WO2015102461A1 - 수지 이중층 부착 동박, 이를 포함하는 다층 인쇄 회로 기판 및 그 제조 방법 - Google Patents
수지 이중층 부착 동박, 이를 포함하는 다층 인쇄 회로 기판 및 그 제조 방법 Download PDFInfo
- Publication number
- WO2015102461A1 WO2015102461A1 PCT/KR2015/000089 KR2015000089W WO2015102461A1 WO 2015102461 A1 WO2015102461 A1 WO 2015102461A1 KR 2015000089 W KR2015000089 W KR 2015000089W WO 2015102461 A1 WO2015102461 A1 WO 2015102461A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- layer
- copper foil
- insulating resin
- insulating
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
- B32B15/088—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4644—Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
- H05K3/4652—Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
- H05K3/4655—Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern by using a laminate characterized by the insulating layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/036—Multilayers with layers of different types
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0209—Inorganic, non-metallic particles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/06—Thermal details
- H05K2201/068—Thermal details wherein the coefficient of thermal expansion is important
Definitions
- the present invention provides a semiconductor substrate by forming a double layer of a first insulating resin layer having excellent copper foil adhesion and pattern plating adhesion and a second insulating resin layer having low thermal expansion characteristics on a copper foil having fine roughness.
- the present invention relates to a resin double layer copper foil which can be used as an up material, a multilayer printed circuit board including the resin double layer copper foil as an insulating layer, and to exhibit microcircuit implementation, low thermal expansion characteristics, and high reliability characteristics.
- Techniques for implementing a conventional microcircuit include a film method and a foil method.
- a film is generally manufactured by coating a special cured resin composition B on a film A, laminating the inner substrate C and the film, and then performing a film peeling process and a desmear process. Roughness is formed in the cured resin composition B side. Thereafter, pattern plating is performed using the roughness formed to implement a fine circuit.
- the thermal expansion coefficient of the resin layer is high, and the warpage of the semiconductor package occurs due to the difference in thermal expansion coefficient between the two components after mounting the semiconductor chip having a thermal expansion coefficient of 3 to 6 ppm / ° C. The problem of deterioration of reliability occurs.
- prepreg is used, but a defect in which the fibrous substrate is exposed during the desmear treatment after the laser drill occurs, thereby causing a pattern reliability problem.
- the inorganic content which is a low thermal expansion material, but when the inorganic content is increased, a problem arises in that the pattern plating adhesion, which is the core of the technology, is lowered.
- Copper foil foil method is another method, as shown in Figure 2, after coating the cured resin composition B capable of pattern plating on the copper foil foil A having a fine roughness, and then pre-prepared on the inner layer substrate D It laminates using the copper foil with the leg C and the resin layer which can be pattern-plated as an insulating layer. Subsequently, when the copper foil foil A is removed according to the SAP (semi-additive) method, the microcircuit is implemented by pattern plating using the principle that the fine roughness of the foil is transferred to the prepreg C.
- SAP sini-additive
- the present invention has been made in order to solve the problems of the two conventional microcircuit method described above, on the copper foil having a fine roughness, a curable resin composition having a pattern plating adhesive properties and a resin capable of implementing a low coefficient of thermal expansion (Low CTE)
- a curable resin composition having a pattern plating adhesive properties and a resin capable of implementing a low coefficient of thermal expansion (Low CTE)
- an object of the present invention is to provide a copper foil with a resin double layer having a novel laminated structure capable of simultaneously realizing a microcircuit pattern and exhibiting a low thermal expansion coefficient while solving the problems of the conventional microcircuit method.
- the present invention includes an insulating layer formed by using the copper foil with a resin double layer, thereby reducing the defects in the circuit formation process, multi-layer printing that can simultaneously reduce the thickness of the laminate, adhesive strength between layers, heat resistance and long-term reliability improvement
- Another object is to provide a circuit board and a method of manufacturing the same.
- the present invention (a) a copper foil having a predetermined surface roughness formed on one surface; (b) a first insulating resin layer formed on the surface roughness surface of the copper foil; And (c) a copper foil with a resin double layer formed on one surface of the first insulating resin layer and including a non-fiber base type second insulating resin layer containing an inorganic filler and a resin. do.
- the surface roughness Rz formed on one surface of the copper foil is preferably in the range of 0.6 ⁇ m to 3.0 ⁇ m.
- the surface roughness surface of copper foil is transcribe
- the adhesive force between the said copper foil and a 1st insulating resin layer is 0.7 kgf / cm ⁇ 2> or more.
- the first insulating resin layer (b) is (i) at least one first resin selected from the group consisting of polyimide and polyamideimide; And (ii) a surfactant, further comprising (iii) a bisphenol A type epoxy, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a biphenyl type epoxy resin, a phenol novolak type epoxy resin, a curesol novolak type epoxy At least one second selected from the group consisting of resins, bisphenol A novolac type epoxy resins, bisphenol F novolac type epoxy resins, naphthalene type epoxy resins, dicyclopentadiene type epoxy resins, polyfunctional phenols, anthracene, and naphthalene It is preferable to form from the resin composition which further contains resin.
- the first insulating resin layer may include an inorganic filler.
- the second insulating resin layer (c) preferably contains 55 to 85 parts by weight of the inorganic filler when the second insulating resin layer is 100 parts by weight.
- the inorganic filler constituting the second insulating resin layer is preferably a mixture of the first inorganic filler having an average particle diameter of 0.01 ⁇ 10 ⁇ m and the second inorganic filler having an average of 1 ⁇ 50nm, further organic filler It is preferable to use more.
- the resin constituting the second insulating resin layer contains an epoxy resin, and further preferably comprises at least one resin selected from the group consisting of bismaleimide resins and cyanate ester resins.
- the second insulating resin layer (c) may have a thermal expansion coefficient of 50 ppm / ° C. or less at 50 to 110 ° C. after curing, and preferably 25 ppm / ° C. or less.
- the thickness of the first insulating resin layer is preferably in the range of 1 to 30% of the total thickness of the sum of the thickness of the first insulating resin layer and the second insulating resin layer.
- the total thickness of the first insulating resin layer and the second insulating resin layer may be in the range of 10 to 50 ⁇ m.
- the thickness of the first insulating resin layer is in the range of 1 to 3 ⁇ m
- the thickness of the second insulating resin layer is preferably in the range of 10 to 50 ⁇ m
- the thickness of the copper foil is preferably less than 5 ⁇ m.
- this invention provides the multilayer printed circuit board with which the insulating layer was formed by the above-mentioned copper foil with a resin double layer.
- this invention provides the manufacturing method of a multilayer printed circuit board using the above-mentioned copper foil with a resin double layer.
- the method of manufacturing (i) at least one laminated copper foil with a resin double layer described above on one surface or both surfaces of the inner layer wiring board, the second insulating resin layer of the copper foil with a resin double layer on the wiring board Arranging the metal surface to form an insulating layer through a heating and pressing process, and then building up the laminate; (ii) etching the copper foil located on the top surface of the laminate; (iii) forming one or more holes in the insulating layer of the laminate; (iv) desmearing the surface of the insulating layer and the inside of the hole; (v) forming an electroless plating layer on the surface roughness surface and the inner surface of the hole of the exposed first insulating resin layer; (vi) forming a pattern using photoresist on the formed electroless plating layer; (vii) forming a circuit layer by electroplating on the pattern; And (viii) peeling off the photoresist and removing the exposed electroless plating layer.
- the thickness of the printed circuit board can be significantly reduced, and the manufacturing ease can be secured by minimizing the structural bending characteristics as a final product.
- FIG. 1 is a cross-sectional view illustrating a manufacturing process of a multilayer printed circuit board using a conventional film method.
- FIG. 2 is a cross-sectional view illustrating a manufacturing process of a multilayer printed circuit board using a conventional copper foil method.
- FIG. 4 is a cross-sectional view showing a manufacturing process of a multilayer printed circuit board using a copper foil with a resin double layer according to an embodiment of the present invention.
- first insulating resin layer 130 second insulating resin layer
- a novel resin double layer in which a functional resin exhibiting 'excellent adhesion to a substrate and a plating layer' and 'low thermal expansion characteristics', respectively, is composed of a double layer ( It is a technical feature to provide a copper foil with resin double layer).
- the said resin double layer copper foil is (a) copper foil which has predetermined surface roughness on one surface; (b) a first insulating resin layer formed on the surface roughness surface of the copper foil and excellent in adhesion to other substrates (eg, copper foil) and plating adhesion; And (c) a non-fiber base type second insulating resin layer, which is formed on the first insulating resin layer and has a low thermal expansion coefficient, is sequentially stacked (see FIG. 3).
- the first insulating resin layer is a resin layer that does not contain an inorganic filler or contains a very small amount
- the microcracks due to the high content of the inorganic filler included in the insulating layer in the laser processing step of the printed circuit board manufacturing process (micro) Significantly reduces the incidence of cracks, enabling more precise circuit implementation.
- the first insulating resin layer is made of a resin composition having excellent adhesion to other substrates and plating adhesion, it is possible not only to implement a fine circuit pattern but also to improve the adhesive strength between plating layers formed by the plating process, thereby improving reliability of the product. Can be improved.
- the second insulating resin layer according to the present invention may load the inorganic filler in a high content, it may exhibit an effect of reducing the coefficient of thermal expansion (CTE) of the substrate.
- the thermal expansion coefficient of the substrate can also be adjusted by adjusting the inorganic filler, the components of the resin, and the composition thereof, which constitute the second insulating resin layer.
- the thickness ratio of the first insulating resin layer implementing the microcircuit pattern and the second insulating resin layer having low thermal expansion coefficient characteristics can be freely adjusted.
- the thickness of the first insulating resin layer does not affect the thermal expansion characteristics of the substrate, despite the use of the non-prepreg-type low thermal expansion second insulating resin layer, it is possible to fully exhibit the low thermal expansion coefficient effect
- the overall thickness of the final laminate can be reduced.
- the copper double layer with resin double layer of the present invention includes a copper foil 110 having fine roughness formed on one surface thereof, and a first insulating resin layer 120 formed on the surface roughness surface of the copper foil. ; And a non-fiber base type second insulating resin layer 130 formed on the first insulating resin layer and containing an inorganic filler and a resin, and having a structure in which they are sequentially stacked.
- the copper foil 110 may be a copper foil having a predetermined surface roughness Rz formed on one surface thereof.
- the copper foil may use any conventional copper foil known in the art without limitation, and includes all copper foils produced by, for example, a rolling method and an electrolytic method.
- the copper foil may be subjected to rust prevention treatment in order to prevent oxidative corrosion of the surface.
- the copper foil has a predetermined surface roughness (Rz) is formed on one surface in contact with the first insulating resin layer, wherein the surface roughness (Rz) is preferably in the range of 0.6 ⁇ m to 3.0 ⁇ m. However, it is not limited thereto.
- the thickness of the copper foil is not particularly limited, but in consideration of the thickness and mechanical properties of the final product may be used that is 12 ⁇ m or less, preferably 2 to 5 ⁇ m range.
- Examples of copper foil that can be used include Mitsui 18MT-EX, F2-WS, F1-WS, FWL-WS, T4X, and the like.
- the first insulating resin layer 120 is disposed in contact with the surface roughness surface of the copper foil 110, and the thermal curing having a function of implementing excellent adhesion and pattern plating adhesion with the copper foil as a substrate (substrate) It contains the hardened layer formed by hardening
- This first insulating resin layer is a functional resin layer configured to improve the copper foil adhesive force lowered due to the organic / inorganic filler loaded at a high content in the second insulating resin layer. Moreover, it is preferable that the said 1st insulating resin layer is comprised from the composition which can form roughness by a desmear process.
- the resin composition of the present invention for forming the above-described first insulating resin layer may be composed of a polyimide (PI) -based first resin and a surfactant, and may further include a second resin such as an epoxy resin if necessary. Can be.
- PI polyimide
- second resin such as an epoxy resin
- the polyimide resin may use a conventional polyimide (PI) resin known in the art.
- Polyimide (PI) is a high molecular material having an imide ring. Based on the chemical stability of the imide ring, polyimide (PI) exhibits excellent heat resistance, chemical resistance, abrasion resistance and weather resistance, and low thermal expansion coefficient and low breathability. And excellent electrical properties. Moreover, moderate flexibility can be provided to the resin composition after hardening.
- the polyimide (PI) is generally synthesized by condensation polymerization of an aromatic dianhydride and an aromatic diamine (or aromatic diisocyanate), and the polyimide is preferably a thermosetting polyimide.
- Non-limiting examples of the polyimide resin that can be used include polyimide, polyamideimide, composite resins thereof and the like.
- the polyimide-based resin may be prepared by imidization of a polyamic acid varnish obtained through imidation reaction of a typical dianhydride and diamine known in the art.
- the content of the polyimide-based resin may be in the range of 70 to 100 parts by weight based on 100 parts by weight of the total resin composition, preferably 80 to 100 parts by weight. Can be. When the content of the polyimide resin falls within the above-mentioned range, the curability, molding processability, and adhesion of the resin composition are good.
- the surfactant can be used without limitation to conventional surfactant components known in the art.
- the surfactant is a component having an action of adjusting the surface tension of the thermosetting resin composition varnish for forming the first insulating resin layer and improving the coating property, coatability, uniformity, and the like on the copper foil serving as the coating substrate.
- Non-limiting examples of the surfactants that can be used include fluorine-based surfactants, silicone-based surfactants, nonionic surfactants or mixtures of one or more thereof.
- the amount of the surfactant may be in the range of 0.001 to 0.1 parts by weight, preferably 0.001 to 0.05 parts by weight based on 100 parts by weight of the total resin composition. have.
- the content of the surfactant falls within the above-mentioned range, the coating property, the coatability, and the uniformity of the resin composition on the substrate are good.
- thermosetting resin composition for forming a first insulating resin layer according to the present invention may contain a second resin such as an epoxy resin, if necessary.
- the epoxy resin can be used without limitation conventional epoxy resins known in the art, it is preferred that two or more epoxy groups are present in one molecule.
- Non-limiting examples of the epoxy resins that can be used include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, biphenyl type epoxy resins, phenol novolac type epoxy resins, curesol novolac type epoxy resins, Bisphenol A novolak-type epoxy resins, bisphenol F novolak-type epoxy resins, dicyclopentadiene-type epoxy resins, polyfunctional phenols, anthracene, naphthalene, or mixtures of one or more thereof.
- More specific examples include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, naphthalene type epoxy resins, anthracene epoxy resins, biphenyl type epoxy resins, tetramethyl biphenyl type epoxy resins, and phenol novolacs.
- the content of the epoxy resin may be in the range of 0 to 30 parts by weight based on 100 parts by weight of the total resin composition, preferably 0 to 20 parts by weight. have.
- the content of the epoxy resin falls within the above-mentioned range, the curability, molding processability and adhesion of the resin composition are good.
- thermosetting resin composition for forming the first insulating resin layer of the present invention may further include an additive such as an inorganic filler.
- an additive such as an inorganic filler.
- the inorganic filler include silica, alumina, aluminum hydroxide, calcium carbonate, clay, talc, silicon nitride, boron nitride, titanium oxide, barium titanate, or titanate, but are not limited thereto.
- the average particle diameter of the inorganic filler included in the first insulating resin layer may be in a range of 0.1 to 10 ⁇ m, and preferably in a range of 0.1 to 2 ⁇ m.
- the content of the inorganic filler may be in the range of 0 to 20 parts by weight based on 100 parts by weight of the total resin composition, preferably 0 to 15 parts by weight. When the content of the inorganic filler falls within the above range, the chemical resistance and moldability of the resin composition are good.
- the resin composition for forming the first insulating resin layer of the present invention is a flame retardant generally known in the art as necessary, and other thermosetting resins not described above within the range that does not impair the intrinsic properties of the resin composition.
- Various polymers such as thermoplastic resins and oligomers thereof, solid rubber particles or other additives such as UV absorbers, antioxidants, polymerization initiators, dyes, pigments, dispersants, thickeners, leveling agents, curing accelerators, and the like may be further included.
- Examples include flame retardants such as organophosphorus flame retardants, organic nitrogen-containing phosphorus compounds, nitrogen compounds, silicone flame retardants, and metal hydroxides; Organic fillers such as silicone powder, nylon powder, and fluororesin powder, and thickeners such as orbene and benton; Polymeric antifoaming agents or leveling agents such as silicone-based and fluorine-based resins; Adhesion imparting agents such as imidazole series, thiazole series, triazole series, and silane coupling agents; Phthalocyanine, carbon black, etc. can be mentioned a coloring agent.
- flame retardants such as organophosphorus flame retardants, organic nitrogen-containing phosphorus compounds, nitrogen compounds, silicone flame retardants, and metal hydroxides
- Organic fillers such as silicone powder, nylon powder, and fluororesin powder, and thickeners such as orbene and benton
- Polymeric antifoaming agents or leveling agents such as silicone-based and fluorine-based resins
- Adhesion imparting agents such as imidazole
- thermoplastic resin can be mix
- thermoplastic resins include phenoxy resins, polyvinyl acetal resins, polyethersulfones, polysulfones, and the like. Any one of these thermoplastic resins may be used alone, or two or more thereof may be used in combination.
- the adhesive force between the copper foil 110 and the first insulating resin layer 120 may be 0.7 kgf / cm 2 or more. Preferably from 0.7 to 1.0 kgf / cm 2 .
- the surface roughness surface of the copper foil 110 is transcribe
- the surface roughness (Rz) of the first insulating resin layer may be the same as the surface roughness (Rz) value of the copper foil, for example, may be in the range of 0.6 ⁇ m to 3.0 ⁇ m.
- the method of transferring is not particularly limited and may be, for example, by laminating and pressing the copper foil and the first insulating resin layer.
- the thickness of the first insulating resin layer 120 is the first insulating resin layer 120 and the second insulating resin layer 130.
- the thickness of the sum may be in the range of 1 to 30% of the total thickness, preferably in the range of 1 to 20%.
- the first insulating resin layer may not affect the thermal expansion characteristics of the substrate.
- the total thickness of the first insulating resin layer and the second insulating resin layer may be in the range of 10 to 50 ⁇ m, preferably in the range of 15 to 50 ⁇ m.
- the thickness of the first insulating resin layer according to the present invention may range from 1 to 3 ⁇ m.
- the second insulating resin layer 130 is formed on the first insulating resin layer 120, and the cured layer formed by curing the cured resin composition having low thermal expansion characteristics and laser drill processability. Include.
- the second insulating resin layer 130 is a non-prepreg type in which fibrous substrates such as glass substrates are excluded in order to realize a thin and uniform thickness and improve laser drill processability. Since the second insulating resin layer contains a high content of organic / inorganic fillers, the thermal expansion coefficient (CTE) of the substrate can be lowered, and the content of the organic / inorganic fillers to be added can be freely controlled, thereby controlling the thermal expansion coefficient of the substrate. This is possible.
- CTE thermal expansion coefficient
- the non-fiber substrate type does not include a fibrous substrate, the problem caused by the exposure of the fibrous substrate during laser drilling may also be solved.
- the resin composition of the present invention for forming the above-described second insulating resin layer may be composed of an organic, inorganic filler, an epoxy resin, a curing agent, and if necessary, maleimide resins, cyanate ester resins, catalysts, and the like. It may further include.
- the filler may be used without limitation, conventional organic fillers, inorganic fillers, or both known in the art.
- the inorganic filler is used to effectively reduce the coefficient of thermal expansion (CTE) between the insulating layer and the inner layer wiring board to effectively improve the warpage characteristics, low expansion, mechanical properties, and low stress of the final product
- a conventional Inorganic fillers can be used without limitation.
- Non-limiting examples of inorganic fillers that can be used include silica, calcium carbonate, magnesium carbonate, alumina, magnesia, clay, talc, calcium silicate, titanium oxide, antimony oxide, glass fiber, aluminum borate, barium titanate, strontium titanate, calcium titanate , Magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate, boron nitride, silicon nitride, talc, mica and the like. These can be used 1 type or 2 types or more.
- the organic filler can be used in the present invention.
- examples of organic fillers that can be used include silicone powder, nylon powder, fluorine powder and the like.
- the average particle diameter of the organic filler is not particularly limited, but for example, the average particle diameter may be in the range of 0.01 to 10 ⁇ m, and preferably in the range of 0.01 to 2 ⁇ m.
- the amount of the inorganic filler used may be appropriately adjusted in consideration of bending property, mechanical properties, and the like.
- the content of the inorganic filler may be included in the range of 55 to 85 parts by weight, and preferably in the range of 55 to 80 parts by weight when the second insulating resin layer is 100 parts by weight of the present application.
- the shape of the inorganic filler is not particularly limited, and may be, for example, spherical, ellipsoid, tetrahedron, hexahedron, triangular pillar, square pillar, cylinder, elliptical pillar, polygonal pillar or amorphous, and preferably may be spherical.
- the average particle diameter of the first inorganic filler of the two inorganic fillers may be in the range of 0.01 to 10 ⁇ m, preferably 0.01 to 2 ⁇ m range.
- the average particle diameter of the second inorganic filler may be in the range of 1 to 50 nm, preferably in the range of 1 to 30 nm.
- a silica 1st inorganic filler (average particle diameter: 0.5 micrometer), a nano silica 2nd inorganic filler (average particle diameter: 20 nm), and a silicon rubber (average particle diameter: 0.5 micrometer) are mixed.
- their content range is not particularly limited and may be appropriately adjusted.
- Resin which is a component constituting the second insulating resin layer of the present invention may be used without limitation, conventional resin (resin) known in the art that serves to fix and bind the inorganic filler.
- Non-limiting examples of the resin that can be used may be one or more selected from the group consisting of epoxy resins, bismaleimide-based resins, cyanate ester resins, and thermosetting resins.
- the same or different thing as the component of the epoxy resin which comprises the above-mentioned 1st insulating resin layer can be used.
- the epoxy resin that can be used include bisphenol A epoxy resin, bisphenol F epoxy resin, bistenol S type epoxy resin, naphthalene type epoxy resin, anthracene epoxy resin, biphenyl type epoxy resin, tetramethyl ratio Phenyl type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol S novolak type epoxy resin, biphenyl novolak type epoxy resin, naphthol novolak type epoxy resin, Naphthol phenol coaxial novolak type epoxy resin, naphthol corresol coaxial novolak type epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenol resin type epoxy resin, triphenyl methane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopenta
- an epoxy resin having a bisphenol A epoxy resin, a naphthol type epoxy resin, a naphthalene type epoxy resin, a biphenyl type epoxy resin, and a butadiene structure is preferable from the viewpoint of heat resistance, insulation reliability, and adhesion.
- liquid bisphenol-A epoxy resin (“Epicoat 828EL” (“jER828EL” made by Japan Epoxy Resin Co., Ltd.)), naphthalene-type bifunctional epoxy resin (“HP4032” made by Dainippon Ink & Chemicals Co., Ltd.) , “HP4032D”), naphthalene-type tetrafunctional epoxy resin (“HP4700” made by Dainippon Ink & Chemicals Co., Ltd.), naphthol type epoxy resin (“ESN-475V” by Totogase Co., Ltd.), butadiene structure Epoxy resin (“PB-3600” by Daicel Chemical Co., Ltd.), epoxy resin ("NC3000H” by Nihon Kayaku Co., Ltd. "” NC3000L “, Japan epoxy resin Co., Ltd. which have biphenyl structure) "YX4000”) etc.
- the above-mentioned epoxy resin can be used individually, or 2 or more types can be used together.
- the aromatic epoxy resin referred to in the present invention means an epoxy resin having an aromatic ring skeleton in its molecule.
- a liquid epoxy resin and a solid epoxy resin can be mixed as an epoxy resin.
- the resin composition in the form of an adhesive film it is possible to form an adhesive film having sufficient flexibility and excellent handleability, and at the same time, the breaking strength of the cured product of the resin composition is improved, thereby improving durability of the multilayer printed wiring board. Can be.
- the content of the epoxy resin of the present invention may be in the range of 5 to 75 parts by weight based on 100 parts by weight of the total resin composition, preferably in the range of 15 to 65 parts by weight.
- the content of the epoxy resin falls within the above-mentioned range, the curability, molding processability and adhesion of the resin composition are good.
- thermosetting resin composition for forming the second insulated resin layer of the present invention may contain bismaleide-based resin, cyanate ester-based resin, or both thereof as necessary.
- Bismaleimide-based resins exhibit high fluidity before curing, but exhibit excellent heat resistance and low coefficient of thermal expansion after curing.
- the thermal expansion coefficient (CTE) of the maleimide resin is further lowered compared with the epoxy resin.
- the bismaleide-based resin can be used without limitation, a maleide-based resin having two or more maleimide groups in the molecule.
- Non-limiting examples of usable bismaleide-based resins include 4,4'-diphenylmethane bismaleimide, phenylmethanemaleimide and bis (3-ethyl-5 -Methyl-4-maleimide-phenyl) methane resin [Bis (3-Ethyl-5-Methyl-4-Maleimide-Phenyl) Methane resin], bis (maleimide-triazine) addition copolymer [bis (maleimide-triazine) ) addition copolymer], N, N'-phenylenebismaleimide, N, N'-hexamethylenebismaleimide, N, N'-benzophenone bismaleimide, N, N'-diphenylmethanebismaleimide, N, N'-oxy-di-p-phenylenebismaleimide, N,
- the content of the bismalade resin may be in the range of 2 to 70 parts by weight based on 100 parts by weight of the total resin composition, and preferably in the range of 5 to 50 parts by weight. Can be.
- the cyanate ester resin is also a resin consisting of monomers containing one or more cyanate ester functional groups (-O-C ⁇ N).
- the cyanate ester resin can act as a curing agent of the epoxy resin, when the epoxy resin and the cyanate ester resin are mixed, only a curing accelerator can be used without using a curing agent.
- cyanate ester resin examples include bisphenol A type cyanate ester resin, bisphenol M type cyanate ester resin, bisphenol F type cyanate ester resin, novolak type cyanate ester resin, dicyclo Pentadiene bisphenol type (DCPD type) cyanate ester resins and prepolymers thereof, and the like, but are not limited thereto.
- More specific examples include 2,2-bis (4-cyanatephenyl) propane, bis (4-cyanatephenyl) ethane, bis (3,5-dimethyl-4-cyanatephenyl) methane, 2,2-bis ( 4-cyanatephenyl) -1,1,1,3,3,3-hexafluoro propane, cyanate esters of phenol addition dicyclopentadiene polymers, prepolymer bisphenol A dicayanate oligomer , 2,2-bis (4-cyanatophenyl) propane homopolymer [2,2-Bis (4-cyanatophenyl) propane homopolymer], polycesol cyanate, polyphenolcyanate, 4,4'-ethylidenediphenyl dicyanate, 4,4'-methylenebis (2,6-dimethylphenyl cyanate) [4,4'-methylenebis (2,6) -dimethylphenyl cyanate)], and these may be used alone or in combination of two or more thereof.
- the content of the cyanate ester resin may be in the range of about 2 to 60 parts by weight relative to 100 parts by weight of the total resin composition, and preferably in the range of about 5 to 50 parts by weight. When the content of the cyanate ester resin falls within the above-mentioned range, the curability, molding processability and adhesion of the resin composition are good.
- the content of the bismaleimide-based resin and cyanate ester resin may be in the range of 2 to 70 parts by weight based on 100 parts by weight of the total resin composition, and preferably 5 to 50. It may be composed of parts by weight.
- curing agent component which comprises the thermosetting resin composition for 2nd insulating resin layer formation of this invention can use the conventional hardening
- the curing agent may be appropriately selected and used depending on the type of epoxy resin to be used.
- hardeners that can be used include phenolic, anhydride, dicyanamide, and hardeners, of which phenolic hardeners are preferred because they can further improve heat resistance and adhesion.
- Non-limiting examples of curing agents that can be used include phenol novolac, cresol novolac, bisphenol A novolac, phenolic curing agent, naphthalene type curing agent, active ester curing agent, or mixtures of one or more thereof.
- a phenol-based curing agent having a novolak structure and a curing agent having a novolak structure are preferable.
- curing agent which has a novolak structure for example, MEH-7700, MEH-7810, MEH-7851 (Reference: Meiwa Chemical Co., Ltd.
- NHN, CBN, GPH [manufactured by Nihon Kayaku Co., Ltd.], SN170, SN180, SN190, SN475, SN485, SN495, SN375, SN395 [manufactured by Totokasei Co., Ltd.], LA7052, LA7054 [Reference] : Dai Nippon Ink Chemical Industries, Ltd. make.
- the active ester curing agent include EXB-9451 and EXB-9460 (manufactured by Dainippon Ink & Chemicals Co., Ltd.), DC808 (manufactured by Japan Epoxy Resin Co., Ltd.), and the like. In this invention, even if it uses 1 type, a hardening
- the content of the curing agent in the present invention is not particularly limited, but may be in the range of 5 to 65 parts by weight based on 100 parts by weight of the total composition, preferably 5 to 45 parts by weight.
- the content of the curing agent falls within the above-described range, the strength and heat resistance of the cured product may be exhibited satisfactorily, and the moldability may be excellent due to the fluidity.
- thermosetting resin composition for forming the second insulating resin layer of the present invention may use a conventional curing accelerator known in the art.
- a hardening accelerator is a material for promoting the reaction between the epoxy resin and the hardening agent, and may be an imidazole-based hardening accelerator, an amine hardening accelerator, a metal hardening accelerator or a mixture thereof.
- Non-limiting examples of the imidazole-based curing accelerators that can be used include imidazole, 2-methyl imidazole, 2-ethylimidazole, 2-decylimidazole, 2-heptimidazole, and 2-isopropyl.
- Non-limiting examples of the amine curing accelerator include trialkylamines such as triethylamine and tributylamine; Amine compounds such as 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, 1,8-diazabicyclo (5,4,0) -undecel (DBU), or Mixtures of one or more thereof.
- trialkylamines such as triethylamine and tributylamine
- Amine compounds such as 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, 1,8-diazabicyclo (5,4,0) -undecel (DBU), or Mixtures of one or more thereof.
- the metal curing accelerator examples include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
- organometallic complex organic cobalt complexes, such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organic copper complexes, such as copper (II) acetylacetonate, zinc (II) acetylaceto Organic zinc complexes such as nate, organic iron complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, organic manganese complexes such as manganese (II) acetylacetonate, and the like.
- organic metal salts examples include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate. You may use a metal type hardening accelerator 1 type or in combination of 2 or more types.
- the content of the curing accelerator may be in the range of 0.002 to 10 parts by weight, and preferably in the range of 0.006 to 1 part by weight based on 100 parts by weight of the total resin composition.
- the resin composition for forming the second insulating resin layer of the present invention is a flame retardant generally known in the art, if necessary, within a range that does not impair the intrinsic properties of the composition.
- Other polymers such as other thermosetting or thermoplastic resins and oligomers not described above, other accelerators such as curing accelerators, solid rubber particles or ultraviolet absorbers, antioxidants, polymerization initiators, dyes, pigments, dispersants, thickeners, leveling agents and the like. And the like may further be included.
- the thermal expansion coefficient after curing may be less than 50 ppm / ° C., preferably 25 ppm / ° C. It may be in the following range.
- the thickness of the second insulating resin layer may be in the range of 10 to 50 ⁇ m.
- the second insulating resin layer 130 according to the present invention may contain a laser energy absorbing component in order to further improve the workability of the hole by the laser.
- a laser energy absorbing component known ones such as carbon powder, metal compound powder, metal powder or black dye can be used. Moreover, these can use any 1 type or 2 or more types together.
- Examples of the carbon powder include powders of carbon black such as furnace black, channel black, acetylene black, thermal black, anthracene black, graphite powder, or a mixture thereof.
- Examples of the metal compounds include titania such as titanium oxide, magnesia such as magnesium oxide, iron oxide such as iron oxide, nickel oxide such as nickel oxide, zinc oxide such as manganese dioxide and zinc oxide, silicon dioxide, aluminum oxide, and rare earth oxide, Cobalt oxides such as cobalt oxide, tin oxides such as tin oxide, tungsten oxides such as tungsten oxide, silicon carbide, tungsten carbide, boron nitride, silicon nitride, titanium nitride, aluminum nitride, barium sulfate, rare earth sulfides, or mixtures thereof Powder and the like.
- the metal powder examples include silver, aluminum, bismuth, cobalt, copper, iron, magnesium, manganese, molybdenum, nickel, palladium, antimony, silicon, tin, titanium, vanadium, tungsten, zinc, or powders of alloys or mixtures thereof.
- Carbon powder is preferable from a viewpoint of the conversion efficiency with respect to heat of laser energy, versatility, etc. as a laser energy absorbent component.
- the upper limit of the average particle diameter of the laser energy absorbent component is preferably in the range of 0.01 ⁇ m to 20 ⁇ m from the viewpoint of efficiently absorbing laser energy.
- the second insulating resin layer 130 may be protected by a protective film in order to prevent surface damage, adhesion of foreign matters, and the like.
- the protective film can be used such as conventional plastic film known in the art.
- the thickness of the protective film may range from 1 to 40 ⁇ m, preferably from 10 to 30 ⁇ m.
- Copper foil 100 with a resin double layer according to the present invention can be prepared according to a conventional method known in the art, for example, the composition for forming the first insulating resin layer is cured on the surface roughness surface of the copper foil 100
- the first insulating resin layer 120 and the second insulating resin layer-forming composition can be obtained by adhering the cured second insulating resin layer 130.
- the method of curing after sequentially applying the composition for forming the first insulating resin layer and the composition for forming the second insulating resin layer on the surface roughness surface of the copper foil, respectively, of the first insulating resin layer adhered on the copper foil There is a method of laminating and bonding the second insulating resin layer adhesive sheet formed on the support on one surface, or after winding the sheet-shaped copper foil, the first insulating resin layer and the second insulating resin layer in roll form, respectively, and then It may be laminated in the above manner, or lamination may be performed after both the rolled sheets are cut.
- the first insulating resin layer 120 may be obtained by applying a thermosetting resin composition varnish for forming a first insulating resin layer on the surface roughness surface of the copper foil and simultaneously performing heating, drying and curing, or
- coated on the support body can also be obtained by arrange
- thermosetting resin composition for forming the first insulating resin layer on the substrate
- a roll coater bar coater, coater coater, blade coater, lip coater, rod coater, squeeze coater, reverse coater, transfer roll coater, gravure coater
- a thermosetting resin composition By applying a thermosetting resin composition on the substrate with a spray coater and the like, it may be carried out by drying for 1 to 30 minutes at a temperature of 50 to 130 °C.
- organic solvents examples include ketones such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, and propylene glycol monomethyl.
- ketones such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, and propylene glycol monomethyl.
- Acetic acid esters such as ether acetate and carbitol acetate, carbitols such as cellosolve and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like.
- the second insulating resin layer 130 may also be manufactured according to conventional methods known in the art.
- the thermosetting resin composition varnish for forming the second insulating resin layer may be obtained by coating on one surface of the first insulating resin layer and performing heating, drying and curing simultaneously / sequentially, or applying the resin varnish applied on the support.
- the adhesive sheet obtained by heating and drying is arrange
- the second insulating resin layer 130 may have a film or sheet shape having self-supportability.
- the second insulating resin layer is formed by applying and drying / curing on a substrate a composition for forming a second insulating resin layer comprising the above-described inorganic filler and resin according to a method known in the art, for example.
- the resin composition may be molded into a film.
- the surface of the substrate on which the cured layer of the resin composition is attached may be a release treatment, and the cured layer of the cured resin composition may be protected by a protective film.
- the total thickness of the first insulating resin layer 120 and the second insulating resin layer 130 is in the range of 10 ⁇ m to 50 ⁇ m, preferably 15 to 50 ⁇ m. .
- the thickness of the insulated resin sheet falls within the above-mentioned range, the embedding of the circuit is sufficient and the thickness of the multilayer printed circuit board can be reduced.
- This invention includes the printed circuit board which uses the above-mentioned copper foil with a resin double layer as an insulating layer.
- a printed circuit board refers to a printed circuit board laminated by one or more layers by a plating through-hole method, a build-up method, etc., and can be obtained by overlaying an insulating resin sheet on an inner wiring board and heating and pressing.
- the printed circuit board reduces the overall lamination thickness by using a copper foil with a resin double layer according to the present invention in which a second insulating resin layer having a low thermal expansion coefficient and a first insulating resin layer having excellent copper foil adhesion and plating adhesion are sequentially laminated.
- a high density microcircuit pattern can be realized while lowering the coefficient of thermal expansion between layers of the substrate.
- the printed circuit board of the present invention can be manufactured by a conventional method known in the art, for example, semi-additive, except that the above-described copper foil with resin double layer is used.
- At least one copper foil with a resin double layer described above is laminated on one or both surfaces of the inner layer wiring board, and the second insulating resin layer of the copper foil with a resin double layer Placing the metal surface in contact with each other to form an insulating layer through a heating and pressing process to build up the laminate; (ii) etching the copper foil located on the top surface of the laminate; (iii) forming one or more holes in the insulating layer of the laminate; (iv) desmearing the surface of the insulating layer and the inside of the hole; (v) forming an electroless plating layer on the surface roughness surface and the inner surface of the hole of the exposed first insulating resin layer; (vi) forming a pattern using photoresist on the formed electroless plating layer; (vii) forming a circuit layer by electroplating on the pattern; And (viii) peeling off the photoresist and removing the exposed electroless plating layer.
- the 2nd insulating resin layer of the copper foil with a resin double layer is arrange
- the inner wiring board is used as a core substrate, and a laminate with a double-sided flexible metal can also be used. For example, after drilling a double-sided copper plate to form a hole and plating, dry film resistors are laminated on both sides, and exposed, developed, and etched to form a wiring pattern, and then press-coated the exposed portion.
- the inner layer wiring board and the copper foil with a resin double layer is laminated, but is disposed so as to contact the metal surface of the inner layer wiring board and the second insulating resin layer of the copper foil with a resin double layer and then pressurized vacuum.
- Vacuum heating pressure molding is carried out using a miner device or the like.
- heat press-molding it does not specifically limit as conditions to heat press-molding here, For example, it can carry out at the temperature of 60-160 degreeC, and the pressure of 0.2-3 MPa. Moreover, it does not specifically limit as a condition to heat, For example, it can carry out by temperature 140-240 degreeC and time 30-120 minutes.
- the 2nd insulating resin layer of the copper foil with a resin double layer is overlaid on the said inner layer wiring board, and this is heat-pressure-molded by a flat plate press apparatus etc.
- a flat plate press apparatus it does not specifically limit as a condition to heat press molding here, For example, it can carry out by temperature 140-240 degreeC and pressure 1-4 MPa.
- an insulating layer is formed simultaneously with heat press molding.
- the surface roughness surface of copper foil is transcribe
- the copper foil located on the uppermost surface of the laminate is removed by etching. Through this step, the first insulating resin layer having a predetermined surface roughness is exposed on the outer surface.
- the method of etching the copper foil is not particularly limited, and conventional methods known in the art may be used.
- One or more holes are formed in the insulating layer of the laminate.
- Holes are formed by irradiating a laser to the insulating layer of the laminate.
- the laser may be an excimer laser, a UV laser, a carbon dioxide (CO 2 ) laser, or the like.
- a desmear process is a process of removing the resin residue etc. (smear) after laser irradiation with oxidizing agents, such as a permanganate and a dichromate.
- the surface of the first insulating resin layer positioned on the uppermost surface of the insulating layer is already formed with a predetermined surface roughness Rz, whereas the surface roughness is not formed on the inner surface of the hole. Therefore, through this step, the inner surface of the hole by laser processing is processed to form an rough surface having an appropriate roughness (roughness).
- the surface of the smooth insulating layer can be harmonized simultaneously, and the adhesiveness of the electrically conductive wiring circuit formed by the metal plating which follows is improved.
- an etching process may be further performed to maintain a horizontal roughness surface having an appropriate roughness on the insulating layer after the desmear process.
- An electroless plating layer is formed on the rough surface of the insulating layer and the inner surface of the hole.
- Electroless plating is performed on the roughness surface and the inner surface of the hole of the first insulating resin layer to form a relatively thin plating layer.
- the electroless plating layer is to secure the adhesive strength to the insulating resin layer in advance in order to raise the fine circuit pattern layer to be formed thereon.
- the adhesion between the circuit electrode to be formed and the substrate has a close relationship, and an electroless plating layer is formed between the substrate and the circuit electrode.
- the electroless plating layer is formed using the surface-coated catalyst as an active point, ultimately there is no adhesion with the substrate. Therefore, when the roughness of the substrate surface is large, the adhesion between them is maintained well by the anchor effect, but when the roughness is not present on the substrate surface, the adhesiveness tends to be lowered. Therefore, it is preferable to obtain a good circuit shape by adjusting it to have a surface roughness of about 0.1 times or less of the formed circuit width.
- the said electroless plating layer used as the seed layer of an electrolytic plating layer is generally 0.1-5 micrometers.
- a pattern is formed on the formed electroless plating layer using photoresist.
- a fine circuit pattern is formed by coating a photoresist as a lithography process and forming an opening for forming an outer layer pattern.
- the photoresist may be a dry film or the like.
- a circuit layer by electroplating is formed on the pattern.
- a conductor layer for forming the fine circuit pattern in the opening of the photoresist layer is formed by electroplating.
- the electroplating layer forms a new circuit layer connected to the inner layer wiring board by the hole.
- the thickness of the electroplating layer is preferably in the range of about 1 ⁇ m to 20 ⁇ m.
- the line / space of the circuit pattern formed in this step may be less than 25 ⁇ m / 25 ⁇ m, preferably in the range of 15/15 to 20/20 ⁇ m / ⁇ m.
- circuit pattern is completed by removing the unnecessary photoresist layer and removing the exposed electroless plating layer.
- the manufacturing of the printed circuit board is completed by further performing a manufacturing process of a conventional printed circuit board known in the art, such as an electronic device mounting process.
- the above-described manufacturing method of the multilayer printed circuit board is not to be manufactured by sequentially performing the above-described steps, but may be performed by modifying or selectively mixing the steps of each process according to design specifications.
- curing agent, surfactant, etc. were mixed, and the resin composition for 1st insulating resin layer formation and the composition for 2nd insulating resin layer formation were produced, respectively.
- the amount of each unit used is parts by weight.
- a resin composition, a copper foil with a resin double layer, and a printed circuit board were manufactured in the same manner as in the above examples, except that the compositions described in Tables 1 and 2 were followed.
- the amount of each unit used is parts by weight.
- T g Glass transition temperature was measured by IPC-TM-650-2.4.24.4 (DMA Method) using DMA (Dynamic Mechanical Analysis), TA Q800.
- CTE was evaluated by IPC-TM-650-2.4.24.5 (TMA Method) using TMA (Thermomechanical Analyser) and TMA Q400.
- the printed circuit board using the resin double layer copper foil of the present invention showed excellent properties in terms of plating adhesion, substrate thermal expansion coefficient, dielectric constant and glass transition temperature (see Table 2).
- the multilayered printed circuit board with high reliability can be manufactured in the future, and it is judged to be useful as a constituent material of a small and lightweight new semiconductor package.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Laminated Bodies (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
본 발명은 (a) 일면에 소정의 표면 조도가 형성되어 있는 동박; (b) 상기 동박의 표면 조도면 상에 형성되는 제1절연 수지층; 및 (c) 상기 제1절연 수지층의 일면 상에 형성되고, 무기물 필러 및 수지를 함유하는 비(非)섬유기재형 제2절연 수지층을 포함하는 수지 이중층(resin double layer) 부착 동박, 상기 수지 이중층 부착 동박을 포함하는 다층 인쇄 회로 기판 및 이의 제조방법을 제공한다. 본 발명에서는 전체 적층 두께를 감소시킴과 더불어 기판의 층간 열팽창계수를 낮추면서 고밀도 미세회로 패턴을 구현할 수 있는 빌드업 인쇄 회로기판을 제공할 수 있다.
Description
본 발명은 미세 조도를 가지고 있는 동박 위에, 동박 접착력과 패턴 도금 부착성이 우수한 제1절연 수지층과 저열팽창 특성을 가진 제2절연 수지층을 이중층(double layer)으로 구성함으로써 반도체용 기판의 빌드업 재료로 사용될 수 있는 수지 이중층 동박, 상기 수지 이중층 동박을 절연층으로 포함하여 미세회로 구현, 저열팽창 특성 및 고신뢰성 특성을 발휘하는 다층 인쇄회로 기판 및 이의 제조방법에 관한 것이다.
최근 전자기기의 박형화 및 경량화에 대한 요구가 강해지고, 반도체 패키지나 반도체용 기판의 박형화, 고밀도화가 가속화 되고 있다. 이러한 박형화, 고밀도화에 대응하고 전자부품을 신뢰성을 높이기 위해서는 미세회로 패턴 구현 기술과 저열팽창율 구현 기술이 필요하다.
종래 미세회로를 구현하는 기술로는 필름(Film) 방식과 호일(Foil) 방식이 있다.
필름 방식은, 도 1에 도시된 바와 같이, 일반적으로 필름 A 위에 특수한 경화 수지 조성물 B를 코팅하여 제조하고, 내층기판 C와 상기 필름을 라미네이션한 후 필름 박리 공정과 디스미어(desmear) 공정을 거쳐 경화 수지 조성물 B 쪽에 조도를 형성한다. 이후 형성된 조도를 이용하여 패턴 도금을 하여 미세회로를 구현하는 방식이다. 이 경우, 수지층의 열팽창계수가 높아서, 열팽창률이 3~6ppm/℃ 수준인 반도체 칩 실장 후에 두 구성 성분간의 열팽창 계수 차이에 의해 반도체 패키지가 휘어지는 현상(warpage)이 발생하게 되고, 이로 인해 제품의 신뢰성 저하문제가 발생된다. 전술한 문제를 해결하기 위해, 프리프레그(prepreg)를 사용하고 있으나, 레이저 드릴 후 디스미어 처리시 섬유상 기재가 노출되는 불량이 발생하여 패턴 신뢰성 문제가 발생한다. 또한 저열팽창 재료인 무기물 함량을 증량하려는 시도가 있으나, 무기물 함량이 증량되면 이 기술의 핵심인 패턴 도금 접착력이 저하되는 문제가 초래된다.
또 다른 방법인 동박 호일(Copper Foil) 방식은, 도 2에 도시된 바와 같이, 미세조도가 있는 동박 호일 A 에 패턴 도금이 가능한 경화 수지 조성물 B를 코팅하여 제조한 후, 내층기판 D 상에 프리프레그 C와 패턴 도금이 가능한 수지층이 형성된 동박 호일을 절연층으로 사용하여 라미네이트를 한다. 이후 SAP(semi-additive) 공법에 따라 동박호일 A의 제거공정을 거치면 호일의 미세조도가 프리프레그 C에 전사되는 원리를 이용하여 패턴 도금을 하여 미세회로를 구현하는 방식이다. 그러나 상기 호일 방식에서도, 절연층으로 프리프레그를 사용함으로써 얇은 두께 구현에 한계가 있으며, 외층 가공을 위한 레이저 드릴시 프리프레그의 유리섬유상 기재가 드러나는 문제가 발생하게 된다.
본 발명은 전술한 2가지 종래 미세회로 공법의 문제점을 해결하기 위해서 안출된 것으로서, 미세조도를 가진 동박 상에, 패턴 도금 접착 특성이 있는 경화 수지 조성물과 낮은 열팽창계수(Low CTE) 구현이 가능한 수지 조성물로 이루어진 재료를 제공함으로써, 종래 필름 방식의 열팽창율 문제와 종래 동박 호일(Copper Foil) 방식의 두께 및 레이저 드릴시의 문제를 해결하여, 미세회로 패턴 구현기술과 저열팽창률을 동시에 구현하고자 한다.
이에, 본 발명은 종래 미세회로 공법의 문제점을 해결하면서, 미세회로 패턴 구현과 낮은 열팽창계수를 동시에 발휘할 수 있는 신규 적층 구조의 수지 이중층(resin double layer) 부착 동박을 제공하는 것을 목적으로 한다.
또한 본 발명은 상기 수지 이중층 부착 동박을 이용하여 형성된 절연층을 포함함으로써, 회로 형성과정에서 불량을 감소시키고, 적층체의 두께 감소, 층간 접착강도, 내열성 및 장기 신뢰성 향상을 동시에 발휘할 수 있는 다층 인쇄회로기판 및 이의 제조방법을 제공하는 것을 또 다른 목적으로 한다.
본 발명은 (a) 일면에 소정의 표면 조도가 형성되어 있는 동박; (b) 상기 동박의 표면 조도면 상에 형성되는 제1절연 수지층; 및 (c) 상기 제1절연 수지층의 일면 상에 형성되고, 무기물 필러 및 수지를 함유하는 비(非)섬유기재형 제2절연 수지층을 포함하는 수지 이중층(resin double layer) 부착 동박을 제공한다.
여기서, 상기 동박의 일면 상에 형성된 표면 조도(Rz)는 0.6 ㎛ 내지 3.0 ㎛ 범위인 것이 바람직하다.
또한 상기 제1절연 수지층(b)은 동박의 표면 조도면이 전사되어, 상기 표면 조도면과 접하는 계면에 소정의 표면 조도가 형성되어 있는 것이 바람직하다.
본 발명의 바람직한 일례에 따르면, 상기 동박과 제1절연 수지층 간의 접착력은 0.7 kgf/cm2 이상인 것이 바람직하다.
본 발명에서, 상기 제1절연 수지층(b)은 (i) 폴리이미드 및 폴리아마이드이미드로 구성된 군에서 선택되는 1종 이상의 제1수지; 및 (ii) 계면활성제를 포함하며, 추가로 (iii) 비스페놀A형 에폭시, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 비페닐형 에폭시 수지, 페놀노볼락형 에폭시 수지, 쿠레졸노볼락형 에폭시 수지, 비스페놀A 노볼락형 에폭시 수지, 비스페놀F 노볼락형 에폭시 수지, 나프탈렌형 에폭시 수지, 디시클로펜타디엔형 에폭시 수지, 다관능 페놀류, 안트라센, 및 나프탈렌으로 구성된 군으로부터 선택되는 1종 이상의 제2수지를 더 포함하는 수지 조성물로부터 형성되는 것이 바람직하다. 여기서, 상기 제1절연 수지층은 무기물 필러를 포함할 수 있다.
본 발명의 바람직한 일례에 따르면, 상기 제2절연 수지층(c)은 당해 제2절연 수지층을 100 중량부로 할 때, 무기물 필러 55 내지 85 중량부 범위를 함유하는 것이 바람직하다.
여기서, 상기 제2절연 수지층을 구성하는 무기물 필러는 평균 입경이 0.01~10㎛의 제1무기물 필러와 평균 1~50nm의 제2무기물 필러를 혼용(混用)하는 것이 바람직하며, 추가로 유기물 필러를 더 사용하는 것이 바람직하다.
또한 상기 제2절연 수지층을 구성하는 수지는 에폭시 수지를 포함하며, 추가로 비스말레이미드계 수지 및 시아네이트 에스테르계 수지로 구성된 군으로부터 선택되는 1종 이상의 수지를 더 포함하는 것이 바람직하다. 이때 상기 제2절연 수지층(c)은 경화 후 50~110℃에서의 열팽창계수가 50 ppm/℃ 미만일 수 있으며, 25 ppm/℃ 이하인 것이 바람직하다.
본 발명에서, 상기 제1절연 수지층의 두께는 제1절연 수지층과 제2절연 수지층의 두께를 합한 전체 두께의 1 내지 30% 범위인 것이 바람직하다.
여기서, 상기 제1절연 수지층과 제2절연 수지층의 전체 두께는 10 내지 50 ㎛ 범위일 수 있다. 또한, 상기 제1절연 수지층의 두께는 1 내지 3 ㎛ 범위이고, 상기 제2절연 수지층의 두께는 10 내지 50 ㎛ 범위인 것이 바람직하며, 상기 동박의 두께는 5 ㎛ 미만인 것이 바람직하다.
또한 본 발명은 전술한 수지 이중층(resin double layer) 부착 동박에 의해 절연층이 형성된 다층 인쇄 회로 기판을 제공한다.
아울러, 본 발명은 전술한 수지 이중층 부착 동박을 이용한 다층 인쇄회로 기판의 제조방법을 제공한다.
본 발명의 바람직한 일례에 따르면, 상기 제조방법은 (i) 내층 배선판의 일면 또는 양면 상에, 전술한 수지 이중층 부착 동박을 하나 이상 적층하되, 상기 수지 이중층 부착 동박의 제2절연 수지층을 상기 배선판의 금속면과 접하도록 배치한 후 가열, 가압공정을 통해 절연층을 형성하여 적층체를 빌드업하는 단계; (ii) 상기 적층체의 최상면에 위치하는 동박을 에칭하는 단계; (iii) 상기 적층체의 절연층 내에 하나 이상의 홀을 형성하는 단계; (iv) 상기 절연층의 표면 및 홀 내부를 디스미어 처리하는 단계; (v) 노출된 제1절연 수지층의 표면 조도면과 홀 내부면에 무전해 도금층을 형성하는 단계; (vi) 형성된 무전해 도금층 상에 포토레지스트를 사용하여 패턴을 형성하는 단계; (vii) 상기 패턴 상에 전해 도금에 의한 회로층을 형성하는 단계; 및 (viii) 상기 포토레지스트를 박리하고 노출된 무전해 도금층을 제거하는 단계를 포함하여 구성될 수 있다.
본 발명에서는 미세 조도를 가진 동박, 다른 기재(예, 동박)와의 접착력 및 도금 접착력이 우수한 제1절연 수지층; 및 저열팽창률 특성을 가진 제2절연 수지층이 순차적으로 적층된 기능성 수지이중층 부착 동박을 사용하므로, 보다 정밀한 미세회로 구현이 가능하며, 레이저 가공시 절연층의 마이크로크랙(micro-crack) 발생율을 유의적으로 감소시킬 수 있다.
또한 제2절연 수지층에 고함량의 무기물 필러를 로딩하여 기판의 열팽창계수(CTE)를 낮출 수 있다.
나아가, 인쇄회로기판의 두께를 현저히 감소시킬 수 있으며, 최종물로서의 구조적 휘어짐 특성을 최소화하여 제조 용이성을 확보할 수 있다.
도 1은 종래 필름 방식을 이용한 다층 인쇄회로기판의 제조공정을 나타내는 단면도이다.
도 2는 종래 동박 포일 방식을 이용한 다층 인쇄회로기판의 제조공정을 나타내는 단면도이다.
도 3는 본 발명의 일 실시예에 따른 수지 이중층 부착 동박의 구성을 나타내는 단면도이다.
도 4는 본 발명의 일 실시예에 따라 수지 이중층 부착 동박을 이용하여 다층 인쇄회로기판의 제조공정을 나타내는 단면도이다.
<도면의 주요 부분에 대한 부호의 설명>
100: 수지 이중층 부착 동박 110: 동박
120: 제1절연 수지층 130: 제2 절연 수지층
이하, 본 발명을 상세히 설명한다.
본 발명에서는 인쇄회로기판 제조시 절연층을 형성할 수 있는 빌드업 재료로서, '기재 및 도금층과의 우수한 접착력'과 '저열팽창 특성'을 각각 발휘하는 기능성 수지가 이중층으로 구성되는 신규 수지이중층(resin double layer) 부착 동박을 제공하는 것을 기술적 특징으로 한다.
상기 수지이중층 부착 동박은, (a) 일면에 소정의 표면 조도를 갖는 동박; (b) 상기 동박의 표면 조도면 상에 형성되고, 다른 기재(예, 동박)와의 접착력 및 도금 접착력이 우수한 제1절연 수지층; 및 (c) 상기 제1절연 수지층 상에 형성되고, 저열팽창률 특성을 가진 비(非)섬유기재형 제2절연 수지층이 순차적으로 적층된 구조를 갖는다(도 3 참조).
여기서, 제1절연 수지층은 무기 충전제가 포함하지 않거나 또는 극소량이 포함되어 있는 수지층이므로, 인쇄회로기판 제조공정 중 레이저 가공단계에서 절연층에 포함된 고함량의 무기 필러에 의한 마이크로 크랙(micro-crack) 발생율을 유의적으로 감소시켜, 보다 정밀한 회로 구현이 가능하다.
또한 상기 제1절연 수지층은 다른 기재와의 접착력 및 도금 접착력이 우수한 수지 조성물로 구성되었기 때문에, 미세 회로패턴 구현이 가능할 뿐만 아니라 도금공정에 의해 형성되는 도금층 간의 접착 강도를 향상시켜 제품의 신뢰성을 향상시킬 수 있다.
아울러, 본 발명에 따른 제2절연 수지층은 무기물 필러를 고함량으로 로딩할 수 있으므로, 기판의 열팽창계수(CTE) 감소 효과를 나타낼 수 있다. 이때 제2절연 수지층을 구성하는 무기물 필러와 수지의 성분, 이들의 조성을 조절함으로써 기판의 열팽창계수 조절도 가능하다.
나아가 본 발명에서는 미세회로 패턴 구현을 하는 제1절연 수지층과 낮은 열팽창률 특성을 가진 제2절연 수지층의 두께 비(ratio)를 자유롭게 조절할 수 있다. 특히, 제1절연 수지층은 기판의 열팽창 특성에 영향을 주지 않는 두께로 조절함에 따라, 비(非)프리프레그형 저열팽창성 제2절연 수지층을 사용함에도 불구하고 저열팽창률 효과를 온전히 발휘할 수 있으며, 최종 적층제의 전체 두께를 감소시킬 수 있다.
<수지이중층 부착 동박>
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예에 따른 수지이중층 부착 동박에 대하여 상세히 설명한다.
도 3을 참조하여 보다 상세히 설명하면, 본 발명의 수지이중층 부착 동박(100)은, 일면에 미세조도가 형성된 동박(110), 상기 동박의 표면 조도면 상에 형성되는 제1절연 수지층(120); 및 상기 제1절연 수지층 상에 형성되고, 무기물 필러 및 수지를 함유하는 비(非)섬유기재형 제2절연 수지층(130)을 포함하고, 이들이 순차적으로 적층된 구조를 갖는다.
<미세 조도가 형성된 동박>
본 발명의 수지이중층 부착 동박에서, 상기 동박(110)은 일면 상에 소정의 표면조도(Rz)가 형성되어 있는 동박을 사용할 수 있다.
상기 동박은 당 분야에 알려진 통상적인 동박을 제한없이 사용할 수 있으며, 일례로 압연법 및 전해법으로 제조되는 모든 동박을 포함한다. 여기서, 동박은 표면이 산화 부식되는 것을 방지하기 위해서, 녹방지 처리되어 있을 수 있다.
상기 동박은 제1절연 수지층과 접하는 일면 상에 소정의 표면 조도(Rz)가 형성되는데, 이때 표면조도(Rz)는 0.6 ㎛ 내지 3.0 ㎛ 범위가 바람직하다. 그러나 이에 제한되지 않는다.
또한 상기 동박의 두께는 특별히 제한되지 않으나, 최종물의 두께와 기계적 특성을 고려하여 12 ㎛ 이하인 것을 사용할 수 있으며, 바람직하게는 2 내지 5 ㎛ 범위일 수 있다.
사용 가능한 동박의 예로는, Mitsui 18MT-EX, F2-WS, F1-WS, FWL-WS, T4X 등이 있다.
<제1절연 수지층>
본 발명의 수지이중층 부착 동박에서, 제1절연 수지층(120)은 동박(110)의 표면 조도면과 접하여 배치되며, 기재(substrate)인 동박과의 우수한 접착력 및 패턴 도금 접착력 구현 기능을 보유한 열경화 수지 조성물을 경화시켜 형성된 경화층을 포함한다.
이러한 제1절연 수지층은, 제2절연 수지층에서 고함량으로 로딩된 유/무기 충전재로 인해 낮아진 동박 접착력을 개선하기 위해서 구성되는 기능성 수지층이다. 또한 상기 제1절연 수지층은 디스미어 처리에 의해 조도 형성이 가능한 조성물로 구성되는 것이 바람직하다.
전술한 제1절연 수지층을 형성하기 위한 본 발명의 수지 조성물은, 폴리이미드(PI)계 제1수지와 계면활성제로 구성될 수 있으며, 필요에 따라 에폭시 수지 등의 제2수지를 더 포함할 수 있다.
본 발명의 제1절연 수지층 형성용 수지 조성물에서, 폴리이미드계 수지는 당 업계에 알려진 통상적인 폴리이미드(PI)계 수지를 사용할 수 있다.
폴리이미드(PI)는 이미드(imide) 고리를 가지는 고분자 물질로서, 이미드 고리의 화학적 안정성을 기초로 하여 우수한 내열성, 내화학성, 내마모성과 내후성 등을 발휘하며, 그 외에도 낮은 열팽창율, 낮은 통기성 및 뛰어난 전기적 특성 등을 나타낸다. 또한 경화 후의 수지 조성물에 적당한 가요성을 부여할 수 있다.
상기 폴리이미드(PI)는 일반적으로 방향족의 이무수물 및 방향족 디아민 (또는 방향족 디이소시아네이트)을 축중합하여 합성되며, 상기 폴리이미드는 열경화형 폴리이미드가 바람직하다. 사용 가능한 폴리이미드계 수지의 비제한적인 예로는, 폴리이미드, 폴리아마이드이미드, 또는 이들의 복합 수지 등이 있다.
여기서, 상기 폴리이미드계 수지는 당 업계에 알려진 통상적인 디안하이드라이드와 디아민의 이미드화 반응을 통하여 얻어지는 폴리아믹산 바니쉬를 이미드화 반응하여 제조될 수 있다.
본 발명에 따른 제1절연 수지층 형성용 열경화성 수지 조성물에서, 상기 폴리이미드계 수지의 함량은 전체 수지 조성물 100 중량부 대비 70 내지 100 중량부 범위일 수 있으며, 바람직하게는 80 내지 100 중량부 범위일 수 있다. 폴리이미드계 수지의 함량이 전술한 범위에 해당되는 경우, 수지 조성물의 경화성, 성형 가공성 및 접착력이 양호하다.
본 발명의 제1절연 수지층 형성용 열경화성 수지 조성물에서, 계면활성제는 당 업계에 알려진 통상적인 계면활성제 성분을 제한 없이 사용할 수 있다.
상기 계면활성제는 상기 제1절연 수지층 형성용 열경화성 수지 조성물 바니쉬의 표면 장력을 조절해주어, 코팅 기재인 동박에 대한 코팅성과 도포성, 균일성 등을 향상시키는 작용을 갖는 성분이다.
사용 가능한 계면활성제의 비제한적인 예로는, 불소계 계면활성제, 실리콘계 계면활성제, 비이온계 계면활성제 또는 이들의 1종 이상 혼합 형태 등이 있다.
본 발명에 따른 제1절연 수지층 형성용 열경화성 수지 조성물에서, 상기 계면활성제의 함량은 전체 수지 조성물 100 중량부 대비 0.001 내지 0.1 중량부 범위일 수 있으며, 바람직하게는 0.001 내지 0.05 중량부 범위일 수 있다. 계면활성제의 함량이 전술한 범위에 해당되는 경우, 수지 조성물의 기재에 대한 코팅성 및 도포성, 균일성이 양호하다.
본 발명에 따른 제1절연 수지층 형성용 열경화성 수지 조성물은, 필요에 따라 에폭시 수지 등의 제2수지를 포함할 수 있다.
상기 에폭시 수지는 당 업계에 알려진 통상적인 에폭시 수지를 제한 없이 사용할 수 있으며, 1 분자 내에 에폭시 기가 2개 이상 존재하는 것이 바람직하다.
사용 가능한 에폭시 수지의 비제한적인 예를 들면, 비스페놀A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 비페닐형 에폭시 수지, 페놀노볼락형 에폭시 수지, 쿠레졸노볼락형 에폭시 수지, 비스페놀A 노볼락형 에폭시 수지, 비스페놀F 노볼락형 에폭시 수지, 디시클로펜타디엔형 에폭시 수지, 다관능 페놀류, 안트라센, 나프탈렌, 또는 이들의 1종 이상 혼합 형태 등이 있다.
보다 구체적인 예를 들면, 비스페놀A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 나프탈렌형 에폭시 수지, 안트라센 에폭시 수지, 비페닐형 에폭시 수지, 테트라메틸 비페닐형 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 비스페놀 A 노볼락형 에폭시 수지, 비스페놀 S 노볼락형 에폭시 수지, 비페닐 노볼락형 에폭시 수지, 나프톨 노볼락형 에폭시 수지, 나프톨 페놀 공축 노볼락형 에폭시 수지, 나프톨 크레졸 공축 노볼락형 에폭시 수지, 방향족 탄화수소 포름알데히드 수지 변성 페놀 수지형 에폭시 수지, 트리페닐 메탄형 에폭시 수지, 테트라 페닐에탄형 에폭시 수지, 디시클로펜타디엔 페놀 부가반응형 에폭시 수지, 페놀 아랄킬형 에폭시 수지, 다관능성 페놀 수지, 나프톨 아랄킬형 에폭시 수지 등이 있다. 이들 중에서도 내열성, 신뢰성, 접착력의 관점에서 비스페놀 A 형 수지, 나프탈렌형 에폭시 수지, 비페닐형 에폭시 수지 등이 바람직하다.
특히 수소 첨가 에폭시 수지를 사용할 경우에는, 내열성, 신뢰성 접착력이 우수하여 비스페놀 A 또는 바이페닐형 에폭시 수지를 사용하는 것이 바람직하다. 아울러 상기 에폭시 수지 중 분자량이 큰 수지를 이용할 경우 절연층에 보다 큰 연성을 부여할 수 있기 때문에 도금 후 적층체와 금속간의 밀착 특성을 향상시킬 수 있다. 구체적으로는, 예들 들면, 액상 비스페놀 A형 에폭시 수지(재팬에폭시레진 가부시키가이샤 제조 「에피코트 828EL」(「jER828EL」), 비페닐 구조를 갖는 에폭시 수지(니혼카야쿠 가부시키가이샤 제조 「NC3000H」, 「NC3000L」, 재팬에폭시레진 가부시키가이샤 제조 「YX4000」) 등을 들 수 있다. 이때 전술한 에폭시 수지를 단독 사용할 수 있으며, 또는 2종 이상을 병용할 수 있다.
본 발명에 따른 제1절연 수지층 형성용 열경화성 수지 조성물에서, 상기 에폭시 수지의 함량은 전체 수지 조성물 100 중량부 대비 0 내지 30 중량부 범위일 수 있으며, 바람직하게는 0 내지 20 중량부 범위일 수 있다. 에폭시 수지의 함량이 전술한 범위에 해당되는 경우, 수지 조성물의 경화성, 성형 가공성 및 접착력이 양호하다.
전술한 성분 이외에, 본 발명의 제1절연 수지층 형성용 열경화성 수지 조성물은 무기물 필러 등의 첨가제를 추가로 포함할 수 있다. 사용 가능한 무기물 필러로는 실리카, 알루미나, 수산화알미늄, 탄산칼슘, 클레이, 활석, 질화규소, 질화붕소, 산화티탄, 티탄산바륨, 또는 티탄산염 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
여기서, 제1절연 수지층에 포함되는 무기물 필러의 평균 입경은 0.1 내지 10 ㎛ 범위일 수 있으며, 바람직하게는 0.1 내지 2 ㎛ 범위일 수 있다. 또한 상기 무기물 필러의 함량은 전체 수지 조성물 100 중량부 대비 0 내지 20 중량부 범위일 수 있으며, 바람직하게는 0 내지 15 중량부 범위일 수 있다. 무기물 필러의 함량이 전술한 범위에 해당되는 경우, 수지 조성물의 내화학성 및 성형성이 양호하다.
한편, 본 발명의 제1절연 수지층 형성용 수지 조성물은, 상기 수지 조성물의 고유 특성을 해하지 않는 범위 내에서, 필요에 따라 당 업계에 일반적으로 알려진 난연제나, 상기에서 기재되지 않은 다른 열경화성 수지나 열가소성 수지 및 이들의 올리고머와 같은 다양한 고분자, 고체상 고무 입자 또는 자외선 흡수제, 항산화제, 중합개시제, 염료, 안료, 분산제, 증점제, 레벨링제, 경화촉진제 등과 같은 기타 첨가제 등을 추가로 포함할 수 있다.
일례로, 유기인계 난연제, 유기계 질소 함유 인 화합물, 질소 화합물, 실리콘계 난연제, 금속 수산화물 등의 난연제; 실리콘계 파우더, 나일론 파우더, 불소수지 파우더 등의 유기충전제, 오르벤, 벤톤 등의 증점제; 실리콘계, 불소수지계 등의 고분자계 소포제 또는 레벨링제; 이미다졸계, 티아졸계, 트리아졸계, 실란계 커플링제 등의 밀착성 부여제; 프탈로시아닌, 카본 블랙 등이 착색제 등을 들 수 있다.
상기 제1절연 수지층 형성용 열경화성 수지 조성물에는 경화 후의 수지 조성물에 적당한 가요성을 부여하는 것 등을 목적으로 하여, 열가소성 수지를 배합할 수 있다. 이러한 열가소성 수지의 예를 들면, 페녹시 수지, 폴리비닐아세탈 수지, 폴리에테르설폰, 폴리설폰 등을 들 수 있다. 이들의 열가소성 수지는 어느 1종만을 단독으로 사용하여도 좋고, 2종 이상을 병용하여도 좋다.
본 발명에 따른 제1절연 수지층은, 우수한 접착력을 발휘하는 성분을 포함함에 따라, 상기 동박(110)과 제1절연 수지층(120) 간의 접착력은 0.7 kgf/cm2 이상을 나타낼 수 있으며, 바람직하게는 0.7 내지 1.0 kgf/cm2 범위를 나타낼 수 있다.
여기서, 상기 제1절연 수지층(120)은 동박(110)의 표면 조도면이 전사되어, 상기 표면 조도면과 접하는 계면(界面)에 소정의 표면 조도가 형성되어 있는 것이 바람직하다. 이때 제1절연 수지층의 표면 조도(Rz)는 동박의 표면 조도(Rz)값과 동일할 수 있으며, 일례로 0.6 ㎛ 내지 3.0 ㎛ 범위일 수 있다. 상기 전사하는 방법은 특별히 제한되지 않으며, 일례로 동박과 제1절연 수지층을 적층한 후 가압함으로써 이루어질 수 있다.
또한 본 발명에 따른 수지이중층 동박의 물리적 강성, 열팽창계수 및 박형화 등을 고려할 때, 상기 제1절연 수지층(120)의 두께는 제1절연 수지층(120)과 제2절연 수지층(130)의 두께를 합한 전체 두께의 1 내지 30% 범위일 수 있으며, 바람직하게는 1 내지 20% 범위일 수 있다. 이러한 두께 범위를 가질 경우, 제1절연 수지층은 기판의 열팽창특성에 영향을 주지 않을 수 있다.
여기서, 상기 제1절연 수지층과 제2절연 수지층의 전체 두께는 10 내지 50 ㎛ 범위일 수 있으며, 바람직하게는 15 내지 50 ㎛ 범위일 수 있다. 일례로, 본 발명에 따른 제1절연 수지층의 두께는 1 내지 3 ㎛ 범위일 수 있다.
<제2절연 수지층>
본 발명의 수지이중층 부착 동박에서, 제2절연 수지층(130)은 제1절연 수지층(120) 상에 형성되며, 저열팽창 특성과 레이저 드릴 가공성을 가진 경화 수지 조성물을 경화시켜 형성된 경화층을 포함한다.
상기 제2절연 수지층(130)은 얇고 균일한 두께를 구현하면서, 레이저 드릴 가공성을 향상시키기 위해서, 글라스 기재 등의 섬유상 기재가 배제되는 비(非)프리프레그(Non-prepreg) 타입이다. 이러한 제2절연 수지층은 유/무기물 필러가 고함량으로 포함되어 있으므로 기판의 열팽창계수(CTE)를 낮출 수 있으며, 투입되는 유/무기물 필러의 함량을 자유롭게 조절할 수 있으므로, 기판의 열팽창계수의 조절이 가능하다.
또한 섬유기재를 포함하지 않는 비(非)섬유기재형이므로, 레이저 드릴 가공시 섬유 기재가 노출되는 초래되는 문제점도 해결될 수 있다.
전술한 제2절연 수지층을 형성하기 위한 본 발명의 수지 조성물은, 유기, 무기물 필러, 에폭시 수지, 경화제를 포함하여 구성될 수 있으며, 필요한 경우 말레이미드계 수지, 시아네이트 에스테르계 수지, 촉매 등을 더 포함할 수 있다.
본 발명의 제2절연 수지층 형성용 수지 조성물에서, 필러는 당 업계에 알려진 통상적인 유기물 필러, 무기물 필러 또는 이들 모두를 제한 없이 사용할 수 있다.
상기 무기물 필러는 절연층과 내층 배선판과의 열팽창계수(CTE) 차이를 감소시켜 최종 제품의 휨 특성, 저팽창화, 기계적 물성, 저응력화를 효과적으로 향상시키기 위해 사용되는 것으로서, 당 업계에 알려진 통상적인 무기 필러를 제한 없이 사용할 수 있다.
사용 가능한 무기물 필러의 비제한적인 예로는, 실리카, 탄산칼슘, 탄산마그네슘, 알루미나, 마그네시아, 클레이, 탈크, 규산칼슘, 산화티탄, 산화안티몬, 유리섬유, 붕산알루미늄, 티탄산바륨, 티탄산스트론튬, 티탄산칼슘, 티탄산마그네슘, 티탄산비스무스, 산화티탄, 지르콘산바륨, 지르콘산칼슘, 질화붕소, 질화규소, 활석(talc), 운모(mica) 등이 있다. 이들을 1종 또는 2종 이상 사용할 수 있다.
전술한 무기물 필러와 더불어, 본 발명에서는 유기물 필러를 사용할 수 있다. 사용 가능한 유기물 필러의 예로는, 실리콘 파우더, 나일론 파우더, 불소 파우더 등이 있다. 이때 유기물 필러의 평균 입경은 특별히 제한되지 않으나, 일례로 평균 입경은 0.01 내지 10 ㎛ 범위일 수 있으며, 바람직하게는 0.01 내지 2 ㎛ 범위일 수 있다.
본 발명의 제2절연 수지층 형성용 수지 조성물에서, 상기 무기물 필러의 사용량은 휨 특성, 기계적 물성 등을 고려하여 적절히 조절할 수 있다. 일례로 상기 무기물 필러의 함량은 본원 제2절연 수지층을 100 중량부로 할 때, 55 내지 85 중량부 범위로 포함될 수 있으며, 바람직하게는 55 내지 80 중량부 범위일 수 있다. 또한 무기물 필러의 형상은 특별히 제한되지 않으며, 일례로 구형, 타원체, 사면체, 육면체, 삼각 기둥, 사각기둥, 원기둥, 타원 기둥, 다각 기둥 또는 무정형일 수 있으며, 바람직하게는 구형일 수 있다.
본 발명에서는 상기 무기물 필러로서 평균 입경이 상이한 2종 이상을 혼용하는 것이 바람직하며, 보다 바람직하게는 평균 입경이 상이한 2종의 무기물 필러와 1종의 유기물 필러를 혼용하는 것이다. 이때 상기 2종의 무기물 필러 중 제1무기물 필러의 평균 입경은 0.01 내지 10 ㎛ 범위일 수 있으며, 바람직하게는 0.01 내지 2 ㎛ 범위일 수 있다. 또한 제2무기물 필러의 평균 입경은 1 내지 50nm 범위일 수 있으며, 바람직하게는 1 내지 30nm 범위일 수 있다.
본 발명의 바람직한 일례를 들면, 실리카 제1무기물 필러(평균 입경 0.5 ㎛), 나노 실리카 제2무기물 필러(평균 입경 20nm), 실리콘 러버(평균 입경 0.5 ㎛)를 혼용하는 것이다. 이때 이들의 함량 범위는 특별히 제한되지 않으며, 적절히 조절할 수 있다.
본 발명의 제2절연 수지층을 구성하는 성분인 수지는 상기 무기물 필러를 고정 및 결합하는 역할을 하는 당 업계에 알려진 통상적인 수지(resin) 성분을 제한 없이 사용할 수 있다.
이때 제2절연 수지층의 열팽창계수를 낮추기 위해서, 저열팽창성 수지를 사용하는 것이 바람직하다. 사용 가능한 수지의 비제한적인 예로는, 에폭시 수지, 비스말레이미드계 수지, 시아네이트 에스테르 수지, 및 열경화성 수지로 구성된 군으로부터 선택된 1종 이상일 수 있다.
이때 에폭시 수지를 사용하는 경우, 전술한 제1절연 수지층을 구성하는 에폭시 수지의 성분과 동일하거나 또는 상이한 것을 사용할 수 있다. 사용 가능한 에폭시 수지의 비제한적인 예를 들면, 비스페놀A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스테놀S형 에폭시 수지, 나프탈렌형 에폭시 수지, 안트라센 에폭시 수지, 비페닐형 에폭시 수지, 테트라메틸 비페닐형 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 비스페놀 A 노볼락형 에폭시 수지, 비스페놀 S 노볼락형 에폭시 수지, 비페닐 노볼락형 에폭시 수지, 나프톨 노볼락형 에폭시 수지, 나프톨 페놀 공축 노볼락형 에폭시 수지, 나프톨 코레졸 공축 노볼락형 에폭시 수지, 방향족 탄화수소 포름알데히드 수지 변성 페놀 수지형 에폭시 수지, 트리페닐 메탄형 에폭시 수지, 테트라 페닐에탄형 에폭시 수지, 디시클로펜타디엔 페놀 부가반응형 에폭시 수지, 페놀 아랄킬형 에폭시 수지, 다관능성 페놀 수지, 나프톨 아랄킬형 에폭시 수지 또는 이들의 혼합형태 등이 있다.
이들 중에서도 내열성, 절연 신뢰성, 밀착성의 관점에서, 비스페놀 A형 에폭시 수지, 나프톨형 에폭시 수지, 나프탈렌형 에폭시 수지, 비페닐형 에폭시 수지,부타디엔 구조를 갖는 에폭시 수지가 바람직하다. 구체적인 예를 들면, 액상 비스페놀 A형 에폭시 수지(재팬에폭시레진 가부시키가이샤 제조 「에피코트 828EL」(「jER828EL」), 나프탈렌형 2관능 에폭시 수지(다이닛폰잉크가가쿠고교 가부시키가이샤제조 「HP4032」, 「HP4032D]), 나프탈렌형 4관능 에폭시 수지(다이닛폰잉크가가쿠고교 가부시키가이샤 제조 「HP4700」), 나프톨형 에폭시 수지(토토가세이가부시키가이샤 제조 「ESN-475V」), 부타디엔 구조를 갖는 에폭시 수지(다이셀가가쿠고교 가부시키가이샤 제조 「PB-3600」), 비페닐 구조를 갖는 에폭시 수지(니혼카야쿠 가부시키가이샤 제조 「NC3000H」, 「NC3000L」, 재팬에폭시레진 가부시키가이샤 제조 「YX4000」) 등을 들 수 있다. 이때 전술한 에폭시 수지를 단독 사용할 수 있으며, 또는 2종 이상을 병용할 수 있다.
본 발명에서 말하는 방향족계 에폭시 수지란, 그 분자 내에 방향환 골격을 갖는 에폭시 수지를 의미한다. 또한 본 발명에서는 에폭시 수지로서, 액상 에폭시 수지와 고형 에폭시 수지를 혼용할 수 있다. 이 경우 수지 조성물을 접착 필름의 형태로 사용하는 경우에, 충분한 가요성을 나타내어 취급성이 우수한 접착 필름을 형성할 수 있는 동시에, 수지 조성물의 경화물의 파단 강도가 향상되어 다층 프린트 배선판의 내구성이 향상될 수 있다.
본 발명의 에폭시 수지의 함량은 전체 수지 조성물 100 중량부 대비 5 내지 75 중량부 범위일 수 있으며, 바람직하게는 15 내지 65 중량부 범위일 수 있다. 에폭시 수지의 함량이 전술한 범위에 해당되는 경우 수지 조성물의 경화성, 성형 가공성 및 접착력이 양호하다.
본 발명의 제2절연 수지층 형성용 열경화성 수지 조성물은, 필요에 따라 비스말레이드계 수지, 시아네이트 에스테르계 수지 또는 이들 모두를 포함할 수 있다.
비스말레이미드계 수지는 경화되기 전에는 높은 유동성을 나타내지만, 경화 후에는 뛰어난 내열성 및 낮은 열팽창계수를 나타낸다. 또한, 에폭시 수지와 비교해도 말레이미드계 수지가 보다 더 열팽창계수(CTE)가 낮아진다.
상기 비스말레이드계 수지는 분자 내에 2개 이상의 말레이미드기를 가지는 말레이드계 수지를 제한 없이 사용할 수 있다. 사용 가능한 비스말레이드계 수지의 비제한적인 예로는, 4,4'-디페닐메탄 비스말레이미드(4,4'-diphenylmethane bismaleimide), 페닐메탄 말레이미드(phenylmethanemaleimide), 비스(3-에틸-5-메틸-4-말레이미드-페닐)메탄 수지[Bis(3-Ethyl-5-Methyl-4-Maleimide-Phenyl) Methane resin], 비스(말레이미드-트리아진) 부가 공중합체[bis(maleimide-triazine) addition copolymer], N,N'-페닐렌비스말레이미드, N,N'-헥사메틸렌비스말레이미드, N,N'-벤조페논비스말레이미드, N,N'-디페닐메탄비스말레이미드, N,N'-옥시-디-p-페닐렌비스말레이미드, N,N'-4,4'-벤조페논비스말레이미드, N,N'-p-디페닐술폰비스말레이미드, N,N'-(3,3'-디메틸)메틸렌-디-p-페닐렌비스말레이미드, 2,2'-비스(4-페녹시페닐)프로판-N,N'-비스말레이미드, 비스(4-페녹시페닐)술폰-N,N'-비스말레이미드, 1,4-비스(4-페녹시)벤젠-N,N'-비스말레이미드, 1,3-비스(4-페녹시페닐)술폰-N,N'-비스말레이미드, 1,3-비스-(3-페녹시)벤젠-N,N'-비스말레이미드 등이 있고, 나아가 비스말레이미드 화합물의 프리폴리머또는 비스말레이미드 화합물과 아민 화합물의 프리폴리머의 형태로 병합된 것일 수 있다. 이들은 단독 또는 2종 이상이 혼합하여 사용될 수 있다. 상기 비스말레이미드 시판품의 일례로는 Daiwakasei industry 사의 BMI-1000, BMI1100, BMI-2000,BMI-2300, BMI-5100 등이 있다.
본 발명의 제2절연 수지층 형성용 수지 조성물에서, 상기 비스말레이드계 수지의 함량은 전체 수지 조성물 100 중량부 대비 2 내지 70 중량부 범위일 수 있으며, 바람직하게는 5 내지 50 중량부 범위일 수 있다.
또한 시아네이트 에스테르계 수지는 하나 이상의 시아네이트 에스테르 작용기(-O-C≡N)를 함유하는 단량체들로 이루어진 수지이다.
이는 열에 의해 cyclotrimerization reaction이 개시되어 트리아진기(triazine group)에 의한 가교 결합된 망상 구조를 갖기 때문에, 높은 내열성 및 고강도를 부여할 수 있다. 상기 시아네이트 에스테르 수지는 에폭시 수지의 경화제로서 작용할 수 있기 때문에, 에폭시 수지와 시아네이트 에스테르 수지를 혼용하는 경우 경화제의 사용 없이 경화 촉진제만을 사용할 수 있다.
상기 시아네이트 에스테르 수지의 예로는 비스페놀 A형(bisphenol A type) 시아네이트 에스테르 수지, 비스페놀 M형 시아네이트 에스테르 수지, 비스페놀 F형 시아네이트 에스테르 수지, 노블락형(novolak type) 시아네이트 에스테르 수지, 디사이클로펜타디엔 비스페놀형(dicyclopentadiene Bisphenol type, DCPD type) 시아네이트 에스테르 수지 및 이들의 프리폴리머 등이 있는데, 이에 제한되지 않는다. 보다 구체적인 예로는 2,2-비스(4-시아네이트페닐)프로판, 비스(4-시아네이트페닐)에탄, 비스(3,5-디메틸-4-시아네이트페닐)메탄, 2,2-비스(4-시아네이트페닐)-1,1,1,3,3,3-헥사플루오로 프로판, 페놀 부가 디시클로펜타디엔 중합체의 시아네이트 에스테르, 프리폴리머 비스 페놀 A 디시아네이트 올리고머(prepolymerbisphenol A dicayanate oligomer), 2,2-비스(4-시아네이토페닐)프로판 단독중합체[2,2-Bis(4-cyanatophenyl)propane homopolymer], 폴리세레졸 시아네이트(polycesol cyanate), 폴리페놀시아네이트(polyphenolcyanate), 4,4'-에틸리덴디페닐 디시아네이트{4,4'-ethylidenediphenyl dicyanate}, 4,4'-메틸렌비스(2,6-디메틸페닐 시아네이트)[4,4'-methylenebis(2,6-dimethylphenyl cyanate)] 등이 있으며, 이들은 단독 또는 2 종 이상이 혼합하여 사용될 수 있다. 이들 시판품의 일례로는 Lonza사의 BA-230S, PT-30, PT-60, PT-90, Arocy B-10, XU-366, AroCy M-10,XU-71787 등이 있다. 상기 시아네이트 에스테르 수지의 함량은 전체 수지 조성물 100 중량부 대비약 2 내지 60 중량부 범위일 수 있고, 바람직하게는 약 5 내지 50 중량부 범위일 수 있다. 시아네이트 에스테르 수지의 함량이 전술한 범위에 해당되는 경우, 수지 조성물의 경화성, 성형 가공성 및 접착력이 양호하다.
본 발명의 제2절연 수지층 형성용 수지 조성물에서, 상기 비스말레이미드계 수지와 시아네이트 에스테르 수지의 함량은 전체 수지 조성물 100 중량부 대비 2 내지 70 중량부 범위일수 있으며, 바람직하게는 5 내지 50 중량부로 구성될 수 있다.
본 발명의 제2절연 수지층 형성용 열경화성 수지 조성물을 구성하는 경화제 성분은 당 업계에 알려진 통상적인 경화제를 제한 없이 사용할 수 있다.
이때 경화제는 사용하고자 하는 에폭시 수지의 종류에 따라 적절하게 선택하여 사용할 수 있다. 사용 가능한 경화제의 비제한적인 예로는 페놀계, 무수물계, 디시안아미드계, 경화제가 있으며, 이중에서 페놀계 경화제가 내열성 및 접착성을 더 향상시킬 수 있어 바람직하다.
사용 가능한 경화제의 비제한적인 예로는, 페놀노볼락, 크레졸노볼락, 비스페놀A 노볼락, 페놀계 경화제, 나프탈렌형 경화제, 활성 에스테르계 경화제, 또는 이들의 1종 이상 혼합물 등이 있다. 내열성, 내수성의 관점에서, 노볼락 구조를 갖는 페놀계 경화제나 노볼락 구조를 갖는 경화제가 바람직하다. 이러한 노볼락 구조를 갖는 페놀계 경화제나 노볼락 구조를 갖는 나프톨계 경화제의 시판품으로서는, 예를 들면, MEH-7700, MEH-7810, MEH-7851[참조: 메이와가세이가부시키가이샤 제조], NHN, CBN, GPH[참조: 니혼카야쿠 가부시키가이샤 제조], SN170, SN180, SN190, SN475, SN485, SN495, SN375, SN395[참조: 토토가세이 가부시키가이샤 제조], LA7052, LA7054[참조: 다이닛폰잉크가가쿠고교 가부시키가이샤 제조] 등을 들 수 있다. 활성 에스테르계 경화제로서는, EXB-9451, EXB-9460 [참조: 다이닛폰잉크가가쿠고교 가부시키가이샤 제조], DC808 [참조: 재팬에폭시레진 가부시키가이샤제조] 등을 들 수 있다. 본 발명에 있어서, 경화제는 1종을 사용해도 2종 이상을 병용할 수 있다.
본 발명에서 경화제의 함량은 특별히 제한되지 아니하나, 전체 조성물 100 중량부 대비 5 내지 65 중량부 범위일 수 있으며, 바람직하게는 5 내지 45 중량부 범위일 수 있다. 경화제의 함량이 전술한 범위에 해당되는 경우 경화물의 강도 및 내열성이 양호하게 발휘되며, 유동성으로 인해 성형성이 우수하게 발휘될 수 있다.
본 발명의 제2절연 수지층 형성용 열경화성 수지 조성물은 당 업계에 알려진 통상적인 경화촉진제를 사용할 수 있다. 이러한 경화촉진제는 에폭시 수지와 경화제와의 반응을 촉진하는 물질로서, 이미다졸계 경화촉진제, 아민계 경화촉진제, 금속계 경화촉진제 또는 이들의 혼합물을 사용할 수 있다.
사용 가능한 이미다졸계 경화촉진제의 비제한적인 예를 들면, 이미다졸, 2-메틸 이미다졸, 2-에틸이미다졸, 2-데실이미다졸, 2-헥틸이미다졸, 2-이소프로필이미다졸, 2-운데실 이미다졸, 2-헵탄데실 이미다졸, 2-에틸-4-메틸 이미다졸, 2-페닐이미다졸, 2-페닐-4-메틸 이미다졸, 1-벤질-2-메틸 이미다졸, 1-벤질-2-페닐 이미다졸, 1-시아노에틸-2-메틸이미다졸, 1-시아노에틸-2-에틸-4-메틸이미다졸, 1-시아노에틸-2-운데실이미다졸, 1-시아노에틸-2-페닐이미다졸, 1-시아노에틸-2-운데실-이미다졸 트리멜리테이트, 1-시아노에틸-2-페닐 이미다졸 트리멜리테이트, 2,4-디아미노-6-(2'-메틸이미다졸-(1'))-에틸-s-트리아진, 2,4-디아미노-6-(2'에틸-4-메틸이미다졸-(1'))-에틸-s-트리아진, 2,4-디아미노-6-(2'-운데실이미다졸-(1'))-에틸-s-트리아진, 2-페실-4,5-디하이드록시메틸이미다졸, 2-페실-4-메틸-5-하이드록시메틸이미다졸, 2-페실-4-벤질-5-하이드록시메틸이미다졸, 4,4'-메틸렌-비스-(2-에틸-5-메틸이미다졸), 2-아미노에틸-2-메틸 이미다졸, 1-시아노에틸-2-페닐-4,5-디(시아노에톡시 메틸)이미다졸, 1-도데실-2-메틸-3-벤질이미다졸리늄클로라이드,이미다졸 함유 폴리아미드, 또는 이들의 혼합물 등이 있다. 그 외, 제 3급 아민,유기금속화합물, 유기인화합물, 붕소화합물 등을 추가로 사용할 수 있다.
아민계 경화촉진제의 비제한적인 예를 들면, 트리에틸아민, 트리부틸아민 등의 트리알킬아민; 4-디메틸아미노피리딘, 벤질디메틸아민, 2,4,6-트리스(디메틸아미노메틸)페놀, 1,8-디아자비사이클로(5,4,0)-운데셀 (DBU) 등의 아민 화합물, 또는 이들의 1종 이상 혼합물 등이 있다.
금속계 경화촉진제로는 코발트, 구리, 아연, 철, 니켈, 망간, 주석 등의 금속의 유기 금속 착체 또는 유기 금속염을 들 수 있다. 일례로, 유기 금속 착체의 구체예로서는, 코발트(Ⅱ) 아세틸아세토네이트, 코발트(Ⅲ) 아세틸아세토네이트 등의 유기 코발트 착체, 구리(Ⅱ) 아세틸아세토네이트 등의 유기 구리 착체, 아연(Ⅱ) 아세틸아세토네이트 등의 유기 아연 착체, 철(Ⅲ) 아세틸아세토네이트 등의유기 철 착체, 니켈(Ⅱ) 아세틸아세토네이트 등의 유기 니켈 착체, 망간(Ⅱ) 아세틸아세토네이트 등의 유기 망간 착체 등을 들 수 있다. 유기 금속염으로서는, 옥틸산아연, 옥틸산주석, 나프텐산아연, 나프텐산코발트, 스테아르산주석, 스테아르산아연 등을 들 수 있다. 금속계 경화 촉진제는 1종 또는 2종 이상을 조합하여 사용해도 양호하다
상기 경화 촉진제의 함량은 전체 수지 조성물 100 중량부에 대하여 0.002 내지 10 중량부 범위일 수 있으며, 바람직하게는 0.006 내지 1 중량부 범위일 수 있다.
전술한 제1절연수지층 형성용 수지 조성물과 마찬가지로, 본 발명의 제2절연 수지층 형성용 수지 조성물은 조성물의 고유 특성을 해하지 않는 범위 내에서, 필요에 따라 당 업계에 일반적으로 알려진 난연제나, 상기에서 기재되지 않은 다른 열경화성 수지나 열가소성 수지 및 이들의 올리고머와 같은 다양한 고분자, 경화촉진제, 고체상 고무 입자 또는 자외선 흡수제, 항산화제, 중합개시제, 염료, 안료, 분산제, 증점제, 레벨링제 등과 같은 기타 첨가제 등을 추가로 포함할 수 있다.
본 발명에 따른 제2절연 수지층(130)은, 고함량의 무기물 필러와 낮은 열팽창성 수지 성분을 포함함에 따라, 경화 후 열팽창계수가 50 ppm/℃ 미만일 수 있으며, 바람직하게는 25 ppm/℃ 이하의 범위일 수 있다.
또한 본 발명에 따른 수지이중층 부착 동박의 물리적 강성, 열팽창계수 및 박형화 등을 고려할 때, 상기 제2절연 수지층의 두께는 10 내지 50 ㎛ 범위일 수 있다.
본 발명에 따른 제2절연 수지층(130)은, 레이저에 의한 홀의 가공성을 더욱 향상시키기 위해서, 레이저 에너지 흡수성 성분을 함유하여도 좋다. 레이저 에너지 흡수성 성분으로서는 카본분, 금속 화합물분, 금속분 또는 흑색 염료 등의 공지의 것을 사용할 수 있다. 또한, 이들은 어느 1종이나 또는 2종 이상을 병용할 수 있다.
카본분으로는 퍼니스 블랙(furnace black), 채널 블랙, 아세틸렌 블랙, 서멀 블랙(thermal black), 안트라센블랙 등의 카본 블랙의 분말, 흑연 분말, 또는 이들의 혼합물의 분말 등을 들 수 있다. 금속 화합물분으로는 산화티탄 등의 티타니아류, 산화마그네슘 등의 마그네시아류, 산화철 등의 철 산화물, 산화니켈 등의 니켈 산화물, 이산화망간, 산화아연 등의 아연 산화물, 이산화규소, 산화알루미늄, 희토류 산화물, 산화코발트 등의 코발트 산화물, 산화주석 등의 주석 산화물, 산화텅스텐 등의 텅스텐 산화물, 탄화규소, 탄화텅스텐, 질화붕소, 질화규소, 질화티탄, 질화알루미늄, 황산바륨, 희토류산황화물, 또는 이들의 혼합물의 분말 등을 들 수 있다. 금속분으로서는 은, 알루미늄, 비스머스, 코발트, 구리, 철, 마그네슘, 망간, 몰리브덴, 니켈, 팔라듐, 안티몬, 규소, 주석, 티탄, 바나듐, 텅스텐, 아연, 또는 이들의 합금 또는 혼합물의 분말 등을 들 수 있다. 레이저 에너지 흡수성 성분은 레이저 에너지의 열에 대한 변환 효율이나, 범용성 등의 관점에서, 카본분이 바람직하다. 또한, 레이저 에너지 흡수성 성분의 평균 입경의 상한치는 레이저 에너지를 효율적으로 흡수한다는 관점에서, 0.01㎛ 내지 20㎛ 범위가 바람직하다.
한편 상기 제2절연 수지층(130)은 표면의 손상, 이물의 부착 방지 등을 위해, 보호 필름에 의해 보호되어 있을 수 있다. 보호 필름은 당 업계에 알려진 통상적인 플라스틱 필름과 같은 것을 사용할 수 있다. 보호 필름의 두께는 1 내지 40㎛, 바람직하게는 10 내지 30 ㎛ 범위일 수 있다.
<수지이중층 부착 동박의 제조방법>
본 발명에 따른 수지이중층 부착 동박(100)은, 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있으며, 일례로, 동박(100)의 표면 조도면 상에 상기 제1절연 수지층 형성용 조성물이 경화된 제1절연 수지층(120)과 제2절연 수지층 형성용 조성물이 경화된 제2절연 수지층(130)을 접착시킴으로써 얻을 수 있다.
보다 상세하게는, 동박의 표면 조도면 상에 제1절연성 수지층 형성용 조성물과 제2절연성 수지층 형성용 조성물을 각각 순차적으로 도포한 후 경화하는 방법, 동박 상에 접착된 제1절연성 수지층의 일면 상에, 지지체 상에 형성된 제2절연성 수지층 접착시트를 라미네이트하여 접착하는 방법 등이 있으며, 또는 시트 형상의 동박, 제1절연성 수지층과 제2절연성 수지층을 각각 롤형으로 권취한 후 연속식으로 라미네이트하거나, 롤형의 양 시트를 재단한 후 라미네이트를 수행하여도 무방하다.
여기서, 상기 제1절연 수지층(120)은, 제1절연 수지층 형성용 열경화성 수지 조성물 바니쉬를 동박의 표면 조도면 상에 도포하고 가열, 건조 및 경화를 동시/순차적으로 수행하여 얻을 수 있으며, 또는 지지체 상에 도포된 수지 바니쉬를 가열 및 건조하여 얻어진 접착 시트나 필름을 동박의 표면 조도면 상에 배치한 후 접착하여 얻을 수도 있다.
이때 제1절연 수지층 형성용 수지 조성물을 기재 상에 도포하는 경우, 일례로 롤 코터, 바 코터, 코머 코터, 블레이드 코터, 립 코터, 로드 코터, 스퀴즈 코터, 리버스 코터, 트랜스퍼 롤 코터, 그라비아 코터, 분무 코터 등으로 기재 상에 열경화성 수지 조성물을 도포하고, 50 내지 130℃의 온도에서 1 내지 30분간 건조하여 수행할 수 있다.
상기 제1절연성 수지층을 형성하는 수지 조성물을 조제시 사용 가능한 유기 용제의 예를 들면, 아세톤, 메틸에틸케톤, 시클로헥사논 등의 케톤류, 아세트산에틸, 아세트산부틸, 셀로솔브아세테이트, 프로필렌글리콜모노메틸에테르아세테이트, 카비톨아세테이트 등의 아세트산 에스테르류, 셀로솔브, 부틸카비톨 등의 카비톨류, 톨루엔, 크실렌 등의 방향족 탄화수소류, 디메틸포름아미드, 디메틸아세트아미드, N-메틸피롤리돈 등을 들 수 있다. 유기 용제는 1종을 사용하거나 2종 이상을 조합하여 사용하여도 좋다.
또한 제2절연 수지층(130) 또한 당 분야에 알려진 통상적인 방법에 따라 제조될 수 있다. 일례로 제2절연 수지층 형성용 열경화성 수지 조성물 바니쉬를 제1절연 수지층의 일면 상에 도포하고 가열, 건조 및 경화를 동시/순차적으로 수행하여 얻을 수 있으며, 또는 지지체 상에 도포된 수지 바니쉬를 가열 및 건조하여 얻어진 접착 시트를 동박과 접합되는 제1절연 수지층의 일면 상에 배치한 후 접착하여 얻을 수도 있다.
여기서, 상기 제2절연 수지층(130)은 자기 지지성을 가지는 필름 내지 시트 형상일 수 있다. 이러한 제2절연 수지층은 일례로 당 업계에 공지된 방법에 따라 전술한 무기물 필러와 수지를 포함하는 제2절연 수지층 형성용 조성물을 기재(substrate) 상에 도포 및 건조/경화하여 형성하거나, 또는 상기 수지 조성물을 필름 상으로 성형할 수도 있다. 이때 상기 수지 조성물의 경화층이 부착된 기재 표면은 이형처리된 것일 수 있으며, 상기 수지 조성물이 경화된 경화층은 보호 필름으로 보호될 수도 있다.
본 발명의 수지이중층 부착 동박에서, 제1절연 수지층(120) 및 제2절연 수지층(130)의 전체 두께는 10 ㎛ 내지 50 ㎛의 범위이며, 바람직하게는 15 내지 50 ㎛ 범위일 수 있다. 절연 수지 시트의 두께가 전술한 범위에 해당될 경우 회로의 매립이 충분하며, 다층 인쇄회로기판의 박형화를 도모할 수 있다.
<인쇄회로기판>
본 발명은 전술한 수지이중층 부착 동박을 절연층으로 이용하는 인쇄회로 기판을 포함한다.
본 발명에서 인쇄회로기판이란, 도금 스루홀법이나 빌드업법 등에 의해 1층 이상 적층한 인쇄회로기판을 지칭하며, 내층 배선판에 절연 수지 시트를 포개어 맞추고 가열 가압 성형함으로써 얻을 수 있다. 상기 인쇄회로기판은 낮은 열팽창계수를 갖는 제2절연 수지층과 동박 접착력 및 도금 접착력이 우수한 제1절연 수지층이 순차적으로 적층된 본 발명에 따른 수지이중층 부착 동박을 이용함으로써 전체 적층 두께를 감소시킴과 더불어 기판의 층간 열팽창계수를 낮추면서 고밀도 미세회로 패턴을 구현할 수 있다.
본 발명의 인쇄회로기판은 전술한 수지이중층 부착 동박을 사용하는 것을 제외하고는, 당 분야에 알려진 통상적인 방법, 일례로 세미-어디티브법(semi-additive)에 의해 제조될 수 있다.
상기 제조방법의 바람직한 일 실시형태를 들면, (i) 내층 배선판의 일면 또는 양면 상에, 전술한 수지 이중층 부착 동박을 하나 이상 적층하되, 상기 수지 이중층 부착 동박의 제2절연 수지층을 상기 배선판의 금속면과 접하도록 배치한 후 가열, 가압공정을 통해 절연층을 형성하여 적층체를 빌드업하는 단계; (ii) 상기 적층체의 최상면에 위치하는 동박을 에칭하는 단계; (iii) 상기 적층체의 절연층 내에 하나 이상의 홀을 형성하는 단계; (iv) 상기 절연층의 표면 및 홀 내부를 디스미어 처리하는 단계; (v) 노출된 제1절연 수지층의 표면 조도면과 홀 내부면에 무전해 도금층을 형성하는 단계; (vi) 형성된 무전해 도금층 상에 포토레지스트를 사용하여 패턴을 형성하는 단계; (vii) 상기 패턴 상에 전해 도금에 의한 회로층을 형성하는 단계; 및 (viii) 상기 포토레지스트를 박리하고 노출된 무전해 도금층을 제거하는 단계를 포함하여 구성될 수 있다.
이하, 첨부된 도 4를 참조하여 본 발명의 일 실시예에 따른 인쇄 회로기판의 제조공정에 대하여 상세히 설명한다. 그러나 하기 예시된 공정으로만 한정되는 것은 아니다.
1) 내층 배선판의 일면 또는 양면 상에, 수지이중층 부착 동박의 제2절연 수지층을 상기 배선판의 금속면과 접하도록 배치한 후 가열, 가압하여 적층체를 형성한다.
상기 내층 배선판은 코어 기판으로 사용되는 것으로서, 양면 플렉시블 금속 부착 적층판도 사용할 수 있다. 일례로, 양면 동장판을 드릴링하여 홀을 형성하여 도금한 후 양면에 드라이 필름 레지스터를 적층하고, 노광, 현상, 에칭하여 배선 패턴을 형성한 후 노출부분에 프레스 피복하여 제조될 수 있다.
도 4를 참조하여 상기 단계의 보다 구체적인 일례를 들면, 내층 배선판과 수지이중층 부착 동박을 적층하되, 내층 배선판의 금속면과 수지이중층 부착 동박의 제2절연 수지층을 접하도록 배치한 후 진공 가압식 라미네이타 장치 등을 이용해 진공 가열 가압 성형한다.
여기서, 가열 가압 성형하는 조건으로는 특별히 한정되지 않지만, 일례를 들면 온도 60~160℃, 압력 0.2~3 MPa에서 실시할 수 있다. 또, 가열시키는 조건으로는 특별히 한정되지 않지만, 일례를 들면 온도 140~240℃, 시간 30~120분간으로 실시할 수 있다.
또는 상기 수지이중층 부착 동박의 제2절연 수지층을 상기 내층 배선판에 포개어 맞추고, 이것을 평판 프레스 장치 등으로 가열 가압 성형한다. 여기서, 가열 가압 성형하는 조건으로는 특별히 한정되지 않지만, 일례를 들면 온도 140~240℃, 압력 1~4 MPa에서 실시할 수 있다. 이와 같은 평판 프레스 장치 등에 의한 가열 가압 성형에서는 가열 가압 성형과 동시에 절연층이 형성된다.
상기와 같이 가압 공정을 거치게 되면, 동박의 표면 조도면이 전사되어, 상기 표면 조도면과 접하는 제1절연 수지층의 계면(界面) 상에 소정의 표면 조도가 형성된다.
2) 상기 적층체의 최상면에 위치하는 동박을 에칭한다.
상기 적층체의 최상면에 위치하는 동박을 에칭하여 제거한다. 본 단계를 거치게 되면, 소정의 표면 조도를 가지는 제1절연 수지층이 외면 상에 노출된다.
이때 상기 동박을 에칭하는 방법은 특별히 제한되지 않으며, 당 업계에 알려진 통상적인 방법을 사용할 수 있다.
3) 적층체의 절연층 내에 하나 이상의 홀을 형성한다.
상기 적층체의 절연층에 레이저를 조사하여 홀을 형성한다. 상기 레이저는 엑시머 레이저, UV 레이저 및 탄산 가스(CO2) 레이저 등을 사용할 수 있다.
본 단계를 거치게 되면, 상기 내층 배선판에 연결되는 홀이 형성된다.
4) 상기 절연층의 표면 및 홀 내부면을 디스미어 처리한다.
디스미어(desmear) 공정은 레이저 조사 후의 수지 잔사 등(스미어)을 과망간산염, 중크롬산염 등의 산화제 등에 의해 제거하는 공정이다.
이때, 절연층의 최상면에 위치하는 제1절연 수지층의 표면은 이미 소정의 표면 조도(Rz)가 형성되어 있는 반면, 홀의 내부면에는 표면 조도가 형성되어 있지 않다. 따라서 본 단계를 거치면 레이저 가공에 의한 홀의 내면을 가공하여 적절한 거칠기(조도)를 갖는 조도면이 형성된다.
이때 디스미어 처리가 불충분하고, 디스미어 내성이 충분히 확보되어 있지 않으면 홀에 금속 도금 처리를 실시해도 스미어가 원인으로 상층 금속 배선과 하층 금속 배선의 통전성이 충분히 확보되지 않게 될 수 있다. 또, 평활한 절연층의 표면을 동시에 조화(粗化)할 수 있어 계속되는 금속 도금에 의해 형성되는 도전 배선 회로의 밀착성을 올릴 수 있다.
필요에 따라, 디스미어 공정 이후 상기 절연층 위에 적절한 거칠기를 가지는 수평 조도면을 유지하기 위해서, 식각 공정을 추가로 수행할 수도 있다.
5) 상기 절연층의 조도면과 홀 내부면에 무전해 도금층을 형성한다.
상기 제1절연 수지층의 조도면과 홀 내면에 무전해 도금을 수행하여 비교적 얇은 도금층을 형성한다. 이러한 무전해 도금층은 그 위에 형성될 미세 회로 패턴층을 올리기 위하여 절연 수지층에 미리 접착 강도를 확보하여 주기 위한 것이다.
일반적으로, 형성되는 회로 전극과 기판과의 접착성은 밀접한 관계를 가지고, 기판과 회로 전극 사이에는 무전해 도금층이 형성된다. 여기서, 상기 무전해 도금층은 표면 도포된 촉매를 활성점으로 하여 형성되기 때문에, 궁극적으로는 기판과의 접착성은 없다. 그러므로 기판 표면의 조도가 큰 경우에는 이들 사이의 접착은 앵커 효과에 의해 양호하게 유지되지만, 기판 표면에 조도가 없다면 그 접착성은 낮아지는 경향을 보인다. 따라서 형성되는 회로폭의 0.1 배 정도 이하의 표면 조도를 갖도록 조절하는 것이 양호한 회로 형상을 얻을 수 있어 바람직하다.
이때, 전해 도금층의 시드층이 되는 상기 무전해 도금층은, 일반적으로 0.1 내지 5 ㎛ 범위인 것이 바람직하다.
6) 형성된 무전해 도금층 상에 포토레지스트를 사용하여 패턴을 형성한다.
상기 무전해 도금층 위에 원하는 회로 패턴을 형성하기 위하여, 리소그래피 공정으로서 포토레지스트를 코팅하고, 외층 패턴을 형성하기 위한 개구부를 형성하는 과정을 거쳐서 미세 회로 패턴을 형성한다.
여기서, 상기 포토레지스트는 드라이 필름(dry film) 등을 사용할 수 있다.
7) 상기 패턴 상에 전해 도금에 의한 회로층을 형성한다.
이후, 상기 포토레지스트층의 개구부에 상기 미세 회로 패턴를 형성하기 위한 도체층을 전해 도금에 의해 형성한다.
본 단계를 거치면, 상기 전해 도금층은 상기 홀에 의하여 상기 내층 배선판과 연결되는 새로운 회로층을 형성하게 된다. 여기서, 상기 전해 도금층의 두께는 약 1 ㎛ 내지 20 ㎛ 범위인 것이 바람직하다.
본 단계에서 형성된 회로 패턴의 라인/스페이스는 25㎛ / 25㎛ 미만일 수 있으며, 바람직하게는 15/15 내지 20/20 ㎛/㎛ 범위일 수 있다.
8) 상기 포토레지스트를 박리하고 노출된 무전해 도금층을 제거한다.
마지막으로, 불필요한 포토레지스트층을 제거하고 노출된 상기 무전해 도금층을 제거하는 단계를 거쳐서 회로 패턴을 완성한다.
이후 필요한 경우, 당 업계에 알려진 통상적인 인쇄회로기판의 제조 공정, 예컨대 전자소자 실장 공정 등을 더 수행함으로써 인쇄회로기판 제작이 완료된다.
전술한 다층 인쇄회로기판의 제조방법은 상기 설명된 각 단계를 순차적으로 수행하여 제조되어야 하는 것이 아니라, 설계 사양에 따라 각 공정의 단계가 변형되거나 선택적으로 혼용되어 수행될 수 있다.
이하 본 발명을 실시예를 통해 구체적으로 설명하나, 하기 실시예 및 실험예는 본 발명의 한 형태를 예시하는 것에 불과할 뿐이며, 본 발명의 범위가 하기 실시예 및 실험예에 의해 제한되는 것은 아니다.
[실시예 1~9]
1. 제1절연 수지 조성물 및 제2절연 수지 조성물의 제조
하기 표 1~2에 기재된 조성에 따라 상기 폴리이미드 수지, 에폭시 수지, 경화제, 계면활성제 등을 혼합하여 제1절연 수지층 형성용 수지 조성물 및 제2절연 수지층 형성용 조성물을 각각 제조하였다. 하기 표 1~2에서 각 조성물의 사용량 단위는 중량부이다.
2. 수지 이중층 부착 동박 및 인쇄회로기판의 제조
전술한 제1절연 수지 조성물, 제2절연 수지 조성물과 동박을 각각 이용하여 수지 이중층 부착 동박 및 이를 포함하는 인쇄회로기판을 각각 제조하였다.
[비교예 1~4]
하기 표 1~2에 기재된 조성에 따른 것을 제외하고는, 상기 실시예와 동일한 방법으로 수지 조성물, 수지 이중층 부착 동박 및 인쇄회로기판을 제조하였다. 하기 표 1~2에서 각 조성물의 사용량 단위는 중량부이다.
표 1
구분 | 원재료 | 상품명 | 부가설명 | 중량부 | 허용 범위 | 제조사 |
동박층 | 동박 | F0-WS | Furukawa | |||
F1-WS | ||||||
F2-WS | ||||||
FWL-WS | Mitsui | |||||
18MT-EX | ||||||
1st 수지층 | Silica Filler | SC-1050 NNC | 0.5 ㎛ | 15 | 0~20 | Admatech |
H/F Epoxy | NC-3000H | EEW 210~240 | 4.5 | 0~5 | Nippon Kayaku | |
Polyimide | DSPI-SAF | M.W 100,000 | 80 | 70~100 | Doosan | |
계면활성제 | F 477 | - | 0.001 | 0.001~0.1 | DIC | |
2nd 수지층 | Silica Filler | SC-2050 MNK | 0.5 ㎛ | 70 | 55~85 | Admatech |
Nano Silica Filler | Nanopol | 20 nm | 5 | |||
Silicon Rubber | EXL-2655 | 0.5 ㎛ | 2 | Rohm&Hass | ||
비스말레이미드 | BMI 5100 | Yellow Powder | 5 | 2~70 | daiwakasei | |
H/F Epoxy | YX 4000K | EEW 170~190 | 2 | 5~75 | Japan Epoxy Resin | |
HP 4710 | EEW 170~190 | 9 | DIC | |||
경화제 | TPE | EEW 90~110 | 6.94 | 5~65 | Kolon | |
Catalyst | 1B2PZ | - | 0.06 | 0.002~10 | Shikoku |
실험예 1. 인쇄회로기판의 물성 평가
실시예 1~9 및 비교예 1~4에서 제조된 인쇄회로기판에 대하여 하기 실험을 하여, 그 결과를 상기 표 1에 나타내었다.
1) 도금 접착력: 도금층과 절연체 사이의 접착강도를 측정하기 위하여 IPC-TM-650 2.4.8의 시험 규격에 준하여 측정하였다.
2) 납 내열성: 288℃의 납조에서 5cm x 5cm의 크기로 절단한 샘플을 넣은 후 이상이 발생하기 시작하는 시간을 측정하였다.
3) 유리전이온도(Tg)는 DMA (Dynamic Mechanical Analysis), TA사의 Q800을 이용하여 IPC-TM-650-2.4.24.4 (DMA Method)에 의해 측정하였다.
4) CTE는 TMA (Thermomechanical Analyser), TMA Q400을 이용하여 IPC-TM-650-2.4.24.5 (TMA Method)로 평가하였다.
5) 적층 성형성 : 0.1T, 3 ㎛ 동박 적용의 내층 기판에 Ratio 60%로 패턴 설계 후, 제품을 적층하여 Void 유무 및 성형 가능 여부를 기준으로 판단하였다.
실험 결과, 본 발명의 수지이중층 부착 동박을 이용한 인쇄회로기판은 도금 접착력 및 기판 열팽창 계수, 유전율 및 유리전이온도 면에서 뛰어난 특성을 보였다(표 2 참조).
따라서 향후 신뢰성이 높은 다층 인쇄회로기판을 제조할 수 있으며, 소형, 경량의 신규 반도체 패키지의 구성 재료로서 유용하게 사용될 것으로 판단된다.
Claims (17)
- (a) 일면에 소정의 표면 조도가 형성되어 있는 동박;(b) 상기 동박의 표면 조도면 상에 형성되는 제1절연 수지층; 및(c) 상기 제1절연 수지층의 일면 상에 형성되고, 무기물 필러 및 수지를 함유하는 비(非)섬유기재형 제2절연 수지층을 포함하는 수지 이중층(resin double layer) 부착 동박.
- 제1항에 있어서,상기 동박의 일면에 형성된 표면 조도(Rz)는 0.6 ㎛ 내지 3.0 ㎛ 범위인 것을 특징으로 하는 수지 이중층 부착 동박.
- 제1항에 있어서,상기 제1절연 수지층(b)은 동박의 표면 조도면이 전사되어, 상기 표면 조도면과 접하는 계면에 소정의 표면 조도가 형성되어 있는 것을 특징으로 하는 수지 이중층 부착 동박.
- 제1항에 있어서,상기 동박과 제1절연 수지층 간의 접착력은 0.7 kgf/cm2 이상인 것을 특징으로 하는 수지 이중층 부착 동박.
- 제1항에 있어서, 상기 제1절연 수지층(b)은(i) 폴리이미드 및 폴리아마이드이미드로 구성된 군에서 선택되는 1종 이상의 제1수지; 및 (ii) 계면활성제를 포함하며,추가로 (iii) 비스페놀A형 에폭시, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 비페닐형 에폭시 수지, 에폭시 수지, 페놀노볼락형 에폭시 수지, 쿠레졸노볼락형 에폭시 수지, 비스페놀A 노볼락형 에폭시 수지, 비스페놀F 노볼락형 에폭시 수지, 디시클로펜타디엔형 에폭시 수지, 다관능 페놀류, 안트라센, 및 나프탈렌으로 구성된 군으로부터 선택되는 1종 이상의 제2수지를 더 포함하는 수지 조성물로부터 형성되는 것을 특징으로 하는 수지 이중층 부착 동박.
- 제1항에 있어서,상기 제1절연 수지층(b)은 무기물 필러를 더 포함하는 것을 특징으로 하는 수지 이중층 부착 동박.
- 제1항에 있어서,상기 제2절연 수지층(c)은 당해 제2절연 수지층 100 중량부 대비, 무기물 필러 55 내지 85 중량부 범위를 함유하는 것을 특징으로 하는 수지 이중층 부착 동박.
- 제1항에 있어서,상기 제2절연 수지층을 구성하는 무기물 필러는 평균 입경이 0.01~10㎛의 제1무기물 필러와 평균 1~50nm의 제2무기물 필러를 혼용하는 것을 특징으로 하는 수지 이중층 부착 동박.
- 제1항에 있어서,상기 제2절연 수지층을 구성하는 수지는 에폭시 수지를 포함하며, 추가로 비스말레이미드계 수지 및 시아네이트 에스테르계 수지로 구성된 군으로부터 선택되는 1종 이상의 수지를 더 포함하는 것을 특징으로 하는 수지 이중층 부착 동박.
- 제1항에 있어서,상기 제2절연 수지층(c)은 경화 후 50~110℃에서의 열팽창계수가 25 ppm/℃ 이하인 것을 특징으로 하는 수지 이중층 부착 동박.
- 제1항에 있어서,상기 제1절연 수지층의 두께는 제1절연 수지층과 제2절연 수지층의 두께를 합한 전체 두께의 1 내지 30% 범위인 것을 특징으로 하는 수지 이중층 부착 동박.
- 제1항에 있어서,상기 제1절연 수지층과 제2절연 수지층의 전체 두께는 10 내지 50 ㎛ 범위인 것을 특징으로 하는 수지 이중층 부착 동박.
- 제1항에 있어서,상기 제1절연 수지층의 두께는 1 내지 3 ㎛ 범위이고,상기 제2절연 수지층의 두께는 10 내지 50 ㎛ 범위인 것을 특징으로 하는 수지 이중층 부착 동박.
- 제1항에 있어서,상기 동박의 두께는 12 ㎛ 이하인 것을 특징으로 하는 수지 이중층 부착 동박.
- 제1항 내지 제14항 중 어느 한 항에 기재된 수지 이중층(resin double layer) 부착 동박에 의해 절연층이 형성된 다층 인쇄 회로 기판.
- (i) 내층 배선판의 일면 또는 양면 상에, 제1항 내지 제14항 중 어느 한 항에 기재된 수지 이중층 부착 동박을 하나 이상 적층하되, 상기 수지 이중층 부착 동박의 제2절연 수지층을 상기 배선판의 금속면과 접하도록 배치한 후 가열, 가압공정을 통해 절연층을 형성하여 적층체를 빌드업하는 단계;(ii) 상기 적층체의 최상면에 위치하는 동박을 에칭하는 단계;(iii) 상기 적층체의 절연층 내에 하나 이상의 홀을 형성하는 단계;(iv) 상기 절연층의 표면 및 홀 내부를 디스미어 처리하는 단계;(v) 노출된 제1절연 수지층의 표면 조도면과 홀 내부면에 무전해 도금층을 형성하는 단계;(vi) 형성된 무전해 도금층 상에 포토레지스트를 사용하여 패턴을 형성하는 단계;(vii) 상기 패턴 상에 전해 도금에 의한 회로층을 형성하는 단계; 및(viii) 상기 포토레지스트를 박리하고 노출된 무전해 도금층을 제거하는 단계를 포함하는 다층 인쇄 회로 기판의 제조방법.
- 제16항에 있어서,상기 형성된 회로 패턴의 라인/스페이스는 20㎛ / 20㎛ 미만인 것을 특징으로 하는 다층 인쇄 회로 기판의 제조방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140001472A KR101582398B1 (ko) | 2014-01-06 | 2014-01-06 | 수지 이중층 부착 동박, 이를 포함하는 다층 인쇄 회로 기판 및 그 제조 방법 |
KR10-2014-0001472 | 2014-01-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015102461A1 true WO2015102461A1 (ko) | 2015-07-09 |
Family
ID=53493722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/000089 WO2015102461A1 (ko) | 2014-01-06 | 2015-01-06 | 수지 이중층 부착 동박, 이를 포함하는 다층 인쇄 회로 기판 및 그 제조 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101582398B1 (ko) |
WO (1) | WO2015102461A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111527797A (zh) * | 2018-03-23 | 2020-08-11 | 三菱综合材料株式会社 | 绝缘电路基板及绝缘电路基板的制造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101939449B1 (ko) * | 2016-12-23 | 2019-04-10 | 주식회사 두산 | 금속적층판 및 이의 제조방법 |
KR102196881B1 (ko) | 2017-12-11 | 2020-12-30 | 주식회사 엘지화학 | 금속 박막 코팅용 열경화성 수지 조성물 및 이를 이용한 금속 적층체 |
KR102187162B1 (ko) | 2017-12-14 | 2020-12-04 | 주식회사 엘지화학 | 금속 박막 코팅용 열경화성 수지 조성물 및 이를 이용한 금속 적층체 |
KR102065643B1 (ko) * | 2018-03-08 | 2020-01-13 | (주)이녹스첨단소재 | 연성 동박 적층필름 및 이의 제조방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090100388A (ko) * | 2007-01-16 | 2009-09-23 | 스미토모 베이클리트 컴퍼니 리미티드 | 절연 수지 시트 적층체, 상기 절연 수지 시트 적층체를 적층하여 이루어진 다층 프린트 배선판 |
KR20100086786A (ko) * | 2009-01-23 | 2010-08-02 | 주식회사 두산 | 신규 연성 금속박 적층판 및 그 제조방법 |
KR20100100930A (ko) * | 2007-12-28 | 2010-09-15 | 미쓰이 긴조꾸 고교 가부시키가이샤 | 수지부착 동박 및 수지부착 동박의 제조 방법 |
JP2013077590A (ja) * | 2011-09-29 | 2013-04-25 | Tamura Seisakusho Co Ltd | 層間絶縁用の樹脂フィルムおよびビルドアップ配線基板 |
-
2014
- 2014-01-06 KR KR1020140001472A patent/KR101582398B1/ko active IP Right Grant
-
2015
- 2015-01-06 WO PCT/KR2015/000089 patent/WO2015102461A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090100388A (ko) * | 2007-01-16 | 2009-09-23 | 스미토모 베이클리트 컴퍼니 리미티드 | 절연 수지 시트 적층체, 상기 절연 수지 시트 적층체를 적층하여 이루어진 다층 프린트 배선판 |
KR20100100930A (ko) * | 2007-12-28 | 2010-09-15 | 미쓰이 긴조꾸 고교 가부시키가이샤 | 수지부착 동박 및 수지부착 동박의 제조 방법 |
KR20100086786A (ko) * | 2009-01-23 | 2010-08-02 | 주식회사 두산 | 신규 연성 금속박 적층판 및 그 제조방법 |
JP2013077590A (ja) * | 2011-09-29 | 2013-04-25 | Tamura Seisakusho Co Ltd | 層間絶縁用の樹脂フィルムおよびビルドアップ配線基板 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111527797A (zh) * | 2018-03-23 | 2020-08-11 | 三菱综合材料株式会社 | 绝缘电路基板及绝缘电路基板的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101582398B1 (ko) | 2016-01-05 |
KR20150082730A (ko) | 2015-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6769032B2 (ja) | 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、接着補助層付き層間絶縁用樹脂フィルム、及びプリント配線板 | |
WO2015102461A1 (ko) | 수지 이중층 부착 동박, 이를 포함하는 다층 인쇄 회로 기판 및 그 제조 방법 | |
KR102211591B1 (ko) | 폴리이미드, 폴리이미드계 접착제, 필름상 접착재, 접착층, 접착 시트, 수지부 동박, 동피복 적층판 및 프린트 배선판, 그리고 다층 배선판 및 그 제조 방법 | |
KR101140626B1 (ko) | 폴리이미드 수지용 조성물 및 그 폴리이미드 수지용 조성물로 이루어지는 폴리이미드 수지 | |
WO2015080445A1 (ko) | 내열성 및 저유전 손실 특성을 가진 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판 | |
JP6345207B2 (ja) | 金属張積層板、その製造方法、並びに、それを用いるフレキシブル回路基板の製造方法 | |
KR102485692B1 (ko) | 폴리이미드계 접착제 | |
WO2016108491A1 (ko) | 가교형 수용성 열가소성 폴리아믹산을 이용한 열융착 다층 폴리이미드 필름, 및 이의 제조방법 | |
WO2017111254A1 (ko) | 전자파 차폐 필름 및 이의 제조방법 | |
WO2016105131A1 (ko) | 연성 인쇄회로기판용 전자파 차폐 필름의 제조방법 | |
KR20100034747A (ko) | 다층 프린트 배선판의 층간 절연용 수지 조성물 | |
KR101027303B1 (ko) | 다층 프린트 배선판용 수지 조성물 및 접착 필름 | |
WO2019124929A1 (ko) | 무선 충전용 복합기판 | |
WO2018004273A1 (ko) | 열경화성 수지 조성물, 이를 이용한 프리프레그 및 기판 | |
WO2015105340A1 (ko) | 연성 인쇄회로기판용 전자파 차폐 필름 및 이의 제조방법 | |
WO2016108490A1 (ko) | 가교형 수용성 열가소성 폴리아믹산 및 이의 제조방법 | |
WO2020162668A1 (ko) | 반도체 패키지용 열경화성 수지 조성물, 프리프레그 및 금속박 적층판 | |
WO2015099451A1 (ko) | 연성 인쇄회로기판 형성용 절연 수지 시트 및 이의 제조방법, 이를 포함하는 인쇄회로기판 | |
WO2015088245A1 (ko) | 저유전 손실 특성을 가진 고주파용 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판 | |
KR20170038740A (ko) | 수지 조성물, 접착제, 필름형 접착 기재, 접착 시트, 다층 배선판, 수지 부착 동박, 동장 적층판, 프린트 배선판 | |
WO2015046953A1 (ko) | 변성 폴리페닐렌 옥사이드를 이용한 동박적층판 | |
WO2020121652A1 (ja) | 半導体素子搭載用パッケージ基板の製造方法 | |
KR101021047B1 (ko) | 변성 폴리이미드 수지를 함유하는 열경화성 수지 조성물 | |
WO2014104739A1 (ko) | 접착성이 우수한 에폭시 수지 조성물 및 이를 이용한 수지 복합 동박 | |
WO2018004190A1 (ko) | 프라이머 코팅-동박 및 동박 적층판 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15733173 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/11/2016) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15733173 Country of ref document: EP Kind code of ref document: A1 |