WO2017200310A1 - 차량용 무선 전력 송신장치 - Google Patents

차량용 무선 전력 송신장치 Download PDF

Info

Publication number
WO2017200310A1
WO2017200310A1 PCT/KR2017/005151 KR2017005151W WO2017200310A1 WO 2017200310 A1 WO2017200310 A1 WO 2017200310A1 KR 2017005151 W KR2017005151 W KR 2017005151W WO 2017200310 A1 WO2017200310 A1 WO 2017200310A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
wireless power
heat
coating layer
plate
Prior art date
Application number
PCT/KR2017/005151
Other languages
English (en)
French (fr)
Inventor
황승재
신휘철
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Priority to EP17799667.5A priority Critical patent/EP3460813B1/en
Priority to CN201780030845.7A priority patent/CN109155183B/zh
Priority to US16/301,892 priority patent/US10832849B2/en
Publication of WO2017200310A1 publication Critical patent/WO2017200310A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/025Constructional details relating to cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/288Shielding
    • H01F27/2885Shielding with shields or electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/03Covers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/04Metal casings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
    • H05K7/20427Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing having radiation enhancing surface treatment, e.g. black coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20509Multiple-component heat spreaders; Multi-component heat-conducting support plates; Multi-component non-closed heat-conducting structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials

Definitions

  • the present invention relates to wireless power transmission, and more particularly to a wireless power transmission device for a vehicle.
  • the wireless power transmitter is embedded in the vehicle so as to charge the battery of the mobile terminal by supplying the electrical energy supplied from the vehicle's power by a wireless transmission method.
  • the self-induction charging method is based on the inductive coupling between the primary coil included in the wireless power transmitter and the secondary coil included in the wireless power receiver module when the mobile terminal approaches the wireless power transmitter embedded in the vehicle. By the battery of the mobile terminal.
  • the wireless power transmission device includes a cover coupled to the outer case and the outer case for embedding in the vehicle, the outer case is made of aluminum for heat dissipation.
  • the present invention has been made in view of the above point, by providing a heat dissipation coating layer to increase the heat dissipation performance in the heat dissipation case coupled to the cover to provide a vehicle wireless power transmission apparatus that can lower the surface temperature of the cover. have.
  • the present invention is to provide a wireless power transmission device for a vehicle that can improve the fastness and improve the heat problem generated when the operation of the flat coil by placing a heat radiation plate made of a metal material on one surface of the magnetic shield sheet. have.
  • the present invention provides a wireless power transmission module including at least one flat coil for transmitting wireless power, and a magnetic shielding sheet disposed on one surface of the flat coil; A heat dissipation case coupled to one side of the wireless power transfer module, having at least one circuit board for driving the wireless power transfer module, and dissipating heat generated from a heat source; A heat dissipation coating layer applied to an outer surface of the heat dissipation case; And a cover detachably coupled to the heat dissipation case.
  • the heat dissipation coating layer comprising a main resin; Carbon-based fillers contained in 8 to 72 parts by weight based on 100 parts by weight of the main resin; And physical property enhancing components for improving heat dissipation and adhesion.
  • the carbon-based filler may include at least one of graphite and carbon black
  • the main resin may be a glycidyl ether type epoxy resin containing a bisphenol A type epoxy resin, the bisphenol A type epoxy resin The epoxy equivalent may be 350 ⁇ 600g / eq.
  • the carbon-based filler may be carbon black having an average particle diameter of 250 nm or less.
  • the heat dissipation case may be made of a heat dissipation member formation composition including a graphite composite in which crystallized nanometal particles are bonded to a surface of the graphite, and a polymer resin in which the graphite composite forms a dispersed phase.
  • the heat dissipation case may include a metal plate and a heat dissipation member formation composition covering an outer surface of the metal plate, and the heat dissipation member formation composition may include crystallized nanometal particles on the surface of the graphite.
  • Graphite composite and the graphite composite may include a polymer resin to form a dispersed phase.
  • the heat dissipation plate may be attached to one surface of the magnetic field shielding sheet via an adhesive layer having thermal conductivity, and an insulation member for electrical insulation may be disposed between the heat dissipation plate and the circuit board.
  • a heat insulating layer may be disposed between the insulating member and the circuit board to prevent heat generated from the circuit board side from being conducted to the heat radiating plate side.
  • the heat insulation layer may be any one of an insulation sheet containing hollow silica particles, a nanofiber web having fine pores, and a coating layer coated with a heat reflection material on at least one surface of the insulation member.
  • the present invention is a plurality of flat coil for transmitting wireless power; A magnetic shielding sheet for shielding the magnetic field generated by the flat coil to prevent external leakage and to focus in a required direction; And a plate-shaped heat dissipation plate made of a metal material and attached to one surface of the magnetic field shielding sheet.
  • the heat radiating plate may be made of copper or aluminum.
  • the surface temperature of the cover can be lowered by increasing the heat dissipation performance of the heat dissipation case through the heat dissipation coating layer, and the fastening property and heat generation problems can be improved through the heat dissipation plate.
  • FIG. 1 is a view showing a wireless power transmission apparatus according to an embodiment of the present invention
  • FIG. 2 is a view showing a state in which the cover is removed in FIG.
  • FIG. 3 is an exploded view of FIG. 1,
  • FIG. 4 is a cross-sectional view of FIG.
  • FIG. 5 is an exploded view showing a wireless power transmitter according to another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of FIG.
  • FIG. 7 is a schematic view showing a detailed configuration of a heat radiation member forming composition implemented as a heat radiation case in a wireless power transmission device for a vehicle according to the present invention
  • FIG. 8A and 8B are schematic views showing graphite composites applied to FIG. 7, where FIG. 8A is composed of graphite, nanometals, and catecholamines, and FIG. 8B illustrates a case composed of graphite, nanometals, catecholamines, and polymers. Drawings, and
  • FIG. 9 is a partial cutaway view showing a case in which the heat dissipation case applied to the present invention is implemented in a form in which the heat dissipation member formation composition and the metal plate are integrated.
  • Wireless power transmission apparatus 100 includes a wireless power transmission module, the heat dissipation case (130, 230), the heat dissipation coating layer 140 and the cover 150.
  • the electronic device of the present invention may be a portable electronic device such as a mobile phone, a PDA, a PMP, a tablet, a multimedia device, or the like.
  • the wireless power transmitter 100 may be buried so that one surface of the cover 150 coupled to the heat dissipation cases 130 and 230 is exposed to the outside.
  • the wireless power transmission module is for transmitting wireless power to the electronic device that needs to be charged, and may include one or more flat coils 111, 112, and 113 and a magnetic shielding sheet 114.
  • the flat coils 111, 112, and 113 transmit wireless power when power is supplied, and transmit power required by the electronic device.
  • the flat coils 111, 112, and 113 transmit wireless power to a receiving coil built in the electronic device to produce power. Can act as a coil.
  • a separate receiving antenna eg, a receiving coil (Rx coil)
  • Rx coil receiving coil
  • power may be transmitted by inducing a current to the receiving antenna through a change in the magnetic field of the flat coils 111, 112, and 113 by the electromagnetic induction phenomenon.
  • the flat coils 111, 112, and 113 may operate in any one of a Qi method, a PMA method, or an A4WP method, and two of the Qi method, PMA method, and A4WP method may be used according to an operation method of an approaching wireless power receiving module.
  • the above manner may be operated in a switched form.
  • the flat coils 111, 112, and 113 have a circular, elliptical, or square shape in which a conductive member having a predetermined length having a pair of connection terminals 111a, 112a, and 113a at both ends is wound multiple times in a clockwise or counterclockwise direction. It may be provided in the form of a flat plate.
  • the conductive member may be a metal material having conductivity such as copper, and a plurality of strands having a predetermined wire diameter may be provided in a twisted shape along the length direction.
  • the plate coils 111, 112, and 113 may be provided in plural, and at least some of them may be stacked to overlap each other.
  • three flat coils 111, 112, and 113 may be provided, and one flat coil 111 of three flat coils 111, 112, and 113 may be disposed on an upper side of the other two flat coils 112, 113.
  • the two flat plate coils 112 and 113 and some of them may overlap each other (see FIG. 2).
  • planar coils 111, 112, and 113 applied to the present invention are not limited thereto, and the arrangement and total number of the planar coils 111, 112, and 113 may vary depending on the design conditions. .
  • planar coils 111, 112, and 113 use copper foil or conductive ink on one surface of the circuit board.
  • the antenna pattern is replaced with a patterned antenna pattern in the form of a loop to reveal that the antenna pattern may serve as an antenna for wireless power transmission.
  • the magnetic field shielding sheet 114 is disposed on one surface of the flat coils 111, 112, and 113 to shield a magnetic field generated by a wireless power signal induced by the flat coils 111, 112, and 113 and to focus in a required direction. Do this.
  • the magnetic field shielding sheet 114 may be a plate-shaped member having a predetermined area, and may be made of a material having magnetic properties to shield the magnetic field and to focus in a required direction.
  • the magnetic shielding sheet 114 may be made of a variety of known materials.
  • the magnetic field shielding sheet 114 may be a ribbon sheet, a ferrite sheet, a polymer sheet, or the like, including at least one of an amorphous alloy and a nanocrystalline alloy.
  • the amorphous alloy may be a Fe-based or Co-based magnetic alloy
  • the ferrite sheet may be made of a sintered ferrite sheet containing at least one of Mn-Zn ferrite and Ni-Zn ferrite.
  • the magnetic shielding sheet 114 may be formed into a plurality of pieces by being flake-processed, and may have a multilayer structure.
  • the magnetic shielding sheet 114 is a known configuration, detailed description thereof will be omitted, and the materials used as the shielding sheet may be used in the known materials.
  • the heat dissipation cases 130 and 230 may be provided in an enclosure shape having an accommodation space so as to be electrically connected to the flat coils 111, 112 and 113 to accommodate at least one circuit board 161 and 162 for controlling overall driving. have.
  • the heat dissipation case (130,230) may be provided in a housing shape having a receiving space open at the top so that the circuit board (161,162) can be embedded, the wireless power transmission module on the upper side of the circuit board 160 It may be fastened to the heat dissipation case (130,230) side via the fastening member 128 to position.
  • circuit boards 161 and 162 may be mounted with a variety of circuit elements for controlling the overall driving, may be provided in plurality or may be provided in one.
  • the wireless power transmitter 100 is coupled to the heat dissipation case (130, 230) is detachably coupled to the enclosure-shaped cover 150, one side of which is exposed to the flat coil (111, 112, 113) to the outside Can be prevented.
  • the heat dissipation cases 130 and 230 have at least one hooking jaw 132 formed on an outer surface thereof, and the edge side of the cover 150 provided in an enclosure shape is installed by the hooking jaw 132 so that The cover 150 may be detachably coupled to the heat dissipation cases 130 and 230.
  • Such heat dissipation cases 130 and 230 may be made of a material having excellent thermal conductivity so as to discharge heat generated from a heat source to the outside during driving.
  • the heat dissipation cases 130 and 230 may be made of a metal material such as copper or aluminum, or may be made of a plastic material using a heat dissipation member formation composition (C) including graphite composites (A, A ') (FIG. 4, FIG. 6), a plate-like metal plate (D) such as copper or aluminum may be integrated with the heat dissipation member forming composition (C) including the graphite composites (A, A ') through insert injection. (See Figure 9).
  • C heat dissipation member formation composition
  • D plate-like metal plate
  • the heat dissipation case (130,230) applied to the present invention may be formed on the surface of the heat dissipation coating layer 140 to further lower the surface temperature of the cover 150, the electronic device is required to charge by implementing excellent heat dissipation (See FIGS. 4, 6 and 9).
  • the heat dissipation coating layer 140 may be applied to the outer surfaces of the heat dissipation cases 130 and 230 to a predetermined thickness to further lower the surface temperature of the cover 150 by further increasing the overall heat dissipation.
  • the vehicle wireless power transmitter 100 according to the present invention is lowered the surface temperature of the cover 150 which is heated by the heat generated from the heat source during operation even if the user's body is in contact with the cover 150 Can reduce the discomfort caused by high temperature.
  • the heat dissipation coating layer 140 may include a coating layer forming component including a main resin, a carbon-based filler, and a physical property enhancing component for improving heat dissipation and adhesion, and the carbon-based filler may include 100 parts by weight of the main resin. It may be included in an amount of 8 to 72 parts by weight.
  • the coating layer forming component may include a main resin, and may further include a curing agent when the main resin is a curable resin, and may further include other curing accelerators and curing catalysts.
  • the main resin may be used without limitation in the case of components known in the art to form a coating layer.
  • the main resin is glycidyl ether type so that the heat dissipation performance of the heat dissipation case 130 and 230 can be simultaneously achieved by improving heat resistance, mechanical strength, and compatibility with carbon-based fillers.
  • Epoxy resin, glycidylamine type epoxy resin, glycidyl ester type epoxy resin, linear aliphatic type epoxy resin, rubber-modified epoxy resin, and any one or more epoxy resin selected from the group consisting of derivatives thereof may be included.
  • the glycidyl ether type epoxy resin may include glycidyl ethers of phenols and glycidyl ethers of alcohols.
  • the glycidyl ethers of the phenols may be bisphenol A type, bisphenol B type, or bisphenol AD type.
  • Bisphenol epoxy such as bisphenol S, bisphenol F and resorcinol, phenol novolac epoxy, phenolic novolac and o-cresol novolac such as aralkylphenol novolac, terpene phenol novolac ( Cresolnovolac) Cresol novolak-type epoxy resins, such as epoxy, etc.,
  • Bisphenol epoxy such as bisphenol S, bisphenol F and resorcinol
  • phenol novolac epoxy phenolic novolac and o-cresol novolac
  • Cresolnovolac Cresolnovolac
  • the main resin may be a glycidyl ether type epoxy resin containing a bisphenol A type epoxy resin to improve heat dissipation, durability and surface quality due to excellent compatibility with carbon-based fillers, especially carbon black. have.
  • the bisphenol A epoxy resin may have an epoxy equivalent of 350 to 600 g / eq. If the epoxy equivalent is less than 350g / eq, the hardness of the heat-dissipating coating layer 140 is increased to easily crack, crack or bend on the curved coating surface, the epoxy equivalent exceeds 600g / eq This is because there is a problem that the chemical resistance, adhesion and durability due to the occurrence of the uncured portion may be lowered.
  • the bisphenol A epoxy resin may have a viscosity of 10 to 200 cps.
  • the viscosity of the bisphenol A epoxy resin is less than 10 cps, it may be difficult to generate the heat dissipation coating layer 140, and even after the formation, the adhesive strength with the surfaces of the heat dissipation cases 130 and 230 may be reduced.
  • the viscosity of the bisphenol A epoxy resin exceeds 200 cps, it is difficult to form the heat-dissipating coating layer 140 in a thin thickness, the coating process may not be easy, especially in the case of spraying coating coating This can be difficult.
  • the dispersibility of the carbon black in the heat dissipation coating layer 140 may be reduced.
  • the curing agent included in the coating layer-forming component together with the epoxy resin of the above-mentioned main resin may be changed according to the specific type of the selected epoxy resin, the specific type may use a curing agent known in the art, Preferably, any one or more of an acid anhydride type, an amine type, an imidazole type, a polyamide type, and a polymercaptan type may be included.
  • the coating layer forming component may further include a polyamide-based component as a curing agent.
  • a polyamide-based component as a curing agent.
  • This is very advantageous for improving the compatibility with the carbon-based filler, which will be described later, and carbon black, among others, is advantageous in all physical properties such as adhesion, durability and surface quality of the heat-dissipating coating layer 140, the heat-dissipating coating layer 140 is applied This is because when the outer surfaces of the heat dissipation cases 130 and 230 are not flat or curved, or when a step is formed, there is an advantage of preventing cracks or peeling of the heat dissipation coating layer 140 formed on the corresponding portions.
  • the polyamide-based component may be 180 ⁇ 300 mgKOH / g amine value, more preferably 50,000 ⁇ 70,000 cps at 40 °C to express more improved physical properties. If the amine value of the polyamide-based curing agent is less than 180 mgKOH / g, the curing quality is lowered, surface quality, durability, adhesiveness may all be reduced, and the heat dissipation performance may also be reduced at the same time. In addition, when the amine value exceeds 300 mgKOH / g, the curing proceeds rapidly may cause agglomeration in the coating.
  • the viscosity of the polyamide-based curing agent is less than 50,000 cps, there may be a problem of flow down after coating, if it exceeds 70,000 cps, the coating may not be uniform during spray coating, clogging and agglomeration problem This can happen.
  • the polyamide curing agent may be included in an amount of 45 to 75 parts by weight based on 100 parts by weight of the bisphenol A epoxy resin.
  • the polyamide-based curing agent is provided in an amount of less than 45 parts by weight, there may be a problem of uncuring and lowering durability.
  • the polyamide-based curing agent exceeds 75 parts by weight, problems such as cracking due to excessive curing may occur. Because there may be.
  • the carbon filler may be used without limitation in the case of including carbon in the material thereof, and a carbon material known in the art may be used.
  • the shape and size of the carbon-based fillers are not limited, and may also be porous or non-porous in structure, and may be differently selected according to the purpose.
  • the carbon-based filler is in the group consisting of carbon nanotubes such as single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, graphene oxide, graphite, carbon black and carbon-metal composites It may include one or more.
  • it may preferably include any one or more of graphite and carbon black in terms of facilitating the achievement of the desired physical properties, such as excellent heat dissipation performance, ease of forming the coating layer, the surface quality of the coating layer, and improves the surface quality of the coating layer Carbon black may be used.
  • the carbon black may be used without limitation by selecting one or more kinds of known carbon blacks such as furnace black, lamp black and channel black.
  • the carbon black preferably has an average particle diameter of 250 nm or less, more preferably 50 to 250 nm. If the average particle diameter of the carbon black exceeds 250 nm, the uniformity of the surface may be lowered, and if the average particle diameter is less than 50 nm, there is a fear of an increase in the unit cost of the carbon black. This is because the heat dissipation performance may be reduced by increasing the amount of carbon black.
  • the carbon black may have a D90 of 260 nm or less in a volume accumulation particle size distribution for the surface quality of the heat dissipation coating layer 140. This is because the surface quality of the heat dissipation coating layer 140 may be particularly deteriorated when the carbon black has a volume accumulation particle size distribution of D90 exceeding 260 nm, such that the surface roughness of the heat dissipation coating layer 140 is increased.
  • D90 refers to the particle diameter of the carbon black particles when the cumulative degree is 90% in the volume accumulation particle size distribution.
  • the volume% from the smallest particle size is obtained from the smallest particle size with respect to the volume accumulation value (100%) of all particles.
  • the particle size of the particle with a cumulative value of 90% corresponds to D90.
  • the volume cumulative particle size distribution of the carbon black can be measured using a laser diffraction scattering particle size distribution device.
  • a carbon-based filler whose surface is modified with a functional group such as a silane group, an amino group, an amine group, a hydroxy group, or a carboxyl group may be used, wherein the functional group may be directly bonded to the surface of the carbon-based filler. It may also be indirectly bonded to the carbon-based filler via a substituted or unsubstituted aliphatic hydrocarbon having 1 to 20 carbon atoms or a substituted or unsubstituted aromatic hydrocarbon having 6 to 14 carbon atoms.
  • a functional group such as a silane group, an amino group, an amine group, a hydroxy group, or a carboxyl group
  • the carbon-based material may be a core or a shell
  • the heterogeneous material may be a core-shell type filler constituting the shell or the core.
  • the carbon-based filler may be included in an amount of 8 to 72 parts by weight based on 100 parts by weight of the above-described main resin, and may be included in an amount of 17 to 42 parts by weight for further improved physical properties.
  • the carbon-based filler when included in less than 8 parts by weight based on 100 parts by weight of the main resin, it may not express the desired level of heat dissipation performance.
  • the carbon-based filler exceeds 72 parts by weight with respect to 100 parts by weight of the main resin, the adhesive force of the heat-dissipating coating layer 140 may be weakened and peeling may occur easily. This is because, as the carbon-based filler protruding from the surface of the heat dissipation coating layer 140 increases, the surface roughness increases, so that the surface quality of the heat dissipation coating layer 140 may be degraded.
  • the carbon-based filler may be provided at 42 parts by weight or less based on 100 parts by weight of the main resin. If the carbon-based filler exceeds 42 parts by weight based on 100 parts by weight of the main resin, some coating methods in the process of applying the heat dissipation coating layer to the heat dissipation case (130,230) to implement a thin heat dissipation coating layer 140, For example, it is difficult to uniformly apply the composition when coating by spraying method, the dispersibility of the dispersed carbon-based filler in the composition is lowered, even if the carbon-based filler is uniformly dispersed even if applied to the heat dissipation case (130,230) This is because the 140 may not exhibit a uniform heat dissipation performance as a whole.
  • the physical property enhancing component is responsible for improving durability by expressing more improved heat dissipation and at the same time excellent adhesiveness when the heat dissipation coating composition according to the present invention is coated on the heat dissipation case (130,230).
  • the physical property enhancing component may be a silane-based compound, and can be used without limitation in the case of known silane-based compounds employed in the art, but with carbon black among the main resin and carbon-based filler of the above-described coating layer forming component.
  • the silane-based compound is 3- (N-anyl-N-glycidyl) aminopropyltrimethoxysilane, 3-glycidoxy, so as to cause synergy of the desired physical properties and to express remarkable durability and heat dissipation.
  • the physical property enhancing component may preferably be included in 2 to 5 parts by weight based on 100 parts by weight of the main resin.
  • the desired physical properties such as heat dissipation and adhesion through the physical property enhancing component may not be simultaneously achieved to the desired level. If more than 5 parts by weight based on 100 parts by weight is because the adhesion to the heat dissipation case (130,230) surface may be weakened.
  • the heat dissipation coating layer 140 may further include a dispersant and a solvent for improving the dispersibility of the carbon-based filler.
  • the dispersant may be a known component employed in the art as a dispersant of the carbon-based filler.
  • the heat-dissipating coating layer 140 is a leveling agent, a pH adjusting agent, an ion trapping agent, a viscosity adjusting agent, a thixotropic imparting agent, an antioxidant, a heat stabilizer, a light stabilizer, a UV absorber, a colorant, a dehydrating agent, a flame retardant, charging 1 type, or 2 or more types chosen from various additives, such as an inhibitor, a preservative, and a preservative, may be added.
  • various additives described above may use those known in the art and are not particularly limited in the present invention.
  • the heat dissipation coating layer 140 may have a viscosity of 50 ⁇ 250cps at 25 °C. When the viscosity of the heat dissipation coating layer 140 is less than 50 cps, it may be difficult to generate the heat dissipation coating layer 140 by flowing from the surface to be coated in the process of coating, and even after the formation, the adhesion to the surface to be coated may be weakened.
  • the viscosity of the heat-dissipating coating layer 140 exceeds 250cps, it is difficult to manufacture a thin coating layer, even if manufactured, the surface may not be uniform, the coating process may not be easy, especially in the case of spray coating Further, the coating process may be difficult, because dispersibility of the carbon black in the heat dissipation coating layer may be reduced.
  • the heat dissipation coating layer 140 may include a carbon-based filler 5 to 30% by weight based on the total weight of the heat dissipation coating layer. This is because, when the carbon-based filler is provided in less than 5% by weight in the heat dissipation coating layer 140, it may not express the desired level of heat dissipation performance. In addition, when the carbon-based filler in the heat-dissipating coating layer 140 exceeds 30% by weight, the adhesive force of the heat-dissipating coating layer 140 is weakened, so that peeling occurs easily, and the hardness of the coating layer is increased so that it may be easily broken or broken by physical impact. This is because, as the number of carbon-based fillers protruding from the surface of the heat dissipation coating layer 140 increases, the surface roughness may increase and the surface quality of the heat dissipation coating layer may decrease.
  • the heat dissipation member formation composition (C) is a graphite composite (A, A ') and as shown in FIG. It may include a polymer resin (B), it may be implemented by the heat dissipation case (130,230) through insert injection molding and curing.
  • the heat dissipation cases 130 and 230 may include a heat dissipation member forming composition including graphite having good thermal conductivity, thereby greatly improving thermal conductivity, thereby realizing excellent heat dissipation performance.
  • the graphite composite (A, A ') may be formed of a composite in which the nano-metal particles (A2) is bonded to the surface of the plate-like graphite (A1), the nano-metal particles (A2) exhibits an electromagnetic shielding effect It may be a conductive metal.
  • the nanometal particles (A2) may include one or more selected from the group consisting of Ni, Si, Ti, Cr, Mn, Fe, Co, Cu, Sn, In, Pt, Au, and Mg. have.
  • the nano-metal particles (A2) contained in the graphite composite (A, A ') must be present in a high density on the surface of the graphite graphite (A1) to be contained in 20 to 50wt% relative to the total weight of the graphite (A1). It can be bonded to the graphite (A1) surface in the form of a crystal having an average particle diameter of 10 ⁇ 200nm. In addition, it may have a surface area range of 30 to 70 area% with respect to the cross section of the graphite composite (A, A ').
  • the graphite composites (A, A ') may form a dispersed phase in the polymer resin (B).
  • the polymer resin (B) may include at least one of a thermosetting resin and a thermoplastic resin.
  • the graphite composite (A, A ') may include a catecholamine layer (A3) on the nano-metal particles (A2). It is coated with catecholamine (Catecholamine) such as polydopamine and the like to plate the graphite (A1) crystallized nano metal particles (A2) on the surface by modifying the surface of the catecholamine without deterioration of the inherent physical properties of the graphite itself This is because strong interfacial bonding with the polymer resin can be enhanced by using strong adhesive properties.
  • catecholamine catecholamine
  • the catecholamine layer (A3) is coated on the nanometal particles (A2), the dispersibility is improved in the organic solvent, and when the organic solvent is included in the heat dissipation member forming composition (C), the graphite composite (A, A ' ) Can be uniformly dispersed in the polymer resin (B).
  • the graphite composite (A, A ') containing graphite-nanometal particles-catecholamine preferentially it is possible to produce a composite material with remarkably improved dispersibility in a desired polymer resin.
  • catecholamine refers to a single molecule having a hydroxyl group (-OH) as the ortho-group of the benzene ring and having various alkylamines as the para-group.
  • Various derivatives of the structure include dopamine, dopamine-quinone, alpha-methyldopamine, norepinephrine, epinephrine, alpha-methyldopa, and droxidopa ), Indolamine, serotonin, or 5-hydroxydopamine, and the like are included in the catecholamines. Most preferably dopamine may be used.
  • the catecholamine layer is hard to be coated on the surface of the pure graphite graphite, but the graphite composite (A, A ') applied to the present invention has a high density of crystallized nanometal particles (A2) formed on the surface of the graphite composite.
  • the catecholamine layer (A3) can be stably formed by bonding a catecholamine compound such as polydopamine to the nanometal particles (A2).
  • the catecholamine layer When the catecholamine layer is composed of dopamine, the catecholamine layer may be formed by dipping graphite composites (A, A ′) in an aqueous dopamine solution.
  • the basic dopamine aqueous solution is used as the dopamine aqueous solution
  • dopamine spontaneously reacts under oxidizing conditions to polymerize on the nanometal particles (A2) of the graphite composite (A, A ') to form a polydopamine layer. Therefore, no separate firing process is required, and the addition of the oxidant is not particularly limited, but oxygen gas in the air may be used as the oxidant without the addition of the oxidant.
  • the catecholamine layer may be formed by the nanometal particles (A2).
  • the interfacial property between the polymer resin (B) and the graphite composite (A, A ') is improved through the catecholamine layer, thereby improving dispersibility of the graphite composite (A, A') and improving orientation.
  • the content of the graphite composite included in the heat dissipation member formation composition may be increased, so that even if a small amount of polymer resin is included in the heat dissipation member formation composition, the sheet may be manufactured in a sheet form.
  • the graphite composite (A ') may include a polymer (A4) bonded on the catecholamine layer (A3) (see Figure 8b).
  • the polymer (A4) may be bonded onto the catecholamine layer by adding the graphite composite (A) coated with the nanometal particles (A2) with the catecholamine to the polymer resin solution.
  • the polymer (A4) may be formed to completely cover the catecholamine layer (A3), the polymer (A4) may be bonded to the catecholamine layer (A3) in the form of particles, the surface of the graphite composite (A) It may be formed to completely cover the.
  • the polymer (A4) is not particularly limited to the kind, but may be selected from the group consisting of a thermosetting resin, a thermoplastic resin and rubber.
  • the polymer (A4) is a polymer resin (B) constituting the heat dissipation member forming composition and the reactivity and compatibility between each other, there is no big limitation in the kind, but preferably the same as the type of the polymer resin (B) Similar kinds of polymers can be used.
  • the graphite composite (A ') including graphite (A1), nanometal particles (A2), catecholamine layer (A3) and polymer (A4) is prepared primarily and then in the target polymer resin (B).
  • the graphite composite (A ') may be very uniformly and evenly dispersed in the polymer resin (B).
  • the graphite composite (A ') contains the polymer (A4) on the surface, not only the low dispersibility and agglomeration phenomenon of the graphite itself but also the agglomeration phenomenon due to the high adhesion of the catecholamine layer itself do not occur uniformly in the polymer resin. Can be achieved. Accordingly, in constituting the heat dissipation member forming composition, it is possible to increase the overall content of the graphite composite (A ') to obtain excellent heat dissipation performance.
  • the heat dissipation member-forming composition in addition to the organic solvent, in addition to the leveling agent, pH adjusting agent, ion trapping agent, viscosity adjusting agent, thixotropic imparting agent, antioxidant, heat stabilizer, light stabilizer, ultraviolet absorber, colorant Or one or two or more kinds of various additives such as a dehydrating agent, a flame retardant, an antistatic agent, an antiseptic agent, and an antiseptic agent may be added.
  • the various additives described above may use those known in the art and are not particularly limited in the present invention.
  • the catecholamine layer (A3) may further include a solvent, and can be selected according to the adhesive component selected according to the present invention is not particularly limited to this, the solvent as appropriate dissolution of each component Any solvent that makes it possible can be used.
  • the heat dissipation case (130,230) according to the present invention is implemented with a heat dissipation member formation composition in which the graphite composite (A, A ') and the polymer resin (B) is mixed
  • the heat dissipation case using only the heat dissipation member formation composition through injection molding ( 130 and 230 may be implemented, and the heat dissipation member forming composition may be implemented in an integrated form with the metal plate D by covering the metal plate D through insert injection.
  • the heat dissipation case (130,230) can be improved even if the heat dissipation case (130,230) of the same size as compared to the case made of only the metal material, the heat dissipation performance can be improved, and the heat dissipation case such as the thickness of the heat dissipation case Since the thickness can be reduced, the weight can be reduced.
  • the vehicle wireless power transmission apparatus 100 may further include a heat radiation plate 120 of the plate.
  • the heat dissipation plate 120 is made of a plate-like member having a predetermined area may be disposed on one surface of the magnetic field shielding sheet 114, the heat dissipation case 130, 230 via a fastening member 128, such as a bolt member Can be fastened to
  • the heat dissipation plate 120 may be attached to one surface of the magnetic field shielding sheet 114 via the adhesive layer 126 containing a thermally conductive component, at least one assembly hole through which the fastening member 128 passes. 127 may be penetrated.
  • the heat dissipation plate 120 is made of a metal material having excellent thermal conductivity such as copper or aluminum, and serves as a support for supporting the magnetic shielding sheet 114, and a flat plate fixed to one surface of the magnetic shielding sheet 114.
  • the heat generated from the mold coils 111, 112, and 113 may be simultaneously distributed.
  • the magnetic field shielding sheet 114 may be supported by the heat radiation plate 120 made of a metal material having a predetermined strength even if the magnetic field shielding sheet 114 is formed in a weak or flexible sheet form such as a ferrite sheet or a polymer sheet.
  • the heat radiation plate 120 made of a metal material having a predetermined strength even if the magnetic field shielding sheet 114 is formed in a weak or flexible sheet form such as a ferrite sheet or a polymer sheet.
  • heat generated from the flat coils 111, 112, and 113 is transferred between the flat coils 111, 112, and 113 to the heat dissipation plate 120 through the magnetic field shielding sheet 114, and thus exists between the flat coils 111, 112, and the cover 150.
  • the heat exchange temperature of the air can be lowered. As a result, the amount of heat transferred to the cover 150 through the air is reduced, and as a result, the surface temperature of the cover 150 may be lowered.
  • the heat dissipation plate 120 may have a plate-shaped insulating member 170 (see FIGS. 4 and 6). That is, the insulating member 170 is disposed between the heat dissipation plate 120 and the circuit board 161 embedded in the heat dissipation cases 130 and 230 to electrically connect the heat dissipation plate 120 and the circuit board 161. It can be insulated. As a result, even if the heat dissipation plate 120 is made of a metal material, electrical short with the circuit board 161 is prevented through the insulating member 170, thereby increasing stability and reliability of a product.
  • the insulating member 170 may be made of a fluorine resin film such as PET.
  • the heat dissipation plate 120 may be disposed to be in contact with the heat dissipation cases 130 and 230 when at least a part thereof is combined with the heat dissipation cases 130 and 230.
  • the heat dissipation plate 120 is provided to have a relatively wider area than the upper edge of the heat dissipation case (130,230) so that the edge side of the heat dissipation plate 120 is in contact with the upper edge of the heat dissipation case (130,230) Can be.
  • the heat generated from the flat coils 111, 112, and 113 is dispersed in the heat dissipation plate 120, and then transferred to the heat dissipation cases 130 and 230, and is released by the heat dissipation cases 130 and 230, thereby being transferred to the cover 150. This is to reduce the amount even more.
  • a separate insulating layer 190 may be disposed between the insulating member 170 and the circuit board 161.
  • the heat insulating layer 190 may block the heat generated from the circuit board embedded in the heat dissipation cases 130 and 230 to be conducted to the heat dissipation plate 120 side. Accordingly, heat generated in the circuit board may be moved only to the heat dissipation cases 130 and 230 through conduction and convection.
  • the air warmed by the heat and heat generated from the flat coils 111, 112 and 113 during operation can flow only inside the cover 150, and the heat generated by the circuit board side and the air warmed by the heat radiating case ( It can only flow inside the 130,230.
  • the influence that may have on the temperature rise of the cover 150 may be minimized or blocked.
  • the surface temperature of the cover 150 may be prevented from being increased by heat generated from the circuit board.
  • the heat insulating layer 190 may be provided in the form of a sheet or film of a plate, it may be a coating layer coated on at least one surface of the insulating member 170.
  • the heat insulation layer 190 may be a heat insulation sheet containing hollow silica particles or a nanofiber web formed to have fine pores through nanofibers made of a polymer resin, and heat reflection on at least one surface of the insulation member 170.
  • the material may be a coating layer coated.
  • the heat insulating layer 190 is not limited thereto, and it is understood that all of the known heat insulating materials or heat insulating sheets used for the purpose of heat insulating may be used.
  • the heat dissipation plate 120 is at least one drawn inward from the edge so that each of the connecting terminals (111a, 112a, 113a) drawn from the flat coil (111, 112, 113) can be connected to the circuit board 162
  • the opening 124 may be formed.
  • the wireless power transmission module including the heat dissipation plate 120 is connected to each of the connection terminals 111a, 112a, and 113a protruding toward the opening portion 124 while being fixed to the heat dissipation cases 130 and 230.
  • the assembly convenience can be improved.
  • the magnetic shielding sheet 114 and the heat dissipation plate 120 may be formed through at least one through hole (114a, 122) in the area corresponding to each other. That is, the magnetic shielding sheet 114 may include at least one first through hole 114a formed through a predetermined area, and the heat radiating plate 120 may correspond to the first through hole 114a. It may include a second through hole 122 is formed through the position.
  • the first through hole 114a and the second through hole 122 may serve as passages through which air around the flat coils 111, 112, and 113 moves toward the circuit board 161 embedded in the heat dissipation cases 130 and 230. Can be.
  • a temperature sensor 164 such as a thermistor may be disposed on the circuit board 161 side in a region corresponding to the second through hole 122.
  • the second through hole 122 may also simultaneously serve as an arrangement hole for accommodating the temperature sensor 164. have.
  • the second through hole 122 may be provided to have a relatively larger area than the temperature sensor 164 so that the temperature sensor 164 does not come into contact with the heat radiating plate 120.
  • the wireless power transmission module when the wireless power transmission module is operated, the heat generated by the heat exchanged with the heat generated from the flat coils 111, 112 and 113 is introduced into the temperature sensor 164 to sense the temperature of the heat generated from the flat coils 111, 112 and 113.
  • the entire operation may be stopped to prevent various problems such as damage of an electronic component due to overheating.
  • the insulating member 170 when the insulating member 170 is disposed between the heat dissipation plate 120 and the circuit board 161, or when the insulating layer 170 in the form of a sheet is disposed together with the insulating member 170, the insulating member 170 and Separate through holes 172 and 192 corresponding to the second through hole 122 may be formed through the heat insulating layer 190, respectively.
  • the first through hole 114a may be formed through a region corresponding to the hollow portion of the flat coils 111, 112 and 113. This prevents the first through hole 114a from overlapping the pattern portions of the flat coils 111, 112 and 113 so that the air around the flat coils 111, 112 and 113 can be smoothly introduced into the first through hole 114a. To do this.
  • the vehicle wireless power transmission apparatus 100 may be a heat transfer member 180 is disposed on the bottom surface of the heat dissipation case (130,230).
  • the heat transfer member 180 may be disposed to contact the bottom surfaces of the heat dissipation cases 130 and 230 and the one surface of the circuit board 162 disposed inside the heat dissipation cases 130 and 230, respectively. Through this, heat generated from the circuit board 162 may be transferred to the heat dissipation cases 130 and 230 through the heat transfer member 180.
  • the heat transfer member 180 may be disposed in a region corresponding to a heat generating element such as an IC chip mounted on the circuit board 162 so that heat generated from the heat generating element may be transferred to the heat dissipation cases 130 and 230. have.
  • a heat generating element such as an IC chip mounted on the circuit board 162 so that heat generated from the heat generating element may be transferred to the heat dissipation cases 130 and 230. have.
  • the heat transfer member 180 may have a thermal conductivity of 0.8 W / m ⁇ K or more. This is because when the thermal conductivity of the heat transfer member 180 is less than 0.8 W / m ⁇ K, the heat dissipation effect is insignificant, which may involve a decrease in wireless charging efficiency.
  • the heat transfer member 180 may have a pad form in which a heat dissipation composition including at least one of a thermally conductive filler and a phase change compound is solidified, and has a top side at the bottom of the heat dissipation cases 130 and 230.
  • the heat dissipation composition containing any one or more of this compound and a thermally conductive filler may be directly applied to a predetermined thickness and solidified.
  • the thermally conductive filler may include at least one of a metal filler, a ceramic filler, and a carbon-based filler.
  • the metal filler is Al, Ag, Cu, NI, In-Bi-Sn alloy, Sn-In-Zn alloy, Sn-In-Ag alloy, Sn-Ag-Bi alloy, Sn-Bi-Cu-Ag alloy , Sn-Ag-Cu-Sb alloy, Sn-Ag-Cu alloy, Sn-Ag alloy and Sn-Ag-Cu-Zn alloy may include one or more of known metal fillers
  • the ceramic filler It may include one or more of known ceramic fillers, such as AlN, Al2O3, BN, SiC and BeO, wherein the carbon-based filler is graphite, carbon nanotube, carbon fiber, One or more known carbon fillers such as diamond and graphene may be included.
  • the heat transfer member 180 when the heat transfer member 180 is composed of the heat dissipation forming composition including a heat conductive filler, the heat transfer member 180 may further include a conventional coating layer forming component and a curable component.
  • the heat transfer member 180 when the heat-dissipating composition constituting the heat transfer member 180 includes a phase change compound, the heat transfer member 180 has a change in properties from a solid state to a semi-solid state or a liquid state due to the heat generated from the heating element. Can be used.
  • the heat that is absorbed or released when it changes from solid to liquid (or liquid to solid) and liquid to gas (or gas to liquid) is called latent heat.
  • the latent heat may be advantageous to achieve a significant heat dissipation effect when the latent heat is used because the latent heat is much larger than the heat absorbed (or released) according to the temperature change in a state where no phase change occurs.
  • the phase change compound may be a known phase change compound.
  • the phase change compound may include one or more selected from the group consisting of linear aliphatic hydrocarbons, hydrated inorganic salts, polyhydric alcohols, higher fatty acids, alcohol fatty acid esters, and polyethers.
  • the wireless power transmitter 100 for a vehicle forms a heat dissipation coating layer 140 on the outer surfaces of the heat dissipation cases 130 and 230, and the heat dissipation plate 120 made of a metal material on one surface of the magnetic field shielding sheet 114. ), The heat generation temperature on the exposed surface of the cover 150 can be lowered.
  • Table 1 shows the heat dissipation coating layer 140 on the material of the heat dissipation case (130,230) and the outer surface of the heat dissipation case (130,230) while the heat dissipation plate (120) made of aluminum is disposed on one surface of the magnetic shielding sheet (114). This is the result of measuring the heating temperature on the exposed surface of the cover 150 according to.
  • the heat dissipation member formation composition refers to a plastic material including the graphite composite (A, A ') as described above, the heat dissipation member formation composition + aluminum plate is shown in Figure 9 through the aluminum plate insert injection It means a form integrated with the heat dissipation member forming composition (C) including the graphite composite (A, A ').
  • the coating layer forming component is a main resin, 65 parts by weight of a polyamide-based curing agent (Kukdo Chemical, G-5022) based on 100 parts by weight of a bisphenol A epoxy resin (Kukdo Chemical, YD-011) having an epoxy equivalent of 550 g / eq.
  • Example 5 Prepared in the same manner as in Example 1, by changing the content of the carbon-based filler, the type of the heat dissipation filler as shown in Table 5 below to prepare a heat dissipation coating composition as shown in Table 5.
  • the heat-dissipating coating composition prepared in Examples and Comparative Examples is made of aluminum (Al 1050) and spray coated to have a thickness of 25 ⁇ m on the entire surface of the substrate having a shape in which both ends are bent upwards, and then 150 ° C. temperature is applied. After heat treatment for 10 minutes to form a heat dissipation coating layer.
  • Tables 2 to 5 the physical properties of the substrate on which the heat dissipation coating layer was formed are shown in Tables 2 to 5 below.
  • a test specimen was prepared by attaching a heat source (copper block combined with a ceramic heater) to the substrate on which the heat dissipation coating layer was formed using a TIM (thermally conductive tape: 1W / mk).
  • Heat was generated by applying a constant current to the heat source of the prepared specimen, and maintained for 1 hour to measure the thermal emissivity by measuring the temperature of the substrate on which the heat dissipation coating layer was formed. Specifically, the thermal emissivity was calculated according to the following equation on the basis of the temperature measured under the same conditions for the substrate having no heat-dissipating coating layer.
  • Thermal emissivity (%) ⁇ 1- (temperature of test specimen (°C) / temperature of uncoated substrate (°C)) ⁇ ⁇ 100
  • Example 13 and Comparative Example 2 it was determined that the durability and adhesion evaluation results in poor, and radioactive evaluation was omitted.
  • the temperature of the chamber and the temperature of the substrate on which the heat-dissipating coating layer were formed were adjusted to be 25 ⁇ 0.2 ° C.
  • a heat source having a diameter of 15 mm, a thickness of 1.5 mm, and a temperature of 115 ° C. is directly contacted with the center of the bottom surface of the bottom plate of the base on which the heat dissipation coating layer is formed, and then bending of the end of the substrate on which the heat dissipation coating layer is formed on a diagonal extension line at the center. The temperature at the four points was continuously measured.
  • the standard deviation for the time required for the four points was calculated. The smaller the standard deviation, the more uniform the heat dissipation performance, and it can be interpreted that the carbon-based filler dispersibility of the heat dissipation coating layer is high.
  • the surface state of the substrate on which the heat-dissipating coating layer was formed after 480 hours was visually evaluated. As a result of the evaluation, cracks and peeling (floating) of the heat-dissipating coating layer were checked for abnormality.
  • the surface was touched by hand to check whether there was a bumpy or rough feeling. 5 for smoothness, 4 or 2% or more and 10% or less for areas with roughness of less than 2% or less than 2% of the total surface area of the outer surface of the substrate on which the heat-dissipating coating layer is formed. If the area is more than 2, 10% and less than 20%, the area is 1, and if the area is more than 20%, 0 is indicated.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Coating Layer Forming Ingredients Main resin (type / epoxy equivalent (g / eq) / content (part by weight)) BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 Curing agent (type / amine value (mgKOH / g) / content (part by weight)) PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G
  • Example 8 Example 9 Example 10 Example 11 Example 12 Example 13 Example 14 Coating Layer Forming Ingredients Main resin (type / epoxy equivalent (g / eq) / content (part by weight)) BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-136) / 310/100 BPA (YD-012H) / 650/100 Curing agent (type / amine value (mgKOH / g) / content (part by weight)) PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (
  • Example 15 Example 16
  • Example 17 Example 18
  • Example 20 Coating Layer Forming Ingredients Main resin (type / epoxy equivalent (g / eq) / content (part by weight)) BPF (YDF-2001) / 480/100 Rubber modified epoxy (KR-202C) / 380/100 DCPD (KDCP-150) / 280/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 Curing agent (type / amine value (mgKOH / g) / content (part by weight)) PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 Amidoamine (G-A0533) / 330/65 Alicyclic amine (KH-825) / 275/65 Phenalcarmine (KMH-121X80) / 200/65 Carbon filler Type / content
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Coating Layer Forming Ingredients Main resin (type / epoxy equivalent (g / eq) / content (part by weight)) BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 BPA (YD-011) / 550/100 Curing agent (type / amine value (mgKOH / g) / content (part by weight)) PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 PA (G-5022) / 220/65 filler Type / content (part by weight) Carbon black / 5 Carbon black / 75 Titanium Dioxide / 22 Carbon black / 22 Average particle diameter (nm) / D90 (nm) 150/192 150/192 208/255 150/190 Properties Enhancement Ingredients 3 3 Not included Substrate with heat
  • Example 1 In Example 1, Examples 8 to 12, in which carbon black is provided in the same amount, in Example 11 having an average particle diameter of more than 250 nm, it can be seen that surface quality is lowered and radiation performance uniformity is lowered.
  • Example 12 in which D90 of the carbon black exceeds 260 nm, the surface quality was markedly lowered, and the adhesiveness was also decreased simultaneously.
  • Example 13 where the epoxy equivalent of the epoxy resin of the main resin is less than the preferred range, it can be seen that the adhesion and durability is not very good.
  • Example 14 in which the epoxy equivalent of the epoxy resin which is the main resin exceeds the preferable range, it can be seen that the adhesiveness is significantly lowered, and the uniformity of the radioactivity is also lowered.
  • Comparative Example 1 in which the content of the carbon-based filler is out of the range according to the present invention, it can be confirmed that the thermal radiation property is not significantly better than that in the embodiment.
  • Comparative Example 2 it can be seen that the durability and adhesion, the surface properties are very poor.
  • Comparative Example 3 equipped with a type of filler titanium dioxide, the adhesiveness and durability was excellent, but the degree of thermal radiation is Example 2 level, the filler content of Example 2 is less than 1/2 of Comparative Example 3 Considering that the carbon black can be expected to have a much better heat dissipation performance than titanium dioxide.
  • Example 4 which does not include a physical property enhancing component, it can be seen that the radioactivity, radioactivity uniformity, adhesiveness and durability all decrease.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

차량용 무선전력 송신장치가 제공된다. 본 발명의 예시적인 실시예에 따른 무선전력 송신장치는 무선 전력을 송신하기 위한 하나 이상의 평판형 코일과, 상기 평판형 코일의 일면에 배치되는 자기장 차폐시트를 포함하는 무선전력 전송모듈; 상기 무선전력 전송모듈이 일측에 결합되고, 상기 무선전력 전송모듈을 구동하기 위한 적어도 하나의 회로기판이 내장되며, 열원에서 발생되는 열을 방출하기 위한 방열케이스; 상기 방열케이스의 외부면에 도포되는 방열코팅층; 및 상기 방열케이스에 착탈가능하게 결합되는 커버;를 포함한다. 이와 같은 차량용 무선전력 송신장치는 차량 내에 비치되거나 매립되어 휴대단말기의 메인배터리를 충전하는데 사용될 수 있다.

Description

차량용 무선 전력 송신장치
본 발명은 무선 전력 전송에 관한 것이며, 보다 구체적으로는 차량용 무선 전력 송신장치에 관한 것이다.
최근 들어 외부의 전력으로 배터리를 충전하여 사용하는 전기기기, 예컨대 휴대폰이나 스마트폰, 태블릿 PC, 노트북, 디지털방송용 단말기, PDA(Personal Digital Assis, PMP(Portable Multimedia Player) 및 내비게이션 등과 같은 이동단말기의 사용이 증가하고 있으며, 이동단말기의 사용과 관련된 주변 환경이 차량과 같은 동적인 공간까지 확산되고 있다.
이에 따라, 차량 측에는 차량의 전원에서 공급되는 전기에너지를 무선 전송방식으로 공급하여 이동단말기의 배터리를 충전할 수 있도록 차량 내에 무선전력 송신장치가 매립되고 있다.
이러한 무접점 방식의 일례로서 자기유도방식에 의한 충전방식이 많이 사용되고 있다. 즉, 자기유도방식에 의한 충전방식은 이동단말기가 차량 내에 매립된 무선전력 송신장치에 근접할 경우 무선전력 송신장치에 포함된 1차 코일과 무선전력 수신모듈에 포함된 2차 코일 간의 유도결합에 의해 이동단말기의 배터리가 충전되는 방식이다.
이때, 상기 무선전력 송신장치는 차량 내의 매립설치를 위하여 외부케이스 및 외부케이스와 결합되는 커버를 포함하며, 외부케이스는 방열을 위하여 알루미늄재질로 이루어진다.
그러나 상기 외부케이스가 알루미늄 재질로 이루어진 경우 어느 정도의 방열효과는 기대할 수 있으나 이동단말기가 직접 접촉하는 커버의 표면온도를 낮추는 데는 한계가 있다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 커버와 결합되는 방열케이스에 방열성능을 높이기 위한 방열코팅층이 형성됨으로써 커버의 표면온도를 낮출 수 있는 차량용 무선전력 송신장치를 제공하는데 그 목적이 있다.
또한, 본 발명은 자기장 차페시트의 일면에 금속재질로 이루어진 방열플레이트를 배치함으로써 체결성을 높이고 평판형 코일의 작동시 발생되는 발열 문제를 개선할 수 있는 차량용 무선전력 송신장치를 제공하는데 다른 목적이 있다.
상기와 같은 목적을 달성하기 위하여 본 발명은, 무선 전력을 송신하기 위한 하나 이상의 평판형 코일과, 상기 평판형 코일의 일면에 배치되는 자기장 차폐시트를 포함하는 무선전력 전송모듈; 상기 무선전력 전송모듈이 일측에 결합되고, 상기 무선전력 전송모듈을 구동하기 위한 적어도 하나의 회로기판이 내장되며, 열원에서 발생되는 열을 방출하기 위한 방열케이스; 상기 방열케이스의 외부면에 도포되는 방열코팅층; 및 상기 방열케이스에 착탈가능하게 결합되는 커버;를 포함하는 차량용 무선전력 송신장치를 제공한다.
본 발명의 바람직한 실시예에 따르면, 상기 방열코팅층은, 주제수지를 포함하는 코팅층 형성성분; 상기 주제수지 100 중량부에 대하여 8~72중량부로 포함되는 카본계 필러; 및 방열성 및 부착성 향상을 위한 물성증진성분;을 포함할 수 있다.
이때, 상기 카본계 필러는 그라파이트 및 카본블랙 중 1종 이상을 포함할 수 있고, 상기 주제수지는 비스페놀 A형 에폭시 수지를 포함하는 글리시딜에테르형 에폭시 수지일 수 있으며, 상기 비스페놀 A형 에폭시 수지는 에폭시 당량이 350~600g/eq일 수 있다. 더불어, 상기 카본계 필러는 평균입경이 250nm 이하의 카본블랙일 수 있다.
또한, 상기 방열케이스는, 그라파이트의 표면에 결정화된 나노금속 입자가 결합된 그라파이트 복합체 및 상기 그라파이트 복합체가 분산상을 형성하는 고분자 수지를 포함하는 방열부재 형성 조성물로 이루어질 수 있다.
다른 예로써, 상기 방열케이스는, 금속플레이트와, 상기 금속플레이트의 외부면을 덮는 방열부재 형성 조성물을 포함할 수 있고, 상기 방열부재 형성 조성물은, 그라파이트의 표면에 결정화된 나노금속 입자가 결합된 그라파이트 복합체 및 상기 그라파이트 복합체가 분산상을 형성하는 고분자 수지를 포함할 수 있다.
또한, 상기 방열플레이트는 열전도도를 갖는 접착층을 매개로 상기 자기장 차폐시트의 일면에 부착될 수 있으며, 상기 방열플레이트 및 회로기판의 사이에는 전기적인 절연을 위한 절연부재가 배치될 수 있다.
또한, 상기 절연부재 및 회로기판 사이에는 상기 회로기판 측에서 발생된 열이 상기 방열플레이트 측으로 전도되는 것을 차단하기 위한 단열층이 배치될 수 있다. 일례로, 상기 단열층은 중공실리카 입자가 포함된 단열시트, 미세 기공을 갖는 나노섬유웹 및 상기 절연부재의 적어도 일면에 열반사물질이 코팅된 코팅층 중 어느 하나일 수 있다.
한편, 본 발명은 무선 전력을 송신하기 위한 복수 개의 평판형 코일; 상기 평판형 코일에서 발생하는 자기장을 차폐하여 외부 누출을 방지함과 아울러 소요의 방향으로 집속시키는 자기장 차폐시트; 및 금속재질로 이루어지고 상기 자기장 차폐시트의 일면에 부착되는 판상의 방열플레이트;를 포함하는 차량용 무선전력 송신모듈을 제공한다. 이때, 상기 방열플레이트는 구리 또는 알루미늄 재질로 이루어질 수 있다.
본 발명에 의하면, 방열코팅층을 통하여 방열케이스의 방열성능을 높여 줌으로써 커버의 표면온도를 낮출 수 있으며, 방열플레이트를 통하여 체결성 및 발열 문제를 개선할 수 있다.
도 1은 본 발명의 일 실시예에 따른 무선전력 송신장치를 나타낸 도면,
도 2는 도 1에서 커버를 제거한 상태를 나타낸 도면,
도 3은 도 1의 분리도,
도 4는 도 1의 단면도,
도 5는 본 발명의 다른 실시예에 따른 무선전력 송신장치를 나타낸 분리도,
도 6은 도 5의 결합단면도,
도 7은 본 발명에 따른 차량용 무선전력 송신장치에서 방열케이스로 구현되는 방열부재 형성 조성물의 세부구성을 나타낸 개략도,
도 8a 및 도 8b는 도 7에 적용되는 그라파이트 복합체를 나타낸 모식도로서, 도 8a는 그라파이트, 나노금속 및 카테콜아민으로 구성되는 경우이고, 도 8b는 그라파이트, 나노금속, 카테콜아민 및 고분자로 구성되는 경우를 나타낸 도면, 그리고,
도 9는 본 발명에 적용되는 방열케이스가 방열부재 형성 조성물과 금속플레이트가 일체화된 형태로 구현되는 경우를 나타낸 부분절개도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.
본 발명의 일 실시예에 따른 무선전력 송신장치(100)는 무선전력 전송모듈, 방열케이스(130,230), 방열코팅층(140) 및 커버(150)를 포함한다.
본 발명에서 말하는 전자기기는 휴대폰, PDA, PMP, 테블릿, 멀티미디어 기기 등과 같은 휴대용 전자기기일 수 있다. 또한, 상기 무선전력 송신장치(100)는 상기 방열케이스(130,230)에 결합되는 커버(150)의 일면이 외부로 노출되도록 매립설치될 수 있다.
상기 무선전력 전송모듈은 충전이 필요한 전자기기 측으로 무선전력을 송출하기 위한 것으로, 하나 이상의 평판형 코일(111,112,113)과 자기장 차폐시트(114)를 포함할 수 있다.
상기 평판형 코일(111,112,113)은 전원공급시 무선전력을 송출하여 상기 전자기기가 필요로 하는 전력을 전달하기 위한 것으로, 상기 전자기기에 내장된 수신코일 측으로 무선 전력을 송출하여 전력을 생산하기 위한 송신코일의 역할을 수행할 수 있다.
여기서, 상기 전자기기 측에는 상기 평판형 코일(111,112,113)과 대응되는 별도의 수신용 안테나(일례로, 수신코일(Rx coil))가 구비될 수 있다. 이에 따라, 전자기 유도 현상에 의하여 상기 평판형 코일(111,112,113)에서 변화하는 자기장의 변화를 통해 수신용 안테나 측에 전류가 유도됨으로써 전력이 전달될 수 있다.
이와 같은 평판형 코일(111,112,113)은 Qi 방식, PMA 방식 또는 A4WP 방식 중 어느 하나의 방식으로 작동할 수 있으며, 접근하는 무선전력 수신모듈의 작동방식에 맞추어 Qi 방식, PMA 방식 및 A4WP 방식 중 두 개 이상의 방식이 전환되는 형태로 작동될 수도 있다.
이와 같은 평판형 코일(111,112,113)은 양 단부측에 한 쌍의 연결단자(111a,112a,113a)를 갖는 소정 길이의 도전성부재가 시계방향 또는 반시계방향으로 복수 회 권선되는 원형, 타원형 또는 사각형상을 갖는 평판형으로 구비될 수 있다. 여기서, 상기 도전성부재는 구리와 같은 도전성을 갖는 금속재질일 수 있으며, 소정의 선경을 갖는 복수 개의 가닥이 길이방향을 따라 꼬인 형태로 구비될 수도 있다.
이때, 상기 평판형 코일(111,112,113)은 복수 개로 구비될 수 있으며, 적어도 일부가 서로 중첩되도록 적층될 수 있다. 일례로, 상기 평판형 코일(111,112,113)은 3개로 구비될 수 있으며, 세 개의 평판형 코일(111,112,113) 중 어느 하나의 평판형 코일(111)이 나머지 두 개의 평판형 코일(112,113)의 상부측에 배치되되, 나머지 두 개의 평판형 코일(112,113)과 각각 일부가 서로 중첩되도록 배치될 수 있다(도 2 참조).
그러나 본 발명에 적용되는 평판형 코일(111,112,113)의 개수 및 배치관계를 이에 한정하는 것은 아니며 상기 평판형 코일(111,112,113)의 배치관계 및 전체개수는 설계조건에 따라 다양하게 변경될 수 있음을 밝혀둔다.
더불어, 무선전력을 송출하는 안테나의 역할을 평판형 코일(111,112,113)이 수행하는 것으로 도시하고 설명하였지만 이에 한정하는 것은 아니며, 상기 평판형 코일(111,112,113)은 회로기판의 일면에 동박이나 전도성 잉크를 이용하여 루프형태로 패턴형성된 안테나패턴으로 대체되어 상기 안테나패턴이 무선전력 전송용 안테나의 역할을 수행할 수도 있음을 밝혀둔다.
상기 자기장 차폐시트(114)는 상기 평판형 코일(111,112,113)의 일면에 배치되어 상기 평판형 코일(111,112,113)에 유기되는 무선 전력 신호에 의해 발생되는 자기장을 차폐함과 아울러 소요의 방향으로 집속시키는 역할을 수행한다.
이와 같은 자기장 차폐시트(114)는 소정 면적을 갖는 판상의 부재일 수 있으며, 자기장을 차폐함과 아울러 소요의 방향으로 집속시킬 수 있도록 자성을 갖는 재질로 이루어질 수 있다.
이때, 상기 자기장 차폐시트(114)는 공지의 다양한 재질로 이루어질 수 있다. 일례로, 상기 자기장 차폐시트(114)는 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 박판의 리본시트, 페라이트 시트 또는 폴리머 시트 등이 사용될 수 있다.
여기서, 상기 비정질 합금은 Fe계 또는 Co계 자성 합금이 사용될 수 있으며, 상기 페라이트 시트는 Mn-Zn 페라이트 및 Ni-Zn 페라이트 중 1종 이상을 포함하는 소결 페라이트 시트로 이루어질 수 있다.
더불어, 상기 자기장 차폐시트(114)는 플레이크 처리되어 복수 개로 분리형성될 수 있으며, 다층구조로 이루어질 수도 있다.
이와 같은 자기장 차폐시트(114)는 공지의 구성이므로 상세한 설명은 생략하며, 차폐시트로 사용되는 재료는 통상적으로 사용되는 공지의 재료가 모두 사용될 수 있음을 밝혀둔다.
상기 방열케이스(130,230)는 상기 평판형 코일(111,112,113)과 전기적으로 연결되어 전체적인 구동을 제어하기 위한 적어도 하나의 회로기판(161,162)을 내부에 수용할 수 있도록 수용공간을 갖는 함체형상으로 구비될 수 있다.
즉, 상기 방열케이스(130,230)는 회로기판(161,162)이 내장될 수 있도록 상부가 개방된 수용공간을 갖는 함체형상으로 구비될 수 있으며, 상기 무선전력 전송모듈이 회로기판(160)의 상부측에 위치하도록 체결부재(128)를 매개로 상기 방열케이스(130,230) 측에 체결될 수 있다.
여기서, 상기 회로기판(161,162)은 전반적인 구동을 제어하기 위한 각종 회로소자가 실장될 수 있으며, 복수 개로 구비될 수도 있고 하나로 구비될 수도 있다.
더불어, 본 발명에 따른 무선전력 송신장치(100)는 일측이 개구된 함체형상의 커버(150)가 상기 방열케이스(130,230)와 착탈가능하게 결합됨으로써 상기 평판형 코일(111,112,113)이 외부로 노출되는 것이 방지될 수 있다. 일례로, 상기 방열케이스(130,230)는 외부면에 적어도 하나의 걸림턱(132)이 형성되고, 함체형상으로 구비되는 커버(150)의 테두리 측이 상기 걸림턱(132)에 의해 걸림설치됨으로써 상기 커버(150)가 상기 방열케이스(130,230)에 착탈가능하게 결합될 수 있다.
이와 같은 방열케이스(130,230)는 구동시 열원에서 발생되는 열을 외부로 방출할 수 있도록 열전도도가 우수한 재질로 이루어질 수 있다.
일례로, 상기 방열케이스(130,230)는 구리 또는 알루미늄과 같은 금속재질로 이루어질 수 있고, 그라파이트 복합체(A,A')를 포함하는 방열부재 형성 조성물(C)을 이용한 플라스틱 재질로 이루어질 수도 있으며(도 4, 도 6 참조), 구리 또는 알루미늄과 같은 판상의 금속플레이트(D)가 상기 그라파이트 복합체(A,A')를 포함하는 방열부재 형성 조성물(C)과 인서트 사출을 통해 일체화된 형태일 수도 있다(도 9 참조).
이때, 본 발명에 적용되는 방열케이스(130,230)는 우수한 방열성을 구현함으로써 충전이 필요한 전자기기가 놓여지는 상기 커버(150)의 표면온도를 더욱 낮출 수 있도록 표면에 방열코팅층(140)이 형성될 수 있다(도 4, 도 6 및 도 9 참조).
즉, 상기 방열코팅층(140)은 상기 방열케이스(130,230)의 외부면에 소정의 두께로 도포되어 전체적인 방열성을 더욱 높여줌으로써 상기 커버(150)의 표면온도를 더욱 낮출 수 있다. 이를 통해, 본 발명에 따른 차량용 무선전력 송신장치(100)는 작동시 열원에서 발생되는 열에 의해 가열되는 커버(150)의 표면온도가 더욱 낮아짐으로써 상기 커버(150)에 사용자의 신체가 접촉되더라도 사용자가 고온에 의해 불쾌감을 느끼는 것을 줄여줄 수 있다.
일례로, 상기 방열코팅층(140)은 주제수지를 포함하는 코팅층 형성성분, 카본계 필러 및 방열성과 부착성 향상을 위한 물성증진성분을 포함할 수 있으며, 상기 카본계 필러는 상기 주제수지 100 중량부에 대하여 8 ~ 72 중량부로 포함될 수 있다.
상기 코팅층 형성성분은 주제수지를 포함하고, 상기 주제수지가 경화형 수지일 경우 경화제를 더 포함할 수 있고, 기타 경화촉진제, 경화촉매를 더 포함할 수 있다.
상기 주제수지는 코팅층을 형성할 수 있는 것으로 당업계에 공지된 성분의 경우 제한 없이 사용될 수 있다. 다만, 상기 방열케이스(130,230)와의 접착성, 열에 의해 취화 되지 않는 내열성, 기계적 강도 및 카본계 필러와의 상용성 개선에 따른 방열성능 향상을 동시에 달성할 수 있도록 상기 주제수지는 글리시딜에테르형 에폭시 수지, 글리시딜아민형 에폭시수지, 글리시딜에스테르형 에폭시 수지, 선형 지방족형 에폭시 수지, 고무변성 에폭시 수지 및 이들의 유도체로 이루어지는 군으로부터 선택되는 어느 하나 이상의 에폭시 수지를 포함할 수 있다.
구체적으로 상기 글리시딜에테르형 에폭시 수지는 페놀류의 글리시딜에테르와 알코올류의 글리시딜에테르를 포함할 수 있으며, 상기 페놀류의 글리시딜 에테르는 비스페놀 A형, 비스페놀 B형, 비스페놀AD형, 비스페놀 S형, 비스페놀 F형 및 레조르시놀 등과 같은 비스페놀계 에폭시, 페놀 노볼락(Phenol novolac) 에폭시, 아르알킬페놀 노볼락, 테르펜페놀 노볼락과 같은 페놀계 노볼락 및 o-크레졸 노볼락(Cresolnovolac) 에폭시와 같은 크레졸 노볼락계 에폭시 수지 등일 수 있고, 이들을 단독 또는 2 종 이상 병용할 수 있다.
이때, 상기 주제수지는 카본계 필러, 특히 그 중에서도 카본블랙과의 상용성이 매우 뛰어나 방열특성, 내구성 향상 및 표면품질 향상을 위해 비스페놀 A형 에폭시 수지를 포함하는 글리시딜에테르형 에폭시 수지일 수 있다.
여기서, 상기 비스페놀 A형 에폭시 수지는 에폭시 당량이 350 ~ 600 g/eq일 수 있다. 이는, 에폭시 당량이 350g/eq 미만일 경우에는 방열코팅층(140)의 경도가 증가해 쉽게 깨지거나 크랙이 발생하거나 굴곡진 피코팅면에서 박리가 쉽게 일어날 수 있으며, 에폭시 당량이 600g/eq을 초과하는 경우에는 미경화된 부분의 발생으로 인한 내화학성, 접착력 및 내구성이 저하될 수 있는 문제가 있기 때문이다.
또한, 상기 비스페놀 A형 에폭시 수지는 점도가 10 ~ 200 cps일 수 있다. 이는, 비스페놀 A형 에폭시 수지의 점도가 10 cps 미만일 경우 방열코팅층(140)의 생성이 어려울 수 있고, 생성 후에도 방열케이스(130,230) 표면과의 접착력이 저하될 수 있다. 반면, 비스페놀 A형 에폭시 수지의 점도가 200 cps를 초과할 경우에는 방열코팅층(140)을 얇은 두께로 형성하기 어렵고, 코팅공정이 용이하지 않을 수 있으며, 특히 스프레잉 방식의 코팅일 경우 더욱 코팅공정이 어려울 수 있다. 또한, 방열코팅층(140) 내 카본블랙의 분산성이 저하될 수 있다.
또한, 상술한 주제수지인 에폭시 수지와 함께 코팅층 형성성분에 포함되는 경화제는 선택되는 에폭시 수지의 구체적인 종류에 따라 그 종류를 달리할 수 있으며, 구체적인 종류는 당업계에 공지된 경화제를 사용할 수 있고, 바람직하게는 산무수물계, 아민계, 이미다졸계, 폴리아미드계 및 폴리메르캅탄계 중 어느 하나 이상의 성분을 포함할 수 있다.
한편, 상기 주제수지가 비스페놀 A형 에폭시 수지를 포함할 경우 상기 코팅층 형성성분은 경화제로써 폴리아미드계 성분을 더 포함할 수 있다. 이는, 후술하는 카본계 필러, 그 중에서도 카본블랙과의 상용성 향상에 매우 유리하고, 방열코팅층(140)의 접착성, 내구성 및 표면품질 등 모든 물성에 있어서 유리하며, 방열코팅층(140)이 적용되는 방열케이스(130,230)의 외부면이 평활한 평면이 아닌 굴곡지거나 단차가 형성된 경우에 해당 부분에 형성된 방열코팅층(140)에 크랙이 발생하거나 박리되는 것을 방지하는 이점이 있기 때문이다.
이때, 상기 폴리아미드계 성분은 더욱 향상된 물성을 발현하기 위하여 아민가가 180 ~ 300 mgKOH/g 일 수 있고, 더욱 바람직하게는 40℃에서 점도가 50,000 ~ 70,000 cps일 수 있다. 이는, 폴리아미드계 경화제의 아민가가 180 mgKOH/g 미만일 경우에는 경화품질이 저하되어 표면품질, 내구성, 접착성이 모두 저하될 수 있으며, 방열성능도 동시에 저하될 수 있다. 또한, 아민가가 300 mgKOH/g을 초과하는 경우에는 경화가 급속히 진행되어 코팅 중 뭉치는 현상이 발생할 수 있다. 또한, 폴리아미드계 경화제의 점도가 50,000 cps 미만일 경우에는 코팅 후 흘러내림의 문제가 있을 수 있으며, 70,000 cps를 초과할 경우에는 스프레이 코팅시 도포가 균일하지 못할 수 있으며, 노즐이 막히고 뭉치는 문제가 발생을 할 수 있기 때문이다.
또한, 상기 코팅층 형성성분에 포함되는 주제수지가 비스페놀 A형 에폭시 수지일 경우 상기 폴리아미드계 경화제는 비스페놀 A형 에폭시 수지 100 중량부에 대하여 45 ~ 75 중량부로 포함될 수 있다. 이는, 폴리아미드계 경화제가 45 중량부 미만으로 구비되는 경우에는 미경화 문제, 내구성 저하의 문제점이 있을 수 있으며, 폴리아미드계 경화제가 75 중량부를 초과할 경우에는 지나친 경화로 깨짐 현상 등의 문제점이 있을 수 있기 때문이다.
상기 카본계 필러는 그 재질에 있어 카본을 포함하는 경우에는 제한 없이 사용할 수 있고, 당업계에 공지된 카본계 물질을 사용할 수 있다. 또한, 상기 카본계 필러의 형상, 크기는 제한이 없으며, 구조에 있어서도 다공질이거나 비다공질일 수 있고, 목적에 따라 달리 선택할 수 있는바 본 발명에서 이를 특별히 한정하지 않는다. 일예로, 상기 카본계 필러는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브와 같은 탄소나노튜브, 그래핀, 그래핀 옥사이드, 그라파이트, 카본블랙 및 탄소-금속 복합체로 이루어진 군에서 1종 이상을 포함할 수 있다. 다만, 바람직하게는 우수한 방열성능, 코팅층의 형성용이성, 코팅층의 표면품질 등 목적하는 물성의 달성을 용이하게 하는 측면에서 그라파이트 및 카본블랙 중 어느 하나 이상을 포함할 수 있고, 코팅층의 표면품질 향상 측면에서 카본블랙이 사용될 수 있다.
상기 카본블랙은 퍼니스블랙, 램프블랙, 채널블랙 등 공지된 카본블랙의 종류 중 1종 이상을 선택하여 제한 없이 사용할 수 있다. 다만, 상기 카본블랙은 평균입경이 250㎚ 이하인 것이 바람직하고, 보다 바람직하게는 50 ~ 250㎚일 수 있다. 이는, 상기 카본블랙의 평균입경이 250㎚를 초과하는 경우에는 표면의 균일성이 저하될 있고, 평균입경이 50㎚ 미만일 경우에는 제품단가의 상승 우려가 있고, 코팅층으로 구현된 후 표면에 묻어 나오는 카본블랙의 양이 증가하여 방열성능이 저하될 수 있기 때문이다.
더불어, 상기 방열코팅층(140)의 표면품질을 위하여 상기 카본블랙은 체적누적입도분포에서 D90이 260㎚ 이하일 수 있다. 이는, 상기 카본블랙이 체적누적입도분포에서 D90이 260㎚를 초과하는 경우 방열코팅층(140)의 표면거칠기가 증가하는 등 방열코팅층(140)의 표면품질이 특히 저하될 수 있기 때문이다.
여기서, 상기 D90은 체적누적입도 분포에서 누적도 90%일 때의 카본블랙 입자의 입경을 의미한다. 구체적으로 가로축에 입경, 세로축에 입경이 제일 작은 측으로부터의 체적 누적 빈도를 취한 그래프(체적 기준의 입경 분포)에 있어서, 전체 입자의 체적 누적값(100%)에 대하여, 제일 작은 입경으로부터 체적%의 누적값이 90%에 해당되는 입자의 입경이 D90에 해당한다. 상기 카본블랙의 체적누적입도분포는 레이저 회절 산란 입도 분포 장치를 사용하여 측정할 수 있다.
또한, 상기 카본계 필러의 경우 표면이 실란기, 아미노기, 아민기, 히드록시기, 카르복실기 등의 관능기로 개질시킨 카본계 필러를 사용할 수 있고, 이때, 상기 관능기는 직접 카본계 필러의 표면에 결합되어 있을 수도 있고, 탄소수 1 ~ 20개의 치환 또는 비치환의 지방족 탄화수소나 탄소수 6 ~ 14개의 치환 또는 비치환의 방향족 탄화수소를 매개로 카본계 필러에 간접적으로 결합되어 있을 수도 있다.
더불어, 상기 카본계 물질을 코어 또는 쉘로 하고, 이종의 물질이 쉘 또는 코어를 구성하는 코어쉘 타입의 필러일 수도 있다.
상기 카본계 필러는 상술한 주제수지 100 중량부에 대하여 8 ~ 72 중량부로 포함될 수 있으며, 더욱 향상된 물성의 발현을 위하여 바람직하게는 17 ~ 42 중량부로 포함될 수 있다.
이는, 카본계 필러가 주제수지 100 중량부에 대하여 8 중량부 미만으로 포함되는 경우 목적하는 수준의 방열성능을 발현하지 못할 수 있기 때문이다. 또한, 상기 카본계 필러가 주제수지 100 중량부에 대하여 72 중량부를 초과할 경우 방열코팅층(140)의 접착력이 약화되어 박리가 쉽게 발생할 수 있고, 코팅층의 경도가 커져 물리적 충격에 쉽게 깨지거나 부스러질 수 있으며, 방열코팅층(140)의 표면에 돌출된 카본계 필러가 많아짐에 따라서 표면거칠기가 증가하여 방열코팅층(140)의 표면품질이 저하될 수 있기 때문이다.
한편, 바람직하게는 상기 카본계 필러는 주제수지 100 중량부에 대하여 42 중량부 이하로 구비될 수 있다. 이는, 상기 카본계 필러가 주제수지 100 중량부에 대하여 42 중량부를 초과하는 경우에는 얇은 두께의 방열코팅층(140)을 구현하기 위하여 방열코팅층을 방열케이스(130,230)에 도포하는 과정에서 일부 코팅방법, 예를 들어 스프레잉 방식으로 코팅 시 조성물이 균일하게 도포되기 어렵고, 조성물 내 분산된 카본계 필러의 분산성이 저하되어 방열케이스(130,230)에 도포되더라도 카본계 필러가 비균일하게 분산됨으로써 방열코팅층(140)이 전체적으로 균일한 방열성능을 발현하지 못하는 문제가 발생할 수 있기 때문이다.
상기 물성증진성분은 본 발명에 따른 방열 코팅 조성물이 방열케이스(130,230)에 코팅되는 경우 더욱 향상된 방열성을 발현시키고 동시에 뛰어난 접착성을 발현시켜 내구성을 향상시키는 기능을 담당한다.
이를 위해, 상기 물성증진성분은 실란계 화합물일 수 있으며, 당업계에 채용하는 공지된 실란계 화합물의 경우 제한 없이 사용할 수 있으나, 상술한 코팅층 형성성분의 주제수지, 카본계 필러중에서도 카본블랙과 함께 사용될 경우 목적한 물성의 상승작용을 일으켜 현저한 내구성과 방열성을 발현할 수 있도록, 상기 실란계 화합물은 3-(N-아닐-N-글리시딜)아미노프로필트리메톡시실란, 3-글리시독시프로필메틸에톡시실란, γ-글리시독시트리메틸디메톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 3-글리시독시프로필메틸메톡시실란 및 3-글리시독시프로필메틸디메톡시실란으로 이루어지는 군으로부터 선택되는 어느 하나 이상을 포함할 수 있다.
또한, 상기 물성증진성분은 바람직하게는 주제수지 100 중량부에 대하여 2 ~ 5 중량부로 포함될 수 있다. 이는, 물성증진성분이 주제수지 100 중량부에 대하여 2 중량부 미만으로 구비되는 경우에는 물성증진성분을 통한 방열성 및 접착성 향상 등 목적하는 물성을 동시에 목적하는 수준까지 달성하지 못할 수 있고, 주제수지 100 중량부에 대하여 5 중량부를 초과하여 구비되는 경우에는 방열케이스(130,230) 표면과의 부착력이 약화될 수 있기 때문이다.
한편, 상기 방열코팅층(140)은 카본계 필러의 분산성을 향상시키기 위한 분산제, 용매를 더 포함할 수 있다. 상기 분산제는 카본계 필러의 분산제로 당업계에서 채용하는 공지된 성분을 사용할 수 있다.
또한, 상기 방열코팅층(140)은 레벨링제, pH 조절제, 이온포착제, 점도조정제, 요변성(搖變性) 부여제, 산화방지제, 열안정제, 광안정제, 자외선흡수제, 착색제, 탈수제, 난연제, 대전방지제, 방미제(防黴劑), 방부제 등의 각종 첨가제 중에서 선택된 1종 또는 2종 이상이 첨가될 수도 있다. 상기 기재된 각종 첨가제는 당업계에 공지된 것을 사용할 수 있어 본 발명에서 특별히 한정하지 않는다.
상술한 방열코팅층(140)은 점도가 25℃에서 50 ~ 250cps일 수 있다. 이는, 방열코팅층(140)의 점도가 50 cps 미만일 경우에는 코팅하는 과정에서 피코팅면으로부터 흘러내려 방열코팅층(140)의 생성이 어려울 수 있고, 생성 후에도 피코팅면과의 접착력이 약화될 수 있고, 방열코팅층(140)의 점도가 250cps를 초과할 경우 얇은 두께의 코팅층으로 제조하기 어렵고, 제조되더라도 표면이 균일하지 않을 수 있으며, 코팅공정이 용이하지 않을 수 있고, 특히 스프레잉 방식의 코팅일 경우 더욱 코팅공정이 어려울 수 있으며, 방열코팅층 내 카본블랙의 분산성이 저하될 수 있기 때문이다.
또한, 상기 방열코팅층(140)은 방열코팅층 전체 중량에 대하여 카본계 필러를 5 ~ 30 중량%로 포함할 수 있다. 이는, 방열코팅층(140) 내에 카본계 필러가 5 중량% 미만으로 구비되는 경우에는 목적하는 수준의 방열성능을 발현하지 못할 수 있기 때문이다. 또한, 상기 방열코팅층(140) 내에 카본계 필러가 30 중량%를 초과할 경우에는 방열코팅층(140)의 접착력이 약화되어 박리가 쉽게 발생하고, 코팅층의 경도가 커져 물리적 충격에 쉽게 깨지거나 부스러질 수 있으며, 방열코팅층(140)의 표면에 돌출된 카본계 필러가 많아짐에 따라서 표면거칠기가 증가하여 방열코팅층의 표면품질이 저하될 수 있기 때문이다.
한편, 상기 방열케이스(130,230)가 방열부재 형성 조성물(C)을 이용한 플라스틱 재질을 포함하는 경우, 상기 방열부재 형성 조성물(C)은 도 7에 도시된 바와 같이 그라파이트 복합체(A,A') 및 고분자 수지(B)를 포함할 수 있으며, 인서트 사출성형 후 경화를 통해 상기 방열케이스(130,230)로 구현될 수 있다.
즉, 상기 방열케이스(130,230)는 열전도도가 좋은 그라파이트를 포함하는 방열부재 형성 조성물을 포함함으로써 열전도도가 크게 향상되어 우수한 방열성능을 구현할 수 있게 된다.
이때, 상기 그라파이트 복합체(A,A')는 판상의 그라파이트(A1)의 표면에 나노금속 입자(A2)가 결합된 복합체로 형성될 수 있으며, 상기 나노금속 입자(A2)는 전자파 차폐 효과를 나타낼 수 있도록 도전성 금속일 수 있다. 일례로, 상기 나노금속 입자(A2)는 Ni, Si, Ti, Cr, Mn, Fe, Co, Cu, Sn, In, Pt, Au, 및 Mg으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
여기서, 상기 그라파이트 복합체(A,A')에 포함된 나노금속 입자(A2)는 판상의 그라파이트(A1) 표면에서 고밀도로 존재해야 하므로 그라파이트(A1)의 전체중량에 대하여 20 ~ 50wt%로 함유될 수 있고, 평균 입자 입경이 10 ~ 200nm인 결정 형태로 그라파이트(A1) 표면에 결합될 수 있다. 또한, 상기 그라파이트 복합체(A,A')의 단면에 대하여 30 ~ 70면적%의 표면적 범위를 가질 수 있다.
이때, 상기 방열부재 형성 조성물은 상기 그라파이트 복합체(A,A')가 고분자 수지(B)에 분산상을 형성할 수 있다. 여기서, 상기 고분자 수지(B)는 열경화성 수지 및 열가소성 수지 중 적어도 하나를 포함할 수 있다.
이를 위해, 상기 그라파이트 복합체(A,A')는 상기 나노금속 입자(A2)상에 카테콜아민(Catecholamine)층(A3)을 포함할 수 있다. 이는, 표면에 나노금속 입자(A2)가 결정화되어 있는 판상의 그라파이트(A1)를 폴리도파민 등과 같은 카테콜아민(Catecholamine)으로 코팅시켜 표면을 개질시킴으로써 판상의 그라파이트 자체의 고유한 물성 특성의 저하 없이 카테콜아민의 강한 점착 특성을 이용하여 고분자 수지와의 강한 계면 결합성을 높여 줄 수 있기 때문이다.
또한, 상기 나노금속 입자(A2)에 카테콜아민층(A3)이 코팅될 경우 유기용매 내에서 분산성이 향상됨으로써 상기 방열부재 형성 조성물(C)에 유기용매가 포함될 경우 상기 그라파이트 복합체(A,A')는 고분자 수지(B)에 균일하게 분산될 수 있게 된다.
이에 따라, 그라파이트 - 나노금속 입자 - 카테콜아민을 포함하는 그라파이트 복합체(A,A')를 우선적으로 제조함으로써 목적하는 고분자 수지 내에서의 분산성을 현저히 향상시킨 복합재료를 제조할 수 있게 된다.
여기서, 상기 "카테콜아민(Catecholamine)"이란 벤젠 고리의 오쏘(ortho)-그룹으로 하이드록시 그룹 (-OH)을 가지고 파라(para)-그룹으로 다양한 알킬아민을 가지는 단분자를 의미하는 용어로, 이러한 구조체의 다양한 파생물들로서 도파민(dopamine), 도파민퀴논 (dopamine-quinone), 알파-메틸도파민 (alphamethyldopamine), 노르에피네프린 (norepinephrine), 에피네프린(epinephrine), 알파-메틸도파 (alphamethyldopa), 드록시도파 (droxidopa), 인돌아민(indolamine), 세로토닌(serotonin) 또는 5-하이드록시도파민 (5-Hydroxydopamine) 등이 카테콜아민에 포함된다. 가장 바람직하게는 도파민 (dopamine)이 사용될 수 있다.
통상적으로, 순수한 판상의 그라파이트 표면에는 카테콜아민층이 코팅되기 어려우나, 본 발명에 적용되는 그라파이트 복합체(A,A')는 표면에 결정화된 나노금속 입자(A2)가 고밀도로 결합을 이루고 있어 상기 결정화된 나노금속 입자(A2)에 폴리도파민 등의 카테콜아민 화합물이 결합됨으로써 카테콜아민층(A3)이 안정적으로 형성될 수 있다.
이러한 카테콜아민층이 도파민으로 구성되는 경우 상기 카테콜아민층은 그라파이트 복합체(A,A')를 도파민 수용액에 디핑(dipping)하여 형성될 수 있다. 이때, 상기 도파민 수용액으로 염기성 도파민 수용액을 사용하게 되면 산화 조건하에서 도파민이 자발적으로 반응함으로써 상기 그라파이트 복합체(A,A')의 나노금속 입자(A2) 상에 고분자화되어 폴리도파민층이 형성된다. 따라서, 별도의 소성 과정이 필요하지 않으며, 산화제의 첨가를 특별히 제한하는 것은 아니나, 산화제의 첨가 없이 공기 중의 산소 기체를 산화제로 이용할 수 있다.
이와 같이 본 발명에 적용되는 그라파이트 복합체(A,A')는 그라파이트의 표면에 나노금속 입자(A2)가 결합된 상태이므로 상기 나노금속 입자(A2)에 의해 카테콜아민층이 형성될 수 있다.
이에 따라, 상기 고분자 수지(B) 및 그라파이트 복합체(A,A') 간의 계면 특성이 상기 카테콜아민층을 통해 향상됨으로써 그라파이트 복합체(A,A')의 분산성을 향상시키고 배향성이 향상된다. 이로 인해, 방열부재 형성 조성물에 포함되는 그라파이트 복합체의 함량을 높일 수 있게 되므로 방열부재 형성 조성물에 소량의 고분자 수지가 포함되더라도 시트 형태로의 제조가 가능하게 된다.
한편, 상기 그라파이트 복합체(A')는 상기 카테콜아민층(A3) 상에 결합된 고분자(A4)를 포함할 수 있다(도 8b 참조). 일례로, 상기 카테콜아민으로 나노금속 입자(A2)가 코팅된 그라파이트 복합체(A)를 고분자 수지 용액에 첨가시켜 카테콜아민층 상에 고분자(A4)가 결합될 수 있다.
여기서, 상기 고분자(A4)는 상기 카테콜아민층(A3)을 완전히 덮도록 형성될 수도 있고, 상기 카테콜아민층(A3)에 고분자(A4)가 입자형태로 결합될 수도 있으며, 그라파이트 복합체(A)의 표면을 완전히 덮도록 형성될 수도 있다.
또한, 상기 고분자(A4)는 그 종류에 특별히 한정된 것은 아니나, 열경화성 수지, 열가소성 수지 및 고무로 이루어진 군에서 선택될 수 있다. 이때, 상기 고분자(A4)는 상기 방열부재 형성 조성물을 구성하는 고분자 수지(B)와 서로 간의 반응성 및 조화성이 있다면 그 종류에는 큰 제한이 없지만, 바람직하게는 상기 고분자 수지(B)의 종류와 동일 유사한 종류의 고분자가 사용될 수 있다.
이를 통해, 그라파이트(A1), 나노금속 입자(A2), 카테콜아민층(A3) 및 고분자(A4)를 포함하는 그라파이트 복합체(A')를 1차적으로 제조한 후 이를 목적하는 고분자 수지(B) 내에 분산시키면 상기 그라파이트 복합체(A')가 상기 고분자 수지(B) 내에 매우 균일하고 고르게 분산될 수 있다.
즉, 그라파이트 복합체(A')는 표면에 고분자(A4)를 포함하고 있기 때문에 그라파이트 자체의 저분산성 및 뭉침 현상뿐만 아니라 카테콜아민층 자체의 고점착성에 의한 뭉침현상도 일어나지 않으므로 고분자 수지 내에서 균일한 분산을 이룰 수 있게 된다. 이에 따라, 상기 방열부재 형성 조성물을 구성함에 있어 상기 그라파이트 복합체(A')의 전체적인 함량을 증가시킬 수 있음으로써 우수한 방열 성능을 얻을 수 있다.
한편, 상기 방열부재 형성 조성물은 유기용매와 더불어, 그 밖에도 레벨링제, pH 조절제, 이온포착제, 점도조정제, 요변성(搖變性) 부여제, 산화방지제, 열안정제, 광안정제, 자외선흡수제, 착색제, 탈수제, 난연제, 대전방지제, 방미제(防黴劑), 방부제, 등의 각종 첨가제의 1종 또는 2종 이상이 첨가될 수도 있다. 상기 기재된 각종 첨가제는 당업계에 공지된 것을 사용할 수 있어 본 발명에서 특별히 한정하지 않는다. 또한, 상기 카테콜아민층(A3)은 용제를 더 포함할 수 있으며, 선택되는 접착성분에 따라 이에 맞는 용제를 선택할 수 있어 본 발명에서는 이를 특별히 한정하는 것은 아니며, 상기 용매로는 각 성분의 적절한 용해를 가능케 하는 임의의 용매를 사용할 수 있다.
본 발명에 따른 방열케이스(130,230)가 상기 그라파이트 복합체(A,A') 및 고분자 수지(B)가 혼합된 방열부재 형성 조성물로 구현되는 경우, 사출성형을 통하여 상기 방열부재 형성 조성물만으로 방열케이스(130,230)를 구현할 수도 있고, 방열부재 형성 조성물이 인서트 사출을 통하여 상기 금속플레이트(D)를 덮어 상기 금속플레이트(D)와 일체화된 형태로 구현될 수도 있다. 이를 통해, 상기 방열케이스(130,230)가 금속재질만으로 이루어진 경우에 비하여 동일한 사이즈의 방열케이스(130,230)를 구현하더라도 방열성능이 향상될 수 있으며, 또한, 위와 같은 방열 성능의 향상으로 방열케이스의 두께 등을 얇게 하는 것이 가능하기 때문에 경량화를 도모할 수 있다.
한편, 본 발명에 따른 차량용 무선전력 송신장치(100)는 판상의 방열플레이트(120)를 더 포함할 수 있다. 이와 같은 방열플레이트(120)는 소정의 면적을 갖는 판상의 부재로 이루어져 상기 자기장 차폐시트(114)의 일면에 배치될 수 있으며, 볼트부재와 같은 체결부재(128)를 매개로 상기 방열케이스(130,230)에 체결될 수 있다.
여기서, 상기 방열플레이트(120)는 열전도성 성분을 포함하는 접착층(126)을 매개로 상기 자기장 차폐시트(114)의 일면에 부착될 수 있으며, 상기 체결부재(128)가 통과하는 적어도 하나의 조립공(127)이 관통형성될 수 있다.
이때, 상기 방열플레이트(120)는 구리나 알루미늄과 같이 열전도도가 우수한 금속재질로 이루어짐으로써 상기 자기장 차폐시트(114)를 지지하는 지지체로서의 역할과 함께 자기장 차폐시트(114)의 일면에 고정된 평판형 코일(111,112,113)에서 발생되는 열을 분산시키는 역할을 동시에 수행할 수 있다.
즉, 상기 자기장 차폐시트(114)가 페라이트 시트나 폴리머 시트와 같이 강도가 약하거나 플렉서블한 시트형태로 구성되더라도 소정의 강도를 갖는 금속재질로 이루어진 방열플레이트(120)에 의해 지지될 수 있음으로써 상기 방열케이스(130,230)와의 조립시 조립성 및 체결성을 높일 수 있다.
더불어, 상기 평판형 코일(111,112,113)에서 발생된 열이 상기 자기장 차폐시트(114)를 통해 방열플레이트(120) 측으로 전달된 후 분산됨으로써 상기 평판형 코일(111,112,113)과 커버(150) 사이에 존재하는 공기의 열교환 온도가 낮아질 수 있다. 이로 인해, 상기 공기를 통해 커버(150) 측으로 전달되는 열의 양이 줄어듦으로써 결과적으로 커버(150)의 표면온도가 낮아질 수 있다.
이때, 상기 방열플레이트(120)의 적어도 일면에는 판상의 절연부재(170)가 배치될 수 있다(도 4 및 도 6 참조). 즉, 상기 절연부재(170)는 상기 방열플레이트(120)와 상기 방열케이스(130,230)에 내장되는 회로기판(161) 사이에 위치하도록 배치됨으로써 방열플레이트(120)와 회로기판(161)을 전기적으로 절연시킬 수 있다. 이를 통해, 상기 방열플레이트(120)가 금속재질로 이루어진다하더라도 상기 절연부재(170)를 통해 회로기판(161)과 전기적인 쇼트가 방지됨으로써 안정성 및 제품의 신뢰성을 높일 수 있다. 여기서, 상기 절연부재(170)는 PET와 같은 불소 수지계 필름으로 이루어질 수 있다.
한편, 상기 방열플레이트(120)는 도 3 및 도 4에 도시된 바와 같이 상기 방열케이스(130,230)와의 결합시 적어도 일부가 상기 방열케이스(130,230)와 접하도록 배치될 수 있다. 일례로, 상기 방열플레이트(120)는 상기 방열케이스(130,230)의 상부테두리보다 상대적으로 넓은 면적을 갖도록 구비됨으로써 방열플레이트(120)의 테두리 측이 상기 방열케이스(130,230)의 상부테두리와 접하도록 배치될 수 있다. 이는, 상기 평판형 코일(111,112,113)에서 발생된 열이 상기 방열플레이트(120)에서 분산된 후 방열케이스(130,230) 측으로 전달되어 방열케이스(130,230)에 의해 방출됨으로써 상기 커버(150) 측으로 전달되는 열의 양을 더욱 줄일 수 있도록 하기 위함이다.
다른 예로써, 도 5 및 도 6에 도시된 바와 같이 상기 절연부재(170) 및 회로기판(161) 사이에는 별도의 단열층(190)이 배치될 수 있다. 이와 같은 단열층(190)은 상기 방열케이스(130,230)에 내장된 회로기판에서 발생된 열이 방열플레이트(120) 측으로 전도되는 것을 차단할 수 있다. 이에 따라, 상기 회로기판에서 발생된 열은 전도 및 대류를 통하여 상기 방열케이스(130,230) 측으로만 이동될 수 있다.
이로 인해, 작동시 평판형 코일(111,112,113)에서 발생된 열 및 열에 의해 데워진 공기는 커버(150)의 내측에서만 유동될 수 있고, 상기 회로기판 측에서 발생된 열 및 이에 의해 데워진 공기는 방열케이스(130,230)의 내부에서만 유동될 수 있다.
이에 따라, 상기 회로기판 측에서 발생된 열이 평판형 코일(111,112,113)에서 발생된 열보다 상대적으로 고온이더라도 커버(150)의 온도 상승에 미칠 수 있는 영향을 최소화하거나 원천적으로 차단할 수 있다. 이로 인해, 상기 커버(150)의 표면온도가 상기 회로기판에서 발생된 열에 의해 높아지는 것을 차단할 수 있다.
이를 위해, 상기 단열층(190)은 판상의 시트 또는 필름 형태로 구비될 수도 있고, 상기 절연부재(170)의 적어도 일면에 코팅되는 코팅층일 수도 있다.
구체적인 일례로써, 상기 단열층(190)은 중공실리카 입자가 포함된 단열시트이거나 고분자 수지로 이루어진 나노섬유를 통해 미세 기공을 갖도록 형성된 나노섬유웹일 수 있으며, 상기 절연부재(170)의 적어도 일면에 열반사물질이 코팅된 코팅층일 수 있다.
그러나, 상기 단열층(190)을 이에 한정하는 것은 아니며, 단열을 위한 목적으로 사용되는 공지의 단열재 또는 단열시트가 모두 사용될 수 있음을 밝혀둔다.
한편, 상기 방열플레이트(120)는 상기 평판형 코일(111,112,113)로부터 인출되는 각각의 연결단자(111a,112a,113a)가 상기 회로기판(162)에 연결될 수 있도록 테두리로부터 내측으로 인입되는 적어도 하나의 개구부(124)가 형성될 수 있다.
이를 통해, 상기 방열플레이트(120)를 포함하는 무선전력 전송모듈이 상기 방열케이스(130,230)에 고정된 상태에서 상기 개구부(124) 측으로 돌출된 각각의 연결단자(111a,112a,113a)를 회로기판(162)과 연결함으로써 조립편의성을 높일 수 있게 된다.
한편, 상기 자기장 차폐시트(114) 및 방열플레이트(120)는 서로 대응되는 영역에 적어도 하나의 통과공(114a,122)이 각각 관통형성될 수 있다. 즉, 상기 자기장 차폐시트(114)는 소정의 면적으로 관통형성되는 적어도 하나의 제1통과공(114a)을 포함할 수 있으며, 상기 방열플레이트(120)는 상기 제1통과공(114a)과 대응되는 위치에 관통형성되는 제2통과공(122)을 포함할 수 있다.
이러한 제1통과공(114a) 및 제2통과공(122)은 상기 평판형 코일(111,112,113) 주위의 공기가 상기 방열케이스(130,230)에 내장되는 회로기판(161) 측으로 이동하는 통로역할을 수행할 수 있다.
여기서, 상기 회로기판(161) 측에는 상기 제2통과공(122)과 대응되는 영역에 써미스터와 같은 온도센서(164)가 배치될 수 있다. 이때, 상기 온도센서(164)가 회로기판(161)으로부터 소정의 높이로 돌출되는 경우 상기 제2통과공(122)은 상기 온도센서(164)를 수용하기 위한 배치공의 역할도 동시에 수행할 수도 있다. 이와 같은 경우 상기 제2통과공(122)은 상기 온도센서(164)보다 상대적으로 넓은 면적을 갖도록 구비됨으로써 상기 온도센서(164)가 상기 방열플레이트(120)와 접촉되지 않도록 할 수 있다.
이를 통해, 무선전력 전송모듈의 작동시 상기 평판형 코일(111,112,113)에서 발생되는 열과 열교환이 이루어진 공기가 상기 온도센서(164) 측으로 유입되어 평판형 코일(111,112,113)에서 발생되는 열의 온도를 감지하도록 함으로써 상기 평판형 코일(111,112,113)에서 설정치 이상의 온도가 발생하는 경우 전체적인 동작을 중지시켜 과열에 의한 전자부품의 파손 등과 같은 제반문제가 발생하는 것을 미연에 방지할 수 있다.
여기서, 방열플레이트(120) 및 회로기판(161) 사이에 절연부재(170)가 배치되거나, 절연부재(170)와 더불어 시트 형태의 단열층(190)이 배치되는 경우, 상기 절연부재(170) 및 단열층(190)에도 상기 제2통과공(122)과 대응되는 별도의 통과공(172,192)이 각각 관통형성될 수 있다.
이때, 상기 제1통과공(114a)은 상기 평판형 코일(111,112,113)의 중공부와 대응되는 영역에 관통형성될 수 있다. 이는, 상기 제1통과공(114a)이 상기 평판형 코일(111,112,113)의 패턴부와 중첩되지 않도록 함으로써 평판형 코일(111,112,113) 주위의 공기가 제1통과공(114a) 측으로 원활하게 유입될 수 있도록 하기 위함이다.
한편, 본 발명에 따른 차량용 무선전력 송신장치(100)는 상기 방열케이스(130,230)의 바닥면에 열전달부재(180)가 배치될 수 있다.
이와 같은 열전달부재(180)는 상기 방열케이스(130,230)의 바닥면과 방열케이스(130,230)의 내부에 배치되는 회로기판(162)의 일면에 각각 접하도록 배치될 수 있다. 이를 통해, 상기 회로기판(162)에서 발생된 열은 상기 열전달부재(180)를 통해 상기 방열케이스(130,230) 측으로 전달될 수 있다.
일례로, 상기 열전달부재(180)는 상기 회로기판(162) 상에 실장되는 IC칩등과 같은 발열소자와 대응되는 영역에 배치됨으로써 상기 발열소자에서 발생되는 열이 방열케이스(130,230) 측으로 전달될 수 있다.
이때, 상기 열전달부재(180)는 열전도도가 0.8 W/m·K 이상일 수 있다. 이는 상기 열전달부재(180)의 열전도도가 0.8 W/m·K 미만일 경우 방열효과가 미미하여 무선충전 효율의 저하를 수반할 수 있기 때문이다.
이와 같은 열전달부재(180)는 열전도성 필러 및 상변이 화합물(Phase change materials) 중 어느 하나 이상을 포함하는 방열형성조성물이 고화된 패드 형태일 수 있으며, 상기 방열케이스(130,230)의 바닥면에 상변이 화합물 및 열전도성 필러 중 어느 하나 이상을 포함하는 방열형성조성물을 소정의 두께로 직접 도포하여 고화되는 형태일 수도 있다.
이때, 상기 열전달부재(180)가 열전도성 필러를 포함하는 방열형성조성물로 구성되는 경우, 상기 열전도성 필러는 금속필러, 세라믹 필러 및 카본계 필러 중 1종 이상을 포함할 수 있다.
여기서, 상기 금속필러는 Al, Ag, Cu, NI, In-Bi-Sn 합금, Sn-In-Zn 합금, Sn-In-Ag 합금, Sn-Ag-Bi 합금, Sn-Bi-Cu-Ag 합금, Sn-Ag-Cu-Sb 합금, Sn-Ag-Cu 합금, Sn-Ag 합금 및 Sn-Ag-Cu-Zn 합금 등의 공지된 금속필러 중 1 종 이상을 포함할 수 있고, 상기 세라믹필러는 AlN, Al2O3, BN, SiC 및 BeO 등의 공지된 세라믹필러 중 1종 이상을 포함할 수 있으며, 상기 카본계 필러는 그라파이트(graphite), 탄소나노튜브(carbon nanotube), 탄소섬유(carbon fiber), 다이아몬드 및 그래핀(graphene) 등의 공지된 카본계 필러를 1종 이상 포함할 수 있다.
여기서, 상기 열전달부재(180)가 열전도성 필러를 포함하는 상기 방열형성조성물로 구성되는 경우 상기 열전달부재(180)는 일반적으로 사용되는 통상의 코팅층 형성성분 및 경화성 성분을 더 포함할 수 있다.
한편, 상기 열전달부재(180)를 구성하는 방열형성조성물이 상변이 화합물을 포함하는 경우 상기 열전달부재(180)는 발열소자에서 발생된 열에 의해 성상이 고상에서 반고상 또는 액상으로 변화하는 성상의 변화를 이용할 수 있다.
즉, 어떤 물질이 상변화가 일어나는 경우, 일례로 고체에서 액체(또는 액체에서 고체), 액체에서 기체(또는 기체에서 액체)로 변화될 때 흡수하거나 방출하는 열을 잠열(latent heat)이라 하는데, 상기 잠열은 상변화가 일어나지 않은 상태에서 온도 변화에 따라 흡수(또는 방출)하는 열보다 매우 크기 때문에 상기 잠열을 이용할 경우 현저한 방열효과를 달성하기에 유리할 수 있다.
여기서, 상기 상변이 화합물은 공지된 상변이 화합물을 사용할 수 있다. 일례로, 상기 상변이 화합물은 선형 지방족 탄화수소, 수화무기염, 다가알코올, 고급지방산, 알코올지방산 에스테르, 폴리에테르로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
이와 같이 본 발명에 따른 차량용 무선전력 송신장치(100)는 방열케이스(130,230)의 외부면에 방열코팅층(140)을 형성하고, 자기장 차폐시트(114)의 일면에 금속소재로 이루어진 방열플레이트(120)를 배치함으로써 커버(150)의 노출면에서의 발열온도를 낮출 수 있다.
이는, 하기의 표 1에서 확인할 수 있다.
표 1은 자기장 차폐시트(114)의 일면에 알루미늄으로 이루어진 방열플레이트(120)를 배치한 상태에서, 방열케이스(130,230)의 재질 및 방열케이스(130,230)의 외부면에 방열코팅층(140) 도포 여부에 따른 커버(150)의 노출면에서의 발열온도를 측정한 결과이다.
방열케이스의 재질 중량(g) 방열코팅층 유무 커버 표면온도(℃)
알루미늄 75.2 x 41.0
0 40.1
방열부재 형성 조성물 50.8 x 40.5
0 40.3
방열부재 형성 조성물+알루미늄플레이트 66.0 x 40.5
0 40.1
위의 표 1에서 확인할 수 있듯이, 방열케이스의 재질에 상관없이 방열케이스(130,230)의 외부면에 방열코팅층(140)이 형성되는 경우 커버(150)의 표면온도는 모두 저감됨을 확인할 수 있으며, 상술한 방열부재 형성 조성물로 방열케이스(130,230)를 구현하는 경우 무게경감은 물론 알루미늄 단독으로 이루어진 방열케이스(130,230)에 비하여 커버(150)의 표면온도가 모두 저감됨을 확인할 수 있다.
여기서, 방열부재 형성 조성물은 상술한 바와 같이 그라파이트 복합체(A,A')를 포함하는 플라스틱 재질을 의미하며, 방열부재 형성 조성물 + 알루미늄플레이트는 도 9에 도시된 바와 같이 알루미늄플레이트가 인서트 사출을 통하여 그라파이트 복합체(A,A')를 포함하는 방열부재 형성 조성물(C)과 일체화된 형태를 의미한다.
한편, 본 발명에 적용되는 방열코팅층에 대하여 하기의 실시예를 통하여 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명에 적용되는 방열코팅층의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.
<실시예 1>
코팅층 형성성분은 주제수지로 에폭시 당량이 550g/eq인 비스페놀A형 에폭시수지(국도화학, YD-011) 100 중량부에 대하여 폴리아미드계의 경화제(국도화학, G-5022)를 65 중량부, 평균입경이 150㎚이고, D90이 190㎚인 카본블랙을 22 중량부, 에폭시계 실란화합물인 물성증진성분(Shanghai Tech Polymer Technology, Tech-7130) 3 중량부, 분산제(이소부틸알데하이드와 우레아의 축합물) 18 중량부, 용매로 메틸에틸케톤 18 중량부, 톨루엔 28.8 중량부, 사이클로핵사논 285 중량부를 혼합하여 교반하였다. 교반 후 혼합물 내에 포함된 기포를 제거하였고, 최종 점도를 25℃ 기준 100 ~ 130 cps로 제조하여 하기 표 2와 같은 방열코팅조성물을 제조하였고, 이후 5℃에서 저장하였다.
<실시예 2 ~ 20>
실시예 1과 동일하게 실시하여 제조하되, 하기 표 2, 표 3 또는 표 4와 같이 카본계 필러의 종류, 평균입경, 입도분포 및 코팅층 형성성분의 종류 등을 변경하여 표 2, 표 3 또는 표 4와 같은 방열코팅조성물을 제조하였다.
<비교예 1 ~ 4>
실시예 1과 동일하게 실시하여 제조하되, 하기 표 5와 같이 카본계 필러의 함량, 방열필러의 종류를 변경하여 하기 표 5와 같은 방열코팅조성물을 제조하였다.
<실험예>
실시예 및 비교예에서 제조된 방열 코팅조성물을 알루미늄 재질(Al 1050)로이루어지고 양측단이 상부방향으로 절곡된 형상을 갖는 기재 전면에 두께가 25㎛가 되도록 스프레잉 코팅하여 도포 후 150℃ 온도로 10분간 열처리하여 방열코팅층을 형성하였다. 이와 같이 방열코팅층이 형성된 기재의 물성을 평가하여 하기의 표 2 내지 표 5에 나타내었다.
1. 열방사성 평가
가로, 세로, 높이 각각 30㎝×30㎝×30㎝인 아크릴 챔버 중앙에 방열코팅층이 형성된 기재를 위치시킨 후 챔버 내부의 온도와 방열코팅층이 형성된 기재의 온도를 25±0.2℃가 되도록 조절하였다. 이후 방열코팅층이 형성된 기재에 열원(세라믹 heater가 결합된 구리블럭)을 TIM(열전도성 테이프 : 1W/mk)을 사용하여 붙여 시험시편을 제조하였다. 제조된 시편의 열원에 일정 전류를 인가하여 열을 발생시키고, 1시간 유지한 후 방열코팅층이 형성된 기재의 온도를 측정하여 열방사율을 평가하였다. 구체적으로 열방사율은 방열코팅층이 구비되지 않은 기재에 대해 동일 조건에서 측정한 온도를 기준으로 하여 하기 수학식에 따라서 계산하였다.
[수학식]
열방사율(%)= {1-(시험시편의 온도(℃)/미코팅 기재의 온도(℃))}× 100
다만, 실시예 13, 비교예 2의 경우 내구성, 접착성 평가 결과 열악한 것으로 측정되어 방사성 평가를 생략하였다.
2. 방열성능의 균일성 평가
가로, 세로, 높이 각각 30㎝×30㎝×30㎝인 아크릴 챔버 중앙에 방열코팅층이 형성된 기재를 위치시킨 후 챔버 내부의 온도와 방열코팅층이 형성된 기재의 온도를 25±0.2℃가 되도록 조절하였다. 이후 방열코팅층이 형성된 기재의 밑판 하부면 정중앙 지점에 직경이 15㎜, 두께 1.5㎜, 온도가 115℃인 열원을 직접 접촉시킨 후, 정중앙에서 대각선의 연장선 상에 있는 방열코팅층이 형성된 기재 끝단의 절곡지점 4군데 지점의 온도를 계속 측정하였다. 이후, 상기 4군데 지점의 온도가 각각 10℃ 상승하는데 소요되는 시간을 초단위로 각각 측정한 후, 4군데 지점 소요시간들에 대한 표준편차를 계산하였다. 표준편차가 작을수록 방열성능이 균일하다고 볼 수 있고, 방열코팅층의 카본계필러 분산성이 높다고 해석할 수 있다.
3. 내구성 평가
온도가 60℃, 상대습도가 90%인 챔버내 방열코팅층이 형성된 기재을 배치한 후 480시간 경과 후 방열코팅층이 형성된 기재의 표면상태를 육안으로 평가하였다. 평가결과 방열코팅층의 크랙, 박리(들뜸) 유무를 확인하여 이상이 없는 경우를 ○로, 이상이 발생한 경우 ×로 나타내었다.
4. 접착성 평가
내구성을 평가한 시편에 대하여 1㎜ 간격이 되도록 나이프로 크로스 컷팅을 했다. 이후 컷팅된 면에 스카치테이프를 부착하고 60° 각도로 잡아당겨 코팅층이 박리되는 상태를 확인한다. 평가기준은 ISO 2409에 의거하여 평가했다. (5B: 0%, 4B: 5%이하, 3B: 5~15%, 2B: 15~35%, 1B: 35~65%, 0B: 65%이상)
5. 표면품질평가
방열코팅층이 형성된 기재의 표면품질을 확인하기 위하여, 손으로 표면을 만져보아 울퉁불퉁하거나 거친 느낌이 있는지 확인하였다. 매끄러운 느낌이 있는 경우 5, 거친느낌이 있는 부분의 면적이 방열코팅층이 형성된 기재 외부면 전체 면적 중 2% 이하일 경우 4, 2% 초과 5% 이하의 면적일 경우 3, 5% 초과 10% 이하의 면적일 경우 2, 10% 초과 20% 이하의 면적일 경우 1, 20% 초과의 면적일 경우 0으로 나타내었다.
실시예1 실시예2 실시예3 실시예4 실시예5 실시예6 실시예7
코팅층형성성분 주제수지(종류/ 에폭시당량(g/eq)/함량(중량부)) BPA(YD-011)/550/100 BPA(YD-011)/550/100 BPA(YD-011)/550/100 BPA(YD-011)/550/100 BPA(YD-011)/550/100 BPA(YD-011)/550/100 BPA(YD-011)/550/100
경화제(종류/아민가(mgKOH/g)/함량(중량부)) PA(G-5022)/220/65 PA(G-5022)/220/65 PA(G-5022)/220/65 PA(G-5022)/220/65 PA(G-5022)/220/65 PA(G-5022)/220/65 PA(G-5022)/220/65
카본계필러 종류/함량(중량부) 카본블랙/22 카본블랙/10 카본블랙/15 카본블랙/18 카본블랙/40 카본블랙/45 카본블랙/68
평균입경(㎚)/D90(㎚) 150/192 150/192 150/192 150/192 150/192 150/192 150/192
물성증진성분(중량부) 3 3 3 3 3 3 3
방열코팅층이 형성된 기재 코팅층두께(㎛) 25 25 25 25 25 25 25
열방사성(%) 14.53 12.35 13.55 14.04 14.53 14.53 14.65
방사성능균일성 0.07 0.07 0.08 0.08 0.09 0.16 0.23
접착성 5B 5B 5B 5B 5B 4B 4B
내구성
표면품질 5 5 5 5 5 5 3
실시예8 실시예9 실시예10 실시예11 실시예12 실시예13 실시예14
코팅층형성성분 주제수지(종류/ 에폭시당량(g/eq)/함량(중량부)) BPA(YD-011)/550/100 BPA(YD-011)/550/100 BPA(YD-011)/550/100 BPA(YD-011)/550/100 BPA(YD-011)/550/100 BPA(YD-136)/310/100 BPA(YD-012H)/650/100
경화제(종류/아민가(mgKOH/g)/함량(중량부)) PA(G-5022)/220/65 PA(G-5022)/220/65 PA(G-5022)/220/65 PA(G-5022)/220/65 PA(G-5022)/220/65 PA(G-5022)/220/65 PA(G-5022)/220/65
카본계필러 종류/함량(중량부) 카본블랙/22 카본블랙/22 카본블랙/22 카본블랙/22 카본블랙/22 카본블랙/22 카본블랙/22
평균입경(㎚)/D90(㎚) 31/64 58/65 234/253 261/280 240/272 150/192 150/192
물성증진성분(중량부) 3 3 3 3 3 3 3
방열코팅층이 형성된 기재 코팅층두께(㎛) 25 25 25 25 25 25 25
열방사성(%) 14.53 14.53 14.53 14.15 14.00 - 12.95
방사성능균일성 0.06 0.06 0.08 0.12 0.08 - 0.22
접착성 5B 5B 5B 5B 4B 0B 2B
내구성 ×
표면품질 5 5 5 4 3 5 5
실시예15 실시예16 실시예17 실시예18 실시예19 실시예20
코팅층형성성분 주제수지(종류/ 에폭시당량(g/eq)/함량(중량부)) BPF(YDF-2001)/480/100 고무변성에폭시(KR-202C)/380/100 DCPD(KDCP-150)/280/100 BPA(YD-011)/550/100 BPA(YD-011)/550/100 BPA(YD-011)/550/100
경화제(종류/아민가(mgKOH/g)/함량(중량부)) PA(G-5022)/220/65 PA(G-5022)/220/65 PA(G-5022)/220/65 아미도아민(G-A0533)/330/65 지환족아민(KH-825)/275/65 페날카민(KMH-121X80)/200/65
카본계필러 종류/함량(중량부) 카본블랙/22 카본블랙/22 카본블랙/22 카본블랙/22 카본블랙/22 카본블랙/22
평균입경(㎚)/D90(㎚) 150/192 150/192 150/192 150/192 150/192 150/192
물성증진성분(중량부) 3 3 3 3 3 3
방열코팅층이 형성된 기재 코팅층두께(㎛) 25 25 25 25 25 25
열방사성(%) - 13.16 13.72 14.05 14.11 13.98
방사성능균일성 - 0.19 0.18 0.10 0.11 0.15
접착성 0B 1B 1B 2B OB 0B
내구성 × × ×
표면품질 5 5 5 5 5 4
비교예1 비교예2 비교예3 비교예4
코팅층형성성분 주제수지(종류/ 에폭시당량(g/eq)/함량(중량부)) BPA(YD-011)/550/100 BPA(YD-011)/550/100 BPA(YD-011)/550/100 BPA(YD-011)/550/100
경화제(종류/아민가(mgKOH/g)/함량(중량부)) PA(G-5022)/220/65 PA(G-5022)/220/65 PA(G-5022)/220/65 PA(G-5022)/220/65
필러 종류/함량(중량부) 카본블랙/5 카본블랙/75 이산화티타늄/22 카본블랙/22
평균입경(㎚)/D90(㎚) 150/192 150/192 208/255 150/190
물성증진성분(중량부) 3 3 3 불포함
방열코팅층이 형성된 기재 코팅층두께(㎛) 25 25 25 25
열방사성(%) 8.7 - 12.35 13.25
방사성능균일성 0.07 - 0.13 0.28
접착성 5B 0B 5B 2B
내구성 × ×
표면품질 5 2 5 5
먼저, 표 2에서 확인할 수 있듯이,
카본계 필러의 함량이 본 발명의 바람직한 범위 내에 있는 실시예 1, 4, 5의 경우가 실시예 2, 3, 6, 7에 비하여 열방사성 및 접착성이 동시에 달성되는 것을 확인할 수 있다. 특히, 실시예 6 및 7에서 확인할 수 있듯이, 카본계 필러의 함량이 증가해도 열방사성의 향상정도는 미미하고, 오히려 접착성이 저하되는 것을 확인할 수 있다. 또한, 방사성능의 균일성도 함께 저하되는 것을 확인할 수 있다.
다음으로 표 3에서 확인할 수 있듯이,
카본블랙이 동일함량으로 구비되는 실시예 1, 실시예 8 내지 실시예 12에서 평균입경이 250㎚를 초과하는 실시예 11의 경우 표면품질이 저하, 방사성능 균일성이 저하되는 것을 확인할 수 있다.
또한, 카본블랙의 D90이 260㎚를 초과하는 실시예 12의 경우 표면품질의 현저히 저하되었고, 접착성도 동시에 저하된 것을 확인할 수 있다.
한편, 주제수지인 에폭시 수지의 에폭시 당량이 바람직한 범위 미만인 실시예 13의 경우 접착성 및 내구성이 현저히 좋지 않은 것을 확인할 수 있다. 또한, 주제수지인 에폭시 수지의 에폭시 당량이 바람직한 범위를 초과하는 실시예 14의 경우 접착성이 현저히 저하되고, 방사성능의 균일성도 저하된 것을 알 수 있다.
다음으로 표 4에서 확인할 수 있듯이,
주제수지의 종류가 비스페놀A형 에폭시가 아닌 다른 종류의 에폭시 수지를 사용한 실시예 15 내지 실시예 17의 경우 열방사성, 접착성, 내구성 및 방사균일성 중 2개 이상의 물성이 저하된 것을 확인할 수 있고, 이를 통해 모든 물성을 달성하기에 적합하지 않음을 알 수 있다.
또한, 경화제로 폴리아미드계가 아닌 다른 종류를 사용한 실시예 18 내지 실시예 20의 경우 방사성능이 실시예 1보다 저하되었고, 접착성과 내구성이 현저히 저하되었으며, 실시예 20의 경우 표면특성도 저하된 것을 확인할 수 있다.
다음으로 표 5에서 확인할 수 있듯이,
카본계 필러의 함량이 본 발명에 따른 범위를 벗어나는 비교예 1의 경우 열방사성이 실시에에 비해 현저히 좋지 않음을 확인할 수 있다. 또한, 비교예 2의 경우 내구성과 접착성, 표면특성이 매우 조악한 것을 확인할 수 있다.
또한, 필러의 종류를 이산화티타늄으로 구비한 비교예 3의 경우 접착성, 내구성이 우수했으나, 열방사성의 정도는 실시예 2수준으로써, 실시예 2의 필러함량이 비교예 3보다 1/2 미만임을 고려할 때 카본블랙이 이산화티타늄보다 방열성능이 매우 뛰어난 것을 예상할 수 있다.
또한, 물성증진성분을 포함하지 않은 실시예4의 경우 방사성, 방사성능 균일성, 접착성 및 내구성이 모두 저하되는 것을 확인할 수 있다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (20)

  1. 무선 전력을 송신하기 위한 하나 이상의 평판형 코일과, 상기 평판형 코일의 일면에 배치되는 자기장 차폐시트를 포함하는 무선전력 전송모듈;
    상기 무선전력 전송모듈이 일측에 결합되고, 상기 무선전력 전송모듈을 구동하기 위한 적어도 하나의 회로기판이 내장되며, 열원에서 발생되는 열을 방출하기 위한 방열케이스;
    상기 방열케이스의 외부면에 도포되는 방열코팅층; 및
    상기 방열케이스에 착탈가능하게 결합되는 커버;를 포함하는 차량용 무선전력 송신장치.
  2. 제 1항에 있어서, 상기 방열코팅층은,
    주제수지를 포함하는 코팅층 형성성분;
    상기 주제수지 100 중량부에 대하여 8~72 중량부로 포함되는 카본계 필러; 및
    방열성 및 부착성 향상을 위한 물성증진성분;을 포함하는 차량용 무선전력 송신장치.
  3. 제 2항에 있어서, 상기 카본계 필러는 그라파이트 및 카본블랙 중 1종 이상을 포함하는 차량용 무선전력 송신장치.
  4. 제 2항에 있어서, 상기 주제수지는 비스페놀 A형 에폭시 수지를 포함하는 글리시딜에테르형 에폭시 수지인 차량용 무선전력 송신장치.
  5. 제 4항에 있어서, 상기 비스페놀 A형 에폭시 수지는 에폭시 당량이 350~600g/eq인 차량용 무선전력 송신장치.
  6. 제 2항에 있어서, 상기 카본계 필러는 평균입경이 250nm 이하의 카본블랙인 차량용 무선전력 송신장치.
  7. 제 1항에 있어서, 상기 방열케이스는,
    그라파이트의 표면에 결정화된 나노금속 입자가 결합된 그라파이트 복합체 및 상기 그라파이트 복합체가 분산상을 형성하는 고분자 수지를 포함하는 방열부재 형성 조성물로 이루어지는 차량용 무선전력 송신장치.
  8. 제 1항에 있어서, 상기 방열케이스는,
    금속플레이트와, 상기 금속플레이트의 외부면을 덮는 방열부재 형성 조성물을 포함하고,
    상기 방열부재 형성 조성물은,
    그라파이트의 표면에 결정화된 나노금속 입자가 결합된 그라파이트 복합체 및 상기 그라파이트 복합체가 분산상을 형성하는 고분자 수지를 포함하는 차량용 무선전력 송신장치.
  9. 제 1항에 있어서, 상기 자기장 차폐시트의 일면에 부착되어 체결부재를 매개로 상기 자기장 차폐시트를 상기 방열케이스에 고정할 수 있도록 금속재질로 이루어진 판상의 방열플레이트를 더 포함하는 차량용 무선전력 송신장치.
  10. 제 9항에 있어서, 상기 방열플레이트는 적어도 일부가 상기 방열케이스와 직접 접하도록 배치되는 차량용 무선전력 송신장치.
  11. 제 9항에 있어서, 상기 방열플레이트는 구리 및 알루미늄 중 1종 이상을 포함하는 차량용 무선전력 송신장치.
  12. 제 9항에 있어서, 상기 자기장 차폐시트는 상기 평판형 코일 주위의 공기가 상기 방열플레이트 측으로 이동할 수 있도록 소정의 면적으로 관통되는 적어도 하나의 제1통과공이 형성되고,
    상기 제1통과공은 상기 평판형 코일의 중공부와 대응되는 영역에 관통형성되는 차량용 무선전력 송신장치.
  13. 제 12항에 있어서, 상기 방열플레이트는 상기 제1통과공과 대응되는 영역에 소정의 면적으로 관통형성되는 제2통과공이 형성되고,
    상기 회로기판은 상기 제2통과공과 대응되는 위치에 온도센서가 배치되는 차량용 무선전력 송신장치.
  14. 제 9항에 있어서, 상기 방열플레이트 및 회로기판의 사이에는 전기적인 절연을 위한 절연부재가 배치되는 차량용 무선전력 송신장치.
  15. 제 14항에 있어서, 상기 절연부재 및 회로기판 사이에는 상기 회로기판 측에서 발생된 열이 상기 방열플레이트 측으로 전도되는 것을 차단하기 위한 단열층이 배치되는 차량용 무선전력 송신장치.
  16. 제 15항에 있어서, 상기 단열층은 중공실리카 입자가 포함된 단열시트, 미세 기공을 갖는 나노섬유웹 및 상기 절연부재의 적어도 일면에 열반사물질이 코팅된 코팅층 중 어느 하나인 차량용 무선전력 송신장치.
  17. 제 1항에 있어서, 상기 방열케이스의 바닥면과 회로기판의 사이에는 상기 회로기판에서 발생되는 열을 방열케이스 측으로 전달하여 방열성능을 높이기 위한 적어도 하나의 열전달부재가 상기 방열케이스의 바닥면과 회로기판의 일면에 각각 접하도록 배치되는 차량용 무선전력 송신장치.
  18. 제 17항에 있어서, 상기 열전달부재는 상기 회로기판에 실장되는 발열소자와 대응되는 영역에 배치되는 차량용 무선전력 송신장치.
  19. 무선 전력을 송신하기 위한 복수 개의 평판형 코일;
    상기 평판형 코일에서 발생하는 자기장을 차폐하여 외부 누출을 방지함과 아울러 소요의 방향으로 집속시키는 자기장 차폐시트; 및
    금속재질로 이루어지고 상기 자기장 차폐시트의 일면에 부착되는 판상의 방열플레이트;를 포함하는 차량용 무선전력 송신모듈.
  20. 제 19항에 있어서, 상기 방열플레이트는 구리 또는 알루미늄 재질로 이루어지는 차량용 무선전력 송신모듈.
PCT/KR2017/005151 2016-05-18 2017-05-18 차량용 무선 전력 송신장치 WO2017200310A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17799667.5A EP3460813B1 (en) 2016-05-18 2017-05-18 Wireless power transmission apparatus for vehicle
CN201780030845.7A CN109155183B (zh) 2016-05-18 2017-05-18 用于车辆的无线电力传输装置
US16/301,892 US10832849B2 (en) 2016-05-18 2017-05-18 Wireless power transmission apparatus for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0061057 2016-05-18
KR1020160061057A KR101848416B1 (ko) 2016-05-18 2016-05-18 차량용 무선 전력 송신장치

Publications (1)

Publication Number Publication Date
WO2017200310A1 true WO2017200310A1 (ko) 2017-11-23

Family

ID=60325207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005151 WO2017200310A1 (ko) 2016-05-18 2017-05-18 차량용 무선 전력 송신장치

Country Status (5)

Country Link
US (1) US10832849B2 (ko)
EP (1) EP3460813B1 (ko)
KR (1) KR101848416B1 (ko)
CN (1) CN109155183B (ko)
WO (1) WO2017200310A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108040452A (zh) * 2017-12-29 2018-05-15 湖北轻松仪表设备有限公司 一种用于电子仪器仪表的散热装置
KR20210010146A (ko) * 2019-07-19 2021-01-27 아주대학교산학협력단 과산화칼슘을 이용한 카테콜아민 코팅 방법 및 이를 이용한 저-결합 세포 배양 플레이트 제조방법

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11553857B1 (en) 2012-09-25 2023-01-17 Micro Mobio Corporation System and method for through window personal cloud transmission
US11877842B1 (en) 2012-09-25 2024-01-23 Micro Mobio Corporation Personal cloud with a plurality of modular capabilities
US11272861B1 (en) * 2012-09-25 2022-03-15 Micro Mobio Corporation Personal cloud with a plurality of modular capabilities
KR101879656B1 (ko) * 2017-04-11 2018-07-18 주식회사 서연전자 차량용 무선충전 장치
US10672553B2 (en) * 2017-05-10 2020-06-02 Raytheon Company High voltage high frequency transformer
US11456110B2 (en) * 2017-06-22 2022-09-27 Ihi Corporation Coil device
KR102085647B1 (ko) * 2017-07-17 2020-03-06 주식회사 아모그린텍 차량용 무선 전력 송신장치
JP6780608B2 (ja) * 2017-08-15 2020-11-04 トヨタ自動車株式会社 コイルユニット
KR102506374B1 (ko) * 2017-12-12 2023-03-07 주식회사 아모센스 무선전력 송신장치
EP3771071A4 (en) * 2018-03-22 2022-03-16 LG Electronics Inc. WIRELESS CHARGING PAD AND WIRELESS CHARGER
KR102654913B1 (ko) * 2018-10-26 2024-04-03 현대자동차주식회사 무선 충전용 차폐유닛 및 이의 제조방법과 이를 포함하는 무선충전기
US10830544B2 (en) * 2018-10-31 2020-11-10 Toyota Motor Engineering & Manufacturing North America, Inc. Self-healing metal structures
KR20200099912A (ko) 2019-02-15 2020-08-25 삼성전자주식회사 방열 시트 및 이를 포함하는 전자 장치
JP7361483B2 (ja) * 2019-03-29 2023-10-16 ローム株式会社 ワイヤレス送電装置、充電器
DE102019216971A1 (de) 2019-11-04 2021-05-06 Mahle International Gmbh Induktionsladevorrichtung für ein Fahrzeugladesystem
DE102019216917A1 (de) * 2019-11-04 2021-05-06 Continental Reifen Deutschland Gmbh Formelement, Vulkanisationsform und Fahrzeugluftreifen
KR20210061719A (ko) * 2019-11-20 2021-05-28 에스케이씨 주식회사 무선충전 패드, 무선충전 장치, 및 이를 포함하는 전기 자동차
DE102019132815A1 (de) * 2019-12-03 2021-06-10 Paragon Gmbh & Co. Kgaa Vorrichtung zur drahtlosen Übertragung elektrischer Energie
CN110880803B (zh) * 2019-12-17 2022-02-15 台达电子企业管理(上海)有限公司 无线充电装置
CN111669926B (zh) * 2020-05-22 2021-09-17 台达电子企业管理(上海)有限公司 电磁场收发装置及无线充电装置
KR102292033B1 (ko) * 2020-11-26 2021-08-20 (주)플렉스파워 패드 일체형 무선 충전장치
US20240039332A1 (en) * 2020-12-17 2024-02-01 Intdevice Limited Transmitter and receiver pads for inductive power transfer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150022142A1 (en) * 2013-07-16 2015-01-22 Qualcomm Incorporated Integration of electronic components in inductive power transfer systems
KR20150024713A (ko) * 2013-08-27 2015-03-09 엘지전자 주식회사 방열 시트 및 이를 이용한 방열 모듈
KR20160010972A (ko) * 2014-07-21 2016-01-29 주식회사 대창 무선 충전 장치
KR20160000997U (ko) * 2014-09-18 2016-03-28 주식회사 서연전자 차량의 무선충전장치
KR20160047266A (ko) * 2014-10-22 2016-05-02 엘지이노텍 주식회사 전자기파 차폐 시트, 이를 포함하는 무선 전력 송신 장치 및 무선 전력 수신 장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4732789B2 (ja) * 2005-04-28 2011-07-27 株式会社オートネットワーク技術研究所 スイッチングユニット
JP5352946B2 (ja) * 2006-07-31 2013-11-27 テクノポリマー株式会社 放熱筐体
CN102177043A (zh) * 2008-10-09 2011-09-07 丰田自动车株式会社 电动车辆
WO2011106506A2 (en) * 2010-02-25 2011-09-01 Evatran Llc Method and apparatus for inductively transferring ac power between a charging unit and a vehicle
JP2013197405A (ja) * 2012-03-21 2013-09-30 Hitachi Automotive Systems Ltd 電子制御装置
JP5813582B2 (ja) * 2012-06-01 2015-11-17 株式会社日本自動車部品総合研究所 電気機器
JP5938288B2 (ja) * 2012-07-19 2016-06-22 株式会社日立パワーソリューションズ 無線給電装置
JP5738326B2 (ja) * 2013-01-14 2015-06-24 株式会社日本自動車部品総合研究所 電源装置
JP2015088593A (ja) * 2013-10-30 2015-05-07 日東電工株式会社 通信モジュール
WO2015065117A1 (ko) * 2013-10-31 2015-05-07 주식회사 아모그린텍 방열 부재 및 그를 구비한 휴대용 단말기
KR20160000997A (ko) 2014-06-26 2016-01-06 삼원에프에이 (주) Rf 카드 및 신분증 인식이 가능한 일체형 개찰기를 이용한 개찰 시스템
KR20160005976A (ko) * 2014-07-08 2016-01-18 삼성전기주식회사 무선 충전용 복합시트 및 이의 제조방법
KR101559939B1 (ko) * 2015-07-07 2015-10-14 주식회사 아모그린텍 무선충전용 방열유닛

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150022142A1 (en) * 2013-07-16 2015-01-22 Qualcomm Incorporated Integration of electronic components in inductive power transfer systems
KR20150024713A (ko) * 2013-08-27 2015-03-09 엘지전자 주식회사 방열 시트 및 이를 이용한 방열 모듈
KR20160010972A (ko) * 2014-07-21 2016-01-29 주식회사 대창 무선 충전 장치
KR20160000997U (ko) * 2014-09-18 2016-03-28 주식회사 서연전자 차량의 무선충전장치
KR20160047266A (ko) * 2014-10-22 2016-05-02 엘지이노텍 주식회사 전자기파 차폐 시트, 이를 포함하는 무선 전력 송신 장치 및 무선 전력 수신 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3460813A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108040452A (zh) * 2017-12-29 2018-05-15 湖北轻松仪表设备有限公司 一种用于电子仪器仪表的散热装置
KR20210010146A (ko) * 2019-07-19 2021-01-27 아주대학교산학협력단 과산화칼슘을 이용한 카테콜아민 코팅 방법 및 이를 이용한 저-결합 세포 배양 플레이트 제조방법
KR102251193B1 (ko) 2019-07-19 2021-05-12 인천대학교 산학협력단 과산화칼슘을 이용한 카테콜아민 코팅 방법 및 이를 이용한 저-결합 세포 배양 플레이트 제조방법

Also Published As

Publication number Publication date
EP3460813B1 (en) 2021-02-24
CN109155183A (zh) 2019-01-04
US20190221353A1 (en) 2019-07-18
US10832849B2 (en) 2020-11-10
CN109155183B (zh) 2021-01-26
KR101848416B1 (ko) 2018-04-12
EP3460813A4 (en) 2020-01-29
KR20170130230A (ko) 2017-11-28
EP3460813A1 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
WO2017200310A1 (ko) 차량용 무선 전력 송신장치
WO2018164350A1 (ko) 차량용 무선전력 송신장치
WO2017014430A1 (ko) 무선전력 송신모듈
WO2017014493A1 (ko) 자기장 차폐유닛
WO2017007196A1 (ko) 방열시트 및 이를 포함하는 무선전력 전송모듈
WO2017204562A1 (ko) 코일부품
WO2017061773A1 (ko) 자성시트, 이를 포함하는 모듈 및 이를 포함하는 휴대용 기기
WO2017204565A1 (ko) 절연성 방열 코팅조성물 및 이를 통해 형성된 절연성 방열유닛
WO2015147449A1 (ko) 전자기파 차폐시트, 및 이의 제조방법
WO2017039420A1 (ko) 자기공진방식 무선전력 전송용 자기장 차폐유닛, 이를 포함하는 무선전력 전송모듈 및 전자장치
WO2018012668A1 (ko) 안테나 모듈 형성용 복합기판 및 이의 제조방법
WO2018128368A1 (ko) 절연성 방열 코팅조성물 및 이를 통해 구현된 절연성 방열 물품
WO2017171392A1 (ko) 차량 히터용 ptc 유닛, 이를 구비하는 ptc 히터 및 차량용 공조장치
WO2019054747A2 (ko) 무선전력 송신장치
WO2018021623A1 (en) Complex sheet for wireless charging and method for fabricating the same
WO2019124929A1 (ko) 무선 충전용 복합기판
WO2013009113A9 (en) Epoxy resin compound and radiant heat circuit board using the same
CN101550279A (zh) 具有静电放电防护特性的有机/无机介电混成材料组合物
KR20140081327A (ko) 방열용 수지 조성물 및 이를 이용하여 제조된 방열 기판
KR102259873B1 (ko) Led 조명장치용 기판, 그를 가지는 led 조명장치
WO2016047988A1 (ko) 표면 개질된 질화붕소, 상기 입자가 분산된 조성물, 및 상기 조성물로 코팅된 와이어
WO2018164492A1 (ko) 차량용 보조 히터
WO2021086125A1 (ko) 무선충전 장치 및 이를 포함하는 이동 수단
WO2017078404A1 (ko) 형상 이방성 자성 입자, 이를 포함하는 전자파 흡수시트 및 이를 포함하는 안테나 모듈
KR101188991B1 (ko) 열처리로 제거가 가능한 접착제 및 이를 이용한 전자파 차폐필름

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017799667

Country of ref document: EP

Effective date: 20181218