WO2016175385A1 - 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 - Google Patents
반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 Download PDFInfo
- Publication number
- WO2016175385A1 WO2016175385A1 PCT/KR2015/007392 KR2015007392W WO2016175385A1 WO 2016175385 A1 WO2016175385 A1 WO 2016175385A1 KR 2015007392 W KR2015007392 W KR 2015007392W WO 2016175385 A1 WO2016175385 A1 WO 2016175385A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy resin
- resin composition
- nanomaterial
- alumina
- particle diameter
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
- H01L23/295—Organic, e.g. plastic containing a filler
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/621—Phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/68—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
- C08G59/686—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/006—Additives being defined by their surface area
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
Definitions
- the present invention relates to an epoxy resin composition for sealing a semiconductor device and a semiconductor device sealed using the same.
- An object of the present invention is to provide an epoxy resin composition for sealing a semiconductor device having excellent heat dissipation effect and flexural strength and resistant to thermal shock, and a semiconductor device sealed using the same.
- Another object of the present invention is to provide an epoxy resin composition for sealing a semiconductor device having excellent thermal conductivity without a decrease in flowability, coefficient of thermal expansion, flexural modulus and moisture absorption, and a semiconductor device sealed using the same.
- One aspect of the present invention relates to an epoxy resin composition for semiconductor element sealing.
- the epoxy resin composition for sealing the semiconductor device comprises an epoxy resin, a curing agent, an inorganic filler, the inorganic filler comprises a silicon (Si) and aluminum (Al) containing nanomaterials.
- the nanomaterial may have an average particle diameter of about 10 nm to about 500 nm.
- the nanomaterial may include one or more of nanowires, nanorods, nanotubes, and nanoribbons.
- the nanomaterial may have a molar ratio of silicon (Si) and aluminum (Al) of about 0.1: 1 to about 5: 1.
- the nanomaterial may have the following Chemical Formula 8.
- the nanomaterial may have a thermal conductivity of 5 W / mK to 30 W / mK.
- the nanomaterial may have a specific surface area of 5 m 2 / g to 100 m 2 / g.
- the nanomaterial may have a pH of 7 to 9.
- the nanomaterial may be formed of silica (SiO 2 ) and alumina (Al 2 O 3 ).
- the nanomaterial may be formed of silica (SiO 2 ) and alumina (Al 2 O 3 ) in a molar ratio of 0.5: 1 to 5: 1.
- the nanomaterial may be one or more of a silica (SiO 2 ) layer and an alumina (Al 2 O 3 ) layer.
- the nanomaterial may include nanotubes having an inner diameter of 1 nm to 300 nm, an outer diameter of 20 nm to 310 nm, and a length of 0.1 ⁇ m to 20 ⁇ m.
- the nanomaterial may be included in an amount of 0.01% to 40% by weight of the composition based on the solid content.
- the inorganic filler may further include one or more of an average particle diameter of more than 0.1 ⁇ m, less than 4 ⁇ m alumina, more than 4 ⁇ m of the average particle diameter, less than 10 ⁇ m alumina and more than 10 ⁇ m of the average particle diameter, 30 ⁇ m or less.
- the composition may further comprise one or more of a curing accelerator, a coupling agent and a colorant.
- the composition was prepared by injecting an epoxy resin composition into a transfer molding machine under a mold temperature of 175 ° C., an injection pressure of 9 MPa, and a curing time of 120 seconds to produce a thermal conductivity specimen (ASTM D5470), and then measured at 25 ° C., at a thermal conductivity of 3 W /. mK to 10 W / mK.
- Another aspect of the invention relates to a semiconductor device.
- the semiconductor device may be sealed using any one composition of the epoxy resin composition for sealing the semiconductor device.
- the present invention provides an epoxy resin composition for sealing a semiconductor device having excellent heat dissipation effect, bending strength, and thermal shock resistance and excellent thermal conductivity without deterioration in flowability, thermal expansion coefficient, flexural modulus, and moisture absorption rate, and a semiconductor device sealed using the same. Has the effect of providing.
- nanomaterial means a material having an average particle diameter in nano units.
- the average particle diameter refers to a particle diameter of nanomaterials expressed in Z-average values measured in an aqueous or organic solvent with a Zetasizer nano-ZS device manufactured by Malvern.
- inner diameter and outer diameter means the inner diameter and outer diameter of the nanotubes, respectively.
- the epoxy resin composition for sealing a semiconductor device of the present invention includes an epoxy resin, a curing agent, and an inorganic filler, and the inorganic filler includes silicon (Si) and aluminum (Al) -containing nanomaterials.
- epoxy resin generally used for sealing a semiconductor element
- an epoxy compound containing two or more epoxy groups in the molecule can be used.
- epoxy resins include epoxy resins obtained by epoxidizing condensates of phenol or alkyl phenols with hydroxybenzaldehyde, phenol novolak type epoxy resins, cresol novolak type epoxy resins, polyfunctional type epoxy resins, naphthol novolak type epoxys, etc.
- Resins novolac epoxy resins of bisphenol A / bisphenol F / bisphenol AD, glycidyl ethers of bisphenol A / bisphenol F / bisphenol AD, bishydroxybiphenyl epoxy resins, dicyclopentadiene epoxy resins, and the like. Can be.
- the epoxy resin may include one or more of a multifunctional epoxy resin, a phenol aralkyl type epoxy resin, and a biphenyl type epoxy resin.
- a polyfunctional epoxy resin represented by the following Chemical Formula 1 may be used
- the phenol aralkyl type epoxy resin may be a phenol having a novolak structure including a biphenyl derivative represented by Chemical Formula 2 below.
- An aralkyl type epoxy resin may be used, and as the biphenyl type epoxy resin, a biphenyl type epoxy resin represented by the following Chemical Formula 3 may be used.
- R1, R2, R3, R4 and R5 are each independently a hydrogen atom or an alkyl group of C 1-6
- R6 and R7 are each independently a hydrogen atom, a methyl group or an ethyl group, a is 0 to Is an integer of 6)
- R1, R2, R3, R4 and R5 are each independently hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group or hexyl group
- R6 and R7 may be hydrogen, but are not necessarily limited thereto.
- the multifunctional epoxy resin composition may be a triphenol alkane type epoxy resin such as a triphenol methane type epoxy resin, a triphenol propane type epoxy resin, or the like.
- R8, R9, R10, R11, R12, R13, R14 and R15 are each independently an alkyl group having 1 to 4 carbon atoms, the average value of c is 0 to 7).
- the polyfunctional epoxy resin of the above [Formula 1] can reduce the deformation of the package, and has excellent advantages in fast curing, latentness and preservation, as well as excellent cured strength and adhesiveness.
- the phenol aralkyl type epoxy resin of [Formula 2] forms a structure having a biphenyl in the middle based on a phenol skeleton, and thus has excellent hygroscopicity, toughness, oxidative resistance and crack resistance, and has a low crosslinking density to burn at high temperatures. While forming a carbon layer (char) has the advantage that it can secure a certain level of flame resistance in itself.
- the biphenyl type epoxy resin of the above [Formula 3] is preferable from the viewpoint of fluidity and reliability strengthening of the resin composition.
- epoxy resins may be used alone or in combination, and are additive compounds made by preliminary reactions such as melt master batches with other components such as hardeners, curing accelerators, mold release agents, coupling agents, and stress relieving agents. It can also be used in the form. On the other hand, in order to improve the moisture resistance reliability, it is preferable to use the epoxy resin that is low in chlorine ions, sodium ions, and other ionic impurities contained in the epoxy resin.
- the epoxy resin is a phenol aralkyl type epoxy resin represented by [Formula 2] and a biphenyl type epoxy resin represented by [Formula 3] in about 0.2: 1 to 5: 1, specifically 0.4: 1 to 3: It may be included in a weight ratio of about 1, more specifically about 0.5: 1 to about 2: 1.
- the compounding ratio of the phenol aralkyl type epoxy resin and the biphenyl type epoxy resin satisfies the above range, the hygroscopicity and oxidation resistance of the epoxy resin composition can be excellent, and crack resistance and fluidity can be balanced.
- the epoxy resin may be included in an amount of about 0.1 to 15% by weight, specifically about 0.1 to 10% by weight, and more specifically about 0.1 to 5% by weight of the epoxy resin composition for sealing a semiconductor device.
- the content of the epoxy resin satisfies the above range, it is possible to better implement the adhesive strength and strength of the epoxy resin composition after curing.
- curing agents generally used for sealing semiconductor devices may be used without limitation, and preferably curing agents having two or more reactors may be used.
- a phenol aralkyl type phenol resin such as acid anhydride, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, and the like may be used, but are not limited thereto.
- the curing agent may include one or more of phenol novolak-type phenol resin, xylox phenol resin, phenol aralkyl type phenol resin, and polyfunctional phenol resin.
- the phenol novolak type phenol resin may be, for example, a phenol novolak type phenol resin represented by the following [Formula 4], and the phenol aralkyl type phenol resin is, for example, represented by the following [Formula 5] It may be a phenol aralkyl type phenol resin having a novolak structure containing a biphenyl derivative in a molecule thereof.
- the xylol-type phenolic resin may be, for example, a xylok-type phenolic resin represented by the following [Formula 6], and the polyfunctional phenolic resin is, for example, represented by the following [Formula 7] It may be a polyfunctional phenol resin containing the repeating unit represented.
- the phenol novolak type phenolic resin represented by Chemical Formula 4 has a short crosslinking point spacing, and when reacted with an epoxy resin, the crosslinking density becomes high, thereby increasing the glass transition temperature of the cured product.
- the curvature of a package can be suppressed.
- the phenol aralkyl type phenol resin represented by Chemical Formula 5 forms a carbon layer (char) by reacting with an epoxy resin to achieve flame retardancy by blocking transfer of heat and oxygen around.
- the xylox phenolic resin represented by the formula (6) is preferable in view of fluidity and reliability strengthening of the resin composition.
- the polyfunctional phenol resin including the repeating unit represented by the formula (7) is preferable in view of enhancing the high temperature bending property of the epoxy resin composition.
- curing agents may be used alone or in combination, and may also be used as an addition compound made by performing a linear reaction such as a melt master batch with other components such as an epoxy resin, a curing accelerator, a releasing agent, a coupling agent, and a stress relaxation agent.
- a linear reaction such as a melt master batch with other components such as an epoxy resin, a curing accelerator, a releasing agent, a coupling agent, and a stress relaxation agent.
- the curing agent may be included in an amount of 0.1 to 13% by weight, preferably 0.1 to 10% by weight, more preferably 0.1 to 8% by weight in the epoxy resin composition for sealing a semiconductor device.
- the content of the curing agent satisfies the above range, the curing degree of the epoxy resin composition and the strength of the cured product are excellent.
- the blending ratio of the epoxy resin and the curing agent may be adjusted according to the requirements of mechanical properties and moisture resistance reliability in the package.
- the chemical equivalent ratio of the epoxy resin to the curing agent may be about 0.95 to about 3, specifically about 1 to about 2, more specifically about 1 to about 1.75.
- the inorganic filler includes silicon (Si) and aluminum (Al) -containing nanomaterials.
- Silicon (Si) and aluminum (Al) -containing nanomaterials are included in the inorganic filler, thereby maximizing the heat dissipation effect.
- there is a method of increasing the content of alumina having a high thermal conductivity but this may lower the flowability of the epoxy resin composition may cause a defect such as bending of the gold wire, but the present invention
- silicon and alumina-containing nanomaterials are included in the epoxy resin composition, an excellent heat dissipation effect may be obtained without deteriorating flowability.
- the silicon (Si) and aluminum (Al) -containing nanomaterials may have an average particle diameter of about 10 nm to about 500 nm, specifically about 20 nm to about 450 nm, and more specifically about 20 nm to about 400 nm.
- the average particle diameter of the nanomaterial satisfies the above numerical range, the heat radiation effect and the bending strength of the epoxy resin composition may be further improved.
- the molar ratio of silicon (Si) and aluminum (Al) is about 0.1: 1 to 5: 1, specifically about 0.2: 1 to 3: 1, more Specifically, it may be about 0.25: 1 to 2: 1, and more specifically about 0.4: 1 to 1.5: 1.
- the thermal conductivity of the epoxy resin composition is higher.
- the silicon and aluminum-containing nanomaterials may be those having the formula of Formula 1.
- x is 0.5 to 5, y is 1 to 10.
- x may be 1 to 3, more specifically 1.5 to 2.5.
- y may be 1 to 5, specifically 1 to 4.
- the nanomaterial may be formed of silica (SiO 2 ) and alumina (Al 2 O 3 ), and may have a layered structure.
- the nanomaterial may have a structure in which at least one layer of a silica (SiO 2 ) layer and an alumina (Al 2 O 3 ) layer is stacked.
- the molar ratio of silica (SiO 2 ) and alumina (Al 2 O 3 ) in the nanomaterial is about 0.5: 1 to about 5: 1, specifically about 1: 1 to about 3: 1, more specifically about 1.5: 1.
- there is an advantage that the thermal conductivity of the epoxy resin composition is increased.
- Silicon (Si) and aluminum (Al) -containing nanomaterials have a thermal conductivity of about 5 W / mK to 30 W / mK, specifically about 10 W / mK to 25 W / mK, more specifically about 10 W / mK to 20 W /. mK can be.
- the thermal conductivity of the silicon and aluminum-containing nanomaterials is in the above range, it is more preferable to increase the heat dissipation effect of the epoxy resin composition and to prevent deterioration in flowability.
- Silicon (Si) and aluminum (Al) -containing nanomaterials have a specific surface area of about 5 m 2 / g to 100 m 2 / g, specifically about 10 m 2 / g to 80 m 2 / g, more specifically 20 m 2 / g to 50 m 2 / g.
- the specific surface area of the nanomaterial is in the above range, the heat radiation effect is more excellent.
- Silicon (Si) and aluminum (Al) -containing nanomaterials may have a pH of 7 to 9, specifically, 7 to 8.5.
- the epoxy resin composition in the above range has the effect of preventing the oxidation of aluminum (Al) or silicon (Si).
- the pH is a value measured after boiling 2g of silicon (Si) and aluminum (Al) -containing nanomaterials in a container, and boiled for 24 hours at 100 °C in a state filled with 100g of ultrapure water.
- the silicon (Si) and aluminum (Al) -containing nanomaterials may be in the shape of nanowires, nanorods, nanotubes, or nanoribbons, or may include one or more shapes.
- the nanowires may have a length of about 50 ⁇ m to 250 ⁇ m, specifically about 70 ⁇ m to 100 ⁇ m.
- the nanorods may have a particle diameter of about 20 nm to about 200 nm, specifically about 40 nm to about 100 nm, about 50 nm to about 1500 nm in length, and specifically about 70 nm to about 1,000 nm.
- the nanoribbons may have an average particle diameter of 10 nm to 500 nm, specifically 20 nm to 450 nm, and more specifically 20 nm to 400 nm. Since the size of the nanomaterial is in the above range, it is more preferable to increase the heat radiation effect and the bending strength of the epoxy resin composition without deteriorating the flowability.
- the nanomaterial may be a nanotube.
- the nanotubes have an inner diameter of about 1 nm to 300 nm, specifically about 5 nm to 250 nm, an outer diameter of about 20 nm to 310 nm, specifically about 20 nm to 150 nm, a length of about 0.1 ⁇ m to 20 ⁇ m, Specifically, about 0.1 ⁇ m to about 10 ⁇ m, more specifically about 0.1 ⁇ m to about 5 ⁇ m. In this case, due to the large surface area of the nanomaterial, the heat dissipation effect of the epoxy resin composition is further improved.
- the nanomaterial may be included in an amount of about 0.01 wt% to about 45 wt%, specifically about 0.01 wt% to about 40 wt%, and more specifically about 0.01 wt% to about 30 wt% of the total inorganic filler.
- the nanomaterial may be included in an amount of about 0.01 wt% to about 40 wt%, specifically about 0.01 wt% to about 30 wt%, and more specifically about 0.01 wt% to about 25 wt% of the epoxy resin composition based on solids.
- the content of the nanomaterial is in the above range, it is more preferable in terms of mechanical properties such as heat dissipation effect, flexural strength and flowability.
- the inorganic filler may be used in parallel with the second inorganic material in addition to the nanomaterial.
- the second inorganic material is different from the nanomaterial, and an inorganic filler generally used may be applied.
- Specific examples of the second inorganic material include alumina, fused silica, silicon (Si) and aluminum (Al) -containing nanomaterials, crystalline silica, alumina nitride, boron nitride, ferrite, nickel-zinc ferrite, manganese-zinc ferrite, carbonate Calcium, magnesium carbonate, magnesia, clay, talc, calcium silicate, titanium oxide, antimony oxide, and glass fibers.
- the second inorganic material may be alumina nitride having an average particle diameter of 0.1 ⁇ m or more and 100 ⁇ m or less, boron nitride having an average particle size of 0.1 ⁇ m or more and 100 ⁇ m or less, silica having an average particle diameter of 0.1 ⁇ m or more and 100 ⁇ m or less, and an average particle diameter of 0.1 ⁇ m or more.
- ferrite of 100 ⁇ m or less specifically, nickel-zinc ferrite having an average particle diameter of 0.1 ⁇ m or more and 100 ⁇ m or less, and manganese-zinc ferrite having an average particle diameter of 0.1 ⁇ m or more and 100 ⁇ m or less. These can be applied individually or in mixture of 2 or more types.
- the boron nitride is not only effective for improving the reliability of power module packages such as TO-3PF and TO-220F that require excellent heat dissipation characteristics due to excellent heat transfer characteristics, and is also effective for package molding during resin sealing.
- the boron nitride is in the range of about 0.5 to 10% by weight, specifically about 1 to 7% by weight, and more specifically, based on the total epoxy resin composition in terms of fluidity, moldability, heat release characteristics, mechanical strength, and reliability of the resin composition. It may include about 2 ⁇ 5% by weight.
- the boron nitride may be used alone when the epoxy resin composition is prepared, and may be added to the melt of the epoxy resin or the curing agent through a method such as a melt master batch (MBM) prior to preparing the epoxy resin composition for uniform dispersion. It can also be melted and dispersed in advance and then added to the composition for use.
- MBM melt master batch
- the inorganic filler may further include alumina.
- the alumina may have a thermal conductivity of about 15 W / mK to 40 W / mK, specifically about 20 W / mK to 30 W / mK, more specifically about 25 W / mK to 30 W / mK.
- alumina having a thermal conductivity in the above range it is possible to further improve the heat dissipation of the epoxy resin composition.
- the shape and particle diameter of the said alumina are not specifically limited, Spherical alumina whose average particle diameter is about 0.1 micrometer-about 50 micrometers, specifically about 0.5 micrometer-30 micrometers, can be applied. Within the above range, there is an advantage in that the flowability of the epoxy resin composition is excellent in semiconductor sealing molding.
- the alumina may be used by mixing alumina having a different average particle diameter.
- alumina having a different average particle diameter for example, in the total alumina content, from 40 wt% to 93 wt% of alumina having an average particle diameter of more than 10 ⁇ m, of 30 ⁇ m or less, from 5 wt% to 50 wt% of alumina of an average particle diameter of more than 4 ⁇ m, of 10 ⁇ m or less, and an average particle diameter of 0.1.
- Alumina mixtures containing from 1% to 30% by weight of alumina of at least 4 ⁇ m and not more than 4 ⁇ m may be used. In this case, there is an effect that the heat dissipation, bending strength and thermal shock resistance of the epoxy resin composition is further improved.
- the alumina mixture may include 40 wt% to 99.99 wt% of the total inorganic filler.
- the inorganic filler may further include molten silica having a low coefficient of linear expansion for reducing stress of the epoxy resin composition.
- the fused silica refers to amorphous silica having a specific gravity of 2.3 kPa or less, and includes crystalline silica made by melting crystalline silica or synthesized from various raw materials.
- the shape and particle size of the molten silica are not particularly limited, but the molten silica includes 50 to 99% by weight of spherical molten silica having an average particle diameter of about 5 to 30 ⁇ m and 1 to 50% by weight of spherical molten silica having an average particle diameter of about 0.001 to 1 ⁇ m. Mixtures may be preferably used. There is an advantage in the fluidity in the above range. In addition, the molten silica mixture may be included so as to be 40 to 100% by weight of the total inorganic filler. It is excellent in the moldability, low stress, and mechanical properties of the cured product in the above range.
- the maximum particle diameter can be adjusted and used in any one of 45 micrometers, 55 micrometers, and a 75 micrometers.
- conductive carbon may be included as a foreign matter on the silica surface, but it is preferable to select a material having a small amount of polar foreign matter mixed therein.
- the weight ratio of the nanomaterial and the second inorganic material may be about 1: 10,000 to about 2: 1, specifically about 1: 1,000 to about 1: 1. In the above range, mechanical properties such as heat dissipation effect, flexural strength, flowability, etc. of the epoxy resin composition are further improved.
- the epoxy resin composition for sealing a semiconductor device may further include at least one of a curing accelerator, a coupling agent, and a coloring agent.
- a hardening accelerator is a substance which accelerates reaction of an epoxy resin and a hardening
- tertiary amines organometallic compounds, organophosphorus compounds, imidazoles, boron compounds and the like can be used.
- Tertiary amines include benzyldimethylamine, triethanolamine, triethylenediamine, diethylaminoethanol, tri (dimethylaminomethyl) phenol, 2-2- (dimethylaminomethyl) phenol, 2,4,6-tris (diaminomethyl ) Phenol and tri-2-ethylhexyl acid salt.
- Organometallic compounds include chromium acetylacetonate, zinc acetylacetonate, nickel acetylacetonate, and the like.
- Organophosphorus compounds include tris-4-methoxyphosphine, tetrabutylphosphonium bromide, tetraphenylphosphonium bromide, phenylphosphine, diphenylphosphine, triphenylphosphine, triphenylphosphine triphenylborane, triphenylphosphate And pin-1,4-benzoquinones adducts.
- the imidazoles include 2-phenyl-4methylimidazole, 2-methylimidazole, # 2-phenylimidazole, # 2-aminoimidazole, 2-methyl-1-vinylimidazole, and 2-ethyl-4. -Methylimidazole, 2-heptadecyl imidazole, and the like.
- Boron compounds include tetraphenylphosphonium-tetraphenylborate, triphenylphosphine tetraphenylborate, tetraphenylboron salt, trifluoroborane-n-hexylamine, trifluoroborane monoethylamine, tetrafluoroboranetriethylamine And tetrafluoroboraneamine.
- 1, 5- diazabicyclo [4.3.0] non-5-ene (1, 5- diazabicyclo [4.3.0] non-5-ene: DBN)
- 1, 8- diazabicyclo [5.4. 0] undec-7-ene (1,8-diazabicyclo [5.4.0] undec-7-ene: DBU) and phenol novolac resin salts may be used.
- the curing accelerator may also use an epoxy resin or an adduct made by preliminary reaction with a curing agent.
- the amount of the curing accelerator in the present invention may be about 0.01 to 2% by weight based on the total weight of the epoxy resin composition, specifically about 0.02 to 1.5% by weight, more specifically about 0.05 to 1% by weight. In the above range, there is an advantage that the curing of the epoxy resin composition is promoted and the degree of curing is also good.
- the epoxy resin composition for semiconductor element sealing may further include a coupling agent.
- the coupling agent may be a silane coupling agent.
- the silane coupling agent that can be used is not particularly limited as long as it reacts between the epoxy resin and the inorganic filler to improve the interfacial strength of the epoxy resin and the inorganic filler, and may be, for example, epoxysilane, aminosilane, ureidosilane, mercaptosilane, or the like. Can be.
- the coupling agents may be used alone or in combination.
- the coupling agent may be included in an amount of about 0.01 to 5% by weight, preferably about 0.05 to 3% by weight, and more preferably about 0.1 to 2% by weight, based on the total weight of the epoxy resin composition. In the above range, the strength of the cured epoxy resin composition is improved.
- Colorants can be used for laser marking of semiconductor device sealants.
- the colorant may include a mixture of titanium nitride and titanium black or titanium black. Titanium nitride in the mixture may be included in 40 to 80% by weight, titanium black 20 to 60% by weight. In the above range, the epoxy resin composition may not generate defects during laser marking, and may not cause problems such as soot.
- a mixture of titanium nitride and titanium black may be included in 40 to 100% by weight of the colorant.
- the epoxy resin composition may not generate defects during laser marking, and may not cause problems such as soot.
- the average particle diameter of titanium nitride may be about 50-150 nm, and the average particle diameter of titanium black may be about 50-150 nm. Colorants in the above range is well dispersed, there is an advantage that do not agglomerate with each other.
- the mixture of titanium nitride and titanium black may be included in more than 0 to 6% by weight, for example 0.5 to 5.0% by weight in the epoxy resin composition.
- the epoxy resin composition may be sufficiently laser marking, can obtain a clear marking characteristics even at a low laser output during laser marking, may not cause problems such as soot generation.
- the colorant may further include one or more of copper hydroxide phosphate, iron oxide, mica, and carbon black.
- Copper phosphate hydroxide can improve the laser marking properties, reduce the soot generated by the use of carbon black, and can increase the reliability and formability.
- the weight average molecular weight of copper phosphate may be about 100 to 500 g / mol.
- the weight average molecular weight of copper phosphate hydroxide is in the said range, the effect of improving the laser marking property of an epoxy resin composition and improving reliability and moldability can be acquired.
- the copper phosphate hydroxide may have a bulk density of about 500 to 700 g / l.
- a bulk density is the said range, the effect which raises the laser marking property of an epoxy resin composition and improves reliability and moldability can be acquired.
- the copper phosphate hydroxide preferably has an average particle diameter (d50) of about 1 ⁇ m to 5 ⁇ m. In the above range, it can be used in the epoxy resin composition.
- the copper phosphate hydroxide may be represented by Cu 3 (PO 4 ) 2 ⁇ Cu (OH) 2 .
- the copper phosphate hydroxide may be used as a commercially available product, FABULASE 322.
- the copper phosphate hydroxide may be included in the epoxy resin composition of about 0 to 0.25% by weight, for example, more than 0 to 0.25% by weight or less, for example, about 0.05 to 0.25% by weight. In the above range, it is possible to increase the laser marking properties of the epoxy resin composition, and to implement a marking effect equivalent to the existing carbon black.
- Iron oxide is iron oxidized, and does not limit the number of oxidation of iron.
- the iron oxide may be FeO 3 , Fe 2 O 3, or the like.
- Iron oxide may be included in the epoxy resin composition 0 to 1.5% by weight or less, for example more than 0 to 1.5% by weight or less, for example 0.1 to 2% by weight. In the above range, it is possible to increase the laser marking properties of the epoxy resin composition, and to implement a marking effect equivalent to the existing carbon black.
- Mica may be included in an epoxy resin composition of 0 to 1.5% by weight or less, for example, greater than 0 to 1.5% by weight or less, for example 0.1 to 2% by weight. In the above range, it is possible to increase the laser marking properties of the epoxy resin composition, and to implement a marking effect equivalent to the existing carbon black.
- the mixture of iron oxide and mica may be included in an epoxy resin composition of 0 to 1.5% by weight or less, for example, greater than 0 to 1.5% by weight, for example 0.3 to 1.5% by weight. In the above range, it is possible to increase the laser marking properties of the epoxy resin composition, and to implement a marking effect equivalent to the existing carbon black.
- Carbon black may be included in the epoxy resin composition 0 to 1.5% by weight or less, for example, more than 0 to 1.5% by weight or less, specifically 0.1 to 1.5% by weight. Within this range, soot can be prevented from occurring during laser marking without affecting the laser marking of other colorants.
- the mixture of iron oxide, mica and carbon black may be included in the epoxy resin composition in an amount of 0 to 1.6% by weight, for example, greater than 0 to 1.6% by weight or less, for example, 0.1 to 1.6% by weight. Within this range, soot can be prevented from occurring during laser marking without affecting the laser marking of other colorants.
- the colorant may be included in 0.05 to 4.0% by weight of the epoxy resin composition. Within this range, incomplete marking of the epoxy resin composition can be prevented from occurring, soot can be prevented from occurring due to sooting during marking, and electrical insulation of the resin composition can be prevented from deteriorating.
- the epoxy resin composition of the present invention is selected from the group consisting of higher fatty acids in the range which does not impair the object of the present invention; Higher fatty acid metal salts; And release agents such as ester waxes and carnauba waxes; Stress relieving agents such as modified silicone oil, silicone powder, and silicone resin; Antioxidants such as Tetrakis [methylene-3- (3,5-di-tertbutyl-4-hydroxyphenyl) propionate] methane; And the like may be further added as necessary.
- a predetermined amount is uniformly mixed sufficiently using a Henschel mixer or Lodige mixer, and then roll-mill After kneading with a kneader or by kneader, cooling and grinding are used to obtain a final powder product.
- a low pressure transfer molding method can be generally used. However, molding can also be performed by injection molding or casting.
- the epoxy resin composition may be prepared by the above method, including a copper lead frame (eg, a silver plated copper lead frame), a nickel alloy lead frame, and a material containing nickel and palladium in the lead frame.
- a semiconductor device in which a semiconductor element is sealed by attaching to a lead frame, a PCB, or the like plated with one or more of Au may be manufactured.
- the sealed semiconductor device is sealed with an epoxy resin composition according to an embodiment of the present invention is excellent in heat dissipation effect and bending strength.
- the epoxy resin composition for sealing the semiconductor device was prepared by injecting the epoxy resin composition into a transfer molding machine having a mold temperature of 175 ° C., an injection pressure of 9 MPa, and a curing time of 120 seconds to prepare a thermal conductivity specimen (ASTM D5470), and then, 25
- the thermal conductivity measured at ° C may be about 3 W / mK to about 10 W / mK, specifically about 3.8 W / mK to about 8 W / mK, and more specifically about 3.9 W / mK to about 7.5 W / mK.
- the heat radiating effect of the semiconductor element is excellent in the above range.
- (D) Coupling agent The epoxy silane (A-187) made from CHISSO was used.
- nanotube 2 (PNT-X2 manufactured by BengBu Xinyuan Materials Tech, formula: Al 2 O 3 SiO 2 0.5 (H 2 O), inner diameter: 120 nm, outer diameter: 250 nm, length : 6 ⁇ m, specific surface area: 12.3 m 2 / g, thermal conductivity: 19 W / mK, Si: Al:
- Alumina 1 Alumina 2 Alumina 3 Nanotube 1 Nanotube 2 Nanotube 3 (E) (e1) 70 20 9 One - - (e2) 70 20 5 5 - - (e3) 70 20 - 10 - - (e4) 65 20 - 15 - - (e5) 70 20 9 - One - (e6) 70 20 9 - - One (e7) 70 20 10 - - - (e8) 65 25 10 - - - (e9) 70 15 15 - - - - -
- Alumina 1 Alumina having an average particle diameter of 15 ⁇ m (DAB-10SI manufactured by DENKA)
- Alumina 2 Alumina having an average particle diameter of 7 ⁇ m (DAB-10FC manufactured by DENKA)
- Alumina 3 Alumina with an average particle diameter of 1 ⁇ m (ASFP-20 manufactured by DENKA)
- Carbon black MA-600B manufactured by Mitsubishi Chemical was used.
- Moisture absorption rate After making a standard specimen in accordance with ASTM D792 and post-cured in an oven (manufactured by Oven, JEIO TECH) for 4 hours at 175 °C was measured at 25 °C using a PCT (Pressure Cooker Tester). .
- Thermal Shock Test (Crack and Peeling Evaluation): Passed precondition conditions (we performed three times of IR Reflow (Japan pulse labolatories. Inc) after moisture absorption in a chamber for 192 hours at a temperature of 30 ° C. and a humidity of 60%).
- a multichip package (0.55mm package consisting of 4Nand Flash Chips) was produced by molding at 175 ° C for 120 seconds using a Cekron press and mold for 10 minutes at -65 ° C, 5 minutes at 25 ° C, and 10 minutes at 150 ° C. After 1,000 cycles of leaving, the internal and external cracks and peelings were evaluated for a total of 240 packages using SAT, a non-destructive tester.
- Example Comparative example One 2 3 4 5 6 One 2 3 Spiral Flow (inch) 61 55 42 33 64 56 64 59 47 Thermal Conductivity (W / mK) 4.0 4.3 4.5 4.7 3.8 4.1 3.5 3.5 3.8 Glass transition temperature (Tg) 132 131 133 134 132 131 135 136 133 Thermal expansion coefficient ⁇ 1 ( ⁇ m / m, °C) 8.5 8.3 8.2 8.5 8.4 8.3 8.3 8.7 Flexural Strength (kgf / mm 2 , 260 °C) 2.4 2.5 3.2 3.9 2.3 2.4 1.5 1.6 1.4 Flexural modulus (kfg / mm 2 , 260 °C) 64 62 73 79 62 66 65 65 63 Hygroscopicity (wt%) 0.273 0.267 0.295 0.293 0.270 0.272 0.284 0.306 0.301 Thermal shock test Number of cracks 0/240 0/240 0/240 0/240 0/240 0
- the embodiment including the silicon (Si) and aluminum (Al) -containing nanomaterial of the present invention is excellent in heat dissipation effect and flexural strength and resistant to thermal shock, flowability, coefficient of thermal expansion, flexural modulus And excellent thermal conductivity without lowering the moisture absorption rate.
- the comparative example which does not include the silicon (Si) and aluminum (Al) -containing nanomaterials of the present invention has a low flexural strength, is weak to thermal shock, and also has a poor heat dissipation effect.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
본 발명의 반도체 소자 밀봉용 에폭시 수지 조성물은 무기충전재를 포함하는 조성물이고, 상기 무기충전재는 실리콘(Si) 및 알루미늄(Al) 함유 나노물질을 포함한다.
Description
본 발명은 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자에 관한 것이다.
반도체 소자를 수분이나 기계적 충격 등의 외부 환경으로부터 보호하기 위한 목적으로 에폭시 수지 조성물로 반도체 소자를 밀봉하는 방법이 상업적으로 행하여지고 있다. 최근에 작고 얇은 디지털 기기들이 보편화되면서, 반도체 소자의 집적도는 나날이 향상되어, 칩의 고적층화, 고밀도화가 이루어지고 있다. 이러한 고적층, 고밀도화 반도체 소자를 소형, 박형 패키지에 밀봉한 수지 밀봉형 반도체 장치에서는, 동작 시 발생하는 열로 인한 패키지 오동작 및 크랙 발생 등의 빈도가 매우 높아지게 된다. 이를 해결하기 위해 공개특허공보 제 2007-0069714호에서는 방열판 등을 사용하고 있으나, 이는 일부 패키지에서만 가능하고, 공정 추가로 인한 생산성 저하 및 고비용인 단점이 있다.
한편, 패키지의 경박단소에 따라서 패키지를 구성하고 있는 반도체 칩, 리드프레임 및 밀봉용 조성물간의 열팽창계수 차이 등에 의해 패키지가 휘어지는 휨(warpage)의 문제도 발생하고 있다.
이에 방열효과 및 휨특성이 우수한 반도체 소자 밀봉용 에폭시 수지 조성물을 개발이 필요하다.
본 발명의 목적은 방열효과 및 굴곡강도가 우수하고 열충격에 강한 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자를 제공하기 위한 것이다.
본 발명의 다른 목적은 흐름성, 열팽창계수, 굴곡탄성률 및 흡습률의 저하 없이 열전도도가 우수한 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자를 제공하기 위한 것이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
본 발명의 하나의 관점은 반도체 소자 밀봉용 에폭시 수지 조성물에 관한 것이다.
하나의 구체예에 따르면, 상기 반도체 소자 밀봉용 에폭시 수지 조성물은 에폭시 수지, 경화제, 무기충전재를 포함하고, 상기 무기충전재는 실리콘(Si) 및 알루미늄(Al) 함유 나노물질을 포함한다.
상기 나노물질은 평균입경이 10 nm 내지 500 nm 정도일 수 있다.
상기 나노물질은 나노와이어, 나노로드, 나노튜브 및 나노리본 중 하나 이상을 포함할 수 있다.
상기 나노물질은 실리콘(Si)과 알루미늄(Al)의 몰비가 0.1 : 1 내지 5 : 1 정도일 수 있다.
상기 나노물질은 하기 화학식 8을 가질 수 있다.
[화학식 8]
Al2O3·(SiO2)x·y(H2O)
(상기 화학식 8에서, x는 0.5 내지 5, y는 1 내지 10임)
상기 나노물질은 열전도율이 5 W/mK 내지 30 W/mK가 될 수 있다.
상기 나노물질은 비표면적이 5 m2/g 내지 100 m2/g이 될 수 있다.
상기 나노물질은 pH가 7 내지 9가 될 수 있다.
상기 나노물질은 실리카(SiO2) 및 알루미나(Al2O3)로 형성된 것일 수 있다.
상기 나노물질은 실리카(SiO2) 및 알루미나(Al2O3)가 0.5 : 1 내지 5 : 1의 몰비로 형성될 수 있다.
다른 구체예에 따르면 상기 나노물질은 실리카(SiO2)층 및 알루미나(Al2O3)층이 하나 이상 적층된 것일 수 있다.
상기 나노물질은 내경이 1 nm 내지 300 nm이고, 외경이 20 nm 내지 310 nm이고, 길이가 0.1 ㎛ 내지 20 ㎛인 나노튜브를 포함할 수 있다.
상기 나노물질은 고형분 기준 상기 조성물 중 0.01 중량% 내지 40 중량%로 포함될 수 있다.
상기 무기충전재는 평균입경 0.1 ㎛ 이상, 4 ㎛ 이하의 알루미나, 평균입경 4 ㎛ 초과, 10 ㎛ 이하의 알루미나 및 평균입경 10 ㎛ 초과, 30 ㎛ 이하의 알루미나 중 하나 이상을 더 포함할 수 있다.
다른 구체예에 따르면, 상기 조성물은 경화촉진제, 커플링제 및 착색제 중 하나 이상을 더 포함할 수 있다.
상기 조성물은 금형온도 175 ℃, 주입압력 9 MPa 및 경화시간 120 초 조건의 트랜스퍼 성형기로 에폭시 수지 조성물을 주입하여 열전도도 시편(ASTM D5470)을 제작한 후, 25℃에서 측정한 열전도율이 3 W/mK 내지 10 W/mK가 될 수 있다.
본 발명의 다른 관점은 반도체 소자에 관한 것이다.
하나의 구체예에 따르면, 상기 반도체 소자는 상기의 반도체 소자 밀봉용 에폭시 수지 조성물 중 어느 하나의 조성물을 사용하여 밀봉된 것일 수 있다.
본 발명은 방열효과 및 굴곡강도가 우수하고 열충격에 강하며, 흐름성, 열팽창계수, 굴곡탄성률 및 흡습률의 저하 없이 열전도도가 우수한 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자를 제공하는 효과를 갖는다.
본 명세서에서 "나노물질"은 나노단위의 평균입경을 갖는 물질을 의미한다.
본 명세서에서 "평균입경"은 Malvern社의 Zetasizer nano-ZS 장비로 수계 또는 유기계 용매에서 측정하여 Z-average 값으로 표현되는 나노물질의 입경을 의미한다.
본 명세서에서 "내경 및 외경"은 각각 나노튜브의 안쪽 지름 및 바깥쪽 지름을 의미한다.
본 발명의 반도체 소자 밀봉용 에폭시 수지 조성물은 에폭시 수지, 경화제, 무기충전재를 포함하고, 상기 무기충전재는 실리콘(Si) 및 알루미늄(Al) 함유 나노물질을 포함한다.
에폭시 수지
반도체 소자 밀봉용으로 일반적으로 사용되는 에폭시 수지라면 특별히 제한되지 않는다. 구체적으로 분자 중에 2개 이상의 에폭시기를 함유하는 에폭시 화합물을 사용할 수 있다. 이와 같은 에폭시 수지로는 페놀 또는 알킬 페놀류와 히드록시벤즈알데히드와의 축합물을 에폭시화함으로써 얻어지는 에폭시 수지, 페놀노볼락형 에폭시 수지, 크레졸노볼락형 에폭시 수지, 다관능형 에폭시 수지, 나프톨노볼락형 에폭시 수지, 비스페놀A/비스페놀F/비스페놀AD의 노볼락형 에폭시 수지, 비스페놀A/비스페놀F/비스페놀AD의 글리시딜에테르, 비스히드록시비페닐계 에폭시 수지, 디시클로펜타디엔계 에폭시 수지 등을 들 수 있다.
예를 들어, 에폭시 수지는 다관능형 에폭시 수지, 페놀아랄킬형 에폭시 수지 및 바이페닐형 에폭시 수지 중 하나 이상을 포함할 수 있다. 상기 다관능형 에폭시 수지로는 하기 화학식 1로 표시되는 다관능형 에폭시 수지를 사용할 수 있고, 상기 페놀아랄킬형 에폭시 수지로는 하기 화학식 2로 표시되는 바이페닐(biphenyl) 유도체를 포함하는 노볼락 구조의 페놀아랄킬형 에폭시 수지를 사용할 수 있으며, 상기 바이페닐형 에폭시 수지로는 하기 화학식 3로 표시되는 바이페닐형 에폭시 수지를 사용할 수 있다.
[화학식 1]
(상기 [화학식 1]에서 R1, R2, R3, R4 및 R5는 각각 독립적으로 수소 원자 또는 C1-6의 알킬기이고, R6 및 R7은 각각 독립적으로 수소 원자, 메틸기 또는 에틸기이고, a는 O 내지 6의 정수이다)
구체적으로, 상기 R1, R2, R3, R4 및 R5는 각각 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, 이소부틸기, tert-부틸기, 펜틸기 또는 헥실기이며, R6 및 R7은 수소일 수 있으나, 반드시 이에 제한되는 것은 아니다.
구체적으로 상기 다관능형 에폭시 수지 조성물은 트리페놀메탄형 에폭시 수지, 트리페놀프로판형 에폭시 수지 등과 같은 트리페놀알칸형 에폭시 수지일 수 있다.
[화학식 2]
(상기 [화학식 2]에서, b의 평균치는 1 내지 7이다)
[화학식 3]
(상기 [화학식 3]에서, R8, R9, R10, R11, R12, R13, R14 및 R15는 각각 독립적으로 탄소수 1~4의 알킬기이며, c의 평균값은 0 내지 7이다).
상기 [화학식 1]의 다관능형 에폭시 수지는 패키지의 변형을 작게 할 수 있고, 속경화성, 잠재성 및 보존성이 우수할 뿐만 아니라, 경화물 강도 및 접착성도 우수한 장점이 있다.
상기 [화학식 2]의 페놀아랄킬형 에폭시 수지는 페놀 골격을 바탕으로 하면서 중간에 바이페닐을 가지고 있는 구조를 형성하여 흡습성, 인성, 내산화성 및 내크랙성이 우수하며, 가교 밀도가 낮아서 고온에서 연소 시 탄소층(char)을 형성하면서 그 자체로 어느 정도 수준의 난연성을 확보할 수 있는 장점이 있다. 상기 [화학식 3]의 바이페닐형 에폭시 수지는 수지 조성물의 유동성 및 신뢰성 강화 측면에서 바람직하다.
이들 에폭시 수지는 단독 혹은 병용하여 사용될 수 있으며, 에폭시 수지에 경화제, 경화 촉진제, 이형제, 커플링제, 및 응력완화제 등의 기타 성분과 멜트 마스터배치(melt master batch)와 같은 선반응을 시켜 만든 부가 화합물 형태로 사용할 수도 있다. 한편, 내습 신뢰성 향상을 위해 상기 에폭시 수지는 에폭시 수지 중에 함유된 염소 이온(ion), 나트륨 이온(sodium ion), 및 그 밖의 이온성 불순물이 낮은 것을 사용하는 것이 바람직하다.
구체예에서 상기 에폭시 수지는 [화학식 2]로 표시되는 페놀아랄킬형 에폭시 수지와 [화학식 3]으로 표시되는 바이페닐형 에폭시 수지를 0.2 : 1 내지 5 : 1 정도, 구체적으로 0.4 : 1 내지 3 : 1 정도, 더욱 구체적으로 0.5 : 1 내지 2 : 1정도의 중량 비율로 포함할 수 있다. 페놀아랄킬형 에폭시 수지와 바이페닐형 에폭시 수지의 배합비가 상기 범위를 만족시킬 경우, 에폭시 수지 조성물의 흡습성과 내산화성이 우수하고, 또한 내크랙성과 유동성이 균형을 이룰 수 있다.
상기 에폭시 수지는 반도체 소자 밀봉용 에폭시 수지 조성물 중 0.1 내지 15 중량% 정도, 구체적으로는 0.1 내지 10 중량% 정도, 더욱 구체적으로 0.1 내지 5 중량% 정도의 함량으로 포함될 수 있다. 에폭시 수지의 함량이 상기 범위를 만족할 경우, 경화 후 에폭시 수지 조성물의 접착력 및 강도를 보다 우수하게 구현할 수 있다.
경화제
상기 경화제로는 반도체 소자 밀봉용으로 일반적으로 사용되는 경화제들이 제한없이 사용될 수 있으며, 바람직하게는 2개 이상의 반응기를 가진 경화제가 사용될 수 있다.
구체적으로는, 상기 경화제로는, 페놀아랄킬형 페놀수지, 페놀노볼락형 페놀수지, 자일록(xylok)형 페놀수지, 크레졸 노볼락형 페놀수지, 나프톨형 페놀수지, 테르펜형 페놀수지, 다관능형 페놀수지, 디시클로펜타디엔계 페놀수지, 비스페놀 A와 레졸로부터 합성된 노볼락형 페놀수지, 트리스(하이드록시페닐)메탄, 디하이드록시바이페닐을 포함하는 다가 페놀 화합물, 무수 말레인산 및 무수 프탈산을 포함하는 산무수물, 메타페닐렌디아민, 디아미노디페닐메탄, 디아미노디페닐설폰 등의 방향족 아민 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 상기 경화제는 페놀노볼락형 페놀수지, 자일록형 페놀수지, 페놀아랄킬형 페놀수지 및 다관능형 페놀수지 중 하나 이상을 포함할 수 있다. 상기 페놀노볼락형 페놀수지는, 예를 들면, 하기 [화학식 4]로 표시되는 페놀노볼락형 패놀수지일 수 있으며, 상기 페놀아랄킬형 페놀수지는 예를 들면, 하기 [화학식 5]로 표시되는 분자 중에 바이페닐 유도체를 포함하는 노볼락 구조의 페놀아랄킬형 페놀수지일 수 있다. 또한, 상기 자일록형 페놀수지는, 예를 들면, 하기 [화학식 6]으로 표시되는 자일록(xylok)형 페놀수지일 수 있으며, 상기 다관능형 페놀수지는, 예를 들면, 하기 [화학식 7]로 표시되는 반복 단위를 포함하는 다관능형 페놀수지일 수 있다.
[화학식 4]
(상기 [화학식 4]에서 d는 1 내지 7이다.)
[화학식 5]
(상기 [화학식 5]에서, e의 평균치는 1 내지 7이다).
[화학식 6]
(상기 [화학식 6]에서, f의 평균치는 0 내지 7이다)
[화학식 7]
(상기 [화학식 7]에서 g의 평균치는 1 내지 7이다.)
상기 화학식 4로 표시되는 페놀노볼락형 페놀수지는 가교점 간격이 짧아, 에폭시 수지와 반응할 경우 가교밀도가 높아져 그 경화물의 유리전이온도를 높일 수 있고, 이에 따라 경화물 선팽창계수를 낮추어 반도체 소자 패키지의 휨을 억제할 수 있다. 상기 화학식 5로 표시되는 페놀아랄킬형 페놀수지는 에폭시 수지와 반응하여 탄소층(char)을 형성하여 주변의 열 및 산소의 전달을 차단함으로써 난연성을 달성하게 된다. 상기 화학식 6으로 표시되는 자일록형 페놀수지는 수지 조성물의 유동성 및 신뢰성 강화 측면에서 바람직하다. 상기 화학식 7로 표시되는 반복단위를 포함하는 다관능형 페놀수지는 에폭시 수지 조성물의 고온 휨 특성 강화 측면에서 바람직하다.
이들 경화제는 단독 혹은 병용하여 사용될 수 있으며, 경화제에 에폭시 수지, 경화 촉진제, 이형제, 커플링제, 및 응력완화제 등의 기타 성분과 멜트 마스터 배치와 같은 선반응을 시켜 만든 부가 화합물로도 사용할 수 있다.
상기 경화제는 반도체 소자 밀봉용 에폭시 수지 조성물 중 0.1 내지 13 중량%, 바람직하게는 0.1 내지 10 중량%, 더욱 바람직하게는 0.1 내지 8 중량% 의 함량으로 포함될 수 있다.일 수 있다. 경화제의 함량이 상기의 범위를 만족할 경우, 에폭시 수지 조성물의 경화도 및 경화물의 강도가 우수하다.
상기 에폭시 수지와 경화제와의 배합비는 패키지에서의 기계적 성질 및 내습 신뢰성의 요구에 따라 조절될 수 있다. 예를 들면, 경화제에 대한 에폭시 수지의 화학 당량비가 0.95 내지 3정도일 수 있으며, 구체적으로 1 내지 2 정도, 더욱 구체적으로 1 내지 1.75 정도일 수 있다. 에폭시 수지와 경화제의 배합비가 상기의 범위를 만족할 경우, 에폭시 수지 조성물 경화 후에 우수한 강도를 구현할 수 있다.
무기충전재
상기 무기충전재는 실리콘(Si) 및 알루미늄(Al) 함유 나노물질을 포함한다.
실리콘(Si) 및 알루미늄(Al) 함유 나노물질은 무기충전재에 포함되어, 방열효과를 극대화하는 효과가 있다. 에폭시 수지 조성물의 방열효과를 높이기 위해, 높은 열전도율을 가지는 알루미나의 함량을 증가시키는 방법이 있으나, 이는 에폭시 수지 조성물의 흐름성을 낮추어 골드와이어의 휨 등이 발생하는 불량이 생길 수 있다그러나, 본 발명과 같이 에폭시 수지 조성물에 실리콘과 알루미나 함유 나노물질을 포함시킬 경우, 흐름성 저하 없이 우수한 방열효과를 얻을 수 있다.
상기 실리콘(Si) 및 알루미늄(Al) 함유 나노물질은 평균입경이 10 nm 내지 500 nm 정도, 구체적으로는 20 nm 내지 450 nm 정도, 더욱 구체적으로는 20 nm 내지 400 nm 정도가 될 수 있다. 나노 물질의 평균입경이 상기의 수치 범위를 만족할 경우, 에폭시 수지 조성물의 방열효과 및 굴곡강도를 더욱 향상시킬 수 있다.
상기 실리콘(Si) 및 알루미늄(Al) 함유 나노물질에 있어서, 실리콘(Si)과 알루미늄(Al)의 몰비가 0.1 : 1 내지 5 : 1 정도, 구체적으로는 0.2 : 1 내지 3: 1 정도, 더 구체적으로는 0.25 : 1 내지 2: 1 정도, 보다 더 구체적으로는 0.4 : 1 내지 1.5 : 1 정도일 수 있다. 나노 물질 내의 실리콘과 알루미늄의 몰비가 상기 범위를 만족할 경우, 에폭시 수지 조성물의 열전도율이 더 높아지는 장점이 있다.
예를 들면, 상기 실리콘 및 알루미늄 함유 나노물질은 하기 화학식 1의 화학식을 가지는 것일 수 있다.
[화학식 8]
Al2O3·(SiO2)x·y(H2O)
(상기 화학식 8에서, x는 0.5 내지 5, y는 1 내지 10임)구체적으로 상기 화학식 8에서 x는 1 내지 3, 더욱 구체적으로 1.5 내지 2.5가 될 수 있다. 또한 상기 y는 1 내지 5, 구체적으로 1 내지 4가 될 수 있다. 상기의 범위에서 에폭시 수지 조성물의 열전도율이 높아지는 장점이 있다.
상기 나노물질은 실리카(SiO2) 및 알루미나(Al2O3)로 형성된 것일 수 있고, 층상 구조일 수 있다. 예를 들어, 상기 나노물질은 실리카(SiO2)층 및 알루미나(Al2O3)층이 한 층 이상 적층된 구조일 수 있다. 이때, 상기 나노물질 내의 실리카(SiO2)와 알루미나(Al2O3)의 몰비는 0.5 : 1 내지 5 : 1 정도, 구체적으로는 1 : 1 내지 3 : 1 정도, 더 구체적으로는 1.5 : 1 내지 2.5 : 1 정도일 수 있다. 상기의 범위에서, 에폭시 수지 조성물의 열전도율이 높아지는 장점이 있다.
실리콘(Si) 및 알루미늄(Al) 함유 나노물질은 열전도율이 5 W/mK 내지 30 W/mK 정도, 구체적으로 10 W/mK 내지 25 W/mK 정도, 더욱 구체적으로 10 W/mK 내지 20 W/mK 정도가 될 수 있다. 실리콘 및 알루미늄 함유 나노물질의 열 전도율이 상기 범위인 경우, 에폭시 수지 조성물의 방열효과를 높이고, 흐름성의 저하를 막는데 보다 더 바람직하다.
실리콘(Si) 및 알루미늄(Al) 함유 나노물질은 비표면적이 5 m2/g 내지 100 m2/g 정도, 구체적으로는 10 m2/g 내지 80 m2/g 정도, 더욱 구체적으로는 20 m2/g 내지 50 m2/g 정도일 수 있다. 나노 물질의 비표면적이 상기 범위인 경우, 방열효과가 더욱 우수하다.
실리콘(Si) 및 알루미늄(Al) 함유 나노물질은 pH가 7 내지 9, 구체적으로 7 내지 8.5가 될 수 있다. 상기 범위에서 에폭시 수지 조성물은 알루미늄(Al) 또는 실리콘(Si)의 산화를 방지하는 효과가 있다. 이때, 상기 pH는 실리콘(Si) 및 알루미늄(Al) 함유 나노물질 2g을 용기에 넣고, 초순수를 100g 채운 상태에서 100℃로 24시간으로 끓이고 난 후에 측정한 값이다.
한편, 상기 실리콘(Si) 및 알루미늄(Al) 함유 나노물질은 나노 와이어, 나노 로드, 나노 튜브 또는 나노 리본의 형상일 수 있고, 하나 이상의 형상을 포함할 수도 있다. 상기 나노 와이어는 길이가 50 ㎛ 내지 250 ㎛ 정도, 구체적으로는 70 ㎛ 내지 100 ㎛ 정도일 수 있다. 상기 나노 로드는 입경이 20 nm 내지 200 nm 정도, 구체적으로는 40 nm 내지 100 nm 정도이고,, 길이가 50 nm 내지 1,500 nm 정도, 구체적으로는 70 nm 내지 1,000 nm 정도 일 수 있다. 상기 나노리본은 평균입경이 10 nm 내지 500 nm, 구체적으로 20 nm 내지 450 nm, 더욱 구체적으로 20 nm 내지 400 nm가 될 수 있다. 나노물질의 크기가 상기의 범위인 것이에 흐름성의 저하 없이 에폭시 수지 조성물의 방열효과 및 굴곡강도를 높이는데 보다 더 바람직하다.
구체적으로 상기 나노물질은 나노튜브일 수 있다. 상기 나노튜브는 내경이 1 nm 내지 300 nm 정도, 구체적으로 5 nm 내지 250 nm 정도이고, 외경이 20 nm 내지 310 nm 정도, 구체적으로 20 nm 내지 150 nm 정도, 길이가 0.1 ㎛ 내지 20 ㎛ 정도, 구체적으로 0.1 ㎛ 내지 10 ㎛ 정도, 더욱 구체적으로 0.1 ㎛ 내지 5 ㎛ 정도일 수 있다. 이 경우, 나노물질의 큰 표면적으로 인해, 에폭시 수지 조성물의 방열효과가 더욱 향상된다.
상기 나노물질은 상기 전체 무기충전재 중 0.01 중량% 내지 45 중량% 정도, 구체적으로 0.01 중량% 내지 40 중량% 정도, 더욱 구체적으로 0.01 중량% 내지 30 중량% 정도로 포함될 수 있다. 또한 상기 나노물질은 고형분 기준 상기 에폭시 수지 조성물 중 0.01 중량% 내지 40 중량% 정도, 구체적으로 0.01 중량% 내지 30 중량% 정도, 더욱 구체적으로 0.01 중량% 내지 25 중량% 정도로 포함될 수 있다. 나노 물질의 함량이 상기의 범위인 경우, 방열효과, 굴곡강도 등의 기계적 물성 및 흐름성 등의 측면에서 보다 더 바람직하다.
상기 무기충전재는 나노물질과 함께 제2 무기물질을 병행해서 사용될 수 있다. 상기 제2 무기물질은 상기 나노물질과 다른 것으로, 일반적으로 사용되는 무기충전재가 적용될 수 있다. 상기 제2 무기물질의 구체적인 예로는 알루미나, 용융실리카, 실리콘(Si) 및 알루미늄(Al) 함유 나노물질, 결정성 실리카, 질화알루미나, 질화붕소, 페라이트, 니켈-아연 페라이트, 망간-아연 페라이트, 탄산칼슘, 탄산마그네슘, 마그네시아, 클레이(clay), 탈크, 규산칼슘, 산화티탄, 산화안티몬, 및 유리섬유 등을 들 수 있다. 예를 들어, 제2 무기물질은, 평균입경 0.1 ㎛ 이상 100 ㎛ 이하의 질화알루미나, 평균입경 0.1 ㎛ 이상 100 ㎛ 이하의 질화 붕소, 평균입경 0.1 ㎛ 이상 100 ㎛ 이하의 실리카, 평균입경 0.1 ㎛ 이상 100 ㎛ 이하의 페라이트, 구체적으로 평균입경 0.1 ㎛ 이상 100 ㎛ 이하의 니켈-아연 페라이트 및 평균입경 0.1 ㎛ 이상 100 ㎛ 이하의 망간-아연 페라이트 중 하나 이상을 포함할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 적용될 수 있다.
상기 질화붕소는 열 전달 특성이 우수하여 우수한 열 방출 특성을 요구하는 TO-3PF, TO-220F와 같은 파워 모듈 패키지의 신뢰성 향상에 효과적일 뿐만 아니라, 수지 밀봉 시의 패키지 성형에도 효과적인 물질이다. 상기 질화붕소는 수지 조성물의 유동성, 성형성, 열 방출 특성, 수지 조성물의 기계적 강도, 및 신뢰성 측면에서 전체 에폭시 수지 조성물에 대하여 0.5 ~ 10 중량% 정도, 구체적으로 1 ~ 7 중량% 정도, 더욱 구체적으로 2 ~ 5 중량% 정도로 포함할 수 있다. 상기 질화붕소는 에폭시 수지 조성물 제조 시에 단독으로 투입하여 사용할 수 있으며, 균일한 분산을 위해 에폭시 수지 조성물 제조 전에 멜트마스터배치(Melt Master Batch; MMB)와 같은 방법을 통하여 에폭시수지 또는 경화제의 용융물에 미리 녹여 분산한 후 조성물에 투입하여 사용할 수도 있다.
구체예에서 상기 무기충전재는 알루미나를 더 포함할 수 있다. 이때, 상기 알루미나는 15 W/mK 내지 40 W/mK 정도, 구체적으로 20 W/mK 내지 30 W/mK 정도, 더욱 구체적으로 25 W/mK 내지 30 W/mK 정도의 열전도도를 가질 수 있다. 상기 범위의 열전도도를 갖는 알루미나를 사용할 경우, 에폭시 수지 조성물의 방열성을 더욱 향상시킬 수 있다.
상기 알루미나의 형상 및 입경은 특별히 한정되지 않지만, 평균입경이 0.1 ㎛ 내지 50 ㎛ 정도, 구체적으로는 0.5 ㎛ 내지 30 ㎛ 정도인 구상 알루미나를 적용할 수 있다. 상기 범위에서 반도체 밀봉 성형에 있어서 에폭시 수지 조성물의 흐름성이 우수한 장점이 있다.
또한, 상기 알루미나로 서로 다른 평균입경을 갖는 알루미나를 혼합하여 사용할 수 있다. 예를 들면, 총 알루미나 함량 중, 평균입경 10 ㎛ 초과, 30 ㎛ 이하의 알루미나 40 중량% 내지 93 중량%, 평균입경 4 ㎛ 초과, 10 ㎛ 이하의 알루미나 5 중량% 내지 50 중량% 및 평균입경 0.1 ㎛ 이상, 4 ㎛ 이하의 알루미나 1 중량% 내지 30 중량%를 포함한 알루미나 혼합물을 사용할 수 있다. 이 경우, 에폭시 수지 조성물의 방열성, 굴곡강도 및 열충격성이 더욱 향상되는 효과가 있다.
상기 알루미나 혼합물은 전체 무기충전재 중 40 중량% 내지 99.99 중량%로 포함할 수 있다. 알루미나 혼합물의 함량이 상기의 범위를 만족할 경우, 에폭시 수지 조성물의 방열성, 굴곡강도 등의 기계적 물성, 성형성 등이 더욱 향상된다. 다른 구체예에서 상기 무기충전재는 에폭시 수지 조성물의 저응력화를 위해서, 선팽창계수가 낮은 용융실리카를 더 포함할 수 있다. 상기 용융실리카는 진비중이 2.3 이하인 비결정성 실리카를 의미하는 것으로 결정성 실리카를 용융하여 만들거나 다양한 원료로부터 합성한 비결정성 실리카도 포함된다. 용융실리카의 형상 및 입경은 특별히 한정되지는 않지만, 평균 입경 5~30 ㎛ 정도의 구상용융실리카 50~99 중량% 및 평균입경 0.001~1 ㎛ 정도의 구상용융실리카 1~50 중량%를 포함한 용융실리카 혼합물이 바람직하게 사용될 수 있다. 상기 범위에서 유동성이 뛰어난 장점이 있다. 또한 상기 용융실리카 혼합물은 전체 무기 충전재 중 40~100 중량%가 되도록 포함하는 것이 좋다. 상기 범위에서 경화물의 성형성, 저응력성, 기계적 물성이 우수하다. 또한, 용도에 맞춰 그 최대 입경을 45 ㎛, 55 ㎛, 및 75 ㎛ 중 어느 하나로 조정해서 사용할 수가 있다. 상기 용융구상실리카에는 도전성의 카본이 실리카 표면에 이물질로서 포함되는 경우가 있으나 극성 이물질의 혼입이 적은 물질을 선택하는 것이 바람직하다.
상기 나노물질과 상기 제2 무기물질의 중량비는 1 : 10,000 내지 2 : 1, 구체적으로 1 : 1,000 내지 1 : 1 정도일 수 있다. 상기의 범위에서 에폭시 수지 조성물의 방열효과, 굴곡강도 등의 기계적 물성 및 흐름성 등이 더욱 향상된다.
상기 반도체 소자 밀봉용 에폭시 수지 조성물은 경화촉진제, 커플링제 및 착색제 중 하나 이상을 더 포함할 수 있다.
경화 촉진제
경화 촉진제는 에폭시 수지와 경화제의 반응을 촉진하는 물질이다. 예를 들면, 3급 아민, 유기금속화합물, 유기인화합물, 이미다졸, 및 붕소화합물 등이 사용 가능하다. 3급 아민에는 벤질디메틸아민, 트리에탄올아민, 트리에틸렌디아민, 디에틸아미노에탄올, 트리(디메틸아미노메틸)페놀, 2-2-(디메틸아미노메틸)페놀, 2,4,6-트리스(디아미노메틸)페놀과 트리-2-에틸헥실산염 등이 있다.
유기 금속화합물에는 크로뮴아세틸아세토네이트, 징크아세틸아세토네이트, 니켈아세틸아세토네이트 등이 있다. 유기인화합물에는 트리스-4-메톡시포스핀, 테트라부틸포스포늄브로마이드, 테트라페닐포스포늄브로마이드, 페닐포스핀, 디페닐포스핀, 트리페닐포스핀, 트리페닐포스핀트리페닐보란, 트리페닐포스핀-1,4-벤조퀴논 부가물 등이 있다. 이미다졸류에는 2-페닐-4메틸이미다졸, 2-메틸이미다졸, 2-페닐이미다졸, 2-아미노이미다졸, 2-메틸-1-비닐이미다졸, 2-에틸-4-메틸이미다졸, 2-헵타데실이미다졸 등이 있다. 붕소화합물에는 테트라페닐포스포늄-테트라페닐보레이트, 트리페닐포스핀 테트라페닐보레이트, 테트라페닐보론염, 트리플루오로보란-n-헥실아민, 트리플루오로보란모노에틸아민, 테트라플루오로보란트리에틸아민, 테트라플루오로보란아민 등이 있다. 이외에도 1,5-디아자바이시클로[4.3.0]논-5-엔(1,5-diazabicyclo[4.3.0]non-5-ene:DBN), 1,8-디아자바이시클로[5.4.0]운덱-7-엔(1,8-diazabicyclo[5.4.0]undec-7-ene: DBU) 및 페놀노볼락 수지염 등을 사용할 수 있다.
구체적인 경화 촉진제로는 유기인화합물, 붕소화합물, 아민계, 또는 이미다졸계 경화 촉진제를 단독 혹은 혼합하여 사용하는 것을 들 수 있다. 상기 경화 촉진제는 에폭시 수지 또는 경화제와 선반응하여 만든 부가물을 사용하는 것도 가능하다.
본 발명에서 경화 촉진제의 사용량은 에폭시 수지 조성물 총 중량에 대하여 0.01 내지 2 중량% 정도일 수 있으며, 구체적으로 0.02 내지 1.5 중량% 정도, 더욱 구체적으로 0.05 내지 1 중량% 정도일 수 있다. 상기의 범위에서 에폭시 수지 조성물의 경화를 촉진하고 또한, 경화도도 좋은 장점이 있다.
커플링제
반도체 소자 밀봉용 에폭시 수지 조성물은 커플링제를 더 포함할 수 있다. 상기 커플링제는 실란 커플링제일 수 있다. 사용될 수 있는 실란 커플링제는 에폭시 수지와 무기 충전제 사이에서 반응하여, 에폭시 수지와 무기 충전제의 계면 강도를 향상시키는 것이면 특별히 한정되지 않으며, 예를 들면 에폭시실란, 아미노실란, 우레이도실란, 머캅토실란 등일 수 있다. 상기 커플링제는 단독으로 사용할 수 있으며 병용해서 사용할 수도 있다.
상기 커플링제는 에폭시 수지 조성물 총 중량에 대해 0.01 내지 5 중량% 정도, 바람직하게는 0.05 내지 3 중량% 정도, 더욱 바람직하게는 0.1 내지 2 중량% 정도의 함량으로 포함될 수 있다. 상기 범위에서 에폭시 수지 조성물 경화물의 강도가 향상된다.
착색제
착색제는 반도체 소자 밀봉재의 레이저 마킹에 사용될 수 있다.
착색제는 티탄질화물(titanium nitride)과 티탄블랙(titan black 또는 titanium black)의 혼합물을 포함할 수 있다. 상기 혼합물 중 티탄질화물은 40 내지 80중량%, 티탄블랙은 20 내지 60중량%로 포함될 수 있다. 상기 범위에서, 에폭시 수지 조성물은 레이저 마킹 시 불량이 발생하지 않고, 그을음 발생 등의 문제점이 생기지 않을 수 있다.
티탄질화물과 티탄블랙의 혼합물은 상기 착색제 중 40 내지 100중량%로 포함될 수 있다. 상기 범위에서, 에폭시 수지 조성물은 레이저 마킹 시 불량이 발생하지 않고, 그을음 발생 등의 문제점이 생기지 않을 수 있다.
티탄질화물의 평균입경은 50-150nm 정도, 티탄블랙의 평균입경은 50-150nm 정도일 수 있다. 상기 범위에서 착색제는 분산이 잘 되어, 서로 뭉치지 않는 장점이 있다.
티탄질화물과 티탄블랙의 혼합물은 에폭시 수지 조성물 중 0 초과 내지 6중량% 이하, 예를 들면 0.5 내지 5.0중량%로 포함될 수 있다. 상기 범위에서, 에폭시 수지 조성물은 레이저 마킹이 충분히 될 수 있고, 레이저 마킹시 낮은 레이저 출력에도 선명한 마킹 특성을 얻을 수 있고, 그을음 발생 등의 문제점이 생기지 않을 수 있다.
착색제는 티탄질화물과 티탄블랙의 혼합물 이외에, 인산수산화구리(dicopper hydroxide phosphate), 철산화물, 운모, 카본블랙 중 하나 이상을 더 포함할 수 있다.
인산수산화구리는 레이저 마킹성을 높이며, 카본블랙의 사용에 의한 그을음 발생을 줄이고, 신뢰성과 성형성을 높일 수 있다.
인산수산화구리의 중량평균분자량은 100 내지 500g/mol정도일 수 있다. 인산수산화구리의 중량평균분자량이 상기 범위인 경우에 에폭시 수지 조성물의 레이저 마킹성을 높이고, 신뢰성과 성형성을 향상시키는 효과를 얻을 수 있다.
또한, 상기 인산수산화구리는 벌크 밀도(bulk density)가 500 내지 700g/l정도일 수 있다. 벌크 밀도가 상기 범위인 경우, 에폭시 수지 조성물의 레이저 마킹성을 높이고, 신뢰성과 성형성을 향상시키는 효과를 얻을 수 있다.
상기 인산수산화구리는 평균 입경(d50)이 1㎛ 내지 5㎛ 정도인 것이 바람직하다. 상기 범위에서, 에폭시 수지 조성물에 사용 가능할 수 있다.
상기 인산수산화구리는 Cu3(PO4)2·Cu(OH)2 로 표시될 수 있다. 상기 인산수산화구리로는 상업적으로 판매되는 제품으로서, FABULASE 322를 사용할 수 있다.
상기 인산수산화구리는 에폭시 수지 조성물 중 0 내지 0.25중량% 정도, 예를 들면 0 초과 내지 0.25중량% 이하, 예를 들면 0.05 내지 0.25중량% 정도로 포함될 수 있다. 상기 범위에서, 에폭시 수지 조성물의 레이저 마킹성을 높이고, 기존 카본블랙과 동등한 마킹 효과를 구현할 수 있다.
철산화물은 철이 산화된 것으로, 철의 산화 수에 제한을 두지 않는다. 예를 들면, 철산화물은 FeO3, Fe2O3 등이 될 수 있다.
철산화물은 에폭시 수지 조성물 중 0 내지 1.5중량% 이하, 예를 들면 0 초과 내지 1.5중량% 이하, 예를 들면 0.1 내지 2중량%로 포함될 수 있다. 상기 범위에서, 에폭시 수지 조성물의 레이저 마킹성을 높이고, 기존 카본블랙과 동등한 마킹 효과를 구현할 수 있다.
운모는 에폭시 수지 조성물 중 0 내지 1.5중량% 이하, 예를 들면 0 초과 내지 1.5중량% 이하, 예를 들면 0.1 내지 2중량%로 포함될 수 있다. 상기 범위에서, 에폭시 수지 조성물의 레이저 마킹성을 높이고, 기존 카본블랙과 동등한 마킹 효과를 구현할 수 있다.
철산화물과 운모의 혼합물은 에폭시 수지 조성물 중 0 내지 1.5중량% 이하, 예를 들면 0 초과 내지 1.5중량% 이하, 예를 들면 0.3 내지 1.5중량%로 포함될 수 있다. 상기 범위에서, 에폭시 수지 조성물의 레이저 마킹성을 높이고, 기존 카본블랙과 동등한 마킹 효과를 구현할 수 있다.
카본블랙은, 에폭시 수지 조성물 중 0 내지 1.5중량% 이하, 예를 들면 0 초과 내지 1.5중량% 이하, 구체적으로 0.1 내지 1.5 중량% 정도로 포함될 수 있다. 상기 범위에서, 다른 착색제의 레이저 마킹에 영향을 주지 않고, 레이저 마킹시 그을음이 발생하지 않게 할 수 있다.
철산화물, 운모 및 카본블랙의 혼합물은 에폭시 수지 조성물 중 0 내지 1.6 중량%, 예를 들면 0 초과 내지 1.6중량% 이하, 예를 들면 0.1 내지 1.6중량% 정도로 포함될 수 있다. 상기 범위에서, 다른 착색제의 레이저 마킹에 영향을 주지 않고, 레이저 마킹시 그을음이 발생하지 않게 할 수 있다.
상기 착색제는 에폭시 수지 조성물 중 0.05 내지 4.0중량%로 포함될 수 있다. 상기 범위에서, 에폭시 수지 조성물의 불완전 마킹이 일어나는 것을 방지하고, 마킹시 그을음이 발생하여 마킹성이 저하되는 것을 막을 수 있으며, 수지 조성물의 전기 절연성이 나빠지는 것을 막을 수 있다.
이외에도, 본 발명의 에폭시 수지 조성물은 본 발명의 목적을 해하지 않는 범위에서 고급 지방산; 고급 지방산 금속염; 및 에스테르계 왁스, 카르나우바 왁스 등의 이형제; 변성 실리콘 오일, 실리콘 파우더, 및 실리콘 레진 등의 응력완화제; Tetrakis[methylene-3-(3,5-di-tertbutyl-4-hydroxyphenyl)propionate] methane등의 산화방지제; 등을 필요에 따라 추가로 함유할 수 있다.
이상과 같은 원재료를 이용하여 에폭시 수지 조성물을 제조하는 일반적인 방법으로는 소정의 배합량을 헨셀 믹서(Hensel mixer)나 뢰디게 믹서(Lodige mixer)를 이용하여 균일하게 충분히 혼합한 뒤, 롤밀(roll-mill)이나 니이더(kneader)로 용융 혼련한 후, 냉각, 분쇄 과정을 거쳐 최종 분말 제품을 얻는 방법이 사용되고 있다.
본 발명에서 얻어진 에폭시 수지 조성물을 사용하여 반도체 소자를 밀봉하는 방법으로써는 저압 트랜스퍼 성형법이 일반적으로 사용될 수 있다. 그러나, 인젝션(injection) 성형법이나 캐스팅(casting) 등의 방법으로도 성형이 가능하다. 상기 방법에 의해 에폭시 수지 조성물을, 구리계 리드프레임(예: 은 도금된 구리 리드프레임), 니켈합금계 리드프레임, 상기 리드프레임에 니켈과 팔라듐을 포함하는 물질로 선도금후 은(Ag) 및 금(Au) 중 하나 이상으로 도금된 리드프레임, PCB 등과 부착시켜 반도체 소자를 밀봉한 반도체 장치를 제조할 수 있다.
상기 밀봉된 반도체 소자는 본 발명의 구체예에 따른 에폭시 수지 조성물로 밀봉되어 방열효과 및 굴곡강도가 우수하다. 구체적으로, 상기 반도체 소자 밀봉용 에폭시 수지 조성물은 금형온도 175 ℃, 주입압력 9 MPa 및 경화시간 120 초 조건의 트랜스퍼 성형기로 에폭시 수지 조성물을 주입하여 열전도도 시편(ASTM D5470)을 제작한 후, 25 ℃에서 측정한 열 전도율이 3 W/mK 내지 10 W/mK 정도, 구체적으로 3.8 W/mK 내지 8 W/mK 정도, 더욱 구체적으로 3.9 W/mK 내지 7.5 W/mK 정도일 수 있다. 상기의 범위에서 반도체 소자의 방열효과가 우수하다.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
실시예
(A) 에폭시 수지
(a1) 바이페닐형 에폭시 수지: Japan Epoxy Resin에서 제조된 YX-4000H 제품을 사용하였다.
(a2) 페놀아랄킬형 에폭시 수지: Nippon Kayaku에서 제조된 NC-3000 제품을 사용하였다.
(B) 경화제
(b1) 다관능형 페놀수지: Meiwa Chem에서 제조된 MEH-7500-3S 제품을 사용하였다.
(b2) 페놀아랄킬형 페놀수지: Meiwa Chem에서 제조된 MEH-7851-SS 제품을 사용하였다.
(b3) 페놀노볼락형 페놀수지: Meiwa Chem에서 제조된 H-4 제품을 사용하였다.
(C) 경화촉진제: 시코쿠 케미칼에서 제조된 2-페닐-4-메틸 이미다졸(2P4MHZ)을 사용하였다.
(D) 커플링제: CHISSO에서 제조된 에폭시 실란(A-187) 을 사용하였다.
(E) 무기충전재
(e1) 평균입경이 15㎛인 알루미나(DENKA사에서 제조된 DAB-10SI) 70 중량%, 평균입경이 7㎛인 알루미나(DENKA사에서 제조된 DAB-10FC) 20 중량%, 평균입경이 1㎛인 알루미나(DENKA사에서 제조된 ASFP-20) 9 중량% 및 나노튜브 1(BengBu Xinyuan Materials Tech사에서 제조된 PNT-01, 화학식: Al2O3
·(SiO2)2·2.5(H2O), 내경: 40 nm, 외경: 100 nm, 길이: 3 ㎛, 비표면적: 35.2 m2/g, 열전도율: 15 W/mK, Si : Al의 몰비 1:1, pH=7.93) 1 중량%를 포함하는 혼합물을 무기충전재로 사용하였다.
(e2) 평균입경이 1 ㎛인 알루미나 5 중량% 및 나노튜브 1 5 중량%로 적용한 것을 제외하고는 (e1)과 동일하게 무기충전재를 사용하였다.
(e3) 평균입경이 1 ㎛인 알루미나는 적용하지 않고, 나노튜브 1은 10 중량%로 적용한 것을 제외하고는 (e1)과 동일하게 무기충전재를 사용하였다.
(e4) 평균입경이 15 ㎛인 알루미나 65 중량% 및 나노튜브 1은 15 중량%로 적용한 것을 제외하고는 (e3)과 동일하게 무기충전재를 사용하였다.
(e5) 나노튜브 1 대신, 나노튜브 2(BengBu Xinyuan Materials Tech사에서 제조된 PNT-X2, 화학식: Al2O3SiO20.5(H2O), 내경: 120 nm, 외경: 250 nm, 길이: 6 ㎛, 비표면적: 12.3 m2/g, 열전도율: 19 W/mK, Si : Al의 몰비가 1:2, pH=8.56)를 적용한 것을 제외하고는 (e1)과 동일하게 무기충전재를 사용하였다.
(e6) 나노튜브 1 대신, 나노튜브 3(BengBu Xinyuan Materials Tech사에서 제조된 PNT-X3, 화학식: Al2O3
·(SiO2)4·4.5(H2O), 내경: 90 nm, 외경: 130 nm, 길이: 4.5 ㎛, 비표면적: 17.6 m2/g, 열전도율: 11 W/mK, Si : Al의 몰비가 2:1, pH=6.93)을 적용한 것을 제외하고는 (e1)과 동일하게 무기충전재를 사용하였다.
(e7) 나노튜브는 적용하지 않고, 평균입경이 1 ㎛인 알루미나를 10 중량%로 적용한 것을 제외하고는 (e1)과 동일하게 무기충전재를 사용하였다.
(e8) 평균입경이 15 ㎛인 알루미나 65 중량% 및 평균입경이 7 ㎛인 알루미나 25 중량%를 적용한 것을 제외하고는 (e7)과 동일하게 무기충전재를 사용하였다.
(e9) 평균입경이 7 ㎛인 알루미나 15 중량% 및 평균입경이 1 ㎛인 알루미나 15 중량%를 적용한 것을 제외하고는 (e7)과 동일하게 무기충전재를 사용하였다.
알루미나 1 | 알루미나 2 | 알루미나 3 | 나노튜브 1 | 나노튜브 2 | 나노튜브 3 | ||
(E) | (e1) | 70 | 20 | 9 | 1 | - | - |
(e2) | 70 | 20 | 5 | 5 | - | - | |
(e3) | 70 | 20 | - | 10 | - | - | |
(e4) | 65 | 20 | - | 15 | - | - | |
(e5) | 70 | 20 | 9 | - | 1 | - | |
(e6) | 70 | 20 | 9 | - | - | 1 | |
(e7) | 70 | 20 | 10 | - | - | - | |
(e8) | 65 | 25 | 10 | - | - | - | |
(e9) | 70 | 15 | 15 | - | - | - |
알루미나 1: 평균입경이 15 ㎛인 알루미나(DENKA사에서 제조된 DAB-10SI)
알루미나 2: 평균입경이 7 ㎛인 알루미나(DENKA사에서 제조된 DAB-10FC)
알루미나 3: 평균입경이 1 ㎛인 알루미나(DENKA사에서 제조된 ASFP-20)
나노튜브 1: BengBu Xinyuan Materials Tech사에서 제조된 PNT-01 (화학식: Al2O3·(SiO2)2·2.5(H2O), 내경: 40 nm, 외경: 100 nm, 길이: 3 ㎛, 비표면적: 35.2 m2/g, 열전도율: 15 W/mK, Si : Al의 몰비가 1:1 pH=7.93)
나노튜브 2: BengBu Xinyuan Materials Tech사에서 제조된 PNT-X2 (화학식: Al2O3SiO20.5(H2O), 내경: 120 nm, 외경: 250 nm, 길이: 6 ㎛, 비표면적: 12.3 m2/g, 열전도율: 19 W/mK, Si : Al의 몰비가 1:2, pH=8.56)
나노튜브 3: BengBu Xinyuan Materials Tech사에서 제조된 PNT-X3 (화학식: Al2O3(SiO2)44.5(H2O), 내경: 90 nm, 외경: 130 nm, 길이: 4.5 ㎛, 비표면적: 17.6 m2/g, 열전도율: 11 W/mK, Si : Al의 몰비가 2:1, pH=6.93)
(F) 착색제
카본블랙: Mitsubishi Chemical社에서 제조된 MA-600B 제품을 사용하였다.
(G) 이형제: 카르나우바 왁스를 사용하였다.
실시예 1~6 및 비교예 1~3
하기 표 2의 조성에 따라 헨셀 믹서(KEUM SUNG MACHINERY CO.LTD(KSM-22))를 이용하여 25~30 ℃에서 30분간 균일하게 혼합한 후, 연속 니이더(Kneader)를 이용하여 Max. 110℃에서 30분간 용융 혼련 후, 10~15 ℃로 냉각하고 분쇄하여 반도체 소자 밀봉용 에폭시 수지 조성물을 제조하였다.
(단위: 중량%) | 실시예1 | 실시예2 | 실시예3 | 실시예4 | 실시예5 | 실시예6 | 비교예1 | 비교예2 | 비교예3 | |
(A) | (a1) | 1.79 | 1.79 | 1.79 | 1.79 | 1.79 | 1.79 | 1.79 | 1.79 | 1.79 |
(a2) | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | |
(B) | (b1) | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 | 0.48 |
(b2) | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | 0.77 | |
(b3) | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | |
(C) | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | |
(D) | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | |
(E) | (e1) | 93.0 | - | - | - | - | - | - | - | - |
(e2) | - | 93.0 | - | - | - | - | - | - | - | |
(e3) | - | - | 93.0 | - | - | - | - | - | - | |
(e4) | - | - | - | 93.0 | - | - | - | - | - | |
(e5) | - | - | - | - | 93.0 | - | - | - | - | |
(e6) | - | - | - | - | - | 93.0 | - | - | - | |
(e7) | - | - | - | - | - | - | 93.0 | - | - | |
(e8) | - | - | - | - | - | - | - | 93.0 | - | |
(e9) | - | - | - | - | - | - | - | - | 93.0 | |
(F) | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | |
(G) | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | |
합계 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
상기 제조된 반도체 소자 밀봉용 에폭시 수지 조성물에 대하여 하기의 방법으로 물성 평가를 하여 하기 표 3에 나타내었다.
물성 평가방법
하기의 물성을 평가하여 표 3에 나타내었다.
(1) 스파이럴 플로우(inch): 저압 트랜스퍼 성형기를 사용하여, EMMI-1-66에 준한 스파이럴 플로우 측정용 금형에 금형온도 175℃, 70kgf/cm2, 주입 압력 9 MPa, 및 경화 시간 90초의 조건으로 에폭시 수지 조성물을 주입하고, 유동 길이를 측정하였다. 측정값이 높을수록 유동성이 우수한 것이다.
(2) 열전도도: ASTM D5470에 따라 평가용 시편을 사용하여 25 ℃에서 측정하였다.
(3) 열팽창계수: ASTM D696에 따라 평가하였다.
(4) 굴곡강도 및 굴곡탄성율: ASTM D790에 따라 표준시편을 만든 후 175 ℃에서 4 시간 동안 오븐(Oven, JEIO TECH社 제조)에서 후경화시킨 시편으로 UTM을 이용하여 260 ℃에서 측정하였다.
(5) 흡습률: ASTM D792에 따라 표준시편을 만든 후 175 ℃에서 4 시간 동안 오븐(Oven, JEIO TECH社 제조)에서 후경화시킨 시편으로 PCT (Pressure Cooker Tester)를 이용하여 25 ℃에서 측정하였다.
(6) 열충격 시험 (크랙 및 박리 평가): 프리컨디션 조건(온도 30 ℃, 습도 60%에서 192시간 동안 챕버(chamber)에서 흡습 후 IR Reflow(Japan pulse labolatories. Inc) 3회 수행)을 통과한 멀티칩 패키지(4Nand Flash Chip으로 구성된 0.55mm의 패키지로 세크론 프레스와 몰드를 이용하여 175℃로 120초동안 몰딩하여 제조)를 -65℃에서 10 분, 25℃에서 5분, 150℃에서 10 분 방치하는 것을 1 사이클로 하여 1,000 사이클을 진행한 후, 비파괴 검사기인 SAT를 이용하여 내부 및 외부 크랙 및 박리를 총 240 패키지에 대해 평가하였다.
(7) 방열 평가: QFP(quad flat package)로 조립 후, 오븐(Oven, JEIO TECH社 제조)에서 195℃로 1,008 시간 방치 후 동작시험 정상작동여부(불량여부)를 총 256 패키지에 대해 평가하였다.
실시예 | 비교예 | |||||||||
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | ||
스파이럴 플로우(inch) | 61 | 55 | 42 | 33 | 64 | 56 | 64 | 59 | 47 | |
열전도도(W/mK) | 4.0 | 4.3 | 4.5 | 4.7 | 3.8 | 4.1 | 3.5 | 3.5 | 3.8 | |
유리전이온도(Tg) | 132 | 131 | 133 | 134 | 132 | 131 | 135 | 136 | 133 | |
열팽창계수 α1(㎛/m, ℃) | 8.5 | 8.3 | 8.2 | 8.5 | 8.4 | 8.3 | 8.4 | 8.5 | 8.7 | |
굴곡강도(kgf/mm2, 260 ℃) | 2.4 | 2.5 | 3.2 | 3.9 | 2.3 | 2.4 | 1.5 | 1.6 | 1.4 | |
굴곡탄성률(kfg/mm2, 260 ℃) | 64 | 62 | 73 | 79 | 62 | 66 | 65 | 65 | 63 | |
흡습률(wt%) | 0.273 | 0.267 | 0.295 | 0.293 | 0.270 | 0.272 | 0.284 | 0.306 | 0.301 | |
열충격 시험 | 크랙 발생 수 | 0/240 | 0/240 | 0/240 | 0/240 | 0/240 | 0/240 | 7/240 | 4/240 | 6/240 |
박리 발생 수 | 0/240 | 0/240 | 0/240 | 0/240 | 0/240 | 0/240 | 13/240 | 15/240 | 14/240 | |
방열평가 | 불량 발생 수 | 0/256 | 0/256 | 0/256 | 0/256 | 0/256 | 0/256 | 3/256 | 1/256 | 2/256 |
상기 표 3에 나타난 바와 같이, 본원발명의 실리콘(Si) 및 알루미늄(Al) 함유 나노물질을 포함하는 실시예는 방열효과 및 굴곡강도가 우수하고 열충격에 강하며, 흐름성, 열팽창계수, 굴곡탄성률 및 흡습률의 저하 없이 열전도도가 우수하다. 그러나 본원발명의 실리콘(Si) 및 알루미늄(Al) 함유 나노물질을 포함하지 않는 비교예는 굴곡강도가 저하되고, 열 충격에 약하며, 방열효과도 떨어지는 것을 알 수 있다.
이상 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.
Claims (17)
- 에폭시 수지, 경화제, 무기충전재를 포함하고,상기 무기충전재는 실리콘(Si) 및 알루미늄(Al) 함유 나노물질을 포함하는 반도체 소자 밀봉용 에폭시 수지 조성물.
- 제1항에 있어서, 상기 나노물질은 평균입경이 10nm 내지 500nm인 반도체 소자 밀봉용 에폭시 수지 조성물.
- 제1항에 있어서, 상기 나노물질은 나노와이어, 나노로드, 나노튜브, 나노리본 중 하나 이상을 포함하는 반도체 소자 밀봉용 에폭시 수지 조성물.
- 제1항에 있어서, 상기 나노물질은 실리콘(Si)과 알루미늄(Al)의 몰비가 0.1 : 1 내지 5 : 1인 반도체 소자 밀봉용 에폭시 수지 조성물.
- 제1항에 있어서, 상기 나노물질은 하기 화학식 8을 가지는 가지는 반도체 소자 밀봉용 에폭시 수지 조성물.[화학식 8]Al2O3·(SiO2)x·y(H2O)(상기 화학식 8에서, x는 0.5 내지 5, y는 1 내지 10임).
- 제1항에 있어서, 상기 나노물질은 열전도율이 5 W/mK 내지 30 W/mK인 반도체 소자 밀봉용 에폭시 수지 조성물.
- 제1항에 있어서, 상기 나노물질은 비표면적이 5 m2/g 내지 100 m2/g인 반도체 소자 밀봉용 에폭시 수지 조성물.
- 제1항에 있어서, 상기 나노물질은 pH가 7 내지 9인 반도체 소자 밀봉용 에폭시 수지 조성물.
- 제1항에 있어서, 상기 나노물질은 실리카(SiO2) 및 알루미나(Al2O3)로 형성된 것인 반도체 소자 밀봉용 에폭시 수지 조성물.
- 제9항에 있어서, 상기 나노물질은 실리카(SiO2) 및 알루미나(Al2O3)가 0.5 : 1 내지 5 : 1의 몰비로 형성된 것인 반도체 소자 밀봉용 에폭시 수지 조성물.
- 제1항에 있어서, 상기 나노물질은 실리카(SiO2)층 및 알루미나(Al2O3)층이 하나 이상 적층된 것인 반도체 소자 밀봉용 에폭시 수지 조성물.
- 제1항에 있어서, 상기 나노물질은 내경이 1 nm 내지 300 nm이고, 외경이 20 nm 내지 310 nm이고, 길이가 0.1 ㎛ 내지 20 ㎛인 나노튜브를 포함하는 반도체 소자 밀봉용 에폭시 수지 조성물.
- 제1항에 있어서, 상기 나노물질은 고형분 기준 상기 조성물 중 0.01 중량% 내지 40 중량%로 포함되는 반도체 소자 밀봉용 에폭시 수지 조성물.
- 제1항에 있어서, 상기 무기충전재는평균입경 0.1 ㎛ 이상, 4 ㎛ 이하의 알루미나;평균입경 4 ㎛ 초과, 10 ㎛ 이하의 알루미나; 및평균입경 10 ㎛ 초과, 30 ㎛ 이하의 알루미나;중 하나 이상을 더 포함하는 반도체 소자 밀봉용 에폭시 수지 조성물.
- 제1항에 있어서, 상기 조성물은 경화촉진제, 커플링제 및 착색제 중 하나 이상을 더 포함하는 반도체 소자 밀봉용 에폭시 수지 조성물.
- 제1항에 있어서, 상기 에폭시 수지 조성물은, 금형온도 175 ℃, 주입압력 9 MPa 및 경화시간 120 초 조건의 트랜스퍼 성형기로 상기 에폭시 수지 조성물을 주입하여 열전도도 시편(ASTM D5470)을 제작한 후, 25 ℃에서 측정한 열전도율이 3 W/mK 내지 10 W/mK인 반도체 소자 밀봉용 에폭시 수지 조성물.
- 제1항 내지 제16항 중 어느 한 항의 반도체 소자 밀봉용 에폭시 수지 조성물을 사용하여 밀봉된 반도체 소자.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/554,304 US10636712B2 (en) | 2015-04-29 | 2015-07-16 | Epoxy resin composition for sealing semiconductor device, and semiconductor device sealed by using same |
CN201580076601.3A CN107250235B (zh) | 2015-04-29 | 2015-07-16 | 用于封装半导体装置的组成物及使用其封装的半导体装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0060933 | 2015-04-29 | ||
KR1020150060933A KR101854501B1 (ko) | 2015-04-29 | 2015-04-29 | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016175385A1 true WO2016175385A1 (ko) | 2016-11-03 |
Family
ID=57198470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/007392 WO2016175385A1 (ko) | 2015-04-29 | 2015-07-16 | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10636712B2 (ko) |
KR (1) | KR101854501B1 (ko) |
CN (1) | CN107250235B (ko) |
TW (1) | TWI623561B (ko) |
WO (1) | WO2016175385A1 (ko) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102057255B1 (ko) | 2017-03-22 | 2019-12-18 | 주식회사 엘지화학 | 반도체 패키지용 수지 조성물과 이를 이용한 프리프레그 및 금속박 적층판 |
JP7002866B2 (ja) * | 2017-06-29 | 2022-01-20 | 京セラ株式会社 | 粉粒状半導体封止用樹脂組成物及び半導体装置 |
KR102137550B1 (ko) * | 2017-12-12 | 2020-07-24 | 삼성에스디아이 주식회사 | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 장치 |
JP7170240B2 (ja) * | 2018-07-27 | 2022-11-14 | パナソニックIpマネジメント株式会社 | 半導体封止用樹脂組成物、半導体装置、及び半導体装置の製造方法 |
KR102658294B1 (ko) * | 2019-09-09 | 2024-04-16 | 주식회사 두산 | 밀봉 시트 및 이를 포함하는 반도체 장치 |
KR102483006B1 (ko) * | 2020-05-14 | 2022-12-29 | 삼성에스디아이 주식회사 | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 장치 |
CN114685938A (zh) * | 2020-12-28 | 2022-07-01 | 衡所华威电子有限公司 | 一种电子封装用环氧树脂组合物及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060084727A1 (en) * | 2004-10-14 | 2006-04-20 | Yazaki Corporation | Filled epoxy resin compositions |
KR100637611B1 (ko) * | 1999-07-08 | 2006-10-24 | 다우 코닝 도레이 캄파니 리미티드 | 접착제 및 반도체 장치 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100480946B1 (ko) * | 2001-12-28 | 2005-04-07 | 제일모직주식회사 | 내크랙성 및 열전도율이 향상된 반도체 소자 밀봉용에폭시 수지 조성물 |
US7163973B2 (en) * | 2002-08-08 | 2007-01-16 | Henkel Corporation | Composition of bulk filler and epoxy-clay nanocomposite |
KR20070069714A (ko) | 2005-12-28 | 2007-07-03 | 주식회사 하이닉스반도체 | 반도체 패키지 |
JP5568023B2 (ja) * | 2011-01-12 | 2014-08-06 | 株式会社日立製作所 | 非水電解液電池 |
WO2013008680A1 (ja) | 2011-07-13 | 2013-01-17 | 株式会社ダイセル | 硬化性エポキシ樹脂組成物 |
US9174842B2 (en) * | 2011-10-14 | 2015-11-03 | Georgia Tech Research Corporation | Single-walled metal oxide and metal sulphide nanotubes/polymer composites |
CN104119704B (zh) * | 2013-04-27 | 2016-05-11 | 中国科学院化学研究所 | 埃洛石纳米管的表面改性处理方法 |
KR20140133178A (ko) * | 2013-05-10 | 2014-11-19 | 제일모직주식회사 | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 |
CN103694636B (zh) | 2013-12-10 | 2015-12-09 | 中国科学院过程工程研究所 | 一种电气绝缘环氧树脂组合物、制备方法及其用途 |
CN104031353A (zh) * | 2014-06-09 | 2014-09-10 | 昆山腾辉电子有限公司 | 一种纳米混合型导热胶及其加工工艺 |
CN104231993A (zh) * | 2014-09-26 | 2014-12-24 | 江南大学 | 一种改性无机纳米粒子增韧环氧树脂灌封胶及其制备方法 |
-
2015
- 2015-04-29 KR KR1020150060933A patent/KR101854501B1/ko active IP Right Grant
- 2015-07-16 US US15/554,304 patent/US10636712B2/en active Active
- 2015-07-16 WO PCT/KR2015/007392 patent/WO2016175385A1/ko active Application Filing
- 2015-07-16 CN CN201580076601.3A patent/CN107250235B/zh active Active
- 2015-10-15 TW TW104133782A patent/TWI623561B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100637611B1 (ko) * | 1999-07-08 | 2006-10-24 | 다우 코닝 도레이 캄파니 리미티드 | 접착제 및 반도체 장치 |
US20060084727A1 (en) * | 2004-10-14 | 2006-04-20 | Yazaki Corporation | Filled epoxy resin compositions |
Non-Patent Citations (3)
Title |
---|
LIU, M. ET AL.: "Properties of Halloysite Nanotube-Epoxy Resin Hybrids and the Interfacial Reactions in the Systems", NANOTECHNOLOGY, vol. 18, no. 45, 10 October 2007 (2007-10-10), pages 1 - 9, XP020129469 * |
MARM, J. ET AL.: "Halloysite Nanotubes as Reinforeing Fillers in Polymeric Nanocomposites", SPE PLASTICS RESEARCH ONLINE, 14 March 2013 (2013-03-14), pages 1 - 3 * |
RAWTANI, D. ET AL.: "Multifarious Applications of Halloysite Nanotubes: A Review", REVIEW ON ADVANCED MATERERIALS SCIENCE, vol. 30, 2012, pages 282 - 295, XP008157541 * |
Also Published As
Publication number | Publication date |
---|---|
CN107250235A (zh) | 2017-10-13 |
US10636712B2 (en) | 2020-04-28 |
TW201638137A (zh) | 2016-11-01 |
KR20160129218A (ko) | 2016-11-09 |
CN107250235B (zh) | 2020-05-05 |
KR101854501B1 (ko) | 2018-05-04 |
US20180053703A1 (en) | 2018-02-22 |
TWI623561B (zh) | 2018-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016175385A1 (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 | |
KR101362887B1 (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 | |
WO2017222151A1 (ko) | 고체상 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 포함하는 봉지재 및 반도체 패키지 | |
WO2024151049A1 (ko) | 전자 디바이스 밀봉용 수지 조성물 및 이를 사용하여 제조된 전자 디바이스 | |
KR20120076250A (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용한 반도체 소자 | |
WO2017142251A1 (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 소자 | |
WO2016167449A1 (ko) | 포스포늄계 화합물, 이를 포함하는 에폭시 수지 조성물, 및 이를 사용하여 제조된 반도체 소자 | |
KR101309822B1 (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 | |
WO2018117373A1 (ko) | 필름형 반도체 밀봉 부재, 이를 이용하여 제조된 반도체 패키지 및 그 제조 방법 | |
KR20190081986A (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 | |
KR100882533B1 (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용한 반도체 소자 | |
WO2016085115A1 (ko) | 포스포늄계 화합물, 이를 포함하는 에폭시 수지 조성물, 및 이를 사용하여 제조된 반도체 소자 | |
WO2017057844A1 (ko) | 반도체 패키지 및 이의 제조방법 | |
KR20200013385A (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 장치 | |
KR101279973B1 (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용한 반도체 소자 패키지 | |
WO2019132175A1 (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 | |
WO2017052243A1 (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 소자 | |
KR102063199B1 (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 | |
WO2017131390A1 (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 소자 | |
WO2018117374A1 (ko) | 필름형 반도체 밀봉 부재, 이를 이용하여 제조된 반도체 패키지 및 그 제조 방법 | |
KR101437141B1 (ko) | 반도체 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 | |
WO2017217638A1 (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용하여 밀봉된 반도체 소자 | |
KR101726929B1 (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 | |
KR101758448B1 (ko) | 반도체 소자 밀봉용 에폭시수지 조성물 및 이를 사용하여 밀봉된 반도체 소자 | |
KR101234846B1 (ko) | 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 이용한 반도체 소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15890826 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15554304 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15890826 Country of ref document: EP Kind code of ref document: A1 |