其应用
CN116496652B (zh) * 2023-06-29 2023-09-22 优美特(北京)环境材料科技股份公司 一种丙烯酸粉末涂料及其应用

Also Published As

Publication number Publication date
KR20180067455A (ko) 2018-06-20

Similar Documents

Publication Publication Date Title
WO2018110929A1 (ko) 투명 절연성 방열 코팅조성물, 이를 통해 형성된 방열유닛 및 방열 회로기판
WO2017204565A1 (ko) 절연성 방열 코팅조성물 및 이를 통해 형성된 절연성 방열유닛
WO2018128368A1 (ko) 절연성 방열 코팅조성물 및 이를 통해 구현된 절연성 방열 물품
WO2017171392A1 (ko) 차량 히터용 ptc 유닛, 이를 구비하는 ptc 히터 및 차량용 공조장치
WO2015093903A1 (ko) 방열성이 우수한 금속 봉지재, 그 제조방법 및 상기 금속 봉지재로 봉지된 유연전자소자
WO2018199517A1 (ko) 엘이디모듈 및 이를 포함하는 엘이디 조명장치
WO2017204562A1 (ko) 코일부품
KR101837512B1 (ko) 방열 코팅조성물 및 이를 통해 형성된 방열유닛
EP2293656A1 (en) Metal base circuit board
WO2013100502A1 (ko) Mccl용 절연 접착제 조성물, 이를 이용한 도장 금속판 및 그 제조방법
KR20180101272A (ko) 방열 분체 도료 조성물, 이를 통해 제조된 방열 분체 도료 및 그 제조방법
JP2007001266A (ja) エポキシ樹脂無機複合シート及び成形品
KR20180127227A (ko) 방열복합재 및 이의 제조방법
WO2018084518A1 (ko) 코어-쉘 구조의 은 코팅된 구리 나노와이어를 포함하는 에폭시 페이스트 조성물 및 이를 포함하는 도전성 필름
WO2018212611A1 (ko) 방열복합재 및 이의 제조방법
US10856423B2 (en) Prepreg, printed circuit board, semiconductor package, and method for producing printed circuit board
KR102611441B1 (ko) 절연성 방열 코팅조성물 및 이를 통해 구현된 절연성 방열 물품
WO2016163830A1 (ko) 방열 코팅조성물 및 이를 통해 형성된 방열유닛
WO2020262980A1 (ko) 접착 조성물 및 이를 포함하는 커버레이 필름 및 인쇄회로기판
WO2023013834A1 (ko) 방열 도료 조성물, 이의 제조방법, 이로부터 형성된 방열 코팅막 및 이를 포함하는 히트씽크
KR101387086B1 (ko) 절연-방열 마스터 배치 및 절연-방열체
TWI761513B (zh) 樹脂薄片及半導體裝置
KR102285579B1 (ko) 방열 도료 조성물 및 이를 적용한 led 등기구
WO2015093825A1 (ko) 고방열 세라믹 복합체, 이의 제조방법, 및 이의 용도
KR102063667B1 (ko) 디스플레이 장치용 방열유닛 및 이를 포함하는 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880470

Country of ref document: EP

Kind code of ref document: A1