WO2017014430A1 - 무선전력 송신모듈 - Google Patents

무선전력 송신모듈 Download PDF

Info

Publication number
WO2017014430A1
WO2017014430A1 PCT/KR2016/006139 KR2016006139W WO2017014430A1 WO 2017014430 A1 WO2017014430 A1 WO 2017014430A1 KR 2016006139 W KR2016006139 W KR 2016006139W WO 2017014430 A1 WO2017014430 A1 WO 2017014430A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
power transmission
transmission module
seating groove
plate
Prior art date
Application number
PCT/KR2016/006139
Other languages
English (en)
French (fr)
Inventor
황승재
장민식
장길재
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Priority to US15/743,290 priority Critical patent/US10447065B2/en
Priority to JP2018502656A priority patent/JP6715319B2/ja
Priority to CN201680042643.XA priority patent/CN107852040B/zh
Publication of WO2017014430A1 publication Critical patent/WO2017014430A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H04B5/43
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/22The load being a portable electronic device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present invention relates to a wireless power transmission system, and more particularly to a wireless power transmission module for supplying wireless power for charging the battery of the electronic device.
  • the surrounding environment associated with the use of mobile terminals is spreading to dynamic spaces such as vehicles.
  • the charging energy when exposed to moisture, the charging energy may be lost or a fire may occur due to a momentary discharge during contact / separation. It does not happen if you do.
  • the contactless charging system is a wireless transmission method for supplying electrical energy supplied from a vehicle power source, a wireless power transmission module embedded in a vehicle, and wireless power reception of a terminal side receiving electrical energy from a wireless power transmission module.
  • a charging method using a magnetic induction method has been widely used. It is equipped with a primary coil (power transmission coil) in the wireless power transmission module and a secondary coil (induction coil, power reception coil) in the wireless power receiving module of the terminal, when the terminal approaches the charger and the primary coil The terminal is charged by inductive coupling between secondary coils.
  • a primary coil power transmission coil
  • a secondary coil induction coil, power reception coil
  • the wireless power transmission module typically uses three flat coils to widen the alignment area with the wireless power receiving module, and any one of the three flat coils has the remaining two coils and a partial area. It is arranged to overlap.
  • the wireless power transmission module is a heat dissipation unit for discharging heat generated during wireless charging to the outside to increase the charging efficiency is disposed on one surface of the shielding sheet.
  • a heat dissipation unit is attached to a heat dissipation member made of plate-like graphite and a heat dissipation member is provided with a protective film for preventing the external exposure of the heat dissipation member.
  • a fluorine resin film such as PET is commonly used.
  • the conventional protective film is made of a fluorine resin-based material such as PET, so that the strength of the material itself is weak torn or easily scratched by an external impact, so it does not function smoothly as a protective film for protecting the heat radiating member.
  • the present invention has been made in view of the above, it is possible to easily arrange a plurality of flat coils in accordance with the certification standard, and a wireless power transmission module that can improve the heat problem generated during operation of the flat coil The purpose is to provide.
  • Another object of the present invention to provide a wireless power transmission module that can increase the assembly and fastening with other components.
  • the present invention replaces the protective film attached to the exposed surface of the heat dissipation plate with a metal material to increase the rigidity of the material itself, thereby providing a protection function as well as a heat dissipation function to prevent damage from external damage. It is another object to provide a wireless power transmission module that can perform various functions at the same time, and can improve the heat dissipation performance without increasing the overall thickness of the heat dissipation plate.
  • the present invention provides an antenna unit including at least one wireless power transmission antenna; Magnetic field shielding sheet for shielding the magnetic field generated by the antenna unit to prevent external leakage and to focus in the direction of the required; And a plate-shaped heat dissipation plate disposed on one surface of the magnetic field shielding sheet.
  • the heat dissipation plate may include a plate-shaped copper plate or an aluminum plate.
  • the magnetic shielding sheet may be formed in a region corresponding to the hollow portion of the wireless power transmission antenna at least one through hole penetrating a predetermined area so that the ambient air of the antenna unit can move to the heat radiation plate side.
  • the heat dissipation plate is a graphite sheet; And a metal protective film attached to one surface of the graphite sheet to protect and conceal the graphite sheet and to function as an auxiliary heat radiation sheet.
  • the metal protective film may be aluminum foil or copper foil, and at least one slit may be formed on the aluminum foil or copper foil.
  • the slit may be formed in the direction corresponding to the wireless power transmission antenna in a direction perpendicular to the longitudinal direction of the antenna pattern or perpendicular to the tangent of the antenna pattern.
  • the metal protective film may be attached to the graphite sheet through an adhesive layer having a thermal conductivity.
  • the metal protective film may include a base layer made of a metal material, and a coating layer that is radiation-coated on at least one surface of the base layer.
  • the magnetic shielding sheet may include any one of an amorphous ribbon sheet, a ferrite sheet and a polymer sheet.
  • the magnetic shielding sheet may be separated into a plurality of fine pieces made of an amorphous shape.
  • the antenna unit is composed of a plurality of flat coils
  • the at least one seating groove comprises a support plate formed on each of the first surface and the second surface opposite to each other, the plurality of flat coils It may be disposed in the seating groove.
  • any one of the plurality of flat coils may be disposed in a first seating groove formed in the first surface, and the other flat coils may be disposed in a second seating groove formed in the second surface.
  • first seating groove and the second seating groove may be formed to have the same depth as the thickness of the flat coil.
  • first seating groove and the second seating groove may be formed on the first surface and the second surface, respectively, so that an overlapping region at least partially overlapping each other is formed.
  • a portion of the overlapping region may be formed to penetrate the support plate to directly contact a portion of the flat coil disposed in the first seating groove and a portion of the flat coil disposed in the second seating groove.
  • the central portion of the first seating groove and the second seating groove may be formed in the position corresponding to the central space of the central portion of the flat coil, respectively.
  • the partial area of the first raised portion formed in the first seating groove is in direct contact with a part of the plate-shaped coil disposed in the second seating groove to support a part of the plate-shaped coil disposed in the second seating groove.
  • the partial area of the second raised portion formed in the second seating groove may directly contact a portion of the plate coil disposed in the first seating groove to support a part of the plate coil disposed in the first seating groove.
  • the support plate may be formed through the at least one fastening hole for coupling with the fastening member on the edge side.
  • the support plate may be partially embedded with a metal member having a predetermined area, and the fastening hole may be formed at a position corresponding to the metal member.
  • the support plate may be formed with a coating layer having heat dissipation on the outer surface.
  • the support plate may be made of a plastic material having heat dissipation.
  • the present invention it is possible to easily arrange a plurality of flat coils in accordance with the certification standard through the support plate, thereby increasing assembly productivity, and the alignment position between the coils is changed by fixing the position of the flat coils through the seating grooves. It can be prevented that the charging efficiency is lowered. In addition, assembling and fastening with other parts can be improved.
  • the present invention can improve the heat problem generated during the operation of the flat coil by providing a heat radiating function to the support plate.
  • the present invention replaces the protective film attached to the exposed surface of the heat dissipation plate with a metal material to increase the rigidity of the material itself, thereby providing a protection function as well as a heat dissipation function to prevent damage from external damage.
  • FIG. 1 is a view showing a wireless power transmission module according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view along the A-A direction of FIG.
  • FIG. 3 is an exploded view of FIG. 1,
  • Figure 4a is a view showing a state in which the flat coil removed from the support plate
  • Figure 4b is a view showing a state viewed from the bottom of Figure 4a
  • FIG. 5 is a view showing a state in which the support plate applied to the wireless power transmission module according to an embodiment of the present invention cut out
  • FIG. 6 is a conceptual diagram illustrating an arrangement relationship between coils in a wireless power transmission module according to an embodiment of the present invention
  • FIG. 7 is a conceptual diagram illustrating an overlapping area with a seating groove in a support plate applied to a wireless power transmission module according to an embodiment of the present invention
  • FIG. 8 is a cross-sectional view along the B-B direction in FIG.
  • FIG. 9 is a view showing another type of wireless power transmission module showing a state in which the support plate is removed in FIG.
  • FIG. 10 is a cross-sectional view taken along the C-C direction in FIG. 9;
  • FIG. 11 is a view showing a configuration in which a magnetic shielding sheet applied to a wireless power transmission module according to an embodiment of the present invention is stacked in multiple layers;
  • FIG. 12 is a cross-sectional view showing a state in which the metal protective film is attached to the heat radiation plate applied to the present invention
  • FIG. 13 is a view illustrating a metal protective film formed of a base layer and a coating layer in FIG. 12;
  • 14A and 14B are schematic views showing the arrangement relationship between the slits and the wireless power transmission antenna when the slits are formed in the metal protective film applied to the present invention
  • 15A to 15C are views illustrating various forms of slits that may be formed in the metal protective film in FIG. 12.
  • the wireless power transmission module is embedded in an electronic device such as a mobile terminal such as a smartphone to charge the battery included in the electronic device by transmitting wireless power to the wireless power receiving module electrically connected to the battery. It is to let.
  • Such a wireless power transmission module (100, 100 ') is for transmitting wireless power to the electronic device that needs to charge the battery, as schematically shown in Figures 1 to 3 and 9, antenna unit, magnetic field shielding sheet (130,130') And a heat dissipation plate 140.
  • the electronic device may be a portable electronic device such as a mobile phone, a PDA, a PMP, a tablet, a multimedia device, or the like.
  • the wireless power transmission module 100 may be installed or installed in a vehicle.
  • the antenna unit may include at least one antenna, and the at least one antenna may include a wireless power transmission antenna for transmitting a wireless power signal to the wireless power receiving module.
  • the antenna may be composed of a circular, oval or square flat coil wound around the conductive member having a predetermined length in a clockwise or counterclockwise direction, or made of synthetic resin such as polyimide (PI) or PET.
  • PI polyimide
  • PET polyimide
  • a conductor such as a copper foil may be patterned in a loop shape, or may be formed in a loop-shaped metal pattern using conductive ink.
  • the antenna unit according to the present invention includes at least one wireless power transmission antenna (111, 112, 113) to transmit power to the wireless power receiving module to produce power using an inductive coupling method or a magnetic resonance method based on the electromagnetic induction phenomenon. can do.
  • the wireless power transmission antennas 111, 112, and 113 may be antennas of Qi or PMA standards operating in a magnetic induction method at 100 to 350 kHz, or may be antennas of A4WP standards operating in a magnetic resonance method at 6.78 MHz.
  • the antenna unit according to the present invention may have a form in which at least two or more of the Qi standard, the PMA standard and the A4WP standard are combined with each other, and in addition to the wireless power transmission antenna, NFC which operates in a different frequency band from the wireless power transmission antenna.
  • Antenna for and MST antenna may be further included.
  • the wireless power transmission antennas 111, 112, and 113 transmit a wireless power to serve as a transmission coil for transmitting power required by the electronic device.
  • the wireless power transmission antennas 111, 112, and 113 may be provided in plural, and at least some of them may be stacked to overlap each other.
  • the wireless power transmission antenna (111, 112, 113) may be provided with three flat coils, one of the three flat coils (111, 112, 113) of the flat coil 111, the other two flat coils (112, 113) It is disposed on the upper side, it may be arranged so that the remaining two planar coils 112, 113 and each of them overlap each other (A1, A2, A3, A4) (see Figure 6).
  • first coil 111 two flat coils disposed on the same surface
  • second coil 112 and third coil 113 two flat coils disposed on the same surface
  • first coil 111 two flat coils disposed on one surface
  • second coil 112 and third coil 113 two flat coils disposed on one surface
  • second coil 112 and third coil 113 on one surface of the second coil 112 and the third coil 113.
  • the stacked plate coils will be referred to as a first coil 111.
  • the present invention is not limited to such a coupling and arrangement relationship, and the top and bottom arrangement relations of the first coil 111, the second coil 112, and the third coil 113 and the total number of flat coils vary. It can be changed.
  • the wireless power transmission module 100 includes the plurality of coils 111, 112, and 113 when the wireless power transmission antennas 111, 112, and 113 are formed of a plurality of flat coils, and at least one is stacked with respect to another flat coil. It may include a support plate 120 for fixing the position of.
  • the support plates 120 overlap with the desired positions and areas of the overlapped areas A1, A2, A3, and A4. Make sure you lose.
  • the support plate 120 may be formed of a plate-like member having a predetermined area having a first surface (120a) and a second surface (120b) opposite to each other, a plurality of seating grooves (121, 122) At least one of the first surface 120a and the second surface 120b may be formed at a predetermined depth (see FIGS. 3, 4A, and 4B).
  • the plurality of seating grooves 121 and 122 are second coils 112 disposed on the same plane as the first seating groove 121 for accommodating the first coil 111 disposed above the plurality of coils. And two second seating grooves 122 for receiving the third coils 113, respectively.
  • first seating groove 121 and the second seating groove 122 may be formed on opposite surfaces, respectively. That is, the first seating groove 121 may be formed on the first surface 120a of the support plate 120, and the second seating groove 122 is the second surface 120b of the support plate 120. Can be formed on.
  • first seating groove 121 and the second seating groove 122 may be formed on the first surface 120a and the second surface 120b to form overlapping regions S1 and S2 at least partially overlapping each other. Each may be formed (see FIG. 7).
  • the first coil 111 may overlap the second coil 112 and the third coil 113 at positions corresponding to the partial regions S11 and S12 of the overlapping regions S1 and S2, respectively. have.
  • a part of the overlapping areas S1 and S2 is formed to pass through the support plate 120 so that a part of the first coil 111 disposed in the first seating groove 121 is the second seating groove.
  • Part of the second coil 112 and the third coil 113 disposed in the 122 may be in direct contact with each other.
  • ridges 123 and 124 protruding from the seating grooves 121 and 122 at positions corresponding to the central spaces of the coils 111, 112 and 113 in the centers of the first seating groove 121 and the second seating groove 122. It may be provided.
  • the ridge may include a first ridge 123 protruding a predetermined height from a bottom surface of the first seating groove 121 at a central portion of the first seating groove 121, and the second seating groove 122.
  • the central portion may include a second raised portion 124 protruding a predetermined height from the bottom surface of the second seating groove 122.
  • the first ridge 123 and the second ridge 124 may be formed to have the same height as the depth of each of the mounting grooves 121 and 122.
  • the ridges 123 and 124 may be located in the central empty space of the coils 111, 112 and 113 when the respective coils are inserted into contact with the inside of the coils 111, 112 and 113. Through this, the coils inserted into the respective seating grooves 121 and 122 may be supported by the ridges 123 and 124, respectively, and may be supported by the inner walls of the seating grooves 121 and 122, respectively.
  • the positions of the first coil 111, the second coil 112, and the third coil 113 are respectively seated. It is fixed by the grooves 121 and 122 to prevent the respective coils 111, 112 and 113 from flowing.
  • the ridges 123 and 124 may be provided to have an area corresponding to the central space of the coils. Accordingly, some areas of the ridges 123 and 124 are disposed in the overlapping areas S1 and S2 where the first seating groove 121 and the second seating groove 122 overlap each other, and the remaining areas are the first seating groove.
  • the 121 and the second seating grooves 122 may be disposed in regions not overlapping each other.
  • a partial area of the first raised portion 123 formed in the first seating groove 121 is disposed in the overlapping areas S1 and S2, and the coils 112 and 113 disposed in the second seating groove 122.
  • a part of the coils 112 and 113 disposed in the second seating groove 122 by being in direct contact with a part of the second seating groove 122.
  • Some areas disposed in S1 and S2 are in direct contact with a part of the coil 111 disposed in the first seating groove 121 to support a part of the coil 111 disposed in the first seating groove 121. You can do it.
  • each of the coils may be in contact with the support plate 120 side except for the overlapping areas A1, A2, A3, and A4. Since the contact area with the support plate 120 can be secured to the maximum, heat generated in the coil can be quickly dispersed by the support plate 120.
  • the heat radiation function of the support plate 120 will be described later.
  • the first seating groove 121 and the second seating groove 122 may be formed to have the same depth as the thickness of the coil (111, 112, 113), the thickness of the support plate 120 is two stacked
  • the thickness of the coils 111 and 112 and 111 and 113 may be the same as the sum of the thicknesses.
  • the maximum thickness of the support plate 120 may be the same thickness as the sum of the thickness of the first coil 111 and the thickness of the second coil 112.
  • the wireless power transmission module 100 can easily align the plurality of coils 111, 112, and 113 without increasing the thickness even when using the support plate 120 for aligning the positions of the coils.
  • one surface of the support plate 120 including one surface of the coil forms a horizontal surface, thereby contacting the magnetic field shielding sheets 130 and 130 ′.
  • At least one surface of the support plate 120 may be formed with a guide groove 125 for accommodating a pair of connecting terminals (111a, 112a, 113a) provided in each of the coils (111, 112, 113).
  • the guide groove 125 is formed to communicate with at least one of the first mounting groove 121 and the second mounting groove 122, so that the connection terminals of the coils respectively accommodated in the corresponding mounting groove are appropriately disposed.
  • the guide groove 125 may be formed on both of the second surface 120b of the support plate 120.
  • the guide groove 125 is provided to have a height of approximately the same size as the wire diameter of the conductive member constituting the flat coil (111, 112, 113) when the magnetic shielding sheet 130 is disposed on one surface of the support plate 120
  • One surface of the first coil 111 and the second coil 112 may be completely interviewed on one surface of the magnetic shielding sheet 130.
  • the support plate 120 is applied to the present invention facilitates the placement of the coils and serves to fix the position and the heat dissipation function to be added to quickly dissipate heat generated by the coil to solve the thermal problem Can be.
  • the support plate 120 may be a coating layer 126 having a heat dissipation on the outer surface (see Fig. 5), the support plate 120 may be made of a plastic material having a heat dissipation, heat dissipation A coating layer 126 having heat dissipation may be formed on an outer surface of the support plate 120 made of a plastic material.
  • the coating layer 126 may include a thermally conductive filler such as a carbon-based filler, and graphene, carbon nanotubes, and bronze nitride may be used.
  • a thermally conductive filler such as a carbon-based filler, and graphene, carbon nanotubes, and bronze nitride may be used.
  • the plastic having heat dissipation a composite plastic or the like containing plate-like graphite may be used.
  • the material of the coating layer 126 and / or the heat dissipating plastic for heat dissipation is not limited thereto, and it is to be understood that all of the known coating materials and heat dissipating plastics used for heat dissipation may be used.
  • the support plate 120 may be formed through at least one fastening hole 127 for coupling with other members.
  • the fastening hole 127 may be coupled or passed through a fastening member such as a bolt member.
  • the metal member 128 may be partially embedded to prevent the support plate 120 from being damaged when the support plate 120 is coupled with other components by the fastening member ( 8).
  • the fastening force and durability may be increased by forming the fastening hole 127 in the support plate 120 at a position corresponding to the metal member 128.
  • the metal member 128 may be integrated with the support plate 120 through insert molding.
  • the above-described support plate 120 may not be used (see FIGS. 9 and 10).
  • the magnetic field shielding sheets 130 and 130 ′ may be disposed on one surface of the flat coils 111, 112 and 113.
  • the magnetic field shielding sheet 130, 130 ′ may be formed of a plate-shaped member having a predetermined area, and shields a magnetic field generated by a radio signal induced by the flat coils 111, 112, and 113.
  • the magnetic sheets 131 and 131 'having magnetic properties to increase the focusing speed increase the performance of the antenna operating in a predetermined frequency band.
  • the magnetic sheets 131 and 131 ' may be formed of an amorphous ribbon sheet, a ferrite sheet, a polymer sheet, or the like, and a magnetic material having a saturation magnetic flux density (B) of 0.25 Tesler (T) or more and a permeability of 30 to 3500 may be used.
  • B saturation magnetic flux density
  • T Tesler
  • a separate protective film 132 may be attached to at least one surface of the magnetic sheets 131 and 131 'through the adhesive layer 131b.
  • the amorphous ribbon sheet may be a ribbon sheet including at least one or more of amorphous alloys and nanocrystalline alloys, the amorphous alloy may be a Fe-based or Co-based magnetic alloy, the ferrite sheet is Mn-Zn Sintered ferrite sheet such as ferrite or Ni-Zn ferrite.
  • the magnetic sheet 131 may be formed to be separated into a plurality of fine pieces by flake processing to increase the overall resistance to suppress the generation of eddy currents or to increase the flexibility, the plurality of fine pieces may be formed into an amorphous shape.
  • the magnetic shielding sheet 130 ′ may have a form in which a plurality of magnetic sheets 131a are stacked in a multilayer through an adhesive layer 131b, and the plurality of magnetic sheets 131a are flake-processed to form a plurality of fine sheets.
  • the pieces may be separated into pieces, and neighboring fine pieces may be entirely insulated or partially insulated (see FIG. 11).
  • the magnetic field shielding sheets 130 and 130 are known in the art, detailed descriptions are omitted, and the materials used as the shielding sheet may be all known materials that are commonly used.
  • the heat radiating plate 140 may be disposed on one surface of the magnetic field shielding sheets 130 and 130 ′ to disperse or radiate heat transferred from a heat source to the outside.
  • the heat dissipation plate 140 may be made of a material having excellent thermal conductivity.
  • the heat dissipation plate 140 may be made of any one of copper, aluminum, graphite, may be made of a mixture of two or more.
  • the heat dissipation plate 140 is not limited to those listed above, but may be made of a material having a thermal conductivity of 200 W / m ⁇ K or more.
  • the heat radiating plate 140 may be formed of a plate-like member having a predetermined area so as to widen the contact area with the heat source to quickly dissipate heat generated from the heat source.
  • the heat dissipation plate 140 may be attached to one surface of the magnetic shielding sheets 130 and 130 'via an adhesive layer 131b including a thermally conductive component, and at least one assembly hole 147 through which the fastening member passes. Can be formed through.
  • a separate assembly hole 136 may be formed through the magnetic field shielding sheet 130 and 130 ′ at a position corresponding to the assembly hole 147.
  • the heat generated from the flat coils 111, 112 and 113 is transferred to the heat dissipation plate 140 through the magnetic field shielding sheets 130 and 130 ', and then dispersed therein, thereby causing air to be present in the upper side of the flat coils 111, 112 and 113.
  • the temperature of can be lowered.
  • the heat dissipation plate 140 may include at least one lead drawn from the edge of the heat dissipation plate 140 so that each of the connection terminals 111a, 112a, and 113a drawn from the flat coils 111, 112, and 113 may be connected to a circuit board (not shown).
  • the opening 144 may be formed.
  • connection terminals 111a, 112a, and 113a protruding toward the opening 144 may be easily connected to a circuit board (not shown), thereby increasing assembly convenience.
  • the magnetic shielding sheet (130, 130 ') and the heat radiation plate 140 may be formed through at least one through hole (134, 142) in the area corresponding to each other. That is, at least one first through hole 134 may be formed through the magnetic shielding sheet 130 and 130 ', and the second heat dissipation plate 140 may have a second position at a position corresponding to the first through hole 134.
  • the through hole 142 may be formed through.
  • the first through hole 134 and the second through hole 142 are passages through which air around the flat coils 111, 112, and 113 moves to the circuit board side when the circuit board is disposed on the bottom surface of the heat dissipation plate 140. Can play a role.
  • a temperature sensor such as a thermistor may be disposed in an area corresponding to the second through hole 142 in the circuit board (not shown), and the temperature sensor protrudes to a predetermined height from the circuit board.
  • the second through hole 142 may also serve as a batch hole for accommodating the temperature sensor.
  • the second through hole 142 may be provided to have a relatively larger area than the temperature sensor so that the temperature sensor does not come into contact with the heat radiating plate 140.
  • the wireless power transmission module when the wireless power transmission module is operated, the heat generated in the heat exchange with the heat generated from the flat coils 111, 112 and 113 is introduced into the temperature sensor to detect the temperature of the heat generated from the flat coils 111, 112 and 113.
  • the overall operation may be stopped to prevent various problems such as damage of the electronic component due to overheating.
  • the first through hole 134 may be formed through a region corresponding to the hollow portion of the flat coil (111, 112, 113). This prevents the first through hole 134 from overlapping the pattern portion of the flat coils 111, 112 and 113 so that the air around the flat coils 111, 112 and 113 can flow smoothly into the first through hole 134. To do this.
  • the heat dissipation plate 140 serves as a support for supporting the magnetic field shielding sheets 130 and 130 'with a heat dissipation function of dissipating or dissipating heat generated from a heat source such as the flat coils 111, 112 and 113. It can be made of a plate-like metal plate such as copper or aluminum to be performed at the same time.
  • the magnetic field shielding sheets 130 and 130 ' are supported by the heat radiation plate 140 made of a metal material having a predetermined strength even if the magnetic field shielding sheet 130 or 130' is formed in a weak or flexible sheet form such as a ferrite sheet or a polymer sheet.
  • a weak or flexible sheet form such as a ferrite sheet or a polymer sheet.
  • the heat dissipation plate 140 may be a plate-like graphite sheet to increase the heat dissipation performance, the metal protection film on at least one surface of the graphite sheet when the heat dissipation plate 140 is a plate-like graphite sheet 150 may be attached (see FIGS. 10 and 12).
  • the metal protective film 150 may be provided to have a relatively thin thickness than the heat dissipation plate 140. That is, the metal protective film 150 has a thickness substantially equal to that of the conventional protective film attached to at least one surface of the heat dissipation plate 140 to compensate for the heat dissipation plate 140 made of a material having a weak strength such as graphite. It may be provided to have.
  • the metal protective film 150 simply replaces the conventional protective film used to protect the heat dissipation plate 140 from the external environment and serves to protect and conceal the heat dissipation plate 140 and the heat dissipation plate ( It may simultaneously play a role of complementing the heat dissipation performance of 140).
  • the metal material constituting the metal protective film 150 may be in the form of copper, aluminum or an alloy thereof in combination with excellent thermal conductivity, and may be in the form of an alloy including at least one of copper or aluminum.
  • the metal protective film 150 may be provided to have a thickness of 1/9 to 1/3 with respect to the thickness of the heat radiation plate 140.
  • the metal protective film 150 may be formed of a metal thin film having a thermal conductivity of 200 W / m ⁇ K or more.
  • the metal thin film may be provided to have a thin thickness, such as aluminum foil or copper foil.
  • the metal protective film 150 made of a metal material is provided to have a thickness equal to or less than that of the conventional protective film, thereby replacing the conventional protective film, thereby improving heat dissipation characteristics without increasing the overall thickness of the heat radiating member. It can increase.
  • the metal protective film 150 is made of a metal material, the rigidity of the material itself is increased, so that the rigidity of the metal protective film 150 may be greatly increased as compared with the conventional protective film made of a material such as PET. Accordingly, unlike the conventional protective film that was easily torn or scratched against the external impact, the heat radiation plate 140 is protected from the external impact through a metal material with high rigidity of the material itself, thereby preventing the heat from the external environment. The 140 can be more stably protected.
  • Such a metal protective film 150 may be attached to one surface of the heat dissipation plate 140 via an adhesive layer. At this time, the other surface of the heat radiation plate 140 may be provided with a protective film 141 for simply protecting the heat radiation plate 140.
  • Such a protective film 141 may be removed from the heat dissipation plate 140 when the heat dissipation plate 140 is attached to one surface of the magnetic field shielding sheets 130 and 130 ′ (see FIG. 10).
  • the adhesive layer may further enhance the heat dissipation effect by including a thermally conductive component.
  • a thermally conductive component may be provided with an adhesive including a thermally conductive component, or may be in the form of a plate-like substrate and an adhesive including a thermally conductive component on at least one surface of the substrate.
  • the metal protective film 150 ′ includes a base layer 150a made of a metal material and a coating layer coated on at least one surface of the base layer 150a to increase heat dissipation performance.
  • the coating layer 150b may be a metal oxide including a ceramic or carbon black having a nano-size particle size.
  • Such a coating layer (150b) is to increase the radiation rate of the metal protective film 150 by increasing the emissivity.
  • the metal protective film may form an oxide film by oxidizing the surface of the metal material constituting the metal protective film 150 through blackening treatment.
  • the oxide film may be an oxide film such as CuO and Cu 2 O.
  • the blackening treatment may use a chemical agent, may be performed by heat treatment, or may be performed by plasma treatment.
  • the metal protective film 150 penetrates at least one slit 152 having a predetermined length to increase the resistance of the metal protective film 150. It is possible to suppress the generation of eddy currents and to increase the charging efficiency.
  • the slit 152 may be formed with respect to the entire area of the metal protective film 150 or may be partially formed with respect to the local area.
  • the plurality of slits 152 may be arranged in a predetermined pattern or in a random pattern.
  • the slit 152 may be formed in an area corresponding to the wireless power transmission antennas 111, 112, and 113 of the antenna units disposed on one surface of the magnetic shielding sheet 130, 130 ', and the wireless power transmission antennas 111, 112, and 113 It may be formed in a direction perpendicular to the constituting pattern.
  • the slit 152 is perpendicular to the longitudinal direction of the pattern constituting the wireless power transmission antenna (111, 112, 113) when the wireless power transmission antenna (111, 112, 113) is formed in a rectangular pattern as shown in FIG. It may be provided to have a predetermined length in the direction.
  • the slit 152 is perpendicular to the tangent of the pattern constituting the wireless power transmission antennas 111, 112, and 113 as shown in FIG. 14B. It may be formed to have a certain length.
  • the slits formed in the straight sections are the wireless power transmission antennas 111, 112, and 113 as shown in FIG. 14A. It is provided to have a predetermined length in a direction perpendicular to the longitudinal direction of the pattern constituting the, the slits formed in the curved section is perpendicular to the tangent of the pattern constituting the wireless power transmission antenna (111, 112, 113) as shown in Figure 14b. It may be formed to have a predetermined length in the direction.
  • the slit 152 as described above may be provided in various forms. That is, the slit 152 may be provided in the form of a cutout having a predetermined length (see FIGS. 14A and 14B), or may be provided in the form of a through hole penetrating the inside of the metal protective film 150. The cutout 152a and the through hole 152b may be provided in combination with each other (see FIGS. 15A to 15C).
  • the slit 152 when the slit 152 is formed in the metal protective film 150, the slit 152 may not be formed directly on the heat source except for the wireless power transmission antenna (111, 112, 113).
  • the slit 152 since the slit 152 is not formed in a direct portion corresponding to a heating element such as an AP or an IC chip, heat generated from the heat source can be quickly dispersed.

Abstract

무선전력 송신모듈이 제공된다. 본 발명의 예시적인 실시예에 따른 무선전력 송신모듈은 무선 전력을 송신하기 위한 적어도 하나의 무선 전력 전송 안테나를 포함하는 안테나유닛; 상기 안테나유닛에서 발생하는 자기장을 차폐하여 외부 누출을 방지함과 아울러 소요의 방향으로 집속시키는 자기장 차폐시트; 및 상기 자기장 차폐시트의 일면에 배치되어 상기 안테나유닛에서 발생되는 열을 방출하기 위한 판상의 방열플레이트;를 포함한다. 이와 같은 무선전력 송신모듈은 차량 내에 비치되거나 매립되어 휴대단말기의 메인배터리를 충전하는데 사용될 수 있다.

Description

무선전력 송신모듈
본 발명은 무선전력 전송 시스템에 관한 것이며, 보다 구체적으로는 전자기기의 배터리 충전을 위한 무선전력을 공급하는 무선전력 송신모듈에 관한 것이다.
최근 들어 외부의 전력으로 배터리를 충전하여 사용하는 전기기기, 예컨대 휴대폰이나 스마트폰, 태블릿 PC, 노트북, 디지털방송용 단말기, PDA(Personal Digital Assis, PMP(Portable Multimedia Player) 및 내비게이션 등과 같은 이동단말기의 사용이 증가하고 있다.
이에 따라, 이동단말기의 사용과 관련된 주변 환경이 차량과 같은 동적인 공간까지 확산되고 있는 추세이다.
그 일환으로, 차량 내에서도 간편히 단말기의 배터리를 충전할 수 있는 충전기의 사용이 증가하고 있다.
차량 내 배터리 충전시 충전기와 단말기(또는 배터리)의 전기적 연결방식으로는 차량 전원에 연결된 충전기를 접촉단자 또는 케이블을 통해 단말기에 연결하여 전기에너지를 공급하는 방식이 있다.
이 중에서 충전기와 단말기에 접촉단자를 구비하는 단자공급방식에서는 습기에 노출될 경우 충전에너지가 소실되거나, 접촉/분리시 순간방전현상으로 인해 화재 발생의 우려가 있고, 접촉불량에 의해 충전동작이 원활하게 이루어지지 않는 경우도 발생한다.
따라서, 접촉단자를 구성하지 않고 무선 전력 전송방식을 이용하는 무접점 방식의 충전시스템이 제시되고 있다.
상기 무접점 방식의 충전시스템은 차량 전원에서 공급되는 전기에너지를 무선 전송방식으로 공급하는 것으로, 차량 내에 매립되는 무선전력 송신모듈과, 무선전력 송신모듈에서 전기에너지를 전송받는 단말기 측의 무선전력 수신모듈을 포함한다.
이러한 무접점 방식의 일례로서 자기유도방식에 의한 충전방식이 많이 사용되고 있다. 이는 무선전력 송신모듈에 1차 코일(전력송신코일)을 구비하고 단말기의 무선전력 수신모듈에 2차 코일(유도코일, 전력수신코일)을 구비하여, 단말기가 충전기에 접근할 경우 1차 코일과 2차 코일 간 유도결합에 의해 단말기가 충전되도록 하는 방식이다.
이때, 상기 무선전력 송신모듈은 통상적으로 무선전력 수신모듈과의 정렬면적을 넓힐 수 있도록 3개의 평판형 코일이 사용되며, 3개의 평판형 코일 중 어느 하나의 코일이 나머지 두 개의 코일과 일부면적이 중첩되도록 배치된다.
이러한, 코일들 간의 중첩면적 및 중첩위치는 원활한 무선충전을 위하여 소정의 규격으로 엄격하게 정해져 있다.
따라서, 3개의 코일을 요구되는 규격에 맞게 정확하게 정렬할 필요가 있다. 그러나, 종래에는 코일들 간의 위치를 정확하게 정렬하기 위해서 두 개의 평판형 코일을 배치한 후 나머지 코일을 정해진 위치에 배치하고 코일들 간의 위치가 틀어지는 것을 방지하기 위하여 접착제를 통하여 부착하는 방식을 사용하였다.
이에 따라, 작업이 매우 번거롭고 작업이 완료된 후 코일간의 정렬이 잘못된 경우 코일들이 서로 접착된 상태이므로 수정작업이 매우 번거로운 문제점이 있었다.
한편, 상기 무선전력 송신모듈은 무선 충전시 발생되는 열을 외부로 방출하여 충전 효율을 높이기 위한 방열유닛이 차폐시트의 일면에 배치된다. 이와 같은 방열유닛은 판상의 흑연으로 이루어진 방열부재 및 방열부재에 부착되어 방열부재의 외부노출을 방지하기 위한 보호필름을 구비한다. 상기 보호필름으로는 PET와 같은 불소 수지계 필름이 통상적으로 사용된다.
그러나 종래의 보호필름은 PET와 같은 불소 수지계 재질로 이루어져 재료 자체의 강도가 약하여 외부충격에 의해 찢어지거나 쉽게 스크래치가 발생하므로 방열부재를 보호하기 위한 보호필름으로서의 기능을 원활하게 수행하지 못한다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 복수 개의 평판형 코일을 인증 규격에 맞게 간편하게 배치할 수 있고, 평판형 코일의 작동시 발생되는 발열 문제를 개선할 수 있는 무선전력 송신모듈을 제공하는데 그 목적이 있다.
또한, 본 발명은 다른 부품과의 조립성 및 체결성을 높일 수 있는 무선전력 송신모듈을 제공하는데 다른 목적이 있다.
더욱이, 본 발명은 방열플레이트의 노출면에 부착되는 보호필름을 금속재질로 대체하여 재질 자체의 강성을 증가시킴으로써 외부충격에 의해 쉽게 손상되는 것을 방지하는 보호기능은 물론 방열기능을 부여함으로써 하나의 부재를 통해 여러 가지 기능을 동시에 수행할 수 있고, 방열플레이트의 전체두께를 증가시키지 않으면서도 방열성능을 향상시킬 수 있는 무선전력 송신모듈을 제공하는데 또 다른 목적이 있다.
상기와 같은 목적을 달성하기 위하여 본 발명은 적어도 하나의 무선 전력 전송 안테나를 포함하는 안테나유닛; 상기 안테나유닛에서 발생하는 자기장을 차폐하여 외부 누출을 방지함과 아울러 소요의 방향으로 집속시키는 자기장 차폐시트; 및 상기 자기장 차폐시트의 일면에 배치된 판상의 방열플레이트;를 포함하는 무선전력 송신모듈을 제공한다.
또한, 상기 방열플레이트는 판상의 구리 플레이트 또는 알루미늄 플레이트를 포함할 수 있다.
또한, 상기 자기장 차폐시트는 상기 안테나유닛의 주위 공기가 상기 방열플레이트 측으로 이동할 수 있도록 소정의 면적으로 관통되는 적어도 하나의 통과공이 상기 무선 전력 전송 안테나의 중공부와 대응되는 영역에 형성될 수 있다.
또한, 상기 방열플레이트는 그라파이트 시트; 및 상기 그라파이트 시트의 일면에 부착되어 그라파이트 시트를 보호 및 은닉함과 아울러 보조방열시트로서 기능하는 금속보호필름;을 포함할 수 있다.
또한, 상기 금속보호필름은 알루미늄박 또는 동박일 수 있으며, 상기 알루미늄박 또는 동박에는 적어도 하나의 슬릿이 형성될 수 있다. 이때, 상기 슬릿은 상기 무선 전력 전송 안테나와 대응되는 영역에 안테나 패턴의 길이방향에 대하여 수직하거나 안테나 패턴의 접선에 대하여 수직한 방향으로 형성될 수 있다.
또한, 상기 금속보호필름은 열전도도를 갖는 접착층을 매개로 상기 그라파이트 시트에 부착될 수 있다.
또한, 상기 금속보호필름은 금속재질로 이루어진 기재층과, 상기 기재층의 적어도 일면에 방사 코팅되는 코팅층을 포함할 수 있다.
또한, 상기 자기장 차폐시트는 비정질 리본 시트, 페라이트 시트 및 폴리머 시트 중 어느 하나를 포함할 수 있다.
또한, 상기 자기장 차폐시트는 비정형으로 이루어지는 복수 개의 미세조각으로 분리형성될 수 있다.
또한, 상기 안테나유닛은 복수 개의 평판형 코일로 이루어지고, 적어도 하나의 안착홈이 서로 반대면인 제1면과 제2면에 각각 형성되는 지지플레이트를 포함하며, 상기 복수 개의 평판형 코일은 상기 안착홈에 배치될 수 있다.
또한, 상기 복수 개의 평판형 코일 중 어느 하나는 상기 제1면에 형성되는 제1안착홈에 배치되고, 나머지 평판형 코일은 상기 제2면에 형성되는 제2안착홈에 배치될 수 있다.
또한, 상기 제1안착홈 및 제2안착홈은 상기 평판형 코일의 두께와 동일한 깊이를 갖도록 형성될 수 있다.
또한, 상기 제1안착홈 및 제2안착홈은 적어도 일부면적이 서로 중첩되는 중첩영역이 형성되도록 상기 제1면 및 제2면에 각각 형성될 수 있다.
또한, 상기 중첩영역 중 일부영역은 상기 지지플레이트를 관통하도록 형성되어 상기 제1안착홈에 배치되는 평판형 코일의 일부와 상기 제2안착홈에 배치되는 평판형 코일의 일부가 직접 접촉될 수 있다.
또한, 상기 제1안착홈 및 제2안착홈의 중앙부에는 상기 평판형 코일의 중앙부 빈공간과 대응되는 위치에 융기부가 각각 형성될 수 있다.
또한, 상기 제1안착홈에 형성된 제1융기부 중 일부면적은 상기 제2안착홈에 배치되는 평판형 코일의 일부와 직접 접촉되어 상기 제2안착홈에 배치되는 평판형 코일의 일부를 지지하고, 상기 제2안착홈에 형성된 제2융기부 중 일부면적은 상기 제1안착홈에 배치되는 평판형 코일의 일부와 직접 접촉되어 상기 제1안착홈에 배치되는 평판형 코일의 일부를 지지할 수 있다.
또한, 상기 지지플레이트는 테두리 측에 체결부재와의 결합을 위한 적어도 하나의 체결공이 관통형성될 수 있다.
또한, 상기 지지플레이트는 소정의 면적을 갖는 금속부재가 부분적으로 내장되고, 상기 체결공은 상기 금속부재과 대응되는 위치에 형성될 수 있다.
또한, 상기 지지플레이트는 외부면에 방열성을 갖는 코팅층이 형성될 수 있다.
또한, 상기 지지플레이트는 방열성을 갖는 플라스틱 재질로 이루어질 수 있다.
본 발명에 의하면, 지지플레이트를 통하여 복수 개의 평판형 코일을 인증 규격에 맞게 간편하게 배치할 수 있음으로써 조립생산성을 높일 수 있고, 평판형 코일의 위치가 안착홈을 통해 고정됨으로써 코일 간의 정렬위치가 변경되는 것을 방지하여 충전효율이 떨어지는 것을 방지할 수 있다. 또한, 다른 부품과의 조립성 및 체결성을 높일 수 있다.
또한, 본 발명은 지지플레이트에 방열 기능을 부여함으로써 평판형 코일의 작동시 발생되는 발열 문제를 개선할 수 있다.
더욱이, 본 발명은 방열플레이트의 노출면에 부착되는 보호필름을 금속재질로 대체하여 재질 자체의 강성을 증가시킴으로써 외부충격에 의해 쉽게 손상되는 것을 방지하는 보호기능은 물론 방열기능을 부여함으로써 하나의 부재를 통해 여러 가지 기능을 동시에 수행할 수 있고, 방열플레이트의 전체두께를 증가시키지 않으면서도 방열성능을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 무선전력 송신모듈을 나타낸 도면,
도 2는 도 1의 A-A 방향 단면도,
도 3은 도 1의 분리도,
도 4a는 지지플레이트에서 평판형 코일을 분리한 상태를 나타낸 도면,
도 4b는 도 4a를 저면에서 바라본 상태를 나타낸 도면,
도 5는 본 발명의 일 실시예에 따른 무선전력 송신모듈에 적용되는 지지플레이트를 절개한 상태를 나타낸 도면,
도 6은 본 발명의 일 실시예에 따른 무선전력 송신모듈에서 코일들 간의 배치관계를 설명하기 위한 개념도,
도 7은 본 발명의 일 실시예에 따른 무선전력 송신모듈에 적용되는 지지플레이트에서 안착홈과의 중첩영역을 설명하기 위한 개념도,
도 8은 도 1에서 B-B 방향 단면도,
도 9는 도 1에서 지지플레이트가 제거된 상태를 나타낸 다른 형태의 무선전력 송신모듈을 나타낸 도면,
도 10은 도 9에서 C-C 방향의 단면도,
도 11은 본 발명의 일 실시예에 따른 무선전력 송신모듈에 적용되는 자기장 차폐시트가 다층으로 적층되어 구성된 형태를 나타낸 도면,
도 12는 본 발명에 적용되는 방열플레이트에 금속보호필름이 부착된 상태를 나타낸 단면도,
도 13은 도 12에서 금속보호필름이 기재층 및 코팅층으로 형성되는 경우를 나타낸 도면,
도 14a 및 도 14b는 본 발명에 적용되는 금속보호필름에 슬릿이 형성되는 경우 슬릿과 무선 전력 전송 안테나와의 배치관계를 나타낸 개략도, 그리고,
도 15a 내지 도 15c는 도 12에서 금속보호필름에 형성될 수 있는 슬릿의 다양한 형태를 나타낸 도면이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.
본 발명의 일 실시예에 따른 무선전력 송신모듈은 스마트폰 등과 같은 휴대 단말기와 같은 전자기기에 내장되어 배터리와 전기적으로 연결된 무선전력 수신모듈 측으로 무선전력을 송출함으로써 상기 전자기기에 포함된 배터리를 충전시키기 위한 것이다.
이와 같은 무선전력 송신모듈(100,100')은 배터리 충전이 필요한 전자기기 측으로 무선전력을 송출하기 위한 것으로, 도 1 내지 도 3 및 도 9에 개략적으로 나타낸 바와 같이, 안테나유닛, 자기장 차폐시트(130,130') 및 방열플레이트(140)를 포함한다.
여기서, 상기 전자기기는 휴대폰, PDA, PMP, 테블릿, 멀티미디어 기기 등과 같은 휴대용 전자기기일 수 있다. 또한, 상기 무선전력 송신모듈(100)은 차량 내에 비치되거나 설치될 수 있다.
상기 안테나유닛은 적어도 하나의 안테나를 포함하고, 상기 적어도 하나의 안테나는 무선전력 수신모듈 측으로 무선전력 신호를 송출하기 위한 무선 전력 전송 안테나를 포함할 수 있다.
여기서, 상기 안테나는 일정길이를 갖는 도전성부재가 시계방향 또는 반시계 방향으로 복수 회 권선되는 원형, 타원형 또는 사각형상의 평판형 코일로 구성될 수도 있고, 폴리이미드(PI)나 PET 등과 같은 합성수지로 이루어진 회로기판(미도시)의 일면에 동박 등과 같은 전도체를 루프 형태로 패터닝하거나 전도성 잉크를 사용하여 루프 형상의 금속 패턴으로 형성될 수도 있다.
본 발명에 따른 안테나유닛은 무선전력 수신모듈 측으로 무선전력 신호를 송출하여 전자기 유도 현상에 기초한 유도 결합 방식 또는 자기공진방식을 이용하여 전력을 생산할 수 있도록 적어도 하나의 무선 전력 전송 안테나(111,112,113)를 포함할 수 있다.
일례로, 상기 무선 전력 전송 안테나(111,112,113)는 100~350kHz에서 자기 유도 방식으로 작동하는 Qi 규격 또는 PMA 규격의 안테나일 수도 있고, 6.78MHz에서 자기공진방식으로 작동하는 A4WP 규격의 안테나일 수도 있다.
더불어, 본 발명에 따른 안테나유닛은 Qi 규격, PMA 규격 및 A4WP 규격 중 적어도 2개 이상이 서로 조합된 형태일 수도 있고, 무선 전력 전송 안테나 이외에 상기 무선 전력 전송 안테나와 서로 다른 주파수 대역에서 작동하는 NFC용 안테나 및 MST용 안테나가 더 포함될 수도 있다.
상기 무선 전력 전송 안테나(111,112,113)는 무선전력을 송출하여 상기 전자기기가 필요로 하는 전력을 전달하기 위한 송신코일의 역할을 수행한다.
이와 같은 무선 전력 전송 안테나(111,112,113)는 복수 개로 구비될 수 있으며, 적어도 일부가 서로 중첩되도록 적층될 수 있다. 일례로, 상기 무선 전력 전송 안테나(111,112,113)는 3개의 평판형 코일로 구비될 수 있으며, 세 개의 평판형 코일(111,112,113) 중 어느 하나의 평판형 코일(111)이 나머지 두 개의 평판형 코일(112,113)의 상부측에 배치되되, 나머지 두 개의 평판형 코일(112,113)과 각각 일부가 서로 중첩(A1,A2,A3,A4)되도록 배치될 수 있다(도 6 참조).
이하에서는 설명의 편의상 동일면 상에 배치되는 두 개의 평판형 코일을 제2코일(112) 및 제3코일(113)로 명명하고, 상기 제2코일(112) 및 제3코일(113)의 일면에 적층되는 평판형 코일을 제1코일(111)로 명명하기로 한다.
그러나 본 발명을 이와 같은 결합 및 배치관계로 한정하는 것은 아니며 제1코일(111), 제2코일(112) 및 제3코일(113)의 상,하 배치관계 및 평판형 코일의 전체개수는 다양하게 변경될 수 있음을 밝혀둔다.
이때, 본 발명에 따른 무선전력 송신모듈(100)은 상기 무선 전력 전송 안테나(111,112,113)가 복수 개의 평판형 코일로 구성되고, 적어도 하나가 다른 평판형 코일에 대하여 적층되는 경우 상기 복수 개의 코일(111,112,113)들의 위치를 고정하기 위한 지지플레이트(120)를 포함할 수 있다.
즉, 상기 지지플레이트(120)는 상기 복수 개의 코일(111,112,113)이 다층으로 적층되고 일부가 서로 겹쳐지도록 배치되는 경우 코일 간에 겹쳐진 영역(A1,A2,A3,A4)이 목적하는 위치 및 면적으로 겹쳐질 수 있도록 한다.
이를 위해, 상기 지지플레이트(120)는 서로 반대면인 제1면(120a)과 제2면(120b)을 갖추어 소정의 면적을 갖는 판상의 부재로 이루어질 수 있으며, 복수 개의 안착홈(121,122)이 상기 제1면(120a) 및 제2면(120b) 중 적어도 어느 일면에 일정깊이 인입형성될 수 있다(도 3, 도 4a 및 도 4b 참조).
여기서, 상기 복수 개의 안착홈(121,122)은 상기 복수 개의 코일들 중 상부에 배치되는 제1코일(111)을 수용하기 위한 제1안착홈(121)과 동일면 상에 배치되는 제2코일(112) 및 제3코일(113)을 각각 수용하기 위한 두 개의 제2안착홈(122)을 포함할 수 있다.
이때, 상기 제1안착홈(121) 및 제2안착홈(122)은 서로 반대면에 각각 형성될 수 있다. 즉, 상기 제1안착홈(121)은 지지플레이트(120)의 제1면(120a)에 형성될 수 있고, 상기 제2안착홈(122)은 지지플레이트(120)의 제2면(120b)에 형성될 수 있다.
더불어, 상기 제1안착홈(121) 및 제2안착홈(122)은 적어도 일부 면적이 서로 중첩되는 중첩영역(S1,S2)을 형성하도록 제1면(120a)과 제2면(120b)에 각각 형성될 수 있다(도 7 참조).
이에 따라, 작업자가 상기 제1안착홈(121)에 제1코일(111)을 삽입하고, 상기 제2안착홈(122)에 제2코일(112) 및 제3코일(113)을 각각 삽입하게 되면, 상기 중첩영역(S1,S2) 중 일부영역(S11,S12)과 대응되는 위치에서 상기 제1코일(111)은 상기 제2코일(112) 및 제3코일(113)과 각각 겹쳐질 수 있다.
이때, 상기 중첩영역(S1,S2) 중 일부영역은 상기 지지플레이트(120)를 관통하도록 형성되어 상기 제1안착홈(121)에 배치되는 제1코일(111)의 일부가 상기 제2안착홈(122)에 배치되는 제2코일(112) 및 제3코일(113)의 일부와 서로 직접 접촉할 수 있다.
이로 인해, 상기 제1안착홈(121) 및 제2안착홈(122)을 형성하는 과정에서 서로 중첩되는 중첩영역을 요구되는 규정에 맞도록 위치와 면적을 형성하게 되면 별다른 정렬작업을 수행할 필요없이 간편하게 코일들 간의 정렬을 완료할 수 있다.
또한, 상기 제1안착홈(121) 및 제2안착홈(122)의 중앙부에는 코일(111,112,113)들의 중앙부 빈공간과 대응되는 위치에 각각의 안착홈(121,122)으로부터 돌출형성되는 융기부(123,124)가 구비될 수 있다.
일례로, 상기 융기부는 상기 제1안착홈(121)의 중앙부에 제1안착홈(121)의 바닥면으로부터 일정높이 돌출되는 제1융기부(123)와, 상기 제2안착홈(122)의 중앙부에 제2안착홈(122)의 바닥면으로부터 일정높이 돌출되는 제2융기부(124)를 포함할 수 있다. 여기서, 상기 제1융기부(123) 및 제2융기부(124)는 각각의 안착홈(121,122)의 깊이와 동일한 높이를 갖도록 형성될 수 있다.
이러한 융기부(123,124)는 각각의 코일들의 삽입시 코일(111,112,113)의 중앙부 빈공간에 위치하여 코일(111,112,113)의 내측과 접촉될 수 있다. 이를 통해, 각각의 안착홈(121,122)에 삽입된 코일들은 내측이 융기부(123,124)에 의해 각각 지지되고 외측이 안착홈(121,122)의 내벽에 의해 지지될 수 있다.
이로 인해, 무선전력 송신모듈(100)의 흔들림, 일례로 차량의 주행 중 흔들림이 발생하더라도 상기 제1코일(111), 제2코일(112) 및 제3코일(113)의 위치가 각각의 안착홈(121,122)에 의해 고정되어 각각의 코일(111,112,113)이 유동되는 것을 방지할 수 있게 된다.
이때, 상기 융기부(123,124)는 코일들의 중앙부 빈공간과 대응되는 면적을 갖도록 구비될 수 있다. 이에 따라, 상기 융기부(123,124) 중 일부면적은 제1안착홈(121) 및 제2안착홈(122)이 서로 겹쳐지는 중첩영역(S1,S2)에 배치되며, 나머지 면적은 제1안착홈(121) 및 제2안착홈(122)이 서로 겹쳐지지 않는 영역에 배치될 수 있다.
이로 인해, 상기 제1안착홈(121)에 형성된 제1융기부(123) 중 상기 중첩영역(S1,S2)에 배치되는 일부면적은 상기 제2안착홈(122)에 배치되는 코일(112,113)의 일부와 직접 접촉되어 상기 제2안착홈(122)에 배치되는 코일(112,113)의 일부를 지지하게 되며, 상기 제2안착홈(122)에 형성된 제2융기부(124) 중 상기 중첩영역(S1,S2)에 배치되는 일부면적은 상기 제1안착홈(121)에 배치되는 코일(111)의 일부와 직접 접촉되어 상기 제1안착홈(121)에 배치되는 코일(111)의 일부를 지지할 수 있게 된다.
더불어, 상기 지지플레이트(120)에 방열기능이 부가되는 경우 각각의 코일들은 일면이 중첩영역(A1,A2,A3,A4)을 제외한 나머지 부분이 모두 지지플레이트(120) 측에 접할 수 있게 되므로, 지지플레이트(120)와의 접촉면적을 최대로 확보할 수 있게 되므로 코일에서 발생되는 열이 지지플레이트(120)에 의해 빠르게 분산될 수 있다. 여기서, 상기 지지플레이트(120)의 방열기능은 후술하기로 한다.
한편, 상기 제1안착홈(121) 및 제2안착홈(122)은 상기 코일(111,112,113)들의 두께와 동일한 깊이를 갖도록 형성될 수 있으며, 상기 지지플레이트(120)의 두께는 서로 적층된 두 개의 코일(111,112)(111,113)의 두께를 합한 두께와 동일한 두께를 가질 수 있다. 일례로, 상기 지지플레이트(120)의 최대두께는 상기 제1코일(111)의 두께와 제2코일(112)의 두께를 합한 두께와 동일한 두께일 수 있다.
이에 따라, 본 발명에 따른 무선전력 송신모듈(100)은 코일들의 위치를 정렬하기 위한 지지플레이트(120)를 사용하더라도 두께가 증가되지 않으면서도 복수 개의 코일(111,112,113)들을 간편하게 정렬할 수 있게 된다.
더불어, 상기 지지플레이트(120)에 형성된 안착홈(121,122)에 코일(111,112,113)들이 수용된 후 코일의 일면을 포함한 지지플레이트(120)의 일면이 수평면을 이루게 되므로 자기장 차폐시트(130,130')와의 접촉면적을 넓혀줄 수 있게 된다. 이에 따라, 상기 자기장 차폐시트(130,130')가 유연성을 갖거나 취성이 강한 재질로 이루어진 시트형태로 제작된다 하더라도 상기 지지플레이트(120)에 의해 자기장 차폐시트(130,130')의 일면이 지지됨으로써 외부 충격에 의한 파손이 방지됨은 물론 수평한 상태로의 배치가 가능하게 된다.
한편, 상기 지지플레이트(120)의 적어도 일면에는 각각의 코일(111,112,113)에 구비되는 한 쌍의 연결단자(111a,112a,113a)를 수용하기 위한 가이드홈(125)이 형성될 수 있다. 이러한 가이드홈(125)은 상기 제1안착홈(121) 및 제2안착홈(122) 중 적어도 어느 하나의 안착홈과 연통되도록 형성됨으로써 해당 안착홈에 각각 수용된 코일의 연결단자들이 적절하게 배치될 수 있도록 한다. 일례로, 상기 가이드홈(125)은 상기 지지플레이트(120)의 제2면(120b)에 모두 형성될 수 있다.
이러한 가이드홈(125)은 상기 평판형 코일(111,112,113)을 구성하는 도전성부재의 선경과 대략 동일한 크기의 높이를 갖도록 구비되어 지지플레이트(120)의 일면에 자기장 차폐시트(130)가 배치되는 경우 상기 제1코일(111) 및 제2코일(112)의 일면이 상기 자기장 차폐시트(130)의 일면에 완전히 면접될 수 있도록 한다.
한편, 본 발명에 적용되는 지지플레이트(120)는 상기 코일들의 배치를 용이하게 하고 위치를 고정하는 역할과 더불어 상기 코일에서 발생되는 열을 빠르게 분산시켜 열적 문제를 해소할 수 있도록 방열기능이 부가될 수 있다.
이를 위해, 상기 지지플레이트(120)는 외부면에 방열성을 갖는 코팅층(126)이 형성될 수도 있고(도 5 참조), 상기 지지플레이트(120)가 방열성을 갖는 플라스틱 재질로 이루어질 수도 있으며, 방열성을 갖는 플라스틱 재질로 이루어진 지지플레이트(120)의 외부면에 방열성을 갖는 코팅층(126)이 형성될 수도 있다.
일례로, 상기 코팅층(126)은 카본계 필러와 같은 열전도성 필러를 포함할 수 있으며, 그래핀이나 탄소나노튜브, 브론 나이트라이드 등이 사용될 수 있다.
더불어, 상기 방열성을 갖는 플라스틱으로는 판상의 흑연이 포함된 복합플라스틱 등이 사용될 수 있다. 그러나, 방열을 위한 코팅층(126) 및/또는 방열 플라스틱의 재질을 이에 한정하는 것은 아니며, 방열을 위해 사용되는 공지의 코팅재 및 방열 플라스틱이 모두 사용될 수 있음을 밝혀둔다.
한편, 상기 지지플레이트(120)는 다른 부재와의 결합을 위한 적어도 하나의 체결공(127)이 관통형성될 수 있다. 이러한 체결공(127)은 볼트부재와 같은 체결부재가 결합되거나 통과할 수 있다.
이때, 상기 지지플레이트(120)가 플라스틱 재질로 이루어진 경우 체결부재에 의한 다른 부품과의 결합시 지지플레이트(120)가 파손되는 것을 방지할 수 있도록 금속부재(128)가 부분적으로 내장될 수 있다(도 8 참조).
이에 따라, 상기 지지플레이트(120)에는 상기 금속부재(128)와 대응되는 위치에 체결공(127)이 형성됨으로써 체결력 및 내구성을 높일 수도 있다. 여기서, 상기 금속부재(128)는 인서트 몰딩을 통하여 상기 지지플레이트(120)와 일체화될 수 있다.
한편, 본 발명에 따른 무선전력 송신모듈(100')은 상술한 지지플레이트(120)가 사용되지 않을 수도 있다(도 9 및 도 10 참조).
상기 자기장 차폐시트(130,130')는 상기 평판형 코일(111,112,113)의 일면에 배치될 수 있다.
이와 같은 자기장 차폐시트(130,130')는 소정 면적을 갖는 판상의 부재로 이루어질 수 있으며, 상기 평판형 코일(111,112,113)에 유기되는 무선신호에 의해 발생되는 자기장을 차폐함과 아울러 소요의 방향으로 자기장의 집속도를 높여줄 수 있도록 자성을 갖는 자성시트(131,131')로 이루어짐으로써 소정의 주파수 대역에서 작동하는 안테나의 성능을 높여주게 된다.
일례로, 상기 자성시트(131,131')는 비정질 리본시트, 페라이트 시트 또는 폴리머 시트 등이 사용될 수 있으며, 포화자속밀도(B)가 0.25테슬러(T)이상이고 투자율이 30~3500인 자성체가 사용될 수 있다.
이때, 상기 자성시트(131,131')의 적어도 일면에는 별도의 보호필름(132)이 접착층(131b)을 매개로 부착될 수도 있다.
여기서, 상기 비정질 리본시트는 비정질 합금 및 나노결정립 합금 중 적어도 1종 이상을 포함하는 리본시트일 수 있고, 상기 비정질 합금은 Fe계 또는 Co계 자성 합금이 사용될 수 있으며, 상기 페라이트 시트는 Mn-Zn 페라이트 또는 Ni-Zn 페라이트와 같은 소결 페라이트 시트로 이루어질 수 있다. 더불어, 상기 자성시트(131)는 전체적인 저항을 높여 와전류의 발생을 억제하거나 유연성을 높일 수 있도록 플레이크 처리되어 복수 개의 미세조각으로 분리형성될 수 있으며, 상기 복수 개의 미세조각은 비정형으로 이루어질 수 있다.
더하여, 상기 자기장 차폐시트(130')는 복수 개의 자성시트(131a)가 접착층(131b)을 매개로 다층으로 적층된 형태일 수 있고, 상기 복수 개의 자성시트(131a)는 플레이크 처리되어 복수 개의 미세조각으로 분리된 형태일 수 있으며, 서로 이웃하는 미세 조각들은 전체적으로 절연되거나 부분적으로 절연될 수도 있다(도 11 참조).
이와 같은 자기장 차폐시트(130,130')는 공지의 구성이므로 상세한 설명은 생략하며, 차폐시트로 사용되는 재료는 통상적으로 사용되는 공지의 재료가 모두 사용될 수 있음을 밝혀둔다.
상기 방열플레이트(140)는 상기 자기장 차폐시트(130,130')의 일면에 배치됨으로써 열원으로부터 전달된 열을 분산시키거나 외부로 방출하는 역할을 수행할 수 있다.
이를 위해, 상기 방열플레이트(140)는 열전도성이 우수한 재질로 이루어질 수 있다. 일례로, 상기 방열플레이트(140)는 구리나, 알루미늄, 그라파이트 중 어느 하나로 이루어질 수 있고, 둘 이상이 혼합된 형태로 이루어질 수도 있다. 더불어, 상기 방열플레이트(140)는 위에 열거한 것에 한정하지 않고 열전도도가 200W/m·K 이상인 재질로 이루어질 수 있다.
이때, 상기 방열플레이트(140)는 열원과의 접촉면적을 넓혀 상기 열원에서 발생된 열을 빠르게 분산할 수 있도록 소정의 면적을 갖는 판상의 부재로 이루어질 수 있다.
이와 같은 방열플레이트(140)는 열전도성 성분을 포함하는 접착층(131b)을 매개로 상기 자기장 차폐시트(130,130')의 일면에 부착될 수 있으며, 체결부재가 통과하는 적어도 하나의 조립공(147)이 관통형성될 수 있다. 여기서, 상기 자기장 차폐시트(130,130') 측에도 상기 조립공(147)과 대응되는 위치에 별도의 조립공(136)이 관통형성될 수 있다.
이에 따라, 상기 평판형 코일(111,112,113)에서 발생된 열이 상기 자기장 차폐시트(130,130')를 통해 방열플레이트(140) 측으로 전달된 후 분산됨으로써 상기 평판형 코일(111,112,113)의 상부측에 존재하는 공기의 온도가 낮아질 수 있게 된다.
또한, 상기 방열플레이트(140)는 상기 평판형 코일(111,112,113)로부터 인출되는 각각의 연결단자(111a,112a,113a)가 회로기판(미도시)에 연결될 수 있도록 테두리로부터 내측으로 인입되는 적어도 하나의 개구부(144)가 형성될 수도 있다.
이를 통해, 상기 개구부(144) 측으로 돌출된 각각의 연결단자(111a,112a,113a)를 회로기판(미도시)과 간편하게 연결할 수 있음으로써 조립편의성을 높일 수 있다.
한편, 상기 자기장 차폐시트(130,130') 및 방열플레이트(140)는 서로 대응되는 영역에 적어도 하나의 통과공(134,142)이 각각 관통형성될 수 있다. 즉, 상기 자기장 차폐시트(130,130')에는 적어도 하나의 제1통과공(134)이 관통형성될 수 있으며, 상기 방열플레이트(140)에는 상기 제1통과공(134)과 대응되는 위치에 제2통과공(142)이 관통형성될 수 있다.
이러한 제1통과공(134) 및 제2통과공(142)은 상기 방열플레이트(140)의 저면에 회로기판이 배치되는 경우 상기 평판형 코일(111,112,113) 주위의 공기가 상기 회로기판 측으로 이동하는 통로역할을 수행할 수 있다.
여기서, 상기 회로기판(미도시)에는 상기 제2통과공(142)과 대응되는 영역에 써미스터와 같은 온도센서(미도시)가 배치될 수 있으며, 상기 온도센서가 회로기판으로부터 소정의 높이로 돌출되는 경우 상기 제2통과공(142)은 상기 온도센서를 수용하기 위한 배치공의 역할도 동시에 수행할 수 있다. 이와 같은 경우 상기 제2통과공(142)은 상기 온도센서보다 상대적으로 넓은 면적을 갖도록 구비됨으로써 상기 온도센서가 상기 방열플레이트(140)와 접촉되지 않도록 할 수 있다.
이를 통해, 무선전력 송신모듈의 작동시 상기 평판형 코일(111,112,113)에서 발생되는 열과 열교환이 이루어진 공기가 상기 온도센서 측으로 유입되어 평판형 코일(111,112,113)에서 발생되는 열의 온도를 감지하도록 함으로써 상기 평판형 코일(111,112,113)에서 설정치 이상의 온도가 발생하는 경우 전체적인 동작을 중지시켜 과열에 의한 전자부품의 파손 등과 같은 제반문제가 발생하는 것을 미연에 방지할 수 있다.
이때, 상기 제1통과공(134)은 상기 평판형 코일(111,112,113)의 중공부와 대응되는 영역에 관통형성될 수 있다. 이는, 상기 제1통과공(134)이 상기 평판형 코일(111,112,113)의 패턴부와 중첩되지 않도록 함으로써 평판형 코일(111,112,113) 주위의 공기가 제1통과공(134) 측으로 원활하게 유입될 수 있도록 하기 위함이다.
한편, 본 발명에 따른 방열플레이트(140)는 상기 평판형 코일(111,112,113)과 같은 열원에서 발생되는 열을 분산시키거나 방출하는 방열기능과 함께 자기장 차폐시트(130,130')를 지지하는 지지체로서의 역할을 동시에 수행할 수 있도록 구리나 알루미늄과 같은 판상의 금속플레이트로 이루어질 수 있다.
즉, 상기 자기장 차폐시트(130,130')가 페라이트 시트나 폴리머 시트와 같이 강도가 약하거나 플렉서블한 시트형태로 구성되더라도 소정의 강도를 갖는 금속재질로 이루어진 방열플레이트(140)에 의해 지지됨으로써 본 발명에 따른 무선전력 송신모듈(100,100')을 케이스나 하우징 등과 같은 다른 부품과의 조립시 조립성 및 체결성을 높일 수 있다.
대안으로, 본 발명에 따른 방열플레이트(140)는 방열성능을 높일 수 있도록 판상의 그라파이트 시트일 수 있으며, 상기 방열플레이트(140)가 판상의 그라파이트 시트인 경우 상기 그라파이트 시트의 적어도 일면에 금속보호필름(150)이 부착될 수 있다(도 10 및 도 12 참조).
이때, 상기 금속보호필름(150)은 상기 방열플레이트(140)에 비하여 상대적으로 얇은 두께를 갖도록 구비될 수 있다. 즉, 상기 금속보호필름(150)은 상기 방열플레이트(140)가 그라파이트와 같이 강도가 약한 재질로 이루어진 경우 이를 보완하기 위하여 방열플레이트(140)의 적어도 일면에 부착되던 종래의 보호필름과 대략 동일한 두께를 갖도록 구비될 수 있다.
이를 통해, 상기 금속보호필름(150)은 단순히 방열플레이트(140)를 외부환경으로부터 보호하기 위하여 사용되던 종래의 보호필름을 대체하여 상기 방열플레이트(140)를 보호 및 은닉하는 역할과 더불어 방열플레이트(140)의 방열성능을 보완하는 역할을 동시에 수행할 수 있다.
여기서, 상기 금속보호필름(150)을 구성하는 금속재질은 열전도성이 우수한 구리, 알루미늄 또는 이들이 조합된 합금형태일 수 있고, 구리 또는 알루미늄 중 적어도 하나를 포함하는 합금형태일 수 있다. 이때, 상기 금속보호필름(150)은 상기 방열플레이트(140)의 두께에 대하여 1/9 ~ 1/3의 두께를 갖도록 구비될 수 있다.
일례로, 상기 금속보호필름(150)은 열전도도가 200W/m·K 이상의 금속박막으로 이루어질 수 있다. 이때, 상기 금속박막은 알루미늄박 또는 동박과 같이 얇은 두께를 갖도록 구비될 수 있다.
이에 따라, 금속재질로 이루어진 금속보호필름(150)이 종래의 보호필름과 동일한 두께 또는 그 이하의 두께를 갖도록 구비되어 종래의 보호필름을 대체함으로써 방열부재의 전체두께를 증가시키지 않으면서도 방열특성을 높일 수 있다.
더불어, 상기 금속보호필름(150)이 금속재질로 이루어짐으로써 재료 자체의 강성이 증가되므로 PET와 같은 소재로 이루어지던 종래의 보호필름에 비하여 강성이 매우 증가될 수 있다. 이에 따라, 외부충격에 대하여 찢어지거나 스크래치와 같은 손상이 쉽게 발생되던 종래의 보호필름과는 달리 재료 자체의 강성이 높은 금속재질을 통해 방열플레이트(140)가 외부충격으로부터 보호됨으로써 외부환경으로부터 방열플레이트(140)를 더욱 안정적으로 보호할 수 있다.
이와 같은 금속보호필름(150)은 상기 방열플레이트(140)의 일면에 접착층을 매개로 부착될 수 있다. 이때, 상기 방열플레이트(140)의 타면에는 상기 방열플레이트(140)를 단순히 보호하기 위한 보호필름(141)이 구비될 수 있다.
이와 같은 보호필름(141)은 상기 방열플레이트(140)가 자기장 차폐시트(130,130')의 일면에 부착되는 경우, 상기 방열플레이트(140)로부터 제거될 수도 있다(도 10 참조).
여기서, 상기 접착층은 열전도성 성분을 포함함으로써 방열효과를 더욱 높일 수도 있다. 이와 같은 접착층은 열전도성 성분을 포함하는 접착제로 구비될 수도 있고, 판상의 기재와 이 기재의 적어도 일면에 열전도성 성분을 포함하는 접착제가 도포된 형태일 수도 있다.
한편, 상기 금속보호필름(150')은 도 13에 도시된 바와 같이 방열성능을 높일 수 있도록 금속재질로 이루어진 기재층(150a)과, 상기 기재층(150a)의 적어도 일면에 방사 코팅되는 코팅층(150b)을 포함할 수 있다. 여기서, 상기 코팅층(150b)은 나노 사이즈의 입도를 갖는 세라믹 또는 카본블랙을 포함하는 산화금속물이 사용될 수 있다.
이와 같은 코팅층(150b)은 방사율을 높여줌으로써 상기 금속보호필름(150)의 방열효과를 더욱 높여 주게 된다.
또한, 상기 금속보호필름는 흑화처리를 통해 상기 금속보호필름(150)를 구성하는 금속재질의 표면을 산화시켜 산화막을 형성시킬 수도 있다. 일례로, 상기 금속재질이 구리인 경우 상기 산화막은 CuO 및 Cu2O와 같은 산화막일 수 있다.
이를 통해, 부식을 막아 갈라짐을 최소화하고 표면적 증가에 따른 밀착력 및 접착력을 향상시키며 재료 자체의 방사율을 높여 전체적인 두께를 증가시키지 않으면서도 방열특성을 더욱 높여줄 수 있다.
더불어, 상기 금속층의 표면에 형성된 산화막의 경우 절연층의 역할을 수행하여 전체적인 저항값을 높여 줌으로써 무선 충전시 와전류의 발생을 줄여줌으로써 충전효율을 높여줄 수 있다. 여기서, 상기 흑화처리는 약품을 이용할 수도 있고, 열처리를 통하여 수행될 수도 있으며, 플라즈마 처리를 통해 수행될 수도 있다.
한편, 상기 금속보호필름(150)은 도 14a 내지 도 15c에 도시된 바와 같이 일정길이를 갖는 적어도 하나의 슬릿(152)이 관통형성되어 상기 금속보호필름(150)의 저항을 높여줌으로써 무선충전시 와전류의 발생을 억제하여 충전효율을 높일 수도 있다.
여기서, 상기 슬릿(152)은 상기 금속보호필름(150)의 전체면적에 대하여 형성될 수도 있고 국소면적에 대하여 부분적으로 형성될 수도 있다. 또한, 상기 슬릿(152)이 복수 개로 구비되는 경우 복수 개의 슬릿(152)은 일정패턴으로 배치될 수도 있고 랜덤한 패턴으로 배치될 수도 있다.
이때, 상기 슬릿(152)은 상기 자기장 차폐시트(130,130')의 일면에 배치되는 안테나유닛 중 무선 전력 전송 안테나(111,112,113)와 대응되는 영역에 형성될 수 있으며, 상기 무선 전력 전송 안테나(111,112,113)를 구성하는 패턴과 수직한 방향으로 형성될 수 있다.
즉, 상기 슬릿(152)은 도 14a에 도시된 바와 같이 상기 무선 전력 전송 안테나(111,112,113)가 직사각형의 패턴으로 형성되는 경우 상기 무선 전력 전송 안테나(111,112,113)를 구성하는 패턴의 길이방향에 대하여 수직한 방향으로 일정길이를 갖도록 구비될 수 있다.
또한, 상기 슬릿(152)은 도 14b에 도시된 바와 같이 상기 무선 전력 전송 안테나(111,112,113)가 원형의 패턴으로 형성되는 경우 상기 무선 전력 전송 안테나(111,112,113)를 구성하는 패턴의 접선에 대하여 수직한 방향으로 일정길이를 갖도록 형성될 수도 있다.
더불어, 도시하지는 않았지만 상기 무선 전력 전송 안테나(111,112,113)가 직선구간과 곡선구간을 모두 갖는 형태로 구비되는 경우 상기 직선구간에 형성되는 슬릿은 도 14a에 도시된 바와 같이 상기 무선 전력 전송 안테나(111,112,113)를 구성하는 패턴의 길이방향에 대하여 수직한 방향으로 일정길이를 갖도록 구비되며, 상기 곡선구간에 형성되는 슬릿은 도 14b와 같이 상기 무선 전력 전송 안테나(111,112,113)를 구성하는 패턴의 접선에 대하여 수직한 방향으로 일정길이를 갖도록 형성될 수 있다.
이와 같은 상기 슬릿(152)은 다양한 형태로 구비될 수 있다. 즉, 상기 슬릿(152)은 소정의 길이를 갖는 절개부의 형태로 구비될 수도 있고(도 14a 및 도 14b 참조), 상기 금속보호필름(150)의 내부를 관통하는 관통구의 형태로 구비될 수도 있으며, 절개부(152a) 및 관통구(152b)가 서로 조합된 형태로 구비될 수도 있다(도 15a 내지 도 15c 참조).
한편, 상기 금속보호필름(150)에 슬릿(152)이 형성되는 경우 상기 슬릿(152)은 무선 전력 전송 안테나(111,112,113)를 제외한 열원의 직상부에는 형성되지 않을 수 있다. 일례로, AP나 IC칩과 같은 발열소자와 대응되는 직상부에는 상기 슬릿(152)이 형성되지 않음으로써 상기 열원으로부터 발생된 열이 빠르게 분산될 수 있도록 한다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (21)

  1. 적어도 하나의 무선 전력 전송 안테나를 포함하는 안테나유닛;
    상기 안테나유닛에서 발생하는 자기장을 차폐하여 외부 누출을 방지함과 아울러 소요의 방향으로 집속시키는 자기장 차폐시트; 및
    상기 자기장 차폐시트의 일면에 배치된 판상의 방열플레이트;를 포함하는 무선전력 송신모듈.
  2. 제 1항에 있어서, 상기 방열플레이트는 판상의 구리 플레이트 또는 알루미늄 플레이트를 포함하는 무선전력 송신모듈.
  3. 제 1항에 있어서, 상기 자기장 차폐시트는 상기 안테나유닛의 주위 공기가 상기 방열플레이트 측으로 이동할 수 있도록 소정의 면적으로 관통되는 적어도 하나의 통과공이 상기 무선 전력 전송 안테나의 중공부와 대응되는 영역에 형성되는 무선전력 송신모듈.
  4. 제 1항에 있어서, 상기 방열플레이트는 그라파이트 시트; 및
    상기 그라파이트 시트의 일면에 부착되어 그라파이트 시트를 보호 및 은닉함과 아울러 보조방열시트로서 기능하는 금속보호필름;을 포함하는 무선전력 송신모듈.
  5. 제 4항에 있어서, 상기 금속보호필름은 알루미늄박 또는 동박이며, 상기 알루미늄박 또는 동박에는 적어도 하나의 슬릿이 형성된 무선전력 송신모듈.
  6. 제 5항에 있어서, 상기 슬릿은 상기 무선 전력 전송 안테나와 대응되는 영역에 안테나 패턴의 길이방향에 대하여 수직하거나 안테나 패턴의 접선에 대하여 수직한 방향으로 형성되는 무선전력 송신모듈.
  7. 제 4항에 있어서, 상기 금속보호필름은 열전도도를 갖는 접착층을 매개로 상기 그라파이트 시트에 부착되는 무선전력 송신모듈.
  8. 제 4항에 있어서, 상기 금속보호필름은 금속재질로 이루어진 기재층과, 상기 기재층의 적어도 일면에 방사 코팅되는 코팅층을 포함하는 무선전력 송신모듈.
  9. 제 1항에 있어서, 상기 자기장 차폐시트는 비정질 리본 시트, 페라이트 시트 및 폴리머 시트 중 어느 하나를 포함하는 무선전력 송신모듈.
  10. 제 1항에 있어서, 상기 자기장 차폐시트는 비정형으로 이루어지는 복수 개의 미세조각으로 분리형성되는 무선전력 송신모듈.
  11. 제 1항에 있어서, 상기 안테나유닛은 복수 개의 평판형 코일로 이루어지고,
    적어도 하나의 안착홈이 서로 반대면인 제1면과 제2면에 각각 형성되는 지지플레이트를 포함하며,
    상기 복수 개의 평판형 코일은 상기 안착홈에 배치되는 무선전력 송신모듈.
  12. 제 11항에 있어서, 상기 복수 개의 평판형 코일 중 어느 하나는 상기 제1면에 형성되는 제1안착홈에 배치되고, 나머지 평판형 코일은 상기 제2면에 형성되는 제2안착홈에 배치되는 무선전력 송신모듈.
  13. 제 12항에 있어서, 상기 제1안착홈 및 제2안착홈은 상기 평판형 코일의 두께와 동일한 깊이를 갖도록 형성되는 무선전력 송신모듈.
  14. 제 12항에 있어서, 상기 제1안착홈 및 제2안착홈은 적어도 일부면적이 서로 중첩되는 중첩영역이 형성되도록 상기 제1면 및 제2면에 각각 형성되는 무선전력 송신모듈.
  15. 제 14항에 있어서, 상기 중첩영역 중 일부영역은 상기 지지플레이트를 관통하도록 형성되어 상기 제1안착홈에 배치되는 평판형 코일의 일부와 상기 제2안착홈에 배치되는 평판형 코일의 일부가 직접 접촉되는 무선전력 송신모듈.
  16. 제 15항에 있어서, 상기 제1안착홈 및 제2안착홈의 중앙부에는 상기 평판형 코일의 중앙부 빈공간과 대응되는 위치에 융기부가 각각 형성되는 무선전력 송신모듈.
  17. 제 16항에 있어서, 상기 제1안착홈에 형성된 제1융기부 중 일부면적은 상기 제2안착홈에 배치되는 평판형 코일의 일부와 직접 접촉되어 상기 제2안착홈에 배치되는 평판형 코일의 일부를 지지하고, 상기 제2안착홈에 형성된 제2융기부 중 일부면적은 상기 제1안착홈에 배치되는 평판형 코일의 일부와 직접 접촉되어 상기 제1안착홈에 배치되는 평판형 코일의 일부를 지지하는 무선전력 송신모듈.
  18. 제 11항에 있어서, 상기 지지플레이트는 테두리 측에 체결부재와의 결합을 위한 적어도 하나의 체결공이 관통형성되는 무선전력 송신모듈.
  19. 제 18항에 있어서, 상기 지지플레이트는 소정의 면적을 갖는 금속부재가 부분적으로 내장되고, 상기 체결공은 상기 금속부재과 대응되는 위치에 형성되는 무선전력 송신모듈.
  20. 제 11항에 있어서, 상기 지지플레이트는 외부면에 방열성을 갖는 코팅층이 형성되는 무선전력 송신모듈.
  21. 제 11항에 있어서, 상기 지지플레이트는 방열성을 갖는 플라스틱 재질로 이루어지는 무선전력 송신모듈.
PCT/KR2016/006139 2015-07-20 2016-06-09 무선전력 송신모듈 WO2017014430A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/743,290 US10447065B2 (en) 2015-07-20 2016-06-09 Wireless power transmission module
JP2018502656A JP6715319B2 (ja) 2015-07-20 2016-06-09 無線電力送信モジュール
CN201680042643.XA CN107852040B (zh) 2015-07-20 2016-06-09 无线电力传输模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0102523 2015-07-20
KR20150102523 2015-07-20

Publications (1)

Publication Number Publication Date
WO2017014430A1 true WO2017014430A1 (ko) 2017-01-26

Family

ID=57724674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006139 WO2017014430A1 (ko) 2015-07-20 2016-06-09 무선전력 송신모듈

Country Status (5)

Country Link
US (1) US10447065B2 (ko)
JP (1) JP6715319B2 (ko)
KR (2) KR101690500B1 (ko)
CN (1) CN107852040B (ko)
WO (1) WO2017014430A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018102124A (ja) * 2016-12-21 2018-06-28 現代自動車株式会社Hyundai Motor Company 無線充電送信モジュール
JP2018143091A (ja) * 2015-12-17 2018-09-13 エルジー イノテック カンパニー リミテッド 無線電力送信機のための送信コイルモジュール
EP3392888A1 (en) * 2017-04-17 2018-10-24 Samsung Electronics Co., Ltd. Electronic device including multiple coils
JP2019036626A (ja) * 2017-08-15 2019-03-07 トヨタ自動車株式会社 コイルユニット
WO2019176203A1 (ja) * 2018-03-14 2019-09-19 パナソニックIpマネジメント株式会社 リアクトル装置
JP2019212913A (ja) * 2018-06-05 2019-12-12 ヒタチ−エルジー データ ストレージ コリア,インコーポレイティド 無線で電力を送受信するためのコイル
US10650952B2 (en) 2017-02-09 2020-05-12 Mahle International Gmbh Inductive charging device
JP2020524438A (ja) * 2017-06-16 2020-08-13 アモセンス・カンパニー・リミテッドAmosense Co., Ltd. 車両用無線電力送信装置

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102367633B1 (ko) * 2015-03-05 2022-02-28 지이 하이브리드 테크놀로지스, 엘엘씨 무선 전력 송수신 장치
US10985465B2 (en) * 2015-08-19 2021-04-20 Nucurrent, Inc. Multi-mode wireless antenna configurations
US10298059B2 (en) * 2015-10-02 2019-05-21 Samsung EIectro-Mechanics Co., Ltd. Cover and electronic device including the same
KR101887891B1 (ko) * 2016-02-17 2018-08-13 주식회사 아모센스 휴대단말기용 백커버 및 이를 포함하는 백커버 일체형 안테나모듈
US10447406B1 (en) * 2016-05-20 2019-10-15 General Atomics Magnetic antenna structures having spatially varying profiles
EP3349093A1 (en) * 2017-01-11 2018-07-18 Jae Beom Kim Metal and carbon laminate transmitting electromagnetic waves or having function of heat radiation
KR20180087569A (ko) * 2017-01-25 2018-08-02 삼성전기주식회사 무선충전용 전자기파 차폐시트 및 이의 제조방법
KR102357766B1 (ko) * 2017-03-06 2022-02-04 엘지이노텍 주식회사 코일 장치 및 코일 장치를 포함하는 무선 전력 송수신 장치
CN110603641B (zh) * 2017-03-06 2023-09-12 Lg伊诺特有限公司 线圈装置
KR102338933B1 (ko) * 2017-03-06 2021-12-14 엘지이노텍 주식회사 코일 장치 및 코일 장치를 포함하는 무선 전력 송수신 장치
KR101879656B1 (ko) * 2017-04-11 2018-07-18 주식회사 서연전자 차량용 무선충전 장치
US10848008B2 (en) 2017-05-31 2020-11-24 Daechang Seat Co., Ltd-Dongtan Wireless power transmission device for seat
KR102085647B1 (ko) * 2017-07-17 2020-03-06 주식회사 아모그린텍 차량용 무선 전력 송신장치
WO2019017646A1 (ko) * 2017-07-17 2019-01-24 주식회사 아모그린텍 차량용 무선 전력 송신장치
KR20190016193A (ko) * 2017-08-08 2019-02-18 엘지이노텍 주식회사 코일 프레임 및 송신 코일 모듈
KR20190024185A (ko) * 2017-08-31 2019-03-08 삼성전기주식회사 코일 모듈 및 그를 이용한 모바일 단말
KR102119591B1 (ko) 2017-09-14 2020-06-05 주식회사 아모센스 무선전력 송신장치
KR102249811B1 (ko) * 2018-03-09 2021-05-10 현대자동차주식회사 무선 충전 송신모듈
KR102175378B1 (ko) * 2018-03-13 2020-11-06 주식회사 아모센스 대면적형 복합 자기장 차폐시트 및 이를 포함하는 무선전력 전송모듈
KR102126773B1 (ko) * 2018-05-15 2020-06-25 주식회사 위츠 무선 충전용 방열 부재 및 이를 구비하는 전자 기기
KR20190136303A (ko) * 2018-05-30 2019-12-10 엘지이노텍 주식회사 발열 성능이 개선된 무선 전력 송신 장치
TWI706424B (zh) * 2018-06-27 2020-10-01 合利億股份有限公司 無線充電線圈
KR102098335B1 (ko) * 2018-07-23 2020-04-08 주식회사 켐트로닉스 무선충전기용 tx 코일 구조체
CN109167161B (zh) * 2018-08-27 2021-05-14 深圳市嘉姆特通信电子有限公司 无线通信天线制造方法
JP2020053522A (ja) * 2018-09-26 2020-04-02 矢崎総業株式会社 電力伝送ユニット
KR102654913B1 (ko) * 2018-10-26 2024-04-03 현대자동차주식회사 무선 충전용 차폐유닛 및 이의 제조방법과 이를 포함하는 무선충전기
KR102603301B1 (ko) * 2018-12-20 2023-11-17 주식회사 아모그린텍 방열 구조물 및 이를 포함하는 유도 가열 장치
JP7283127B2 (ja) * 2019-02-27 2023-05-30 Tdk株式会社 コイル部品
KR20200136664A (ko) * 2019-05-28 2020-12-08 현대자동차주식회사 차량용 무선전력 송신장치
CN211556140U (zh) * 2019-06-18 2020-09-22 阿莫先恩电子电器有限公司 磁场屏蔽片、无线电力接收模块及其便携终端设备
CN110365087A (zh) * 2019-06-19 2019-10-22 沈阳创智家科技有限公司 智能马桶无线充电遥控装置
JP7324083B2 (ja) * 2019-08-08 2023-08-09 株式会社Soken 受電機器及び送電機器
JP7324084B2 (ja) * 2019-08-08 2023-08-09 株式会社Soken 受電機器及び送電機器
WO2021085955A1 (ko) * 2019-10-29 2021-05-06 에스케이씨 주식회사 무선 충전 장치 및 이를 포함하는 이동 수단
KR20210075550A (ko) * 2019-12-13 2021-06-23 삼성전자주식회사 코일들을 포함하는 전자 장치
CN115053401A (zh) * 2019-12-18 2022-09-13 阿莫技术有限公司 组合天线模块和具有该组合天线模块的便携式设备
US11474571B2 (en) * 2020-05-19 2022-10-18 Samsung Electronics Co., Ltd. Display panel module and electronic device including multiple display panel modules
CN111864914B (zh) * 2020-07-03 2022-02-25 维沃移动通信有限公司 电子设备组件及充电控制方法、电子设备的充电控制装置
KR102175380B1 (ko) * 2020-10-23 2020-11-06 주식회사 아모센스 대면적형 복합 자기장 차폐시트 및 이를 포함하는 무선전력 전송모듈
CN114030381B (zh) * 2021-11-09 2023-12-05 重庆前卫无线电能传输研究院有限公司 重载agv小车大功率无线能量传输系统及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08238326A (ja) * 1995-03-03 1996-09-17 Kaajiopeeshingu Res Lab:Kk 非接触エネルギー伝送システム用トランスの1次側コア
KR20120073792A (ko) * 2010-12-27 2012-07-05 율촌화학 주식회사 방열 시트
KR20130024757A (ko) * 2011-08-29 2013-03-08 주식회사 케이더파워 이종 충전 방식을 가진 무선 충전 시스템
KR20150024713A (ko) * 2013-08-27 2015-03-09 엘지전자 주식회사 방열 시트 및 이를 이용한 방열 모듈
KR20150050541A (ko) * 2013-03-05 2015-05-08 주식회사 아모센스 무선 충전용 자기장 차폐시트 및 이를 구비하는 안테나 모듈

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4451463B2 (ja) * 2007-04-13 2010-04-14 東光株式会社 非接触電力伝送装置の送電トランス
JP4605192B2 (ja) * 2007-07-20 2011-01-05 セイコーエプソン株式会社 コイルユニット及び電子機器
JP2011120432A (ja) * 2009-12-07 2011-06-16 Sanyo Electric Co Ltd 電力搬送システム、受電器及び受電器の製造方法
KR101134625B1 (ko) * 2010-07-16 2012-04-09 주식회사 한림포스텍 무선 전력 통신용 코어 어셈블리와 그를 구비하는 무선 전력 통신용 전력 공급 장치, 그리고 무선 전력 통신용 코어 어셈블리 제조 방법
KR101213090B1 (ko) * 2011-07-14 2012-12-18 유한회사 한림포스텍 무선전력 전송장치용 코어 어셈블리 및 그를 구비하는 무선전력 전송장치
JP2014087136A (ja) * 2012-10-22 2014-05-12 Sanyo Electric Co Ltd 無接点充電器
KR102063644B1 (ko) * 2012-12-14 2020-02-11 엘지이노텍 주식회사 무선전력 송신장치
JP2014128048A (ja) * 2012-12-25 2014-07-07 Lequio Power Technology Corp 高周波電圧発生装置及び受給電システム
KR101613956B1 (ko) 2013-06-03 2016-04-20 엘지전자 주식회사 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
JP2015088593A (ja) * 2013-10-30 2015-05-07 日東電工株式会社 通信モジュール
CN107844971B (zh) * 2015-01-21 2019-04-19 三星电子株式会社 电子设备以及使用电子设备的交易方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08238326A (ja) * 1995-03-03 1996-09-17 Kaajiopeeshingu Res Lab:Kk 非接触エネルギー伝送システム用トランスの1次側コア
KR20120073792A (ko) * 2010-12-27 2012-07-05 율촌화학 주식회사 방열 시트
KR20130024757A (ko) * 2011-08-29 2013-03-08 주식회사 케이더파워 이종 충전 방식을 가진 무선 충전 시스템
KR20150050541A (ko) * 2013-03-05 2015-05-08 주식회사 아모센스 무선 충전용 자기장 차폐시트 및 이를 구비하는 안테나 모듈
KR20150024713A (ko) * 2013-08-27 2015-03-09 엘지전자 주식회사 방열 시트 및 이를 이용한 방열 모듈

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11056916B2 (en) 2015-12-17 2021-07-06 Lg Innotek Co., Ltd. Transmission coil module for wireless power transmitter
JP2018143091A (ja) * 2015-12-17 2018-09-13 エルジー イノテック カンパニー リミテッド 無線電力送信機のための送信コイルモジュール
JP7157002B2 (ja) 2015-12-17 2022-10-19 エルジー イノテック カンパニー リミテッド 無線電力送信機のための送信コイルモジュール
JP2019165243A (ja) * 2015-12-17 2019-09-26 エルジー イノテック カンパニー リミテッド 無線電力送信機のための送信コイルモジュール
US10784720B2 (en) 2015-12-17 2020-09-22 Lg Innotek Co., Ltd. Transmission coil module for wireless power transmitter
JP7019408B2 (ja) 2016-12-21 2022-02-15 現代自動車株式会社 無線充電送信モジュール
JP2018102124A (ja) * 2016-12-21 2018-06-28 現代自動車株式会社Hyundai Motor Company 無線充電送信モジュール
US10650952B2 (en) 2017-02-09 2020-05-12 Mahle International Gmbh Inductive charging device
EP3392888A1 (en) * 2017-04-17 2018-10-24 Samsung Electronics Co., Ltd. Electronic device including multiple coils
CN108736586A (zh) * 2017-04-17 2018-11-02 三星电子株式会社 包括多个线圈的电子设备
CN108736586B (zh) * 2017-04-17 2023-11-10 三星电子株式会社 包括多个线圈的电子设备
US10741905B2 (en) 2017-04-17 2020-08-11 Samsung Electronics Co., Ltd. Electronic device including multiple coils
JP2020524438A (ja) * 2017-06-16 2020-08-13 アモセンス・カンパニー・リミテッドAmosense Co., Ltd. 車両用無線電力送信装置
US11271435B2 (en) 2017-06-16 2022-03-08 Amosense Co., Ltd Wireless power transmission device for vehicle
JP2019036626A (ja) * 2017-08-15 2019-03-07 トヨタ自動車株式会社 コイルユニット
JPWO2019176203A1 (ja) * 2018-03-14 2021-03-11 パナソニックIpマネジメント株式会社 リアクトル装置
WO2019176203A1 (ja) * 2018-03-14 2019-09-19 パナソニックIpマネジメント株式会社 リアクトル装置
US11176294B2 (en) 2018-06-05 2021-11-16 Hitachi-Lg Data Storage Korea, Inc. Method of designing coils for transmitting or receiving power wirelessly
JP2019212913A (ja) * 2018-06-05 2019-12-12 ヒタチ−エルジー データ ストレージ コリア,インコーポレイティド 無線で電力を送受信するためのコイル
JP7077271B2 (ja) 2018-06-05 2022-05-30 ヒタチ-エルジー データ ストレージ コリア,インコーポレイティド 無線で電力を送受信するためのコイル

Also Published As

Publication number Publication date
CN107852040B (zh) 2021-10-26
US10447065B2 (en) 2019-10-15
JP2018530288A (ja) 2018-10-11
KR101690500B1 (ko) 2016-12-28
KR102553219B1 (ko) 2023-07-07
CN107852040A (zh) 2018-03-27
US20180198310A1 (en) 2018-07-12
JP6715319B2 (ja) 2020-07-01
KR20170010736A (ko) 2017-02-01

Similar Documents

Publication Publication Date Title
WO2017014430A1 (ko) 무선전력 송신모듈
WO2017007196A1 (ko) 방열시트 및 이를 포함하는 무선전력 전송모듈
WO2017014493A1 (ko) 자기장 차폐유닛
WO2017135687A1 (ko) 무선전력 전송모듈용 차폐유닛 및 이를 포함하는 무선전력 전송모듈
WO2019054747A2 (ko) 무선전력 송신장치
WO2017023080A1 (ko) 차량용 무선전력 송신모듈
WO2016159551A1 (ko) 무선 충전용 방열유닛 및 이를 포함하는 무선전력 충전모듈
WO2017200310A1 (ko) 차량용 무선 전력 송신장치
WO2016114528A1 (ko) 방열유닛 및 이를 구비한 무선전력 송수신장치
WO2016072779A1 (ko) 무선충전기용 송신장치
WO2018164350A1 (ko) 차량용 무선전력 송신장치
WO2017069581A1 (ko) 차량용 안테나 모듈
WO2017010755A1 (ko) 안테나 기능을 갖는 방열시트 및 이를 포함하는 휴대단말기
US8541977B2 (en) Coil unit and electronic instrument
WO2015009072A1 (ko) 근거리 무선통신 안테나 및 그 안테나를 구비한 스마트폰
KR102565032B1 (ko) 무선전력전송용 일체형 자기장 차폐성 방열유닛 및 이를 포함하는 무선전력 전송 모듈
WO2017074104A1 (ko) 무선전력 전송용 자기장 차폐시트 및 이를 포함하는 무선전력 수신모듈
WO2018012668A1 (ko) 안테나 모듈 형성용 복합기판 및 이의 제조방법
WO2016056736A1 (ko) 근거리 무선통신 안테나 및 그 안테나를 구비한 스마트폰
WO2017039420A1 (ko) 자기공진방식 무선전력 전송용 자기장 차폐유닛, 이를 포함하는 무선전력 전송모듈 및 전자장치
WO2018048281A1 (ko) 자성시트 및 이를 포함하는 무선 전력 수신 장치
WO2016186444A1 (ko) 무선충전용 차폐유닛 및 이를 포함하는 무선전력 전송모듈
WO2017142350A1 (ko) 휴대단말기용 백커버 및 이를 포함하는 백커버 일체형 안테나모듈
WO2018147649A1 (ko) 자성시트 및 이를 포함하는 무선 전력 수신 장치
KR20190069365A (ko) 무선전력 전송모듈용 차폐유닛 및 이를 구비한 무선전력 전송모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018502656

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827934

Country of ref document: EP

Kind code of ref document: A1