WO2015088245A1 - 저유전 손실 특성을 가진 고주파용 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판 - Google Patents

저유전 손실 특성을 가진 고주파용 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판 Download PDF

Info

Publication number
WO2015088245A1
WO2015088245A1 PCT/KR2014/012142 KR2014012142W WO2015088245A1 WO 2015088245 A1 WO2015088245 A1 WO 2015088245A1 KR 2014012142 W KR2014012142 W KR 2014012142W WO 2015088245 A1 WO2015088245 A1 WO 2015088245A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
thermosetting resin
bisphenol
fiber
high frequency
Prior art date
Application number
PCT/KR2014/012142
Other languages
English (en)
French (fr)
Inventor
정동희
한덕상
권정돈
김무현
홍도웅
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2015088245A1 publication Critical patent/WO2015088245A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/126Polyphenylene oxides modified by chemical after-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides

Definitions

  • the present invention relates to a novel high-frequency thermosetting resin composition capable of simultaneously exhibiting excellent low dielectric loss characteristics, good moisture absorption heat resistance, low thermal expansion characteristics, thermal stability, and the like, and a prepreg, a functional laminated sheet, and a copper clad laminate using the same.
  • poly (phenylene ether) resin having excellent dielectric properties has been applied, but it has problems such as high melt viscosity, difficulty in handling, and moldability of prepreg.
  • the present invention has been made to solve the above-mentioned problems, and by using a crosslinkable curing agent with a poly (phenylene ether) resin in which both sides of the molecular chain are modified with an unsaturated bond substituent, overall physical properties including heat resistance and low dielectric constant characteristics At the same time, an excellent thermosetting resin composition was produced.
  • an object of the present invention is to provide a thermosetting resin composition exhibiting excellent heat resistance and low dielectric properties, a prepreg and a copper foil laminated plate using the composition.
  • the present invention (a) polyphenylene ether or oligomer thereof having at least two unsaturated substituents selected from the group consisting of vinyl and allyl groups at both ends of the molecular chain; And (b) a non-epoxy clock thermosetting resin composition comprising a crosslinkable curing agent.
  • the polyphenylene ether resin (c) is redistributed in the presence of a bisphenol-based compound (except bisphenol A) of a high molecular weight polyphenylene ether resin having a number average molecular weight of 10,000 ⁇ 30,000 It is preferred that the reaction be modified to a low molecular weight in the range of 1000 to 10,000.
  • the molecular weight distribution of the said polyphenylene ether resin (a) is 3 or less (Mw / Mn ⁇ 3).
  • crosslinkable curing agent (b) is triallyl isocyanurate (TAIC), di-4-vinylbenzyl ether, divinylbenzene, divinylnaphthalene, divinylphenyl, 1,7-octadiene, and 1, It is preferable that it is at least one selected from the group consisting of 9-tecadiene.
  • TAIC triallyl isocyanurate
  • di-4-vinylbenzyl ether divinylbenzene
  • divinylnaphthalene divinylphenyl
  • 1,7-octadiene 1,7-octadiene
  • thermosetting resin composition preferably further comprises one selected from the group consisting of a flame retardant, an inorganic filler, a curing accelerator, and a radical initiator.
  • the present invention is a fiber substrate; And it provides a prepreg comprising the above-mentioned thermosetting resin composition impregnated on the fiber substrate.
  • the fiber base material is glass fiber, glass paper, glass fiber nonwoven fabric (glass web), glass cloth (glass cloth), aramid fiber, aramid paper (aramid paper), polyester fiber, carbon fiber, inorganic fiber and organic fiber It is preferable to include one or more selected from the group consisting of.
  • the present invention provides a printed circuit board, which is formed by stacking one or more layers of the prepreg.
  • thermosetting resin composition according to the present invention satisfies the glass transition temperature (Tg) improvement, low coefficient of thermal expansion (CTE), low dielectric properties and heat resistance at the same time, the printed circuit board using the same has excellent high-frequency characteristics, good moisture absorption heat resistance, low thermal expansion characteristics Can be represented.
  • thermosetting resin composition of the present invention is a component of a printed circuit board used in a mobile communication device that handles high frequency signals of 1 GHz or more, network-related electronic devices such as base station devices, servers, routers, and various electrical and electronic devices such as large computers. It can be usefully used as a use.
  • the present invention seeks to provide a thermosetting resin composition that can be usefully used in printed circuit boards, especially multilayer printed circuit boards for high frequency applications.
  • the dielectric loss of the electrical signal is proportional to the product of the square root of the dielectric constant of the insulating layer forming the circuit, the dielectric tangent and the frequency of the electrical signal, the higher the frequency of the electrical signal, the larger the dielectric loss. Therefore, in order to be used in an insulating layer of a high frequency printed circuit board, it is required to use a material having a low dielectric constant and dielectric loss factor (dielectric loss). Due to these demands, high frequency substrate materials have been developed in order to realize low dielectric polymer materials, such as reducing hydroxyl groups of epoxy resins, crosslinking methods of thermoplastic resins, and applying liquid crystal polymers or polyimide. To satisfy the high frequency characteristics, there is insufficient dielectric characteristics or difficulty in molding.
  • the present invention seeks to use poly (phenylene ether) (PPE) as a component of the thermosetting resin composition, but the low heat resistance resulting from the use of PPE, and the PPE resin melt
  • PPE poly (phenylene ether)
  • the PPE resin melt In consideration of the increase in viscosity, it is characterized by using a poly (phenylene ether) in which both ends of the molecular chain are modified with an unsaturated bond substituent and a specific crosslinking curing agent.
  • the side of the poly (phenylene ether) was modified to a vinyl group (vinyl), allyl group (allyl) and the like to enable unsaturated bonds. This can cause crosslinking reaction by heat, which contributes to improvement of heat resistance and can suppress deformation and flow of the insulating layer.
  • thermosetting system it not only satisfies moisture resistance and dielectric properties due to improved glass transition temperature (Tg), low coefficient of thermal expansion (CTE), and -OH (hydroxy) group, but also can be applied to existing thermosetting systems.
  • Tg glass transition temperature
  • CTE low coefficient of thermal expansion
  • -OH hydroxy
  • thermosetting resin composition according to the present invention is a non-epoxy clock and a non cyanate ester (CE) -based thermosetting resin composition, which is selected from the group consisting of (a) vinyl groups and allyl groups at both ends of the molecular chain. Polyphenylene ether resins or oligomers thereof having two or more unsaturated substituents; And (b) a crosslinkable curing agent.
  • a flame retardant, an inorganic filler, a curing accelerator, and a radical initiator may be further included as necessary.
  • the first component constituting the thermosetting resin composition according to the present invention is a polyphenylene ether (PPE) or an oligomer thereof, and in particular, if it has two or more vinyl groups, allyl groups, or both at both ends of the molecular chain, It can be used without limitation.
  • PPE polyphenylene ether
  • allylated poly (phenylene ether) represented by the following general formula (1) is preferable. This is because the side has been modified with two or more vinyl groups, it is possible to satisfy the moisture resistance and dielectric properties due to the glass transition temperature, low thermal expansion coefficient, -OH group reduction.
  • Y is bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, naphthalene type epoxy resin, anthracene epoxy resin, biphenyl type epoxy resin, tetramethyl biphenyl type epoxy resin, phenol novolac type epoxy resin, Cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, and bisphenol S novolac type epoxy resin,
  • n are each independently a natural number of 3 to 20.
  • the present invention mainly uses two or more vinyl groups at both ends of the molecular chain, it is also possible to use conventional unsaturated double-bonding moieties known in the art in addition to the vinyl groups. Belongs to the category.
  • Poly (phenylene ether) on the other hand, is inherently high in melting point and thus high in melt viscosity of the resin composition, making it difficult to produce a multilayer sheet.
  • polyphenylene ether instead of using the conventional high molecular weight polyphenylene ether as it is, it is preferable to use a modified form with a low molecular weight through a redistribution reaction.
  • a compound such as a phenol derivative or bisphenol A is generally used. Is generated.
  • the conventional polyphenylene ether for copper foil laminates was modified by using a high molecular polyphenylene ether with a low molecular polyphenylene ether having an alcohol group at both ends through a redistribution reaction using a polyphenol and a radical initiator as a catalyst. Due to the structural properties of Bisphenol A, a polyphenol used, and the high polarity of alcohol groups at both ends formed after redistribution, there was a limit to low dielectric loss characteristics.
  • the polyphenols used in the redistribution reaction are redistributed using specific bisphenol derivatives having increased alkyl group content and aromatic aromatic group, and then alcohol groups positioned at both ends of the polyphenols.
  • the polyphenylene ether with low dielectric loss can be obtained even after crosslinking by transforming into a low polar vinyl group. Since the modified polyphenylene ether has a lower molecular weight and a higher alkyl content than the existing polyphenylene derivatives, the modified polyphenylene ether has excellent compatibility with existing epoxy resins and the like. The dielectric properties are further improved. Therefore, the printed circuit board manufactured using the resin composition of the present invention has an advantage of improving physical properties such as formability, processability, dielectric properties, heat resistance, and adhesive strength.
  • the specific bisphenol derivative compound having an increased alkyl content and aromatic aromatic content can be used without limitation bisphenol-based compounds other than bisphenol A [BPA, 2,2-Bis (4-hydroxyphenyl) propane].
  • bisphenol derivatives that can be used include bisphenol AP (1,1-Bis (4-hydroxyphenyl) -1-phenyl-ethane), bisphenol AF (2,2-Bis (4-hydroxyphenyl) hexafluoropropane), bisphenol B ( 2,2-Bis (4-hydroxyphenyl) butane), bisphenol BP (Bis- (4-hydroxyphenyl) diphenylmethane), bisphenol C (2,2-Bis (3-methyl-4-hydroxyphenyl) propane), bisphenol C (Bis (4-hydroxyphenyl) -2,2-dichlorethylene), bisphenol G (2,2-Bis (4-hydroxy-3-isopropyl-phenyl) propane), bisphenol M (1,3-Bis (2-hydroxyphenyl) )
  • the polyphenylene ether resin is redistributed to a high molecular weight polyphenylene ether resin having a number average molecular weight in the range of 10,000 to 30,000 in the presence of a bisphenol-based compound (except bisphenol A), which is smaller than the high molecular weight polyphenylene ether resin.
  • the molecular weight such as the number average molecular weight (Mn) may be modified to low molecular weight in the range of 1,000 to 10,000, preferably the number average molecular weight (Mn) is in the range of 1000 to 5,000, more preferably the number may be in the range of 1000 to 3000 have.
  • the polyphenylene ether resin (a) according to the present invention has a number average by redistributing a high molecular weight polyphenylene ether resin having a number average molecular weight (Mn) in the range of 10,000 to 30,000 under a bisphenol-based compound (except bisphenol A). It is preferred that the molecular weight be modified to low molecular weights in the range from 1000 to 10,000. More preferably from 1000 to 3000. However, it is not limited thereto.
  • the molecular weight distribution of the poly (phenylene ether) is preferably 3 or less (Mw / Mn ⁇ 3), preferably in the range of 1.5 to 2.5.
  • the second component constituting the thermosetting resin composition according to the present invention is a crosslinkable curing agent.
  • cross-linking curing agents are used to crosslink the poly (phenylene ether) three-dimensionally to form a network structure. Even if low molecular weight modified poly (phenylene ether) is used to increase the flowability of the resin composition, the use of a crosslinkable curing agent contributes to improving the heat resistance of the poly (phenylene ether). It also has the effect of increasing the flowability of the resin composition and improving the peel strength with other substrates (eg copper foil).
  • crosslinkable curing agent according to the present invention has excellent miscibility with polyphenylene ether whose side is modified with vinyl group, allyl group and the like.
  • crosslinkable curing agents that can be used include allyl prepared by the reaction of vinylbenzyl ether compound-based divinylbenzene (Formula 5), divinyl naphthalene, divinyldiphenyl, styrene monomer, phenol and allyl chloride.
  • TAIC Triallyl isocyanurate
  • TAC triallyanurate
  • 1,2,4-trivinyl cyclohexane 1,7-octadiene, 1,9-decadiene
  • Diene series di-4-vinylbenzyl ether (Formula 3), and the like.
  • curing agent may be used individually or it may mix 2 or more types.
  • the preferred crosslinkable curing agent may be any one of the compounds represented by the following Chemical Formulas 2 to 5. Not only are they excellent in compatibility, they are also excellent in formability and have a small dielectric constant value, excellent heat resistance and reliability.
  • di- (4-Vinylbenzyl) ether (Chemical Formula 3) having a delayed-initiation reaction effect as a crosslinking agent may be mixed with another crosslinking curing agent in an optimized content to facilitate viscosity control.
  • the use ratio of the crosslinkable curing agent of the linear structure and the crosslinking curing agent of the cyclic structure may be in the range of 10 to 90:90 to 10, preferably in the range of 30 to 70:70 to 30 (weight ratio).
  • crosslinkable curing agent of the linear structure and the crosslinking curing agent of the cyclic structure is not particularly limited, and for example, 1,9-decadiene having a linear structure and a moiety having a symmetrical structure and a ring structure It is preferable to use together the di- (4-Vinylbenzyl) ether hardener which is a tee hardener.
  • the content of the crosslinkable curing agent may be in the range of 5 to 40 parts by weight, preferably in the range of 10 to 25 parts by weight, based on the total weight of the poly (phenylether) resin mixture. Can be.
  • the content of the crosslinkable curing agent falls within the above-mentioned range, the curability, molding processability and adhesive strength of the resin composition are good.
  • thermosetting resin composition which concerns on this invention can further contain a flame retardant (c) as needed.
  • the flame retardant may be used without limitation, conventional flame retardants known in the art, for example, phosphorus-based flame retardants such as halogen flame retardant containing bromine or chlorine, triphenyl phosphate, trikeyl phosphate, trisdichloropropyl phosphate, phosphazene And antimony flame retardants such as antimony trioxide, and inorganic flame retardants such as aluminum hydroxide and magnesium hydroxide.
  • phosphorus-based flame retardants such as halogen flame retardant containing bromine or chlorine, triphenyl phosphate, trikeyl phosphate, trisdichloropropyl phosphate, phosphazene
  • antimony flame retardants such as antimony trioxide
  • inorganic flame retardants such as aluminum hydroxide and magnesium hydroxide.
  • Additive bromine flame retardants that are not reactive with poly (phenylene ether) and do not degrade heat and dielectric properties are suitable in the present invention.
  • the brominated flame retardant is bromophthalimide, bromophenyl-added bromine flame retardant, or tetrabromo bisphenol A in allyl terminated form, allyl ether, divinylphenol.
  • Flame retardant curing agents in the form can be used to obtain the properties of the curing agent and flame retardant properties simultaneously.
  • Brominated organic compounds may also be used, and specific examples thereof include dicabromodiphenyl ethane, 4,4-dibromobiphenyl, and ethylene bistetrabromophthalimide.
  • the content of the flame retardant may be included in a ratio of 10 to 30 parts by weight based on 100 parts by weight of the total varnish, preferably 10 to 20 parts by weight.
  • the flame retardant When the flame retardant is included in the above range, it may have a flame resistance of flame retardant 94V-0, and may exhibit excellent thermal resistance and electrical characteristics.
  • thermosetting resin composition according to the present invention may further include a conventional inorganic filler (d) known in the art used for lamination, if necessary.
  • inorganic fillers can effectively improve the warpage characteristics, low expansion, mechanical toughness and low stress of the final product by reducing the difference in the coefficient of thermal expansion (CTE) between the resin layer and other layers.
  • CTE coefficient of thermal expansion
  • Non-limiting examples of the inorganic fillers usable in the present invention include silicas such as natural silica, fused silica, amorphous silica, crystalline silica, and the like; Boehmite, alumina, talc, spherical glass, calcium carbonate, magnesium carbonate, magnesia, clay, calcium silicate, titanium oxide, antimony oxide, glass fiber, aluminum borate, barium titanate, strontium titanate, calcium titanate , Magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate, boron nitride, silicon nitride, talc, mica and the like. These inorganic fillers may be used alone or in combination of two or more.
  • fused silica having a low coefficient of thermal expansion is most preferred.
  • the size of the inorganic filler is not particularly limited, but an average particle diameter in the range of 0.5 to 5 ⁇ m is advantageous in dispersibility.
  • the content of the inorganic filler is not particularly limited, and may be appropriately adjusted in consideration of the aforementioned bending characteristics and mechanical properties. As an example, the range of 10-50 weight part with respect to 100 weight part of whole thermosetting resin composition varnishes is preferable. Excessive content of the inorganic filler may be detrimental to moldability.
  • thermosetting resin composition according to the present invention may further include a reaction initiator in order to enhance the advantageous effect of the crosslinkable curing agent.
  • Such a reaction initiator may further accelerate the curing of the polyphenylene ether and the crosslinkable curing agent, and may increase properties such as heat resistance of the resin.
  • reaction initiators that can be used include ⁇ , ⁇ ′-bis (t-butylperoxy-m-isopropyl) benzene, 2,5-dimethyl-2,5-di (t-butyl peroxy) -3 Hexyne, benzoyl peroxide, 3,3 ′, 5,5′-tetramethyl-1,4-diphenoxyquinone, chloranyl, 2,4,6-tri-t-butylphenoxyl, t -Butyl peroxyisopropyl monocarbonate, azobisisisobutylonitrile and the like.
  • metal carboxylate salts may be further used.
  • the reaction initiator is 2 to 5 parts by weight based on 100 parts by weight of polyphenylene ether. It may be included, but is not limited thereto.
  • thermosetting resin composition of the present invention may further include a curing accelerator.
  • the curing accelerator may use an organometallic salt or organometallic complex including at least one metal selected from the group consisting of iron, copper, zinc, cobalt, lead, nickel, manganese, and tin.
  • organometallic salts or organometallic complexes examples include iron naphthenates, copper naphthenates, zinc naphthenates, cobalt naphthenates, nickel naphthenates, manganese naphthenates, tin naphthenates, zinc Octanoate, tin octanoate, iron octanoate, copper octanoate, zinc 2-ethylhexanate, lead acetylacetonate, cobalt acetylacetonate, or dibutyltin malate. It is not limited. In addition, these can be used 1 type or in mixture of 2 or more types.
  • the curing accelerator may be included in 0.01 to 1 parts by weight based on 10 to 60 parts by weight of polyphenylene ether, but is not limited thereto.
  • thermosetting resin composition of the present invention is a flame retardant generally known in the art as needed, other thermosetting resins or thermoplastic resins and oligomers thereof not described above, as long as they do not impair the intrinsic properties of the resin composition.
  • Various polymers such as, solid rubber particles or other additives such as ultraviolet absorbers, antioxidants, polymerization initiators, dyes, pigments, dispersants, thickeners, leveling agents and the like may be further included.
  • organic fillers such as silicon-based powder, nylon powder, and fluororesin powder, thickeners such as orbene and benton; Polymeric antifoaming agents or leveling agents such as silicone-based and fluorine-based resins; Adhesion imparting agents such as imidazole series, thiazole series, triazole series, and silane coupling agents; Phthalocyanine, carbon black, etc. can be mentioned a coloring agent.
  • thermoplastic resin can be mix
  • thermoplastic resins include phenoxy resins, polyvinyl acetal resins, polyimides, polyamideimide, polyethersulfone, polysulfone and the like. Any one of these thermoplastic resins may be used alone, or two or more thereof may be used in combination.
  • Organic fillers such as a silicone powder, nylon powder, a fluorine powder; Thickeners such as olben and benton; Antifoaming agents or leveling agents based on silicon, fluorine and polymers; Adhesion imparting agents such as imidazole series, thiazole series, triazole series, silane coupling agents, epoxy silanes, aminosilanes, alkylsilanes and mercaptosilanes; Coloring agents such as phthalocyanine blue, phthalocyanine green, iodine green, disazo yellow and carbon black; Mold release agents such as higher fatty acids, higher fatty acid metal salts, and ester waxes; Stress relieving agents such as modified silicone oil, silicone powder, silicone resin, and the like. It may also include additives commonly used in thermosetting resin compositions used in the production of electronic devices (especially printed wiring boards).
  • the thermosetting resin composition is based on 100 parts by weight of the composition, (a) 20 to 50 parts by weight of a polyphenylene ether resin having two or more unsaturated substituents at both ends of the molecular chain; (b) 5 to 40 parts by weight of the crosslinkable curing agent (c) 10 to 30 parts by weight of the flame retardant; And (d) may be included in the range of 10 to 50 parts by weight of the inorganic filler, and may further include a total of 100 parts by weight of an organic solvent or other components. At this time, the basis of the component may be the total weight of the composition, or may be the total weight of the varnish containing the organic solvent.
  • the organic solvent may be a conventional organic solvent known in the art without limitation, for example, a variety of organic solvents such as acetone, cyclohexanone, methyl ethyl ketone, toluene, xylene, tetrahydrofuran and the like can be used arbitrarily.
  • the content of the organic solvent may be in the range of the remaining amount to satisfy the total 100 parts by weight of the varnish using the composition ratio of the above-described composition, it is not particularly limited.
  • the prepreg of this invention contains the fiber base material and the above-mentioned thermosetting resin composition impregnated to the said fiber base material.
  • the thermosetting resin composition may be a resin varnish dissolved or dispersed in a solvent.
  • the fibrous substrate may be arbitrarily bent, and may be used in the art of a conventional inorganic fiber substrate, organic fiber substrate, or a mixed form thereof. What is necessary is just to select the above-mentioned fiber base material based on the use or performance to be used.
  • Examples of the substrate used in the present invention include inorganic fibers such as E-glass, D-glass, S-glass, NE-glass, T-glass, and Q-glass, and organic fibers such as polyimide, polyamide, polyester, and the like. Mixtures, etc. are selected based on the intended use or performance.
  • Non-limiting examples of fiber substrates that can be used include glass fibers (inorganic fibers) such as E-glass, D-glass, S-glass, NE-glass, T-glass, Q-glass, and the like; Organic fibers such as glass paper, glass fiber nonwoven fabric, glass cloth, aramid fiber, aramid paper, polyimide, polyamide, polyester, aromatic polyester, fluororesin, and the like; Carbon fibers, paper, inorganic fibers, or a mixture of one or more thereof.
  • the fiber base may be in the form of a woven or nonwoven fabric made of the above fibers; Roving, chopped strand mat, surfacing mat, woven fabric, nonwoven fabric, mat, etc. which consist of metal fiber, carbon fiber, mineral fiber, etc. are mentioned.
  • this fibrous substrate is not particularly limited and may be, for example, in the range of about 0.01 mm to 0.3 mm.
  • the said resin composition is used for prepreg formation,
  • the thermosetting resin composition of this invention mentioned above can be used.
  • prepreg refers to a sheet-like material obtained by coating or impregnating a thermosetting resin composition on a fibrous substrate and then curing the resin to a B-stage (semi-cured state) by heating.
  • the prepreg of the present invention can be prepared by a known hot melt method, a solvent method and the like known in the art.
  • the solvent method is a method in which the resin composition varnish formed by dissolving the thermosetting resin composition for prepreg formation in an organic solvent is impregnated with a fiber base and dried.
  • a resin varnish is generally used.
  • the method of impregnating the resin composition into the fiber substrate include a method of immersing the substrate in a resin varnish, a method of applying the resin varnish to the substrate by various coaters, a method of spraying the resin varnish onto the substrate by spraying, and the like. Can be mentioned.
  • the fiber base material is immersed in a resin varnish, since the impregnation property of the resin composition with respect to a fiber base material can be improved, it is preferable.
  • examples of the organic solvent include ketones such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate.
  • ketones such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate.
  • Carboxitols such as acetic acid esters, cellosolves and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, tetrahydrofuran and the like.
  • You may use an organic solvent 1 type or in combination of 2 or more types.
  • the hot-melt method may be a method of coating a resin composition and a release paper having excellent peelability without dissolving the resin composition in an organic solvent and then laminating it on a sheet-like fibrous substrate, or coating directly by a die coater.
  • it may be manufactured by continuously laminating an adhesive film made of a thermosetting resin composition laminated on a support under heating and pressing conditions from both sides of a sheet-like reinforcing base material.
  • the resin composition of this invention can be manufactured as a prepreg by coating or impregnating the said resin composition in the sheet-like fiber base material or glass base material which consists of fibers, and semi-hardening by heating.
  • the resin composition may be prepared by a resin varnish.
  • the prepreg of the present invention may be formed by coating or impregnating the substrate, and then additionally drying, wherein the drying may be performed at 20 to 200 ° C.
  • the prepreg of the present invention may be prepared by semi-curing (B-Stage) by impregnating the substrate in the thermosetting resin composition varnish and heat-dried for 70 to 170 °C, 1 to 10 minutes.
  • the present invention is a metal foil; And it is provided on one or both surfaces of the metal foil, and provides a metal foil with a resin comprising a resin layer cured the thermosetting resin composition.
  • the metal foil can be used without limitation those made of a common metal or alloy known in the art.
  • the metal foil is a copper foil
  • the laminate formed by coating and drying the thermosetting resin composition according to the present invention can be used as a copper foil laminate.
  • it is copper foil.
  • the said copper foil includes all the copper foils manufactured by the rolling method and the electrolytic method.
  • the copper foil may be subjected to rust prevention treatment in order to prevent oxidative corrosion of the surface.
  • the metal foil may have a predetermined surface roughness Rz formed on one surface of the thermosetting resin composition in contact with the cured resin layer.
  • the surface roughness Rz is not particularly limited, but may be, for example, in a range of 0.6 ⁇ m to 3.0 ⁇ m.
  • the thickness of the metal foil is not particularly limited, but may be used less than 5 ⁇ m in consideration of the thickness and mechanical properties of the final product, preferably may be in the range of 1 to 3 ⁇ m.
  • the present invention includes a laminate formed by overlapping two or more prepregs described above with each other and then heating and pressing them under normal conditions.
  • the present invention includes a copper foil laminate formed by laminating the prepreg and the copper foil, and being formed by heat press molding under ordinary conditions. At this time, when forming the laminate, the heating pressure conditions may be appropriately adjusted according to the thickness of the laminate to be manufactured or the type of the thermosetting resin composition according to the present invention.
  • the present invention includes a printed circuit board, preferably a multilayer printed circuit board, laminated and molded, including at least one selected from the group consisting of the prepreg, the insulating resin sheet, and the copper foil with resin.
  • a printed circuit board refers to a printed circuit board laminated by one or more layers by a plating through-hole method, a build-up method, etc., and can be obtained by overlaying the above-described prepreg or insulating resin sheet on an inner wiring board and heating and pressing.
  • the printed circuit board may be manufactured by conventional methods known in the art.
  • a copper foil laminated board is produced, opening a hole in a copper foil laminated board, through-hole plating, and then copper foil containing a plating film It can be produced by etching to form a circuit.
  • the prepreg and the printed circuit board may be prepared from the thermosetting resin composition according to the present invention.
  • These prepregs and printed circuit boards not only have low dielectric constant and dielectric loss, but also have a low coefficient of thermal expansion (CTE), a high glass transition temperature (Tg), and excellent heat resistance (see Table 1 below). Therefore, the prepreg and printed circuit board of the present invention are used for a mobile communication device that handles high frequency signals of 1 GHz or higher, network-related electronic devices such as base station devices, servers, routers, and various electrical and electronic devices such as large computers. It can be usefully used as a component of a printed circuit board.
  • the crosslinkable curing agent, a curing accelerator, a flame retardant and an inorganic filler were mixed, stirred for 3 hours, an initiator was added, and stirred for an additional 1 hour.
  • the composition was prepared.
  • the amount of each composition is used in parts by weight.
  • TAIC TAIC ⁇ (NIPPON KASEI CHEMICAL)
  • substrate was produced by 127 mm in length and 12.7 mm in width from the evaluation board from which copper foil was removed by impregnating a copper foil laminated board with copper etching liquid, and it evaluated according to the test method (V method) of UL94.
  • TMA glass transition temperature measurement An evaluation substrate of 5 mm on each side was manufactured by evaluating the copper foil laminated plate in the copper etching solution to remove the copper foil, and the thermal expansion characteristics of the evaluation substrate were observed using a TMA test apparatus (TA Instrument, Q400). It evaluated by doing.
  • a dielectric constant and dielectric loss tangent at a frequency of 1 GHz was measured by a dielectric constant measuring device (RF Impedence / Material Analyzer; Agilent) using a substrate from which copper foil was laminated to a copper liquid to remove copper foil. Measured.
  • Tg Glass Transition Temperature
  • thermosetting resin composition of the present invention not only has excellent low dielectric loss characteristics and low dielectric constant, but also exhibits high glass transition temperature (Tg), excellent heat resistance, low thermal expansion characteristics, and thermal stability. See Table 1 above).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 (a) 분자쇄의 양 말단에 비닐기 및 알릴기로 구성된 군으로부터 선택된 불포화 치환기를 2개 이상 갖는 폴리페닐렌 에테르 수지 또는 이의 올리고머; 및 (b) 가교결합성 경화제를 포함하는 비(非)에폭시계 고주파용 열경화성 수지 조성물, 상기 조성물을 포함하는 프리프레그 및 인쇄회로기판을 제공한다. 본 발명에서는 우수한 저유전 손실 특성과 양호한 흡습 내열성, 저열팽창 특성, 열적 안정성 등을 동시에 나타내는 고주파용 인쇄회로기판을 제공할 수 있다.

Description

저유전 손실 특성을 가진 고주파용 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판
본 발명은 우수한 저유전 손실 특성과 양호한 흡습 내열성, 저열팽창 특성, 열적 안정성 등을 동시에 나타낼 수 있는 신규 고주파용 열경화성 수지 조성물 및 이를 이용한 프리프레그, 기능성 적층 시트, 동박적층판에 관한 것이다.
최근 반도체 기판, 인쇄회로기판, EMC(Epoxy molding Compound) 등과 같은 전자 부품 및 정보 통신 기기의 신호대역이 높아지는 경향을 나타내고 있다. 전기 신호의 전송 손실은 유전 정접 및 주파수와 비례한다. 따라서 주파수가 높은 만큼 전송 손실은 커지고 신호의 감쇠를 불러 신호 전송의 신뢰성 저하가 생긴다. 또한 전송 손실이 열로 변환되어 발열의 문제도 야기될 수 있다. 그렇기 때문에 고주파 영역에서는 유전 정접이 매우 작은 절연 재료가 필요로 한다.
또한, 현재 반도체 기기 및 PCB 분야에서의 고집적화, 고미세화, 고성능화 등에 대한 요구가 높아지므로, 반도체 기기의 집적 및 인쇄 회로기판의 고밀도화 동시에 배선의 간격의 간결성이 요구되는 상황으로 점차 변화되고 있다. 이러한 특성을 만족시키기 위해서는 전송 속도를 빠르게 하는 저유전율과 전송 손실을 감소시키기 위한 저 유전손실 물질을 사용하는 것이 바람직하다.
이러한 저유전 특성을 나타내기 위하여 우수한 유전특성을 가지는 폴리(페닐렌 에테르) 레진을 적용하기도 하였으나, 높은 용융 점도, 핸들링의 어려움과 프리프레그의 성형 가공성 등에 문제점을 지니고 있다.
본 발명은 전술한 문제점을 해결하기 위해서 안출된 것으로서, 분자쇄의 양 사이드가 불포화 결합 치환기로 개질된 폴리(페닐렌 에테르) 수지와 가교결합성 경화제를 병용함으로써 내열성, 저유전율 특성을 비롯한 전반적인 물성이 동시에 우수한 열경화성 수지 조성물을 제작하였다.
이에, 본 발명은 우수한 내열성과 낮은 유전특성을 발휘하는 열경화성 수지 조성물, 상기 조성물을 이용하는 프리프레그 및 동박적층판을 제공하는 것을 목적으로 한다.
본 발명은 (a) 분자쇄의 양쪽 말단에 비닐기 및 알릴기로 구성된 군으로부터 선택된 불포화 치환기를 2개 이상 갖는 폴리페닐렌 에테르 또는 이의 올리고머; 및 (b) 가교결합성 경화제를 포함하는 비(非)에폭시계 고주파용 열경화성 수지 조성물을 제공한다.
본 발명에 따른 바람직한 일례에 따르면, 상기 폴리페닐렌 에테르 수지(c)는 수평균 분자량이 10,000 ~ 30,000 범위의 고분자량 폴리페닐렌에테르 수지를 비스페놀 계열 화합물 (단, 비스페놀A는 제외) 존재 하에서 재분배반응하여 수평균 분자량이 1000 내지 10,000 범위의 저분자량으로 개질된 것이 바람직하다.
또한 상기 폴리페닐렌 에테르 수지(a)의 분자량 분포는 3 이하 (Mw/Mn < 3) 인 것이 바람직하다.
또한 상기 가교결합성 경화제(b)는 트리알릴이소시아누레이트 (TAIC), 다이-4-바이닐벤질 에테르, 디비닐벤젠, 디비닐나프탈렌, 디비닐페닐, 1,7-옥타디엔, 및 1,9-테카디엔으로 구성된 군으로부터 선택된 1종 이상인 것이 바람직하다.
본 발명의 바람직한 다른 일례에 따르면, 상기 열경화성 수지 조성물은 난연제, 무기 필러, 경화 촉진제, 및 라디칼 개시제로 구성된 군으로부터 선택되는 것을 더 포함하는 것이 바람직하다.
아울러, 본 발명은 섬유 기재; 및 상기 섬유 기재에 함침된 전술한 열경화성 수지 조성물을 포함하는 프리프레그(prepreg)를 제공한다.
여기서, 상기 섬유 기재는 유리 섬유, 유리 페이퍼, 유리 섬유 부직포 (glass web), 유리 직물(glass cloth), 아라미드 섬유, 아라미드 페이퍼(aramid paper), 폴리에스테르 섬유, 탄소 섬유, 무기섬유 및 유기섬유로 구성된 군에서 선택되는 1종 이상을 포함하는 것이 바람직하다.
나아가, 본 발명은 상기 프리프레그(prepreg)를 1층 이상 포함하여 적층성형된 것을 특징으로 하는 인쇄회로기판을 제공한다.
본 발명에 따른 열경화성 수지 조성물은 유리전이온도(Tg) 향상, 낮은 열팽창계수 (CTE), 저유전 특성 및 내열성을 동시에 만족시키므로, 이를 이용한 인쇄회로기판은 우수한 고주파 특성과 양호한 흡습 내열성, 저열팽창 특성을 나타낼 수 있다.
따라서 본 발명의 열경화성 수지 조성물은 1 GHz 이상의 고주파 신호를 취급하는 이동체 통신기기나 그 기지국 장치, 서버, 라우터 등의 네트워크 관련 전자기기 및 대형 컴퓨터 등의 각종 전기전자 기기에 사용되는 인쇄회로기판의 부품 용도로서 유용하게 사용될 수 있다.
이하, 본 발명을 상세히 설명한다.
본 발명은 인쇄회로기판, 특히 고주파수 용도의 다층 인쇄회로기판에 유용하게 사용될 수 있는 열경화성 수지 조성물을 제공하고자 한다.
전기신호의 유전손실은 회로를 형성하는 절연층의 비유전율의 평방근, 유전 정접 및 전기신호의 주파수의 곱에 비례하기 때문에, 전기신호의 주파수가 높을수록 유전 손실이 커진다. 따라서 고주파수 인쇄회로기판의 절연층에 사용되기 위해서는, 유전율과 유전 손실인자(유전손실)이 낮은 물질을 사용하는 것이 요구된다. 이러한 요구로 인해 저유전성 고분자재료를 구현하기 위해, 에폭시 수지의 수산기 저감, 열가소성 수지의 가교화 방안, 액정 고분자나 폴리 이미드의 적용 등을 적용한 고주파용 기판 재료들이 개발되어 왔지만, 그 자체로는 고주파 특성을 만족시키기에는 유전특성이 불충분하거나 성형의 어려움이 있다.
전술한 낮은 유전 특성 및 유전손실 특성을 만족시키기 위해, 본 발명에서는 열경화성 수지 조성물의 구성 성분으로 폴리(페닐렌 에테르) (PPE)를 사용하고자 하나, PPE 사용시 초래되는 낮은 내열성, 및 PPE 레진 융해물의 점성증가 등을 고려하여, 분자쇄의 양 말단이 불포화 결합성 치환기로 개질된 폴리(페닐렌 에테르)와 특정 가교결합성 경화제를 병용(竝用)하는 것을 특징으로 한다.
보다 구체적으로, 본 발명에서는 폴리(페닐렌 에테르)의 사이드를 비닐기(vinyl), 알릴기(allyl) 등으로 개질을 통해 불포화 결합이 가능하도록 하였다. 이는 열에 의해 가교 반응이 일어나, 내열 향상에 기여하고 절연층의 변형, 유동을 억제시킬 수 있다.
또한 유리 전이온도(Tg) 향상, 낮은 열팽창계수(CTE), 및 -OH(하이드록시)기의 감소로 인한 내습성 및 유전특성을 만족시킬 뿐만 아니라, 기존 열경화 시스템에서 적용이 가능하도록 하였으며, 가교제 특성에 따른 유전 특성 등의 연구를 통해 다양한 물성 확보와 가공성을 동시에 확보할 수 있다.
따라서 폴리(페닐렌 에테르)와 고분자의 배향 분극을 억제하며 선형 구조의 1,9-데카디엔(1,9-Decadien)과 대칭 구조와 환 구조를 갖는 모이어티 경화제인 di-(4-Vinylbenzyl) ether 경화제를 병용(竝用)함으로써, 저유전 특성과 함량 조절에 의한 흐름 특성을 동시에 확보할 수 있다.
<열경화성 수지 조성물>
본 발명에 따른 열경화성 수지 조성물은 비(非)에폭시계, 및 비(非) 시아네이트에스테르(CE)계 열경화성 수지 조성물로서, (a) 분자쇄의 양쪽 말단에 비닐기 및 알릴기로 구성된 군으로부터 선택된 불포화 치환기를 2개 이상 갖는 폴리페닐렌 에테르 수지 또는 이의 올리고머; 및 (b) 가교결합성 경화제를 포함하여 구성될 수 있다. 이때 필요에 따라 난연제, 무기 필러, 경화촉진제, 라디칼 개시제 등을 더 포함할 수 있다.
(a) 폴리(페닐렌 에테르)
본 발명에 따른 열경화성 수지 조성물을 구성하는 첫번째 성분은 폴리페닐렌에테르(PPE) 또는 이의 올리고머로서, 분자쇄의 양 말단에 2개 이상의 비닐기, 알릴기 또는 이들 모두를 갖는 것이면, 그 구조에 특별히 한정되지 않고 사용될 수 있다.
본 발명에서, 하기 화학식 1로 표시되는 알릴레이티드 폴리(페닐렌 에테르)이 바람직하다. 이는 사이드가 2개 이상의 비닐기로 개질되었으므로, 유리전이온도 향상, 낮은 열팽창계수, -OH기 감소로 인한 내습 특성 및 유전특성을 만족시킬 수 있기 때문이다.
화학식 1
Figure PCTKR2014012142-appb-C000001
Y는 비스페놀A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 나프탈렌형 에폭시 수지, 안트라센 에폭시 수지, 비페닐형 에폭시 수지, 테트라메틸 비페닐형 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 비스페놀 A 노볼락형 에폭시 수지, 및 비스페놀 S 노볼락형 에폭시 수지로 구성된 군으로부터 선택되며,
m과 n은 각각 독립적으로 3~20 의 자연수이다.
본 발명에서는 분자쇄의 양 말단에 2개 이상의 비닐(vinyl)기를 갖는 것을 주로 사용하고 있으나, 상기 비닐기 이외에 당 업계에 알려진 통상적인 불포화 이중결합성 모이어티(moiety)를 사용하는 것도 본 발명의 범주에 속한다.
한편 폴리(페닐렌 에테르)는 본질적으로 융점이 높고, 그에 따라 수지 조성물의 융해물 점성이 높기 때문에 다층 시트를 생산하는 것이 어렵다. 이에, 본 발명에서는 종래 고분자량의 폴리페닐렌에테를 그대로 사용하는 대신, 재분배반응을 통해 저분자량으로 개질된 형태를 사용하는 것이 바람직하다.
특히, 종래 고분자량의 폴리페닐렌에테르를 저분자량의 폴리페닐렌에테르 수지로 개질시킬 때 일반적으로 페놀 유도체나 비스페놀A와 같은 화합물을 사용하고 있는데, 이 경우 분자 구조상 로테이션이 가능하여 유전율 저하 현상이 발생된다.
한편 본 발명에서는 종래 고분자량의 폴리페닐렌에테르(PPE) 수지를 그대로 사용하는 대신, 알킬기(Alkyl) 함량과 방향족 고리기(Aromatic) 함량이 증가된 특정 비스페놀(Bisphenol) 유도체들을 이용하여 재분배반응을 통해 저분자량으로 개질된 형태로서, 재분배를 통한 수지의 양 말단에 비닐기(Vinyl group)가 도입된 형태를 사용한다.
즉, 종래 동박 적층판용 폴리페닐렌 에테르는 고분자 폴리페닐렌 에테르를 폴리페놀과 라디칼 개시제를 촉매로 사용한 재분배 반응을 통하여 양 말단에 알코올기를 가지는 저분자 폴리페닐렌 에테르로 개질하여 사용하였으나, 종래 재분배에 사용되는 폴리페놀인 Bisphenol A의 구조적 특성과 재분배 후 생성되는 양 말단의 알코올기의 높은 극성으로 인하여 낮은 유전손실 특성 구현에 한계가 있었다.
이에 비해, 본 발명에서는 재분배 반응에 사용되는 폴리페놀을 알킬기(Alkyl) 함량과 방향족 고리기(Aromatic) 함량이 증가된 특정 비스페놀(Bisphenol) 유도체들을 사용하여 재분배한 후, 양 말단에 위치하는 알코올기를 극성이 낮은 비닐기(Vinyl group)로 변형함으로써 가교 후에도 유전손실이 적은 폴리페닐렌 에테르를 얻을 수 있다. 이러한 변성 폴리페닐렌 에테르는, 기존 폴리 페닐렌 유도체들보다 분자량이 작고, 또한 알킬기(alkyl) 함량이 높기 때문에 기존 에폭시 수지 등과 상용성이 우수하고, 적층판 제조시 흐름성이 증가하여 공정성이 개선되고, 유전특성이 추가로 개선된다. 따라서, 본 발명의 수지 조성물을 사용하여 제조된 인쇄회로기판은 성형성, 가공성, 유전특성, 내열성, 접착강도 등의 물성이 향상되는 장점이 있다.
이때, 상기 알킬기(alkyl) 함량과 방향족 고리기(aromatic) 함량이 증가된 특정 비스페놀 유도체 화합물은 비스페놀 A [BPA, 2,2-Bis(4-hydroxyphenyl)propane]를 제외한 비스페놀 계열 화합물을 제한 없이 사용할 수 있다. 사용 가능한 비스페놀 유도체의 비제한적인 예로는 비스페놀 AP(1,1-Bis(4-hydroxyphenyl)-1-phenyl-ethane), 비스페놀 AF(2,2-Bis(4-hydroxyphenyl)hexafluoropropane), 비스페놀 B(2,2-Bis(4-hydroxyphenyl)butane), 비스페놀 BP(Bis-(4-hydroxyphenyl)diphenylmethane), 비스페놀C (2,2-Bis(3-methyl-4-hydroxyphenyl)propane), 비스페놀 C(Bis(4-hydroxyphenyl)-2,2-dichlorethylene), 비스페놀 G(2,2-Bis(4-hydroxy-3-isopropyl-phenyl)propane), 비스페놀 M(1,3-Bis(2-(4-hydroxyphenyl)-2-propyl)benzene), 비스페놀 P(Bis(4-hydroxyphenyl)sulfone), 비스페놀 PH(5,5' -(1-Methylethyliden)-bis[1,1'-(bisphenyl)-2-ol]propane), 비스페놀 TMC(1,1-Bis(4-hydroyphenyl)-3,3,5-trimethyl-cyclohexane), 비스페놀 Z(1,1-Bis(4-hydroxyphenyl)-cyclohexane) 또는 이들의 1종 이상 혼합물 등이 있다.
상기 폴리페닐렌 에테르 수지는 수평균 분자량이 10,000 ~ 30,000 범위의 고분자량 폴리페닐렌에테르 수지를 비스페놀 계열 화합물 (단, 비스페놀A는 제외) 존재 하에서 재분배반응하여 상기 고분자량 폴리페닐렌에테르 수지 보다 작은 분자량, 예컨대 수평균 분자량(Mn)이 1,000 내지 10,000 범위의 저분자량으로 개질된 것일 수 있으며, 바람직하게는 수평균 분자량(Mn)이 1000 내지 5,000 범위이며, 보다 바람직하게는 1000 내지 3000 범위일 수 있다.
본 발명에 따른 폴리페닐렌 에테르 수지(a)는 수평균 분자량(Mn)이 10,000 ~ 30,000 범위의 고분자량 폴리페닐렌에테르 수지를 비스페놀 계열 화합물 (단, 비스페놀 A는 제외) 하에서 재분배반응하여 수평균 분자량이 1000 내지 10,000 범위의 저분자량으로 개질된 것이 바람직하다. 보다 바람직하게는 1000 내지 3000 범위일 수 있다. 그러나 이에 제한되는 것은 아니다.
또한 상기 폴리(페닐렌 에테르)의 분자량 분포는 3 이하 (Mw/Mn<3)가 적합하며, 바람직하게는 1.5 내지 2.5 범위일 수 있다.
(b) 가교결합성 경화제
본 발명에 따른 열경화성 수지 조성물을 구성하는 두번째 성분은 가교결합성 경화제이다.
이러한 가교결합(cross-linking)성 경화제는 상기 폴리(페닐렌 에테르)을 3차원 적으로 가교결합시켜 망상구조를 형성하기 위해 사용되는 것이다. 레진 조성물의 유동성을 증가시키기 위해 저분자량으로 개질된 폴리(페닐렌 에테르)를 사용하더라도, 가교결합성 경화제 사용으로 인해 폴리(페닐렌 에테르)의 내열성 개선에 기여하게 된다. 또한 수지 조성물의 유동성을 증가시키며 다른 기재(예, 구리 호일)와의 박리 강도를 향상시키는 효과를 갖는다.
본 발명에 따른 가교결합성 경화제는 사이드가 비닐기, 알릴기 등으로 개질된 폴리페닐렌 에테르와 우수한 혼화성을 갖는 것이 바람직하다. 사용 가능한 가교결합성 경화제의 비제한적인 예로는 비닐벤질에테르 화합물 계열의 디비닐벤젠(Divinylbenzene, 화학식 5), 디비닐나프탈렌, 디비닐디페닐, 스티렌모노머, 페놀 및 알릴클로라이드의 반응으로 제조된 알릴에테르 화합물; 트리알릴이소시아누레이트 (TAIC, 화학식 4), 트리알리시아누레이트 (TAC), 1,2,4-트리바이닐 사이클로헥산, 1,7-옥타디엔, 1,9-데카디엔(화학식 2) 등의 디엔계열, 다이-4-바이닐벤질 에테르(화학식 3) 등이 있다. 이때 전술한 경화제를 단독 사용하거나 또는 2종 이상 혼용할 수도 있다.
바람직한 가교결합성 경화제의 구체예로는, 하기 화학식 2 내지 화학식 5로 표시되는 화합물 중 어느 하나일 수 있다. 이들은 융합성(compatibility)이 뛰어날 뿐만 아니라, 성형성이 우수하고 작은 유전 상수값과 뛰어난 내열성 및 신뢰성을 갖도록 해 주기 때문이다.
화학식 2
Figure PCTKR2014012142-appb-C000002
화학식 3
Figure PCTKR2014012142-appb-C000003
화학식 4
Figure PCTKR2014012142-appb-C000004
화학식 5
Figure PCTKR2014012142-appb-C000005
본 발명에서는 전술한 가교결합성 경화제의 적절한 혼용 및 최적화된 함량 조절을 통해 저 유전 특성 뿐만 아니라 다양한 물성과 가공성을 극대화할 수 있다. 특히, 본 발명에서는 가교 결합제로 개시 지연 반응 효과를 나타내는 di-(4-Vinylbenzyl) ether(화학식 3)를 다른 가교 결합성 경화제와 최적화된 함량으로 혼합 사용하여 점도 조절을 용이하게 할 수 있다. 이를 바탕으로 레진 흐름성을 조절함으로써, 프리프레그의 핸들링이나 성형 가공성의 어려움을 극복할 수 있다
보다 구체적으로, 가교결합성 경화제로서 선형 구조의 가교결합성 경화제와 환형 구조의 가교결합성 경화제를 혼용하면, 저유전 특성과 함량 조절에 의한 흐름 특성을 동시에 확보할 수 있다. 이때 선형 구조의 가교결합성 경화제와 환형 구조의 가교 결합성 경화제의 사용 비율은 10~90 : 90~10 범위일 수 있으며, 바람직하게는 30~70 : 70~30 (중량비) 범위일 수 있다. 또한 상기 선형 구조의 가교결합성 경화제와 환형 구조의 가교결합성 경화제는 특별히 제한되지 않으며, 일례로 선형 구조의 1,9-데카디엔(1,9-Decadien)과 대칭 구조와 환 구조를 갖는 모이어티 경화제인 di-(4-Vinylbenzyl) ether 경화제를 병용하는 것이 바람직하다.
본 발명에 따른 열경화성 수지 조성물에서, 상기 가교결합성 경화제의 함량은 폴리(페닐에테르) 레진 혼합물 전체 중량을 기준으로 하여, 5 내지 40 중량부 범위일 수 있으며, 바람직하게는 10 내지 25 중량부 범위일 수 있다. 상기 가교 결합성 경화제의 함량이 전술한 범위에 해당되는 경우, 수지 조성물의 경화성, 성형 가공성 및 접착력이 양호하다.
(c) 난연제
본 발명에 따른 열경화성 수지 조성물은, 필요에 따라 난연제(c)를 더 포함할 수 있다.
상기 난연제는 당업계에 알려진 통상적인 난연제를 제한 없이 사용할 수 있으며, 일례로 브롬이나 염소를 함유하는 할로겐 난연제, 트리페닐포스페이트, 트리케실포스페이트, 트리스디크로로프로필로스페이트, 포스파젠 등의 인계 난연제, 삼산화안티몬 등의 안티몬계 난연제, 수산화알루니늄, 수산화마그네슘 등의 무기물의 난연제 등을 들 수 있다. 본 발명에서는 폴레(페닐렌 에테르)와 반응성이 없으며 내열 특성 및 유전 특성에 저하를 주지 않는 첨가형 브롬 난연제가 적합하다.
본 발명에서 브롬화 난연제는 브로모프탈이미드(Bromophthalimide), 브로모페닐(Bromophenyl) 첨가형 브롬 난연제나 혹은 Allyl terminated 되어진 형태의 테트라브로모비스페놀 A (Tetrabromo bisphenol A) Allyl ether, 디바이닐페놀 (Divinylphenol) 형태의 난연성 경화제를 사용하여 경화제의 특성과 난연 특성을 동시에 얻을 수 있다. 또한 브롬화 유기화합물도 사용할 수 있는데, 이의 구체예로는, 디카브로모디페닐(decabromodiphenyl) 에탄(ethane), 4,4-디브로모비페닐, 에틸렌 비스테트라브로모프탈리미드 (ethylenbistetrabromophthalimide) 등이 있다.
본 발명에 따른 열경화성 수지 조성물에서, 상기 난연제의 함량은 전체 바니쉬 100 중량부에 대해 10~30 중량부의 비율로 포함될 수 있으며, 바람직하게는 10 내지 20 중량부 범위일 수 있다. 상기 난연제가 상기 범위로 포함되면 난연 94V-0 수준의 화염 저항성을 충분히 가질 수 있으며, 우수한 열저항성과 전기적 특성을 나타낼 수 있다.
(d) 무기 필러
본 발명에 따른 열경화성 수지 조성물은, 필요에 따라 라미네이트에 사용되는 당 업계에 알려진 통상적인 무기 필러(d)를 더 포함할 수 있다.
이러한 무기 필러는 수지층과 다른 층간의 열팽창계수(CTE) 차이를 감소시켜 최종 제품의 휨 특성, 저팽창화, 기계적 강도(toughness), 저응력화를 효과적으로 향상시킬 수 있다.
본 발명에서 사용 가능한 무기 필러의 비제한적인 예로는, 천연 실리카(natural silica), 용융 실리카(Fused silica), 비결정질 실리카(amorphous silica), 결정 실리카(crystalline silica) 등과 같은 실리카류; 보에마이트(boehmite), 알루미나, 탈크(Talc), 구형 유리, 탄산칼슘, 탄산마그네슘, 마그네시아, 클레이, 규산칼슘, 산화티탄, 산화안티몬, 유리섬유, 붕산알루미늄, 티탄산바륨, 티탄산스트론튬, 티탄산칼슘, 티탄산마그네슘, 티탄산비스무스, 산화티탄, 지르콘산바륨, 지르콘산칼슘, 질화붕소, 질화규소, 활석(talc), 운모(mica) 등이 포함된다. 이러한 무기 필러는 단독 또는 2개 이상으로 혼용하여 사용될 수 있다.
상기 무기 필러 중에서는 낮은 열팽창계수를 나타내는 용융 실리카가 가장 바람직하다.
본 발명에서 무기 필러의 크기는 특별히 제한되지 않으나, 평균 입경이 0.5~5 ㎛ 범위가 분산성에서 유리하다. 또한 상기 무기 필러의 함량은 특별한 제한이 없으며, 전술한 휨특성, 기계적 물성 등을 고려하여 적절히 조절할 수 있다. 일례로, 전체 열경화성 수지 조성물 바니쉬 100 중량부 대비 10~50 중량부 범위가 바람직하다. 상기 무기 필러의 함량이 과도하게 되면 성형성에 불리할 수 있다.
본 발명에 따른 열경화성 수지 조성물은, 가교 결합성 경화제의 유리한 효과를 강화하기 위해 반응 개시제를 더 포함할 수 있다.
이러한 반응 개시제는 폴리페닐렌 에테르와 가교결합성 경화제의 경화를 더 가속시킬 수 있으며, 레진의 내열성 등의 특성을 증가시킬 수 있다.
사용 가능한 반응개시제의 비제한적인 예로는 α,α′-비스(t-부틸퍼옥시-m-이소프로필)벤젠, 2,5-디메틸-2,5-디(t-부틸 퍼옥시)-3-헥신(hexyne), 벤조일퍼옥사이드, 3,3′,5,5′-테트라메틸-1,4-디페녹시퀴논, 클로라닐, 2,4,6-트리-t -부틸페녹실, t-부틸퍼옥시이소프로필 모노카르보네이트, 아조비시스이소부틸로니트릴 (azobisisobutylonitrile) 등이 있다. 추가로 금속 카르복실레이트 염을 더 사용할 수도 있다. 상기 반응 개시제는 폴리페닐렌에테르 100 중량부에 대해 2~ 5 중량부로 포함될 수 있으나, 이에 제한되는 것은 아니다.
또한, 본 발명의 열경화성 수지 조성물은 경화촉진제를 추가로 포함할 수 있다. 상기 경화촉진제는 철, 구리, 아연, 코발트, 납, 니켈, 망간 및 주석으로 이루어진 군에서 선택된 1종 이상의 금속을 포함하는 유기 금속 염 또는 유기 금속 착물을 사용할 수 있다.
상기 유기 금속 염 또는 유기 금속 착물의 예로는 철 나프테네이트(napthenates), 구리 나프테네이트, 아연 나프테네이트, 코발트 나프테네이트, 니켈 나프테네이트, 망간 나프테네이트, 주석 나프테네이트, 아연 옥타노에이트(octanoate), 주석 옥타노에이트, 철 옥타노에이트, 구리 옥타노에이트, 아연 2-에틸헥사네이트, 납 아세틸아세토네이트, 코발트 아세틸아세토네이트, 또는 디부틸주석 말레이트 등이 있으나, 이에 한정되는 것은 아니다. 또한, 이들은 1종 또는 2종 이상 혼합하여 사용할 수 있다. 상기 경화 촉진제는 폴리페닐렌에테르 10~60 중량부에 대해 0.01~1 중량부로 포함될 수 있으나, 이에 제한되는 것은 아니다.
전술한 성분 이외에, 본 발명의 열경화성 수지 조성물은 상기 수지 조성물의 고유 특성을 해하지 않는 한, 필요에 따라 당 업계에 일반적으로 알려진 난연제나, 상기에서 기재되지 않은 다른 열경화성 수지나 열가소성 수지 및 이들의 올리고머와 같은 다양한 고분자, 고체상 고무 입자 또는 자외선 흡수제, 항산화제, 중합개시제, 염료, 안료, 분산제, 증점제, 레벨링제 등과 같은 기타 첨가제 등을 추가로 포함할 수 있다. 일례로, 실리콘계 파우더, 나일론 파우더, 불소수지 파우더 등의 유기충전제, 오르벤, 벤톤 등의 증점제; 실리콘계, 불소수지계 등의 고분자계 소포제 또는 레벨링제; 이미다졸계, 티아졸계, 트리아졸계, 실란계 커플링제 등의 밀착성 부여제; 프탈로시아닌, 카본 블랙 등이 착색제 등을 들 수 있다.
상기 열 경화성 수지 조성물에는 경화 후의 수지 조성물에 적당한 가요성을 부여하는 것 등을 목적으로 하여, 열가소성 수지를 배합할 수 있다. 이러한 열가소성 수지의 예를 들면, 페녹시 수지, 폴리비닐아세탈 수지, 폴리이미드, 폴리아미드이미드, 폴리에테르설폰, 폴리설폰 등을 들 수 있다. 이들의 열가소성 수지는 어느 1종만을 단독으로 사용하여도 좋고, 2종 이상을 병용하여도 좋다.
상기 수지 첨가제로는, 실리콘 파우더, 나일론 파우더, 불소 파우더 등의 유기 충전제; 올벤, 벤톤 등의 증점제; 실리콘계, 불소계, 고분자계의 소포제 또는 레벨링제; 이미다졸계, 티아졸계, 트리아졸계, 실란 커플링제, 에폭시실란, 아미노실란, 알킬실란, 머캡토실란 등의 밀착성 부여제; 프탈로시아닌ㆍ블루, 프탈로시아닌ㆍ그린, 아이오딘ㆍ그린, 디스아조 옐로우, 카본 블랙 등의 착색제; 고급 지방산, 고급 지방산 금속염, 에스테르계 왁스 등의 이형제; 변성 실리콘 오일, 실리콘 파우더, 실리콘 레진 등의 응력완화제 등이 있다. 또한 전자 기기(특히, 인쇄 배선 기판)의 생산에 사용되는 열경화성 수지 조성물에 통상적으로 사용되는 첨가제들을 포함할 수 있다.
본 발명의 바람직한 일례에 따르면, 상기 열경화성 수지 조성물은 조성물 100 중량부를 기준으로 하여, (a) 분자쇄의 양 말단에 불포화성 치환기를 2개 이상 갖는 폴리페닐렌 에테르 수지 20 내지 50 중량부; (b) 가교결합성 경화제 5 내지 40 중량부 (c) 난연제 10~30 중량부; 및 (d) 무기필러 10~50 중량부 범위로 포함할 수 있으며, 그 외 유기용제나 기타 성분을 더 포함하여 전체 100 중량부를 만족할 수 있다. 이때 상기 구성성분의 기준은 조성물 전체 중량일 수 있으며, 또는 유기용제가 포함된 바니쉬 전체 중량일수도 있다.
상기 유기용제는 당 업계에 알려진 통상적인 유기용제를 제한 없이 사용할 수 있으며, 일례로 아세톤, 사이클로헥사논, 메틸에틸케톤, 톨루엔, 크실렌, 테트라히드로푸란 등 등 다양한 유기 용제를 임의로 혼용 사용할 수 있다. 여기서, 유기용제의 함량은 전술한 조성물의 조성비를 이용하여 바니쉬 전체 100 중량부를 만족시키는 잔량의 범위일 수 있으며, 특별히 제한되지 않는다.
<프리프레그>
본 발명의 프리프레그는, 섬유 기재 및 상기 섬유 기재에 함침된 전술한 열경화성 수지 조성물을 포함한다. 여기서, 상기 열경화성 수지 조성물은 용매에 용해되거나 분산된 형태의 수지 바니쉬일 수도 있다.
상기 섬유 기재는 임의로 절곡 가능한, 가요성을 갖는 당 업계의 통상적인 무기물 섬유기재, 유기물 섬유기재, 또는 이들의 혼합 형태 등을 사용할 수 있다. 사용하는 용도 또는 성능을 기준으로, 전술한 섬유기재를 선택하면 된다.
본 발명에서 사용 기재의 예로는 E-glass, D-glass, S-glass, NE-glass, T-glass 및 Q-glass 등의 무기물 섬유, 폴리이미드, 폴리아미드, 폴리에스테르 등의 유기물의 섬유 및 혼합물등이 있으며, 사용하는 용도 또는 성능을 기준으로 선택하면 된다.
사용 가능한 섬유 기재의 비제한적인 예를 들면, E-glass, D-glass, S-glass, NE-glass, T-glass, Q-glass 등과 같은 유리 섬유 (무기물 섬유); 유리 페이퍼, 유리 섬유 부직포 (glass web), 유리 직물(glass cloth), 아라미드 섬유, 아라미드 페이퍼(aramid paper), 폴리이미드, 폴리아미드, 폴리에스터, 방향족 폴리에스테르, 불소 수지 등과 같은 유기 섬유; 탄소 섬유, 종이, 무기 섬유 또는 이들의 1종 이상의 혼합 형태 등이 있다. 상기 섬유 기재의 형태는 전술한 섬유 등으로 이루어진 직포나 부직포; 로빙(roving), 쵸프트 스트랜드 매트(chopped strand mat), 서페이싱 매트(surfacing mat), 금속 섬유, 카본 섬유, 광물 섬유 등으로 이루어진 직포, 부직포, 매트류 등을 들 수 있다. 이들 기재는 단독 또는 2종 이상 혼용할 수 있다. 강화된 섬유기재를 혼용하는 경우 프리프레그의 강성, 치수 안정성을 향상시킬 수 있다. 이러한 섬유 기재의 두께는 특별히 한정되지 않으며, 예를 들어 약 0.01 ㎜ 내지 0.3 ㎜ 범위일 수 있다.
상기 수지 조성물은 프리프레그 형성에 사용되는 것으로서, 전술한 본 발명의 열경화성 수지 조성물을 사용할 수 있다.
일반적으로 프리프레그는, 섬유 기재에 열경화성 수지 조성물을 코팅 또는 함침시킨 후, 가열에 의해 B-stage(반경화 상태)까지 경화시켜 얻은 시트 형상의 재료를 지칭한다. 전술한 방법 이외에, 본 발명의 프리프레그는 당 업계에 알려진 공지의 핫멜트법, 솔벤트법 등에 의해 제조될 수 있다.
솔벤트법은 프리프레그 형성용 열경화성 수지 조성물을 유기 용매에 용해시켜 형성된 수지 조성물 바니쉬에 섬유 기재를 함침시킨 후 건조하는 방법이다. 이러한 솔벤트법을 채용하는 경우 일반적으로 수지 바니쉬를 이용한다. 상기 수지 조성물을 섬유 기재에 함침시키는 방법의 일례를 들면, 기재를 수지 바니시에 침지하는 방법, 수지 바니시를 각종 코터에 의해 기재에 도포하는 방법, 수지 바니시를 스프레이에 의해 기재에 분사하는 방법 등을 들 수 있다. 이때 섬유 기재를 수지 바니시에 침지하는 경우 섬유 기재에 대한 수지 조성물의 함침성을 향상시킬 수 있어 바람직하다.
상기 수지 조성물 바니쉬를 조제하는 경우 유기 용제의 예를 들면, 아세톤, 메틸에틸케톤, 시클로헥사논 등의 케톤류, 아세트산에틸, 아세트산부틸, 셀로솔브아세테이트, 프로필렌글리콜모노메틸에테르아세테이트, 카비톨아세테이트 등의 아세트산 에스테르류, 셀로솔브, 부틸카비톨 등의 카비톨류, 톨루엔, 크실렌 등의 방향족 탄화수소류, 디메틸포름아미드, 디메틸아세트아미드, N-메틸피롤리돈, 테트라히드로푸란 등을 들 수 있다. 유기 용제는 1종을 사용하거나 2종 이상을 조합하여 사용하여도 좋다.
또한 핫멜트법은 수지 조성물을 유기 용매에 용해하지 않고, 수지 조성물과 박리성이 우수한 이형지에 코팅한 후 이를 시트상 섬유 기재에 라미네이트하거나, 또는 다이 코터에 의해 직접 도공하는 방법일 수 있다. 또한, 지지체 위에 적층된 열 경화성 수지 조성물로 이루어지는 접착 필름을 시트상 보강 기재의 양면으로부터 가열, 가압 조건 하에서 연속적으로 열라미네이트함으로써 제조될 수도 있다.
본 발명의 수지 조성물은, 섬유로 이루어지는 시트상 섬유 기재나 글라스 기재에 당해 수지 조성물을 코팅 또는 함침시키고, 가열에 의해 반경화시킴으로써 프리프레그로 제조될 수 있다. 바람직하게는 인쇄회로기판용 프리프레그이다. 이때 상기 수지 조성물은 수지 바니쉬로 조제된 것일 수 있다.
본 발명의 프리프레그는 상기 기재에 코팅 또는 함침한 후, 추가적으로 건조 과정을 거쳐 형성될 수 있고, 이때 상기 건조는 20 내지 200℃에서 이루어질 수 있다. 일례로, 본 발명의 프리프레그는 상기 열경화성 수지 조성물 바니쉬에 기재를 함침시키고 70~170℃, 1~10 분 동안 가열 건조함으로써, 반경화 (B-Stage) 상태의 프리프레그를 제조할 수 있다.
<수지 부착 동박>
본 발명은 금속박; 및 상기 금속박의 일면 또는 양면 상에 형성되고, 상기 열경화성 수지 조성물이 경화된 수지층을 포함하는 수지 부착 금속박을 제공한다.
본 발명의 수지 부착 금속박에서, 상기 금속박은 당업계에 알려진 통상의 금속 또는 합금으로 이루어진 것을 제한 없이 사용할 수 있다. 이때 상기 금속박이 동박인 경우, 본 발명에 따른 열경화성 수지 조성물을 코팅하고 건조하여 형성된 적층판을 동박 적층판으로 사용할 수 있다. 바람직하게는 동박이다.
상기 동박은 압연법 및 전해법으로 제조되는 모든 동박을 포함한다. 여기서, 동박은 표면이 산화 부식되는 것을 방지하기 위해서, 녹방지 처리되어 있을 수 있다.
상기 금속박은 상기 열경화성 수지 조성물이 경화된 수지층과 접하는 일면 상에 소정의 표면 조도(Rz)가 형성될 수도 있다. 이때 표면조도(Rz)는 특별히 제한되지 않으나, 일례로 0.6 ㎛ 내지 3.0 ㎛ 범위일 수 있다.
또한 상기 금속박의 두께는 특별히 제한되지 않으나, 최종물의 두께와 기계적 특성을 고려하여 5 ㎛ 미만인 것을 사용할 수 있으며, 바람직하게는 1 내지 3 ㎛ 범위일 수 있다.
<적층판 및 인쇄회로기판>
본 발명은 전술한 프리프레그(prepreg) 2개 이상을 서로 겹친 후, 이를 통상의 조건으로 가열, 가압하여 형성되는 적층판을 포함한다.
또한, 본 발명은 상기 프리프레그 및 동박을 적층하고, 통상의 조건으로 가열가압 성형하여 형성되는 동박 적층판을 포함한다. 이때 적층판 성형시, 가열가압 조건은 제조하는 적층판의 두께나 본 발명에 따른 열경화성 수지 조성물의 종류 등에 따라 적절히 조절될 수 있다.
아울러, 본 발명은 상기 프리프레그(prepreg), 절연 수지 시트, 및 수지 부착 동박으로 구성된 군으로부터 선택되는 1종 이상을 포함하여 적층 성형된 인쇄회로기판, 바람직하게는 다층 인쇄회로기판을 포함한다.
본 발명에서 인쇄회로기판이란, 도금 스루홀법이나 빌드업법 등에 의해 1층 이상 적층한 인쇄회로기판을 지칭하며, 내층 배선판에 전술한 프리프레그나 또는 절연 수지 시트를 포개어 맞추고 가열 가압 성형함으로써 얻을 수 있다.
상기 인쇄회로기판은 당 업계에 알려진 통상의 방법에 의해 제조될 수 있다. 이의 바람직한 일례를 들면, 본 발명에 따른 프리프레그의 일면 또는 양면에 동박을 적층하고 가열 가압하여 동박 적층판을 제작한 후, 동박 적층판에 구멍을 개구하여 스루홀도금을 행한 후, 도금막을 포함하는 동박을 에칭 처리하여 회로를 형성함으로써 제조될 수 있다.
이상에서 설명한 바와 같이, 프리프레그 및 인쇄회로기판은 본 발명에 따른 열경화성 수지 조성물로부터 제조될 수 있다. 이들 프리프레그 및 인쇄회로기판은 낮은 유전율과 유전 손실을 가질 뿐만 아니라, 낮은 열 팽창계수(CTE)와 높은 유리전이온도(Tg) 및 우수한 내열성을 동시에 가짐을 알 수 있었다(하기 표 1 참고). 따라서 본 발명의 프리프레그 및 인쇄회로기판은 1 GHz 이상의 고주파 신호를 취급하는 이동체 통신기기나 그 기지국 장치, 서버, 라우터 등의 네트워크 관련 전자기기 및 대형 컴퓨터 등의 각종 전기전자 기기에 사용되는 네트워크용 인쇄회로기판의 부품 용도로서 유용하게 사용될 수 있다.
이하 본 발명을 실시예를 통해 구체적으로 설명하나, 하기 실시예 및 실험예는 본 발명의 한 형태를 예시하는 것에 불과할 뿐이며, 본 발명의 범위가 하기 실시예 및 실험예에 의해 제한되는 것은 아니다. 또한, 이하의 기재에 있어서, 「부」는 「질량부」를 의미한다.
[실시예 1~9]
1-1. 수지 조성물의 제조
하기 표 1에 기재된 조성에 따라 상기 폴리페닐렌 에테르를 톨루엔에 용해한 후 가교결합성 경화제, 경화촉진제, 난연제 및 무기 충전제를 혼합하고 3 시간 동안 교반하고 개시제를 첨가하고 추가로 1 시간 동안 교반하여 수지 조성물을 제조하였다. 하기 표 1에서 각 조성물의 사용량 단위는 중량부이다.
1-2. 프리프레그 및 인쇄회로기판의 제조
상기 제조된 수지 조성물을 유리섬유에 함침시킨 후, 165℃에서 3~10분간 건조하여 프리프레그를 제조하였다. 상기 프리프레그를 1 ply 적층한 후 프레스하여 0.1 mm 두께의 적층박판을 얻었다.
[비교예 1~2]
하기 표 1에 기재된 조성에 따른 것을 제외하고는, 상기 실시예와 동일한 방법으로 수지 조성물, 프리프레그 및 인쇄회로기판을 제조하였다. 하기 표 1에서 각 조성물의 사용량 단위는 중량부이다.
표 1
실시예1 실시예2 실시예3 실시예4 실시예5 실시예6 실시예7 실시예8 실시예9 비교예1 비교예2
알릴레이트 PPE 40 40 40 40 40 40 40 40 40 40 40
TAIC 10 5 5 5
DVB 10 5 5 5
Di-(4-vinylbenzyl) ether 3 5 7 10
1,9-Decadiene 7 5 3 10 5 5
Naphthalene epoxy 6
BPA epoxy 6
BPM CE 8 8
난연제 10 10 10 10 10 10 10 10 10 10 10
개시제 2 2 2 2 2 2 2 2 2 2 2
무기필러 30 30 30 30 30 30 30 30 30 30 30
DSC Tg (℃) 200 195 190 203 190 210 200 205 200 180 175
CTE (%) 2.5 2.5 2.5 2.7 2.6 2.6 2.5 2.6 2.6 3.4 3.6
R/F (%)(5~10 % 최적량) 6.9 7.4 8.1 5.1 8.8 7.2 6.3 5.2 5.9 9.4 11.4
Solder Folting(@288oC) OK OK OK OK OK OK OK OK OK OK OK
PCT (4hr) OK OK OK OK OK OK OK OK OK NG NG
유전율 (Dk @1GHz) 3.64 3.70 3.75 3.60 3.79 3.75 3.78 3.77 3.72 3.95 4.05
유전 손실 (Df @1GHz) 0.0023 0.0024 0.0026 0.0022 0.0028 0.0026 0.0027 0.0026 0.0026 0.0037 0.0046
난연성 V-0 V-0 V-0 V-0 V-0 V-0 V-0 V-0 V-0 V-0 V-0
P/S (kgf/cm) 0.8 0.8 0.8 0.7 0.8 0.8 0.8 0.7 0.8 0.8 0.8
1) 알릴레이트 PPE: MX-9000 (수평균 분자량: 2000~3000)
2) TAIC : TAIC (NIPPON KASEI CHEMICAL)
3) DVB: DVB(DOW)
4) Di-(4-vinylbenzyl)ether: BPA-DAE ( HAOHUA INDUSTRY )
5) 1,9-데카디엔: 1,9-decadiene (EVONIC )
6) 나프탈렌 에폭시: NC-7000L (Nippon Kayaku)
7) BPA 에폭시: YD-128 (Kukdo Chemical)
8) BPM CE: XU-366 ( HUNTSMAN )
10) 난연제: Saytex 8010 (Albemarle Asano Corporation)
11) 개시제: Perbutyl P (제조사 NOF Corporation)
12) 무기 필러: SC-5200SQ (제조사 Admatechs)
실험예 1. 인쇄회로기판의 물성
실시예 1~9 및 비교예 1~2에서 제조된 인쇄회로기판에 대하여 하기 실험을 하여, 그 결과를 상기 표 1에 나타내었다.
1) 내열성: IPC TM-650 2. 4. 13 평가 규격에 따라 Solder 288℃에서 인쇄회로 기판을 Floating하여 절연층과 동박, 절연층과 금속코어 혹은 절연층 사이의 분리 현상이 일어나는 시점까지의 시간을 측정하여 평가하였다.
2) 동박 접착성(Peel Strength, P/S); IPC-TM-650 2.4.8의 평가 규격에 따라 인쇄 회로 기판에 형성된 회로 패턴을 90°방향에서 끌어 올려 회로 패턴(동박)이 박리되는 시점을 측정하여 평가하였다.
3) 난연성의 평가: 동박 적층판을 구리 에칭액에 함침함으로서 동박을 제거한 평가 기판으로 부터 길이 127 mm, 폭 12.7 mm로 평가 기판을 제작하고, UL94의 시험법(V법)에 준하여 평가하였다.
4) TMA 유리 전이 온도 측정: 동박 적층판을 구리 에칭액에 함침함으로써 동박을 제거한 평가 기판으로 각변 5mm의 평가 기판을 제조하고, TMA 시험 장치(TA Instrument, Q400)를 이용하여 평가 기판의 열팽창 특성을 관찰함으로서 평가하였다.
5) 흡습 내열 평가 (PCT): 동박 적층판을 구리 에칭액에 함침함으로서 동박을 제거한 평가 기판을 제조하고, 압력솥 시험 장치(ESPEC, EHS-411MD)를 이용하여, 121℃, 0.2 MPa의 조건까지 4 시간 방치한 후, solder 288℃에서 인쇄회로 기판을 10초간 간격으로 Dipping하여 절연층과 동박, 절연층과 금속코어 혹은 절연층 사이의 분리 현상이 일어나는 시점까지의 시간을 측정하여 평가하였다.
6) 비유전율 및 유전 정접의 측정: 동박 적층판을 구리액에 함지함으로서 동박을 제거한 기판을 이용하여, 비유전율 측정 장치(RF Impedence/ Material Analyzer ; Agilent)로 주파수 1GHz에서의 비유전율 및 유전 정접을 측정하였다.
7) 유리전이온도 (Tg)의 측정: TA Instruments사의 DSC 2010 및 DSC 2910로 DSC 측정로 약 5mg 정도의 샘플을 10℃/min의 속도로 300℃까지 가열한 후, 10℃/min의 속도로 30℃까지 식힌다. 이러한 첫번째 가열/냉각의 과정을 2회에 걸쳐 동일한 과정으로 실시하였다.
8) 레진 흐름성 (R/F)의 측정: DAE JIN HYDRAULIC MACHINERY 사의 TECPOS로 측정하였으며 반경화 프리프레그를 4 in × 4 in로 4매 펀칭하여 무게 (W1)를 측정한 후 150℃ 열판에서 50bar의 압력으로 1분간 프레스한 후 W1의 절반 무게에 해당하는 원형으로 펀칭하여 이에 무게(W2)를 측정하였다. 레진 흐름성은 하기 수학식 1에 의거하여 계산하였다.
[수학식 1]
Figure PCTKR2014012142-appb-I000001
실험 결과, 본 발명의 열경화성 수지 조성물은 우수한 저유전 손실 특성과 낮은 유전율을 가질 뿐만 아니라, 높은 유리전이온도(Tg), 우수한 내열성, 저열팽창 특성, 열적 안정성 등을 동시에 나타낸다는 것을 알 수 있었다(상기 표 1 참조).

Claims (15)

  1. (a) 분자쇄의 양 말단에 비닐기 및 알릴기로 구성된 군으로부터 선택된 불포화 치환기를 2개 이상 갖는 폴리페닐렌 에테르 또는 이의 올리고머; 및
    (b) 가교결합성 경화제
    를 포함하는 비(非)에폭시계 고주파용 열경화성 수지 조성물.
  2. 제1항에 있어서, 상기 폴리페닐렌 에테르 수지(a)는 하기 화학식 1로 표시되는 것을 특징으로 하는 비(非)에폭시계 고주파용 열경화성 수지 조성물.
    [화학식 1]
    Figure PCTKR2014012142-appb-I000002
    상기 식에서,
    Y 는 비스페놀A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 나프탈렌형 에폭시 수지, 안트라센 에폭시 수지, 비페닐형 에폭시 수지, 테트라메틸 비페닐형 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 비스페놀 A 노볼락형 에폭시 수지, 및 비스페놀 S 노볼락형 에폭시 수지로 구성된 군으로부터 선택되며,
    m과 n은 각각 독립적으로 3~20 사이의 자연수이다.
  3. 제1항에 있어서,
    상기 폴리페닐렌 에테르 수지(a)는 수평균 분자량이 10,000 ~ 30,000 범위의 고분자량 폴리페닐렌에테르 수지를 비스페놀 계열 화합물 (단, 비스페놀 A는 제외) 존재 하에서 재분배반응하여 수평균 분자량이 1000 내지 10,000 범위의 저분자량으로 개질된 것을 특징으로 하는 비(非)에폭시계 고주파용 열경화성 수지 조성물.
  4. 제1항에 있어서,
    상기 폴리페닐렌 에테르 수지(a)의 분자량 분포는 3 이하 (Mw/Mn < 3) 인 것을 특징으로 하는 비(非)에폭시계 고주파용 열경화성 수지 조성물.
  5. 제1항에 있어서,
    상기 폴리페닐렌에테르 수지(a)의 재분배 반응은 라디칼 개시제, 촉매, 또는 라디칼 개시제와 촉매 존재하에서 수행되는 것을 특징으로 하는 비(非)에폭시계 고주파용 열경화성 수지 조성물.
  6. 제1항에 있어서,
    상기 가교결합성 경화제(b)는 트리알릴이소시아누레이트 (TAIC), 다이-4-바이닐벤질 에테르, 디비닐벤젠, 디비닐나프탈렌, 디비닐페닐, 1,7-옥타디엔, 및 1,9-테카디엔으로 구성된 군으로부터 선택된 1종 이상인 것을 특징으로 하는 비(非)에폭시계 고주파용 열경화성 수지 조성물.
  7. 제1항에 있어서,
    상기 가교결합성 경화제(b)의 함량은 폴리(페닐렌 에테르) 수지 100 중량부에 대하여 5 내지 40 중량부 범위인 것을 특징으로 하는 비(非)에폭시계 고주파용 열경화성 수지 조성물.
  8. 제6항에 있어서,
    상기 가교결합성 경화제는 1,9-테카디엔과 다이-4-바이닐벤질 에테르를 혼용하며, 이들의 사용비율이 10~90 : 90~10 중량비 범위인 것을 특징으로 하는 비(非)에폭시계 고주파용 열경화성 수지 조성물.
  9. 제1항에 있어서,
    상기 조성물은 난연제를 더 포함하는 것을 특징으로 하는 비(非)에폭시계 고주파용 열경화성 수지 조성물.
  10. 제9항에 있어서,
    상기 난연제는 할로겐 함유 난연제, 인계 난연제, 안티몬계 난연제 및 금속 수산화물로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 비(非)에폭시계 고주파용 열경화성 수지 조성물.
  11. 제1항에 있어서,
    상기 조성물은 무기 필러를 더 포함하는 것을 특징으로 하는 비(非)에폭시계 고주파용 열경화성 수지 조성물.
  12. 섬유 기재; 및
    상기 섬유 기재에 함침된 제1항 내지 제11항 중 어느 한 항에 기재된 열경화성 수지 조성물을 포함하는 프리프레그.
  13. 제12항에 있어서,
    상기 섬유 기재는 유리 섬유, 유리 페이퍼, 유리 섬유 부직포 (glass web), 유리 직물(glass cloth), 아라미드 섬유, 아라미드 페이퍼(aramid paper), 폴리에스테르 섬유, 탄소 섬유, 무기섬유 및 유기섬유로 구성된 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 프리프레그.
  14. 금속박 또는 고분자 필름 기재; 및
    상기 기재의 일면 또는 양면 상에 형성되고, 제1항 내지 제11항 중 어느 한 항에 기재된 열경화성 수지 조성물이 경화된 수지층
    을 포함하는 기능성 적층 시트.
  15. 제12항의 프리프레그를 1층 이상 포함하여 적층성형된 것을 특징으로 하는 인쇄회로기판.
PCT/KR2014/012142 2013-12-11 2014-12-10 저유전 손실 특성을 가진 고주파용 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판 WO2015088245A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130154089A KR20150068181A (ko) 2013-12-11 2013-12-11 저유전 손실 특성을 가진 고주파용 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판
KR10-2013-0154089 2013-12-11

Publications (1)

Publication Number Publication Date
WO2015088245A1 true WO2015088245A1 (ko) 2015-06-18

Family

ID=53371473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012142 WO2015088245A1 (ko) 2013-12-11 2014-12-10 저유전 손실 특성을 가진 고주파용 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판

Country Status (2)

Country Link
KR (1) KR20150068181A (ko)
WO (1) WO2015088245A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109415558A (zh) * 2016-07-12 2019-03-01 株式会社斗山 热固性树脂组合物、利用其的预浸料、层叠片及印刷电路基板
CN113635630A (zh) * 2021-10-15 2021-11-12 北京玻钢院复合材料有限公司 一种耐冲击、阻燃的衬板及其制备方法
CN114103314A (zh) * 2021-10-29 2022-03-01 山东金宝电子股份有限公司 一种低介电损耗、高Tg、高耐热覆铜板的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6631834B2 (ja) * 2016-01-26 2020-01-15 パナソニックIpマネジメント株式会社 金属張積層板、樹脂付き金属部材、及び配線板
WO2018012775A1 (ko) * 2016-07-12 2018-01-18 주식회사 두산 열경화성 수지 조성물, 이를 이용한 프리프레그, 적층 시트 및 인쇄회로기판

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010114177A (ko) * 2000-06-20 2001-12-29 제이 엘. 차스킨, 버나드 스나이더, 아더엠. 킹 폴리(아릴렌 에테르) 접착 조성물
JP2006516297A (ja) * 2003-01-28 2006-06-29 松下電工株式会社 ポリフェニレンエーテル樹脂組成物、プリプレグ、積層板
KR100835783B1 (ko) * 2007-06-26 2008-06-09 주식회사 두산 인쇄회로기판용 수지 조성물, 이를 이용한 복합기재 및동박 적층판
KR100835782B1 (ko) * 2007-06-26 2008-06-09 주식회사 두산 인쇄회로기판용 수지 조성물, 이를 이용한 복합기재 및동박 적층판

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010114177A (ko) * 2000-06-20 2001-12-29 제이 엘. 차스킨, 버나드 스나이더, 아더엠. 킹 폴리(아릴렌 에테르) 접착 조성물
JP2006516297A (ja) * 2003-01-28 2006-06-29 松下電工株式会社 ポリフェニレンエーテル樹脂組成物、プリプレグ、積層板
KR100835783B1 (ko) * 2007-06-26 2008-06-09 주식회사 두산 인쇄회로기판용 수지 조성물, 이를 이용한 복합기재 및동박 적층판
KR100835782B1 (ko) * 2007-06-26 2008-06-09 주식회사 두산 인쇄회로기판용 수지 조성물, 이를 이용한 복합기재 및동박 적층판

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109415558A (zh) * 2016-07-12 2019-03-01 株式会社斗山 热固性树脂组合物、利用其的预浸料、层叠片及印刷电路基板
CN113635630A (zh) * 2021-10-15 2021-11-12 北京玻钢院复合材料有限公司 一种耐冲击、阻燃的衬板及其制备方法
CN114103314A (zh) * 2021-10-29 2022-03-01 山东金宝电子股份有限公司 一种低介电损耗、高Tg、高耐热覆铜板的制备方法

Also Published As

Publication number Publication date
KR20150068181A (ko) 2015-06-19

Similar Documents

Publication Publication Date Title
WO2015080445A1 (ko) 내열성 및 저유전 손실 특성을 가진 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판
JP7370310B2 (ja) 熱硬化性樹脂組成物及びこれを用いたプリプレグ、積層シート、並びに印刷回路基板
KR102466876B1 (ko) 수지 조성물, 프리프레그, 적층판 및 다층 프린트 배선판
TWI737589B (zh) 印刷配線板用的樹脂組成物、帶樹脂層支撐體、預浸體、積層板、多層印刷配線板及其應用、毫米波雷達用印刷配線板
KR101710854B1 (ko) N-치환 말레이미드기를 갖는 폴리페닐렌에테르 유도체, 및 그것을 사용한 열경화성 수지 조성물, 수지 바니시, 프리프레그, 금속 피복 적층판 및 다층 프린트 배선판
US9062145B2 (en) Curable resin composition, curable film and their cured products
KR102466877B1 (ko) 열경화성 수지 조성물, 프리프레그, 적층판 및 다층 프린트 배선판
KR102338982B1 (ko) 열경화성 수지 조성물, 이를 이용한 프리프레그 및 기판
KR102337574B1 (ko) 열경화성 수지 조성물, 이를 이용한 프리프레그, 적층 시트 및 인쇄회로기판
WO2015088245A1 (ko) 저유전 손실 특성을 가진 고주파용 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판
KR101548049B1 (ko) 변성 폴리페닐렌 옥사이드 및 이를 이용하는 동박 적층판
KR101614581B1 (ko) 변성 폴리페닐렌 옥사이드를 이용한 동박적층판
KR101708146B1 (ko) 저유전 손실 특성을 가진 고주파용 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판
KR20220077993A (ko) 수지 조성물, 이를 이용한 프리프레그, 금속박 적층판, 적층 시트 및 인쇄회로기판
CN110662794A (zh) 无芯基板用预浸渍体、无芯基板、无芯基板的制造方法和半导体封装体
WO2016105051A1 (ko) 고주파용 열경화성 수지 조성물, 이를 이용한 프리프레그, 적층 시트 및 인쇄회로기판
WO2018012775A1 (ko) 열경화성 수지 조성물, 이를 이용한 프리프레그, 적층 시트 및 인쇄회로기판
WO2020162668A1 (ko) 반도체 패키지용 열경화성 수지 조성물, 프리프레그 및 금속박 적층판
CN110452545B (zh) 树脂组合物、印刷电路用预浸片及覆金属层压板
JPH1112464A (ja) 印刷配線板用樹脂組成物、ワニス、プリプレグ及びそれを用いた印刷配線板用積層板
CN117659669A (zh) 树脂组合物及其应用
CN115975342A (zh) 树脂组合物及树脂组合物的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 14868820

Country of ref document: EP

Kind code of ref document: A1