WO2018117564A1 - 금속 복합시트 - Google Patents

금속 복합시트 Download PDF

Info

Publication number
WO2018117564A1
WO2018117564A1 PCT/KR2017/014921 KR2017014921W WO2018117564A1 WO 2018117564 A1 WO2018117564 A1 WO 2018117564A1 KR 2017014921 W KR2017014921 W KR 2017014921W WO 2018117564 A1 WO2018117564 A1 WO 2018117564A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal composite
layer
thin film
composite sheet
heat dissipation
Prior art date
Application number
PCT/KR2017/014921
Other languages
English (en)
French (fr)
Inventor
정윤호
조형민
진효승
백은송
임태극
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2018117564A1 publication Critical patent/WO2018117564A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant

Definitions

  • the present invention relates to a metal composite sheet provided with a heat radiating function, and provides a metal composite sheet for efficiently radiating heat generated from a display device.
  • graphite sheets are mainly used as base substrates for heat dissipation.
  • Graphite sheets are lightweight and slim, but most of all, their thermal conductivity is very high, such as copper (Cu), and is usefully used in PDPs, such as plasma televisions, between substrates and electronic circuits.
  • Cu copper
  • the graphite sheet when the graphite sheet is attached to the heat-generating component using a adhesive agent, the graphite sheet is easily peeled off due to detachment of carbon crystals at the adhesive agent interface.
  • the conventional heat dissipation sheet using the graphite sheet has a problem that the interlayer separation occurs.
  • the present invention is to form a heat dissipation layer by a deposition method on a metal thin film, to develop a sheet having an excellent thermal conductivity and heat dissipation efficiency as well as improving the delamination phenomenon.
  • an object of the present invention is to provide a metal composite sheet capable of simultaneously improving the interlayer peeling phenomenon and a significant reduction in thickness by configuring a metal thin film formed of a heat dissipation layer by a deposition method without using an adhesive. .
  • an object of the present invention is to provide a coverlay-integrated metal composite film that can be easily applied in a roll-to-roll manner as well as at the same time to the heat dissipation function and coverlay function by configuring the metal composite sheet and the coverlay to be integrated.
  • the present invention provides a metal composite sheet and a coverlay integrated metal composite film including the same.
  • One embodiment of the invention the first metal thin film; A heat dissipation layer formed on one or both surfaces of the first metal thin film; An adhesive layer disposed on the heat dissipation layer; And it provides a metal composite sheet comprising a second metal thin film disposed on the adhesive layer.
  • the metal composite sheet may have a structure in which the heat dissipation layer formed on one surface of the first metal thin film and the contact formed on one surface of the second metal thin film are in contact with each other.
  • the metal composite sheet may further include a heat dissipation layer formed on one or both surfaces of the second metal thin film.
  • the metal composite sheet may have a structure in which a heat dissipation layer formed on one surface of the first metal thin film and a heat dissipation layer formed on one surface of the second metal thin film are in contact with the adhesive layer, respectively.
  • the metal composite sheet may have a structure in which the heat dissipation layer formed on one surface of the first metal thin film and the adhesive layer formed on one surface of the second metal thin film are in contact with each other.
  • the heat dissipation layer may be formed by depositing a thermally conductive carbon structure.
  • the thermally conductive carbon structure is carbon nanotube (CNT), graphite (graphite), graphene (graphene), diamond (diamond), fullerene (carbon black) and combinations thereof It is preferred to include one selected from the group consisting of.
  • the heat dissipation layer may have a thickness in the range of 0.1 to 1 ⁇ m.
  • the metal composite sheet may have a thickness in the range of 0.1 to 1 ⁇ m and thermal conductivity in the range of 400 to 1000 W / mK.
  • the adhesive layer may be a heat dissipation adhesive layer including a thermally conductive filler.
  • Another embodiment of the present invention is a polyimide (PI) layer; An adhesive layer formed on the polyimide layer; And a release layer, the coverlay further comprising a magnetic layer coated on a lower portion of the polyimide layer, and a coverlay-integrated metal composite film in which the aforementioned metal composite sheet is integrated. do.
  • PI polyimide
  • the metal composite film may have a structure in which the magnetic layer of the coverlay and the second metal thin film of the metal composite sheet are in contact with each other and integrated.
  • the metal composite film may have a structure in which one surface of the magnetic layer of the coverlay and the heat dissipation layer formed on one surface of the second metal thin film are in contact with each other and integrated.
  • the metal composite film may include one insulating layer in which the polyimide layer and the adhesive layer are integrated.
  • the coverlay integrated metal composite film may be attached in a roll to roll manner.
  • the first metal thin film A heat dissipation layer formed by deposition;
  • the metal composite sheet and the coverlay-integrated composite film including the same according to the present invention may be used in a display device to simultaneously provide an effect of slimming and heat resistance.
  • 1 to 5 schematically show a metal composite sheet according to the present invention.
  • FIG 8 and 9 are views schematically showing a coverlay integrated metal composite film according to the present invention.
  • a metal comprising a first metal thin film, a heat dissipation layer formed on one or both sides of the first metal thin film, an adhesive layer disposed on the heat dissipation layer, and a second metal thin film disposed on the adhesive layer
  • a metal comprising a first metal thin film, a heat dissipation layer formed on one or both sides of the first metal thin film, an adhesive layer disposed on the heat dissipation layer, and a second metal thin film disposed on the adhesive layer
  • the metal composite sheet according to the present invention includes a structure in which specific layers are stacked, and by securing thermal conductivity, thermal diffusion, and adhesive stability inside each layer, a slimming effect and heat resistance on a display device equipped with the metal composite sheet The effect of durability can be given simultaneously.
  • FIG. 1 schematically illustrates the structure of a metal composite sheet 100 according to an embodiment of the present invention.
  • the metal composite sheet 100 may include a first metal thin film 10, a heat dissipation layer 21, an adhesive layer 30, and a second metal thin film 40.
  • the first metal thin film 10, the heat dissipation layer 21, the adhesive layer 30, and the second metal thin film 40 may be sequentially stacked.
  • the metal thin films 10 and 40 serve to improve vertical heat conduction of the metal composite sheet 100, and the first metal thin film 10 and the second metal thin film 40 may be heat dissipating layers 21. It can be located on both sides of.
  • the metal thin films 10 and 40 may have isotropic thermal conductivity.
  • the isotropic thermal conductivity of the metal thin films 10 and 40 means that the thermal conductivity does not vary depending on the direction, whereby the metal thin films 10 and 40 may have uniform thermal conductivity in all directions.
  • the metal thin films 10 and 40 include copper (Cu), aluminum (Al), gold (Au), silver (Ag), nickel (Ni), tin (Sn), zinc (Zn), magnesium (Mg), and tungsten. It may be a thin film of metal selected from (W), iron (Fe), and a combination thereof, and preferably, may be a thin film of aluminum (Al) or copper (Cu).
  • the heat dissipation layer 21 is a layer formed by depositing a thermally conductive carbon structure, and may have excellent thermal conductivity in the horizontal direction.
  • the thermally conductive carbon structure of the heat dissipation layer 21 includes carbon nanotubes (CNTs), graphite, graphene, graphene, diamond, fullerene, carbon black, and the like. It may include one selected from the group consisting of a combination of.
  • the heat dissipation layer 21 may include graphite or graphene, and in this case, it may be advantageous to secure anisotropic thermal conductivity.
  • the heat dissipation layer 21 may make the heat conductive carbon structure lie in a horizontal direction by depositing the thermally conductive carbon structure on the surface of the first metal thin film 10 by a sputtering process, whereby the heat dissipation layer ( 21) can effectively improve the horizontal thermal conductivity.
  • the heat dissipation layer 21 is formed by depositing the thermally conductive carbon structure, not only may the interlayer separation phenomenon be improved, but also the thickness thereof may be reduced as compared with the case in which the heat dissipation layer 21 is formed in a sheet form.
  • the thickness of the heat dissipation layer is about 17 ⁇ m in the case of conventionally formed in the form of a sheet, whereas the thickness of the heat dissipation layer is significantly reduced to about 1 ⁇ m when formed by depositing as in the present invention. do.
  • the adhesive layer 30 may serve as an adhesive between the heat dissipation layer 21 and the second metal thin film 40 that are separately formed.
  • the adhesive layer 30 may include an epoxy resin.
  • the adhesive layer 30 may play a role of adhesive and at the same time may evenly discharge the heat generated by the heating object. That is, the adhesive layer 30 may serve to transfer the heat conducted from the heat dissipation layer 21 to the outside, that is, the second metal thin film 40.
  • the adhesive layer 30 may include an epoxy-based adhesive resin and a thermally conductive filler, thereby ensuring adhesiveness and excellent thermal conductivity at the same time.
  • the epoxy adhesive resin of the adhesive layer 30 is not particularly limited as long as it is used as an adhesive component in the art, but non-limiting examples include biskenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolac type epoxy resin, And dicyclopentadiene type epoxy resins, trisphenylmethane type epoxy resins, naphthalene type epoxy resins, biphenyl type epoxy resins and hydrogenated epoxy resins.
  • the epoxy adhesive resin may further include a rubber-modified epoxy resin in order to ensure excellent adhesion.
  • rubber modified epoxy resins are not particularly limited, but non-limiting examples include acrylonitrile-butadiene rubber (NBR), carboxy-terminated butadiene-acrylonitrile (CBTN) rubber, epoxy-terminated butadiene-acrylonitrile (ETBN) rubber and amines Terminal butadiene-acrylonitrile (ATBN) rubber and the like.
  • the thermally conductive filler of the adhesive layer 30 is nickel, aluminum nitride, boron nitride, carbon nanotube (CNT), graphite, aluminum oxide, magnesium oxide, zinc oxide, silicon carbide, silicon nitride, hydroxide It may include one selected from the group consisting of aluminum, magnesium hydroxide, silicon oxide, and combinations thereof, and by using aluminum nitride or boron nitride having excellent thermal conductivity, the adhesive layer may simultaneously secure excellent adhesiveness and thermal conductivity.
  • the adhesive layer 30 may include about 30 parts by weight to about 50 parts by weight of the thermally conductive filler based on 100 parts by weight of the epoxy-based adhesive resin.
  • the thermal conductivity is low, so when the adhesive layer 30 is attached to the second metal thin film 40, it is difficult to release heat. There is a problem that the interfacial adhesion with the two-metal thin film 40 is lowered, the air layer having low thermal conductivity increases, and the heat radiation effect is lowered.
  • the thermally conductive filler is included in the content in the above range, it is possible to secure proper interfacial adhesion with the second metal thin film 40, and at the same time reduce the air layer having low thermal conductivity to attach to the second metal thin film 40. Therefore, the heat dissipation effect to the outside through this can be easily implemented.
  • the thickness of the adhesive layer 30 may be about 5 ⁇ m 10 ⁇ m.
  • the heat dissipating layer 21 may be formed.
  • Anisotropic thermal conductivity and the metal thin film (10, 40) may have an isotropic thermal conductivity.
  • the metal composite sheet 100 according to the present invention may have a thermal conductivity in the range of 400 to 1000 W / mK.
  • the heat dissipation layer 21 according to the present invention not only reduces the thickness thereof, but also forms an adhesive layer between the first metal thin film 10 and the heat dissipation layer 21 in comparison with the conventional heat dissipation layer in the form of a sheet. Due to the reduced thickness due to omission may have a slimming effect.
  • the metal composite sheet 100 according to the present invention may have a thickness in the range of 25 to 30 ⁇ m.
  • the metal composite sheets 11, 120, 130 and 140 illustrated in FIGS. 2 to 5 are the same except that the heat dissipation layer is further included as compared to the metal composite sheet 100 described above with reference to FIG. 1. . Therefore, the description of the same configuration is omitted for the sake of brevity of the specification.
  • FIG. 2 schematically shows the metal composite sheet 110 further including one heat dissipation layer 22 as compared to the metal composite sheet 100 of FIG. 1.
  • the metal composite sheet 110 includes a first metal thin film 10, heat dissipation layers 21 and 22 formed on both surfaces of the first metal thin film 10, an adhesive layer 30, and a second metal thin film 40. do. That is, the structure further includes a heat dissipation layer 22 formed on the upper surface of the first metal thin film 10.
  • the adhesive layer 30 is a heat dissipation formed between the first metal thin film 10 and the second metal thin film 40 having the heat dissipation layers 21 and 22 formed on both surfaces thereof, specifically on the bottom surface of the first metal thin film 10. It may serve as an adhesive between the layer 21 and the second metal thin film 40.
  • FIG. 3 schematically illustrates a metal composite sheet 120 further including two heat dissipation layers 22 and 23 as compared to the metal composite sheet 100 of FIG. 1.
  • the metal composite sheet 120 includes a first metal thin film 10, heat dissipation layers 21 and 22 formed on both surfaces of the first metal thin film 10, an adhesive layer 30, a second metal thin film 40, and the The heat dissipation layer 23 formed on the upper surface of the second metal thin film 40 is included.
  • the adhesive layer 30 serves as an adhesive between the first metal thin film 10 having the heat dissipating layers 21 and 22 formed on both surfaces thereof and the second metal thin film 40 having the heat dissipating layer 23 formed on the upper surface thereof.
  • the adhesive layer 30 serves as an adhesive for contacting and integrating between the heat dissipation layer 21 formed on the bottom surface of the first metal thin film 10 and the heat dissipation layer 23 formed on the top surface of the second metal thin film 40. can do.
  • FIG. 4 schematically shows a metal composite sheet 130 further comprising two heat dissipation layers 22 and 24 as compared to the metal composite sheet 100 of FIG. 1.
  • the metal composite sheet 130 includes a first metal thin film 10, heat dissipation layers 21 and 22 formed on both surfaces of the first metal thin film 10, an adhesive layer 30, a second metal thin film 40, and the The heat dissipation layer 24 formed on the lower surface of the second metal thin film 40 is included.
  • the adhesive layer 30 serves as an adhesive between the first metal thin film 10 having the heat dissipating layers 21 and 22 formed on both surfaces thereof and the second metal thin film 40 having the heat dissipating layer 24 formed on the lower surface thereof.
  • the adhesive layer 30 may be positioned between the heat dissipation layer 21 and the second metal thin film 40 formed on the lower surface of the first metal thin film 10 to act as an adhesive.
  • FIG. 5 schematically illustrates the metal composite sheet 140 further including three heat dissipation layers 22, 23, and 24 as compared to the metal composite sheet 100 of FIG. 1.
  • the metal composite sheet 140 includes a first metal thin film 10, heat dissipation layers 21 and 22 formed on both surfaces of the first metal thin film 10, an adhesive layer 30, a second metal thin film 40, and the The heat dissipation layers 23 and 24 formed on both surfaces of the second metal thin film 40 are included.
  • the adhesive layer 30 serves as an adhesive between the first metal thin film 10 having the heat dissipating layers 21 and 22 formed on both surfaces thereof and the second metal thin film 40 having the heat dissipating layers 23 and 24 formed on both surfaces thereof. do. Specifically, the adhesive layer 30 is positioned between the heat dissipation layer 21 formed on the bottom surface of the first metal thin film 10 and the heat dissipation layer 23 deposited on the top surface of the second metal thin film 40. It may serve to integrate the thin film 10 and the second metal thin film 40.
  • the metal composite sheet according to the present invention has a structure including a heat dissipation layer 21 formed on one surface of the first metal thin film (FIG. 1), and heat dissipation layers 21 and 22 formed on both sides of the first metal thin film. 2, a heat dissipation layer 21 and 22 formed on both surfaces of the first metal thin film and a heat dissipation layer 23 or 24 formed on one surface of the second metal thin film (FIGS. 3 and 4). ), The heat dissipation layers 21 and 22 formed on both surfaces of the first metal thin film and the heat dissipation layers 23 and 24 formed on both sides of the second metal thin film may be formed (FIG. 5).
  • the metal composite sheet shown in FIGS. 1 to 5 has a heat dissipation layer formed by a vapor deposition method, so that the delamination is not only improved and the thickness is reduced, but also the heat dissipation layer between the layers does not affect the total thickness. It can also have excellent thermal conductivity.
  • the metal composite sheet according to the present invention may improve uniformity and distribution of heat conduction in a slim space, and may simultaneously provide excellent heat dissipation and slimming effects to a display device including the same.
  • the metal composite sheet according to the present invention will be described with an example applied to the display device.
  • the application target of the metal composite sheet according to the present invention is not limited to the following embodiments, and may be applied to various positions within the display device or the electronic device.
  • Another embodiment of the present invention provides a coverlay integrated metal composite film in which the coverlay and the aforementioned metal composite sheet are integrated.
  • the coverlay refers to a composite film coated with an adhesive on a polyimide film or a release film in addition to the polyimide film.
  • the coverlay mainly protects and insulates an exposed surface of an etched flexible printed circuit board (FPCB) circuit. Used for the purpose of
  • FIGS. 6 and 7 are cross-sectional views schematically showing a cross section of the coverlay according to the present invention
  • Figures 8 and 9 schematically show a cross section of the coverlay integrated metal composite film according to another embodiment of the present invention.
  • the coverlay integrated metal composite film 300 may include the metal composite sheet 100 of FIG. 1 and the coverlay 200 of FIG. 6. Can be.
  • the coverlay integrated metal composite film 300 may include a first metal thin film 10, a heat dissipation layer 21, an adhesive layer 30, a second metal thin film 40, a magnetic layer 50, and a poly
  • the mid layer 60, the adhesive layer 70, and the release layer 80 may be sequentially stacked.
  • the polyimide layer 60 serves as a support for coating the magnetic layer 50 as the base film of the coverlay.
  • the magnetic layer 50 may be formed to a predetermined thickness on the polyimide layer 60.
  • the magnetic layer 50 is formed by preparing a liquid composition including magnetic particles and applying the prepared liquid composition to the lower portion of the polyimide layer 60.
  • the magnetic layer 50 is a Fe-Si-Al alloy (Sendust), Fe-Si-Cr alloy, Highflux, Permalloy alloy, Ni-Zn Ferrite, Mn-Zn ferrite ( Ferrite) and magnetic particles selected from the group consisting of epoxy, phenoxy, acrylic, melamine, silicone, fluorine, polyamide, polyester, polyethylene, polypropylene, polyvinyl chloride resin At least one component may be included as a binder.
  • the magnetic layer 50 formed of a polymer component as a binder and containing magnetic particles is also called a PMS layer (Polymer Magnetic Sheet Layer).
  • the adhesive layer 70 may be formed at a predetermined thickness under the polyimide layer 60.
  • the adhesive layer 70 is formed by preparing a liquid composition having insulating properties and coating the prepared liquid composition with a predetermined thickness on the lower portion of the polyimide layer 60.
  • the release layer 80 may be formed on the lower portion of the adhesive layer 70 by laminating, and may use a release paper or a release polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • the cover layer 200 composed of the magnetic layer 50, the polyimide layer 60 having insulating properties, the adhesive layer 70, and the release layer 80 and the second metal thin film 40 of the metal composite sheet 100 are formed. By integrating so as to be in contact with each other, the coverlay integrated metal composite film 300 may be formed.
  • the polyimide layer 60 and the adhesive layer 70 may be integrated into one insulating layer.
  • the polyimide layer 60 may be omitted so that the adhesive layer 70 may serve as an insulating layer.
  • FIG. 7 schematically illustrates a cross section of the coverlay 210 having a structure in which the polyimide layer 60 is omitted in the coverlay 200 according to the present invention illustrated in FIG. 6.
  • the coverlay integrated metal film 310 may include the metal composite sheet 100 of FIG. 1 and the coverlay 210 of FIG. 7.
  • the coverlay integrated metal composite film 310 includes the first metal thin film 10, the heat dissipation layer 21, the adhesive layer 30, the second metal thin film 40, the magnetic layer 50, and the adhesive layer. 70 and the release layer 80 may have a stacked structure sequentially.
  • the coverlay integrated metal film 310 according to the present invention shown in FIG. 9 has the same configuration except that the polyimide layer 60 is omitted in comparison with the coverlay integrated metal film 300 of FIG. 8. Since the description is redundant for the sake of brevity of the specification.
  • the coverlay-integrated metal composite film according to the present invention may not only simultaneously give a slimming effect and a heat-resistant durability effect to the display device equipped with the film and the coverlay integrated film, the metal composite film, and the metal composite film. Is applicable in a roll-to-roll manner.
  • a first copper foil (Cu) having a thickness of 12 ⁇ m was prepared, and graphite was deposited on one surface of the first copper foil under sputtering conditions to obtain a first copper foil on which a 1 ⁇ m graphite layer was deposited.
  • a second copper foil (Cu) having a thickness of 9 ⁇ m was prepared, and an adhesive layer was formed by coating an adhesive composition 1 having an epoxy composition on one side of the second copper foil with a thickness of 5 ⁇ m and drying it.
  • the first copper foil (12 ⁇ m), the graphite layer (1 ⁇ m), the adhesive layer (5 ⁇ m), and the second copper foil (9) are integrated so that the surface of the heat dissipation layer deposited on the first copper foil and the surface of the adhesive layer formed on the second copper foil are in contact with each other.
  • a metal composite sheet having a thickness of 27 ⁇ m) was sequentially stacked.
  • a PMS layer (50 ⁇ m) was coated on one side of the polyimide layer (12 ⁇ m) and dried, and a cover layer having a thickness of 80 ⁇ m was prepared by sequentially coating / drying the adhesive layer (18 ⁇ m) on the opposite side.
  • a coverlay integrated metal composite film having a thickness of 107 ⁇ m was manufactured by integrating the surface of the PMS layer of the coverlay with the surface of the second copper foil of the metal composite sheet prepared in 1-1.
  • the graphite layer (1 ⁇ m), the first copper foil (12 ⁇ m), the graphite layer (1 ⁇ m), and the adhesive layer (5 ⁇ m) in the same manner as in Example 1, except that graphite was deposited on both surfaces of the first copper foil. And a metal composite sheet having a thickness of 28 ⁇ m in which a second copper foil (9 ⁇ m) was sequentially laminated.
  • a coverlay integrated metal composite film having a thickness of 108 ⁇ m was manufactured by integrating the PMS layer of the coverlay manufactured in the same manner as in Example 1 so as to contact the surface of the second copper foil of the metal composite sheet prepared in 2-1.
  • the surface of the heat dissipation layer deposited on one surface of the first copper foil and the surface of the heat dissipation layer deposited on the upper surface of the second copper foil were integrated into an adhesive layer. Except for the same manner as in Example 1, the graphite layer (1 ⁇ m), the first copper foil (12 ⁇ m), the graphite layer (1 ⁇ m), the adhesive layer (5 ⁇ m), the graphite layer (1 ⁇ m), and the second copper foil ( 9 ⁇ m) to prepare a metal composite sheet having a thickness of 29 ⁇ m sequentially.
  • a coverlay-integrated metal composite film having a thickness of 109 ⁇ m was manufactured by integrating the PMS layer of the coverlay manufactured in the same manner as in Example 1 so as to contact the surface of the second copper foil of the metal composite sheet prepared in 3-1.
  • a metal composite film was prepared.
  • the surface of the heat dissipation layer deposited on one surface of the first copper foil and the surface of the heat dissipation layer deposited on the upper surface of the second copper foil were integrated into an adhesive layer. Except for the same manner as in Example 1, the graphite layer (1 ⁇ m), the first copper foil (12 ⁇ m), the graphite layer (1 ⁇ m), the adhesive layer (5 ⁇ m), the graphite layer (1 ⁇ m), and the second copper foil ( 9 ⁇ m) and a graphite composite layer (1 ⁇ m) were manufactured to have a metal composite sheet having a thickness of 30 ⁇ m.
  • the coverlay integrated type having a thickness of 110 ⁇ m was integrated by integrating the PMS layer of the coverlay manufactured in the same manner as in Example 1 so that the surface of the graphite layer deposited on the lower surface of the second copper foil of the metal composite sheet prepared in 5-1 contacted.
  • a metal composite film was prepared.
  • Example 2 In the same manner as in Example 1, a metal composite sheet having a thickness of 27 ⁇ m was prepared.
  • a coverlay having a thickness of 68 ⁇ m in which a PMS layer (50 ⁇ m) and an adhesive layer (18 ⁇ m) was laminated was prepared.
  • a coverlay integrated metal composite film having a thickness of 95 ⁇ m was manufactured by integrating the surface of the PMS layer of the coverlay with the surface of the second copper foil of the metal composite sheet prepared in 6-1.
  • Example 2 In the same manner as in Example 2, a metal composite sheet having a thickness of 28 ⁇ m was prepared.
  • a coverlay-integrated metal composite film having a thickness of 96 ⁇ m was prepared by integrating the surface of the PMS layer of the coverlay with the surface of the second copper foil of the metal composite sheet prepared in 7-1.
  • a metal composite sheet having a thickness of 29 ⁇ m was prepared in the same manner as in Example 3.
  • a coverlay integrated metal composite film having a thickness of 97 ⁇ m was prepared by integrating the surface of the PMS layer of the coverlay with the surface of the second copper foil of the metal composite sheet prepared in 8-1.
  • a metal composite sheet having a thickness of 29 ⁇ m was prepared in the same manner as in Example 4.
  • a coverlay-integrated metal composite film having a thickness of 97 ⁇ m was manufactured by integrating the surface of the PMS layer of the coverlay with the surface of the graphite layer deposited on the bottom surface of the second copper foil of the metal composite sheet prepared in 9-1.
  • a coverlay having a thickness of 68 ⁇ m was prepared.
  • a coverlay-integrated metal composite film having a thickness of 98 ⁇ m was prepared by integrating the surface of the PMS layer of the coverlay with the surface of the graphite layer deposited on the bottom surface of the second copper foil of the metal composite sheet prepared in 10-1.
  • a first copper foil (12 ⁇ m) and an adhesive layer (12 ⁇ m) were prepared in the same manner as in Example 1, except that a graphite sheet product having a thickness of 17 ⁇ m, which is commonly used, and a heat dissipation layer was formed using an adhesive instead of a graphite layer. 5 ⁇ m), a graphite layer (17 ⁇ m), an adhesive layer (5 ⁇ m), and a second copper foil (9 ⁇ m) were sequentially prepared, and a metal composite sheet having a thickness of 47 ⁇ m was prepared.
  • a coverlay-integrated metal composite film having a thickness of 128 ⁇ m was prepared by integrating a metal composite sheet having a thickness of 47 ⁇ m previously prepared in a coverlay having a thickness of 80 ⁇ m prepared in the same manner as in Example 1.
  • a coverlay-integrated metal composite film having a thickness of 116 ⁇ m was prepared by integrating a metal composite sheet having a thickness of 47 ⁇ m prepared in Comparative Example 1 with a cover layer of 68 ⁇ m prepared in the same manner as in Example 6.
  • Example 1 Heat dissipation layer ( ⁇ m) Metal Composite Sheet ( ⁇ m) Coverlay ( ⁇ m) Metal Composite Film * ( ⁇ m) Thermal Conductivity (W / mK)
  • Example 1 One 27 80 107 500
  • Example 2 1 * 2 28 80 108 520
  • Example 3 1 * 3 29 80 109 540
  • Example 4 1 * 3 29 80 109 540
  • Example 5 1 * 4 30
  • Example 6 One 27 68 95 450
  • Example 7 1 * 2 28 68 96 470
  • Example 8 1 * 3 29 68 97 490
  • Example 9 1 * 3 29 68 97 510
  • the metal composite sheet of the present invention exhibited excellent heat dissipation characteristics by maintaining the thermal conductivity in spite of the improved delamination and significantly reduced thickness. Therefore, it is considered to be used as a constituent material capable of imparting a slimming effect and heat resistance durability to a small and lightweight new display device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 방열 기능이 부여된 금속 복합시트에 관한 것으로서, 제1금속박막; 상기 제1금속박막의 일면 또는 양면에 형성된 방열층; 상기 방열층 상에 배치된 접착층; 및 상기 접착층에 배치된 제2금속박막을 포함하는 금속 복합시트, 및 이를 포함하는 커버레이 일체형 금속 복합필름을 제공한다.

Description

금속 복합시트
본 발명은 방열 기능이 부여된 금속 복합시트에 관한 것으로서, 디스플레이 장치에서 발생되는 열을 효율적으로 방열시키는 금속 복합시트를 제공한다.
근래, 노트북이나 휴대전화 등의 각종 전자제품은 고성능화와 소형화가 현저한 속도로 진행되고 있다. 전자제품의 고성능화ㆍ소형화에 수반하여, 그 내부에 내장된 전자 부품은 대용량화ㆍ고집적화가 진행되고 있으며, 이에 의해 전자제품에서는 많은 열이 발생하고 있다. 발생한 열은 제품의 수명을 단축하거나 고장, 오동작을 유발하며, 심한 경우에는 폭발이나 화재의 원인이 되기도 한다.  특히, 플라즈마 디스플레이 패널(PDP), LCD 모니터 등에서는 선명도, 색상도 등을 떨어뜨려 제품에 대한 신뢰성과 안정성을 저하시키고 있다. 따라서 제품 내부에서 발생한 열은 외부로 방출되거나 자체 냉각되어야 한다.
이에 따라, 방열성을 위한 베이스 기재로서 그래파이트 시트(graphite sheet)를 주로 사용하고 있다. 그래파이트 시트는 경량이고 슬림하면서도, 무엇보다 열전도도가 구리(Cu) 이상으로 매우 높아, 전자 회로를 구성하는 기판과 기판 사이, 플라즈마 텔레비전 등을 구성하는 PDP 등에 유용하게 사용되고 있다.
그러나 그래파이트 시트는 점(접)착제를 이용하여 발열 부품에 부착하는 경우, 점(접)착 계면에서 탄소 결정의 이탈로 쉽게 벗겨지는 문제점이 있다. 또한 그래파이트 시트를 이용한 종래의 방열 시트는 층간 분리가 발생하는 문제점이 있다.
본 발명은 금속박막에 증착 방식으로 방열층을 형성하여, 층간 박리현상 개선뿐만 아니라 우수한 열전도도 및 열 방출 효율을 가지는 시트를 개발하고자 한다.
이를 위해, 본 발명에서는 접착제를 사용하지 않고 증착 방식으로 방열층이 형성된 금속박막을 베이스 기재로 구성함으로써, 층간 박리현상 개선 및 획기적인 두께 감소를 동시에 구현할 수 있는 금속 복합시트를 제공하는 것을 목적으로 한다.
또한 본 발명은 금속 복합시트와 커버레이를 일체화되도록 구성함으로써, 방열 기능과 커버레이 기능을 동시에 할 수 있을 뿐 아니라 롤투롤 방식으로 손쉽게 적용될 수 있는 커버레이 일체형 금속 복합필름을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여 본 발명은, 금속 복합시트 및 이를 포함하는 커버레이 일체형 금속 복합필름을 제공한다.
본 발명의 일 실시예는 제1금속박막; 상기 제1금속박막의 일면 또는 양면에 형성된 방열층; 상기 방열층 상에 배치된 접착층; 및 상기 접착층에 배치된 제2금속박막을 포함하는 금속 복합시트를 제공한다.
본 발명의 일 실시예에 따르면, 상기 금속 복합시트는 상기 제1금속박막의 일면에 형성된 방열층과, 상기 제2금속박막의 일면에 형성된 접촉하도록 일체화된 구조일 수 있다.
본 발명의 일 실시예에 따르면, 상기 금속 복합시트는 상기 제2금속박막의 일면 또는 양면에 형성된 방열층을 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 금속 복합시트는 상기 제1금속박막의 일면에 형성된 방열층 및 상기 제2금속박막의 일면에 형성된 방열층이 각각 상기 접착층과 접촉하도록 일체화된 구조일 수 있다.
본 발명의 일 실시예에 따르면, 상기 금속 복합시트는 상기 제1금속박막의 일면에 형성된 방열층과, 상기 제2금속박막의 일면에 형성된 접착층이 접촉하도록 일체화된 구조일 수 있다.
본 발명의 일 실시예에 따르면, 상기 방열층은 열전도성 탄소구조체를 증착하여 형성된 것일 수 있다. 여기서, 상기 열전도성 탄소구조체는 탄소나노튜브(Carbon Nanotube, CNT), 그래파이트(graphite), 그래핀(graphene), 다이아몬드(diamond), 풀러린(fullerene), 카본블랙(carbon black) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는 것이 바람직하다.
본 발명의 일 실시예에 따르면, 상기 방열층은 0.1 내지 1㎛ 범위의 두께를 가질 수 있다.
본 발명의 일 실시예에 따르면, 상기 금속 복합시트는 0.1 내지 1㎛ 범위의 두께 및 400 내지 1000 W/mK 범위의 열전도율을 가질 수 있다.
본 발명의 일 실시예에 따르면, 상기 접착층은 열전도성 필러를 포함하는 방열접착층일 수 있다.
본 발명의 다른 일 실시예는 폴리이미드(PI)층; 상기 폴리이미드층의 상부에 형성된 접착층; 및 이형층을 포함하며, 상기 폴리이미드층의 하부에 코팅된 자성층(Polymer Magnetic Sheet Layer)을 더 포함하는 커버레이(coverlay)와, 전술한 금속 복합시트가 일체화된 커버레이 일체형 금속 복합필름을 제공한다.
본 발명의 다른 일 실시예에 따르면, 상기 금속 복합필름은 상기 커버레이의 자성층과, 상기 금속 복합시트의 제2금속박막이 서로 접촉되어 일체화된 구조일 수 있다.
본 발명의 다른 일 실시예에 따르면, 상기 금속 복합필름은 상기 커버레이의 자성층의 일면과, 상기 제2금속박막의 일면에 형성된 방열층이 서로 접촉되어 일체화된 구조일 수 있다.
본 발명의 다른 일 실시예에 따르면, 상기 금속 복합필름은 상기 폴리이미드층과 상기 접착층이 일체화된 하나의 절연층을 포함할 수 있다.
본 발명의 다른 일 실시예에 따르면, 상기 커버레이 일체형 금속 복합필름은 롤투롤(roll to roll) 방식으로 부착 가능하다.
본 발명에서는 제1금속박막; 증착으로 형성된 방열층; 접착층 및 제2금속박막을 포함하는 금속 복합시트를 구성함으로써, 층간 박리 현상 방지를 통한 원가 절감 효과 및 접착제 층 제거로 인한 두께 감소 효과가 있다.
또한 금속 복합시트와 커버레이를 일체화한 커버레이 일체형 금속 복합필름을 구성함으로써, 디스플레이 장치에 롤투롤 방식으로 손쉽게 적용될 수 있는 효과가 있다.
따라서 본 발명에 의한 금속 복합시트 및 이를 포함하는 커버레이 일체형 복합필름은 디스플레이 장치에 사용되어 슬림화 효과 및 내열 내구성의 효과를 동시에 부여할 수 있다.
도 1 내지 도 5는 본 발명에 따른 금속 복합시트를 개략적으로 나타낸 도면이다.
도 6 및 도 7은 본 발명에 따른 커버레이를 개략적으로 나타낸 도면이다.
도 8 및 도 9는 본 발명에 따른 커버레이 일체형 금속 복합필름을 개략적으로 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명에 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
본 발명의 일 실시예에서, 제1금속박막, 상기 제1금속박막의 일면 또는 양면에 형성된 방열층, 상기 방열층 상에 배치된 접착층, 및 상기 접착층에 배치된 제2금속박막을 포함하는 금속 복합시트를 제공한다.
본 발명에 따른 상기 금속 복합시트는 특정 층들이 적층된 구조를 포함하며, 각 층의 내부의 열전도성, 열확산성 및 접착안정성을 확보함으로써, 상기 금속 복합시트가 장착된 디스플레이 장치에 슬림화 효과 및 내열 내구성의 효과를 동시에 부여할 수 있다.
도 1은 본 발명의 일 실시예에 따른 금속 복합시트(100)의 구조를 개략적으로 나타낸 것이다.
도 1을 참조하면, 상기 금속 복합시트(100)는 제1금속박막(10), 방열층(21), 접착층(30) 및 제2금속박막(40)을 포함할 수 있고, 구체적으로 상기 제1금속박막(10), 방열층(21), 접착층(30) 및 제2금속박막(40)이 순차적으로 적층된 구조를 가질 수 있다.
상기 금속박막(10, 40)은 금속 복합시트(100)의 수직 방향 열전도를 향상시키는 역할을 하는 것으로, 상기 제1금속박막(10) 및 상기 제2금속박막(40)은 방열층(21)의 양면에 위치할 수 있다.
상기 금속박막(10, 40)은 등방성의 열전도성을 가질 수 있다. 상기 금속박막(10, 40)이 등방성의 열전도성을 갖는다는 것은 방향에 따라 열전도율이 다르지 않은 것을 의미하며, 이로써 상기 금속박막(10, 40)은 모든 방향으로 균일한 열전도성을 가질 수 있다.
상기 금속박막(10, 40)은 구리(Cu), 알루미늄(Al), 금(Au), 은(Ag), 니켈(Ni), 주석(Sn), 아연(Zn), 마그네슘(Mg), 텅스텐(W), 철(Fe), 및 이들의 조합에서 선택된 금속의 박막일 수 있으며, 바람직하게는, 알루미늄(Al) 또는 동(Cu)의 박막일 수 있다.
방열층(21)은 열전도성 탄소구조체를 증착하여 형성된 층으로서, 수평방향으로의 열전도성이 우수한 특성을 가질 수 있다.
방열층(21)의 열전도성 탄소구조체는 탄소나노튜브(Carbon Nanotube, CNT), 그래파이트(graphite), 그래핀(graphene), 다이아몬드(diamond), 풀러린(fullerene), 카본블랙(carbon black) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.
예를 들어, 상기 방열층(21)은 그래파이트 또는 그래핀을 포함할 수 있고, 이 경우 이방성의 열전도성을 확보하기에 유리할 수 있다.
구체적으로, 상기 방열층(21)은 제1금속박막(10)의 표면에 상기 열전도성 탄소구조체를 스퍼터링 공정으로 증착함으로써 상기 열전도성 탄소구조체를 수평 방향으로 눕게 만들 수 있고, 이로써 상기 방열층(21)은 수평 열전도율을 효과적으로 향상시킬 수 있다.
상기 방열층(21)은 상기 열전도성 탄소구조체를 증착하여 형성되므로 층간 분리 현상을 개선할 수 있을 뿐 아니라, 시트 형태로 부착하여 형성되는 경우에 비해 그 두께가 감소될 수 있다.
예를 들면, 종래에 시트 형태로 부착하여 형성되는 경우에 방열층의 두께는 대략 17㎛ 정도인 데 비해, 본 발명에서와 같이 증착하여 형성되는 경우에 방열층의 두께는 1㎛ 정도로 현저하게 감소된다.
상기 접착층(30)은 별도로 형성되는 방열층(21)과 제2금속박막(40) 사이에 접착제 역할을 할 수 있다. 이때, 접착층(30)은 에폭시 수지를 포함할 수 있다.
또한, 상기 접착층(30)은 접착제 역할을 하는 동시에 발열 대상체에서 발생하여 전달된 열을 골고루 방출하는 역할을 수행할 수 있다. 즉, 상기 접착층(30)은 상기 방열층(21)으로부터 전도받은 열을 외부, 즉 제2금속박막(40) 쪽으로 전달하는 역할을 할 수 있다.
구체적으로, 상기 접착층(30)은 에폭시계 접착 수지 및 열전도성 필러를 포함할 수 있고, 이로써 접착성 및 우수한 열전도성을 동시에 확보할 수 있다.
상기 접착층(30)의 에폭시계 접착 수지는 당 업계에서 접착제 성분으로서 사용되는 것이라면 특별히 한정되지 않으나, 비제한적인 예로 비스케놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 크레졸노볼락형 에폭시 수지, 디시클로펜타젠형 에폭시 수지, 트리스페닐메탄형 에폭시 수지, 나프탈렌형 에폭시 수지, 바이페닐형 에폭시 수지 및 수소 첨가 에폭시 수지 등을 들 수 있다.
상기 에폭시계 접착 수지는 우수한 접착성을 확보하기 위해서 고무 변성 에폭시 수지를 더 포함할 수 있다. 이러한 고무 변성 에폭시 수지는 특별히 한정되지 않으나, 비제한적인 예로 아크릴로니트릴-부타디엔 고무(NBR), 카복시 말단 부타디엔-아크릴로니트릴(CBTN) 고무, 에폭시 말단 부타디엔-아크릴로니트릴(ETBN) 고무 및 아민 말단 부타디엔-아크릴로니트릴(ATBN) 고무 등을 들 수 있다.
또한, 상기 접착층(30)의 열전도성 필러는 니켈, 질화알루미늄, 질화붕소, 탄소나노튜브(Carbon Nanotube, CNT), 그래파이트(graphite), 산화알루미늄, 산화마그네슘, 산화아연, 탄화규소, 질화규소, 수산화알루미늄, 수산화마그네슘, 산화규소 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있고, 열전도도가 우수한 질화알루미늄 또는 질화붕소를 사용함으로써 상기 접착층이 우수한 접착성과 열전도성을 동시에 확보할 수 있다.
상기 접착층(30)은 상기 에폭시계 접착 수지 100 중량부에 대하여, 상기 열전도성 필러를 약 30 중량부 내지 약 50 중량부 포함할 수 있다. 상기 열전도성 필러의 함량이 약 30 중량부 미만인 경우에는 열전도도가 낮아져 상기 접착층(30)이 제2금속박막(40)에 부착되는 경우 열의 방출이 어려우며, 약 50 중량부를 초과하는 경우에는 상기 제2금속박막(40)과의 계면 접착력이 낮아져 열전도도가 낮은 공기층이 많아지고, 방열 효과가 저하되는 문제가 있다.
즉, 상기 열전도성 필러가 상기 범위의 함량으로 포함됨으로써 상기 제2금속박막(40)과 적절한 계면 접착력을 확보할 수 있고, 동시에 열전도도가 낮은 공기층을 줄여 주어 제2금속박막(40)에 부착되어 이를 통한 외부로의 열 방출 효과를 용이하게 구현할 수 있다.
또한, 상기 접착층(30)의 두께는 약 5㎛ 내지 10㎛일 수 있다. 상기 접착층(30)이 상기 범위의 두께를 유지함으로써 제2금속박막(40)에 부착 시 우수한 부착력이 유지되며, 동시에 상기 제2금속박막(40)을 통한 열 방출 효과를 향상시킬 수 있다.
전술한 제1금속박막(10), 방열층(21), 접착층(30) 및 제2금속박막(40)을 포함하는 본 발명에 따른 금속 복합시트(100)는, 상기 방열층(21)이 이방성 열전도성을 갖고 상기 금속박막(10, 40)이 등방성의 열전도성을 가질 수 있다.
바람직하게는, 본 발명에 따른 금속 복합시트(100)는 400 내지 1000 W/mK 범위의 열전도율을 가질 수 있다.
또한, 종래의 방열층을 시트 형태로 형성하는 데 비해 본 발명에 따른 방열층(21)은 그 두께가 감소될 뿐 아니라, 제1금속박막(10)과 방열층(21) 사이에 접착제 층이 생략됨으로 인한 두께 감소로 인해 슬림화 효과를 가질 수 있다.
바람직하게는, 본 발명에 따른 금속 복합시트(100)는 25 내지 30㎛ 범위의 두께를 가질 수 있다.
도 2 내지 도 5는 본 발명에 따른 금속 복합시트의 일례들을 도시한 것이다.
도 2 내지 도 5에 도시된 금속 복합시트(11, 120, 130, 140)는, 도 1에서 전술한 금속 복합시트(100)에 비해 방열층이 추가로 더 포함된다는 점을 제외하고는 동일하다. 따라서 동일한 구성에 대해서는 명세서의 간결성을 위해 중복 설명은 생략한다.
먼저, 도 2는 도 1의 금속 복합시트(100)에 비해 하나의 방열층(22)을 추가로 더 포함하는 금속 복합시트(110)를 개략적으로 나타낸 것이다.
상기 금속 복합시트(110)는 제1금속박막(10), 상기 제1금속박막(10)의 양면에 형성된 방열층(21, 22), 접착층(30) 및 제2금속박막(40)을 포함한다. 즉, 상기 제1금속박막(10)의 상면에 형성된 방열층(22)을 더 포함하는 구조를 가진다.
여기서, 상기 접착층(30)은 양면에 방열층(21, 22)이 형성된 제1금속박막(10)과 제2금속박막(40) 사이, 구체적으로 제1금속박막(10)의 하면에 형성된 방열층(21)과 제2금속박막(40) 사이에 접착제 역할을 할 수 있다.
도 3은 도 1의 금속 복합시트(100)에 비해 두 개의 방열층(22, 23)을 추가로 더 포함하는 금속 복합시트(120)를 개략적으로 나타낸 것이다.
상기 금속 복합시트(120)는 제1금속박막(10), 상기 제1금속박막(10)의 양면에 형성된 방열층(21, 22), 접착층(30), 제2금속박막(40) 및 상기 제2금속박막(40)의 상면에 형성된 방열층(23)을 포함한다.
여기서, 상기 접착층(30)은 양면에 방열층(21, 22)이 형성된 제1금속박막(10)과 상면에 방열층(23)이 형성된 제2금속박막(40) 사이에 접착제 역할을 한다. 구체적으로 상기 접착층(30)은 제1금속박막(10)의 하면에 형성된 방열층(21)과 제2금속박막(40)의 상면에 형성된 방열층(23) 사이에 접촉하여 일체화시키는 접착제 역할을 할 수 있다.
도 4는 도 1의 금속 복합시트(100)에 비해 두 개의 방열층(22, 24)을 추가로 더 포함하는 금속 복합시트(130)를 개략적으로 나타낸 것이다.
상기 금속 복합시트(130)는 제1금속박막(10), 상기 제1금속박막(10)의 양면에 형성된 방열층(21, 22), 접착층(30), 제2금속박막(40) 및 상기 제2금속박막(40)의 하면에 형성된 방열층(24)을 포함한다.
여기서, 상기 접착층(30)은 양면에 방열층(21, 22)이 형성된 제1금속박막(10)과 하면에 방열층(24)이 형성된 제2금속박막(40) 사이에 접착제 역할을 한다. 구체적으로 상기 접착층(30)은 제1금속박막(10)의 하면에 형성된 방열층(21)과 제2금속박막(40) 사이에 위치하여 접착제 역할을 할 수 있다.
도 5는 도 1의 금속 복합시트(100)에 비해 세 개의 방열층(22, 23, 24)을 추가로 더 포함하는 금속 복합시트(140)를 개략적으로 나타낸 것이다.
상기 금속 복합시트(140)는 제1금속박막(10), 상기 제1금속박막(10)의 양면에 형성된 방열층(21, 22), 접착층(30), 제2금속박막(40) 및 상기 제2금속박막(40)의 양면에 형성된 방열층(23, 24)을 포함한다.
여기서, 상기 접착층(30)은 양면에 방열층(21, 22)이 형성된 제1금속박막(10)과 양면에 방열층(23, 24)이 형성된 제2금속박막(40) 사이에 접착제 역할을 한다. 구체적으로 상기 접착층(30)은 제1금속박막(10)의 하면에 형성된 방열층(21)과 제2금속박막(40)의 상면에 증착된 방열층(23) 사이에 위치하여 상기 제1금속박막(10)과 상기 제2금속박막(40)을 일체화시키는 역할을 할 수 있다.
전술한 바와 같이, 본 발명에 따른 금속 복합시트는 제1금속박막의 일면에 형성된 방열층(21)을 포함하는 구조(도 1), 제1금속박막의 양면에 형성된 방열층(21, 22)을 포함하는 구조(도 2), 제1금속박막의 양면에 형성된 방열층(21, 22)과 제2금속박막의 일면에 형성된 방열층(23 또는 24)을 포함하는 구조(도 3, 도 4), 제1금속박막의 양면에 형성된 방열층(21, 22)과 제2금속박막의 양면에 형성된 방열층(23, 24)을 포함하는 구조(도 5)를 가질 수 있다.
도 1 내지 도 5에 도시된 금속 복합시트는 증착 방식으로 형성된 방열층을 가짐으로써 층간 박리현상이 개선되고 두께가 감소될 뿐 아니라, 각 층 사이에 방열층을 포함함으로써 총 두께에 영향을 미치지 않으면서도 우수한 열전도도를 가질 수 있다.
결론적으로, 본 발명에 따른 금속 복합시트는 슬림한 공간 내에서 열전도의 균일성 및 분포성이 향상될 수 있고, 이를 포함하는 디스플레이 장치에 우수한 방열 효과 및 슬림화 효과를 동시에 부여할 수 있다.
이하, 본 발명에 따른 금속 복합시트가 디스플레이 장치 내에 적용된 예를 들어 설명하고자 한다. 다만, 본 발명에 따른 금속 복합시트의 적용대상은 하기 실시예에 한정되는 것이 아니며, 디스플레이 장치 또는 전자 장치 내의 다양한 위치에 적용될 수 있다.
본 발명의 다른 일 실시예는 커버레이와 전술한 금속 복합시트가 일체화된 커버레이 일체형 금속 복합필름을 제공한다.
이때, 커버레이(coverlay)는 폴리이미드(polyimide) 필름에 접착제가 코팅된 복합 필름 또는 이에 더하여 이형필름까지 합친 것을 일컫는데, 주로 에칭된 FPCB(flexible Printed Circuit Board) 회로의 노출면을 보호하고 절연하기 위한 용도로 사용된다.
도 6 내지 도 9를 참조하여 본 발명의 다른 일 실시예에 따른 커버레이 일체형 금속 복합필름을 보다 상세히 설명한다.
도 6 및 도 7은 본 발명에 따른 커버레이의 단면을 개략적으로 나타낸 단면도이며, 도 8 및 도 9는 본 발명의 다른 일 실시예에 따른 커버레이 일체형 금속 복합필름의 단면을 개략적으로 나타낸 것이다.
먼저, 도 1 및 도 6과 함께 도 8을 참조하면, 본 발명에 따른 커버레이 일체형 금속 복합필름(300)은 도 1의 금속 복합시트(100)와 도 6의 커버레이(200)를 포함할 수 있다.
구체적으로, 본 발명에 따른 커버레이 일체형 금속 복합필름(300)은 제1금속박막(10), 방열층(21), 접착층(30), 제2금속박막(40), 자성층(50), 폴리이미드층(60), 접착층(70) 및 이형층(80)이 순차적으로 적층된 구조를 가질 수 있다.
폴리이미드층(60)은 커버레이의 기재필름으로서, 자성층(50)을 코팅하기 위한 지지체 역할을 한다.
자성층(50)은 폴리이미드층(60)의 상부에 소정의 두께로 형성될 수 있다. 예컨대, 자성 입자를 포함하는 액상 조성물을 제조하여 그 제조한 액상 조성물을 폴리이미드층(60)의 하부에 도포함으로써, 자성층(50)을 형성하게 된다.
이러한 자성층(50)은 Fe-Si-Al계 합금(Sendust), Fe-Si-Cr계 합금, 하이플럭스(Highflux), 퍼멀로이(Permalloy) 합금, Ni-Zn 페라이트(Ferrite), Mn-Zn 페라이트(Ferrite)로 이루어진 군으로부터 선택된 자성 입자를 포함하고, 에폭시계, 페녹시계, 아크릴계, 멜라민계, 실리콘계, 불소계, 폴리아마이드계, 폴리에스테르계, 폴리에틸렌계, 폴리프로필렌계, 폴리염화비닐계 수지로부터 선택된 적어도 하나 이상의 성분을 바인더로 포함할 수 있다.
상기와 같이, 폴리머 성분을 바인더로 하고 자성 입자를 포함하여 형성되는 자성층(50)은 PMS층(Polymer Magnetic Sheet Layer)라고도 한다.
접착층(70)은 폴리이미드층(60)의 하부에 소정의 두께로 형성될 수 있다. 예컨대, 절연 특성을 지닌 액상 조성물을 제조하여 그 제조한 액상 조성물을 폴리이미드층(60)의 하부에 소정의 두께로 코팅함으로써, 접착층(70)을 형성하게 된다.
이형층(80)은 라미네이팅으로 접착층(70)의 하부에 형성될 수 있는데, 이형지(release paper) 또는 이형PET(Polyethylene terephthalate) 필름을 사용할 수 있다.
이렇게 자성층(50), 절연 특성을 지닌 폴리이미드층(60), 접착층(70) 및 이형층(80)으로 구성된 커버레이(200)와 금속 복합시트(100)의 제2금속박막(40)이 서로 접촉되도록 일체화시킴으로써, 커버레이 일체형 금속 복합필름(300)을 형성할 수 있다.
한편, 전술한 커버레이 일체형 금속 복합필름(300)에서 상기 폴리이미드층(60)과 상기 접착층(70)이 일체화되어 하나의 절연층으로 형성될 수 있다. 또한 상기 폴리이미드층(60)이 생략되어 상기 접착층(70)이 절연층 역할을 할 수도 있다.
도 7은 도 6에 도시된 본 발명에 따른 커버레이(200)에서 폴리이미드층(60)이 생략된 구조를 가지는 커버레이(210)의 단면을 개략적으로 도시한 것이다.
도 1 및 도 7과 함께 도 9를 참조하면, 본 발명에 따른 커버레이 일체형 금속필름(310)은 도 1의 금속 복합시트(100)와 도 7의 커버레이(210)를 포함할 수 있다.
구체적으로, 본 발명에 따른 커버레이 일체형 금속 복합필름(310)은 제1금속박막(10), 방열층(21), 접착층(30), 제2금속박막(40), 자성층(50), 접착층(70) 및 이형층(80)이 순차적으로 적층된 구조를 가질 수 있다.
도 9에 도시된 본 발명에 따른 커버레이 일체형 금속필름(310)은, 도 8의 커버레 이일체형 금속필름(300)에 비해, 폴리이미드층(60)이 생략된 점을 제외하고는 동일한 구성을 가지므로 명세서 간결성을 위해 중복설명은 생략한다.
본 발명에 따른 상기 커버레이 일체형 금속 복합필름은, 상기 금속 복합시트와 커버레이가 일체화된 필름이 장착된 디스플레이 장치에 슬림화 효과 및 내열 내구성의 효과를 동시에 부여할 수 있을 뿐 아니라, 상기 금속 복합필름은 롤투롤 방식으로 적용 가능하다.
이하 본 발명을 실시예를 통해 구체적으로 설명하나, 하기 실시예 및 실험예는 본 발명의 한 형태를 예시하는 것에 불과할 뿐이며, 본 발명의 범위가 하기 실시예 및 실험예에 제한되는 것은 아니다.
[ 실시예 1]
1-1. 금속 복합시트
먼저, 두께 12㎛의 제1동박(Cu)을 준비하고, 상기 제1동박의 한 면에 그래파이트를 스퍼터링 조건으로 증착시켜 1㎛의 그래파이트층이 증착된 제1동박을 얻었다.
두께 9㎛의 제2동박(Cu)을 준비하고, 상기 제2동박의 한 면에 에폭시 조성을 가지는 접착제 조성물 1을 5㎛의 두께로 코팅한 후 건조 시켜 접착층을 형성하였다.
제1동박에 증착된 방열층의 표면과 제2동박에 형성된 접착층의 표면이 접촉하도록 일체화시켜 제1동박(12㎛), 그래파이트층(1㎛), 접착층(5㎛) 및 제2동박(9㎛)이 순차적으로 적층된 두께 27㎛의 금속 복합시트를 제조하였다.
1-2. 커버레이 일체형 금속 복합필름
폴리이미드층(12㎛) 일면에 PMS층(50㎛)을 코팅한 후 건조하고, 반대면에 접착층(18㎛)을 순차적으로 코팅/건조하여 두께 80㎛의 커버레이를 제조하였다.
커버레이의 PMS층의 표면과, 1-1에서 제조한 금속 복합시트의 제2동박의 표면이 접촉하도록 일체화시켜 두께 107㎛의 커버레이 일체형 금속 복합필름을 제조하였다.
[ 실시예 2]
2-1. 금속 복합시트
제1동박의 양면에 그래파이트를 증착시킨 점을 제외하고는, 실시예 1과 동일한 방법으로 그래파이트층(1㎛), 제1동박(12㎛), 그래파이트층(1㎛), 접착층(5㎛) 및 제2동박(9㎛)이 순차적으로 적층된 두께 28㎛의 금속 복합시트를 제조하였다.
2-2. 커버레이 일체형 금속 복합필름
실시예 1과 동일한 방법으로 제조한 커버레이의 PMS층에, 2-1에서 제조한 금속 복합시트의 제2동박의 표면이 접촉하도록 일체화시켜 두께 108㎛의 커버레이 일체형 금속 복합필름을 제조하였다.
[ 실시예 3]
3-1. 금속 복합시트
제1동박의 양면 및 제2동박의 상면에 그래파이트를 증착시킨 후, 제1동박의 일면에 증착된 방열층의 표면과 제2동박의 상면에 증착된 방열층의 표면을 접착층으로 일체화시킨 점을 제외하고는, 실시예 1과 동일한 방법으로 그래파이트층(1㎛), 제1동박(12㎛), 그래파이트층(1㎛), 접착층(5㎛), 그래파이트층(1㎛) 및 제2동박(9㎛)이 순차적으로 적층된 두께 29㎛의 금속 복합시트를 제조하였다.
3-2. 커버레이 일체형 금속 복합필름
실시예 1과 동일한 방법으로 제조한 커버레이의 PMS층에, 3-1에서 제조한 금속 복합시트의 제2동박의 표면이 접촉하도록 일체화시켜 두께 109㎛의 커버레이 일체형 금속 복합필름을 제조하였다.
[ 실시예 4]
4-1. 금속 복합시트
제1동박의 양면 및 제2동박의 하면에 그래파이트를 증착시킨 후, 제1동박의 일면에 증착된 방열층의 표면과 제2동박에 형성된 접착층의 표면을 일체화시킨 점을 제외하고는, 실시예 1과 동일한 방법으로 그래파이트층(1㎛), 제1동박(12㎛), 그래파이트층(1㎛), 접착층(5㎛), 제2동박(9㎛) 및 그래파이트층(1㎛)이 순차적으로 적층된 두께 29㎛의 금속 복합시트를 제조하였다.
4-2. 커버레이 일체형 금속 복합필름
실시예 1과 동일한 방법으로 제조한 커버레이의 PMS층에, 4-1에서 제조한 금속 복합시트의 제2동박의 하면에 증착된 그래파이트층의 표면이 접촉하도록 일체화시켜 두께 109㎛의 커버레이 일체형 금속 복합필름을 제조하였다.
[ 실시예 5]
5-1. 금속 복합시트
제1동박의 양면 및 제2동박의 양면에 그래파이트를 증착시킨 후, 제1동박의 일면에 증착된 방열층의 표면과 제2동박의 상면에 증착된 방열층의 표면을 접착층으로 일체화시킨 점을 제외하고는, 실시예 1과 동일한 방법으로 그래파이트층(1㎛), 제1동박(12㎛), 그래파이트층(1㎛), 접착층(5㎛), 그래파이트층(1㎛), 제2동박(9㎛) 및 그래파이트층(1㎛)이 순차적으로 적층된 두께 30㎛의 금속 복합시트를 제조하였다.
5-2. 커버레이 일체형 금속 복합필름
실시예 1과 동일한 방법으로 제조한 커버레이의 PMS층에, 5-1에서 제조한 금속 복합시트의 제2동박의 하면에 증착된 그래파이트층의 표면이 접촉하도록 일체화시켜 두께 110㎛의 커버레이 일체형 금속 복합필름을 제조하였다.
[ 실시예 6]
6-1. 금속 복합시트
실시예 1과 동일한 방법으로 두께 27㎛의 금속 복합시트를 제조하였다.
6-2. 커버레이 일체형 금속 복합필름
PMS층(50㎛) 및 접착층(18㎛)이 적층된 두께 68㎛의 커버레이를 제조하였다.
커버레이의 PMS층의 표면과, 6-1에서 제조한 금속 복합시트의 제2동박의 표면이 접촉하도록 일체화시켜 두께 95㎛의 커버레이 일체형 금속 복합필름을 제조하였다.
[ 실시예 7]
7-1. 금속 복합시트
실시예 2와 동일한 방법으로 두께 28㎛의 금속 복합시트를 제조하였다.
7-2. 커버레이 일체형 금속 복합필름
실시예 6과 동일한 방법으로 두께 68㎛의 커버레이를 제조하였다.
커버레이의 PMS층의 표면과, 7-1에서 제조한 금속 복합시트의 제2동박의 표면이 접촉하도록 일체화시켜 두께 96㎛의 커버레이 일체형 금속 복합필름을 제조하였다.
[ 실시예 8]
8-1. 금속 복합시트
실시예 3과 동일한 방법으로 두께 29㎛의 금속 복합시트를 제조하였다.
8-2. 커버레이 일체형 금속 복합필름
실시예 6과 동일한 방법으로 두께 68㎛의 커버레이를 제조하였다.
커버레이의 PMS층의 표면과, 8-1에서 제조한 금속 복합시트의 제2동박의 표면이 접촉하도록 일체화시켜 두께 97㎛의 커버레이 일체형 금속 복합필름을 제조하였다.
[ 실시예 9]
9-1. 금속 복합시트
실시예 4와 동일한 방법으로 두께 29㎛의 금속 복합시트를 제조하였다.
9-2. 커버레이 일체형 금속 복합필름
실시예 6과 동일한 방법으로 두께 68㎛의 커버레이를 제조하였다.
커버레이의 PMS층의 표면과, 9-1에서 제조한 금속 복합시트의 제2동박의 하면에 증착된 그래파이트층의 표면이 접촉하도록 일체화시켜 두께 97㎛의 커버레이 일체형 금속 복합필름을 제조하였다.
[ 실시예 10]
10-1. 금속 복합시트
실시예 5와 동일한 방법으로 두께 30㎛의 금속 복합시트를 제조하였다.
10-2. 커버레이 일체형 금속 복합필름
실시예 6과 동일한 방법으로 두께 68㎛의 커버레이를 제조하였다. 커버레이의 PMS층의 표면과, 10-1에서 제조한 금속 복합시트의 제2동박의 하면에 증착된 그래파이트층의 표면이 접촉하도록 일체화시켜 두께 98㎛의 커버레이 일체형 금속 복합필름을 제조하였다.
[ 비교예 1]
통상적으로 사용되고 있는 두께 17㎛의 그래파이트 시트 제품을 구입하여 그래파이트층 대신에 접착제를 사용하여 방열층을 형성한 점을 제외하고는, 실시예 1과 동일한 방법으로 제1동박(12㎛), 접착층(5㎛), 그래파이트층(17㎛), 접착층(5㎛) 및 제2동박(9㎛)이 순차적으로 적층된 두께 47㎛의 금속 복합시트를 제조하였다.
실시예 1과 동일한 방법으로 제조한 두께 80㎛의 커버레이에, 앞서 제조한 두께 47㎛의 금속 복합시트를 일체화시켜 두께 128㎛의 커버레이 일체형 금속 복합필름을 제조하였다.
[ 비교예 2]
실시예 6과 동일한 방법으로 제조한 68㎛의 커버레이에, 비교예 1에서 제조한 두께 47㎛의 금속 복합시트를 일체화시켜 두께 116㎛의 커버레이 일체형 금속 복합필름을 제조하였다.
[ 실험예 1]
실시예 1 내지 실시예 10과, 비교예 1 및 비교예 2에서 각각 제조된 금속 복합시트 및 금속 복합필름에 대하여 하기 실험을 하였고, 그 결과를 하기 표 1에 나타내었다.
1) 방열층 두께
2) 금속 복합시트 두께
3) 커버레이 두께
4) 열전도율
방열층(㎛) 금속 복합시트(㎛) 커버레이(㎛) 금속 복합필름* (㎛) 열전도율(W/mK)
실시예 1 1 27 80 107 500
실시예 2 1*2 28 80 108 520
실시예 3 1*3 29 80 109 540
실시예 4 1*3 29 80 109 540
실시예 5 1*4 30 80 110 560
실시예 6 1 27 68 95 450
실시예 7 1*2 28 68 96 470
실시예 8 1*3 29 68 97 490
실시예 9 1*3 29 68 97 510
실시예 10 1*4 30 68 98 530
비교예 1 17 48 80 128 950
비교예 2 17 48 68 116 930
*: 이형층 두께를 제외한 금속 복합필름의 두께
실험 결과, 본 발명의 금속 복합시트는 층간 분리 현상이 개선되고, 획기적으로 감소한 두께에도 불구하고 열전도율을 유지하여 우수한 방열 특성을 보였다. 따라서 소형, 경량의 신규 디스플레이 장치에 슬림화 효과 및 내열 내구성의 효과를 부여할 수 있는 구성 재료로서 사용될 것으로 판단된다.

Claims (17)

  1. 제1금속박막;
    상기 제1금속박막의 일면 또는 양면에 형성된 방열층;
    상기 방열층 상에 배치된 접착층; 및
    상기 접착층에 배치된 제2금속박막
    을 포함하는 금속 복합시트.
  2. 제1항에 있어서,
    상기 제1금속박막의 일면에 형성된 방열층과, 상기 제2금속박막의 일면에 형성된 접착층이 접촉하도록 일체화된 금속 복합시트.
  3. 제1항에 있어서,
    상기 제2금속박막의 일면 또는 양면에 형성된 방열층을 더 포함하는 금속 복합시트.
  4. 제3항에 있어서,
    상기 제1금속박막의 일면에 형성된 방열층 및 상기 제2금속박막의 일면에 형성된 방열층이 상기 접착층과 접촉하도록 일체화된 금속 복합시트.
  5. 제3항에 있어서,
    상기 제1금속박막의 일면에 형성된 방열층과, 상기 제2금속박막의 일면에 형성된 접착층이 접촉하도록 일체화된 금속 복합시트.
  6. 제1항에 있어서,
    상기 방열층은 열전도성 탄소구조체를 증착하여 형성된 금속 복합시트.
  7. 제6항에 있어서,
    상기 열전도성 탄소구조체는 탄소나노튜브(Carbon Nanotube, CNT), 그래파이트(graphite), 그래핀(graphene), 다이아몬드(diamond), 풀러린(fullerene), 카본블랙(carbon black) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는 금속 복합시트.
  8. 제1항에 있어서,
    상기 방열층은 0.1 내지 1㎛ 범위의 두께를 갖는 금속 복합시트.
  9. 제1항에 있어서,
    상기 금속 복합시트는 25 내지 30㎛ 범위의 두께를 갖는 금속 복합시트.
  10. 제1항에 있어서,
    상기 금속 복합시트는 400 내지 1000 W/mK 범위의 열전도율을 갖는 금속 복합시트.
  11. 제1항에 있어서,
    상기 접착층은 열전도성 필러를 포함하는 방열접착층인 금속 복합시트.
  12. 제11항에 있어서,
    상기 열전도성 필러는 산화규소, 산화알루미늄, 질화알루미늄, 질화규소, 질화붕소 및 이들의 조합으로 이루어진 군에서 선택된 1종 이상을 포함하는 것인 금속 복합시트.
  13. 폴리이미드(PI)층; 상기 폴리이미드층의 상부에 형성된 접착층; 및 이형층을 포함하며, 상기 폴리이미드층의 하부에 코팅된 자성층(Polymer Magnetic Sheet Layer)을 더 포함하는 커버레이(coverlay)와,
    제1항 내지 제12항 중 어느 한 항에 따른 금속 복합시트가 일체화된 커버레이 일체형 금속 복합필름.
  14. 제13항에 있어서,
    상기 커버레이의 자성층의 일면과, 상기 제2금속박막의 일면이 서로 접촉되어 일체화된 커버레이 일체형 금속 복합필름.
  15. 제13항에 있어서,
    상기 커버레이의 자성층의 일면과, 상기 제2금속박막의 일면에 형성된 방열층이 서로 접촉되어 일체화된 커버레이 일체형 금속 복합필름.
  16. 제13항에 있어서,
    상기 폴리이미드층과 상기 접착층이 일체화된 하나의 절연층을 포함하는 커버레이 일체형 금속 복합필름.
  17. 제13항에 있어서,
    상기 필름은 롤투롤(roll-to-roll) 공정으로 부착 가능한 커버레이 일체형 금속 복합필름.
PCT/KR2017/014921 2016-12-19 2017-12-18 금속 복합시트 WO2018117564A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0173844 2016-12-19
KR1020160173844A KR102001719B1 (ko) 2016-12-19 2016-12-19 금속 복합시트

Publications (1)

Publication Number Publication Date
WO2018117564A1 true WO2018117564A1 (ko) 2018-06-28

Family

ID=62627456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014921 WO2018117564A1 (ko) 2016-12-19 2017-12-18 금속 복합시트

Country Status (2)

Country Link
KR (1) KR102001719B1 (ko)
WO (1) WO2018117564A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102202348B1 (ko) * 2018-11-20 2021-01-13 주식회사 디자인넥스트 목 냉각 밴드
KR102218274B1 (ko) * 2019-02-01 2021-02-22 (주)파인테크닉스 열전달 패드 및 이의 제조방법
KR102218275B1 (ko) * 2019-02-01 2021-02-22 (주)파인테크닉스 열확산 기능을 갖는 광반사 시트 및 이의 제조방법
KR102618169B1 (ko) * 2021-07-05 2023-12-29 (주) 다산솔루에타 그래피틱층을 갖는 pcb 필름 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177024A (ja) * 1999-12-21 2001-06-29 Ts Heatronics Co Ltd 熱拡散用複合プレート
JP2013157590A (ja) * 2012-01-04 2013-08-15 Jnc Corp 放熱部材、電子デバイスおよびバッテリー
KR20150106273A (ko) * 2014-03-11 2015-09-21 주식회사 아모그린텍 이중 방열 시트, 그의 제조 방법 및 그를 구비한 휴대용 단말기
KR20160133029A (ko) * 2015-05-11 2016-11-22 (주)제너코트 그라파이트 방열시트의 제조방법
KR20160136226A (ko) * 2015-05-18 2016-11-29 주식회사 이녹스 전자파 차폐 및 방열 기능 일체형 복합시트 및 이의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150137905A (ko) * 2014-05-30 2015-12-09 (주)창성 자성시트 일체형 커버레이와 이를 포함하는 연성인쇄회로기판 및 이들의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177024A (ja) * 1999-12-21 2001-06-29 Ts Heatronics Co Ltd 熱拡散用複合プレート
JP2013157590A (ja) * 2012-01-04 2013-08-15 Jnc Corp 放熱部材、電子デバイスおよびバッテリー
KR20150106273A (ko) * 2014-03-11 2015-09-21 주식회사 아모그린텍 이중 방열 시트, 그의 제조 방법 및 그를 구비한 휴대용 단말기
KR20160133029A (ko) * 2015-05-11 2016-11-22 (주)제너코트 그라파이트 방열시트의 제조방법
KR20160136226A (ko) * 2015-05-18 2016-11-29 주식회사 이녹스 전자파 차폐 및 방열 기능 일체형 복합시트 및 이의 제조방법

Also Published As

Publication number Publication date
KR102001719B1 (ko) 2019-07-18
KR20180071072A (ko) 2018-06-27

Similar Documents

Publication Publication Date Title
WO2018117564A1 (ko) 금속 복합시트
WO2015147449A1 (ko) 전자기파 차폐시트, 및 이의 제조방법
WO2015093903A1 (ko) 방열성이 우수한 금속 봉지재, 그 제조방법 및 상기 금속 봉지재로 봉지된 유연전자소자
WO2015072775A1 (ko) 연성인쇄회로기판과 그 제조 방법
WO2014178639A1 (ko) 연성인쇄회로기판 및 그 제조 방법
WO2020262961A1 (ko) 인쇄회로기판 및 이를 포함하는 패키지 기판
WO2018012668A1 (ko) 안테나 모듈 형성용 복합기판 및 이의 제조방법
WO2018101503A1 (ko) 인쇄회로기판의 제조방법 및 그에 따라서 제조된 인쇄회로기판
WO2018044053A1 (ko) 연성인쇄회로기판 제조 방법 및 이에 의해 제조된 연성인쇄회로기판
WO2017111254A1 (ko) 전자파 차폐 필름 및 이의 제조방법
WO2012087058A2 (en) Printed circuit board and method for manufacturing the same
WO2012087059A2 (en) Printed circuit board and method for manufacturing the same
WO2012011701A9 (en) Radiant heat circuit board and method for manufacturing the same
WO2019124624A1 (ko) 전자파 차폐필름, 인쇄회로기판 제조방법 및 전자파 차폐필름 제조방법
WO2016105131A1 (ko) 연성 인쇄회로기판용 전자파 차폐 필름의 제조방법
WO2012087072A2 (ko) 인쇄회로기판 및 이의 제조 방법
WO2015105340A1 (ko) 연성 인쇄회로기판용 전자파 차폐 필름 및 이의 제조방법
WO2013176519A1 (en) Semiconductor package substrate, package system using the same and method for manufacturing thereof
WO2015012613A1 (ko) 연성인쇄회로기판의 구조체
WO2013176520A1 (en) Semiconductor package substrate, package system using the same and method for manufacturing thereof
WO2015102461A1 (ko) 수지 이중층 부착 동박, 이를 포함하는 다층 인쇄 회로 기판 및 그 제조 방법
WO2014092343A1 (ko) 기능성 필름 및 이를 포함하는 연성회로기판
WO2021145664A1 (ko) 회로기판
WO2013085229A1 (en) Printed circuit board and method of manufacturing the same
WO2015099451A1 (ko) 연성 인쇄회로기판 형성용 절연 수지 시트 및 이의 제조방법, 이를 포함하는 인쇄회로기판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 17885134

Country of ref document: EP

Kind code of ref document: A1