WO2015105340A1 - 연성 인쇄회로기판용 전자파 차폐 필름 및 이의 제조방법 - Google Patents

연성 인쇄회로기판용 전자파 차폐 필름 및 이의 제조방법 Download PDF

Info

Publication number
WO2015105340A1
WO2015105340A1 PCT/KR2015/000172 KR2015000172W WO2015105340A1 WO 2015105340 A1 WO2015105340 A1 WO 2015105340A1 KR 2015000172 W KR2015000172 W KR 2015000172W WO 2015105340 A1 WO2015105340 A1 WO 2015105340A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
shielding film
electromagnetic shielding
conductive adhesive
Prior art date
Application number
PCT/KR2015/000172
Other languages
English (en)
French (fr)
Inventor
박한성
김우정
유정섭
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140188666A external-priority patent/KR102250899B1/ko
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2015105340A1 publication Critical patent/WO2015105340A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0086Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single discontinuous metallic layer on an electrically insulating supporting structure, e.g. metal grid, perforated metal foil, film, aggregated flakes, sintering

Definitions

  • the present invention provides a shielding film for shielding electromagnetic waves generated from a communication device such as a printed circuit board, a cable, an electric wire, such as a printed circuit board used in electronic products such as computers, communication devices, printers, mobile phones, video cameras It relates to a manufacturing method.
  • the electromagnetic noise generated from various electric, electronic and communication devices should be reduced as much as possible, and the electromagnetic resistance of the device itself should be strengthened by reducing the electromagnetic sensitivity to the external electromagnetic environment.
  • the most important characteristics required for electromagnetic compatibility products inserted in various electrical, electronic and communication equipment are that the electromagnetic shielding rate and absorption rate should be large, and the electromagnetic compatibility products should be small and thin according to the trend of light and small size of devices.
  • a shielding film in which a metal layer and a conductive adhesive layer are sequentially provided on one or more insulating layers is frequently used.
  • an expensive metal such as silver (Ag) is mainly used as a shielding material of the metal layer and the conductive adhesive layer.
  • the amount of metal used must be increased. Therefore, economical deterioration due to the use of expensive metal is inevitably caused.
  • the thin metal layer is required to apply to the thinning of the electronic device, but there is a problem in that the yield is poor due to poor adhesion between the thin metal layer and other resin films.
  • a predetermined metal pattern is formed using a conductive material, which is an electromagnetic shielding material, but continuously while maintaining a gap therebetween. It has been conceived that the formation of an open metal layer arranged in the form of a metal can provide a shielding effect comparable to the related art while reducing the use of expensive metal.
  • the present invention includes a mesh metal layer in which a plurality of metal patterns are arranged in a mesh form to increase economics and simultaneously exhibit excellent shielding properties, heat resistance, chemical resistance, flexibility, and the like, and a method for manufacturing the electromagnetic wave shielding film.
  • the purpose is to provide.
  • the present invention is an insulating layer; A mesh metal layer formed on one surface of the insulating layer and configured with a plurality of metal patterns in a mesh shape; And an electromagnetic shielding film for a flexible printed circuit board (FPCB) formed on the insulating layer while covering the mesh metal layer, the conductive adhesive layer comprising a conductive filler and a resin.
  • FPCB flexible printed circuit board
  • the pattern of the mesh metal layer may be a shape selected from the group consisting of a circle, an oblique shape, a triangle or more polygons and an amorphous shape.
  • the mesh metal layer may be a single layer or a plurality of layers of two or more layers.
  • the average line width of the mesh metal layer may range from 20 to 500 ⁇ m.
  • the insulating layer may include a thermosetting resin, and may include 0.5 to 5 parts by weight of an electrically nonconductive organic or inorganic filler based on 100 parts by weight of the insulating layer.
  • the conductive adhesive layer includes a conductive filler and a resin
  • the conductive filler may be a copper filler, nickel filler or polymer filler coated with Ag, Cu, Ni, Al, Ag.
  • each of the release layer on the insulating layer and the conductive adhesive layer may be further included.
  • the present invention provides a method for manufacturing the above-mentioned electromagnetic wave shielding film.
  • thermosetting resin composition for forming an insulating layer on the first surface of the film and dried to form an insulating layer; (ii) printing an ink composition containing an electromagnetic shielding film on the insulating layer to form a mesh metal layer having a predetermined pattern formed in a mesh form; (iii) coating a resin composition for forming a conductive adhesive layer including a conductive filler and a thermosetting resin on the first surface of the second substrate film and drying the same to form a conductive adhesive layer; And (iv) stacking the first base film and the second base film, and arranging the mesh metal layer of the first base film and the conductive adhesive layer of the second base film to be in contact with each other, and then compressing them through a pressing process.
  • the insulating layer formed in step (i) is in a semi-cured state (B-stage).
  • the novel electromagnetic wave shielding film according to the present invention forms a predetermined metal pattern using a conductive material as an electromagnetic shielding material, and includes an open metal layer that is continuously arranged while maintaining a gap therebetween, thereby using expensive metals. It is possible to achieve a shielding effect comparable to the conventional one while reducing the weight.
  • the affinity of the resin component included in these layers may exhibit excellent adhesion, flexibility, and interlayer adhesion.
  • 1 to 4 are each a schematic diagram showing the configuration of an electromagnetic shielding film according to an embodiment of the present invention.
  • 5 to 8 are schematic diagrams showing various mesh pattern forms constituting the mesh metal layer of the electromagnetic shielding film according to the present invention.
  • 9 is one shape of a coupon produced for evaluating the shielding rate of the electromagnetic shielding film.
  • electromagnetic shielding film for forming a flexible circuit board
  • the electromagnetic shielding film refers to a film laminated on the outermost portion of a flexible printed circuit board to shield electromagnetic interference (EMI) noise.
  • EMI electromagnetic interference
  • the electromagnetic shielding film is required for a variety of physical properties, greatly excellent electromagnetic shielding effect, bending characteristics, excellent thermal stability, chemical resistance, wear resistance, low resistance change is required.
  • a film in which a metal layer and a conductive adhesive layer are sequentially provided on at least one insulating layer is used.
  • the metal layer of the metal material is disposed between the resin-based insulating layer and the conductive adhesive layer.
  • ⁇ ⁇ heterogeneity
  • an expensive metal such as silver (Ag) is mainly used as a shielding material of the metal layer and the conductive adhesive layer, economical deterioration is inevitably caused by the use of an expensive metal for achieving a shielding effect.
  • the metal layer since the metal layer is in the form of a metal film, it may cause damage to the high step filling property between the coverlay and the ground pattern during the bending resistance and the thermocompression bonding process of the film.
  • an electromagnetic wave shielding film for forming a novel flexible printed circuit board that not only increases economics but also simultaneously exhibits excellent shielding characteristics, heat resistance, chemical resistance, and flexibility, between the insulating layer and the conductive adhesive layer.
  • An open metal layer in which a predetermined metal pattern is continuously arranged is formed on the substrate.
  • the open metal layer is composed of a plurality of metal patterns in the form of a mesh, it is possible to reduce the use of expensive metals to increase the economic efficiency, and to provide a shielding property comparable to that of a shielding film using a metal layer of a conventional hermetic metal foil type. Can be represented.
  • the interlayer adhesion strength is significantly increased due to the affinity between the resins. Can be improved.
  • the metal layer since the insulating layer and the conductive adhesive layer are connected to each other between the mesh-type metal patterns, not only does the metal layer include the bending resistance of the electromagnetic wave shielding film, but also reduces the overall thickness and flexibility of the flexible printed circuit board. ) Can be given. Therefore, there is an advantage that the application area for the high step and sheet product range can be wider.
  • the electromagnetic shielding film of the present invention can be largely divided into an insulating layer 10 and a conductive layer, where the conductive layer includes a mesh metal layer 20 and a conductive adhesive layer 30.
  • the electromagnetic wave shielding film 100 of the present invention the insulating layer 10; A mesh metal layer 20 formed on one surface of the insulating layer; And a conductive adhesive layer 30 formed on the insulating layer while covering the mesh metal layer, and have a structure in which they are sequentially stacked.
  • the film of the present invention while the insulating layer is finally present at the outermost portion of the film, while providing mechanical strength of the electromagnetic wave shielding film, the film exhibits thermal stability, chemical resistance, scratch resistance, and the like, along with bending characteristics of the film. Do it.
  • the insulating layer may be formed by curing a thermosetting composition including a conventional thermosetting resin and a curing agent in the form of a coating layer or a film.
  • thermosetting resins that can be used in the present invention include epoxy resins, phenol resins, vegetable oil-modified phenol resins, xylene resins, guanamine resins, diallyl phthalate resins, vinyl ester resins, unsaturated polyester resins, furan resins, It may be at least one selected from the group consisting of polyimide resin, polyurethane resin, cyanate resin, maleimide resin and benzocyclobutene resin.
  • it is an epoxy resin, a phenol resin, or a vegetable oil modified phenol resin.
  • a double epoxy resin is preferable because it is excellent in reactivity and heat resistance.
  • the epoxy resin may be used without limitation to conventional epoxy resins known in the art, it is preferable that two or more epoxy groups are present in one molecule.
  • Non-limiting examples of the epoxy resins that can be used include bisphenol A / F / S resins, novolak type epoxy resins, alkylphenol novolak type epoxy, biphenyl type, aralkyl type and naphthol ( Naphthol) type, dicyclopentadiene type, or a mixed form thereof.
  • More specific examples include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, naphthalene type epoxy resins, anthracene epoxy resins, biphenyl type epoxy resins, tetramethyl biphenyl type epoxy resins, and phenol novolacs.
  • the above-mentioned epoxy resins may be used alone or in combination of two or more thereof.
  • conventional curing agents known in the art may be used without limitation, and may be appropriately selected and used depending on the type of epoxy resin to be used.
  • hardeners that can be used include phenolic, anhydride, dicyanamide, and hardeners, of which phenolic hardeners are preferred because they can further improve heat resistance and adhesion.
  • Non-limiting examples of the phenol-based curing agent include phenol novolak, cresol novolak, bisphenol A novolak, naphthalene type, and the like, these may be used alone or in combination of two or more.
  • the insulating layer according to the present invention may further include conventional electrically nonconductive fillers known in the art in order to effectively exhibit mechanical properties and low resistance change of the final product.
  • Such an electrically nonconductive filler may be used by mixing an organic filler, an inorganic filler, or both.
  • an electrically nonconductive carbon black, a dye, or a mixture of one or more thereof is preferable to use.
  • the content of the electrically non-conductive filler may be appropriately adjusted in consideration of the mechanical properties, low resistance change, and other physical properties of the insulating layer described above, and may be, for example, in a range of 0.5 to 5 parts by weight based on 100 parts by weight of the insulating layer. .
  • the insulating layer of this invention contains a flame retardant, it is preferable to contain a flame retardant in the above-mentioned thermosetting resin and hardening
  • a conventional flame retardant known in the art may be used without limitation, but an organic phosphorus flame retardant, an organic nitrogen-containing phosphorus compound, a nitrogen compound, a flame retardant such as a silicon flame retardant, a metal hydroxide, and the like are preferable.
  • a triaryl isopropyl phosphate a tris (3-hydroxypropyl) phosphine oxide, a 1, 3- phenylene- screw (jikisirenyl) phosphate, or a 2, 2- screw ( phosphate condensates of p-hydroxyphenyl) propane trichloro phosphine oxide polymerized products (polymerization degree 1 to 3), phosphate composites, aromatic esters such as aromatic condensed phosphates, or polyphosphoric acid ammonium, Polyphosphoric acid ammonium acid, butyl acid phosphate, butoxyethyl acid phosphate, melamine phosphate, red phosphorus and the like.
  • melamine derivatives such as melamine, a melamine cyanurate, a meram, a merem, or a melon
  • the flame retardant mentioned above can be used individually or in mixture of 2 or more types.
  • the content of the flame retardant is not particularly limited and may be appropriately adjusted within conventional ranges known in the art.
  • the thickness of the said insulating layer can be suitably adjusted in consideration of the handleability of a film, physical rigidity, thinning of a board
  • the insulating layer according to the present invention may exhibit the same flexibility as that of the conventional flexible copper clad laminate (FCCL), and may simultaneously exhibit scratch resistance of 2H or higher and chemical resistance capable of maintaining adhesive strength of 5B or higher after crosscut test after excellent chemical resistance test. .
  • the mesh metal layer is formed on one surface of the insulating layer, and serves to exhibit an electromagnetic shielding effect including a conductive material.
  • the present invention is characterized by forming an open metal layer on the insulating layer by using a conductive material which is an electromagnetic shielding material.
  • the open metal layer forms a structure in which a predetermined metal pattern is continuously arranged while maintaining a gap therebetween, thereby obtaining a shielding effect comparable to that of the related art even though less expensive metal is used.
  • a plurality of metals form a predetermined pattern, but they are configured in a mesh form, where the shape of the metal pattern is not particularly limited as long as it exhibits an electromagnetic shielding effect.
  • the shape of the metal pattern may be circular, diagonal, polygonal or triangular, or amorphous.
  • the polygon may be a triangle, a square, a pentagon, a hexagon, an octagon, etc. (see FIGS. 5 to 8).
  • the mesh metal layer may be a single layer or a plurality of layers of two or more layers.
  • the mesh metal layer and the conductive adhesive layer may be alternately disposed.
  • the conductive adhesive layers are alternately provided between the plurality of mesh metal layers, and the plurality of mesh metal layers spaced apart from each other with respect to the conductive adhesive layer may be disposed to correspond to or cross each other.
  • the plurality of mesh metal layers may be conveniently divided into a first mesh metal layer (first pattern) formed in contact with the insulating layer and formed on the conductive adhesive layer and a second mesh metal layer (second pattern) formed under the conductive adhesive layer.
  • the second mesh metal layer (second pattern) formed under the conductive adhesive layer may be directly connected to the FPCB ground pattern to lower the contact resistance and to improve the electromagnetic shielding rate.
  • the line width of the second pattern may have a line width of 50 ⁇ m or less, preferably 20 to 30 ⁇ m.
  • the aperture ratio of the second pattern should be maintained at 50% or more.
  • the mesh metal layer may be made of a conventional electromagnetic shielding material known in the art.
  • it is preferably made of at least one conductive metal material selected from the group consisting of silver (Ag), gold (Au), copper (Cu), and aluminum (Al).
  • the average line width of the mesh metal layer is not particularly limited, but may be, for example, in the range of 20 to 500 ⁇ m.
  • the opening area ratio of the first mesh metal layer (first pattern) contacting the insulating layer and formed on the conductive adhesive layer may be less than 50%, preferably 10 to 45% range.
  • the line width may range from 50 to 500 ⁇ m.
  • the line width of the second mesh metal layer (second pattern) formed under the conductive adhesive layer may be 50 ⁇ m or less, preferably 20 to 50 ⁇ m, and more preferably 20 to 30 ⁇ m.
  • the opening area ratio may be 50% or more, preferably 70 to 85%.
  • the thickness of the mesh metal layer may be appropriately adjusted in consideration of the electromagnetic wave shielding force of the film. For example, it may range from 0.1 to 10 ⁇ m, preferably 0.1 to 1 ⁇ m.
  • the conductive adhesive layer is formed on the insulating layer while covering the mesh metal layer, and exhibits an electromagnetic wave shielding effect including a conductive material and at the same time exhibits adhesion, flexibility and interlayer adhesion. Play a role.
  • the electromagnetic shielding film is also responsible for the fixing to the adherend, and when used to attach to a flexible printed circuit board (FPCB), it is connected to the electrical circuit of the printed circuit board stably, the generated electrical noise is emitted to the outside or the Intrusion into a printed circuit board can be effectively shielded.
  • FPCB flexible printed circuit board
  • the conductive adhesive layer includes a thermosetting resin component and a conductive filler, respectively, in order to exhibit an adhesive force and an electromagnetic shielding effect.
  • the conductive filler may be a conventional conductive filler known in the art without limitation, and may be, for example, a copper filler coated with Ag, Cu, Ni, Al, Ag, nickel filler. Or a filler in which metal plating is performed on a polymer filler, a resin ball, glass beads, or the like, or a mixture thereof.
  • the content of the conductive filler is not particularly limited as long as it exhibits an electromagnetic shielding effect.
  • the conductive filler may be in a range of 30 to 70 parts by weight based on 100 parts by weight of the conductive adhesive layer.
  • Resin usable in the conductive adhesive layer of the present invention may be used without limitation to conventional thermosetting resin known in the art.
  • it may be the same component as the thermosetting resin constituting the above-described insulating layer.
  • it may further include a curing agent, a flame retardant, or both, the components thereof may also be the same as or different from the components constituting the above-described insulating layer.
  • the thickness of the conductive adhesive layer may be appropriately adjusted in consideration of the electromagnetic wave shielding force, flexibility, adhesive force, interlayer adhesion strength, and the like of the film. For example, it may be in the range of 2 to 30 ⁇ m, and preferably in the range of 3 to 15 ⁇ m.
  • the total thickness of the conductive layer in which the mesh metal layer and the conductive adhesive layer are combined may be appropriately adjusted according to the ultra-bending use or the high step corresponding application.
  • the thickness of the conductive layer may be a thin plate in the range of 3 to 5 ⁇ m, and in the case of a high step corresponding application, it may be in the range of 13 to 15 ⁇ m.
  • the conductive layer according to the present invention can secure a high adhesive strength with the flexible printed circuit board (FPCB) coverlay, for example may be 1.0 kgf / cm or more.
  • the flexibility of the conductive layer may exhibit the same flexibility as the conventional flexible copper clad laminate (FCCL).
  • the electromagnetic shielding force of the conductive layer may represent 50 dB or more, preferably 55 to 65 dB.
  • the electromagnetic shielding film 100 may further include a release film 40 on the insulating layer 10 and the conductive adhesive layer, respectively.
  • the release film can be used without limitation, conventional plastic film known in the art, release agents can also be used.
  • plastic film examples include polyester films such as polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate, polyethylene film, polypropylene film, cellophane, diacetylcellulose film, triacetylcellulose film, acetylcellulose Butyrate film, polyvinyl chloride film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene-vinyl acetate copolymer film, polystyrene film, polycarbonate film, polymethylpentene film, polysulfone film, polyether ether ketone film , Polyethersulfone film, polyetherimide film, polyimide film, fluororesin film, polyamide film, acrylic resin film, norbornene-based resin film, cycloolefin resin film and the like. These plastic films may be either transparent or semitransparent, may be colored, or may be non-colored, and may be appropriately selected depending on the intended use.
  • PET polyethylene terephthal
  • the first release film and the second release film are disposed on the insulating layer and the conductive adhesive layer, respectively.
  • the interlayer adhesion between the insulating layer and the first release film may be higher than the interlayer adhesion between the conductive adhesive layer and the second release film.
  • the release force of the release film may range from 50 to 500 gf / inch.
  • the release force of the first release film may range from 50 to 200 gf / inch
  • the release force of the second release film may range from 30 to 50 gf / inch.
  • positioned on an insulating layer performs surface treatment to one side or both surfaces by an oxidation method, an uneven
  • the oxidation method include corona discharge treatment, plasma treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone and ultraviolet irradiation treatment, and the like. (sand blast) method, solvent treatment method and the like.
  • these surface treatment methods are suitably selected according to the kind of base film, generally, a mat process and a corona discharge treatment method are preferable at the point of an effect and operability.
  • beads may be included in the release film.
  • the thickness of the release film 40 is not particularly limited, and can be adjusted within a conventional range known in the art.
  • the release film may be disposed on the insulating layer and the conductive adhesive layer, respectively, in which the thickness of the upper release film (first release film) in contact with the insulating layer may range from 50 to 75 ⁇ m, the lower release film in contact with the conductive adhesive layer
  • the thickness of the (second release film) may range from 75 to 150 ⁇ m.
  • a release layer may be included on the above-described release film 40.
  • the release layer has a function of easily separating the release film from the insulating layer and the conductive adhesive layer so that the insulating layer and the conductive adhesive layer can be maintained in shape without being damaged.
  • the release layer may be a film type release material that is generally used.
  • the conventional mold release agent component known in the art can be used.
  • Non-limiting examples thereof include an epoxy-based release agent, a release agent made of a fluororesin, a silicone release agent, an alkyd resin release agent, a water-soluble polymer, and the like.
  • the thickness of the release layer can be appropriately adjusted within the conventional range known in the art.
  • the method for forming the release layer is not particularly limited, and known methods such as hot press, hot roll laminate, extrusion laminate, coating liquid coating and drying can be adopted.
  • the electromagnetic wave shielding film which concerns on this invention can have largely four embodiment.
  • the present invention is not limited to the embodiments illustrated below, and various modifications and applications are possible as necessary.
  • FIG. 1 is a cross-sectional view showing a first embodiment of an electromagnetic shielding film according to the present invention.
  • the electromagnetic shielding film is an insulating layer (10); A mesh metal layer 20 formed on one surface of the insulating layer; And a conductive adhesive layer 30 formed on the insulating layer while covering the mesh metal layer, and have a structure in which they are sequentially stacked.
  • FIG. 2 is a cross-sectional view showing a second embodiment of the electromagnetic shielding film according to the present invention.
  • the electromagnetic shielding film is an insulating layer (10); A plurality of mesh metal layers 20 formed on one surface of the insulating layer; And a conductive adhesive layer 30 formed on the insulating layer while covering the plurality of mesh metal layers.
  • the plurality of mesh metal layers 20 are disposed to be spaced apart from each other with respect to the conductive adhesive layer 30, and have a structure in which a plurality of metal patterns constituting each mesh metal layer correspond to each other.
  • the electromagnetic shielding film is an insulating layer (10); A mesh metal layer 20 formed on one surface of the insulating layer; A conductive adhesive layer 30 formed on the insulating layer while covering the mesh metal layer; And a release film 40 provided on the insulating layer and the conductive adhesive layer, respectively.
  • the electromagnetic shielding film is an insulating layer (10); A plurality of mesh metal layers 20 formed on one surface of the insulating layer; A conductive adhesive layer 30 formed on the insulating layer while covering the plurality of mesh metal layers; And a release film 40 provided on the insulating layer and the conductive adhesive layer, respectively.
  • the plurality of mesh metal layers 20 are disposed to be spaced apart from each other with respect to the conductive adhesive layer 30, and have a structure in which a plurality of metal patterns constituting each mesh metal layer correspond to each other.
  • the metal pattern form constituting the mesh metal layer may be variously illustrated as shown in FIGS. 5 to 8, but is not particularly limited thereto.
  • the electromagnetic shielding film for forming a flexible printed circuit board according to the present invention may be manufactured by the following method. However, it is not limited only by the following manufacturing method, and the steps of each process may be modified or optionally mixed as necessary.
  • thermosetting resin composition for forming an insulating layer on the first surface of the first substrate film and then drying to form an insulating layer; (ii) printing an ink composition containing an electromagnetic shielding film on the insulating layer to form a mesh metal layer having a predetermined pattern formed in a mesh form; (iii) coating a resin composition for forming a conductive adhesive layer including a conductive filler and a thermosetting resin on the first surface of the second substrate film and drying the same to form a conductive adhesive layer; And (iv) stacking the first base film and the second base film, and arranging the mesh metal layer of the first base film and the conductive adhesive layer of the second base film to be in contact with each other, and then compressing them through a pressing process. It can be configured.
  • the step (iii) may be replaced with the step (iii-1) of forming a conductive metal layer on the formed mesh metal layer after forming the mesh metal layer on the first surface of the second base film.
  • the first base film may use a conventional plastic film known in the art without limitation, for example, may be the same configuration as the above-described release film.
  • organic solvents examples include ketones such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, and propylene glycol monomethyl ether acetate.
  • acetic acid esters such as carbitol acetate, carbitols such as cellosolve and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like. You may use an organic solvent 1 type or in combination of 2 or more types.
  • thermosetting resin composition may be coated on a substrate with a coater or the like, and dried at a temperature of 50 to 130 ° C. for 1 to 30 minutes.
  • the insulating layer formed in the step is in a semi-cured state (B-stage).
  • a mesh metal layer is formed on the formed insulation layer.
  • an ink composition containing an electromagnetic shielding material is printed on the insulating layer to form a mesh metal layer having a predetermined pattern formed in a mesh form.
  • the ink composition containing the electromagnetic shielding material may be a silver (Ag) containing ink composition.
  • concentration of the electromagnetic shielding material, for example, silver (Ag) included in the ink composition is not particularly limited, but may be, for example, in a range of 20 to 70 wt% based on 100 wt% of the total composition.
  • the viscosity of the ink composition is not particularly limited, but may be, for example, in the range of 6,000 to 120,000 cps.
  • the method of forming a mesh metal layer on the insulating layer using the ink composition may be used without limitation conventional printing methods known in the art, for example, in order to increase productivity by a roll-to-roll process base, screen printing method ( A screen selected from the group consisting of Screen Printing, Rotary Screen, Micro Gravure and Flexo Printing can be used. In particular, microgravure and pleso printing methods that can implement a thin thin film layer are preferable.
  • the thickness of the mesh metal layer formed as described above may be in the range of 100 nm to 10 ⁇ m, and preferably in the range of 100 nm to 1 ⁇ m.
  • a conductive adhesive layer is formed by coating and drying the composition for forming a conductive adhesive layer on the first surface of the second base film.
  • the second substrate film may also use a conventional plastic film known in the art without limitation, a release may also be used.
  • the second base film may be the same as or different from the components of the first base film described above.
  • thermosetting resin composition when the resin composition for forming the conductive adhesive layer is applied on the second base film, for example, a roll coater, bar coater, coater coater, blade coater, lip coater, rod coater, squeeze coater, reverse coater, transfer roll
  • the thermosetting resin composition may be applied onto the substrate with a coater, a gravure coater, a spray coater, or the like, and may be dried by drying at a temperature of 50 to 130 ° C. for 1 to 30 minutes.
  • the conductive adhesive layer may be formed on the formed mesh metal layer, in which case the electromagnetic shielding film according to the fourth embodiment of the present invention may be formed.
  • the method or condition for forming the mesh metal layer may be the same as the step 2) described above.
  • the first base film and the second base film are laminated, and the mesh metal layer of the first base film and the conductive adhesive layer of the second base film are disposed to contact each other, and then compressed through a pressing process.
  • the crimping process conditions can be appropriately adjusted within the conventional range known in the art.
  • Thermocompression Lami. Conditions during the process (roll-to-roll) are not particularly limited, but may be carried out under, for example, a temperature of room temperature to 130 ° C., a pressure of 3 to 50 kgf / cm 2 , and a crimping speed of 3 m / min to 30 m / min.
  • the sheet-shaped first base film, the first base film on which the insulating layer and the mesh metal layer are sequentially stacked, and the second base film on which the conductive adhesive layer is formed may be wound in rolls, and laminated continuously. Lamination may be performed after both the roll-shaped sheets are cut.
  • the above-described electromagnetic shielding film may be used by slitting to an appropriate size.
  • Electromagnetic shielding film of the present invention prepared as described above may have a structure as shown in FIG.
  • the above-mentioned electromagnetic wave shielding film may be laminated on a printed circuit board, preferably a flexible printed circuit board (FPCB), and then bonded to each other.
  • a printed circuit board preferably a flexible printed circuit board (FPCB)
  • the bonding of the flexible printed circuit board and the electromagnetic shielding film may be performed by conventional methods known in the art.
  • the manufacturing process of the EMI shielding film for the flexible printed circuit board (I) laminating the electromagnetic shielding film on the flexible printed circuit board coverlay, after removing the first substrate film provided on the conductive adhesive layer side Stacking and thermally compressing the exposed conductive adhesive layer on the coverlay of the flexible printed circuit board; And (II) removing the second base film positioned on the uppermost part of the compressed material.
  • the flexible printed circuit board may be a flexible printed circuit board (FPCB) with a coverlay, and for example, a copper foil layer and a coverlay may be sequentially stacked on a polyimide (PI).
  • the printed circuit board refers to a printed circuit board laminated in a single layer or two or three or more layers by a plating through hole method, a build-up method, etc., and may be a single-sided type or a double-sided type.
  • the conditions in the thermocompression process are not particularly limited, but may be performed under a temperature of 150 to 170 ° C., a pressure of 30 to 80 kgf / cm 2 , and a 30 to 60 minute condition.
  • Non-retardant halogen flame-retardant epoxy resin KDO555
  • 9.1 wt% bisphenol A epoxy resin Dow DER383
  • 3.5 wt% low dielectric epoxy resin Nippon XD1000
  • bisphenol novolac epoxy resin Kukdo Chemical KPBN110
  • Carbon Black Cold (Columbian Chemicals) 0.9% by weight
  • Phosphorus-based flame retardant Otsuka Chemical SPB-100
  • Thermoplastic rubber Kelho Petrochemical KNB 40H
  • Polyvinyl butyral 12.1% by weight of resin Unochem KS23Z
  • 10.7% by weight of dicyamide as a latent curing agent
  • 0.6% by weight of imidazole derivatives IlO Chem. 2E4MZ
  • imidazole derivatives IlO Chem. 2E4MZ
  • Silver nanoparticles 55% by weight, bisphenol A-based epoxy resin (hexion EPIKOTE1009, equivalent 1,000) 7% by weight catalytic curing agent 2.8% by weight imidazole derivative, mixed ether solvent (methoxy benzene and propylene glycol monomethyl ether acetate 7: 3% by weight of the solvent) 32.2% by weight, 3% by weight of the phosphate ester compound (BYK BYK-111) as a dispersant in a high viscosity mixer firstly mixed and dispersed through a three-milled mill to mesh A forming ink was prepared.
  • bisphenol A-based epoxy resin hexion EPIKOTE1009, equivalent 1,000
  • imidazole derivative mixed ether solvent (methoxy benzene and propylene glycol monomethyl ether acetate 7: 3% by weight of the solvent) 32.2% by weight
  • halogen-free flame retardant epoxy resin KD555
  • bisphenol A type epoxy resin Dow DER383
  • 2.1 wt% of low dielectric epoxy resin Nippon XD1000
  • bisphenol novolac epoxy resin Chemical KPBN110 3.6% by weight
  • 48.6% by weight of Dendrite-shaped powder GGP CuAg10 CHL5 UF
  • thermoplastic resin Kelho Petrochemical KNB 40H
  • a conductive layer coating solution was prepared by mixing and dissolving 6.4% by weight of dicyamide, 0.3% by weight of imidazole derivative (IlO Chem. 2E4MZ) as a catalytic curing agent, and 4.9% by weight of propylene glycol monomethyl ether acetate as a solvent.
  • the insulating layer coating composition prepared in 1-1 was formed on the first surface of the prepared first base film by forming an insulating layer with a microgravure coating and dried at 130 ° C. for 3 minutes 30 seconds to have a semi-cured state of 5 to 6 ⁇ m.
  • the insulating layer of was formed.
  • the conductive adhesive layer coating composition prepared in 1 to 3 on the first surface of the prepared second base film was formed with a comma coating to form a conductive adhesive layer and dried at 130 ° C. for 3 minutes 30 seconds to obtain a conductivity of a radius of 14 to 15 ⁇ m. An adhesive layer was formed.
  • a mesh metal layer having an opening area of 30% having a line width of 50 ⁇ m was formed by flexo printing on the insulating layer formed on the first substrate film, and cured at 150 ° C. for 5 minutes. Thereafter, the surface on which the mesh of the insulating layer was formed and the conductive adhesive layer were disposed to contact each other, and then compressed through a heating and pressing process to prepare an electromagnetic shielding film for a flexible printed circuit board.
  • the metal mesh layer formed in Example 1 was formed to form a mesh of 50% of the opening area from a line width of 50 ⁇ m to a line width of 80 ⁇ m and cured, and then placed in contact with the conductive adhesive layer and pressed through a heat press process.
  • the electromagnetic shielding film for flexible printed circuit board was prepared.
  • the metal mesh layer formed in Example 1 was formed to form a mesh of 15% of the opening area from a line width of 50 ⁇ m to a line width of 150 ⁇ m, and then cured.
  • the metal mesh layer was placed in contact with the conductive adhesive layer and pressed through a heat press process.
  • the insulating layer coating composition prepared in Example 1-1 was formed on the first surface of the prepared first substrate film with an micro layer coating, and then dried at 130 ° C. for 3 minutes and 30 seconds to have a radius of 5 to 6 ⁇ m. An insulating layer in a stylized state was formed.
  • a mesh metal layer having an opening area of 70% with a line width of 50 ⁇ m was formed on the insulating layer formed on the first base film as in Example 1, and cured.
  • a conductive adhesive layer was formed as in Example 1. Subsequently, the mesh metal layer on the first substrate film and the conductive adhesive layer of the second substrate film were disposed to contact each other, and then compressed through a heating and pressing process to prepare the electromagnetic shielding film for the flexible printed circuit board of Example 4 (FIG. 4). Reference).
  • an electromagnetic shielding film for a flexible printed circuit board was manufactured in the same manner as in Example 4.
  • Example 1 the metal mesh layer was formed with a mesh layer having an opening area of 70% with a line width of 50 ⁇ m.
  • a conductive adhesive layer was formed on the first surface of the prepared second base film, as shown in Example 1, after forming a mesh layer having an opening area of 85 ⁇ m of 30 ⁇ m. Subsequently, the mesh metal layer on the first substrate film and the conductive adhesive layer of the second substrate film were disposed to contact each other, and then compressed through a heating and pressing process to prepare the electromagnetic shielding film for the flexible printed circuit board of Example 5 (FIG. 4). Reference).
  • an electromagnetic shielding film for a flexible printed circuit board was manufactured in the same manner as in Example 1.
  • the insulating layer formed on the first base film and the conductive adhesive layer formed on the second base film are disposed to contact each other, and then compressed under a heating and pressing process under a condition of 80 ° C. and 10 kgf / cm to shield electromagnetic waves of Comparative Example 1.
  • a film was prepared.
  • an electromagnetic shielding film for a flexible printed circuit board was manufactured in the same manner as in Example 4.
  • the insulating layer formed on the first base film and the conductive adhesive layer formed on the second base film are disposed to contact each other, and then compressed under a heating and pressing process under a condition of 80 ° C. and 10 kgf / cm to shield electromagnetic waves of Comparative Example 1.
  • a film was prepared.
  • the conductive adhesive layer was disposed to contact 50 ⁇ m PI film (SKC Kolon), and after laminating at 80 to 100 ° C., the upper first substrate film was removed.
  • a bonding sheet and a prepreg impregnated with a resin in a glass fiber matrix were laminated on the bottom of the 50 ⁇ m PI film, and a bonding sheet and a 25 ⁇ m PI film (SKC) were placed on the upper insulating layer.
  • Kolon was laminated and completely cured in an insulating layer and a conductive adhesive layer through a pressing process at 150 ° C. for 60 minutes under a pressure of 35 kgf per unit area.
  • the film After removing the second base film of the prepared electromagnetic shielding film, the film is placed in contact with a 25 ⁇ m PI film (SKC Kolon) and a conductive adhesive layer, and then pressed under a pressure of 35 kgf per unit area for 150 ° C. for 60 minutes to form an insulating layer and a conductive adhesive layer. It was completely cured and the upper first base film was removed.
  • a 25 ⁇ m PI film (SKC Kolon) and a conductive adhesive layer
  • the electromagnetic wave shielding film from which the upper first base film was removed was immersed in a 300 ° C. bath for 10 seconds to observe appearance defects such as lifting and cracking of the electromagnetic wave shielding film and color change of the insulating layer.
  • appearance defects such as lifting and cracking
  • the case of appearance defects such as lifting and cracking was determined as NG, and the case of appearance defects such as lifting and cracking was judged as Pass.
  • a coupon was produced by lamination and compression processes to remove the upper first substrate film.
  • a coupon in which the electromagnetic wave shielding film from which the upper first base film was removed was immersed in an aqueous HCl (2 mol / L) solution for 10 minutes was prepared.
  • a coupon was prepared by immersing the electromagnetic wave shielding film from which the upper first base film was removed in HCl (3%), H 2 SO 4 (5%, NaOH (5%) aqueous solution for 30 minutes each step by step.
  • the immersed evaluation coupon was subjected to chemical resistance evaluation of the insulating layer according to ASTM D 3359.
  • the evaluation method and the criterion of evaluation are the same as in FIG.
  • the hardness of the coating film was measured using the strength of graphite, which is the core of the pencil.
  • a coupon was manufactured by lamination and compression processes in the same manner as a method of manufacturing a heat resistance evaluation coupon, thereby removing the upper first substrate film.
  • the pencils were blunted by the strength of the pencil cores, and the bottom of the core was rubbed with fine sandpaper to make it flat. Thereafter, the insulating layer was pushed three times with a weight of 500 g so that the pencil core touched the surface of the insulating layer of the electromagnetic shielding film from which the upper first base film was removed at a 45 degree angle, and thus the insulating layer was peeled off or scratched.
  • a coupon was produced by lamination and compression processes to remove the upper first substrate film.
  • the removed electromagnetic shielding film was prepared in the coupon of the shape as shown in Figure 9 to measure the electromagnetic shielding rate for the frequency range 30MHz ⁇ 1GHz in accordance with ASTM 4935-1.
  • the tester used an Agilent 8719C Network Analyzer.
  • FCCL Two inner layer circuits were formed in the prepared cross-section FCCL with an inter-circuit spacing of 10 mm of width 5 mm and length of 50 mm.
  • the coverlay of PI film 12.5 ⁇ m and 15 ⁇ m adhesive layer is placed in the center of inner circuit and 0.15mm diameter and 5mm ⁇ 5mm square is placed at the end of inner circuit, and then welded to inner circuit and 35kgf per unit area
  • the thermocompression process was performed at 150 ° C. for 60 minutes.
  • electroless gold plating was performed on the inner layer circuit in which copper was exposed to 0.15 mm and 5 mm x 5 mm in size by punched coverlay.
  • the electromagnetic shielding film was cut and laminated with a width of 10mm in the area of 0.15mm located in the center of the inner layer circuit, and thermally crimped at 150 ° C for 60 minutes at 35kgf per unit area. The contact resistances of the two inner layer circuits exposed to a size of 5 mm were measured.
  • the electromagnetic shielding film according to the present invention exhibited excellent electron shielding rate, adhesive force, heat resistance, chemical resistance, and adhesive resistance at the same time, even when including the mesh type metal layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

본 발명은 절연층; 상기 절연층의 일면 상에 형성되고, 다수의 금속 패턴이 메쉬(mesh) 형태로 구성되는 메쉬 금속층; 및 상기 메쉬 금속층을 덮으면서 상기 절연층 상에 형성되고, 도전성 필러 및 수지를 포함하는 전도성 접착층을 포함하는 연성 인쇄회로기판(FPCB)용 전자파 차폐 필름 및 이의 제조방법에 관한 것이다. 본 발명에서는 기존 전자파 차폐 필름과 달리, 메쉬 형태의 금속층을 포함하므로, 경제성이 우수하면서도 전자파 차폐 성능이 우수하며, 또한 도전성, 가요성 및 내열성 등의 물성이 우수하다.

Description

연성 인쇄회로기판용 전자파 차폐 필름 및 이의 제조방법
본 발명은 컴퓨터, 통신 기기, 프린터, 휴대 전화기, 비디오 카메라 등 전자제품에 사용되는 인쇄회로기판 등의 전자부품, 케이블, 전선 등의 통신기기 또는 통신 부품에서 발생하는 전자파를 차폐하는 차폐 필름 및 그 제조방법에 관한 것이다.
통상, 전자 기기의 소형화, 평면화 및 고기능화에 대한 요구가 증가하고 있다. 이러한 요구를 맞추기 위해 다른 사용 주파수 영역의 부품들을 같은 전자 기기에 구현함으로써 복합적인 전자파 노이즈가 발생하고 있으며, 이러한 복합적인 전자파 노이즈에 대한 대책을 세우는 것이 힘들어지고 있다. 한편, 데이터 전송 케이블도 박형화와 적은 전자파 노이즈 방출에 대한 요구가 증가하고 있다. 대량 데이터를 전송하는 경우에 전자파 노이즈에 의한 데이터의 간섭으로 데이터에 오류가 발생하고 데이터가 손실되는 등의 경우가 자주 발생하고 있다.
전자파 적합성을 만족시키기 위해서는 각종 전기·전자 및 통신 기기로부터 발생되는 전자파 노이즈를 가급적 줄이고, 외부 전자파 환경에 대하여 전자파 감수성을 줄여 기기 자체의 전자파 내성을 강화하여야 한다. 각종 전기·전자 및 통신 기기에 삽입되는 전자파 적합성 제품에 요구되는 가장 중요한 특성은 전자파 차폐율과 흡수율이 커야 한다는 것과 기기의 경박단소화 추세에 따라 전자파 적합성 제품이 작고 얇아야 한다는 것이다.
상술한 전자파 노이즈 문제를 해결하기 위한 대책으로서, 1층 이상의 절연층 상에 금속층과 도전성 접착층이 순차적으로 마련된 차폐 필름이 자주 사용되고 있다. 이때 상기 금속층과 도전성 접착층의 차폐 재질로서 고가의 금속, 예컨대 은(Ag)을 주로 사용하는데, 이들의 차폐 효과를 온전히 발휘하기 위해서는 금속의 사용량을 증가시켜야 한다. 따라서, 고가의 금속 사용량에 따른 경제성 저하가 필수적으로 초래된다. 또한 전자기기의 박형화에 적용하기 위해서는 얇은 금속층이 요구되지만, 얇은 금속층과 수지 계열의 다른 기재 필름과의 접착성이 떨어져 수율이 나빠지는 문제점이 있다.
본 발명자는 전술한 문제점을 해결하기 위해서 안출된 것으로서, 종래 절연층 상에 밀폐형 금속층을 형성하는 대신, 전자 차폐재인 전도성 물질을 이용하여 소정의 금속 패턴을 형성하되, 이들 간의 틈새를 유지한 채 연속적으로 배열되는 개방형(開放形) 금속층을 형성하면, 고가의 금속 사용량을 줄이면서도 종래와 대등한 차폐효과를 발휘할 수 있다는 것을 착안하였다.
이에, 본 발명은 다수의 금속 패턴이 메쉬 형태로 배열되는 메쉬 금속층을 포함하여 경제성을 높일 뿐만 아니라 우수한 차폐 특성, 내열성, 내화학성, 유연성 등을 동시에 발휘하는 신규 구조의 전자파 차폐 필름 및 이의 제조방법을 제공하는 것을 목적으로 한다.
본 발명은 절연층; 상기 절연층의 일면 상에 형성되고, 다수의 금속 패턴이 메쉬(mesh) 형태로 구성되는 메쉬 금속층; 및 상기 메쉬 금속층을 덮으면서 상기 절연층 상에 형성되고, 도전성 필러 및 수지를 포함하는 전도성 접착층을 포함하는 연성 인쇄회로기판(FPCB)용 전자파 차폐 필름을 제공한다.
본 발명의 바람직한 일례에 따르면, 상기 메쉬 금속층의 패턴은 원형, 사선 형상, 삼각형 이상의 다각형 및 무정형 형상으로 이루어진 군으로부터 선택되는 형태일 수 있다. 또한 상기 메쉬 금속층은 단층 또는 2층 이상의 복수층일 수 있다.
본 발명에서, 상기 메쉬 금속층의 평균 선폭이 20 내지 500 ㎛ 범위일 수 있다.
본 발명의 바람직한 다른 일례에 따르면, 상기 절연층은 열경화성 수지를 포함하며, 당해 절연층 100 중량부 기준으로 0.5 내지 5 중량부의 전기 비전도성 유기 또는 무기 필러를 포함하는 것일 수 있다.
본 발명의 바람직한 또 다른 일례에 따르면, 상기 전도성 접착층은 도전성 필러와 수지를 포함하되, 상기 도전성 필러는 Ag, Cu, Ni, Al, Ag으로 코팅된 구리 필러, 니켈 필러 또는 고분자 필러일 수 있다.
본 발명의 바람직한 일례에 따르면, 상기 절연층과 전도성 접착층 상에 각각 이형 필름을 더 포함할 수 있다.
아울러, 본 발명은 전술한 전자파 차폐 필름의 제조방법을 제공한다.
상기 제조방법의 바람직한 일례를 들면, (i) 제1기재필름의 제1면 상에 절연층 형성용 열경화성 수지 조성물을 코팅한 후 건조하여 절연층을 형성하는 단계; (ii) 상기 절연층 상에 전자파 차폐 필름을 함유하는 잉크 조성물을 인쇄하여 소정의 패턴이 메쉬 형태로 구성되는 메쉬 금속층을 형성하는 단계; (iii) 제2기재필름의 제1면 상에 도전성 필러 및 열경화성 수지를 포함하는 전도성 접착층 형성용 수지 조성물을 코팅한 후 건조하여 전도성 접착층을 형성하는 단계; 및 (iv) 제1기재필름과 제2기재필름을 적층하되, 상기 제1기재필름의 메쉬 금속층과 제2기재필름의 전도성 접착층이 서로 접하도록 배치한 후, 가압공정을 통해 압착하는 단계를 포함하여 구성될 수 있다.
여기서, 상기 단계 (i)에서 형성된 절연층은 반경화 상태(B-stage)인 것이 바람직하다.
본 발명에 따른 신규 전자파 차폐 필름은 전자 차폐재인 전도성 물질을 이용하여 소정의 금속 패턴을 형성하되, 이들 간의 틈새를 유지한 채 연속적으로 배열되는 개방형(開放形) 금속층을 포함함으로써, 고가의 금속 사용량을 줄이면서도 종래와 대등한 차폐효과를 발휘할 수 있다.
또한 상기 금속층이 존재함에도 불구하고 절연층과 전도성 접착층이 메쉬 패턴 사이로 서로 접합하고 있으므로, 이들 층에 포함된 수지 성분의 친화성으로 인해 우수한 접착력, 굴곡성 및 층간 접착력을 발휘할 수 있다.
도 1 내지 도 4는 각각 본 발명의 일 실시예에 따른 전자파 차폐 필름의 구성을 나타내는 모식도이다.
도 5 내지 도 8은 본 발명에 따른 전자파 차폐 필름의 메쉬 금속층을 구성하는 다양한 메쉬 패턴 형태를 나타내는 모식도이다.
도 9는 전자파 차폐 필름의 차폐율 평가를 위해 제작된 쿠폰의 일 형상이다.
도 10은 전자파 차폐 필름의 내화학성 평가 방법과 평가 기준을 나타내는 도면이다.
<도면의 주요 부분에 대한 부호의 설명>
100, 110, 120, 130: 연성 회로 기판 형성용 전자파 차폐 필름
10: 절연층 20: 메쉬 금속층
30: 도전성 접착층 40: 이형 필름
50: 메쉬 금속층의 패턴
이하, 본 발명을 상세히 설명한다.
전자파 차폐 필름은 전자파 장해(electromagnetic interference, EMI) 노이즈 차폐를 위해 연성 인쇄회로기판의 최외각(coverlay 상부)에 적층되는 필름을 지칭한다. 이러한 전자파 차폐 필름은 다양한 물성이 요구되는데, 크게 우수한 전자파 차폐 효과, 굴곡특성, 우수한 열적 안정성, 내화학성, 내마모성, 낮은 저항변화 등이 필요하다.
종래 전자파 차폐 필름으로, 1층 이상의 절연층 상에 금속층과 도전성 접착층이 순차적으로 마련된 형태의 필름을 사용하고 있는데, 이때 금속 재질의 금속층은 수지(resin) 계열의 절연층과 도전성 접착층 사이에 배치되므로, 절연층과 전도성 접착층 사이의 금속층으로 인하여 전자파 차폐 효과를 증대시킬 수 있는 장점은 있는 반면, 이들 간의 이질성(異質性)으로 인해 층간 접착력이 저조하였다. 또한 금속층과 도전성 접착층의 차폐 재질로서 고가의 금속, 예컨대 은(Ag)을 주로 사용하므로, 차폐 효과를 발휘하기 위한 고가의 금속 사용량에 따른 경제성 저하가 필수적으로 초래된다. 아울러 상기 금속층이 금속막 형태이므로, 필름의 내굴곡성과 열압착 공정시 커버레이와 그라운드 패턴 사이의 고 단차 메움 특성을 해치는 원인이 될 수 있다.
이에, 본 발명에서는 경제성을 높일 뿐만 아니라 우수한 차폐 특성, 내열성, 내화학성, 유연성 등을 동시에 발휘하는 신규 연성 인쇄회로기판(FPCB) 형성용 전자파 차폐 필름을 제공하기 위해서, 상기 절연층과 전도성 접착층 사이에 소정의 금속 패턴이 연속적으로 배열되는 개방형(開放形) 금속층을 형성하는 것을 특징으로 한다.
이러한 개방형 금속층은 다수의 금속 패턴이 메쉬(mesh) 형태로 구성되므로, 고가의 금속 사용량을 감소시켜 경제성을 높일 수 있을 뿐만 아니라, 기존 밀폐형 금속박 형태의 금속층을 사용하는 차폐 필름과 대등한 차폐 특성을 나타낼 수 있다.
또한 수지(resin) 계열의 절연층과 도전성 접착층 사이에 금속층이 배치됨에도 불구하고, 금속층의 메쉬 패턴 사이로 절연층과 도전성 접착층이 서로 연결되어 접합하고 있으므로, 수지 간의 친화성으로 인해 층간 접착력을 유의적으로 향상시킬 수 있다.
아울러, 메쉬형 금속 패턴 사이로 절연층과 도전성 접착층이 서로 연결되는 구조이므로, 금속층을 포함하여도 전자파 차폐 필름의 내굴곡 특성을 해치지 않을 뿐만 아니라, 전체 두께 감소, 및 연성 인쇄회로기판의 유연성(flexibility)을 부여할 수 있다. 따라서 고단차 및 박판용 제품군에 대한 응용분야가 보다 넓어질 수 있다는 장점이 있다.
<연성 인쇄회로기판(FPCB) 형성용 전자파 차폐 필름>
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예에 따른 연성 인쇄회로기판(FPCB) 형성용 전자파 차폐 필름에 대하여 상세히 설명한다.
본 발명의 전자파 차폐 필름은 크게 절연층(10)과 전도층으로 구분될 수 있으며, 여기서 전도층은 메쉬 금속층(20)과 전도성 접착층(30)을 포함한다.
도 1을 참조하여 설명하면, 본 발명의 전자파 차폐 필름(100)은, 절연층(10); 상기 절연층의 일면 상에 형성되는 메쉬 금속층(20); 및 상기 메쉬 금속층을 덮으면서 상기 절연층 상에 형성되는 전도성 접착층(30)을 포함하고, 이들이 순차적으로 적층되는 구조를 갖는다.
<절연층>
본 발명의 전자파 차폐 필름에 있어서, 절연층은 최종적으로 필름의 최외각에 존재하면서, 전자파 차폐 필름의 기계적 강도를 주면서 필름의 굴곡 특성과 더불어 열적 안정성, 내화학성, 내스크래치성 등을 발휘하는 역할을 한다.
상기 절연층은 코팅층 또는 필름 형태로서, 당 업계에 알려진 통상적인 열경화성 수지 및 경화제를 포함하는 열경화성 조성물을 경화시켜 형성될 수 있다.
본 발명에서 사용 가능한 열경화성 수지의 비제한적인 예로는, 에폭시 수지, 페놀 수지, 식물성유 변성 페놀수지, 크실렌 수지, 구아나민 수지, 디알릴프탈레이트 수지, 비닐에스테르 수지, 불포화 폴리에스테르 수지, 푸란 수지, 폴리이미드 수지, 폴리우레탄 수지, 시아네이트 수지, 말레이미드 수지 및 벤조시클로부텐 수지로 이루어진 군에서 선택된 1종 이상일 수 있다. 바람직하게는 에폭시 수지, 페놀 수지 또는 식물성유 변성 페놀수지이다. 이중 에폭시 수지는 반응성, 내열성이 우수하여 바람직하다.
상기 에폭시 수지는 당 업계에 알려진 통상적인 에폭시 수지를 제한없이 사용할 수 있으며, 1분자 내에 에폭시기가 2개 이상 존재하는 것이 바람직하다.
사용 가능한 에폭시 수지의 비제한적인 예를 들면, 비스페놀A형/F형/S형 수지, 노볼락형 에폭시 수지, 알킬페놀 노볼락형 에복시, 바이페닐형, 아랄킬(Aralkyl)형, 나프톨(Naphthol)형, 디시클로펜타디엔형 또는 이들의 혼합 형태 등이 있다.
보다 구체적인 예를 들면, 비스페놀A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 나프탈렌형 에폭시 수지, 안트라센 에폭시 수지, 비페닐형 에폭시 수지, 테트라메틸 비페닐형 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 비스페놀 A 노볼락형 에폭시 수지, 비스페놀 S 노볼락형 에폭시 수지, 비페닐 노볼락형 에폭시 수지, 나프톨 노볼락형 에폭시 수지, 나프톨 페놀 공축 노볼락형 에폭시 수지, 나프톨 코레졸 공축 노볼락형 에폭시 수지, 방향족 탄화수소 포름알데히드 수지 변성 페놀 수지형 에폭시 수지, 트리페닐 메탄형 에폭시 수지, 테트라 페닐에탄형 에폭시 수지, 디시클로펜타디엔 페놀 부가반응형 에폭시 수지, 페놀 아랄킬형 에폭시 수지, 다관능성 페놀 수지, 나프톨 아랄킬형 에폭시 수지 등이 있다. 이때 전술한 에폭시 수지를 단독 사용하거나 또는 2종 이상 혼용할 수도 있다.
본 발명에서는 당 업계에 알려진 통상적인 경화제를 제한 없이 사용할 수 있으며, 사용하고자 하는 에폭시 수지의 종류에 따라 적절하게 선택하여 사용할 수 있다. 사용 가능한 경화제의 비제한적인 예로는 페놀계, 무수물계, 디시안아미드계, 경화제가 있으며, 이중에서 페놀계 경화제가 내열성 및 접착성을 더 향상시킬 수 있어 바람직하다.
상기 페놀계 경화제의 비제한적인 예로는 페놀노볼락, 크레졸노볼락, 비스페놀A노볼락, 나프탈렌형 등이 있으며, 이때 이들을 단독으로 또는 2종 이상이 혼합하여 사용할 수 있다.
한편 본 발명에 따른 절연층은 최종 제품의 기계적 물성, 낮은 저항변화를 효과적으로 나타내기 위해서, 당 업계에 알려진 통상적인 전기 비전도성 필러를 더 포함할 수 있다.
이러한 전기 비전도성 필러는 유기 필러, 무기 필러 또는 이들 모두를 혼합하여 사용할 수 있으며, 일례로 전기 비전도성 카본 블랙(carbon black), 염료 또는 이들의 1종 이상 혼합물 등을 사용하는 것이 바람직하다.
상기 전기 비전도성 필러의 함량은 전술한 절연층의 기계적 물성, 낮은 저항변화, 기타 물성 등을 고려하여 적절히 조절할 수 있으며, 일례로 당해 절연층 100 중량부 기준으로 0.5 내지 5 중량부 범위일 수 있다.
본 발명의 절연층은 난연제를 함유하는 것이 바람직하므로, 전술한 열경화성 수지와 경화제 성분에 난연제를 함유시켜 경화하는 것이 바람직하다.
상기 난연제로는 당업계에 알려진 통상적인 난연제를 제한 없이 사용할 수 있으나, 유기 인계 난연제, 유기계 질소 함유 인화합물, 질소 화합물, 실리콘계 난연제, 금속 수산화물 등의 난연제 등이 바람직하다.
상기 인 화합물계 난연제의 구체적인 예로서는, 트리아릴·이소프로필 포스페이트, 트리스(3-히드록시프로필) 포스핀 옥시드, 1,3-페닐렌-나사(지키시레닐) 포스페이트, 혹은 2,2-나사(p-히드록시 페닐) 프로판·트리클로로 포스핀 옥시드 중합 물건(중합도 1~3)의 페놀 응축물, 인산염 복합 물건, 방향성 족축합 인에스테르 등의 인에스테르계 화합물, 혹은 폴리포스포린산 암모늄, 폴리포스포린산 암모늄 애시드, 부틸 애시드 포스페이트, 부톡시에틸 애시드 포스페이트, 멜라민 인산염, 또는 적색인 등을 들 수 있다.
또한, 질소화합물계 난연제의 구체적인 예로서는, 멜라민, 멜라민·시아누레이트, 메람, 메렘, 또는 멜론 등의 멜라민 유도체를 들 수 있다. 전술한 난연제를 단독으로, 또는 2종 이상 혼용할 수 있다.
상기 난연제의 함량은 특별히 제한되지 않으며, 당 업계에 알려진 통상적인 범위 내에서 적절히 조절할 수 있다.
본 발명의 전자파 차폐 필름에 있어서, 상기 절연층의 두께는 필름의 취급성, 물리적 강성, 기판의 박형화 등을 고려하여 적절히 조절할 수 있다. 일례로 5 내지 20 ㎛ 범위일 수 있으며, 바람직하게는 5 내지 7 ㎛ 범위일 수 있다.
본 발명에 따른 절연층은 종래 연성 동박 적층판(FCCL)과 동등한 굴곡성을 나타낼 수 있으며, 2H 이상의 내스크래치성 및 우수한 내화학성 테스트 후 크로스컷 테스트 5B 이상의 접착력을 유지할 수 있는 내화학성을 동시에 나타낼 수 있다.
<메쉬 금속층>
본 발명의 전자파 차폐 필름에 있어서, 상기 메쉬 금속층은 절연층의 일면 상에 형성되는 것으로서, 전도성 물질을 포함하여 전자파 차폐 효과를 발휘하는 역할을 한다.
종래 밀폐형(密閉形) 금속층과 달리, 본 발명에서는 전자 차폐재인 전도성 물질을 이용하여 절연층 상에 개방형(開放形) 금속층을 형성하는 것을 특징으로 한다.
이러한 개방형 금속층은 소정의 금속 패턴이 이들 간의 틈새를 유지한 채 연속적으로 배열되는 구조를 형성하는데, 이를 통해 고가의 금속을 적게 사용함에도 불구하고 종래와 대등한 차폐 효과를 얻을 수 있다.
본 발명에 따른 메쉬 금속층은 다수의 금속이 소정의 패턴을 형성하되, 이들이 메쉬(mesh) 형태로 구성되는데, 여기서 금속 패턴의 형상은 전자파 차폐 효과를 발휘한다면 특별히 제한되지 않는다. 일례로 원형, 사선 형상, 삼각형 이상의 다각형, 또는 무정형 형상일 수 있다. 이때 다각형은 삼각형, 사각형, 오각형, 육각형, 팔각형 등일 수 있다(도 5 내지 도 8 참고).
또한 상기 메쉬 금속층은 단층 또는 2층 이상의 복수층일 수 있다.
여기서, 상기 메쉬 금속층이 2층 이상의 복수층인 경우, 메쉬 금속층과 전도성 접착층은 서로 교번하여 배치될 수 있다. 바람직하게는 복수의 메쉬 금속층 사이에 전도성 접착층이 교번하여 마련되며, 상기 전도성 접착층을 중심으로 상호 이격 배치된 복수의 메쉬 금속층은 다수의 금속 패턴이 서로 대응되거나 또는 교차하도록 배치될 수 있다. 여기서, 복수의 메쉬 금속층은 절연층에 접하고 전도성 접착층 상부에 형성되는 제1메쉬 금속층(제1패턴)과 전도성 접착층 하부에 형성되는 제2메쉬 금속층(제2패턴)으로 편의상 구분될 수 있다. 이때 전도성 접착층 하부에 형성되는 제2메쉬 금속층(제2패턴)은 FPCB 그라운드 패턴과 직접 연결되어 접촉저항을 낮추는 것과 동시에 전자파 차폐율을 향상시킬 수 있다. 또한 전도성 접착층의 하부에 형성되는 제2메쉬 금속층(제2패턴)은 선폭이 얇을수록 FPCB 커버레이와의 접착력을 유지할 수 있다. 이에 따라, 상기 제2패턴의 선폭은 50 ㎛ 이하, 바람직하게는 20~30 ㎛의 선폭을 가질 수 있다. 또한 제2패턴의 개구율은 50% 이상을 유지해야 한다.
본 발명에 따른 전자파 차폐 필름에 있어서, 상기 메쉬 금속층은 당 업계에 알려진 통상적인 전자파 차폐 재질로 구성될 수 있다. 일례로 은(Ag), 금(Au), 구리(Cu), 및 알루미늄(Al)으로 구성된 군으로부터 선택되는 1종 이상의 도전성 금속 재질로 이루어지는 것이 바람직하다.
상기 메쉬 금속층의 평균 선폭은 특별히 제한되지 않으나, 일례로 20 내지 500 ㎛ 범위일 수 있다. 이때 상기 메쉬 금속층이 복수 층으로 구성되는 경우, 절연층에 접하고 전도성 접착층 상부에 형성되는 제1메쉬 금속층 (제1패턴)의 개구 면적 비율은 50% 미만일 수 있으며, 바람직하게는 10 내지 45% 범위일 수 있으며, 선폭은 50 내지 500㎛ 범위일 수 있다. 또한 전도성 접착층의 하부에 형성되는 제2메쉬 금속층 (제2패턴)의 선폭은 50 ㎛ 이하, 바람직하게는 20 내지 50 ㎛ 범위, 더욱 바람직하게는 20 내지 30 ㎛ 범위일 수 있다. 또한 개구 면적 비율은 50% 이상, 바람직하게는 70 내지 85%일 수 있다.
본 발명의 전자파 차폐 필름에 있어서, 상기 메쉬 금속층의 두께는 필름의 전자파 차폐력 등을 고려하여 적절히 조절할 수 있다. 일례로 0.1 내지 10 ㎛ 범위일 수 있으며, 바람직하게는 0.1 내지 1 ㎛ 범위일 수 있다.
<전도성 접착층>
본 발명의 전자파 차폐 필름에 있어서, 상기 전도성 접착층은 상기 메쉬 금속층을 덮으면서 상기 절연층 상에 형성되는 것으로서, 전도성 물질을 포함하여 전자파 차폐 효과를 발휘함과 동시에 접착력, 굴곡성 및 층간 접착력을 발휘하는 역할을 한다. 또한 전자파 차폐 필름이 피착체에 고정되도록 하는 기능도 담당하므로, 연성 인쇄회로기판(FPCB)에 붙여서 사용시, 상기 인쇄회로기판의 전기 회로와 안정하게 접속하고, 발생한 전기 잡음이 외부에 방출되거나 또는 상기 인쇄회로기판에 침입하는 것을 유효하게 차폐할 수 있다.
상기 전도성 접착층은 접착력과 전자파 차폐 효과를 나타내기 위해서 각각 열경화성 수지 성분과 도전성 필러를 포함한다.
상기 도전성 필러는 당 업계에 알려진 통상적인 도전성 필러를 제한 없이 사용할 수 있으며, 일례로 Ag, Cu, Ni, Al, Ag으로 코팅된 구리 필러, 니켈 필러일 수 있다. 또는 고분자 필러, 수지 볼이나 유리 비즈 등에 금속 도금을 실시한 필러 또는 이들의 혼합체 등일 수 있다.
여기서 은(Ag)은 고가이고, 구리(Cu)는 내열의 신뢰성이 부족하고, 알루미늄(Al)은 내습의 신뢰성이 부족하므로, 은(Ag), 은으로 코팅된 구리(Cu) 필러 또는 니켈(Ni) 필러를 이용하는 것이 바람직하다.
상기 도전성 필러의 함량은 전자파 차폐 효과를 발휘한다면 특별히 제한되지 않으며, 일례로 당해 전도성 접착제층 100 중량부를 기준으로 하여 30 내지 70 중량부 범위일 수 있다.
본 발명의 전도성 접착층에서 사용 가능한 수지는 당 업계에 알려진 통상적인 열경화성 수지를 제한 없이 사용할 수 있다. 일례로 전술한 절연층을 구성하는 열경화성 수지와 동일한 성분일 수 있다. 이때 추가로 경화제, 난연제, 또는 이들 모두를 추가로 포함할 수 있으며, 이들의 성분 역시 전술한 절연층을 구성하는 성분과 동일하거나 상이할 수 있다.
본 발명의 전자파 차폐 필름에 있어서, 상기 전도성 접착층의 두께는 필름의 전자파 차폐력, 굴곡성, 접착력, 층간 접착력 등을 고려하여 적절히 조절할 수 있다. 일례로 2 내지 30 ㎛ 범위일 수 있으며, 바람직하게는 3 내지 15 ㎛ 범위일 수 있다.
본 발명의 일례에 따르면, 상기 메쉬 금속층과 전도성 접착층을 합한 전도층의 총 두께는 초 굴곡용도 또는 고단차 대응용도에 따라 적절히 조절될 수 있다. 일례로 초 굴곡용도일 경우 전도층의 두께는 3~5 ㎛ 범위의 박판일 수 있으며, 고단차 대응용도일 경우 13~15㎛ 범위일 수 있다.
또한, 본 발명에 따른 전도층은 연성 인쇄회로기판(FPCB) 커버레이와의 높은 접착력을 확보할 수 있는데, 일례로 1.0 kgf/cm 이상일 수 있다. 그리고 상기 전도층의 굴곡성은 종래 연성 동박 적층판(FCCL)과 동등한 굴곡성을 나타낼 수 있다. 아울러 상기 전도층의 전자파 차폐력은 50 dB 이상, 바람직하게는 55 ~ 65dB을 나타낼 수 있다.
본 발명의 바람직한 일례에 따르면, 상기 전자파 차폐 필름(100)은 상기 절연층(10)과 전도성 접착층 상에 각각 이형 필름(40)을 더 포함할 수 있다.
상기 이형 필름은 당 업계에 알려진 통상적인 플라스틱 필름을 제한 없이 사용할 수 있으며, 이형지도 사용 가능하다.
사용 가능한 플라스틱 필름의 예로는 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트 등의 폴리에스터 필름, 폴리에틸렌 필름, 폴리프로필렌 필름, 셀로판, 다이아세틸셀룰로스 필름, 트라이아세틸셀룰로스 필름, 아세틸셀룰로스부티레이트 필름, 폴리염화비닐 필름, 폴리염화비닐리덴 필름, 폴리비닐알코올 필름, 에틸렌-아세트산비닐 공중합체 필름, 폴리스타이렌 필름, 폴리카보네이트 필름, 폴리메틸펜텐 필름, 폴리설폰 필름, 폴리에터에터케톤 필름, 폴리에터설폰 필름, 폴리에터이미드 필름, 폴리이미드 필름, 불소수지 필름, 폴리아마이드 필름, 아크릴수지 필름, 노보넨계 수지 필름, 사이클로올레핀 수지 필름 등이 있다. 이들 플라스틱 필름은, 투명 혹은 반투명의 어느 것이어도 되며, 또한, 착색되어 있어도 되거나 혹은 무착색의 것이라도 되며, 용도에 따라서 적당히 선택하면 된다.
본 발명에서는 절연층과 전도성 접착층 상에 제1이형필름 및 제2이형필름을 각각 배치하게 된다. 이때 연성 인쇄회로기판과 전자파 차폐 필름간의 접합 공정을 고려하여, 절연층과 제1이형필름 간의 층간 접착력이 전도성 접착층과 제2이형필름 간의 층간 접착력 보다 높게 조절하는 것이 바람직하다. 상기 이형필름의 이형력은 50 내지 500 gf/inch 범위일 수 있다. 일례로, 제1이형필름의 이형력은 50 내지 200 gf/inch 범위일 수 있으며, 제2이형필름의 이형력은 30 내지 50 gf/inch 범위일 수 있다.
이를 위해, 절연층 상에 배치되는 제1이형 필름은, 그 표면에 설치되는 절연층과의 밀착성을 향상시킬 목적으로, 필요에 따라 한 면 또는 양면에, 산화법이나 요철화법 등에 의해 표면 처리를 실시할 수 있다. 상기 산화법으로서는, 예를 들어, 코로나 방전 처리, 플라즈마 처리, 크롬산처리(습식), 화염처리, 열풍처리, 오존·자외선 조사 처리 등을 들 수 있고, 또한, 요철화법으로서는, 예를 들어, 샌드 블라스트(sand blast)법, 용제처리법 등을 들 수 있다. 이들 표면처리법은 기재 필름의 종류에 따라서 적절하게 선택되지만, 일반적으로는 매트처리, 코로나 방전 처리법이 효과 및 조작성 면에서 바람직하다. 또는 이형 필름 내부에 비드를 포함할 수도 있다.
상기 이형 필름(40)의 두께는 특별히 한정되지 않으며, 당 업계에 알려진 통상적인 범위 내에서 조절 가능하다. 상기 이형필름은 절연층과 전도성 접착층 상에 각각 배치될 수 있는데, 이때 절연층과 접하는 상부 이형필름(제1이형필름)의 두께는 50 내지 75㎛ 범위일 수 있으며, 전도성 접착층과 접하는 하부 이형필름(제2이형필름)의 두께는 75 내지 150㎛ 범위일 수 있다.
본 발명의 다른 일례에 따르면, 전술한 이형필름(40) 상에는 이형층이 포함될 수 있다. 이러한 이형층은 절연층과 도전성 접착층으로부터 각각 이형필름을 분리할 때 절연층과 도전성 접착층이 손상되지 않고 형상을 유지할 수 있도록 쉽게 분리시키는 기능을 갖는다. 여기서, 이형층은 일반적으로 사용되는 필름 타입의 이형물질일 수 있다.
이형층에 사용되는 이형제의 성분으로는 특별히 한정되지 않으며, 당 업계에 알려진 통상적인 이형제 성분을 사용할 수 있다. 이의 비제한적인 예로는, 에폭시 기반 이형제, 불소 수지로 이루어진 이형제, 실리콘계 이형제, 알키드 수지계 이형제, 수용성 고분자 등을 들 수 있다. 상기 이형층의 두께는 당 업계에 알려진 통상적인 범위 내에서 적절히 조절할 수 있다.
상기 이형층을 형성하는 방법은 특별히 한정되지 않고, 열 프레스, 열 롤 라미네이트, 압출 라미네이트, 코팅액의 도포, 건조 등의 공지된 방법을 채용할 수 있다.
본 발명에 따른 전자파 차폐 필름은 크게 4가지의 실시형태를 가질 수 있다. 그러나 하기 예시된 실시형태들에 의해 본 발명이 제한되는 것은 아니며, 필요에 따라 여러가지 변형과 응용이 가능하다.
도 1은 본 발명에 따른 전자파 차폐 필름의 첫번째 실시형태를 나타내는 단면도이다.
여기서, 상기 전자파 차폐 필름은 절연층(10); 상기 절연층의 일면 상에 형성되는 메쉬 금속층(20); 및 상기 메쉬 금속층을 덮으면서 상기 절연층 상에 형성되는 전도성 접착층(30)을 포함하고, 이들이 순차적으로 적층되는 구조를 갖는다.
도 2는 본 발명에 따른 전자파 차폐 필름의 두번째 실시형태를 나타내는 단면도이다.
여기서, 상기 전자파 차폐 필름은 절연층(10); 상기 절연층의 일면 상에 형성되는 복수의 메쉬 금속층(20); 및 상기 복수의 메쉬 금속층을 덮으면서 상기 절연층 상에 형성되는 전도성 접착층(30)을 포함하여 구성된다.
이때 복수의 메쉬 금속층(20)은 전도성 접착층(30)을 중심으로 상호 이격 배치되며, 각 메쉬 금속층을 구성하는 다수의 금속 패턴이 서로 대응되도록 배치되는 구조를 갖는다.
도 3은 본 발명에 따른 전자파 차폐 필름의 세번째 실시형태를 나타내는 단면도이다.
여기서, 상기 전자파 차폐 필름은 절연층(10); 상기 절연층의 일면 상에 형성되는 메쉬 금속층(20); 상기 메쉬 금속층을 덮으면서 상기 절연층 상에 형성되는 전도성 접착층(30); 및 상기 절연층과 전도성 접착층 상에 각각 마련되는 이형필름(40)을 포함하여 구성된다.
도 4는 본 발명에 따른 전자파 차폐 필름의 네번째 실시형태를 나타내는 단면도이다.
여기서, 상기 전자파 차폐 필름은 절연층(10); 상기 절연층의 일면 상에 형성되는 복수의 메쉬 금속층(20); 상기 복수의 메쉬 금속층을 덮으면서 상기 절연층 상에 형성되는 전도성 접착층(30); 및 상기 절연층과 전도성 접착층 상에 각각 마련되는 이형필름(40)을 포함하여 구성된다.
이때 복수의 메쉬 금속층(20)은 전도성 접착층(30)을 중심으로 상호 이격 배치되며, 각 메쉬 금속층을 구성하는 다수의 금속 패턴이 서로 대응되도록 배치되는 구조를 갖는다.
전술한 전자파 차폐 필름에 있어서, 상기 메쉬 금속층을 구성하는 금속 패턴 형태는 도 5 내지 도 8과 같이 다양하게 도시될 수 있으나, 이에 특별히 제한되는 것은 아니다.
<전자파 차폐 필름의 제조방법>
본 발명에 따른 연성 인쇄회로기판 형성용 전자파 차폐 필름은 하기와 같은 방법에 의해 제조될 수 있다. 그러나 하기 제조방법에 의해서만 한정되는 것은 아니며, 필요에 따라 각 공정의 단계가 변형되거나 또는 선택적으로 혼용되어 수행될 수 있다.
상기 전자파 차폐 필름의 제조방법에 대한 바람직한 일 실시형태를 들면, (i) 제1기재필름의 제1면 상에 절연층 형성용 열경화성 수지 조성물을 코팅한 후 건조하여 절연층을 형성하는 단계; (ii) 상기 절연층 상에 전자파 차폐 필름을 함유하는 잉크 조성물을 인쇄하여 소정의 패턴이 메쉬 형태로 구성되는 메쉬 금속층을 형성하는 단계; (iii) 제2기재필름의 제1면 상에 도전성 필러 및 열경화성 수지를 포함하는 전도성 접착층 형성용 수지 조성물을 코팅한 후 건조하여 전도성 접착층을 형성하는 단계; 및 (iv) 제1기재필름과 제2기재필름을 적층하되, 상기 제1기재필름의 메쉬 금속층과 제2기재필름의 전도성 접착층이 서로 접하도록 배치한 후, 가압공정을 통해 압착하는 단계를 포함하여 구성될 수 있다.
이때 필요에 따라, 상기 단계 (iii)는 제2기재필름의 제1면 상에 메쉬 금속층을 형성한 후, 형성된 메쉬 금속층 상에 전도성 접착층을 형성하는 단계(iii-1)로 대체될 수 있다.
우선, 1) 제1기재필름의 제1면 상에 절연층 형성용 수지 조성물을 코팅 및 건조하여 절연층을 형성한다.
상기 제1기재필름은 당 업계에 알려진 통상적인 플라스틱 필름을 제한 없이 사용할 수 있으며, 일례로 전술한 이형 필름과 동일한 구성일 수 있다.
상기 절연성 수지층을 형성하는 수지 조성물을 조제시 사용 가능한 유기 용제의 예를 들면, 아세톤, 메틸에틸케톤, 시클로헥사논 등의 케톤류, 아세트산에틸, 아세트산부틸, 셀로솔브아세테이트, 프로필렌글리콜모노메틸에테르아세테이트, 카비톨아세테이트 등의 아세트산 에스테르류, 셀로솔브, 부틸카비톨 등의 카비톨류, 톨루엔, 크실렌 등의 방향족 탄화수소류, 디메틸포름아미드, 디메틸아세트아미드, N-메틸피롤리돈 등을 들 수 있다. 유기 용제는 1종을 사용하거나 2종 이상을 조합하여 사용하여도 좋다.
이때 절연층 형성용 수지 조성물을 기재 필름 상에 도포하는 경우, 일례로 롤 코터, 바 코터, 코머 코터, 블레이드 코터, 립 코터, 로드 코터, 스퀴즈 코터, 리버스 코터, 트랜스퍼 롤 코터, 그라비아 코터, 분무 코터 등으로 기재 상에 열경화성 수지 조성물을 도포하고, 50 내지 130℃의 온도에서 1 내지 30분간 건조하여 수행할 수 있다.
상기 단계에서 형성된 절연층은 반경화 상태(B-stage)인 것이 바람직하다.
2) 상기 형성된 절연층 상에 메쉬형 금속층을 형성한다.
상기 메쉬형 금속층을 형성하는 단계(ii)의 바람직한 일례를 들면, 상기 절연층 상에 전자파 차폐 물질을 함유하는 잉크 조성물을 인쇄하여 소정의 패턴이 메쉬 형태로 구성되는 메쉬 금속층을 형성한다.
전자파 차폐 물질을 함유하는 잉크 조성물은 은(Ag) 함유 잉크 조성물일 수 있다. 이때 잉크 조성물에 포함된 전자파 차폐 물질, 예컨대 은(Ag)의 농도는 특별히 제한되지 않으나, 일례로 조성물 총 100 중량% 대비 20 내지 70 중량% 범위일 수 있다. 또한 잉크 조성물의 점도는 특별히 한정되지 않으나, 일례로 6,000 내지 120,000 cps 범위일 수 있다.
상기 잉크 조성물을 이용하여 절연층 상에 메쉬 금속층을 형성하는 방법은 당 업계에 알려진 통상적인 인쇄방법을 제한 없이 사용할 수 있으며, 일례로 롤투롤 공정 기반에 의해 생산성을 증가시키기 위해서, 스크린 인쇄법(Screen Printing), 로터리 스크린(Rotary Screen), 마이크로 그라비어(Micro Gravure) 및 플렉소 프린팅(Flexo Printing)법으로 구성된 군으로부터 선택된 방법을 사용할 수 있다. 특히 얇은 박막층을 구현 가능한 마이크로 그라비어, 플레소 프린팅법이 바람직하다.
상기와 같이 형성된 메쉬 금속층의 두께는 100nm 내지 10㎛ 범위일 수 있으며, 바람직하게는 100nm 내지 1㎛ 범위일 수 있다.
3) 제2기재필름의 제1면 상에 전도성 접착층 형성용 조성물을 코팅 및 건조하여 전도성 접착층을 형성한다.
상기 제2기재필름 역시 당 업계에 알려진 통상적인 플라스틱 필름을 제한 없이 사용할 수 있으며, 이형지도 사용 가능하다. 이때 상기 제2기재필름은 전술한 제1기재필름의 성분과 동일하거나 또는 상이할 수 있다.
본 발명에서, 상기 전도성 접착층 형성용 수지 조성물을 제2기재필름 상에 도포하는 경우, 일례로 롤 코터, 바 코터, 코머 코터, 블레이드 코터, 립 코터, 로드 코터, 스퀴즈 코터, 리버스 코터, 트랜스퍼 롤 코터, 그라비아 코터, 분무 코터 등으로 기재 상에 열경화성 수지 조성물을 도포하고, 50 내지 130℃의 온도에서 1 내지 30분간 건조하여 수행할 수 있다.
이때 상기 제2기재필름 상에 메쉬 금속층을 먼저 형성한 후, 형성된 메쉬 금속층 상에 전도성 접착층을 형성할 수 있는데, 이 경우 본 발명의 네번째 실시형태에 따른 전자파 차폐 필름이 형성될 수 있다. 여기서, 메쉬 금속층을 형성하는 방법이나 조건 등은 전술한 2)단계와 동일할 수 있다.
4) 상기 제1기재필름과 제2기재필름을 적층하되, 상기 제1기재필름의 메쉬 금속층과 제2기재필름의 전도성 접착층이 서로 접하도록 배치한 후 가압 공정을 통해 압착한다.
본 발명에서, 상기 압착 공정 조건은 당 업계에 알려진 통상적인 범위 내에서 적절히 조절할 수 있다. 일례로 열압착 Lami. 공정(롤투롤)시 조건은 특별히 제한되지 않으나, 일례로 상온~130℃의 온도, 3~50 kgf/cm2의 압력, 및 압착속도 3m/min 내지 30m/min 조건 하에서 수행될 수 있다.
이때 상기 시트 형상의 제1기재필름, 절연층과 메쉬형 금속층이 순차적으로 적층된 제1기재필름과, 전도성 접착층이 형성된 제2기재필름을 각각 롤형으로 권취하고 연속식으로 라미네이트하여도 좋고, 또한 롤형의 양 시트를 재단한 후 라미네이트를 수행하여도 무방하다.
상기 단계 이후에, 전술한 전자파 차폐 필름을 적당한 크기로 슬릿(slit)하여 사용할 수 있다.
전술한 바와 같이 제조된 본 발명의 전자파 차폐 필름은 하기 도 1과 같은 구조를 가질 수 있다.
본 발명에서는 전술한 전자파 차폐 필름을 인쇄회로기판, 바람직하게는 연성 인쇄회로기판(FPCB)의 커버레이 상부에 적층한 후 접합하여 사용할 수 있다.
이때 연성 인쇄회로기판과 전자파 차폐 필름과의 접합은, 당 업계에 알려진 통상적인 방법에 의해 이루어질 수 있다. 일례로, 접착제에 의해서 접착해도 좋고, 접착제를 이용하지 않는, 무접착 형태와 같이 접합할 수도 있다.
상기 연성 인쇄회로기판용 EMI 차폐 필름의 제조공정의 바람직한 일 실시예를 들면, (I) 전자파 차폐 필름을 연성 인쇄회로기판 커버레이 상부에 적층하되, 전도성 접착층 측에 마련된 제1기재필름을 제거한 후 노출된 전도성 접착층을 연성 인쇄회로기판의 커버레이 상부에 적층하고 열 압착하는 단계; 및 (Ⅱ) 상기 압착물의 최상부에 위치하는 제2기재필름을 제거하는 단계를 포함하여 구성될 수 있다.
상기 연성 인쇄회로기판은 커버레이 부착된 연성 회로 기판(FPCB)일 수 있으며, 일례로 폴리이미드(PI) 상에 동박층 및 커버레이가 순차적으로 적층된 형태일 수 있다. 본 발명에서 인쇄회로기판이란, 도금 스루홀법이나 빌드업법 등에 의해 단층, 또는 2~3층 이상으로 적층된 인쇄회로기판을 지칭하며, 단면형 또는 양면형일 수 있다.
또한 열압착 공정시 조건은 특별히 제한되지 않으나, 일례로 150~170℃의 온도, 30~80 kgf/cm2의 압력, 및 30 내지 60분 조건하에서 수행될 수 있다.
본 발명에서는 상기와 같이 연성 인쇄회로기판 상에 전자파 차폐 필름을 접합함으로써, 우수한 전자파 차폐성을 발휘할 수 있다.
이하 본 발명을 실시예를 통해 구체적으로 설명하나, 하기 실시예 및 실험예는 본 발명의 한 형태를 예시하는 것에 불과할 뿐이며, 본 발명의 범위가 하기 실시예 및 실험예에 의해 제한되는 것은 아니다.
[실시예 1]
1-1. 절연층 코팅액 제조
열경화성 수지로 난 할로겐 난연성 에폭시 수지(국도화학 KDP555) 9.1 중량%, 비스페놀 A형 에폭시 수지 (Dow DER383) 8.1 중량%, 저유전 에폭시 수지 (Nippon XD1000) 3.5 중량%, 비스페놀 노볼락 에폭시 수지 (국도화학 KPBN110) 6.1 중량%, 카본블랙 (컬럼비안케미컬즈) 0.9 중량%, 인계 난연제 (오츠카케미컬 SPB-100) 4.8 중량%, 열가소성 수지로 고무 (금호석유화학 KNB 40H) 24.2 중량%, 폴리비닐부티랄 수지 (우노켐 KS23Z) 12.1 중량%, 잠재성 경화제로 디시안아마이드 10.7 중량%, 촉매형 경화제로 이미다졸 유도체 (일동화학 2E4MZ) 0.6 중량%, 용매로 메틸셀루솔브 9.8 중량%를 혼합 용해하여 절연층 코팅액을 제조하였다.
1-2. Mesh 형성용 은(Ag) 나노 코팅액 제조
은 나노입자 55 중량%, 비스페놀 A계 에폭시 수지(헥시온 EPIKOTE1009, 당량 1,000) 7 중량% 촉매형 경화제로 이미다졸 유도체 2.8 중량%, 혼합 에테르계 용매 (메톡시 벤젠 및 프로필렌 글리콜 모노메틸 에테르 아세테이트가 7:3 중량 비율로 혼합된 용매) 32.2 중량%, 분산제로 인산 에스테르계 화합물 (BYK BYK-111)을 3 중량%를 고점도 믹서로 1차 혼합한 후 3본밀을 통해 2차 혼합 및 분산하여 Mesh 형성용 잉크를 제조하였다.
1-3. 전도성 접착층 형성용 코팅액 제조
열 경화성 수지로 난 할로겐 난연성 에폭시 수지(국도화학 KDP555) 5.5 중량%, 비스페놀 A형 에폭시 수지 (Dow DER383) 4.9 중량%, 저유전 에폭시 수지 (Nippon XD1000) 2.1 중량%, 비스페놀 노볼락 에폭시 수지 (국도화학 KPBN110) 3.6 중량%, 전도성 필러로 구리에 은이 코팅된 Dendrite 형상의 분말(GGP社 CuAg10 CHL5 UF) 48.6 중량%, 열 가소성 수지로 고무 (금호석유화학 KNB 40H) 21.9 중량%, 잠재성 경화제로 디시안아마이드 6.4 중량%, 촉매형 경화제로 이미다졸 유도체 (일동화학 2E4MZ) 0.3 중량%, 용매로 프로필렌 글리콜 모노메틸 에테르 아세테이트 4.9 중량%를 혼합 용해하여 전도층 코팅액을 제조하였다.
1-4. 전자파 차폐 필름 제조
상기 1-1에서 제조된 절연층 코팅 조성물을 준비된 제1기재필름의 제1면 상에 마이크로그라이아 코팅으로 절연층을 형성하고 130℃에서 3분 30초간 건조하여 5~6㎛의 반경화 상태의 절연층을 형성하였다.
이후 준비된 제2기재필름의 제1면 상에 1-3에서 제조된 전도성 접착층 코팅 조성물을 콤마 코팅으로 전도성 접착층을 형성하고 130℃에서 3분 30초간 건조하여 14~15㎛의 반경화 상태의 전도성 접착층을 형성하였다.
상기 제1기재필름에 형성된 절연층 상에 선폭 50㎛의 개구 면적 30%의 메쉬 금속층을 플렉소 프린팅으로 형성하고 150℃에서 5분간 경화하였다. 이후 절연층의 메쉬가 형성된 면과 전도성 접착층이 서로 접하도록 배치한 후, 가열 가압 공정을 통해 압착하여 연성 인쇄회로기판용 전자파 차폐 필름을 제조하였다.
[실시예 2]
실시예 1에서 형성된 금속 메쉬층을 50㎛의 선폭에서 80㎛의 선폭으로 개구 면적 50%의 메쉬를 형성하고 경화한 후, 전도성 접착층과 서로 접하도록 배치하고 가열 가압 공정을 통해 압착하여 실시예 2의 연성 인쇄회로기판용 전자파 차폐 필름 제조하였다.
[실시예 3]
실시예 1에서 형성된 금속 메쉬층을 50㎛의 선폭에서 150㎛의 선폭으로 개구 면적 15%의 메쉬를 형성하고 경화한 후, 전도성 접착층과 서로 접하도록 배치하고 가열 가압 공정을 통해 압착하여 실시예 3의 연성 인쇄회로기판용 전자파 차폐 필름 제조하였다
[실시예 4]
상기 실시예 1-1에서 제조된 절연층 코팅 조성물을 준비된 제1기재필름의 제1면 상에 마이크로 그라이아 코팅으로 절연층을 형성하고 130℃에서 3분 30초간 건조하여 5~6㎛의 반경화 상태의 절연층을 형성하였다.
이후, 상기 실시예 1과 같이 제1기재 필름에 형성된 절연층 상에 50㎛의 선폭으로 개구 면적 70%의 메쉬 금속층을 형성하고 경화하였다. 준비된 제2기재필름의 제1면 상에 30㎛의 개구 면적 70%의 메쉬층을 형성한 후, 실시예 1과 같이 전도성 접착층을 형성하였다. 이어서, 제1기재필름 상의 메쉬 금속층과 제2기재필름의 전도성 접착층을 서로 접하도록 배치한 후, 가열 가압공정을 통해 압착하여 실시예 4의 연성 인쇄회로기판용 전자파 차폐 필름을 제조하였다(도 4 참조).
[실시예 5]
제2기재필름 상에 형성된 금속 메쉬층의 개구면적을 70%에서 85%로 변경한 것을 제외하고는, 상기 실시예 4와 동일한 방법을 수행하여 연성 인쇄회로기판용 전자파 차폐 필름을 제조하였다.
보다 구체적으로, 실시예 1에서 금속 메쉬층을 50㎛의 선폭으로 개구 면적 70%의 메쉬층을 형성하였다. 또한 준비된 제2기재필름의 제1면 상에 30㎛의 개구 면적 85%의 메쉬층을 형성한 후 실시예 1과 같이 전도성 접착층을 형성하였다. 이어서, 제1기재필름 상의 메쉬 금속층과 제2기재필름의 전도성 접착층을 서로 접하도록 배치한 후, 가열 가압공정을 통해 압착하여 실시예 5의 연성 인쇄회로기판용 전자파 차폐 필름을 제조하였다(도 4 참조).
[비교예 1]
메쉬형 금속층을 형성하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법에 따라 연성 인쇄회로기판용 전자파 차폐 필름을 제조하엿다.
보다 구체적으로, 제1기재필름에 형성된 절연층과 제2기재필름에 형성된 전도성 접착층을 서로 접하도록 배치한 후, 80℃, 10kgf/cm 조건하에서 가열 가압 공정으로 통해 압착하여 비교예 1의 전자파 차폐 필름을 제조하였다.
[비교예 2]
메쉬형 금속층을 형성하지 않은 것을 제외하고는, 상기 실시예 4와 동일한 방법에 따라 연성 인쇄회로기판용 전자파 차폐 필름을 제조하였다.
보다 구체적으로, 제1기재필름에 형성된 절연층과 제2기재필름에 형성된 전도성 접착층을 서로 접하도록 배치한 후, 80℃, 10kgf/cm 조건하에서 가열 가압 공정으로 통해 압착하여 비교예 1의 전자파 차폐 필름을 제조하였다.
[평가예] 전자파 차폐 필름의 평가
실시예 1~5 및 비교예 1~2에서 각각 제조된 전자파 차폐 필름을 이용하여 하기와 같은 물성 평가를 각각 수행하였으며, 이들의 결과를 하기 표 1에 기재하였다.
1) 접착력
준비된 제2기재필름을 제거한 뒤 전도성 접착층면에 50㎛ PI Film (SKC 코오롱)을 접하도록 배치하고, 80~100℃에서 라미네이팅을 실시한 후 상부 제1기재필름을 제거하였다.
라미네이팅된 접착력 평가 쿠폰의 지지층을 형성하기 위해, 50㎛ PI Film 하부에 본딩시트와 유리섬유 메트릭스에 수지를 함침한 프리프레그를 적층하고, 상부의 절연층에는 본딩시트와 25㎛의 PI Film (SKC 코오롱)을 적층한 뒤 단위면적당 35kgf의 압력하에 150℃ 60분간 압착공정을 거쳐 절연층과 전도성 접착층을 완전경화시켰다.
완전경화된 쿠폰을 인장속도 50mm/min의 속도로 PI Film에 대하여 90도(수직) 접착력(kgf/cm)을 측정하였다.
2) 내열특성 (Solder Deeping)
준비된 전자파 차폐 필름의 제2기재필름을 제거한 뒤 25㎛의 PI Film(SKC 코오롱)과 전도성 접착층이 접하도록 배치한 뒤 단위면적당 35kgf의 압력하에 150℃ 60분간 압착공정을 거쳐 절연층과 전도성 접착층을 완전경화시키고 상부 제1기재필름을 제거하였다.
상부 제1기재필름을 제거한 전자파 차폐 필름을 300℃ 납조에 10초간 침지하여 전자파 차폐 필름의 들뜸 및 균열 그리고 절연층의 색상변화 등 외관 불량을 관찰하였다. 이때 들뜸 및 균열 등 외관불량이 발생한 경우를 NG로 판단하고, 들뜸 및 균열 등 외관불량이 없는 경우를 Pass로 판단하였다.
3) 절연층 내화학성 평가:
내열특성 평가 쿠폰 제작 방법과 동일하게 적층 및 압착공정으로 쿠폰을 제작하여 상부 제1기재필름을 제거하였다. 상부 제1기재필름을 제거한 전자파 차폐 필름을 HCl(2mol/L) 수용액에 10분간 침지한 쿠폰을 제작하였다.
상부 제1기재필름이 제거된 전자파 차폐 필름을 HCl(3%), H2SO4(5%, NaOH(5%) 수용액에 각각 단계별로 30분간 침지하여 쿠폰을 제작하였다. 각 해당하는 수용액에 침지한 평가용 쿠폰을 ASTM D 3359에 의거하여 절연층의 내화학성 평가를 진행하였다. 평가 방법과 판정 기준은 도 10과 같다.
4) 연필경도
연필의 심재인 흑연의 강도를 이용하여 코팅막의 경도를 측정하였다. 먼저 내열특성 평가 쿠폰 제작 방법과 동일하게 적층 및 압착공정으로 쿠폰을 제작하여 상부 제1기재필름을 제거하였다.
연필심의 강도 별로 연필을 뭉툭하게 깎아놓고 심의 밑면을 고운 샌드페이퍼로 문질러 평탄하게 하였다. 이후 상부 제1기재필름이 제거된 전자파 차폐 필름의 절연층 표면에 45도 각도로 연필심이 닿도록 500g의 무게로 3번 밀어서 절연층이 벗겨지거나 긁힘을 기준으로 판정하였다.
5) 전자파 차폐율 평가
내열특성 평가 쿠폰 제작 방법과 동일하게 적층 및 압착공정으로 쿠폰을 제작하여 상부 제1기재필름을 제거하였다. 제거된 전자파 차폐 필름을 하기 도 9와 같은 형상의 쿠폰을 제작하여 ASTM 4935-1에 의거하여 주파수 범위 30MHz ~ 1GHz대한 전자파 차폐율을 측정하였다. 이때 테스터기는 Agilent 8719C Network Analyzer를 사용하였다.
6) 접촉저항 측정
준비된 단면 FCCL에 폭 5mm 길이 50mm의 회로간 간격 10mm로 2개의 내층 회로를 형성하였다.
PI Film 12.5㎛, 접착층 15㎛의 커버레이를 내층회로의 중앙에 위치하도록 직경 0.15mm 원형과 내층회로 끝부분에 5mm×5mm 면적의 사각형이 위치하도록 타발한 뒤 내층회로에 가접 및 단위면적 당 35kgf로 150℃에서 60분간 열 압착공정을 하였다. 열압착 공정 후 타발된 커버레이에 의하여 0.15mm와 5mm×5mm 크기로 구리가 노출된 내층회로에 무전해 금도금을 실시하였다.
준비된 전자파 차폐 필름의 제2기재필름을 제거한 뒤 내층회로 중앙에 위치한 0.15mm의 영역에 10mm의 폭으로 전자파 차폐 필름 제단 및 적층하여 단위면적당 35kgf로 150℃에서 60분간 열 압착공정을 한 뒤 5mm × 5mm 크기로 노출된 2개의 내층회로의 접촉저항을 측정하였다.
표 1
접착력 내열성(Solder) 내화학성(Cross cut) 연필경도 차폐율(dB) 접촉저항(Ω)
비교예 1 ≥ 1.2 Pass 5B 1H 45~46 0.3
실시예 1 ≥ 1.2 Pass 5B 1H 54~55 0.2
실시예 2 ≥ 1.2 Pass 5B 1H 59~60 0.1
실시예 3 ≥ 1.2 Pass 5B 1H 61~62 0.1
실시예 4 0.8 Pass 5B 1H 60~61 0.1
실시예 5 1.1 Pass 5B 1H 59~60 0.1
비교예 2 ≥ 1.2 Pass 5B 1H 38~39 1.3
실험 결과, 본 발명에 따른 전자파 차폐 필름은 메쉬형 금속층을 포함하더라도, 우수한 전자차폐율, 접착력, 내열성, 내화학성 및 접착저항 등을 동시에 발휘한다는 것을 확인할 수 있었다.

Claims (21)

  1. 절연층;
    상기 절연층의 일면 상에 형성되고, 다수의 금속 패턴이 메쉬(mesh) 형태로 구성되는 메쉬 금속층; 및
    상기 메쉬 금속층을 덮으면서 상기 절연층 상에 형성되고, 도전성 필러 및 수지를 포함하는 전도성 접착층
    을 포함하는 연성 인쇄회로기판(FPCB)용 전자파 차폐 필름.
  2. 제1항에 있어서,
    상기 메쉬 금속층의 패턴은 원형, 사선 형상, 삼각형 이상의 다각형 및 무정형 형상으로 이루어진 군으로부터 선택되는 형태인 것을 특징으로 하는 연성 인쇄회로기판용 전자파 차폐 필름.
  3. 제1항에 있어서,
    상기 메쉬 금속층은 단층 또는 2층 이상의 복수층인 것을 특징으로 하는 연성 인쇄회로기판용 전자파 차폐 필름.
  4. 제3항에 있어서,
    상기 메쉬 금속층이 2층 이상의 복수층인 경우, 복수의 메쉬 금속층 사이에 전도성 접착층이 마련되며, 상기 전도성 접착층을 중심으로 상호 이격배치된 메쉬 금속층은 다수의 금속 패턴이 서로 대응되거나 또는 교차하도록 배치되는 것을 특징으로 하는 연성 인쇄회로기판용 전자파 차폐 필름.
  5. 제3항에 있어서,
    상기 메쉬 금속층이 2층 이상의 복수층인 경우, 절연층에 접하고 전도성 접착층의 상부에 위치하는 제1메쉬 금속층의 평균 선폭은 50 내지 500 ㎛ 범위이며, 전도성 접착층의 하부에 위치하는 제2메쉬 금속층의 평균 선폭은 20 내지 50 ㎛ 범위인 것을 특징으로 하는 연성 인쇄회로기판용 전자파 차폐 필름.
  6. 제5항에 있어서,
    상기 제1메쉬 금속층의 개구 면적 비율은 50% 미만이며, 제2메쉬 금속층의 개구 면적 비율은 50% 이상인 것을 특징으로 하는 연성 인쇄회로기판용 전자파 차폐 필름.
  7. 제1항에 있어서,
    상기 메쉬 금속층은 은(Ag), 금(Au), 구리(Cu), 및 알루미늄(Al)으로 구성된 군으로부터 선택되는 1종 이상의 도전성 금속 재질로 이루어지는 것을 특징으로 하는 연성 인쇄회로기판용 전자파 차폐 필름.
  8. 제1항에 있어서,
    상기 메쉬 금속층의 두께는 0.1 내지 10 ㎛ 범위인 것을 특징으로 하는 연성 인쇄회로기판용 전자파 차폐 필름.
  9. 제1항에 있어서,
    상기 절연층은 열경화성 수지를 포함하는 것을 특징으로 하는 연성 인쇄회로기판용 전자파 차폐 필름.
  10. 제1항에 있어서,
    상기 절연층은 당해 절연층 100 중량부 기준으로 0.5 내지 5 중량부의 전기 비전도성 필러를 포함하는 것을 특징으로 하는 연성 인쇄회로기판용 전자파 차폐 필름.
  11. 제1항에 있어서,
    상기 절연층의 두께는 5~20 ㎛ 범위인 것을 특징으로 하는 연성 인쇄회로기판용 전자파 차폐 필름.
  12. 제1항에 있어서,
    상기 전도성 접착층의 도전성 필러는 Ag, Cu, Ni, Al, Ag으로 코팅된 구리 필러, 니켈 필러 또는 고분자 필러인 것을 특징으로 하는 연성 인쇄회로기판용 전자파 차폐 필름.
  13. 제1항에 있어서,
    상기 도전성 필러의 함량은 당해 전도성 접착제층 100 중량부를 기준으로 하여 30 내지 70 중량부 범위인 것을 특징으로 하는 연성 인쇄회로기판용 전자파 차폐 필름.
  14. 제1항에 있어서,
    상기 전도성 접착제층의 수지는 열경화성 수지인 것을 특징으로 하는 연성 인쇄회로기판용 전자파 차폐 필름.
  15. 제1항에 있어서,
    상기 메쉬 금속층과 전도성 접착층의 총 두께는 3~5 ㎛ 범위 또는 13~15㎛ 범위인 것을 특징으로 하는 연성 인쇄회로기판용 전자파 차폐 필름.
  16. 제1항에 있어서,
    상기 절연층과 전도성 접착층 상에 각각 이형 필름을 더 포함하는 것을 특징으로 하는 연성 인쇄회로기판용 전자파 차폐 필름.
  17. 제16항에 있어서,
    상기 절연층 측에 배치되는 이형필름은 매트 처리, 코로나 처리되거나 또는 내부에 비드를 포함하는 것을 특징으로 하는 연성 인쇄회로기판용 전자파 차폐 필름.
  18. (i) 제1기재필름의 제1면 상에 절연층 형성용 열경화성 수지 조성물을 코팅한 후 건조하여 절연층을 형성하는 단계;
    (ii) 상기 절연층 상에 전자파 차폐 필름을 함유하는 잉크 조성물을 인쇄하여 소정의 패턴이 메쉬 형태로 구성되는 메쉬 금속층을 형성하는 단계;
    (iii) 제2기재필름의 제1면 상에 도전성 필러 및 열경화성 수지를 포함하는 전도성 접착층 형성용 수지 조성물을 코팅한 후 건조하여 전도성 접착층을 형성하는 단계; 및
    (iv) 제1기재필름과 제2기재필름을 적층하되, 상기 제1기재필름의 메쉬 금속층과 제2기재필름의 전도성 접착층이 서로 접하도록 배치한 후, 가압공정을 통해 압착하는 단계
    를 포함하는 제1항의 연성 인쇄회로기판 형성용 전자파 차폐 필름의 제조방법.
  19. 제18항에 있어서,
    상기 단계 (i)에서 형성된 절연층은 반경화 상태(B-stage)인 것을 특징으로 하는 전자파 차폐 필름의 제조방법.
  20. 제18항에 있어서,
    상기 단계 (ii)에서, 메쉬 금속층은 스크린 인쇄법, 로터리 스크린, 마이크로 그라비어, 및 필렉소법으로 구성된 군으로부터 선택되는 방법에 의해 형성되는 것을 특징으로 하는 전자파 차폐 필름의 제조방법.
  21. 제18항에 있어서,
    상기 단계 (iii)는 제2기재필름의 제1면 상에 메쉬 금속층을 형성한 후, 형성된 메쉬 금속층 상에 전도성 접착층을 형성하는 단계(iii-1)로 대체되는 것을 특징으로 하는 전자파 차폐 필름의 제조방법.
PCT/KR2015/000172 2014-01-08 2015-01-08 연성 인쇄회로기판용 전자파 차폐 필름 및 이의 제조방법 WO2015105340A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0002420 2014-01-08
KR20140002420 2014-01-08
KR1020140188666A KR102250899B1 (ko) 2014-01-08 2014-12-24 연성 인쇄회로기판용 전자파 차폐 필름 및 이의 제조방법
KR10-2014-0188666 2014-12-24

Publications (1)

Publication Number Publication Date
WO2015105340A1 true WO2015105340A1 (ko) 2015-07-16

Family

ID=53524117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000172 WO2015105340A1 (ko) 2014-01-08 2015-01-08 연성 인쇄회로기판용 전자파 차폐 필름 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2015105340A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108617084A (zh) * 2018-06-19 2018-10-02 信利光电股份有限公司 一种抗电磁干扰软性电路板和制作方法
CN108848660A (zh) * 2018-07-16 2018-11-20 苏州维业达触控科技有限公司 一种电磁屏蔽膜及其制作方法
CN108990403A (zh) * 2018-08-13 2018-12-11 北京梦之墨科技有限公司 一种电磁屏蔽结构
KR101912542B1 (ko) * 2017-10-25 2019-01-14 (주)크린앤사이언스 타공 금속 박판을 이용한 전자파 차폐재 및 그 제조방법
CN110226366A (zh) * 2017-02-08 2019-09-10 拓自达电线株式会社 电磁波屏蔽膜、屏蔽印制线路板及电子设备
EP3826444A1 (en) * 2019-11-19 2021-05-26 Google LLC Electromagnetic interference ("emi") sheet attenuators

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168887A (ja) * 2001-11-30 2003-06-13 Asahi Glass Co Ltd 電磁波遮蔽用フィルタの製造方法
JP2004069931A (ja) * 2002-08-05 2004-03-04 Tomoegawa Paper Co Ltd プラズマディスプレイ用複合光学フィルム
JP2008210898A (ja) * 2007-02-23 2008-09-11 Mitsui Chemicals Inc 電磁波シールド性フィルム及びそれを用いた窓ガラス
KR101096966B1 (ko) * 2003-07-30 2011-12-20 다이니폰 인사츠 가부시키가이샤 플라즈마 디스플레이용 전면판 및 플라즈마 디스플레이
KR20130090500A (ko) * 2012-02-06 2013-08-14 한화엘앤씨 주식회사 전자기파 차폐 필름 및 그 제작방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168887A (ja) * 2001-11-30 2003-06-13 Asahi Glass Co Ltd 電磁波遮蔽用フィルタの製造方法
JP2004069931A (ja) * 2002-08-05 2004-03-04 Tomoegawa Paper Co Ltd プラズマディスプレイ用複合光学フィルム
KR101096966B1 (ko) * 2003-07-30 2011-12-20 다이니폰 인사츠 가부시키가이샤 플라즈마 디스플레이용 전면판 및 플라즈마 디스플레이
JP2008210898A (ja) * 2007-02-23 2008-09-11 Mitsui Chemicals Inc 電磁波シールド性フィルム及びそれを用いた窓ガラス
KR20130090500A (ko) * 2012-02-06 2013-08-14 한화엘앤씨 주식회사 전자기파 차폐 필름 및 그 제작방법

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110226366A (zh) * 2017-02-08 2019-09-10 拓自达电线株式会社 电磁波屏蔽膜、屏蔽印制线路板及电子设备
CN110226366B (zh) * 2017-02-08 2021-02-12 拓自达电线株式会社 电磁波屏蔽膜、屏蔽印制线路板及电子设备
KR101912542B1 (ko) * 2017-10-25 2019-01-14 (주)크린앤사이언스 타공 금속 박판을 이용한 전자파 차폐재 및 그 제조방법
WO2019083141A1 (ko) * 2017-10-25 2019-05-02 주식회사 크린앤사이언스 타공 금속 박판을 이용한 전자파 차폐재 및 그 제조방법
CN109964550A (zh) * 2017-10-25 2019-07-02 洁净与科技株式会社 利用穿孔金属薄板的电磁波屏蔽件及其制造方法
US10999960B2 (en) 2017-10-25 2021-05-04 Clean & Science Co., Ltd. Electromagnetic wave shielding material using perforated metal thin plate and method of manufacturing same
CN108617084A (zh) * 2018-06-19 2018-10-02 信利光电股份有限公司 一种抗电磁干扰软性电路板和制作方法
CN108848660A (zh) * 2018-07-16 2018-11-20 苏州维业达触控科技有限公司 一种电磁屏蔽膜及其制作方法
CN108848660B (zh) * 2018-07-16 2024-04-30 苏州维业达科技有限公司 一种电磁屏蔽膜及其制作方法
CN108990403A (zh) * 2018-08-13 2018-12-11 北京梦之墨科技有限公司 一种电磁屏蔽结构
CN108990403B (zh) * 2018-08-13 2024-02-23 北京梦之墨科技有限公司 一种电磁屏蔽结构
EP3826444A1 (en) * 2019-11-19 2021-05-26 Google LLC Electromagnetic interference ("emi") sheet attenuators

Similar Documents

Publication Publication Date Title
WO2017111254A1 (ko) 전자파 차폐 필름 및 이의 제조방법
WO2015105340A1 (ko) 연성 인쇄회로기판용 전자파 차폐 필름 및 이의 제조방법
WO2016105131A1 (ko) 연성 인쇄회로기판용 전자파 차폐 필름의 제조방법
KR102250899B1 (ko) 연성 인쇄회로기판용 전자파 차폐 필름 및 이의 제조방법
WO2018012668A1 (ko) 안테나 모듈 형성용 복합기판 및 이의 제조방법
KR102537333B1 (ko) 전자파 차폐 필름 및 이를 포함하는 전자파 차폐형 연성 인쇄회로기판
WO2015080445A1 (ko) 내열성 및 저유전 손실 특성을 가진 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판
WO2019124624A1 (ko) 전자파 차폐필름, 인쇄회로기판 제조방법 및 전자파 차폐필름 제조방법
WO2019124929A1 (ko) 무선 충전용 복합기판
WO2018117636A1 (ko) 금속적층판 및 이의 제조방법
WO2019035697A1 (ko) Emi 차폐필름
KR102282613B1 (ko) 연성 인쇄회로기판용 전자파 차폐 필름의 제조방법
WO2015102461A1 (ko) 수지 이중층 부착 동박, 이를 포함하는 다층 인쇄 회로 기판 및 그 제조 방법
KR20200076177A (ko) 저유전 접착제 조성물 및 이를 포함하는 커버레이 필름
WO2015088245A1 (ko) 저유전 손실 특성을 가진 고주파용 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판
WO2015099451A1 (ko) 연성 인쇄회로기판 형성용 절연 수지 시트 및 이의 제조방법, 이를 포함하는 인쇄회로기판
WO2015046953A1 (ko) 변성 폴리페닐렌 옥사이드를 이용한 동박적층판
WO2014109593A1 (ko) 절연수지 필름, 상기 필름을 포함하는 금속박 적층판 및 인쇄회로기판, 및 상기 필름을 포함하는 회로기판의 제조방법
WO2018004190A1 (ko) 프라이머 코팅-동박 및 동박 적층판
TW201819183A (zh) 電磁波遮蔽材
KR101641210B1 (ko) 저열팽창 프리프레그의 제조방법 및 금속박 적층판의 제조방법
WO2016117720A1 (en) Electromagnetic wave shielding sheet and manufacturing method of the same
WO2020162668A1 (ko) 반도체 패키지용 열경화성 수지 조성물, 프리프레그 및 금속박 적층판
WO2023158259A1 (ko) 롤 타입의 연성 금속 적층판, 이를 제조하는 방법 및 상기 연성 금속 적층판을 포함하는 인쇄회로기판
WO2020121652A1 (ja) 半導体素子搭載用パッケージ基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15734947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.10.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 15734947

Country of ref document: EP

Kind code of ref document: A1