WO2018128368A1 - 절연성 방열 코팅조성물 및 이를 통해 구현된 절연성 방열 물품 - Google Patents

절연성 방열 코팅조성물 및 이를 통해 구현된 절연성 방열 물품 Download PDF

Info

Publication number
WO2018128368A1
WO2018128368A1 PCT/KR2018/000088 KR2018000088W WO2018128368A1 WO 2018128368 A1 WO2018128368 A1 WO 2018128368A1 KR 2018000088 W KR2018000088 W KR 2018000088W WO 2018128368 A1 WO2018128368 A1 WO 2018128368A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
insulating heat
coating composition
insulating
coating layer
Prior art date
Application number
PCT/KR2018/000088
Other languages
English (en)
French (fr)
Inventor
이환구
황승재
김범준
황문영
Original Assignee
주식회사 아모센스
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모센스, 주식회사 아모그린텍 filed Critical 주식회사 아모센스
Priority to CN201880002714.2A priority Critical patent/CN109563361B/zh
Priority to EP18736442.7A priority patent/EP3567083B1/en
Priority to US16/316,142 priority patent/US20210284850A1/en
Publication of WO2018128368A1 publication Critical patent/WO2018128368A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • C08G59/502Polyalkylene polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • C08G59/623Aminophenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/42Gloss-reducing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades

Definitions

  • the present invention relates to an insulating heat dissipation coating composition, and more particularly, to an insulating heat dissipation coating composition expressing heat dissipation and insulation at the same time, and an insulating heat dissipation article implemented through the same.
  • a heat radiating member is mounted to the part having heat.
  • Heat dissipation members such as heat sinks or heat sinks, are typically made of metals with high thermal conductivity so that heat within the device or components can be quickly released to the outside.
  • the heat sink is a plurality of heat dissipation fins that are uniformly protruded on the front surface by heating and melting aluminum, copper and its alloy material at a high temperature state, and then extrusion molding using a mold having a predetermined shape. Structure has been generally employed.
  • the fillers to improve the heat dissipation performance provided in the heat dissipation coating layer may have conductivity as there are many conductive components, in which case there is a problem that it is difficult to use in applications requiring heat dissipation and electrical insulation.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an insulating heat dissipation coating composition that can realize an insulating heat dissipation coating layer exhibiting excellent heat dissipation performance as well as thermal conductivity.
  • another object of the present invention is to provide an insulating heat dissipation coating composition capable of realizing an insulating heat dissipation coating layer provided by being in direct contact with various electrical and electronic components or devices requiring heat dissipation as well as having heat dissipation.
  • the present invention is very excellent in adhesion to the surface to be coated, the peeling of the insulating heat-resistant coating layer is significantly prevented during use, and the durability of the insulating heat-resistant coating layer against physical and chemical stimuli such as external heat, organic solvents, moisture, impact, etc. It is another object to provide an insulating heat dissipating coating composition that can be maintained.
  • an object of the present invention is to provide an insulating heat dissipation coating composition which can realize an insulating heat dissipation coating layer having excellent surface quality due to excellent surface smoothness of the insulating heat dissipation coating layer formed thereon.
  • the present invention has another object to provide an insulating heat dissipation coating composition that can exhibit a uniform insulation and heat dissipation performance by excellent dispersibility of the heat dissipation filler dispersed in the insulating heat dissipation coating layer formed.
  • the present invention has another object to provide an insulating heat dissipating article that exhibits excellent heat dissipation characteristics without an electrical short even when such insulating heat dissipating coating composition is treated to an adherend requiring various insulating properties.
  • the coating layer forming component comprising a main resin; It provides an insulating heat dissipation coating composition comprising; and an insulating heat dissipation filler contained in 25 to 70 parts by weight based on 100 parts by weight of the main resin.
  • the main resin is a glycidyl ether type epoxy resin, glycidylamine type epoxy resin, glycidyl ester type epoxy resin, linear aliphatic epoxy resin, rubber modified epoxy It may include an epoxy resin having at least one selected from the group consisting of resins and derivatives thereof.
  • the main resin may include a compound represented by the following Chemical Formula 1.
  • R 1 and R 2 are each independently a hydrogen atom, a straight alkyl group of C1 to C5 or a C3 to C5 crushed alkyl group
  • R 3 and R 4 are each independently a hydrogen atom, a straight alkyl group of C1 to C5 Or a C3 to C5 crushed alkyl group, wherein n is a rational number such that the weight average molecular weight of the compound represented by Chemical Formula 1 is 400 to 4000.
  • the insulating heat dissipation filler may have a thermal conductivity of 130 to 200 W / m ⁇ K.
  • the coating layer forming component may be included from 25 to 100 parts by weight based on 100 parts by weight of the main resin.
  • the curing agent may include at least one member selected from the group consisting of an aliphatic polyamine curing agent, an aromatic polyamine curing agent, an acid anhydride curing agent and a catalyst curing agent.
  • the curing agent may include a first curing agent including an aliphatic polyamine curing agent and a second curing agent including at least one selected from the group consisting of an aromatic polyamine-based, acid anhydride-based curing agent, and a catalyst-based curing agent. It may be included in the weight ratio.
  • the aliphatic polyamine-based curing agent may include polyethylene polyamine.
  • the insulating heat-dissipating coating composition may further include from 0.5 to 20 parts by weight of a physical property enhancing component for improving adhesion to 100 parts by weight of the main resin.
  • the physical property enhancing component is 3- [N- anyl-N- (2-aminoethyl)] aminopropyl trimethoxysilane, 3- (N- anyl-N- glycidyl) aminopropyl trimethoxy silane, 3- (N-anyl-N-methacrylonyl] aminopropyltrimethoxysilane, 3-glycidyl oxypropylmethylethoxysilane, N, N-Bis [3- (trimethoxycinyl) propyl] Methacrylamide, ⁇ -glycidoxycitrimethyldimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxypropylmethylmethoxysilane, Beta (3,4-epoxy cyclohexyl) ethyltrimethoxysilane, 3-methacryloxypropyltri
  • the insulating heat dissipation filler may include silicon carbide.
  • the insulating heat dissipation filler may have an average particle diameter of 10nm to 15 ⁇ m.
  • the insulating heat dissipation filler may have a ratio of D50 and D97 of 1: 4.5 or less.
  • the insulating heat dissipation coating composition may have a viscosity of 5 ⁇ 600 cps.
  • the insulating heat-dissipating coating composition is one selected from the group consisting of talc, zinc oxide, zinc sulfide, metal oxide, hydroxyl, sulfide, azo, nitro and phthalocyanine based on 100 parts by weight of the main resin.
  • the insulating heat-dissipating coating composition is tri-zinc bis (orthophosphate), triphenyl phosphate (Tryphenyl phosphate), trixylenyl phosphate, tricresyl phosphate (Tricresyl phosphate) based on 100 parts by weight of the main resin , Triisophenyl phosphate, Tri-Choloroethylphosphate, Tri-Chloroprophyphosphate, Resorcinol di-phosphate, Aromatic polyphosphate, Polyphosphoric acid ammonium (Polyphosphoric acid ammonium) and Red Phosphorous may include 10 to 35 parts by weight of a flame retardant including at least one selected from the group consisting of.
  • the insulating heat dissipation coating composition may further include 0.5 to 20 parts by weight of a dispersant based on 100 parts by weight of the insulating heat dissipation filler.
  • a heat dissipation unit including an insulating heat dissipation coating layer having a thickness of 25 ⁇ m cured by treating the insulating heat dissipation coating composition on an aluminum plate having a thickness of 1.5 mm may satisfy the following condition (1).
  • a heat dissipation unit comprising an insulating heat dissipation coating layer having a thickness of 25 ⁇ m and cured by treating the insulating heat dissipation coating composition on an aluminum plate having a thickness of 1.5 mm and a width ⁇ length of 35 mm ⁇ 34 mm, respectively, may satisfy the following condition (2). Can be.
  • the present invention is a heat radiation member or a support member; And an insulating heat dissipation coating layer in which the insulating heat dissipation coating composition according to the present invention is treated on at least a portion of the outer surface of the heating member or the support member and cured.
  • the insulating heat dissipation coating layer may have a relative gain of thermal conductivity according to Equation 2 below 200%.
  • the thickness of the insulating heat dissipation coating layer may be 15 ⁇ 50 ⁇ m.
  • the insulating heat dissipation unit may have a resistance value of 10 10 to 10 14 ⁇ s / sq per unit area.
  • the present invention is a circuit board mounted element; And an insulating heat dissipation coating composition in which the insulating heat dissipation coating composition according to the present invention is treated and cured on at least a portion of an outer surface of the circuit board.
  • the present invention provides an insulating heat dissipation component comprising a; an insulating heat dissipation coating layer is cured by treating the insulating heat dissipation coating composition according to the invention on at least a portion of the outer surface.
  • the insulating heat dissipation coating composition of the present invention is excellent in thermal radiation as well as thermal conductivity to express excellent heat dissipation performance, and at the same time can implement an insulating heat dissipation coating layer having insulation.
  • the insulating heat dissipation coating layer implemented through this has excellent adhesion to the surface to be coated, and thus prevents peeling of the insulating heat dissipation coating layer during use, and is formed as an insulating heat dissipation coating layer, and then external heat, organic solvent, moisture, impact, etc.
  • the durability of the insulating heat dissipation coating layer can be maintained even in the physical and chemical stimulation of the.
  • the insulating heat dissipation coating layer is excellent, and thus, the insulating heat dissipation coating layer may be widely applied to an industry in which insulation and heat dissipation are simultaneously required.
  • FIG. 1 and 2 are a perspective view and a partial cross-sectional view of an insulating heat dissipation unit according to various embodiments of the present invention
  • FIG. 3 is a cross-sectional view of an insulating heat dissipation circuit board having an insulating heat dissipation coating layer according to an embodiment of the present invention
  • FIG. 4 is a cross-sectional view of a heat sink for LED lighting having an insulating heat-dissipating coating layer according to an embodiment of the present invention.
  • Insulating heat dissipation coating composition is a coating layer forming component comprising a main resin; And an insulating heat dissipation filler included in an amount of 25 to 70 parts by weight based on 100 parts by weight of the main resin.
  • the coating layer forming component may include a main resin, and may further include a curing agent when the main resin is a curable resin.
  • the main resin may form a coating layer, and may be used without limitation in the case of components known in the art.
  • the heat dissipation performance is improved at the same time as the adhesiveness to the substrate to be coated, heat resistance not embrittled by heat of the heat-generating substrate, insulation not embrittled by electrical stimulation, mechanical strength, and compatibility with insulating heat dissipation filler are improved.
  • the main resin is glycidyl ether type epoxy resin, glycidylamine type epoxy resin, glycidyl ester type epoxy resin, linear aliphatic epoxy resin, rubber modified epoxy resin, It may include an epoxy resin having at least one selected from the group consisting of derivatives thereof.
  • the glycidyl ether type epoxy resin includes glycidyl ethers of phenols and glycidyl ethers of alcohols.
  • glycidyl ethers of the phenols bisphenol A type, bisphenol B type, bisphenol AD type, and bisphenol Bisphenol-based epoxys such as S-type, bisphenol-F and resorcinol, phenol novolac epoxy, aralkylphenol novolac, phenolic novolacs and terpene-phenol novolacs and o-cresolnovolac
  • cresol novolak-type epoxy resins such as epoxy, and these can be used individually or in combination of 2 or more types.
  • the glycidyl ester type epoxy resin may be an epoxy resin such as hydroxycarboxylic acid such as p-hydroxybenzoic acid or ⁇ -hydroxy naphthoic acid, and polycarboxylic acid such as phthalic acid or terephthalic acid. can do.
  • linear aliphatic epoxy resins examples include 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, cyclohexanedimethanol, glycerin, trimethylolethane, thirimethylolpropane, pentaerythritol, and dodecahydro bisphenol A. It may be glycidyl ether by dodecahydro bisphenol F, ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, etc., and can be used individually or in combination of 2 or more types.
  • the rubber-modified epoxy resin is not particularly limited as long as it is an epoxy resin having rubber and / or polyether in its skeleton.
  • an epoxy resin CBN-modified compound
  • CBR-modified epoxy resins acrylonitrile-butadiene rubber-modified epoxy resins
  • silicone-modified epoxy resins such as silicone-modified epoxy resins, and may be used alone or in combination of two or more.
  • the insulating heat dissipation filler which will be described later, in particular, has excellent compatibility with silicon carbide, particularly in terms of heat dissipation characteristics, durability improvement of the insulating heat dissipation coating layer, surface quality improvement of the insulating heat dissipation coating layer, and dispersibility of the heat dissipation filler.
  • the main resin may include a compound represented by Formula 1 below.
  • R 1 and R 2 are each independently a hydrogen atom, a straight alkyl group of C1 to C5 or a crushed alkyl group of C3 to C5, preferably a hydrogen atom, a straight alkyl group of C1 to C3 or a crushed alkyl group of C3 to C4
  • R 3 and R 4 are each independently a hydrogen atom, a straight alkyl group of C1 to C5 or a crushed alkyl group of C3 to C5, preferably a hydrogen atom, a straight alkyl group of C1 to C3 or a crushing of C3 to C4 N is an alkyl group
  • the weight average molecular weight of the compound represented by the formula (1) is 400 to 4000, preferably 450 to 3900.
  • the weight average molecular weight of the compound represented by Chemical Formula 1 is less than 400, the flowability of the coating composition may be increased, thereby making it difficult to generate an insulating heat-dissipating coating layer, and even after the production, the adhesive strength with the surface to be coated may be reduced.
  • the average molecular weight exceeds 4000, it is difficult to produce an insulating heat dissipation coating layer with a uniform thickness, and the dispersibility of the heat dissipation filler in the coating composition is lowered, so that it may be difficult to express uniform insulation and heat dissipation performance when forming the insulating heat dissipation coating layer.
  • the curing agent included in the coating layer forming component together with the epoxy resin that can be used as the above-described main resin may vary the type depending on the specific type of epoxy that can be selected, the specific type is a curing agent known in the art It may be used, preferably an aliphatic polyamine-based curing agent, an aromatic polyamine-based curing agent, an acid anhydride-based curing agent and a catalyst-based curing agent may include any one or more components.
  • the aliphatic polyamine-based curing agent may be, for example, polyethylenepolyamine, preferably diethylene triamine (DETA), diethyl amino propylamine (DEAPA), triethylene tetramine (TETA), tetraethylene pentamine It may comprise one or more selected from the group consisting of (TEPA) and mentan diamine (MDA).
  • DETA diethylene triamine
  • DEAPA diethyl amino propylamine
  • TETA triethylene tetramine
  • TEPA mentan diamine
  • MDA mentan diamine
  • aromatic polyamine-based curing agent may include one or more selected from the group consisting of metaphenyl diamine (MPDA), diamino diphenyl sulfone (DDS) and diphenyl diamino methane (DDM).
  • MPDA metaphenyl diamine
  • DDS diamino diphenyl sulfone
  • DDM diphenyl diamino methane
  • the acid anhydride-based curing agent for example, phthalic anhydride (PA), tetrahydrophthalic anhydride (THPA), methyl tetrahydrophthalic anhydride (MTHPA), hexa hydrophthalic anhydride It may include one or more selected from the group consisting of a hydride (HHPA) and methyl nadic anhydride (MNA).
  • PA phthalic anhydride
  • THPA tetrahydrophthalic anhydride
  • MTHPA methyl tetrahydrophthalic anhydride
  • HHPA methyl nadic anhydride
  • MNA methyl nadic anhydride
  • the catalyst-based curing agent for example, dicyandiamide (DICY), melamine, polymer captan, methylene diphenyl diisocyanate (MDI), toluene diisocyanate (TDI), BF 3 mono ethylene amine (BF 3 -MEA), benzyl It may include one or more selected from the group consisting of a catalyst-based curing agent including one or more selected from the group consisting of dimethyl amine (BDMA) and phenyl imidazole.
  • DICY dicyandiamide
  • MDI methylene diphenyl diisocyanate
  • TDI toluene diisocyanate
  • BF 3 mono ethylene amine BF 3 -MEA
  • benzyl It may include one or more selected from the group consisting of a catalyst-based curing agent including one or more selected from the group consisting of dimethyl amine (BDMA) and phenyl imidazole.
  • BDMA dimethyl amine
  • the coating layer forming component is a curing agent and an aromatic polyamine-based, including an aliphatic polyamine-based curing agent as a curing agent
  • a second hardener including at least one selected from the group consisting of an acid anhydride curing agent and a catalyst curing agent may be included.
  • the curing agent may include the first and second curing agents in a weight ratio of 1: 0.5 to 1.5, preferably in a weight ratio of 1: 0.6 to 1.4.
  • the weight ratio of the first hardener and the second hardener is less than 1: 0.5, the adhesion strength with the adherend may be weakened. If the weight ratio exceeds 1: 1.4, the elasticity of the coating film may be lowered and the durability is poor. You may not.
  • the coating layer forming component may be included in the curing agent 25 to 100 parts by weight, preferably 40 to 80 parts by weight based on 100 parts by weight of the main resin. If the curing agent is provided in less than 25 parts by weight of the resin may be uncured, or the durability of the insulating insulating coating layer formed may be reduced. In addition, when the curing agent exceeds 100 parts by weight, cracks may occur in the insulating heat dissipation coating layer or the insulating heat dissipation coating layer may be broken.
  • the insulating heat dissipating filler may be selected without limitation as long as it has insulating and heat dissipating properties in its material.
  • the shape and size of the insulating heat dissipation filler is not limited, and may also be porous or nonporous in structure, and may be differently selected according to the purpose.
  • the insulating heat dissipating filler may be silicon carbide, magnesium oxide, titanium dioxide, aluminum nitride, silicon nitride, boron nitride, aluminum oxide, silica, zinc oxide, barium titanate, strontium titanate, beryllium oxide, manganese oxide, zirconia oxide, and boron oxide.
  • It may include one or more selected from the group consisting of.
  • it may include one or more selected from the group consisting of.
  • preferably in terms of excellent insulation and heat dissipation performance, ease of formation of an insulating heat dissipation coating layer, uniform insulation and heat dissipation performance after formation of the insulating heat dissipation coating layer, surface quality of the insulating heat dissipation coating layer, etc. May be silicon carbide.
  • a filler whose surface is modified with a functional group such as a silane group, an amino group, an amine group, a hydroxy group, or a carboxyl group may be used, wherein the functional group may be directly bonded to the surface of the filler, or It may be indirectly bonded to the filler via a substituted or unsubstituted aliphatic hydrocarbon having 1 to 20 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon having 6 to 14 carbon atoms.
  • a functional group such as a silane group, an amino group, an amine group, a hydroxy group, or a carboxyl group
  • the functional group may be directly bonded to the surface of the filler, or It may be indirectly bonded to the filler via a substituted or unsubstituted aliphatic hydrocarbon having 1 to 20 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon having 6 to 14 carbon atoms.
  • the insulating heat dissipation filler may be a core shell type filler having a known conductive heat dissipation filler such as carbon-based metal or the like as a core and an insulating component surrounding the core.
  • the insulating heat dissipating filler may have an average particle diameter of 10nm to 15 ⁇ m, preferably 30nm to 12 ⁇ m. If the average particle diameter is less than 10nm, there is a concern that the cost of the product may be increased, and the heat radiation performance may be deteriorated by increasing the amount of the insulation radiation filler buried on the surface after being implemented with the insulation radiation coating layer. In addition, if the average particle diameter exceeds 15 ⁇ m, the uniformity of the surface may be lowered.
  • the insulating heat dissipation filler provided to improve the dispersibility of the heat dissipating heat filler may have a ratio of D50 and D97 of 1: 4.5 or less, preferably 1: 1.2 to 3.5. If the ratio of D50 and D97 exceeds 1: 4.5, the uniformity of the surface decreases, the dispersibility of the heat dissipation filler may not be good, and the heat dissipation effect may not appear uniformly. The degree may be relatively high, but may not express the desired heat dissipation characteristics. D50 and D97 refer to particle diameters of the insulating heat dissipation filler when the cumulative degree is 50% and 97%, respectively, in the volume cumulative particle size distribution.
  • the volume% from the smallest particle size is obtained from the smallest particle size with respect to the volume accumulation value (100%) of all particles.
  • Particle diameters corresponding to cumulative values of 50% and 97%, respectively, correspond to D50 and D97.
  • the volume cumulative particle size distribution of the insulating heat dissipating filler can be measured using a laser diffraction scattering particle size distribution device.
  • the insulating heat dissipation filler can be used by changing the particle diameter according to the coating film thickness of the insulating heat dissipation coating layer to form an average particle diameter, for example, when forming an insulating heat dissipation coating layer having a thickness of 25 ⁇ m 1 ⁇ 7 ⁇ m A filler may be used, and when forming an insulating heat dissipation coating layer having a thickness of 35 ⁇ m, a heat dissipation filler having an average particle diameter of 8 to 12 ⁇ m may be used.
  • an insulating heat dissipation filler that satisfies both the average particle diameter range of the heat dissipation filler and the ratio range of the D50 and D97.
  • the insulating heat dissipating filler may be included in an amount of 25 to 70 parts by weight based on 100 parts by weight of the above-described main resin, and preferably 35 to 60 parts by weight for further improved physical properties. If the insulating heat dissipation filler is included in less than 25 parts by weight based on 100 parts by weight of the main resin may not exhibit the desired level of heat dissipation performance. In addition, if the insulating heat dissipation filler exceeds 70 parts by weight, the adhesive strength of the insulating heat dissipation coating layer is weakened, so that peeling occurs easily, and the hardness of the insulating heat dissipation coating layer is increased, so that it may be easily broken or broken by physical impact.
  • the surface roughness may increase, thereby degrading the surface quality of the insulating heat dissipation coating layer.
  • the degree of improvement in heat dissipation performance may be insignificant.
  • the composition is difficult to uniformly process the surface to be coated during coating by some coating methods, for example, a spraying method.
  • Dispersibility of the dispersed heat dissipation filler is reduced, even if the composition is treated on the surface to be coated, the heat dissipation filler may be arranged to be distributed non-uniformly, which may make it difficult to express uniform insulation and heat dissipation performance on the entire surface of the insulating heat dissipation coating layer. have.
  • the physical property enhancing component is responsible for improving durability by expressing improved insulation / heat resistance and at the same time excellent adhesiveness when the insulating heat dissipation coating composition according to the present invention is coated on the coated surface.
  • the physical property enhancing component may be a silane-based compound, and may be used without limitation in the case of a known silane-based compound employed in the art, but when used together with silicon carbide among the main resin and the insulating heat-dissipating filler of the above-described coating layer forming component, 3- [N-anyl-N- (2-aminoethyl)] aminopropyltrimethoxysilane, 3- (N-aniyl-N-glycol, to produce synergistic properties and to develop significant durability and heat dissipation Cydyl) aminopropyltrimethoxysilane, 3- (N-anyl-N-methacrylonyl] aminopropyltrimethoxysilane, 3-glycidyl oxypropylmethylethoxysilane, N, N-Bis [3 -(Trimethoxycinyl) propyl] methacrylamide, ⁇ -glycidoxycitylmethyldimethoxysilane,
  • the physical property enhancing component may be included in an amount of 0.5 to 20 parts by weight based on 100 parts by weight of the main resin. If the physical property enhancing component is provided in less than 0.5 parts by weight, it may not be possible to achieve the desired physical properties simultaneously to the desired level, such as heat dissipation and adhesion through the physical property enhancing component. In addition, when provided in excess of 20 parts by weight may be weakened the adhesion with the surface to be coated.
  • the above-mentioned insulating heat-dissipating coating composition may further include a colorant for minimizing the reduction of color loss due to light, air, moisture or extreme temperature and a matting agent for removing the light to exhibit stability of the surface of the coating film. .
  • the colorant may include at least one selected from the group consisting of talc, zinc oxide, zinc sulfide, metal oxide, hydroxyl, sulfide, azo, nitro and phthalocyanine, preferably talc.
  • the colorant may be included in 30 to 60 parts by weight, preferably 35 to 55 parts by weight based on 100 parts by weight of the main resin, but is not limited thereto.
  • the matting agent is one or more selected from the group consisting of titanium dioxide, aerogel silica, hydrogel silica, PP wax, PE wax, PTFE wax, urea formaldehyde resin and benzoguamine formaldehyde resin, It may preferably comprise titanium dioxide.
  • the matting agent may be included in 30 to 60 parts by weight, preferably 35 to 55 parts by weight based on 100 parts by weight of the main resin, but is not limited thereto.
  • Talc that can be used as the colorant and titanium dioxide that can be used as a quencher may be used as a filler together with the insulating heat dissipating filler to improve the breakdown voltage characteristics.
  • the above-mentioned insulating heat dissipation coating composition may further include a flame retardant for improving the flame retardancy of the insulating heat dissipation coating layer.
  • the flame retardant may be a known component employed in the art as a flame retardant.
  • the flame retardant may be included in 10 to 35 parts by weight, preferably 15 to 30 parts by weight based on 100 parts by weight of the main resin.
  • the above-described insulating heat dissipation coating composition may further include a dispersant and a solvent for improving the dispersibility of the insulating heat dissipation filler and implementing a uniform insulating heat dissipation coating layer.
  • the dispersant may be a known component employed in the art as a dispersant of the insulating heat-insulating filler.
  • silicone dispersant polyester dispersant, polyphenylene ether dispersant; Polyolefin dispersant, acrylonitrile-butadiene-styrene copolymer dispersant, polyarylate dispersant, polyamide dispersant, polyamideimide dispersant, polyarylsulfone dispersant, polyetherimide dispersant, polyethersulfone dispersant, poly Phenylene sulfide dispersant, polyimide dispersant, polyether ketone dispersant, polybenzoxazole dispersant, polyoxadiazole dispersant, polybenzothiazole dispersant, polybenzimidazole dispersant, polypyridine dispersant, polytria Sol type dispersants, polypyrrolidine type dispersants, polydibenzofuran type dispersants, polysulfone type dispersants,
  • the dispersant may be included in an amount of 0.5 to 20 parts by weight with respect to 100 parts by weight of the insulating heat dissipation filler. If the dispersant is provided in less than 0.5 parts by weight with respect to 100 parts by weight of the insulating heat-dissipating filler may not exhibit the desired effect, when the dispersant is provided in excess of 20 parts by weight of the adhesive is weakened or the coating film Pin holes and orange peels may occur on the surface.
  • the solvent may be selected according to the selected main resin, the curing agent and the like, and the present invention is not particularly limited thereto, and the solvent may be used any solvent that enables the proper dissolution of each component,
  • an aqueous solvent such as water, an alcohol solvent, a ketone solvent, an amine solvent, an amine solvent, an ester solvent, an amide solvent, a halogenated hydrocarbon solvent, an ether solvent, and a furan solvent
  • an aqueous solvent such as water, an alcohol solvent, a ketone solvent, an amine solvent, an amine solvent, an ester solvent, an amide solvent, a halogenated hydrocarbon solvent, an ether solvent, and a furan solvent
  • an aqueous solvent such as water, an alcohol solvent, a ketone solvent, an amine solvent, an amine solvent, an ester solvent, an amide solvent, a halogenated hydrocarbon solvent, an ether solvent, and a furan solvent
  • One or more selected species may be used.
  • the above-described insulating heat-dissipating coating composition may be a leveling agent, a pH adjusting agent, an ion trapping agent, a viscosity adjusting agent, a thixotropic agent, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a colorant, a dehydrating agent, a flame retardant, and an electrification agent.
  • a leveling agent a pH adjusting agent, an ion trapping agent, a viscosity adjusting agent, a thixotropic agent, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a colorant, a dehydrating agent, a flame retardant, and an electrification agent.
  • One kind or two or more kinds of various additives such as an inhibitor, a preservative, and an antiseptic may be added.
  • the various additives described above may use those known in the art and are not particularly limited in the present invention.
  • Insulating heat dissipation coating composition may have a viscosity of 5 ⁇ 600 cps at 25 °C. If the viscosity of the insulating heat dissipation coating composition is less than 5 cps, it may be difficult to generate the insulating heat dissipation coating layer due to the flow down of the composition, and after the formation, the adhesive strength to the coated surface may be weakened, and if the thickness exceeds 600 cps, the thickness is thin. It is difficult to manufacture an insulating heat-dissipating coating layer of the, even if the surface may not be uniform, the coating process may not be easy, especially in the case of spraying coating may be more difficult coating process. In addition, the dispersibility of the insulating heat dissipation filler in the insulating heat dissipation coating layer may be reduced.
  • the above-described insulating heat dissipating coating composition may further include a UV stabilizer for preventing yellowing by UV.
  • the UV stabilizer may be a known component employed in the art as a UV stabilizer of the insulating heat dissipation coating composition.
  • the UV stabilizer may be further included in 0.05 to 2 parts by weight based on 100 parts by weight of the main resin. If the UV stabilizer is provided in less than 0.05 parts by weight based on 100 parts by weight of the main resin, it may not be able to express the desired effect, if the UV stabilizer is provided in excess of 2 parts by weight of the adhesive strength of the insulating heat-resistant coating layer Impact may be lowered.
  • the insulating heat-dissipating coating composition described above may further include an antioxidant for preventing discoloration of the coating dry coating, brittleness by oxidation, deterioration of physical properties such as adhesion strength.
  • the antioxidant may be a known component employed in the art as an antioxidant of the insulating heat dissipation coating composition.
  • the antioxidant is tri-methylphosphate, tri-phenylphosphate, tris (2,4-di-tert-butylphenyl) phosphate, triethyleneglycol-bis-3- (3-tert-butyl-4-hydro Hydroxy-5-methylphenyl) propionate, 1, 6-hexane-diol-3 (3, 5-di-tert-butyl-4-hydroxyphenyl) propionate, pentaerythryl-tetrakis (3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2-hydroxybenzophenone, 2-hydroxyphenylbenzothiazole, hindered amine, organic nickel compound, salicylate, cinnamate
  • the derivative may include at least one selected from the group consisting of resorcinol monobenzoate, oxanilide, and p-hydroxy
  • the antioxidant may preferably further comprise 0.1 to 3 parts by weight based on 100 parts by weight of the main resin. If the antioxidant is provided in less than 0.1 part by weight with respect to 100 parts by weight of the main resin, discoloration may occur, and if the antioxidant is provided in excess of 3 parts by weight, brittleness and adhesion strength may be weakened.
  • a heat dissipation unit comprising an insulating heat dissipation coating layer having a thickness of 25 ⁇ m and cured by treating the insulating heat dissipation coating composition on an aluminum plate having a thickness of 1.5 mm and a width ⁇ length of 35 mm ⁇ 34 mm, respectively, may satisfy the following condition (1). Can be.
  • a heat source is placed at the center of the bottom of the heat dissipation unit in a closed system at 25 ° C and a humidity of 50%, and after 10 minutes, any ten of a circle having a radius of 15 mm around the center of the top of the heat dissipation unit as a center point.
  • the error of the exothermic temperature calculated according to Equation 1 may be within ⁇ 1% at each point.
  • Equation 1 As the error of the heat generation temperature calculated according to Equation 1 is close to 0% at each point, it means that the heat dissipation filler is uniformly dispersed, so that the heat dissipation characteristics of the manufactured heat dissipation unit appear uniformly.
  • the insulating heat dissipation coating composition that implements the insulating heat dissipation coating layer satisfying the condition (1) has a high heat dissipation property of the heat dissipation filler in the insulating heat dissipation coating composition. Can be represented.
  • a heat dissipation unit comprising an insulating heat dissipation coating layer having a thickness of 25 ⁇ m and cured by treating the insulating heat dissipation coating composition on an aluminum plate having a thickness of 1.5 mm and a width ⁇ length of 35 mm ⁇ 34 mm, respectively, may satisfy the following condition (2). Can be.
  • a heat source having a temperature of 88 ° C. was placed at the center of the bottom of the heat dissipation unit in a closed system having a humidity of 50 ° C. at 25 ° C., and after 90 minutes, the temperature was measured at the top 5 cm of the center of the heat dissipation unit according to Equation 3 below.
  • the calculated thermal radiation efficiency may be 10% or more, preferably 10 to 100%.
  • the high thermal radiation efficiency calculated according to Equation 3 means that the heat radiation characteristics are excellent and the heat can be radiated quickly.
  • the heat dissipation unit including the insulating heat dissipation coating layer cured by treating the insulating heat dissipation coating composition according to the above condition (2) may exhibit excellent heat dissipation characteristics, in particular heat dissipation characteristics.
  • the heat source shown in the conditions (1) and (2) can be used without limitation as long as the temperature exceeds 25 ° C. and can be maintained at a constant temperature.
  • the heat source may be an LED having a predetermined power consumption. Can be.
  • the present invention includes an insulating heat dissipating layer 10b hardened by treating the substrate 10a and the insulating heat dissipation coating composition according to the present invention on at least a portion of an outer surface of the substrate 10a as shown in FIG. 1. It includes a heat dissipation unit (100).
  • the heat dissipation unit formed of a metallic material is directly contacted with the circuit board to improve the heat dissipation performance, there may be a problem such as an electric short.
  • the insulating heat dissipation coating layer is formed by the insulating heat dissipation coating composition of the present invention.
  • the substrate 10a may be employed without limitation if the substrate 10a has a mechanical strength enough to form an insulating heat dissipation coating layer after the insulating heat dissipation coating composition according to the present invention is processed, regardless of whether it has a heat dissipation characteristic.
  • the substrate 10a may be at least one of a metal, a nonmetal, and a polymer organic compound.
  • the metal may be molded of any one metal material selected from the group consisting of aluminum, copper, zinc, silver, gold, iron, oxides thereof, and alloys of the metals.
  • the base metal may be a component commonly referred to as aluminum oxide, commonly ceramic.
  • the polymer organic compound is polyethylene, polypropylene, polystyrene, polyvinyl chloride, acrylonitrile-butadiene-styrene resin (ABS), acrylonitrile-styrene resin (AN), methacryl resin (PMMA), polyamide, Polyacetal, polycarbonate, polyethylene terephthalate (PET), polybutylene terephthalate (PBT).
  • Plastics such as fluorocarbon resins, phenoxy resins, phenolic resins (PE), urea resins (UF), melamine resins (MF), unsaturated polyester resins (UP), epoxy resins, and polyurethane resins Can be.
  • the shape of the substrate 10a is not limited.
  • the substrate 10a may have a structure in which a plurality of peak heat dissipation fins 10a 1 are provided as shown in FIG.
  • both side ends of the bottom plate may be bent upward to face each other, and thus may be a substrate 11a having a function of performing a heat radiation fin.
  • the insulating heat dissipation coating layers 10b and 11b formed of the insulating heat dissipation coating composition according to an embodiment of the present invention exhibit improved heat dissipation performance, so that the heat dissipation unit 100 'as shown in FIG.
  • FIG. 2 is the number of heat dissipation fins of the substrate 11a. Although less than FIG. 1, it may be superior in heat dissipation performance than the heat dissipation base having only the shape as shown in FIG. 1 in which structural surface area is increased without the insulating heat dissipation coating layer. Accordingly, as shown in FIG. 1, it is difficult to mold structurally, and there is an advantage in that a desired level of heat dissipation performance can be achieved without employing the substrate 10a having a structure in which manufacturing time and manufacturing cost can be increased.
  • the first substrate (10a) with a plurality of radiating fins (10a 1) the case of having a complicated shape, which in the bent according to the excellent adhesion of the insulating heat-dissipating coating step is formed, or the insulating heat dissipation coating layer peeling in the outer surface Cracks may not occur.
  • the thickness, length, width, etc. of the substrates 10a and 11a may be variously changed according to the size and location of the application where the heat dissipation units 100 and 100 'are provided, and thus the present invention is not particularly limited thereto. .
  • the substrate 11a may further include a functional layer 11c between the outer surface and the insulating heat dissipation coating layer 11b, and the functional layer may improve the adhesion of the insulating heat dissipation coating layer 11b.
  • the functional layer may improve the adhesion of the insulating heat dissipation coating layer 11b.
  • it may be a separate primer layer or an oxide film formed by surface modification such as anodizing the outer surface of the substrate 11a.
  • the insulating heat-dissipating coating composition according to the present invention is coated on at least one region of the above-described substrate (10a, 11a) to form an insulating heat-dissipating coating layer, unlike the FIGS. 1 and 2 only the portion of the substrate (10a, 11a) insulating heat-resistant coating Can be formed. This is because the area covered in some coating may vary depending on the desired level of heat dissipation performance, so the present invention is not particularly limited thereto.
  • the insulating heat dissipation coating layers 10b and 11b are formed by curing the insulating heat dissipation coating composition according to the present invention on the outer surface of the substrate.
  • Specific methods for forming the insulating heat dissipation coating layer (10b, 11b) can be used by selecting a known method for coating an insulating heat dissipation coating composition on a substrate, non-limiting examples of spray, dip coating, silk screen, roll It can be prepared by treating on various substrates by a method such as coating, dip coating or spin coating.
  • the coating composition may be implemented as an insulating heat dissipating layer by treating heat and / or light depending on the type of main resin and the type of the curing agent.
  • the temperature of heat applied and / or the light intensity and treatment time may vary depending on the type of main resin used, the type of curing agent, their content, coating thickness, and the like.
  • the above-mentioned epoxy resin is included as a main resin, and includes at least one selected from the group consisting of a first curing agent including an aliphatic polyamine curing agent, an aromatic polyamine curing agent, an acid anhydride curing agent, and a catalyst curing agent.
  • the treatment may be performed for 1 minute to 60 minutes at a temperature of 130 ° C.
  • the treatment temperature is less than 130 °C, it is difficult to coat the insulating heat-dissipating coating composition on the substrate, if the treatment temperature exceeds 150 °C deformation of the substrate or breakage of the heat radiation layer and the manufacturing cost may be increased.
  • the treatment process time is less than 1 minute, it is difficult to coat the insulating heat dissipation coating composition on the substrate, and when the surface treatment process time exceeds 60 minutes, the manufacturing time of the insulation heat dissipation device is unnecessarily increased to 1 minute. It is preferable that the surface treatment process proceeds for 60 minutes.
  • the insulating heat-dissipating coating composition used in the present invention is exposed to air after contact with a solid substrate, in particular a metal substrate, to form a film that quickly cures without stickiness in moisture at room temperature or below 50 °C in the workplace, It is less likely to be contaminated by dust and the final curing can be performed at a relatively low temperature, so that the workability is excellent and the deformation of the metal substrate can be prevented during curing.
  • the insulating insulating coating layers 10b and 11b formed may have a thickness of 15 ⁇ m to 50 ⁇ m, and more preferably 15 ⁇ m to 45 ⁇ m. If the thickness exceeds 50 ⁇ m boiling phenomenon may occur on the surface of the coating, if the thickness is less than 15 ⁇ m heat dissipation characteristics may be reduced.
  • the insulating heat dissipation coating layers 10b and 11b may include 10 to 30% by weight of the insulating heat dissipation filler with respect to the total weight of the insulating heat dissipation coating layer, preferably 15 to 25% by weight. If the insulating heat dissipation filler is provided in less than 10% by weight in the insulating heat dissipation coating layer implemented may not exhibit the desired level of heat dissipation performance.
  • the insulating heat dissipation filler exceeds 30% by weight, the adhesive force of the insulating heat dissipation coating layer is weakened, so that peeling occurs easily, and the hardness of the insulating heat dissipation coating layer is increased, so it may be easily broken or broken by physical impact.
  • the surface roughness may increase, thereby reducing the surface quality of the insulating heat dissipation coating layer.
  • the degree of improvement in heat dissipation performance may be insignificant.
  • the insulating heat dissipation unit of the present invention may have a resistance value per unit area of 10 10 ⁇ 10 14 ⁇ / sq. If the resistance value per unit area of the insulating heat dissipation unit is less than 10 10 ⁇ / sq, the heat dissipation unit may be difficult to use in applications requiring electrical insulation because of poor insulation.
  • the insulating heat dissipation coating layer may have a relative gain of thermal conductivity according to Equation 2 below 200%, preferably 220%.
  • the smaller value of the relative gain of the thermal conductivity means that the insulating heat dissipation coating layer including the heat dissipation filler has less improvement in thermal conductivity than the coating layer which does not include the heat dissipation filler. Meaning that the insulating heat dissipation coating layer comprising a, the degree of thermal conductivity improvement is greater than the coating layer does not include a heat dissipation filler.
  • the desired level of heat radiation performance may not be expressed.
  • the present invention includes an insulating heat dissipation circuit board including an insulating heat dissipation coating layer cured by treating the insulating heat dissipation coating composition according to the present invention to at least a portion of an outer surface of the circuit board on which the device is mounted.
  • the insulating heat dissipation circuit board 200 includes a plurality of elements 203 mounted on an upper surface of the substrate 201, and a lower portion of the substrate 201 and the substrate.
  • An insulating heat dissipation coating layer 202 may be formed on the 201 and the plurality of devices 203.
  • the device may be a known device mounted on a circuit board in an electronic device such as a driving chip.
  • the substrate may be a known circuit board provided in the electronic device, for example, may be a PCB, FPCB. Since the size and thickness of the substrate can be changed according to the internal design of the electronic device to be implemented, the present invention is not particularly limited thereto.
  • the present invention also includes an insulating heat dissipation component for lighting comprising an insulating heat dissipation coating layer cured by treating the insulating heat dissipation coating composition according to the invention on at least a portion of the outer surface.
  • the insulated heat dissipation component for lighting may be an insulated heat dissipation heat sink for lighting.
  • the insulative heat dissipation heat sink 300 includes an insulating heat dissipation coating layer 302 formed on at least part or all of the heat sink 301 and the outer surface of the heat sink 301. It may include.
  • the heat sink may be a known heat sink provided in the illumination.
  • the material, size, thickness, and shape of the heat sink may be changed according to the use, shape, and internal design of the lighting to be implemented, and thus the present invention is not particularly limited thereto.
  • the insulating heat dissipation coating composition according to the present invention includes electronic components, LED lamps, ECUs (electronic control units), including mobile devices, TVs, wearable devices, and flexible devices, in addition to the heat dissipation unit, circuit board, and lighting components.
  • ECUs electronic control units
  • an insulating heat dissipation bus bar for an EV high voltage switching relay to which an insulating heat dissipation coating composition according to the present invention is treated and cured on at least a portion of an outer surface
  • an insulating heat dissipation case for an EV high voltage switching relay and an automotive heat dissipation. It can be applied to automotive parts including one or more selected from the group consisting of DC-DC converter, automotive engine cooling device, automotive LED headlamp and PTC heater.
  • the automotive component may be an insulating heat dissipation bus bar for an EV high voltage relay including an insulating heat dissipation coating layer hardened by treating the insulating heat dissipation coating composition according to the present invention on at least a portion of an outer surface thereof.
  • the bus bar for EV high voltage relay may be a bus bar for EV high voltage relay known in the art, and the material, size, thickness, and shape of the bus bar may be a desired input of an EV high voltage relay.
  • the present invention is not particularly limited thereto, since the present invention can be changed according to the internal design considering the voltage and / or the output voltage.
  • the automotive component may be an insulating heat dissipation case for an EV high voltage switching relay including an insulating heat dissipation coating layer cured by treating the insulating heat dissipation coating composition according to the present invention on at least a portion of an outer surface thereof.
  • the EV high voltage switching relay case may be a known EV high voltage relay case commonly used in the art.
  • the EV high voltage relay bus bar may be included in the EV high voltage switching relay case, and the material, size, thickness, and shape of the case may include the shape and number of bus bars located in the EV high voltage relay.
  • the present invention is not particularly limited as it can be changed according to the internal design of the.
  • the automotive component may be an insulating heat dissipation DC-DC converter including an insulating heat dissipation coating layer hardened by treating the insulating heat dissipation coating composition according to the present invention on at least a portion of an outer surface thereof.
  • the DC-DC converter functions to convert from a DC power supply of a specific voltage to a DC power supply of another voltage, and may be a known DC-DC converter commonly used in the art.
  • the size and shape of the DC-DC converter can be changed according to the internal design of the device to be implemented, so the present invention is not particularly limited thereto.
  • the automotive component may be an insulating heat dissipation engine cooling apparatus including an insulating heat dissipation coating layer hardened by treating the insulating heat dissipation coating composition according to the present invention on at least a portion of an outer surface thereof.
  • an insulating heat dissipation coating layer may be formed on part or all of the radiator included in the insulating heat dissipation engine cooling device.
  • the radiator may be a known radiator that can be commonly used in the art, the material, size and shape of the radiator can be changed according to the internal design of the engine cooling apparatus to be implemented, so the present invention is specifically limited thereto. I never do that.
  • the automotive component may be an insulating heat dissipation LED head lamp including an insulating heat dissipation coating layer hardened by treating the insulating heat dissipation coating composition according to the present invention on at least a portion of an outer surface thereof.
  • the LED head lamp may be a known LED head lamp commonly used in the art, the material, size and shape of the LED head lamp according to the design of the vehicle and / or the internal design of the LED head lamp to be implemented. As the change is possible, the present invention is not particularly limited thereto.
  • the automotive component may be an insulating heat dissipation PTC heater for an electric vehicle including an insulating heat dissipation coating layer cured by curing the insulating heat dissipation coating composition according to the present invention on at least a portion of the outer surface.
  • the PTC heater may include a PTC fin, and as the insulating heat dissipation coating layer is formed on a part or all of the PTC fin, heat dissipation efficiency may be improved and power consumption of the electric vehicle may be reduced.
  • the PTC pin may be a known PTC pin commonly used in the art, and the material, size, and shape of the PTC pin may be changed according to the internal design of the PTC heater to be implemented. It is not limited.
  • the heat dissipation coating composition forming the insulating heat dissipation coating layer of the present invention can improve the excellent adhesion between the insulating heat dissipation coating layer and the substrate, improved moisture resistance and weather resistance, the wettability of the insulating heat dissipation filler, viscosity reduction and insulating heat dissipation coating layer during compounding
  • the formed substrate surface ductility can be increased.
  • excellent heat dissipation and insulation, excellent solvent resistance to the organic solvent, there is no discoloration during curing, and easy to control the thermal conductivity insulating heat dissipation unit including the insulating heat dissipation coating layer implemented by this continuously expressed improved physical properties can do.
  • the heat dissipation filler dispersed in the insulating heat dissipation coating layer can exhibit a uniform insulation and heat dissipation performance.
  • Various electrical and electronic components requiring both insulation and heat dissipation at the same time can be widely applied to the electrical and electronics, automotive, energy, aerospace industry such as lighting devices such as LED lamps, display devices.
  • the coating layer-forming component is a polyethylene resin with a first hardener and 2,4,6-tris [N, N-dimethylamino] methyl] phenol as a first resin based on 100 parts by weight of the compound represented by the following Chemical Formula 1 : 60 parts by weight of a curing agent containing a weight ratio of 1, an average particle diameter of 5 ⁇ m, 47 parts by weight of silicon carbide having a ratio of D50 and D97 of 1: 1.6, the physical properties of the epoxy silane compound (Shanghai Tech Polymer Technology, Tech-7130) 3 parts by weight, 44 parts by weight of talc as a colorant, 44 parts by weight of titanium dioxide as a quencher, 22 parts by weight of trike bis (orthophosphate) flame retardant, 2- (2'-hydride as UV stabilizer 0.5 part by weight of hydroxy-3,5'-di (1,1-dimethylbenzyl-phenyl) -benzotriazole, 1 part by weight of 2-hydroxyphenylbenzothi
  • R 1 to R 4 are each a methyl group, and n is a rational number such that the weight average molecular weight of the compound represented by Formula 1 is 2000.
  • the heat-dissipating coating composition prepared in Examples and Comparative Examples was sprayed and coated on the entire surface of the base material having a thickness of 1.5 mm and a width ⁇ length of 35 mm ⁇ 34 mm of aluminum (Al 1050) to have a final thickness of 25 ⁇ m.
  • Al 1050 aluminum
  • the temperature in the chamber and the temperature of the heat dissipation unit were adjusted to be 25 ⁇ 0.2 ° C.
  • the test specimens were prepared by attaching 20 mm ⁇ 20 mm LEDs, respectively, to the heat dissipation unit as a heat source, using a TIM (thermally conductive tape: 1 W / mk).
  • Heat was generated by applying an input power of 2.1 W (DC 3.9 V, 0.53 A) to the heat source of the prepared specimen, and after maintaining for 90 minutes, the thermal conductivity was evaluated by measuring the temperature of the heat dissipation unit.
  • the thermal conductivity was calculated according to Equation 4 below on the basis of the temperature measured under the same conditions for the substrate having no heat-dissipating coating layer.
  • the temperature in the chamber and the temperature of the heat dissipation unit were adjusted to be 25 ⁇ 0.2 ° C. Then, the test specimens were prepared by attaching 20 mm ⁇ 20 mm LEDs, respectively, to the heat dissipation unit as a heat source, using a TIM (thermally conductive tape: 1 W / mk).
  • Heat was generated by applying an input power of 2.1 W (DC 3.9 V, 0.53 A) to the heat source of the prepared specimen, and after maintaining for 90 minutes, the thermal emissivity was evaluated by measuring the temperature at the top 5 cm of the center of the heat dissipation unit. Specifically, the thermal emissivity was calculated according to the following Equation 3 on the basis of the temperature measured under the same conditions for the substrate having no insulating heat-dissipating coating layer.
  • the heat dissipation unit Place the heat dissipation unit in the center of the acrylic chamber 32, 30 and 30 cm in height, width, length and height respectively, and adjust the temperature inside the chamber and the temperature of the heat dissipation unit to 25 ⁇ 0.2 °C and the humidity inside the chamber to 50%. It was. Then, the test specimens were prepared by attaching 20 mm ⁇ 20 mm LEDs, respectively, to the heat dissipation unit as a heat source, using a TIM (thermally conductive tape: 1 W / mk).
  • Heat is generated by applying 2.1W (DC 3.9V, 0.53A) input power to the heat source of the manufactured specimens, and after maintaining for 90 minutes, randomly on a circle with a radius of 15 mm around the center of the upper surface of the heat dissipation unit By measuring the temperature at 10 points of the calculated error of the exothermic temperature according to the following equation (1).
  • the smaller the error the more the heat dissipation performance can be regarded as uniform, and the heat dissipation filler dispersibility of the insulating heat dissipation coating layer can be interpreted as high.
  • the maximum value of the error of the exothermic temperature is shown in Tables 1 to 4 below.
  • the surface state of the heat dissipation unit was visually evaluated after 480 hours. As a result of the evaluation, cracks in the insulating heat-dissipating coating layer and the presence of peeling (lifting) were confirmed.
  • Example 2 Example 3
  • Example 4 Example 5
  • Example 6 Coating layer forming component Main resin (weight average molecular weight) 2000 2000 2000 310 570 3900 4650 Hardener content (parts by weight) 60 60 60 60 60 60 60 Weight ratio of the first hardener and the second hardener 1: 1 1: 1 1: 1 1: 1 1: 1 1: 1 1: 1 Insulating Heat Dissipation Filler Content (parts by weight) 47 35 60 47 47 47 47 Average particle size ( ⁇ m) 5 5 5 5 5 5 5 D50, D97 Rain 1: 1.6 1: 1.6 1: 1.6 1: 1.6 1: 1.6 1: 1.6 1: 1.6 Heat dissipation unit Insulation Thermal Coating Layer Thickness ( ⁇ m) 25 25 25 25 25 25 25 25 25 25 25 25 25 25 Thermal conductivity (%) 18.27 17.65 18.34 16.91 17.02 17.13 16.54 Thermal radiation efficiency (%) 90 81 96 86 88 88 87 Exothermic Temperature Error (%) 0.5 0.6 0.4 0.3
  • Example 9 Example 10
  • Example 11 Example 12
  • Example 13 Coating layer forming component Main resin (weight average molecular weight) 2000 2000 2000 2000 2000 2000 2000
  • Example 21 Coating layer forming component Main resin (weight average molecular weight) 2000 2000 2000 2000 2000 2000 2000 Hardener content (parts by weight) 60 60 60 60 60 60 60 Weight ratio of the first hardener and the second hardener 1: 2 1: 1 1: 1 1: 1 1: 1 1: 1: 1 Insulating Heat Dissipation Filler Content (parts by weight) 47 47 47 47 47 47 47 Average particle size ( ⁇ m) 5 0.005 0.42 10 20 3 5 D50, D97 Rain 1: 1.6 1: 2.41 1: 2.08 1: 1.51 1: 1.93 1: 3.08 1: 4.96 Heat dissipation unit Insulation Thermal Coating Layer Thickness ( ⁇ m) 25 25 25 25 25 25 25 25 25 25 25 25 25 Thermal conductivity (%) 17.01 12.11 17.63 17.92 17.19 17.88 18.31 Thermal radiation efficiency (%) 88 7 88 91 90 81 39 Exothermic Temperature Error (%) 0.5 0.5 0.5 0.4 2.8 0.8 3.9 Adhesive
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 1 ) Coating layer forming component Main resin (weight average molecular weight) 2000 2000 2000 Hardener content (parts by weight) 60 60 60 Weight ratio of the first hardener and the second hardener 1: 1 1: 1 1: 1 Insulating Heat Dissipation Filler Content (parts by weight) 15 80 - Average particle size ( ⁇ m) 5 5 - D50, D97 Rain 1: 1.6 1: 1.6 - Heat dissipation unit Insulation Thermal Coating Layer Thickness ( ⁇ m) 25 25 25 Thermal conductivity (%) 14.62 18.36 4.76 Thermal radiation efficiency (%) 8 98 2 Exothermic Temperature Error (%) 5.3 1.0 0 Adhesive 5B 3.8 5B durability ⁇ ⁇ ⁇ Surface quality 5 One 5 1) Comparative Example 3 shows a composition that does not contain a heat dissipation filler.
  • Examples 1 and 20 in which the ratio of D50 and D97 are within the preferred range of the present invention simultaneously achieve dispersibility, surface quality, thermal radiation efficiency, and adhesiveness as compared with Example 21, which does not satisfy this. .
  • Comparative Example 3 which does not include a heat dissipation filler, can be confirmed that the thermal radiation is significantly lower than in Example 1.
  • the resistance value of the insulating heat dissipation unit was measured. Specifically, the resistance value was measured by the four-terminal method and is shown in Table 6 below.
  • Preparation Examples 1 to 3 according to the present invention exhibit an extremely high resistance value compared to Comparative Preparation Example 2 containing an insulating heat dissipation filler in excess of the content of the present invention, and thus excellent insulation performance It can be seen that.

Abstract

절연성 방열 코팅조성물이 제공된다. 본 발명의 일 실시예에 따른 절연성 방열 코팅조성물은 주제수지를 포함하는 코팅층 형성성분; 및 상기 주제수지 100 중량부에 대하여 25 ~ 70 중량부로 포함되는 절연성 방열필러;를 포함하는 절연성 방열 코팅조성물을 포함한다. 이에 의하면, 절연성 방열 코팅조성물은 열전도성뿐만 아니라 열방사성까지 우수하여 뛰어난 방열성능을 발현하고, 동시에 절연성을 갖는 절연성 방열코팅층을 구현할 수 있다. 또한, 이를 통해 구현된 절연성 방열코팅층은 피코팅면과의 접착성이 매우 우수하여 사용 중 절연성 방열코팅층의 박리가 현저히 방지되며, 절연성 방열코팅층으로 형성된 후 외부의 열, 유기용제, 수분, 충격 등의 물리적, 화학적 자극에도 절연성 방열코팅층의 내구성이 유지될 수 있다. 또한 형성된 절연성 방열코팅층 내에 분산된, 방열필러의 분산성이 우수하여 균일한 절연 및 방열성능을 나타낼 수 있는 효과가 있다. 나아가, 형성된 절연성 방열코팅층의 표면이 매우 매끄럽고, 평활성이 우수하여 표면품질이 뛰어남에 따라서, 절연 및 방열이 동시에 요구되는 산업 전반에 널리 응용될 수 있다.

Description

절연성 방열 코팅조성물 및 이를 통해 구현된 절연성 방열 물품
본 발명은 절연성 방열 코팅조성물에 관한 것으로, 더욱 상세하게는 방열성 및 절연성을 동시에 발현하는 절연성 방열 코팅조성물, 이를 통해 구현된 절연성 방열 물품에 관한 것이다.
일반적으로 전자장치의 사용 중에 장치 내 구비되는 각종 부품에서 발생하는 열에 의한 오작동을 방지하기 위하여 발열이 있는 부품에는 방열부재를 장착한다. 방열판이나 히트싱크 등의 방열부재는 통상적으로 열전도율이 높은 금속을 사용하여 장치나 부품 내의 열을 외부로 빠르게 방출될 수 있도록 한다.
일예로, 상기 히트싱크는 알루미늄, 구리 및 그 합금소재를 고온의 상태로 가열, 용융시킨 후, 일정한 형상을 갖는 금형을 이용하여 압출 성형하는 방법을 통해 전면에 일정하게 돌출되는 다수의 방열핀이 배열되는 구조가 일반적으로 채용되어 왔다.
최근에는 방열부재에 방열코팅층을 형성시켜 방열성능의 향상을 도모하는 시도들이 있다.
그러나, 방열코팅층에 구비되는 방열성능을 향상시키는 필러들은 도전성 성분이 많음에 따라서 도전성을 가질 수 있는데, 이 경우 방열 및 전기적 절연이 요구되는 적용처에는 사용하기 어려운 문제가 있다.
또한, 절연성 및 방열성을 동시에 발현하더라도 구현된 절연성 방열코팅층의 내구성, 방열성능, 피코팅면과의 접착력 등의 물성을 동시에 달성하기 어렵고, 절연성 방열코팅층의 표면이 울퉁불퉁하거나 필러가 표면에 돌출되는 등 절연성 방열코팅층의 표면품질이 매우 좋지 않은 문제가 있다. 또한, 절연성 방열코팅층 내에 필러가 골고루 분산되지 않기 때문에, 절연성 방열코팅층에 따른 절연 및 방열성능이 일정하지 않은 문제가 있다.
이에 피코팅면과의 부착력이 우수하고, 열/수분/유기용제 등의 외부의 물리적, 화학적 자극에 내구성이 뛰어나며, 절연성 방열코팅층의 표면품질이 우수하고, 절연성 및 방열성능을 동시에 현저히 향상시키며, 절연성 방열코팅층 내 필러의 분산성이 우수한 절연성 방열코팅층을 구현 가능한 절연성 방열코팅층 형성 조성물에 대한 연구가 시급한 실정이다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 열전도성뿐만 아니라 열방사성까지 우수하여 뛰어난 방열성능을 발현하는 절연성 방열코팅층을 구현할 수 있는 절연성 방열 코팅조성물을 제공하는데 목적이 있다.
또한, 본 발명은 방열성을 갖는 동시에 절연성을 가짐에 따라서 방열이 요구되는 각종 전기전자 부품이나 장치에 직접 접촉하여 구비되는 절연성 방열코팅층을 구현할 수 있는 절연성 방열 코팅조성물을 제공하는데 다른 목적이 있다.
또한, 본 발명은 피코팅면과의 접착성이 매우 우수하여 사용 중 절연성 방열코팅층의 박리가 현저히 방지되며, 외부의 열, 유기용제, 수분, 충격 등의 물리적, 화학적 자극에도 절연성 방열코팅층의 내구성이 유지될 수 있는 절연성 방열 코팅조성물을 제공하는데 또 다른 목적이 있다.
또한, 본 발명은 형성된 절연성 방열코팅층의 표면이 매우 매끄럽고, 평활성이 우수하여 표면품질이 뛰어난 절연성 방열코팅층을 구현할 수 있는 절연성 방열 코팅조성물을 제공하는데 또 다른 목적이 있다.
또한, 본 발명은 형성된 절연성 방열코팅층 내에 분산된 방열필러의 분산성이 우수하여 균일한 절연 및 방열성능을 나타낼 수 있는 절연성 방열 코팅조성물을 제공하는데 또 다른 목적이 있다.
나아가, 본 발며은 이와 같은 절연성방열코팅 조성물이 각종 절연성이 요구되는 피착물에 처리되어도 전기적 단락 없이 우수한 방열특성을 발현하는 절연성 방열물품을 제공하는데 또 다른 목적이 있다.
상술한 과제를 해결하기 위해 본 발명은, 주제수지를 포함하는 코팅층 형성성분; 및 상기 주제수지 100 중량부에 대하여 25 ~ 70 중량부로 포함되는 절연성 방열필러;를 포함하는 절연성 방열 코팅조성물을 제공한다.
본 발명의 일 실시예에 의하면, 상기 주제수지는 글리시딜에테르형 에폭시 수지, 글리시딜아민형 에폭시 수지, 글리시딜에스테르형 에폭시 수지, 선형 지방족형(linear Aliphatic) 에폭시 수지, 고무변성 에폭시 수지 및 이들의 유도체로 이루어진 군에서 선택된 1종 이상을 구비하는 에폭시 수지를 포함할 수 있다.
또한, 상기 주제수지는 하기 화학식 1로 표시되는 화합물을 포함할 수 있다.
[화학식 1]
Figure PCTKR2018000088-appb-I000001
상기 R1 및 R2는 각각 독립적으로 수소원자, C1 ~ C5의 직쇄형 알킬기 또는 C3 ~ C5의 분쇄형 알킬기이고, 상기 R3 및 R4는 각각 독립적으로 수소원자, C1 ~ C5의 직쇄형 알킬기 또는 C3 ~ C5의 분쇄형 알킬기이며, 상기 n은 상기 화학식 1로 표시되는 화합물의 중량평균분자량이 400 ~ 4000이도록 하는 유리수이다.
또한, 상기 절연성 방열필러는 열전도도가 130 ~ 200 W/m·K 일 수 있다.
또한, 상기 코팅층 형성성분은 상기 주제수지 100 중량부에 대하여 25 ~ 100 중량부로 포함될 수 있다.
또한, 상기 경화제는 지방족 폴리 아민계 경화제, 방향족 폴리 아민계 경화제, 산무수물계 경화제 및 촉매계 경화제로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
또한, 상기 경화제는 지방족 폴리 아민계 경화제를 포함하는 제1경화제 및 방향족 폴리 아민계, 산무수물계 경화제 및 촉매계 경화제로 이루어진 군에서 선택된 1종 이상을 포함하는 제2경화제를 1 : 0.5 ~ 1.5의 중량비로 포함할 수 있다.
또한, 상기 지방족 폴리 아민계 경화제는 폴리에틸렌폴리아민을 포함할 수 있다.
또한, 상기 절연성 방열 코팅조성물은 주제수지 100 중량부에 대하여 부착성 향상을 위한 물성증진성분을 0.5 ~ 20 중량부로 더 포함할 수 있다.
또한, 상기 물성증진성분은 3-[N-아닐-N-(2-아미노에틸)] 아미노프로필트리메톡시실란, 3-(N-아닐-N-글리시딜)아미노프로필트리메톡시실란, 3-(N-아닐-N-메타아크릴로닐]아미노프로필트리메톡시실란, 3-글리시딜 옥시프로필메틸에톡시실란, N,N-Bis[3-(트리메톡시시닐)프로필]메타아크릴아마이드, γ-글리시독시트리메틸디메톡시실란, 3-글리시딜옥시프로필트리메톡시실란, 3-글리시딜옥시프로필트리에톡시실란, 3-글리시딜옥시프로필메틸메톡시실란, 베타(3, 4 -에폭시 사이클로헥실)에틸트리메톡시실란, 3-메타아크릴록시프로필트리메톡시실란, 3-글리시독시프로필메틸디메톡시실란, 헵타데카플루오로데시트리메톡시실란, 3-메타아크릴록시프로필메틸디메톡시실란, 3-메타아크릴록시프로필트리스 (트리메틸실록시)실란, 메틸트리스(디메틸시록시)실란, 3-아미노프로필트리에폭시 실란, 3-메르캅토프로필트리메톡시 실란 및 N-(β-아미노에틸)-γ-아미노프로필트리메톡시실란으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
또한, 상기 절연성 방열필러는 탄화규소를 포함할 수 있다.
또한, 상기 절연성 방열필러는 평균입경이 10㎚ ~ 15㎛일 수 있다.
또한, 상기 절연성 방열필러는 D50과 D97의 비율이 1 : 4.5 이하일 수 있다.
또한, 상기 절연성 방열 코팅조성물은 점도가 5 ~ 600 cps일 수 있다.
또한, 상기 절연성 방열 코팅조성물은 상기 주제수지 100 중량부에 대하여, 탈크, 징크옥사이드, 징크설파이드, 금속산화물계, 하이드록실계, 설파이드계, 아조계, 니트로계 및 프탈로시아닌계로 이루어진 군에서 선택된 1종 이상을 포함하는 착색제를 30 ~ 60 중량부 및 이산화티타늄, 어에로젤 실리카, 하이드로젤 실리카, PP 왁스, PE 왁스, PTFE 왁스, 우레아 포름알데이드 수지 및 벤조구아민 포름알데이드 수지로 이루어진 군에서 선택된 1종 이상을 포함하는 소광제를 30 ~ 60 중량부 포함할 수 있다.
또한, 상기 절연성 방열 코팅조성물은 상기 주제수지 100 중량부에 대하여 트리징크 비스(오르토포스페이트), 트리페닐 포스페이트(Tryphenyl phosphate), 트리자일레닐 포스페이트(Trixylenyl phosphate), 트리크레실 포스페이트(Tricresyl phosphate), 트리이소페닐 포스페이트(Triisophenyl phosphate), 트리스클로로에틸 포스페이트(Tris-Choloroethylphosphate), 트리스클로로프로필 포스페이트(Tris-Chloroprophyphosphate), 리소시놀 디 포스페이트(Resorcinol di-phosphate), 아로마틱 폴리포스페이트(Aromatic polyphosphate), 폴리포스포릭 에시드 암모늄(Polyphosphoric acid ammonium) 및 적인(Red Phosphorous)로 이루어진 군에서 선택된 1종 이상을 포함하는 난연제를 10 ~ 35 중량부 포함할 수 있다.
또한, 상기 절연성 방열 코팅조성물은 상기 절연성 방열필러 100 중량부에 대하여 분산제를 0.5 ~ 20 중량부 더 포함할 수 있다.
또한, 두께 1.5㎜의 알루미늄 플레이트에 상기 절연성 방열 코팅조성물을 처리하여 경화된 두께 25㎛의 절연성 방열코팅층을 포함하는 방열유닛이 하기 조건 (1)을 만족할 수 있다.
(1) 25℃, 습도 50%의 닫힌계에서 상기 방열유닛 하부 정중앙에 열원을 위치시키고, 90 분 후 상기 방열유닛 상부면 정중앙을 중심점으로 하는 반경 15㎜의 원 위의 임의의 10 개 점에서의 온도를 측정하여 하기 수학식 1에 따라 계산한 발열온도의 오차가 각 점에서 ±1% 이내임.
[수학식 1]
Figure PCTKR2018000088-appb-I000002
또한, 두께 1.5㎜, 가로×세로가 각각 35㎜×34㎜인 알루미늄 플레이트에 상기 절연성 방열 코팅조성물을 처리하여 경화된 두께 25㎛의 절연성 방열코팅층을 포함하는 방열유닛이 하기 조건 (2)를 만족할 수 있다.
(2) 25℃ 습도 50%인 닫힌계에서 상기 방열유닛 하부 정중앙에 온도 88℃의 열원을 위치시키고, 90분 후 방열유닛 정중앙의 상부 5cm 지점의 온도를 측정하여 하기 수학식 3에 따라 계산한 열방사 효율이 10% 이상임.
[수학식 3]
Figure PCTKR2018000088-appb-I000003
한편, 본 발명은 방열부재 또는 지지부재; 및 본 발명에 따른 절연성 방열 코팅조성물이 상기 발열부재 또는 지지부재 외부면의 적어도 일부분에 처리되어 경화된 절연성 방열코팅층;을 포함하는 절연성 방열유닛을 제공한다.
본 발명의 일 실시예에 의하면, 상기 절연성 방열코팅층은 하기 수학식 2에 따른 열전도도의 상대이득이 200%를 초과할 수 있다.
[수학식 2]
Figure PCTKR2018000088-appb-I000004
또한, 상기 절연성 방열코팅층의 두께는 15 ~ 50㎛일 수 있다.
또한, 상기 절연성 방열유닛은 단위 면적당 저항 값이 1010 ~ 1014 Ω/sq일 수 있다.
한편, 본 발명은 소자가 실장된 회로기판; 및 본 발명에 따른 절연성 방열 코팅조성물이 상기 회로기판 외부면의 적어도 일부분에 처리되어 경화된 절연성 방열코팅층;을 포함하는 절연성 방열 회로기판을 제공한다.
한편, 본 발명은 외부면의 적어도 일부분에 본 발명에 따른 절연성 방열 코팅조성물이 처리되어 경화된 절연성 방열코팅층;을 포함하는 조명용 절연성 방열 부품을 제공한다.
본 발명의 절연성 방열 코팅조성물은 열전도성뿐만 아니라 열방사성까지 우수하여 뛰어난 방열성능을 발현하고, 동시에 절연성을 갖는 절연성 방열코팅층을 구현할 수 있다. 또한, 이를 통해 구현된 절연성 방열코팅층은 피코팅면과의 접착성이 매우 우수하여 사용 중 절연성 방열코팅층의 박리가 현저히 방지되며, 절연성 방열코팅층으로 형성된 후 외부의 열, 유기용제, 수분, 충격 등의 물리적, 화학적 자극에도 절연성 방열코팅층의 내구성이 유지될 수 있다. 또한 형성된 절연성 방열코팅층 내에 분산된, 방열필러의 분산성이 우수하여 균일한 절연 및 방열성능을 나타낼 수 있는 효과가 있다. 나아가, 형성된 절연성 방열코팅층의 표면이 매우 매끄럽고, 평활성이 우수하여 표면품질이 뛰어남에 따라서, 절연 및 방열이 동시에 요구되는 산업 전반에 널리 응용될 수 있다.
도 1 및 도 2는 본 발명의 여러 실시예에 따른 절연성 방열유닛의 사시도 및 부분단면도,
도 3은 본 발명의 일실시예에 따른 절연성 방열코팅층이 형성된 절연성 방열 회로기판의 단면도, 그리고
도 4는 본 발명의 일실시예에 따른 절연성 방열코팅층이 형성된 LED 조명용 히트싱크의 단면도이다.
이하 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명의 일 실시예에 따른 절연성 방열 코팅조성물은 주제수지를 포함하는 코팅층 형성성분; 및 상기 주제수지 100 중량부에 대하여 25 ~ 70 중량부로 포함되는 절연성 방열필러;를 포함한다.
먼저, 코팅층 형성성분에 대하여 설명한다.
상기 코팅층 형성성분은 주제수지를 포함하고, 상기 주제수지가 경화형 수지일 경우 경화제를 더 포함할 수 있다.
상기 주제수지는 코팅층을 형성할 수 있는 것으로써, 당업계에 공지된 성분의 경우 제한 없이 사용될 수 있다. 다만, 피코팅 기재와의 접착성, 발열 기재의 열에 의해 취화 되지 않는 내열성, 전기적 자극에 의해 취화되지 않는 절연성, 기계적 강도, 절연성 방열필러와의 상용성 개선에 따른 방열성능 향상과 동시에 방열필러의 분산성을 향상시킬 수 있도록 상기 주제수지는 글리시딜에테르형 에폭시 수지, 글리시딜아민형 에폭시 수지, 글리시딜에스테르형 에폭시 수지, 선형 지방족형(linear Aliphatic) 에폭시 수지, 고무변성 에폭시 수지 및 이들의 유도체로 이루어진 군에서 선택된 1종 이상을 구비하는 에폭시 수지를 포함할 수 있다.
구체적으로 상기 글리시딜에테르형 에폭시 수지는 페놀류의 글리시딜에테르와 알코올류의 글리시딜에테르를 포함하며, 상기 페놀류의 글리시딜 에테르로 비스페놀 A형, 비스페놀 B형, 비스페놀AD형, 비스페놀 S형, 비스페놀 F형 및 레조르시놀 등과 같은 비스페놀계 에폭시, 페놀 노볼락(Phenol novolac) 에폭시, 아르알킬페놀 노볼락, 테르펜페놀 노볼락과 같은 페놀계 노볼락 및 o-크레졸 노볼락(Cresolnovolac) 에폭시와 같은 크레졸 노볼락계 에폭시 수지 등이 있고, 이들을 단독 또는 2 종 이상 병용할 수 있다.
상기 글리시딜 아민형 에폭시 수지로 디글리시딜아닐린, 테트라글리시딜디아미노디페닐메탄, N,N,N',N'-테트라글리시딜-m-크실릴렌디아민, 1,3-비스(디글리시딜아미노메틸)시클로헥산, 글리시딜에테르와 글리시딜아민의 양구조를 겸비한 트리글리시딜-m-아미노페놀, 트리글리시딜-p-아미노페놀 등이 있으며, 단독 또는 2 종 이상 병용할 수 있다.
상기 글리시딜에스테르형 에폭시수지로 p-하이드록시벤조산, β-하이드록시나프토에산과 같은 하이드록시카본산과 프탈산, 테레프탈산과 같은 폴리카본산 등에 의한 에폭시 수지일 수 있으며, 단독 또는 2 종 이상 병용할 수 있다.
상기 선형 지방족형 에폭시 수지로 1,4-부탄디올, 1,6-헥산디올, 네오펜틸글리콜, 시클로헥산디메탄올, 글리세린, 트리메틸올에탄, 티리메틸올프로판, 펜타에리트리롤, 도데카히드로 비스페놀 A, 도데카히드로 비스페놀 F, 에틸렌글리콜, 프로필렌글리콜, 폴리에틸렌글리콜, 폴리프로필렌글리콜 등에 의한 글리시딜에테르일 수 있으며, 단독 또는 2 종 이상 병용할 수 있다.
상기 고무변성 에폭시 수지는 골격에 고무 및/또는 폴리에테르를 갖는 에폭시 수지이면 특별히 한정되지 않으며, 일예로, 카르복시기 변성 부타다이엔-아크릴로나이트릴 엘라스토머와 분자 내에서 화학적으로 결합한 에폭시 수지(CTBN 변성 에폭시 수지), 아크릴로나이트릴-부타다이엔 고무 변성 에폭시 수지(NBR 변성 에폭시수지), 우레탄 변성 에폭시 수지, 실리콘 변성 에폭시 수지 등의 고무 변성 에폭시 수지일 수 있으며, 단독 또는 2종 이상 병용할 수 있다.
다만, 후술하는 절연성 방열필러, 특히 그 중에서도 탄화규소와의 상용성이 매우 뛰어나 방열특성, 절연성 방열코팅층의 내구성 향상 측면, 절연성 방열코팅층의 표면품질 향상의 측면 및 방열필러의 분산성 향상의 측면에서, 일예로 상기 주제수지는 하기 화학식 1로 표시되는 화합물을 포함할 수 있다.
[화학식 1]
Figure PCTKR2018000088-appb-I000005
상기 R1 및 R2는 각각 독립적으로 수소원자, C1 ~ C5의 직쇄형 알킬기 또는 C3 ~ C5의 분쇄형 알킬기, 바람직하게는 수소원자, C1 ~ C3의 직쇄형 알킬기 또는 C3 ~ C4의 분쇄형 알킬기이고, 상기 R3 및 R4는 각각 독립적으로 수소원자, C1 ~ C5의 직쇄형 알킬기 또는 C3 ~ C5의 분쇄형 알킬기, 바람직하게는 수소원자, C1 ~ C3의 직쇄형 알킬기 또는 C3 ~ C4의 분쇄형 알킬기이며, 상기 n은 상기 화학식 1로 표시되는 화합물의 중량평균분자량이 400 ~ 4000, 바람직하게는 450 ~ 3900이도록 하는 유리수이다.
만일, 상기 화학식 1 로 표시되는 화합물의 중량평균분자량이 400 미만일 경우 코팅조성물의 흐름성이 증가하여 절연성 방열코팅층의 생성이 어려울 수 있고, 생성 후에도 피코팅면과의 접착력이 저하될 수 있고, 중량평균분자량이 4000을 초과할 경우 균일한 두께의 절연성 방열코팅층으로 제조하기 어렵고, 코팅조성물 내 방열필러의 분산성이 저하되어 절연성 방열코팅층 형성 시 균일한 절연 및 방열성능을 발현하기 어려울 수 있다.
또한, 상술한 주제수지로 사용될 수 있는 에폭시 수지와 함께 코팅층 형성성분에 포함되는 경화제는 선택될 수 있는 에폭시의 구체적인 종류에 따라 그 종류를 달리할 수 있으며, 구체적인 종류는 당업계에 공지된 경화제를 사용할 수 있고, 바람직하게는 지방족 폴리 아민계 경화제, 방향족 폴리 아민계 경화제, 산무수물계 경화제 및 촉매계 경화제 중 어느 하나 이상의 성분을 포함할 수 있다.
구체적으로 상기 지방족 폴리 아민계 경화제는 일예로, 폴리에틸렌폴리아민 일 수 있고, 바람직하게는 디에틸렌 트리아민(DETA), 디에틸 아미노 프로필아민(DEAPA), 트리에틸렌 테트라민(TETA), 테트라에틸렌 펜타민(TEPA) 및 멘탄 디아민(MDA)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
또한, 상기 방향족 폴리 아민계 경화제는 일예로, 메타 페닐 디아민(MPDA), 디아미노 디페닐 술폰(DDS) 및 디페닐 디아미노 메탄(DDM)으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
또한, 상기 산무수물계 경화제는 일예로, 프탈릭 언하이드라이드(PA), 테트타하이드로프탈릭 언하이드라이드(THPA), 메틸 테트라하이드로프탈릭 언하이드라이드(MTHPA), 헥사 하이드로프탈릭 언하이드라이드(HHPA) 및 메틸 나딕 언하이드라이드(MNA)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
또한, 상기 촉매계 경화제는 일예로, 디시안디아미드(DICY), 멜라민, 폴리머캡탄, 메틸렌 디페닐 디이소시아네이트(MDI), 톨루엔 디이소시아네이트(TDI), BF3 모노 에틸렌 아민(BF3-MEA), 벤질 디메틸 아민(BDMA) 및 페닐 이미다졸로 이루어진 군에서 선택된 1종 이상을 포함하는 촉매계 경화제로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
한편, 본 발명의 일 실시예에 의하면, 상기 주제수지로 상기 화학식 1로 표시되는 화합물을 포함할 경우 상기 코팅층 형성성분은 경화제로써 지방족 폴리 아민계 경화제를 포함하는 제1경화제 및 방향족 폴리 아민계, 산무수물계 경화제 및 촉매계 경화제로 이루어진 군에서 선택된 1종 이상을 포함하는 제2경화제를 포함할 수 있다. 이를 통해 후술하는 절연성 방열필러, 그 중에서도 탄화규소와의 상용성 향상에 매우 유리하고, 절연성 방열코팅층의 접착성, 내구성, 표면품질 등 모든 물성에 있어서 유리하며, 더불어 방열 코팅조성물이 적용될 피착면이 평활한 평면이 아닌 굴곡지거나 단차가 형성된 경우에 해당 부분에 형성된 절연성 방열코팅층에 크랙이 발생하거나 박리되는 것을 더욱 방지하는 이점이 있다. 또한, 보다 향상된 물성을 발현하기 위하여 바람직하게는 상기 경화제는 제1경화제 및 제2경화제를 1 : 0.5 ~ 1.5 의 중량비로, 바람직하게는 1 : 0.6 ~ 1.4 의 중량비로 포함할 수 있다.
만일 상기 제1경화제 및 제2경화제의 중량비가 1 : 0.5 미만이면 피착재와의 부착강도가 약해질 수 있고, 중량비가 1 : 1.4를 초과하면 코팅 도막의 탄성이 저하될 수 있고, 내구성이 좋지 않을 수 있다.
또한, 상기 코팅층 형성성분은 상기 주제수지 100 중량부에 대하여 경화제는 25 ~ 100 중량부로, 바람직하게는 40 ~ 80 중량부로 포함할 수 있다. 만일 경화제가 25 중량부 미만으로 구비되는 경우 수지가 미경화 되거나, 형성된 절연성 방열코팅층의 내구성이 저하될 수 있다. 또한, 경화제가 100 중량부를 초과할 경우 형성된 절연성 방열코팅층에 크랙이 발생하거나, 절연성 방열코팅층이 깨질 수 있다.
다음으로, 절연 및 방열성능을 향상시키는 절연성 방열필러에 대하여 설명한다.
상기 상기 절연성 방열필러는 그 재질에 있어서 절연성 및 방열성을 동시에 가지는 것이라면 제한 없이 선택할 수 있다. 또한, 상기 절연성 방열 필러의 형상, 크기는 제한이 없으며, 구조에 있어서도 다공질이거나 비다공질일 수 있고, 목적에 따라 달리 선택할 수 있다. 일예로, 상기 절연성 방열 필러는 탄화규소, 산화마그네슘, 이산화티타늄, 질화알루미늄, 질화규소, 질화붕소, 산화알루미늄, 실리카, 산화아연, 티탄산바륨, 티탄산스트론튬, 산화베릴륨, 산화망간, 산화지르코니아 및 산화붕소로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있다. 다만, 바람직하게는 우수한 절연 및 방열성능, 절연성 방열코팅층의 형성 용이성, 절연성 방열코팅층 형성 후 균일한 절연 및 방열성능, 절연성 방열코팅층의 표면품질 등 목적하는 물성의 달성을 용이하게 하는 측면에서 바람직하게는 탄화규소일 수 있다.
또한, 상기 절연성 방열필러의 경우 표면이 실란기, 아미노기, 아민기, 히드록시기, 카르복실기 등의 관능기로 개질시킨 필러를 사용할 수 있고, 이때, 상기 관능기는 직접 필러의 표면에 결합되어 있을 수 있고, 또는 탄소수 1 ~ 20개의 치환 또는 비치환의 지방족 탄화수소나 탄소수 6 ~ 14개의 치환 또는 비치환의 방향족 탄화수소를 매개로 필러에 간접적으로 결합되어 있을 수 있다.
또한, 상기 절연성 방열 필러는 카본계, 금속 등의 공지된 전도성 방열필러를 코어로 하고, 절연성 성분이 상기 코어를 둘러싸는 코어쉘 타입의 필러일 수도 있다.
또한, 상기 절연성 방열필러는 평균입경이 10㎚ ~ 15㎛, 바람직하게는 30㎚ ~ 12㎛일 수 있다. 만일 평균입경이 10㎚ 미만이면 제품단가의 상승 우려가 있고, 절연성 방열코팅층으로 구현된 후 표면에 묻어 나오는 절연성 방열필러의 양이 증가하여 방열성능이 저하될 수 있다. 또한, 만일 평균입경이 15㎛를 초과하면 표면의 균일성이 저하될 수 있다. 한편, 절열성 방열필러의 분산성을 향상시키기 위하여 구비되는 절연성 방열필러는 D50과 D97의 비율이 1 : 4.5 이하, 바람직하게는 1 : 1.2 ~ 3.5일 수 있다. 만일 D50과 D97의 비율이 1 : 4.5를 초과하는 경우 표면의 균일성 저하되고, 방열필러의 분산성이 좋지 않아 방열효과가 균일하게 나타나지 않을 수 있으며, 입경이 상대적으로 큰 입자를 포함하기 때문에 열전도도는 상대적으로 높을 수 있으나 목적하는 방열특성을 발현할 수 없을 수 있다. 상기 D50 및 D97은 체적누적입도 분포에서 각각 누적도 50% 및 97%일 때의 절연성 방열필러의 입경을 의미한다. 구체적으로 가로축에 입경, 세로축에 입경이 제일 작은 측으로부터의 체적 누적 빈도를 취한 그래프(체적 기준의 입경 분포)에 있어서, 전체 입자의 체적 누적값(100%)에 대하여, 제일 작은 입경으로부터 체적%의 누적값이 각각 50% 및 97%에 해당되는 입자의 입경이 D50 및 D97에 해당한다. 상기 절연성 방열필러의 체적누적입도분포는 레이저 회절 산란 입도 분포 장치를 사용하여 측정할 수 있다.
한편, 상기 절연성 방열필러는 평균입경은 형성하는 절연성 방열코팅층의 도막 두께에 따라 입경을 변경하여 사용할 수 있으며, 일예로, 25㎛ 두께의 절연성 방열코팅층을 형성하는 경우 평균입경 1 ~ 7㎛의 방열필러를 사용할 수 있고, 35㎛ 두께의 절연성 방열코팅층을 형성하는 경우 평균입경 8 ~ 12㎛의 방열필러를 사용할 수 있다. 다만, 조성물 내의 방열필러의 분산성을 더욱 향상시키기 위해서는 본 발명에 따른 방열필러의 평균입경 범위 및 상기 D50과 D97의 비율범위를 모두 만족하는 절연성 방열필러를 사용하는 것이 바람직하다.
상기 절연성 방열필러는 상술한 주제수지 100 중량부에 대하여 25 ~ 70 중량부로 포함되며, 더욱 향상된 물성의 발현을 위하여 바람직하게는 35 ~ 60 중량부로 포함될 수 있다. 만일 상기 절연성 방열필러가 주제수지 100 중량부에 대하여 25 중량부 미만으로 포함되는 경우 목적하는 수준의 방열성능을 발현하지 못할 수 있다. 또한, 만일 상기 절연성 방열필러가 70 중량부를 초과할 경우 구현된 절연성 방열코팅층의 접착력이 약화되어 박리가 쉽게 발생하고, 절연성 방열코팅층의 경도가 커져 물리적 충격에 쉽게 깨지어나 부스러질 수 있다. 또한, 절연성 방열코팅층의 표면에 돌출된 방열필러가 많아짐에 따라서 표면거칠기가 증가하여 절연성 방열코팅층의 표면품질이 저하될 수 있다. 더불어, 절연성 방열필러가 더 구비되더라도 방열성능의 향상정도는 미미할 수 있다. 그리고, 얇은 두께의 절연성 방열코팅층을 구현하기 위하여 방열 코팅조성물을 피코팅면에 처리하는 과정에서 일부 코팅방법, 예를 들어 스프레잉 방식으로 코팅 시 조성물이 균일하게 피코팅면을 처리하기 어렵고, 조성물 내 분산된 방열필러의 분산성이 저하되어 피코팅면에 조성물이 처리되더라도 방열필러가 비균일하게 분산하여 배치될 수 있고, 이로 인해 절연성 방열코팅층 표면 전체적으로 균일한 절연 및 방열성능의 발현이 어려울 수 있다.
다음으로 절연성 방열 코팅조성물에 더 포함될 수 있는 물성증진성분에 대해 설명한다.
상기 물성증진성분은 본 발명에 따른 절연성 방열 코팅조성물이 피코팅면에 코팅되었을 때 보다 향상된 절연성/방열성을 발현시키고 동시에 뛰어난 접착성을 발현시켜 내구성을 향상시키는 기능을 담당한다.
상기 물성증진성분은 실란계 화합물일 수 있으며, 당업계에 채용하는 공지된 실란계 화합물의 경우 제한 없이 사용할 수 있으나, 상술한 코팅층 형성성분의 주제수지, 절연성 방열필러 중에서도 탄화규소와 함께 사용될 경우 목적한 물성의 상승작용을 일으켜 현저한 내구성과 방열성을 발현할 수 있도록, 3-[N-아닐-N-(2-아미노에틸)] 아미노프로필트리메톡시실란, 3-(N-아닐-N-글리시딜)아미노프로필트리메톡시실란, 3-(N-아닐-N-메타아크릴로닐]아미노프로필트리메톡시실란, 3-글리시딜 옥시프로필메틸에톡시실란, N,N-Bis[3-(트리메톡시시닐)프로필]메타아크릴아마이드, γ-글리시독시트리메틸디메톡시실란, 3-글리시딜옥시프로필트리메톡시실란, 3-글리시딜옥시프로필트리에톡시실란, 3-글리시딜옥시프로필메틸메톡시실란, 베타(3, 4 -에폭시 사이클로헥실)에틸트리메톡시실란, 3-메타아크릴록시프로필트리메톡시실란, 3-글리시독시프로필메틸디메톡시실란, 헵타데카플루오로데시트리메톡시실란, 3-메타아크릴록시프로필메틸디메톡시실란, 3-메타아크릴록시프로필트리스 (트리메틸실록시)실란, 메틸트리스(디메틸시록시)실란, 3-아미노프로필트리에폭시 실란, 3-메르캅토프로필트리메톡시 실란 및 N-(β-아미노에틸)-γ-아미노프로필트리메톡시실란으로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.
또한, 상기 물성증진성분은 바람직하게는 주제수지 100 중량부에 대하여 0.5 ~ 20 중량부로 포함될 수 있다. 만일 물성증진성분이 0.5 중량부 미만으로 구비되는 경우 물성증진성분을 통한 방열성 및 접착성 향상 등 목적하는 물성을 동시에 목적하는 수준까지 달성하지 못할 수 있다. 또한, 20 중량부를 초과하여 구비되는 경우 피코팅면과의 부착력이 약화될 수 있다.
한편, 상술한 절연성 방열 코팅조성물은 빛, 공기, 수분 또는 극한의 온도에 의한 색의 손실 감소를 최소화 하기 위한 착색제 및 도막 표면의 안정성을 나타낼 수 있도록 광을 없애기 위한 소광제를 더 포함할 수 있다.
상기 착색제는 탈크, 징크옥사이드, 징크설파이드, 금속산화물계, 하이드록실계, 설파이드계, 아조계, 니트로계 및 프탈로시아닌계로 이루어진 군에서 선택된 1종이상, 바람직하게는 탈크를 포함할 수 있다. 또한, 상기 착색제는 상기 주제수지 100 중량부에 대하여 30 ~ 60 중량부, 바람직하게는 35 ~ 55 중량부로 포함될 수 있으나, 이에 제한되지는 않는다.
또한, 상기 소광제는 이산화티타늄, 어에로젤 실리카, 하이드로젤 실리카, PP 왁스, PE 왁스, PTFE 왁스, 우레아 포름알데이드 수지 및 벤조구아민 포름알데이드 수지로 이루어진 군에서 선택된 1종 이상, 바람직하게는 이산화티타늄을 포함할 수 있다. 또한, 상기 소광제는 상기 주제수지 100 중량부에 대하여 30 ~ 60 중량부, 바람직하게는 35 ~ 55 중량부로 포함될 수 있으나, 이에 제한되지는 않는다.
상기 착색제로 사용될 수 있는 탈크 및 소광제로 사용될 수 있는 이산화티타늄은 상기 절연성 방열필러와 함께 필러로 사용하여 내전압 특성을 향상시킬 수도 있다.
한편, 상술한 절연성 방열 코팅조성물은 절연성 방열코팅층의 난연성을 향상시키기 위한 난연제를 더 포함할 수 있다.
상기 난연제는 당업계에서 난연제로 채용하는 공지된 성분을 사용할 수 있다. 일예로, 트리징크 비스(오르토포스페이트), 트리페닐 포스페이트(Tryphenyl phosphate), 트리자일레닐 포스페이트(Trixylenyl phosphate), 트리크레실 포스페이트(Tricresyl phosphate), 트리이소페닐 포스페이트(Triisophenyl phosphate), 트리스클로로에틸 포스페이트(Tris-Choloroethylphosphate), 트리스클로로프로필 포스페이트(Tris-Chloroprophyphosphate), 리소시놀 디 포스페이트(Resorcinol di-phosphate), 아로마틱 폴리포스페이트(Aromatic polyphosphate), 폴리포스포릭 에시드 암모늄(Polyphosphoric acid ammonium) 및 적인(Red Phosphorous)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 또한, 상기 난연제는 상기 주제수지 100 중량부에 대하여 10 ~ 35 중량부, 바람직하게는 15 ~ 30 중량부로 포함될 수 있다.
한편, 상술한 절연성 방열 코팅조성물은 절연성 방열필러의 분산성을 향상시키고, 균일한 절연성 방열코팅층을 구현하기 위한 분산제, 용매를 더 포함할 수 있다.
상기 분산제는 절연성 방열필러의 분산제로 당업계에서 채용하는 공지된 성분을 사용할 수 있다. 일예로, 실리콘계 분산제, 폴리에스테르계 분산제, 폴리페닐렌에테르계 분산제; 폴리올레핀계 분산제, 아크릴로니트릴-부타디엔-스티렌 공중합체 분산제, 폴리아릴레이트계 분산제, 폴리아미드계 분산제, 폴리아미드이미드계 분산제, 폴리아릴설폰계 분산제, 폴리에테르이미드계 분산제, 폴리에테르설폰계 분산제, 폴리페닐렌 설피드계 분산제, 폴리이미드계 분산제, 폴리에테르케톤계분산제, 폴리벤족사졸계 분산제, 폴리옥사디아졸계 분산제, 폴리벤조티아졸계 분산제, 폴리벤즈이미다졸계 분산제, 폴리피리딘계 분산제, 폴리트리아졸계 분산제, 폴리피롤리딘계 분산제, 폴리디벤조퓨란계 분산제, 폴리설폰계 분산제, 폴리우레아계 분산제, 폴리우레탄계 분산제, 또는 폴리포스파젠계 분산제, 등을 들 수 있으며, 이들의 단독 또는 이들 중에 선택된 2종 이상의 혼합물 또는 공중합체를 사용할 수도 있다. 또한, 일예로, 상기 분산제는 실리콘계 분산제 일 수 있다.
또한, 상기 분산제는 바람직하게는 절연성 방열필러 100 중량부에 대하여 0.5 ~ 20 중량부로 포함될 수 있다. 만일 분산제가 절연성 방열필러 100 중량부에 대하여 0.5 중량부 미만으로 구비될 경우 목적하는 효과의 발현이 되지 않을 수 있고, 분산제가 20 중량부를 초과하여 구비될 경우 피착제의 부착 강도가 약해지거나 코팅 도막 표면에 핀홀(Pin hole) 및 오렌지 필(Orange Peel)이 발생할 수 있다.
또한, 상기 용매는 선택되는 주제수지, 경화제 등에 따라 이에 맞는 용매를 선택할 수 있어 본 발명에서는 이를 특별히 한정하는 것은 아니며, 상기 용매로는 각 성분의 적절한 용해를 가능케 하는 임의의 용매를 사용할 수 있고, 예를 들어, 물 등의 수계 용매, 알코올계 용매, 케톤계 용매, 아민계 용매, 아민계 용매, 에스테르계 용매, 아미드계 용매, 할로겐화 탄화수소계 용매, 에테르계 용매 및 퓨란계 용매로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.
또한, 상술한 절연성 방열 코팅조성물은 레벨링제, pH 조절제, 이온포착제, 점도조정제, 요변성(搖變性) 부여제, 산화방지제, 열안정제, 광안정제, 자외선흡수제, 착색제, 탈수제, 난연제, 대전방지제, 방미제(防黴劑), 방부제, 등의 각종 첨가제의 1 종류 또는 2 종류 이상이 첨가될 수도 있다. 상기 기재된 각종 첨가제는 당업계에 공지된 것을 사용할 수 있어 본 발명에서 특별히 한정하지 않는다.
상술한 본 발명의 일 실시예에 따른 절연성 방열 코팅조성물은 점도가 25℃에서 5 ~ 600 cps일 수 있다. 만일 절연성 방열 코팅조성물의 점도가 5 cps 미만일 경우 조성물의 흘러내림 등으로 절연성 방열코팅층의 생성이 어려울 수 있고, 생성 후에도 피코팅면과의 접착력이 약화될 수 있고, 600 cps를 초과할 경우 얇은 두께의 절연성 방열코팅층으로 제조하기 어렵고, 제조되더라도 표면이 균일하지 않을 수 있으며, 코팅공정이 용이하지 않을 수 있고, 특히 스프레잉 방식의 코팅일 경우 더욱 코팅공정이 어려울 수 있다. 또한, 절연성 방열코팅층 내 절연성 방열필러의 분산성이 저하될 수 있다.
한편, 상술한 절연성 방열 코팅조성물은 UV에 의한 황변을 방지하기 위한 UV 안정제를 더 포함할 수 있다.
상기 UV 안정제는 절연성 방열 코팅조성물의 UV 안정제로 당업계에서 채용하는 공지된 성분을 사용할 수 있다. 일예로, 2-(2'-하이드록시-3, 5'-디(1, 1-디메틸벤질-페닐)-벤조트리아졸, 2-(2'-하이드록시- 3', 5'-디-터-부틸페닐)-벤조트리아졸, 2-(2'-하이드록시-3'-터부틸-5'-메틸페닐)-5-클로로-벤조트리아졸, 2-(2-하이드록시-5-터-옥틸페닐)-벤조트리아졸, 2-(5-메틸-2-하이드록시-페닐)-벤조트리아졸, 2,6-디-t-부틸-4-메틸페놀, 테트라키스[메틸렌-3-(3,5-디-t-부틸-4-하이드록시페닐)프로피오네이트]메탄, 옥타데실-3,5-디-t-부틸-4-하이드록시하이드로신나메이트, 2,2-메틸렌비스(4-메틸-6-t-부틸페놀), 트리스(2,4-디-t-부틸페닐)-포스파이트, 비스(2,4-디-t-부틸), 펜타에리스리톨-디-포스파이트 알킬에스터 포스파이트, 디라우릴 티오-디-프로피오네이트, 디-스테아릴 티오-디-프로피오네이트, 디-스테아릴 티오-디-프로피오네이트 및 디미리스틸 티오-디-프로피오네이트로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. 또한, 일예로, 상기 UV 안정제는 2-(2'-하이드록시-3, 5'-디(1, 1-디메틸벤질-페닐)-벤조트리아졸 일 수 있다.
또한, 상기 UV 안정제는 바람직하게는 주제수지 100 중량부에 대하여 0.05 ~ 2 중량부로 더 포함될 수 있다. 만일 UV 안정제가 주제수지 100 중량부에 대하여 0.05 중량부 미만으로 구비될 경우 목적하는 효과를 발현할 수 없을 수 있고, 만일 UV 안정제가 2 중량부를 초과하여 구비되는 경우 절연성 방열코팅층의 부착 강도 및 내충격성이 저하될 수 있다.
한편, 상술한 절연성 방열 코팅조성물은 코팅 건조 도막의 변색 방지, 산화에 의한 취성, 부착 강도 등의 물성 저하를 방지하기 위한 산화방지제를 더 포함할 수 있다.
상기 산화방지제는 절연성 방열 코팅조성물의 산화방지제로 당업계에서 채용하는 공지된 성분을 사용할 수 있다. 일예로, 상기 산화방지제는 트리-메틸포스페이트, 트리-페닐포스페이트, 트리스(2, 4-디-터트-부틸페닐)포스페이트, 트리에틸렌글리콜-비스-3-(3-터트-부틸-4-하이드록시-5-메틸페닐)프로피오네이트, 1, 6-헥세인-디올-3(3, 5-디-터트-부틸-4-하이드록시페닐)프로피오네이트, 펜타에리스리틸-테트라키스(3-(3, 5-디-터트-부틸-4-하이드록시페닐)프로피오네이트, 2-하이드록시벤조페논, 2-하이드록시페닐벤조티아졸, 힌더드 아민, 유기 니켈 화합물, 살리실산염, 신나메이트 유도체, 레조르시놀 모노벤조에이트, 옥사닐리드 및 p-하이드록시벤조에이트로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다. 또한, 일예로, 상기 산화방지제는 2-하이드록시페닐벤조티아졸 일 수 있다.
또한, 상기 산화방지제는 바람직하게는 상기 주제수지 100 중량부에 대하여 0.1 ~ 3 중량부 더 포함될 수 있다. 만일 산화방지제가 주제수지 100 중량부에 대하여 0.1 중량부 미만으로 구비될 경우 변색이 발생할 수 있고, 만일 산화방지제가 3 중량부를 초과하여 구비되는 경우 취성 및 부착 강도가 약해질 수 있다.
한편, 두께 1.5㎜, 가로×세로가 각각 35㎜×34㎜인 알루미늄 플레이트에 상기 절연성 방열 코팅조성물을 처리하여 경화된 두께 25㎛의 절연성 방열코팅층을 포함하는 방열유닛이 하기 조건 (1)을 만족할 수 있다.
조건 (1)로써, 25℃, 습도 50%의 닫힌계에서 상기 방열유닛 하부 정중앙에 열원을 위치시키고, 90 분 후 상기 방열유닛 상부면 정중앙을 중심점으로 하는 반경 15㎜의 원 위의 임의의 10 개 점에서의 온도를 측정하여 하기 수학식 1에 따라 계산한 발열온도의 오차가 각 점에서 ±1% 이내일 수 있다.
[수학식 1]
Figure PCTKR2018000088-appb-I000006
상기 수학식 1에 따라 계산한 발열온도의 오차가 각 점에서 0%에 가까울수록, 방열필러가 균일하게 분산되어 있어서 제조한 방열유닛의 방열특성이 균일하게 나타난다는 것을 의미한다.
상기 조건 (1)을 만족하는 절연성 방열코팅층을 구현하는 절연성 방열코팅조성물은 절연성 방열 코팅조성물 내에 방열필러의 분산성이 높음에 따라서 이로 구현된 절연성 방열코팅층을 포함하는 방열유닛이 균일한 방열 성능을 나타낼 수 있다.
한편, 두께 1.5㎜, 가로×세로가 각각 35㎜×34㎜인 알루미늄 플레이트에 상기 절연성 방열 코팅조성물을 처리하여 경화된 두께 25㎛의 절연성 방열코팅층을 포함하는 방열유닛이 하기 조건 (2)를 만족할 수 있다.
조건 (2)로써, 25℃ 습도 50%인 닫힌계에서 상기 방열유닛 하부 정중앙에 온도 88℃의 열원을 위치시키고, 90분 후 방열유닛 정중앙의 상부 5cm 지점의 온도를 측정하여 하기 수학식 3에 따라 계산한 열방사 효율이 10% 이상, 바람직하게는 10 ~ 100%일 수 있다.
[수학식 3]
Figure PCTKR2018000088-appb-I000007
상기 수학식 3에 따라 계산한 열방사효율이 높다는 것은 방열특성이 우수하여 열을 빠르게 방사할 수 있다는 것을 의미한다.
상기 조건 (2)를 만족함에 따라 절연성 방열 코팅조성물을 처리하여 경화된 절연성 방열코팅층을 포함하는 방열유닛이 우수한 방열특성, 특히 열방사특성을 나타낼 수 있다.
상기 조건 (1) 및 조건 (2)에서 나타낸 열원은 온도가 25℃를 초과하고 일정 온도로 유지될 수 있는 열원이라면 제한 없이 사용할 수 있으며, 일예로, 상기 열원은 소정의 소비전력을 갖는 LED일 수 있다.
한편, 본 발명은 도 1에 도시된 것과 같이 기재(10a) 및 상기 기재(10a)의 외부면 적어도 일부분에 본 발명에 따른 절연성 방열 코팅조성물이 처리되어 경화된 절연성 방열코팅층(10b)을 포함하는 방열유닛(100)을 포함한다. 방열성능의 향상을 위하여 회로기판에 금속 재질로 성형된 방열유닛을 직접 접촉하도록 적용하게 되면 전기적인 쇼트가 발생하는 등의 문제가 생길 수 있는데, 본 발명의 절연성 방열 코팅조성물로 절연성 방열코팅층을 형성한 방열유닛의 경우 회로기판에 직접 접촉하도록 배치되는 경우에도 전기적 단락 등의 우려가 해소됨과 동시에 회로기판에서 발생하는 열을 효과적으로 외기로 방출시킬 수 있는 이점이 있다.
상기 기재(10a)는 기능적으로 방열특성의 유무와 관계없이 본 발명에 따른 절연성 방열 코팅조성물이 처리된 후 절연성 방열코팅층을 형성할 수 있을 정도의 기계적 강도를 갖는 경우 제한 없이 채용될 수 있다. 이에 재질적으로 상기 기재(10a)는 금속, 비금속 및 고분자 유기화합물 중 어느 하나 이상일 수 있다. 상기 금속의 경우 알루미늄, 구리, 아연, 은, 금, 철, 이들의 산화물 및 상기 금속들의 합금으로 이루어진 군으로부터 선택된 어느 하나의 금속 재질로 성형된 것일 수 있다.
또한, 상기 비금속은 산화알루미늄, 통상적으로 세라믹으로 통칭되는 성분일 수 있다. 또한, 상기 고분자 유기화합물은 폴리에틸렌, 폴리프로필렌, 폴리스티렌, 폴리염화비닐, 아크릴로니트릴-부타디엔-스티렌 수지(ABS), 아크릴로니트릴-스티렌 수지(AN), 메타크릴수지(PMMA), 폴리아미드, 폴리아세탈, 폴리카보네이트, 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트(PBT). 불소수지, 페녹시 수지, 페놀수지(PE), 우레아 수지(UF), 멜라민수지(MF), 불포화 폴리에스테르 수지(UP), 에폭시 수지, 폴리우레탄 수지와 같은 통상적으로 플라스틱으로 통칭되는 고분자 유기화합물일 수 있다.
상기 기재(10a)의 형상은 제한이 없다. 상기 기재(10a)가 방열특성을 갖는 기재일 경우 외부로 열의 방사시키기 위한 표면적을 넓히기 위하여 도 1과 같이 다수개의 첨상의 방열핀(10a1)이 구비된 구조일 수 있다. 또는, 도 2와 같이 밑판의 양 측단이 서로 대향하도록 상부로 절곡되어 방열핀의 기능을 수행하는 구조의 기재(11a)일 수 있다. 한편, 본 발명의 일 실시예에 의한 절연성 방열 코팅조성물로 형성된 절연성 방열코팅층(10b, 11b)은 향상된 방열성능을 발현함에 따라서 도 2와 같은 방열유닛(100')은 기재(11a)의 방열핀 개수가 도 1보다 적음에도 불구하고, 절연성 방열코팅층이 구비되지 않은 채로 구조적으로 표면적이 증가된 도 1과 같은 형상만을 갖는 방열기재보다도 방열성능에서 월등히 우수할 수 있다. 이에 따라서 도 1과 같이 구조적으로 성형하기 어렵고, 제조시간과 제조단가가 상승할 수 있는 구조의 기재(10a)를 채용하지 않더라도 목적하는 수준의 방열성능을 달성할 수 있는 이점이 있다.
또한, 도 1과 같이 기재(10a)가 다수개의 방열핀(10a1)을 구비하는 복잡한 형상의 경우에도 절연성 방열코팅층의 접착성이 우수함에 따라서 구부러지거나 단차가 형성된 외부면에도 절연성 방열코팅층이 박리되거나 크랙이 발생하지 않을 수 있다.
상기 기재(10a, 11a)의 두께, 길이, 폭 등은 방열유닛(100, 100')이 구비되는 적용처의 크기, 위치에 따라서 다양하게 변경될 수 있음에 따라서 본 발명은 이에 대해 특별히 한정하지 않는다.
또한, 도 2와 같이 상기 기재(11a)는 외부면과 절연성 방열코팅층(11b) 사이에 기능층(11c)을 더 구비할 수 있고, 상기 기능층은 절연성 방열코팅층(11b)의 접착성을 향상시키기 위한 별도의 프라이머층이거나 또는 방열성능의 향상을 위하여 기재(11a)의 외부면을 아노다이징 등의 표면 개질시켜 형성된 산화피막일 수 있다.
본 발명에 따른 절연성 방열 코팅 조성물은 상술한 기재(10a, 11a)의 적어도 일영역에 피복되어 절연성 방열코팅층을 형성하며, 도 1 및 도 2과 다르게 기재(10a, 11a) 일부분에만 절연성 방열코팅층이 형성될 수 있다. 이는 일부 피복 시 피복되는 면적은 목적하는 수준의 방열성능에 따라 달라질 수 있음에 따라서 본 발명은 이에 대해 특별히 한정하지 않는다.
상기 절연성 방열코팅층(10b, 11b)은 본 발명에 따른 절연성 방열 코팅조성물이 기재의 외부면 상에서 경화되어 형성된다. 상기 절연성 방열코팅층(10b, 11b)을 형성시키는 구체적인 방법은 절연성 방열 코팅조성물을 기재에 코팅시키는 공지된 방법을 선택하여 사용할 수 있고, 이에 대한 비제한적인 예로써 스프레이, 딥 코팅, 실크 스크린, 롤 코팅, 침적 코팅 또는 스핀 코팅 등의 방법으로 다양한 기재 위에 처리하여 제조할 수 있다.
상기 코팅 후 경화 시 사용되는 코팅층 형성성분의 주제수지 종류, 경화제의 종류에 따라서 열 및/또는 광을 처리하여 코팅조성물을 절연성 방열코팅층으로 구현시킬 수 있다. 가해지는 열의 온도 및/또는 광의 세기와 처리 시간 등은 사용되는 주제수지 종류, 경화제의 종류, 이들의 함량, 도막두께 등에 따라 차이가 있을 수 있다. 일예로, 상술한 에폭시 수지를 주제수지로 포함하고, 지방족 폴리 아민계 경화제를 포함하는 제1경화제 및 방향족 폴리 아민계 경화제, 산무수물계 경화제 및 촉매계 경화제로 이루어진 군에서 선택된 1종 이상을 포함하는 제2경화제를 구비하는 경우 기재의 변형점 미만의 온도인 130℃ 내지 150℃의 온도 하에서 1분 내지 60분간 처리될 수 있다. 만일 처리온도가 130℃ 미만일 경우, 절연성 방열 코팅조성물이 기재상에 피복되기 어렵고, 처리온도가 150℃를 초과할 경우 기재의 변형이나 방열층의 파괴 및 제조단가가 상승될 수 있다. 또한, 처리 공정시간이 1분 미만일 경우 역시 기재상에 절연성 방열 코팅조성물이 피복되기 어렵고, 표면처리 공정시간이 60분을 초과할 경우, 상기 절연성 방열장치의 제조시간이 불필요하게 증가하기 때문에 1분 내지 60분간 표면처리 공정이 진행되는 것이 바람직하다.
또한, 본 발명에 사용되는 절연성 방열 코팅조성물은 고체 기재, 특히 금속기재와 접촉시킨 후 공기 중에 노출시켜 상온 또는 50℃ 이하의 온도에서 수분 내에 끈적거림이 없이 신속하게 경화하는 피막을 형성함으로써 작업장에서 먼지 등에 의한 오염 가능성이 적고 최종 경화도 비교적 낮은 온도에서 수행할 수 있어 작업성이 우수할 뿐만 아니라 경화 중에 금속기재의 변형도 방지할 수 있다.
형성된 절연성 방열코팅층(10b, 11b)은 두께가 15 ~ 50㎛일 수 있고, 보다 바람직하게는 15 ~ 45㎛일 수 있다. 만일 두께가 50㎛를 초과하는 경우 코팅 표면에 끓음 현상 등이 발생할 수 있고, 두께가 15㎛ 미만일 경우 방열 특성이 저하될 수 있다.
또한, 상기 절연성 방열코팅층(10b, 11b)은 절연성 방열코팅층 전체 중량에 대하여 절연성 방열필러를 10 ~ 30 중량% 포함할 수 있고, 바람직하게는 15 ~ 25 중량%로 포함할 수 있다. 구현된 절연성 방열코팅층 내에 절연성 방열필러가 10 중량% 미만으로 구비되는 경우 목적하는 수준의 방열성능을 발현하지 못할 수 있다. 또한, 만일 절연성 방열필러가 30 중량%를 초과할 경우 절연성 방열코팅층의 접착력이 약화되어 박리가 쉽게 발생하고, 절연성 방열코팅층의 경도가 커져 물리적 충격에 쉽게 깨지거나 부스러질 수 있다. 또한, 절연성 방열코팅층의 표면에 돌출된 절연성 방열필러가 많아짐에 따라서 표면거칠기가 증가하여 절연성 방열코팅층의 표면품질이 저하될 수 있다. 더불어 절연성 방열 필러가 더 구비되더라도 방열성능의 향상 정도는 미미할 수 있다.
또한, 본 발명의 절연성 방열유닛은 단위 면적당 저항 값이 1010 ~ 1014 Ω/sq일 수 있다. 만일 절연성 방열유닛의 단위 면적당 저항 값이 1010Ω/sq 미만이면 방열 유닛의 절연성이 좋지 않기 때문에 전기적 절연이 요구되는 적용처에는 사용하기 어려울 수 있다.
한편, 상기 절연성 방열코팅층은 하기 수학식 2에 따른 열전도도의 상대이득이 200%를, 바람직하게는 220%를 초과할 수 있다.
[수학식 2]
Figure PCTKR2018000088-appb-I000008
상기 열전도도의 상대이득의 값이 작다는 것은 방열필러를 포함하는 절연성 방열코팅층이, 방열필러를 포함하지 않는 코팅층에 비하여 열전도도의 향상이 적다는 의미이고, 상대이득의 값이 크다는 것은 방열필러를 포함하는 절연성 방열코팅층이, 방열필러를 포함하지 않는 코팅층에 비하여 열전도도 향상 정도가 크다는 것을 의미한다.
만일, 상기 열전도도의 상대이득이 200% 이하이면 목적하는 수준의 방열성능을 발현하지 못할 수 있다.
한편, 본 발명은 소자가 실장된 회로기판 외부면의 적어도 일부분에 본 발명에 따른 절연성 방열 코팅조성물이 처리되어 경화된 절연성 방열코팅층을 포함하는 절연성 방열 회로기판을 포함한다.
구체적으로, 도 3에 도시된 바와 같이, 상기 절연성 방열 회로기판(200)은 기판(201)의 상부면에 실장된 복수개의 소자(203)를 포함하고, 상기 기판(201)의 하부와 상기 기판(201) 및 복수개의 소자(203)의 상부에 절연성 방열 코팅층(202)이 형성될 수 있다.
상기 소자는 구동칩과 같은 전자기기내 회로기판에 실장되는 공지된 소자일 수 있다. 또한, 상기 기판은 전자기기에 구비되는 공지된 회로기판일 수 있으며, 일예로 PCB, FPCB일 수 있다. 상기 기판의 크기, 두께는 구현하고자 하는 전자기기의 내부설계에 따라 변경이 가능함에 따라서 본 발명은 이에 대해 특별히 한정하지 않는다.
또한, 본 발명은 외부면의 적어도 일부분에 본 발명에 따른 절연성 방열 코팅조성물이 처리되어 경화된 절연성 방열코팅층을 포함하는 조명용 절연성 방열 부품을 포함한다.
일예로, 상기 조명용 절연성 방열 부품은 조명용 절연성 방열 히트싱크일 수 있다. 구체적으로, 도 4에 도시된 바와 같이, 상기 조명용 절연성 방열 히트싱크(300)는 히트싱크(301)및 상기 히트싱크(301)의 외부면의 적어도 일부 또는 전부에 형성된 절연성 방열 코팅층(302)를 포함할 수 있다.
상기 히트싱크는 조명에 구비되는 공지된 히트싱크일 수 있다. 상기 히트싱크의 재질, 크기, 두께, 및 형상은 구현하고자 하는 조명의 용도, 형상 및 내부설계에 따라 변경이 가능함에 따라서 본 발명은 이에 대해 특별히 한정하지 않는다.
한편, 본 발명에 따른 절연성 방열 코팅조성물은 상술한 방열유닛, 회로기판 및 조명용 부품 외에도 모바일 기기, TV, 웨어러블 기기 및 플렉서블 기기 등을 포함하는 전자장치 부품, LED 램프, ECU(electronic control unit), EV 배터리 및 인버터 등을 포함하는 자동차 부품, RF 장비, 디지털 장비, 서버기기 및 셋업박스 등을 포함하는 전기통신장치와 네트워크 장치 및 태양전지판, LED 및 AI/AIN PCB(Printed circuit Board) 등을 포함하는 장치, 조명 케이스 및 소켓 등을 포함하는 조명용 부품 등에 적용할 수 있다. 일예로, 외부면의 적어도 일부분에 본 발명에 따른 절연성 방열 코팅조성물이 처리되어 경화된 절연성 방열코팅층이 적용된 EV 고전압 스위칭 릴레이용 절연성 방열 부스바, EV 고전압 스위칭 릴레이용 절연성 방열 케이스, 자동차용 절연성 방열 DC-DC 컨버터, 자동차 엔진 냉각 장치, 자동차 LED 헤드램프 및 PTC 히터로 이루어진 군에서 선택된 1종 이상을 포함하는 자동차용 부품에 적용될 수 있다.
일예로, 상기 자동차용 부품은 외부면의 적어도 일부분에 본 발명에 따른 절연성 방열 코팅조성물이 처리되어 경화된 절연성 방열코팅층을 포함하는 EV 고전압 릴레이용 절연성 방열 부스바일 수 있다.
상기 EV 고전압 릴레이용 부스바는 당업계에서 통상적으로 사용할 수 있는 공지된 EV 고전압 릴레이용 부스바일 수 있으며, 상기 부스바의 재질, 크기, 두께, 및 형상은 구현하고자 하는 EV 고전압 릴레이의 목적하는 입력전압 및/또는 출력전압을 고려한 내부설계에 따라 변경이 가능함에 따라서 본 발명은 이에 대해 특별히 한정하지 않는다.
또한, 상기 자동차용 부품은 외부면의 적어도 일부분에 본 발명에 따른 절연성 방열 코팅조성물이 처리되어 경화된 절연성 방열코팅층을 포함하는 EV 고전압 스위칭 릴레이용 절연성 방열 케이스일 수 있다.
상기 EV 고전압 스위칭 릴레이용 케이스는 당업계에서 통상적으로 사용할 수 있는 공지된 EV 고전압 릴레이용 케이스 일 수 있다. 상기 EV 고전압 스위칭 릴레이용 케이스 내부에 상술한 EV 고전압 릴레이용 부스바를 포함할 수 있으며, 상기 케이스의 재질, 크기, 두께 및 형상은 구현하고자 하는 EV 고전압 릴레이 내부에 위치되는 부스바의 형상 및 개수 등의 내부설계에 따라 변경이 가능함에 따라서 본 발명은 이에 대해 특별히 한정하지 않는다.
또한, 상기 자동차용 부품은 외부면의 적어도 일부분에 본 발명에 따른 절연성 방열 코팅조성물이 처리되어 경화된 절연성 방열코팅층을 포함하는 절연성 방열 DC-DC 컨버터일 수 있다.
상기 DC-DC 컨버터는 특정 전압의 직류전원에서 다른 전압의 직류전원으로 변환하는 기능을 하며, 당업계에서 통상적으로 사용할 수 있는 공지된 DC-DC 컨버터일 수 있다. 상기 DC-DC 컨버터의 크기 및 형상은 구현하고자 하는 장치의 내부설계에 따라 변경이 가능함에 따라서 본 발명은 이에 대해 특별히 한정하지 않는다.
또한, 상기 자동차용 부품은 외부면의 적어도 일부분에 본 발명에 따른 절연성 방열 코팅조성물이 처리되어 경화된 절연성 방열코팅층을 포함하는 절연성 방열 엔진 냉각 장치일 수 있다.
일예로, 상기 절연성 방열 엔진 냉각 장치에 포함되는 라디에이터의 일부 또는 전부에 절연성 방열코팅층이 형성될 수 있다. 상기 라디에이터는 당업계에서 통상적으로 사용할 수 있는 공지된 라디에이터일 수 있으며, 상기 라디에이터의 재질, 크기 및 형상은 구현하고자 하는 엔진 냉각 장치의 내부설계에 따라 변경이 가능함에 따라서 본 발명에서는 이에 대해 특별히 한정하지 않는다.
또한, 상기 자동차용 부품은 외부면의 적어도 일부분에 본 발명에 따른 절연성 방열 코팅조성물이 처리되어 경화된 절연성 방열코팅층을 포함하는 절연성 방열 LED 헤드 램프일 수 있다.
LED 헤드 램프의 외부면의 적어도 일부분에 절연성 방열코팅층을 포함함에 따라, 절연 및 방열 특성을 현저히 향상시킬 수 있으며 LED 헤드 램프가 경량화될 수 있다. 상기 LED 헤드 램프는 당업계에서 통상적으로 사용할 수 있는 공지된 LED 헤드 램프일 수 있으며, 상기 LED 헤드 램프의 재질, 크기 및 형상은 구현하고자 하는 차량의 디자인 및/또는 LED 헤드 램프의 내부설계에 따라 변경이 가능함에 따라서 본 발명에서는 이에 대해 특별히 한정하지 않는다.
또한, 상기 자동차용 부품은 외부면의 적어도 일부분에 본 발명에 따른 절연성 방열 코팅조성물이 처리되어 경화된 절연성 방열코팅층을 포함하는 전기 자동차용 절연성 방열 PTC 히터일 수 있다.
상기 PTC 히터는 PTC 핀을 포함할 수 있는데, 상기 PTC 핀의 일부 또는 전부에 절연성 방열코팅층이 형성됨에 따라서, 방열 효율이 개선될 수 있고, 전기 자동차의 소모 전력량이 감소할 수 있다. 상기 PTC 핀은 당업계에서 통상적으로 사용할 수 있는 공지된 PTC 핀일 수 있으며, 상기 PTC 핀의 재질, 크기 및 형상은 구현하고자하는 PTC 히터의 내부설계에 따라 변경이 가능함에 따라서 본 발명에서는 이에 대해 특별히 한정하지 않는다.
한편, 본 발명의 절연성 방열코팅층을 형성시키는 방열 코팅 조성물은 절연성 방열코팅층과 기재간의 우수한 접착력, 향상된 내습성 및 내후성, 절연성 방열필러의 습윤성을 향상시킬 수 있으며, 컴파운딩 시 점도저하 및 절연성 방열코팅층이 형성된 기재 표면 연성을 증가시킬 수 있다. 또한, 우수한 방열성 및 절연성, 유기용매에 대해 뛰어난 내용매성을 발현하며, 경화 시 변색이 없고, 열전도의 조절이 용이함에 따라 이로 구현된 절연성 방열코팅층을 포함하는 절연성 방열유닛은 향상된 물성을 지속적으로 발현할 수 있다. 또한, 절연성 방열코팅층 내에 분산된 방열필러의 분산성이 우수하여 균일한 절연 및 방열성능을 나타낼 수 있다. 절연성 및 방열성이 동시에 요구되는 각종 전기전자 부품이 실장된 회로기판, LED 램프 등의 조명장치, 디스플레이 장치 등의 전기전자, 자동차, 에너지, 항공우주 산업 전반에 널리 응용될 수 있다.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.
<실시예 1>
코팅층 형성성분은 주제수지로 하기 화학식 1로 표시되는 화합물 100 중량부에 대하여 제1경화제로 폴리에틸렌폴리아민 및 제2경화제로 2,4,6-트리스[N,N-디메틸아미노]메틸]페놀을 1 : 1 의 중량비로 포함하는 경화제를 60중량부, 평균입경이 5㎛이고, D50과 D97의 비율이 1 : 1.6인 탄화규소 47 중량부, 에폭시계 실란화합물인 물성증진성분(Shanghai Tech Polymer Technology, Tech-7130) 3 중량부, 착색제로 탈크(Talc)를 44 중량부, 소광제로 이산화 티타늄을 44 중량부, 난연제 트리징크 비스(오르토포스페이트) 22 중량부, UV 안정제로 2-(2'-하이드록시-3, 5'-디(1, 1-디메틸벤질-페닐)-벤조트리아졸 0.5 중량부, 산화방지제로 2-하이드록시페닐벤조티아졸 1 중량부, 분산제(이소부틸알데하이드와 우레아의 축합물) 5 중량부, 용매로 1-뷰탄올 13 중량부, n-부틸 아세테이트 13 중량부, 2-메톡시-1-메틸에틸 아세테이트 13 중량부, 메틸에틸케톤 9 중량부, 에틸 아세테이트 37 중량부, 톨루엔 9 중량부, 4-메틸-2-펜탄온 43 중량부, 자일렌 103 중량부를 혼합하여 교반하였다. 교반 후 혼합물 내에 포함된 기포를 제거하였고, 최종 점도를 25℃ 기준 100 ~ 130 cps로 제조하여 하기 표 1과 같은 절연성 방열코팅 조성물을 제조하였고, 이후 5℃에서 저장하였다.
[화학식 1]
Figure PCTKR2018000088-appb-I000009
상기 R1 ~ R4는 각각 메틸기이고, 상기 n은 상기 화학식 1로 표시되는 화합물의 중량평균분자량이 2000이도록 하는 유리수이다.
<실시예 2 ~ 21>
실시예 1과 동일하게 실시하여 제조하되, 하기 표 1, 표 2 또는 표 3과 같이 절연성 방열필러의 평균입경, 입도분포, 경화제의 중량비, 주제수지의 분자량 등을 변경하여 표 1, 표 2 또는 표 3과 같은 절연성 방열 코팅조성물을 제조하였다.
<비교예 1 ~ 3>
실시예 1과 동일하게 실시하여 제조하되, 하기 표 4와 같이 절연성 방열필러의 함량 등을 변경하여 하기 표 4와 같은 절연성 방열 코팅조성물을 제조하였다.
<실험예 1>
실시예 및 비교예에서 제조된 방열 코팅조성물을 알루미늄 재질(Al 1050)의 두께 1.5㎜, 가로×세로가 각각 35㎜×34㎜인 기재 전면에 최종 두께가 25㎛가 되도록 스프레잉 코팅하여 처리 후 150℃ 온도로 10분간 열처리하여 절연성 방열코팅층이 형성된 방열유닛을 제조한 후 하기의 물성을 평가하여 표 1 내지 표 4에 나타내었다.
1. 열전도성 평가
가로, 세로, 높이 각각 32㎝×30㎝×30㎝인 아크릴 챔버 중앙에 방열유닛을 위치시킨 후 챔버 내부의 온도와 방열유닛의 온도를 25±0.2℃가 되도록 조절하였다. 이후 방열유닛에 열원으로 가로, 세로 각각 20㎜×20㎜의 LED를 TIM(열전도성 테이프 : 1W/mk)을 사용하여 붙여서 시험시편을 제조하였다. 제조된 시편의 열원에 2.1W(DC 3.9V, 0.53A)의 입력전력을 인가하여 열을 발생시키고, 90분 유지한 후 방열유닛의 온도를 측정하여 열전도율을 평가하였다. 구체적으로 열전도율은 방열코팅층이 구비되지 않은 기재에 대해 동일 조건에서 측정한 온도를 기준으로 하여 하기 수학식 4에 따라서 계산하였다.
[수학식 4]
Figure PCTKR2018000088-appb-I000010
2. 열방사성 평가
가로, 세로, 높이 각각 32㎝×30㎝×30㎝인 아크릴 챔버 중앙에 방열유닛을 위치시킨 후 챔버 내부의 온도와 방열유닛의 온도를 25±0.2℃가 되도록 조절하였다. 이후 방열유닛에 열원으로 가로, 세로 각각 20㎜×20㎜의 LED를 TIM(열전도성 테이프 : 1W/mk)을 사용하여 붙여서 시험시편을 제조하였다. 제조된 시편의 열원에 2.1W(DC 3.9V, 0.53A)의 입력전력을 인가하여 열을 발생시키고, 90분 유지한 후 방열유닛 정중앙의 상부 5cm 지점의 온도를 측정하여 열방사율을 평가하였다. 구체적으로 열방사율은 절연성 방열코팅층이 구비되지 않은 기재에 대해 동일 조건에서 측정한 온도를 기준으로 하여 하기 수학식 3에 따라서 계산하였다.
[수학식 3]
Figure PCTKR2018000088-appb-I000011
3. 방열성능의 균일성 평가
가로, 세로, 높이 각각 32㎝×30㎝×30㎝인 아크릴 챔버 중앙에 방열유닛을 위치시킨 후 챔버 내부의 온도와 방열유닛의 온도를 25±0.2℃, 챔버 내부의 습도를 50%가 되도록 조절하였다. 이후 방열유닛에 열원으로 가로, 세로 각각 20㎜×20㎜의 LED를 TIM(열전도성 테이프 : 1W/mk)을 사용하여 붙여서 시험시편을 제조하였다. 제조된 시편의 열원에 2.1W(DC 3.9V, 0.53A)의 입력전력을 인가하여 열을 발생시키고, 90분 유지한 후, 방열유닛 상부면 정중앙을 중심점으로 하는 반경 15㎜의 원 위의 임의의 10개 점에서의 온도를 측정하여 하기 수학식 1에 따라 발열온도의 오차를 계산하였다. 오차가 작을수록 방열성능이 균일하다고 볼 수 있고, 절연성 방열코팅층의 방열필러 분산성이 높다고 해석할 수 있다. 발열온도의 오차 중 최대 값을 하기 표 1 내지 4에 나타내었다.
[수학식 1]
Figure PCTKR2018000088-appb-I000012
4. 내구성 평가
온도가 60℃, 상대습도가 90%인 챔버내 방열유닛을 배치한 후 480시간 경과 후 방열유닛의 표면상태를 육안으로 평가하였다. 평가결과 절연성 방열코팅층의 크랙, 박리(들뜸) 유무를 확인하여 이상이 없는 경우 ○, 이상이 발생한 경우 ×로 나타내었다.
5. 접착성 평가
내구성을 평가한 시편에 대하여 1㎜ 간격이 되도록 나이프로 크로스 컷팅을 했다. 이후 이후 컷팅된 면에 스카치테이프를 부착하고 60° 각도로 잡아당겨 절연성 방열코팅층이 박리되는 상태를 확인한다. 평가기준은 ISO 2409에 의거하여 평가했다. (5B: 0%, 4B: 5%이하, 3B: 5~15%, 2B: 15~35%, 1B: 35~65%, 0B: 65%이상)
6. 표면품질평가
방열유닛의 표면품질을 확인하기 위하여, 손으로 표면을 만져보아 울퉁불퉁하거나 거친 느낌이 있는지 확인하였다. 매끄러운 느낌이 있는 경우 5, 거친느낌이 있는 부분의 면적이 방열유닛 외부면 전체 면적 중 2% 이하일 경우 4, 2% 초과 5% 이하의 면적일 경우 3, 5%초과 10% 이하의 면적일 경우 2, 10%초과 20% 이하의 면적일 경우 1, 20%초과의 면적일 경우 0으로 나타내었다.
구분 실시예1 실시예2 실시예3 실시예4 실시예5 실시예6 실시예7
코팅층 형성성분 주제수지(중량평균분자량) 2000 2000 2000 310 570 3900 4650
경화제 함량(중량부) 60 60 60 60 60 60 60
제1경화제, 제2경화제의 중량비 1:1 1:1 1:1 1:1 1:1 1:1 1:1
절연성 방열필러 함량(중량부) 47 35 60 47 47 47 47
평균입경(㎛) 5 5 5 5 5 5 5
D50, D97의 비 1:1.6 1:1.6 1:1.6 1:1.6 1:1.6 1:1.6 1:1.6
방열유닛 절연성 방열코팅층 두께(㎛) 25 25 25 25 25 25 25
열전도율(%) 18.27 17.65 18.34 16.91 17.02 17.13 16.54
열방사효율(%) 90 81 96 86 88 88 87
발열온도 오차(%) 0.5 0.6 0.4 0.3 0.4 0.9 4.1
접착성 5B 5B 5B 0B 4B 5B 5B
내구성 ×
표면품질 5 5 5 5 5 5 5
구분 실시예8 실시예9 실시예10 실시예11 실시예12 실시예13 실시예14
코팅층 형성성분 주제수지(중량평균분자량) 2000 2000 2000 2000 2000 2000 2000
경화제 함량(중량부) 15 30 95 110 60 60 60
제1경화제, 제2경화제의 중량비 1:1 1:1 1:1 1:1 1:0.2 1:0.6 1:1.4
절연성 방열필러 함량(중량부) 47 47 47 47 47 47 47
평균입경(㎛) 5 5 5 5 5 5 5
D50, D97의 비 1:1.6 1:1.6 1:1.6 1:1.6 1:1.6 1:1.6 1:1.6
방열유닛 절연성 방열코팅층 두께(㎛) 25 25 25 25 25 25 25
열전도율(%) 16.22 17.39 17.12 14.59 16.94 17.72 17.63
열방사효율(%) 88 88 87 87 86 88 89
발열온도 오차(%) 0.5 0.5 0.5 0.5 0.4 0.5 0.5
접착성 0B 4B 4B 2B 0B 5B 5B
내구성 × × ×
표면품질 2 5 5 1 5 5 5
구분 실시예15 실시예16 실시예17 실시예18 실시예19 실시예20 실시예21
코팅층 형성성분 주제수지(중량평균분자량) 2000 2000 2000 2000 2000 2000 2000
경화제 함량(중량부) 60 60 60 60 60 60 60
제1경화제, 제2경화제의 중량비 1:2 1:1 1:1 1:1 1:1 1:1 1:1
절연성 방열필러 함량(중량부) 47 47 47 47 47 47 47
평균입경(㎛) 5 0.005 0.42 10 20 3 5
D50, D97의 비 1:1.6 1:2.41 1:2.08 1:1.51 1:1.93 1:3.08 1:4.96
방열유닛 절연성 방열코팅층 두께(㎛) 25 25 25 25 25 25 25
열전도율(%) 17.01 12.11 17.63 17.92 17.19 17.88 18.31
열방사효율(%) 88 7 88 91 90 81 39
발열온도 오차(%) 0.5 0.5 0.5 0.4 2.8 0.8 3.9
접착성 2B 3B 5B 5B 3B 4B 2B
내구성 ×
표면품질 5 5 5 4 0 4 3
구분 비교예1 비교예2 비교예31 )
코팅층 형성성분 주제수지(중량평균분자량) 2000 2000 2000
경화제 함량(중량부) 60 60 60
제1경화제, 제2경화제의 중량비 1:1 1:1 1:1
절연성 방열필러 함량(중량부) 15 80 -
평균입경(㎛) 5 5 -
D50, D97의 비 1:1.6 1:1.6 -
방열유닛 절연성 방열코팅층 두께(㎛) 25 25 25
열전도율(%) 14.62 18.36 4.76
열방사효율(%) 8 98 2
발열온도 오차(%) 5.3 1.0 0
접착성 5B 3.8 5B
내구성 ×
표면품질 5 1 5
1) 상기 비교예 3은 방열필러를 포함하지 않는 조성물을 나타낸다.
상기 표 1 내지 표 4에서 알 수 있듯이,
주제수지의 중량평균분자량이 본 발명의 바람직한 범위 내에 있는 실시예 1, 5, 6이, 이를 만족하지 못하는 실시예 4, 7에 비하여 접착성, 내구성 및 방열성능의 균일성이 동시에 달성되는 것을 확인할 수 있다.
또한, 경화제의 함량이 본 발명의 바람직한 범위 내에 있는 실시예 1, 9, 10이, 이를 만족하지 못하는 실시예 8, 실시예 11에 비하여 열전도율, 내구성 및 접착성이 동시에 달성되는 것을 확인할 수 있다.
또한, 제1경화제 및 제2경화제의 중량비가 본 발명의 바람직한 범위 내에 있는 실시예 1, 실시예 13, 14가 이를 만족하지 못하는 실시예 12, 15에 비하여 접착성 및 내구성이 동시에 달성되는 것을 확인할 수 있다.
또한, 절연성 방열필러의 평균입경이 본 본 발명의 바람직한 범위 내에 있는 실시예 1, 17, 18이 이를 만족하지 못하는 실시예 16, 19에 비하여 열방사효율, 열전도율 및 표면품질이 동시에 달성되는 것을 확인할 수 있다.
또한, D50 및 D97의 비가 본 발명의 바람직한 범위 내에 있는 실시예 1, 20이, 이를 만족하지 못하는 실시예 21에 비하여 분산성, 표면품질, 열방사효율 및 접착성이 동시에 달성되는 것을 확인할 수 있다.
또한, 방열필러의 함량이 본 발명의 바람직한 범위 내에 있는 실시예 1, 2, 3이, 이를 만족하지 못하는 비교예 1, 2에 비하여 방열성능, 표면품질이 동시에 현저히 우수한 것을 확인할 수 있다.
또한, 방열필러를 포함하지 않는 비교예 3은, 실시예 1에 비하여 현저하게 열방사성이 낮은 것을 확인할 수 있다.
<실험예 2>
제조된 방열유닛 중 실시예 1의 조성물을 통해 제조된 방열유닛(제조예 1)과 비교예 3의 조성물을 통해 제조된 방열유닛(비교제조예 3)에 대하여 열전도도의 상대이득 평가를 수행하였다. 구체적으로 정상상태 열유속법(Steady State Heat Flow Method)으로 열전도도를 측정하고, 하기 수학식 2에 따라 열전도도의 상대이득을 평가하였다. 이를 하기 표 5에 나타내었다.
[수학식 2]
Figure PCTKR2018000088-appb-I000013
구분 제조예1 비교제조예3
열전도도(W/m·K) 0.58 0.12
열전도도의 상대이득(%) 383.3
상기 표 5에서 볼 수 있듯이, 본 발명에 따른 절연성 방열필러를 포함하여 제조된 제조예 1은, 이를 포함하지 않는 비교제조예 3에 비하여 열전도도가 월등히 높으며, 이에 따라 우수한 방열성능을 나타낼 수 있다는 것을 알 수 있다.
<실험예 3>
제조된 방열유닛 중 실시예 1, 실시예 2 및 실시예 3의 조성물을 통해 제조된 방열유닛(제조예 1, 제조예 2 및 제조예 3)과 비교예 2의 조성물을 통해 제조된 방열유닛(비교제조예 2)에 대하여 절연성 방열유닛의 저항 값 측정을 수행하였다. 구체적으로 4단자법으로 저항 값을 측정하여 하기 표 6에 나타내었다.
구분 제조예1 제조예2 제조예3 비교제조예2
저항 값(Ω/sq.) 1.3×1012 7.1×1013 9.7×1010 7.1×109
상기 표 6에서 볼 수 있듯이, 본 발명에 따른 제조예 1 ~ 3이, 절연성 방열 필러를 본 발명의 함량을 초과하여 포함하는 비교 제조예 2에 비하여 월등히 높은 저항 값을 나타내며, 이에 따라 우수한 절연성능을 나타낼 수 있다는 것을 알 수 있다.
이상에서 본 발명의 일 실시 예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (25)

  1. 주제수지를 포함하는 코팅층 형성성분; 및
    상기 주제수지 100 중량부에 대하여 25 ~ 70 중량부로 포함되는 절연성 방열필러;를 포함하는 절연성 방열 코팅조성물.
  2. 제1항에 있어서,
    상기 주제수지는 글리시딜에테르형 에폭시 수지, 글리시딜아민형 에폭시 수지, 글리시딜에스테르형 에폭시 수지, 선형 지방족형(linear Aliphatic) 에폭시 수지, 고무변성 에폭시 수지 및 이들의 유도체로 이루어진 군에서 선택된 1종 이상을 구비하는 에폭시 수지를 포함하는 절연성 방열 코팅조성물.
  3. 제1항에 있어서,
    상기 주제수지는 하기 화학식 1로 표시되는 화합물을 포함하는 절연성 방열 코팅조성물:
    [화학식 1]
    Figure PCTKR2018000088-appb-I000014
    상기 R1 및 R2는 각각 독립적으로 수소원자, C1 ~ C5의 직쇄형 알킬기 또는 C3 ~ C5의 분쇄형 알킬기이고, 상기 R3 및 R4는 각각 독립적으로 수소원자, C1 ~ C5의 직쇄형 알킬기 또는 C3 ~ C5의 분쇄형 알킬기이며, 상기 n은 상기 화학식 1로 표시되는 화합물의 중량평균분자량이 400 ~ 4000이도록 하는 유리수이다.
  4. 제1항에 있어서,
    상기 절연성 방열필러는 열전도도가 130 ~ 200 W/m·K인 절연성 방열 코팅조성물.
  5. 제1항에 있어서,
    상기 코팅층 형성성분은 상기 주제수지 100 중량부에 대하여 25 ~ 100 중량부로 포함되는 경화제를 더 포함하는 절연성 방열 코팅조성물.
  6. 제5항에 있어서,
    상기 경화제는 지방족 폴리 아민계 경화제, 방향족 폴리 아민계 경화제, 산무수물계 경화제 및 촉매계 경화제로 이루어진 군에서 선택된 1종 이상을 포함하는 절연성 방열 코팅조성물.
  7. 제5항에 있어서, 상기 경화제는
    지방족 폴리 아민계 경화제를 포함하는 제1경화제 및 방향족 폴리 아민계, 산무수물계 경화제 및 촉매계 경화제로 이루어진 군에서 선택된 1종 이상을 포함하는 제2경화제를 1 : 0.5 ~ 1.5의 중량비로 포함하는 절연성 방열 코팅조성물.
  8. 제7항에 있어서,
    상기 지방족 폴리 아민계 경화제는 폴리에틸렌폴리아민을 포함하는 절연성 방열 코팅조성물.
  9. 제1항에 있어서,
    상기 절연성 방열 코팅조성물은 주제수지 100 중량부에 대하여 부착성 향상을 위한 물성증진성분을 0.5 ~ 20 중량부로 더 포함하는 절연성 방열 코팅조성물.
  10. 제9항에 있어서,
    상기 물성증진성분은 3-[N-아닐-N-(2-아미노에틸)] 아미노프로필트리메톡시실란, 3-(N-아닐-N-글리시딜)아미노프로필트리메톡시실란, 3-(N-아닐-N-메타아크릴로닐]아미노프로필트리메톡시실란, 3-글리시딜 옥시프로필메틸에톡시실란, N,N-Bis[3-(트리메톡시시닐)프로필]메타아크릴아마이드, γ-글리시독시트리메틸디메톡시실란, 3-글리시딜옥시프로필트리메톡시실란, 3-글리시딜옥시프로필트리에톡시실란, 3-글리시딜옥시프로필메틸메톡시실란, 베타(3, 4 -에폭시 사이클로헥실)에틸트리메톡시실란, 3-메타아크릴록시프로필트리메톡시실란, 3-글리시독시프로필메틸디메톡시실란, 헵타데카플루오로데시트리메톡시실란, 3-메타아크릴록시프로필메틸디메톡시실란, 3-메타아크릴록시프로필트리스 (트리메틸실록시)실란, 메틸트리스(디메틸시록시)실란, 3-아미노프로필트리에폭시 실란, 3-메르캅토프로필트리메톡시 실란 및 N-(β-아미노에틸)-γ-아미노프로필트리메톡시실란으로 이루어진 군에서 선택된 1종 이상을 포함하는 절연성 방열 코팅조성물.
  11. 제1항에 있어서,
    상기 절연성 방열필러는 탄화규소를 포함하는 절연성 방열 코팅조성물.
  12. 제1항에 있어서,
    상기 절연성 방열필러는 평균입경이 10㎚ ~ 15㎛인 절연성 방열 코팅조성물.
  13. 제12항에 있어서,
    상기 절연성 방열필러는 D50과 D97의 비율이 1 : 4.5 이하인 절연성 방열 코팅조성물.
  14. 제1항에 있어서,
    상기 절연성 방열 코팅조성물은 점도가 5 ~ 600 cps인 절연성 방열 코팅조성물.
  15. 제1항에 있어서,
    상기 절연성 방열 코팅조성물은 상기 주제수지 100 중량부에 대하여,
    탈크, 징크옥사이드, 징크설파이드, 금속산화물계, 하이드록실계, 설파이드계, 아조계, 니트로계 및 프탈로시아닌계로 이루어진 군에서 선택된 1종 이상을 포함하는 착색제를 30 ~ 60 중량부 및
    이산화티타늄, 어에로젤 실리카, 하이드로젤 실리카, PP 왁스, PE 왁스, PTFE 왁스, 우레아 포름알데이드 수지 및 벤조구아민 포름알데이드 수지로 이루어진 군에서 선택된 1종 이상을 포함하는 소광제를 30 ~ 60 중량부 포함하는 절연성 방열 코팅조성물.
  16. 제1항에 있어서,
    상기 절연성 방열 코팅조성물은 상기 주제수지 100 중량부에 대하여 트리징크 비스(오르토포스페이트), 트리페닐 포스페이트(Tryphenyl phosphate), 트리자일레닐 포스페이트(Trixylenyl phosphate), 트리크레실 포스페이트(Tricresyl phosphate), 트리이소페닐 포스페이트(Triisophenyl phosphate), 트리스클로로에틸 포스페이트(Tris-Choloroethylphosphate), 트리스클로로프로필 포스페이트(Tris-Chloroprophyphosphate), 리소시놀 디 포스페이트(Resorcinol di-phosphate), 아로마틱 폴리포스페이트(Aromatic polyphosphate), 폴리포스포릭 에시드 암모늄(Polyphosphoric acid ammonium) 및 적인(Red Phosphorous)로 이루어진 군에서 선택된 1종 이상을 포함하는 난연제를 10 ~ 35 중량부 포함하는 절연성 방열 코팅조성물.
  17. 제1항에 있어서,
    상기 절연성 방열 코팅조성물은 상기 절연성 방열필러 100 중량부에 대하여 분산제를 0.5 ~ 20 중량부 더 포함하는 절연성 방열 코팅조성물.
  18. 제1항에 있어서,
    두께 1.5㎜의 알루미늄 플레이트에 상기 절연성 방열 코팅조성물을 처리하여 경화된 두께 25㎛의 절연성 방열코팅층을 포함하는 방열유닛이 하기 조건 (1)을 만족하는 절연성 방열 코팅조성물:
    (1) 25℃, 습도 50%의 닫힌계에서 상기 방열유닛 하부 정중앙에 열원을 위치시키고, 90 분 후 상기 방열유닛 상부면 정중앙을 중심점으로 하는 반경 15㎜의 원 위의 임의의 10 개 점에서의 온도를 측정하여 하기 수학식 1에 따라 계산한 발열온도의 오차가 각 점에서 ±1% 이내임.
    [수학식 1]
    Figure PCTKR2018000088-appb-I000015
  19. 제1항에 있어서,
    두께 1.5㎜, 가로×세로가 각각 35㎜×34㎜인 알루미늄 플레이트에 상기 절연성 방열 코팅조성물을 처리하여 경화된 두께 25㎛의 절연성 방열코팅층을 포함하는 방열유닛이 하기 조건 (2)를 만족하는 절연성 방열 코팅조성물:
    (2) 25℃ 습도 50%인 닫힌계에서 상기 방열유닛 하부 정중앙에 온도 88℃의 열원을 위치시키고, 90분 후 방열유닛 정중앙의 상부 5cm 지점의 온도를 측정하여 하기 수학식 3에 따라 계산한 열방사 효율이 10% 이상임.
    [수학식 3]
    Figure PCTKR2018000088-appb-I000016
  20. 방열부재 또는 지지부재; 및
    제1항 내지 제19항 중 어느 한 항에 따른 절연성 방열 코팅조성물이 상기 방열부재 또는 지지부재 외부면의 적어도 일부분에 처리되어 경화된 절연성 방열코팅층;을 포함하는 절연성 방열유닛.
  21. 제20항에 있어서,
    상기 절연성 방열코팅층은 하기 수학식 2에 따른 열전도도의 상대이득이 200%를 초과하는 절연성 방열유닛:
    [수학식 2]
    Figure PCTKR2018000088-appb-I000017
  22. 제20항에 있어서,
    상기 절연성 방열코팅층의 두께는 15 ~ 50㎛인 절연성 방열유닛.
  23. 제20항에 있어서,
    상기 절연성 방열유닛은 단위 면적당 저항 값이 1010 ~ 1014 Ω/sq인 절연성 방열유닛.
  24. 소자가 실장된 회로기판; 및
    제1항 내지 제19항 중 어느 한 항에 따른 절연성 방열 코팅조성물이 상기 회로기판 외부면의 적어도 일부분에 처리되어 경화된 절연성 방열코팅층;을 포함하는 절연성 방열 회로기판.
  25. 외부면의 적어도 일부분에 제1항 내지 제19항 중 어느 한 항에 따른 절연성 방열 코팅조성물이 처리되어 경화된 절연성 방열코팅층;을 포함하는 조명용 절연성 방열 부품.
PCT/KR2018/000088 2017-01-03 2018-01-03 절연성 방열 코팅조성물 및 이를 통해 구현된 절연성 방열 물품 WO2018128368A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880002714.2A CN109563361B (zh) 2017-01-03 2018-01-03 绝缘性散热涂料组合物和通过其实现的绝缘性散热物品
EP18736442.7A EP3567083B1 (en) 2017-01-03 2018-01-03 Insulating and heat-radiating coating composition, and insulating and heat-radiating product implemented therewith
US16/316,142 US20210284850A1 (en) 2017-01-03 2018-01-03 Insulating and heat-radiating coating composition, and insulating and heat-radiating product implemented therewith

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0000513 2017-01-03
KR1020170000513A KR101756824B1 (ko) 2017-01-03 2017-01-03 절연성 방열 코팅조성물 및 이를 통해 구현된 절연성 방열 물품

Publications (1)

Publication Number Publication Date
WO2018128368A1 true WO2018128368A1 (ko) 2018-07-12

Family

ID=59355096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000088 WO2018128368A1 (ko) 2017-01-03 2018-01-03 절연성 방열 코팅조성물 및 이를 통해 구현된 절연성 방열 물품

Country Status (5)

Country Link
US (1) US20210284850A1 (ko)
EP (1) EP3567083B1 (ko)
KR (1) KR101756824B1 (ko)
CN (1) CN109563361B (ko)
WO (1) WO2018128368A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170132605A (ko) * 2016-05-24 2017-12-04 주식회사 아모그린텍 절연성 방열 코팅조성물 및 이를 통해 형성된 절연성 방열유닛
KR101756824B1 (ko) * 2017-01-03 2017-07-11 주식회사 아모센스 절연성 방열 코팅조성물 및 이를 통해 구현된 절연성 방열 물품
KR102515111B1 (ko) * 2017-07-21 2023-03-28 주식회사 아모그린텍 궐련형 전자담배용 원통형 발열히터 및 이를 포함하는 궐련형 전자담배
KR102125935B1 (ko) * 2019-01-28 2020-06-24 주식회사 여명라이팅 방수기능을 적용한 엘이디 등기구의 제조방법 및 그 방법에 의한 엘이디 등기구
WO2020175848A1 (ko) * 2019-02-25 2020-09-03 주식회사 아모그린텍 전기자동차용 전력반도체 냉각모듈
CN114270599B (zh) * 2019-08-19 2024-04-12 阿莫绿色技术有限公司 电池模块用冷却部件及包括其的电池模块
KR102257397B1 (ko) * 2020-12-21 2021-05-31 주식회사 퍼시픽인터켐코포레이션 인계 난연보조제
KR102257396B1 (ko) * 2020-12-21 2021-05-31 주식회사 퍼시픽인터켐코포레이션 실리콘계 난연보조제
CN112676785B (zh) * 2020-12-31 2024-03-15 镇江龙源铝业有限公司 一种汽车电池散热用铝材的成型方法
US20230017904A1 (en) * 2021-07-13 2023-01-19 Seidman Int'l Trading Ltd. Protective case for mobile device and heat dissipation film thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371123A (ja) * 2001-06-13 2002-12-26 Hitachi Chem Co Ltd 熱放散性エポキシ樹脂組成物及びこれを用いた電気電子部品の製造法
JP2013071960A (ja) * 2011-09-27 2013-04-22 Sekisui Chem Co Ltd 絶縁材料及び積層構造体
KR20140043031A (ko) * 2012-09-28 2014-04-08 한화케미칼 주식회사 방열 도료 조성물 및 방열 구조체
WO2016010067A1 (ja) * 2014-07-18 2016-01-21 積水化学工業株式会社 半導体素子保護用材料及び半導体装置
KR20160120685A (ko) * 2015-04-08 2016-10-18 주식회사 아모그린텍 방열 코팅조성물 및 이를 통해 형성된 방열유닛
KR101756824B1 (ko) * 2017-01-03 2017-07-11 주식회사 아모센스 절연성 방열 코팅조성물 및 이를 통해 구현된 절연성 방열 물품

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101003591B1 (ko) * 2009-05-28 2010-12-22 삼성전기주식회사 메탈 적층판 및 이를 이용한 발광 다이오드 패키지의 제조 방법
JP5428964B2 (ja) * 2010-03-15 2014-02-26 富士電機株式会社 半導体素子及び半導体素子の製造方法
WO2011125636A1 (ja) * 2010-04-08 2011-10-13 電気化学工業株式会社 熱伝導性湿気硬化型樹脂組成物
JP2012144638A (ja) * 2011-01-12 2012-08-02 Daicel Corp 絶縁性放熱フィルム及びその製造方法
KR101715207B1 (ko) * 2013-03-06 2017-03-10 디아이씨 가부시끼가이샤 에폭시 수지 조성물, 경화물, 방열 재료 및 전자 부재
CN105860754A (zh) * 2016-05-09 2016-08-17 安徽爱莱特照明灯具有限公司 一种耐磨led灯座用高导热绝缘漆及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371123A (ja) * 2001-06-13 2002-12-26 Hitachi Chem Co Ltd 熱放散性エポキシ樹脂組成物及びこれを用いた電気電子部品の製造法
JP2013071960A (ja) * 2011-09-27 2013-04-22 Sekisui Chem Co Ltd 絶縁材料及び積層構造体
KR20140043031A (ko) * 2012-09-28 2014-04-08 한화케미칼 주식회사 방열 도료 조성물 및 방열 구조체
WO2016010067A1 (ja) * 2014-07-18 2016-01-21 積水化学工業株式会社 半導体素子保護用材料及び半導体装置
KR20160120685A (ko) * 2015-04-08 2016-10-18 주식회사 아모그린텍 방열 코팅조성물 및 이를 통해 형성된 방열유닛
KR101756824B1 (ko) * 2017-01-03 2017-07-11 주식회사 아모센스 절연성 방열 코팅조성물 및 이를 통해 구현된 절연성 방열 물품

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3567083A4 *

Also Published As

Publication number Publication date
EP3567083A4 (en) 2020-07-29
US20210284850A1 (en) 2021-09-16
EP3567083B1 (en) 2022-01-26
EP3567083A1 (en) 2019-11-13
KR101756824B1 (ko) 2017-07-11
CN109563361A (zh) 2019-04-02
CN109563361B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2018128368A1 (ko) 절연성 방열 코팅조성물 및 이를 통해 구현된 절연성 방열 물품
WO2017204565A1 (ko) 절연성 방열 코팅조성물 및 이를 통해 형성된 절연성 방열유닛
WO2017171392A1 (ko) 차량 히터용 ptc 유닛, 이를 구비하는 ptc 히터 및 차량용 공조장치
WO2017204562A1 (ko) 코일부품
WO2018110929A1 (ko) 투명 절연성 방열 코팅조성물, 이를 통해 형성된 방열유닛 및 방열 회로기판
WO2017200310A1 (ko) 차량용 무선 전력 송신장치
WO2015093903A1 (ko) 방열성이 우수한 금속 봉지재, 그 제조방법 및 상기 금속 봉지재로 봉지된 유연전자소자
WO2013009133A2 (ko) 표면 처리용 수지 조성물 및 이에 의해 코팅된 강판
WO2013100502A1 (ko) Mccl용 절연 접착제 조성물, 이를 이용한 도장 금속판 및 그 제조방법
WO2018164350A1 (ko) 차량용 무선전력 송신장치
WO2015147449A1 (ko) 전자기파 차폐시트, 및 이의 제조방법
KR20180101272A (ko) 방열 분체 도료 조성물, 이를 통해 제조된 방열 분체 도료 및 그 제조방법
WO2018199517A1 (ko) 엘이디모듈 및 이를 포함하는 엘이디 조명장치
WO2017111254A1 (ko) 전자파 차폐 필름 및 이의 제조방법
WO2018194418A1 (ko) 그라파이트 조성물, 이를 포함하는 마스터배치 및 이를 통해 구현된 그라파이트 복합재
WO2019066543A1 (ko) 인조 흑연 분말을 이용한 열전도성 박막의 제조방법
WO2023013834A1 (ko) 방열 도료 조성물, 이의 제조방법, 이로부터 형성된 방열 코팅막 및 이를 포함하는 히트씽크
WO2016175385A1 (ko) 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자
KR102611441B1 (ko) 절연성 방열 코팅조성물 및 이를 통해 구현된 절연성 방열 물품
WO2018212611A1 (ko) 방열복합재 및 이의 제조방법
WO2015105340A1 (ko) 연성 인쇄회로기판용 전자파 차폐 필름 및 이의 제조방법
WO2016163830A1 (ko) 방열 코팅조성물 및 이를 통해 형성된 방열유닛
WO2016047988A1 (ko) 표면 개질된 질화붕소, 상기 입자가 분산된 조성물, 및 상기 조성물로 코팅된 와이어
WO2023080349A1 (ko) 일액형 우레탄 방열 도료 조성물 및 이의 제조방법
KR101410058B1 (ko) 우수한 방열특성을 가진, 친환경적인 방열수지 조성물 및 이를 이용한 강판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018736442

Country of ref document: EP

Effective date: 20190805