WO2020138642A1 - 수지 조성물, 이를 이용한 금속 적층체와 인쇄회로기판 및 상기 금속 적층체의 제조방법 - Google Patents

수지 조성물, 이를 이용한 금속 적층체와 인쇄회로기판 및 상기 금속 적층체의 제조방법 Download PDF

Info

Publication number
WO2020138642A1
WO2020138642A1 PCT/KR2019/011257 KR2019011257W WO2020138642A1 WO 2020138642 A1 WO2020138642 A1 WO 2020138642A1 KR 2019011257 W KR2019011257 W KR 2019011257W WO 2020138642 A1 WO2020138642 A1 WO 2020138642A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
resin layer
metal laminate
metal
Prior art date
Application number
PCT/KR2019/011257
Other languages
English (en)
French (fr)
Inventor
이진수
김형규
조경운
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Priority to US17/418,434 priority Critical patent/US11820885B2/en
Priority to JP2021537078A priority patent/JP7220290B2/ja
Priority to EP19902029.8A priority patent/EP3904449A4/en
Priority to CN201980085604.1A priority patent/CN113227245B/zh
Publication of WO2020138642A1 publication Critical patent/WO2020138642A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/04Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J127/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers
    • C09J127/02Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J127/12Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09J127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/28Metal sheet
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
    • C08L2666/06Homopolymers or copolymers of unsaturated hydrocarbons; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/163Metal in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2427/00Presence of halogenated polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0133Elastomeric or compliant polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0212Resin particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0338Layered conductor, e.g. layered metal substrate, layered finish layer or layered thin film adhesion layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Definitions

  • the present invention relates to a resin composition, a metal laminate and a printed circuit board using the same, and a method for manufacturing the metal laminate.
  • the frequency band used for communication and electronic devices is also capable of broadband in the MHz region. It is expanding to GHz bands such as the GHz, 77 GHz or 94 GHz bands.
  • the transmission loss of the electric signal increases, and problems such as heat generation, signal attenuation, and delay may occur.
  • the main causes of such transmission loss are mainly conductor loss due to series resistance of the conductors forming the transmission circuit, and dielectric loss due to leakage current flowing through the insulator of the printed circuit board.
  • the dielectric loss is proportional to the square root of the dielectric constant of the insulating layer, the dielectric loss tangent, and the frequency of the electrical signal. For this reason, the higher the frequency of the electrical signal, the greater the dielectric loss. Therefore, in order to reduce transmission loss of communication electronic devices in a high-frequency to ultra-high frequency region, there is a need to develop an insulating material having a low dielectric constant and dielectric loss tangent and a printed circuit board using the same.
  • An object of the present invention is to provide a resin composition having excellent dielectric properties and low heat loss characteristics and a metal laminate and a printed circuit board using the same.
  • an object of the present invention is to provide a method of manufacturing a metal laminate without an extrusion molding process and a high temperature firing process using the resin composition.
  • the present invention is one or more elastomers selected from the group consisting of fluorine-based elastomers and styrene-based elastomers; Fluorine resin filler; And it provides a resin composition comprising an inorganic filler.
  • the resin composition may further include an organic solvent.
  • the present invention is formed of a resin composition as described above, the resin layer having a dielectric loss tangent (Df) of 0.0005 to 0.0020 at 10 kHz; And metal layers respectively disposed on both sides of the resin layer.
  • Df dielectric loss tangent
  • the present invention is applied to the resin composition described above on one side of a metal substrate and dried at 50 to 180° C. to prepare two unit members having a resin layer applied on one side of the metal substrate; And stacking and pressing the two unit members, and stacking the resin layers of each unit member in contact with each other.
  • the resin composition of the present invention is excellent in heat resistance and processability and has low dielectric loss, mobile communication devices handling high-frequency to ultra-high frequency signals, network-related electronic devices such as base station devices, servers, routers, automobile radar devices, large computers, etc. It can be useful for printed circuit boards used in various electrical, electronic, and communication devices.
  • the present invention by using the resin composition, it is possible to form a resin layer through a simple method of drying after coating directly on a metal substrate, without hot extrusion molding and a firing process of 350° C. or higher, thereby producing a metal laminate The process can be simplified.
  • FIG. 1 is a cross-sectional view of a metal laminate according to an example of the present invention.
  • the present invention is intended to provide a resin composition that can be usefully used in printed circuit boards, particularly high-frequency to ultra-high-frequency printed circuit boards.
  • a fluorine-based resin was used as a material for an insulating layer (resin layer) for a printed circuit board having low dielectric constant and low loss characteristics.
  • the fluorine-based resin has a high melting point of about 300°C or higher.
  • a high temperature extrusion molding process and a firing process of about 300° C. or higher were performed, which resulted in high manufacturing cost and reduced molding processability.
  • a fluorine-based or styrene-based elastomer having low dielectric loss tangent is mixed with an inorganic filler and an organic filler in the high-frequency to ultra-high-frequency band, but a fluorine-containing filler such as perfluoro alkoxy alkene (PFA) is mixed as the organic filler.
  • PFA perfluoro alkoxy alkene
  • the present invention unlike the production of a conventional metal laminate that forms an insulating layer with a fluorine-based resin through a high-temperature extrusion molding process and a firing process, by using an elastomer as a binder resin, a metal foil without a high-temperature extrusion molding process and a high-temperature firing process Since the elastomer can bind the inorganic filler and the fluororesin filler through a method of directly coating and drying the phase, the manufacturing cost of the metal laminate can be reduced, and the ease of processing can be increased.
  • an excellent low dielectric constant (Dk) and low dielectric loss (Df) are applied by adjusting a fluorine-containing filler having a low dielectric constant to a specific compounding ratio based on an elastomer having low dielectric properties and easy processability. It can exhibit characteristics, and can simultaneously provide high glass transition temperature (Tg) and excellent heat resistance.
  • the present invention provides a resin composition that can be used in a printed circuit board, particularly a printed circuit board usable in a high frequency to ultra high frequency band. This will be described in more detail as follows.
  • the resin composition according to the present invention includes at least one elastomer selected from the group consisting of fluorine-based elastomers and styrene-based elastomers; Fluorine resin filler; And it includes an inorganic filler, may optionally further include an organic solvent.
  • the elastomer is a binder resin capable of binding both inorganic and organic fillers.
  • the resin composition may include a thermoplastic elastomer.
  • the thermoplastic elastomer can be melted during hot pressing to easily form a resin layer.
  • the elastomer according to the present invention includes at least one selected from the group consisting of fluorine-based elastomers and styrene-based elastomers.
  • the fluorine-based elastomer and styrene-based elastomer can easily bind inorganic fillers and organic fillers, and have low dielectric properties.
  • the elastomer of the present invention has a dielectric loss tangent (Df) of 0.0005 to 0.0020 at 10 kHz.
  • the elastomer of the present invention has a dielectric constant (Dk) of 2.0 to 3.0 at 10 kV.
  • a resin layer having a low dielectric loss is coated by directly coating and drying a resin composition on a metal foil without a high temperature extrusion molding process and a high temperature firing process. It can be easily formed.
  • the fluorine-based elastomer of the present invention is a type of thermoplastic elastomer, and is an elastomer containing at least one fluorine (F) in at least one repeating unit.
  • This fluorine-based elastomer not only has a dielectric loss tangent (Df) of 0.0005 to 0.0020 and a dielectric constant of 2.0 to 3.0 at 10 kHz, but also has a low modulus.
  • fluorine-based elastomer examples include copolymers containing two or more of vinylidene fluoride (VDF), hexafluoropropylene (HFP) and tetrafluoroethylene (TFE); Tetrafluoroethylene-propylene copolymers; Vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene-based copolymers; Tetrafluoroethylene-perfluoroalkyl vinyl ether-based copolymers, and the like, but are not limited thereto. These may be used alone or in combination of two or more.
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • TFE tetrafluoroethylene
  • Tetrafluoroethylene-propylene copolymers Vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene-based copolymers
  • the content of fluorine (F) in the fluorine-based elastomer of the present invention is not particularly limited, but when it is within the range of about 65 to 80% by weight per molecule of the fluorine-based elastomer, the fluorine-based elastomer may have a dielectric loss tangent at 10 kHz in the range of about 0.0005 to 0.0020. .
  • the styrenic elastomer of the present invention is a type of thermoplastic elastomer, and is an elastomer containing at least one styrene group in at least one repeating unit.
  • the styrenic elastomer may have a dielectric loss tangent (Df) of 0.0005 to 0.0020 and a dielectric constant of 2.0 to 3.0 at 10 kHz.
  • the styrenic elastomer usable in the present invention may be a copolymer elastomer of styrene and C 2 to C 10 aliphatic unsaturated hydrocarbons.
  • examples of the styrene-based elastomer are styrene-butadiene-styrene binary copolymer (SBS), styrene-ethylene-butylene-styrene terpolymer (SEBS), styrene-ethylene-ethylene-propylene-styrene terpolymer (SEEPS ), styrene-isoprene-styrene binary copolymer, styrene-ethylene-propylene-styrene terpolymer, and the like. These may be used alone or in combination of two or more.
  • the content of the styrene group in the styrenic elastomer of the present invention is not particularly limited, but when it is within the range of about 10 to 40% by weight per molecule of the styrenic elastomer, the styrenic elastomer may have a dielectric loss tangent at 10 MPa of about 0.0005 to 0.0020. have.
  • the elastomer of the present invention has a melt flow rate (MFR) of about 0.01 g/10min or less at 230°C and 2 kg. Moreover, the viscosity of the solution in which 5 wt% of the elastomer of the present invention is dissolved in toluene is about 50 to 100 cps. Therefore, the resin composition of the present invention has a viscosity controlled within a range of about 150 to 500 cps, and thus it is possible to improve processability in manufacturing a metal laminate.
  • MFR melt flow rate
  • the elastomer of the present invention has a high thermal decomposition temperature (Td) of about 350°C or higher (specifically, about 350 to 1000°C, more specifically about 350 to 700°C, and more specifically about 350 to 500°C). Therefore, the resin composition of the present invention can form a resin layer having excellent thermal stability at high temperatures.
  • Td thermal decomposition temperature
  • the content of the elastomer is preferably in the range of about 1 to 10% by weight based on the total amount of the resin composition (excluding the organic solvent). If, when the content of the elastomer is less than about 1% by weight, the effect of binding the filler may be lowered, while when the content of the elastomer is more than 10% by weight, the adhesion with the metal layer (e.g., copper foil) decreases and the metal When manufacturing and using the laminate, the metal layer may peel off.
  • the metal layer e.g., copper foil
  • the fluororesin filler is a fluorine-based resin particle containing fluorine (F), and can realize low dielectric constant and low dielectric loss characteristics of the resin layer.
  • the fluororesin filler has a dielectric loss tangent (Dk) of about 2.1 or less and a dielectric constant (Dk) of about 0.0002 or less.
  • Dk dielectric loss tangent
  • Dk dielectric constant
  • PTFE has a Dk of about 2.1 and a Df of about 0.0002
  • PFA has a Dk of about 2.1 and a Df of about 0.0002.
  • the fluororesin filler since the fluororesin filler has a low dielectric constant and a low dielectric constant, a low dielectric constant and a low dielectric loss characteristic of the resin layer can be realized.
  • the fluororesin filler has a melting point (Tm) of about 300° C. or higher, and the fluororesin filler is a solid, not liquid at room temperature, and is a particulate filler such as powder or fiber having a predetermined shape.
  • Tm of PTFE is about 350°C
  • Tm of PFA is about 320°C. Therefore, the fluororesin filler is bound to the resin layer in the form of particles when the resin composition is dried before the hot press process, and is contained in the resin layer, while melted by the hot press process of about 350° C. or higher to polymer the resin layer. A matrix is formed.
  • the fluororesin filler does not contain a dispersant, unlike the fluororesin dispersion, the heat resistance and adhesiveness of the metal laminate can be improved.
  • the fluorine resin filler usable in the present invention is not particularly limited as long as it is a particle formed of a fluorine-containing resin in the art.
  • the fluororesin filler include polytetrafluoroethylene (PTFE), perfluoroalkoxy alkane (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polychlorotrifluoroethylene ( PCTFE), ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-chlorotrifluoroethylene copolymer (TFE/CTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polychlorotrifluoro Roethylene (PCTFE), and the like.
  • PFA and PTFE are preferable because Df is low as 0.0002 or less.
  • the fluorine resin filler of the present invention has a melt flow rate (MFR) of about 1 to 50 g/10min at about 372° C. and about 2 kg.
  • Such a fluororesin filler can improve the dielectric properties of the resin composition as it is uniformly dispersed in the resin composition, and is also suitable for manufacturing a metal laminate through a simple coating process without high temperature extrusion molding and high temperature firing. Accordingly, in the present invention, it is preferable to adjust the shape, size (average particle size), and content of the fluororesin filler to specific ranges, respectively.
  • the shape of the fluororesin filler is spherical, flake, dendrite, conical, pyramid, amorphous.
  • the processing properties of the resin composition can be improved, and isotropic properties can be imparted to the resin layer.
  • the fluorine resin filler may have an average particle diameter in the range of about 0.01 to 50 ⁇ m.
  • the fluororesin filler has the above-mentioned average particle diameter, the fluororesin filler is uniformly dispersed without aggregation in the resin composition and is suitable for producing a resin layer for a printed circuit board.
  • the packing density of the resin layer may be about 2.1 to 2.4 g/ml.
  • one type of fluororesin filler having the same shape and average particle diameter may be used alone, or two or more types of fluororesin fillers having different shapes and/or average particle diameters may be mixed and used.
  • the content of the fluororesin filler is not particularly limited. However, if the content of the fluorine resin filler is too small, the adhesive strength with the metal layer (eg, copper foil) in the metal laminate may be lowered, resulting in peeling of the metal layer. On the other hand, if the content of the fluororesin filler is too high, the content of the inorganic filler Since this is relatively small, the CTE of the resin layer may be lowered. Therefore, it is appropriate to adjust the content of the fluorine resin filler to a range of about 25 to 75% by weight based on the total amount of the resin composition (excluding the organic solvent). In this case, the resin composition of the present invention is excellent in heat resistance and adhesiveness, and can form a resin layer having low dielectric constant and dielectric loss.
  • the resin composition of the present invention is excellent in heat resistance and adhesiveness, and can form a resin layer having low dielectric constant and dielectric loss.
  • the resin composition according to the present invention includes an inorganic filler.
  • the inorganic filler can effectively improve the bending properties, low expansion, mechanical strength, and low stress of the final product by reducing the difference in thermal expansion coefficient (CTE) between the resin layer formed of the resin composition and another layer (eg, metal foil). have.
  • CTE thermal expansion coefficient
  • Non-limiting examples of the inorganic filler usable in the present invention include silica such as natural silica, fused silica, amorphous silica, crystalline silica, and the like; Boehmite, alumina, talc, glass (e.g., spherical glass), calcium carbonate, magnesium carbonate, magnesia, clay, calcium silicate, titanium oxide, antimony oxide, glass fiber, aluminum borate, barium titanate, These include strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titania (e.g. TiO 2 ), barium zirconate, calcium zirconate, boron nitride, silicon nitride, talc, mica, and the like.
  • silica such as natural silica, fused silica, amorphous silica, crystalline silica, and the like
  • Boehmite e.g., spherical glass
  • calcium carbonate magnesium carbonate
  • inorganic fillers may be used alone or in combination of two or more.
  • silica, alumina, and titania have low dielectric constants, it is possible to lower the dielectric constant and dielectric loss tangent of the resin layer while lowering the difference in thermal expansion coefficient between the resin layer and the metal layer.
  • the inorganic filler may include one or more selected from the group consisting of silica (eg, SiO 2 ), alumina (eg, Al 2 O 3 ) and titania (eg, TiO 2 ).
  • the inorganic filler may include (a) silica, and (b) alumina or titania.
  • the electrical properties of the metal layered body as well as the resin layer vary depending on the mixing ratio of silica and alumina (or titanium oxide), and in particular, dielectric properties by temperature.
  • the inorganic filler may include (a) silica and (b) alumina or titania in a ratio of 0.5 to 12:1.
  • the resin composition of the present invention when the inorganic filler comprises (a) silica and (b) alumina or titania in a weight ratio of 1 to 10: 1, while having excellent electrical properties, the coefficient of dielectric constant at high frequencies in the mmWave region (temperature coefficient of dielectric constant, TCK) can form a resin layer close to about 0 ppm / °C.
  • the size (e.g., average particle size), shape and content of the inorganic filler are important parameters affecting the properties of the resin layer.
  • the inorganic filler may have an average particle diameter in the range of about 5 to 20 ⁇ m. This is advantageous in dispersibility of the inorganic filler.
  • the shape of the inorganic filler is not particularly limited, and for example, there are spherical, flake, dendrite, conical, pyramid, and amorphous shapes.
  • one type of inorganic filler having the same shape and average particle diameter may be used alone, or two or more types of inorganic fillers having different shapes and/or average particle diameters may be mixed and used.
  • the content of the inorganic filler is not particularly limited, and may be appropriately adjusted in consideration of the above-described bending properties, mechanical properties, and the like. However, if the content of the inorganic filler is excessive, it is disadvantageous for formability and the adhesive strength of the resin layer may be reduced. For example, based on the total amount of the resin composition (excluding the organic solvent), it may be about 15 to 65% by weight.
  • the resin composition of the present invention may further include an organic solvent.
  • the organic solvent usable in the present invention is not particularly limited as long as it can dissolve the above-mentioned elastomer.
  • organic solvents include aromatic compounds such as toluene, xylene, and ethylbenzene, alcohol compounds such as methanol, ethanol, butanol, and isobutanol, acetone, methyl isobutyl ketone, methyl amyl ketone, cyclohexanone, isophorone, and N -Ketone-based compounds such as methylpyrrolidone, ester-based compounds such as ethyl acetate, butyl acetate, and methyl cellosolve acetate, and the like, but are not limited thereto. These may be used alone, or two or more of them may be used in combination.
  • the content of the organic solvent may be used in a content known in the art, it may be a residual amount that is adjusted so that the total amount of the resin composition is 100% by weight. For example, it may be in the range of about 60 to 100 parts by weight, specifically about 70 to 90 parts by weight, based on 100 parts by weight of the resin composition (except for the organic solvent).
  • the resin composition of the present invention in addition to the above-mentioned elastomer, fluorine resin filler, inorganic filler, and organic solvent, flame retardants, other thermosetting resins or thermoplastic resins, ultraviolet absorbers known in the art as required within the scope of not impairing the physical properties thereof, Additives such as antioxidants, polymerization initiators, dyes, pigments, dispersants, thickeners, leveling agents, colorants, etc. may be further included.
  • the content of the additive may be used as known in the art, for example, it may be about 0.0001 to 10% by weight based on the total amount of the resin composition.
  • the viscosity of the resin composition according to the present invention can be adjusted according to the type or content of the elastomer, inorganic filler, and fluorine resin filler in the composition, and may be, for example, about 150 to 500 cps. According to an example, when the resin composition has the aforementioned viscosity, a resin layer may be formed on the metal foil by a roll-to-roll coating method.
  • the resin composition of the present invention has a low dielectric constant and a low dielectric loss through a method of directly coating and drying on a metal foil without a film extrusion process (paste extrusion, calendering) and a high temperature firing process in the manufacture of a metal laminate.
  • a metal laminate including a resin layer can be easily formed.
  • the resin composition of the present invention can be applied to a substrate of various materials, for example, can be applied to a polyimide (PI) substrate material to produce a flexible metal laminate.
  • PI polyimide
  • the present invention provides a metal laminate using the resin composition described above.
  • the metal laminate includes a resin layer formed of the resin composition.
  • the metal laminate includes a resin layer 110 and first and second metal layers 121 and 122 respectively disposed on both sides of the resin layer.
  • the metal laminate has low dielectric constant and dielectric loss tangent in the frequency band of about 1 to 100 kHz. Therefore, when the metal laminate of the present invention is applied to a high-frequency to ultra-high-frequency printed circuit board, transmission loss of the printed circuit board can be reduced.
  • the resin layer 110 is an insulating support member in which the aforementioned resin composition is cured, and the dielectric loss tangent (Df) at 10 kPa is as low as about 0.0005 to 0.0020.
  • the metal laminate of the present invention comprises a dielectric layer of about 0.0005 to 0.0020 at 10 kHz and a resin layer having a dielectric constant of about 2 to 8, specifically about 2 to 6.
  • the resin layer 110 has a high adhesion to the first and second metal layers 121 and 122, about 0.5 to 3 kgf/cm. Therefore, the present invention can minimize peeling between the resin layer and the metal layer, regardless of the roughness of the surface of the metal layer in contact with the resin layer.
  • the resin layer has a modulus of about 0.2 to 2 GPa. Thereby, the mechanical properties of the metal laminate according to the present invention can be improved.
  • the resin layer has a coefficient of thermal expansion (CTE) of about 10 to 50 ppm/°C. Therefore, the metal laminate of the present invention can effectively improve the bending properties, low expansion, mechanical toughness, and low stress of the printed circuit board.
  • CTE coefficient of thermal expansion
  • the thickness of the resin layer is not particularly limited, and may be, for example, about 2.5 to 25 mm. At this time, the thickness of the resin layer is adjusted in consideration of the thickness of the metal layer and the metal laminate. For example, the ratio (D2/D1) of the thickness D2 of the resin layer to the thickness D1 of the metal layer may be about 8 to 35.
  • the resin layer 110 may be a single layer or two layers.
  • the resin layer may include a first resin layer having a dielectric loss tangent (Df) of about 0.0005 to 0.0020 at 10 kHz; And a second resin layer that is the same as or different from the first resin layer, and has a dielectric loss tangent (Df) of about 0.0005 to 0.0020 at 10 kPa.
  • Df dielectric loss tangent
  • the first metal layer 121 and the second metal layer 122 are disposed on both sides of the resin layer 110, respectively.
  • the first metal layer 121 and the second metal layer 122 may be the same or different from each other.
  • the first and second metal layers 121 and 122 can be used without particular limitations, as long as they are common metal components in the art that can be applied to a metal laminate or a printed circuit board.
  • each metal layer is selected from the group consisting of copper (Cu), iron (Fe), nickel (Ni), titanium (Ti), aluminum (Al), silver (Ag), and gold (Au). It may be a metal thin film, or two or more alloy thin films.
  • the first and second metal layers 121 and 122 may be copper foils having excellent electrical conductivity and low cost. At this time, the copper foil can be used without limitation, conventional copper foil known in the art, it can be used all copper foil produced by rolling and electrolytic methods.
  • the metal layer may be a rough surface where a surface in contact with the resin layer has a predetermined surface roughness.
  • the average roughness (Rz) of the rough surface may be about 0.5 to 2 ⁇ m.
  • the present invention exhibits excellent transmission characteristics in the high-frequency to ultra-high frequency range.
  • the thickness of the metal layer is not particularly limited, and may be in the range of about 1 to 50 ⁇ m in consideration of the thickness and mechanical properties of the final metal laminate.
  • the metal laminate of the present invention described above may be manufactured by various methods known in the art.
  • the present invention uses a resin composition comprising an elastomer having a low dielectric loss tangent, a binder resin, a fluorine resin filler, and an inorganic filler in manufacturing a metal laminate, the resin composition is not filmed on a separate substrate, The resin layer may be formed by directly coating and drying the metal foil.
  • the present invention forms a resin layer through a drying process of a resin composition without a high-temperature firing process before a lamination pressurization process. Therefore, the present invention can reduce the manufacturing cost and shorten the process time to improve productivity.
  • the present invention forms a resin layer by directly applying a resin composition on a metal foil, unlike the case where the resin layer is separately formed and pressed with a metal foil, a metal laminate having excellent adhesion properties between the metal foil and the resin layer can be produced. have.
  • the method of manufacturing a metal laminate is coated with the above-described resin composition on one surface of a metal substrate and dried at about 50 to 180° C., and a dielectric loss tangent (Df) of about 0.005 to 0.0020 at 10 mm 2 on one surface of the metal substrate.
  • Df dielectric loss tangent
  • the above-described resin composition is applied on one surface of a metal substrate and dried to prepare two unit members (hereinafter,'S100 step').
  • the step S100 includes the step of directly applying (coating) the resin composition on one surface of the metal substrate, and drying the applied resin composition.
  • the direct coating (coating) method is not particularly limited, for example, there is a roll-to-roll coating method, and specifically, there is a comma coating (comma coating), slot die coating, curtain coating, or the like.
  • the metal substrate is a member made of a conventional metal in the art and can be used without particular limitation.
  • the metal substrate is one type selected from the group consisting of copper (Cu), iron (Fe), nickel (Ni), titanium (Ti), aluminum (Al), silver (Ag), and gold (Au). It may be a metal thin film, or two or more alloy thin films.
  • the metal substrate may be a copper foil with excellent electrical conductivity and low cost.
  • the copper foil can be used without limitation, conventional copper foil known in the art, it can be used all copper foil produced by rolling and electrolytic methods.
  • the drying step of the resin composition is a process for drying and removing the organic solvent in the resin composition, and is performed at a temperature of about 50 to 180° C. for about 3 to 30 minutes, thereby forming a resin layer on the metal substrate.
  • the present invention only dries the resin composition before the pressing step, and does not perform a high temperature firing step of 350°C or higher.
  • Each manufactured unit member is the same or different from each other, and includes a metal substrate and a resin layer disposed on one surface of the metal substrate.
  • step S200 The two unit members obtained in step S100 are stacked and pressed (hereinafter, step S200). However, when the unit members are stacked, the resin layers of each unit member are stacked to contact each other.
  • This step can be performed for about 1 to 8 hours at a pressure of about 10 to 50 kgf/cm 2. At this time, it may be performed under a temperature condition of about 300 to 350 °C.
  • a temperature condition of about 300 to 350 °C.
  • the resin layers are pressed against each other by pressing for about 1 to 8 hours at a pressure of about 10 to 50 kfg/cm 2. It is possible to obtain an integrated metal laminate.
  • the fluorine resin filler in the resin layer of each unit member melts when the laminate is pressed at a temperature of about 300 to 350° C., the interlayer adhesion between the resin layers becomes higher, so that the resin layers can be integrated.
  • the present invention provides a printed circuit board comprising the above-described metal laminate.
  • the printed circuit board includes the metal laminate, and a circuit pattern may be formed on a metal layer (a first metal layer and/or a second metal layer) included in the metal laminate.
  • the resin layer included in the metal laminate serves as an insulating support member.
  • the printed circuit board may include the metal laminate; And one or more unit laminates disposed on the metal laminate, the unit laminate comprising a second resin layer, and a third metal layer disposed on the second resin layer.
  • the second resin layer may be an interlayer insulating layer, a resin layer formed of the resin composition described above, or a resin layer formed of a resin known in the art, such as polyimide.
  • the printed circuit board of the present invention can be produced by conventional methods known in the art. For example, it can be produced by forming a circuit by opening a hole in the above-described metal laminate and performing through-hole plating, followed by etching the copper foil containing the plating film.
  • the printed circuit board of the present invention includes a metal laminate having a low dielectric constant and dielectric loss tangent in the frequency band of about 1 GHz to 100 GHz, dielectric loss in the frequency band of about 1 GHz to 100 GHz is small, Therefore, transmission loss is also low. Therefore, the printed circuit board of the present invention is a mobile communication device that handles high-frequency or ultra-high frequency signals, network-related electronic devices such as base station devices, servers, and routers, and various electrical, electronic, and communication devices such as large computers and automobile radar devices. It can be usefully applied.
  • a resin composition having the composition and components of Table 1 below was prepared.
  • the content units of the fluorine resin, inorganic filler, and elastomer are parts by weight, based on the total amount of the resin composition (excluding the organic solvent), and the content units of the organic solvent are parts by weight, and the resin composition ( However, the total amount of the organic solvent is excluded) is based on 100 parts by weight.
  • Example 2 After applying the resin composition prepared in Example 1 to a thickness of 64 ⁇ m on copper foil (thickness: 18 ⁇ m) using the first and second coating rolls, the applied resin composition was dried at 140° C. for about 3 minutes. By doing so, a first unit member in which a resin layer in an organic solvent was evaporated was formed. The second unit member was manufactured in the same manner as the manufacturing method of the first unit member. Thereafter, a second unit member is stacked on the first unit member so that the resin layer of the first unit member and the resin layer of the second unit member are in contact with each other, and then 4 hours at a pressure of 30 kg with a hot plate of 320°C. During the press, a metal laminate was prepared.
  • Metal laminates were prepared in the same manner as in Production Example 1, except that the resin compositions of Examples 2 to 8 shown in Table 1 were used instead of the resin composition of Example 1 used in Production Example 1.
  • Metal laminates were prepared in the same manner as in Production Example 1, except that the resin compositions of Comparative Examples 1 to 4 shown in Table 1 were used instead of the resin composition of Example 1 used in Production Example 1.
  • the dielectric constant and dielectric loss of the resin layer in each of the metal laminates prepared in Production Examples 1 to 8 and Comparative Production Examples 1 to 4 were measured as follows, and the results are shown in Tables 2 and 3 below.
  • the dielectric constant (Dk) and dielectric loss tangent (Df) at GHz were measured, respectively, and the dielectric constant (Dk) of 25 to 125°C was measured to measure the change in dielectric constant (TCK) with temperature.
  • Example One 2 3 4 5 6 7 8 Dielectric constant (Dk, @10GHz) 2.58 5.19 3.14 3.15 6.00 3.02 2.96 3.00 Dielectric tangent (Df, @10GHz) 0.0009 0.0009 0.0010 0.0010 0.0013 0.0010 0.0011 0.0011 TCK (ppm/°C) 3.01 1.32 0.33 2.74 2.92 1.32 1.32 0.31

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 수지 조성물, 이를 이용한 금속 적층체와 인쇄회로기판 및 상기 금속 적층체의 제조방법에 대한 것으로, 상기 수지 조성물은 불소계 엘라스토머 및 스티렌계 엘라스토머로 이루어진 군에서 선택된 1종 이상의 엘라스토머; 불소 수지 필러; 및 무기 필러를 포함한다.

Description

수지 조성물, 이를 이용한 금속 적층체와 인쇄회로기판 및 상기 금속 적층체의 제조방법
본 발명은 수지 조성물, 이를 이용한 금속 적층체와 인쇄회로기판 및 상기 금속 적층체의 제조방법에 관한 것이다.
최근 무선통신기술의 발달로 인해 단순한 음성 송수신 위주의 서비스가 동영상 방송, 화상 전화, 파일 전송과 같은 다양한 멀티미디어 응용 서비스로 확대됨에 따라, 통신·전자기기의 사용 주파수 대역도 MHz 영역에서 광대역이 가능한 60 GHz, 77 GHz 또는 94 GHz 대역과 같은 GHz 대역으로 확대되고 있다.
다만, 통신·전자기기는 사용 주파수 대역이 높아질수록, 전기신호의 전송 손실이 커져 발열이나 신호 감쇄, 지연 등의 문제가 발생할 수 있다. 이러한 전송 손실이 발생하는 주요 원인으로는 주로 전송 회로를 형성하는 도체의 직렬 저항에 따라 생성도는 도체손실과, 인쇄회로기판의 절연체를 통해 흐르는 누설 전류에 의한 유전손실이 있다. 이 중 유전손실은 절연층의 비유전율의 제곱근, 유전정접 및 전기신호의 주파수의 곱에 비례한다. 이 때문에, 전기신호의 주파수가 높을수록 유전손실이 커진다. 따라서, 고주파~초고주파 영역에서 통신전자기기의 전송 손실을 저감시키기 위해, 유전율 및 유전정접이 낮은 절연 재료와 이를 이용한 인쇄회로기판에 대한 개발이 요구되고 있다.
본 발명은 접착성 및 내열성이 우수하면서 저유전손실 특성을 갖는 수지 조성물 및 이를 이용한 금속 적층체와 인쇄회로기판을 제공하는 것을 목적으로 한다.
또, 본 발명은 상기 수지 조성물을 이용하여 압출 성형 공정 및 고온 소성 공정 없이 금속 적층체를 제조하는 방법을 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위해, 본 발명은 불소계 엘라스토머 및 스티렌계 엘라스토머로 이루어진 군에서 선택된 1종 이상의 엘라스토머; 불소 수지 필러; 및 무기 필러를 포함하는 수지 조성물을 제공한다.
선택적으로, 상기 수지 조성물은 유기 용매를 더 포함할 수 있다.
또, 본 발명은 전술한 수지 조성물로 형성되고, 10 ㎓에서 0.0005 내지 0.0020의 유전정접(Df)을 갖는 수지층; 및 상기 수지층의 양면 상에 각각 배치된 금속층을 포함하는 금속 적층체를 제공한다.
또한, 본 발명은 금속 기재의 일면 상에 전술한 수지 조성물을 도포하고 50 내지 180 ℃에서 건조하여, 금속 기재의 일면 상에 도포된 수지층이 형성된 단위부재 2개를 준비하는 단계; 및 상기 2개의 단위부재를 적층하고 가압하되, 각 단위부재의 수지층이 서로 접하도록 적층하는 단계를 포함하는 금속 적층체의 제조방법을 제공한다.
본 발명의 수지 조성물은 내열성 및 가공성이 우수하며 유전손실이 낮기 때문에, 고주파~초고주파 신호를 취급하는 이동 통신기기나 그 기지국 장치, 서버, 라우터 등의 네트워크 관련 전자기기, 자동차 레이더 장치, 대형 컴퓨터 등의 각종 전기·전자·통신기기에 사용되는 인쇄회로기판에 유용하게 이용될 수 있다.
또한, 본 발명은 상기 수지 조성물을 이용함으로써, 고온 압출 성형 및 350 ℃ 이상의 소성 공정 없이, 금속 기재 상에 직접 코팅 후 건조하는 단순한 방식을 통해 수지층을 형성할 수 있기 때문에, 금속 적층체의 제조 공정을 단순화시킬 수 있다.
도 1은 본 발명의 일례에 따른 금속 적층체의 단면도이다.
** 부호의 설명 **
100: 금속 적층체, 110: 수지층,
121: 제1 금속층, 122: 제2 금속층
이하, 본 발명에 대하여 설명한다.
본 발명은 인쇄회로기판, 특히 고주파수~초고주파수 용도의 인쇄회로기판에 유용하게 사용될 수 있는 수지 조성물을 제공하고자 한다.
종래에는 저유전율 및 저손실 특성을 갖는 인쇄회로기판용 절연층(수지층)의 물질로 불소계 수지를 사용하였다. 그러나, 불소계 수지는 약 300 ℃ 이상의 높은 용융점을 갖는다. 이 때문에, 종래에는 불소계 수지를 이용하여 절연층을 형성하기 위해서, 약 300 ℃ 이상의 고온 압출 성형 공정 및 소성 공정을 수행했고, 이로 인해 높은 제조 비용과 성형 가공성 저하가 초래되었다.
이에, 본 발명에서는 고주파수~초고주파수 대역에서 유전정접이 낮은 불소계 또는 스티렌계 엘라스토머를 무기 필러 및 유기 필러와 혼용하되, 상기 유기 필러로 PFA(perfluoro alkoxy alkene) 등과 같은 불소-함유 필러를 혼용(混用)하는 것을 특징으로 한다. 이와 같이, 본 발명은 고온 압출 성형 공정 및 소성 공정을 통해 불소계 수지로 절연층을 형성하는 종래 금속 적층체의 제조와 달리, 엘라스토머를 바인더 수지로 사용함으로써, 고온 압출 성형 공정 및 고온 소성 공정 없이 금속박 상에 직접 코팅, 건조하는 방식을 통해 엘라스토머가 무기 필러와 불소 수지 필러를 바인딩할 수 있기 때문에, 금속 적층체의 제조 비용을 감소시킬 수 있고, 가공의 용이성을 증대시킬 수 있다.
또한, 본 발명에서는 유전 특성이 낮고 가공성이 용이한 엘라스토머를 기반으로 하고, 여기에 유전율이 낮은 불소-함유 필러를 특정 배합비로 조절하여 적용함으로써, 우수한 저유전율(Dk) 및 저유전손실(Df) 특성을 발휘할 수 있으며, 높은 유리전이온도(Tg)와 우수한 내열성 등을 동시에 제공할 수 있다.
<수지 조성물>
본 발명은 인쇄회로기판, 특히 고주파수 내지 초고주파수 대역에서 사용 가능한 인쇄회로기판에 이용될 수 있는 수지 조성물을 제공한다. 이를 보다 구체적으로 설명하면 다음과 같다.
본 발명에 따른 수지 조성물은 불소계 엘라스토머 및 스티렌계 엘라스토머로 이루어진 군에서 선택된 1종 이상의 엘라스토머; 불소 수지 필러; 및 무기 필러를 포함하고, 선택적으로 유기 용매를 더 포함할 수 있다.
(a) 엘라스토머
본 발명의 수지 조성물에서, 엘라스토머는 무기 필러 및 유기 필러 모두를 바인딩할 수 있는 바인더 수지이다. 일례로, 수지 조성물은 열가소성 엘라스토머를 포함할 수 있다. 이 경우, 열가소성 엘라스토머는 고온 프레스시 용융되어 수지층을 용이하게 형성할 수 있다.
본 발명에 따른 엘라스토머는 불소계 엘라스토머 및 스티렌계 엘라스토머로 이루어진 군에서 선택된 1종 이상을 포함한다. 상기 불소계 엘라스토머 및 스티렌계 엘라스토머는 무기 필러 및 유기 필러를 용이하게 바인딩할 수 있을 뿐만 아니라, 유전 특성이 낮다. 구체적으로, 본 발명의 엘라스토머는 10 ㎓에서 0.0005 내지 0.0020의 유전정접(Df)을 갖는다. 또, 본 발명의 엘라스토머는 10 ㎓에서 2.0 내지 3.0의 유전율(Dk)을 갖는다.
이와 같이 저유전정접 및 저유전율을 갖는 본 발명의 엘라스토머를 바인더 수지로 이용할 경우, 고온 압출성형 공정 및 고온 소성 공정 없이도 금속박 상에 수지 조성물을 직접 코팅, 건조하는 방식으로 유전손실이 낮은 수지층을 용이하게 형성할 수 있다.
본 발명의 불소계 엘라스토머는 열가소성 엘라스토머의 일종으로, 적어도 하나의 반복 단위 내 1 이상의 불소(F)를 함유하는 엘라스토머이다. 이러한 불소계 엘라스토머는 10 ㎓에서 0.0005 내지 0.0020의 유전정접(Df) 및 2.0 내지 3.0의 유전율을 가질 뿐만 아니라, 낮은 모듈러스(modulus)를 갖는다.
본 발명에서 사용 가능한 불소계 엘라스토머의 예로는 비닐리덴플루오라이드(VDF), 헥사플루오로프로필렌(HFP) 및 테트라플루오로에틸렌(TFE) 중에서 2종 이상을 포함하는 공중합체; 테트라플루오로에틸렌-프로필렌계 공중합체; 불화비닐리덴-테트라플루오로에틸렌-헥사플루오로프로필렌계 공중합체; 테트라플루오로에틸렌-퍼플루오로알킬비닐에테르계 공중합체 등이 있는데, 이에 한정되지 않는다. 이들은 단독으로 사용되거나, 또는 2종 이상이 혼합 사용될 수 있다.
본 발명의 불소계 엘라스토머 내 불소(F) 함량은 특별히 한정되지 않으나, 당해 불소계 엘라스토머 분자당 약 65 내지 80 중량% 범위 내일 경우, 불소계 엘라스토머는 10 ㎓에서의 유전정접이 약 0.0005 내지 0.0020 범위일 수 있다.
본 발명의 스티렌계 엘라스토머는 열가소성 엘라스토머의 일종으로, 적어도 하나의 반복 단위 내 1 이상의 스티렌기(styrene group)를 함유하는 엘라스토머이다. 이러한 스티렌계 엘라스토머는 10 ㎓에서 0.0005 내지 0.0020의 유전정접(Df) 및 2.0 내지 3.0의 유전율을 가질 수 있다.
본 발명에서 사용 가능한 스티렌계 엘라스토머는 스티렌과 C2~C10의 지방족 불포화 탄화수소의 공중합체 엘라스토머일 수 있다. 구체적으로, 스티렌계 엘라스토머의 예로는 스티렌-부타디엔-스티렌 이원 공중합체(SBS), 스티렌-에틸렌-부틸렌-스티렌 삼원 공중합체(SEBS), 스티렌-에틸렌-에틸렌-프로필렌-스티렌 삼원 공중합체(SEEPS), 스티렌-이소프렌-스티렌 이원 공중합체, 스티렌-에틸렌-프로필렌-스티렌 삼원 공중합체 등이 있는데, 이에 한정되지 않는다. 이들은 단독으로 사용되거나, 또는 2종 이상이 혼합 사용될 수 있다.
본 발명의 스티렌계 엘라스토머 내 스티렌기 함량은 특별히 한정되지 않으나, 당해 스티렌계 엘라스토머 분자당 약 10 내지 40 중량% 범위 내일 경우, 스티렌계 엘라스토머는 10 ㎓에서의 유전정접이 약 0.0005 내지 0.0020 범위일 수 있다.
본 발명의 엘라스토머는 230℃ 및 2kg의 조건에서의 용융 흐름 속도(Melt Flow Rate, MFR)가 약 0.01 g/10min 이하이다. 또, 본 발명의 엘라스토머 5 wt%를 톨루엔에 용해시킨 용액의 점도는 약 50 내지 100 cps이다. 따라서, 본 발명의 수지 조성물은 점도가 약 150 내지 500 cps 범위 내로 조절되어, 금속 적층체의 제조시 가공성을 향상시킬 수 있다.
본 발명의 엘라스토머는 열분해온도(Td)가 약 350 ℃ 이상(구체적으로, 약 350~1000℃, 더 구체적으로 약 350~700℃, 보다 더 구체적으로 약 350~500℃)으로 높다. 따라서, 본 발명의 수지 조성물은 고온에서의 열적 안정성이 우수한 수지층을 형성할 수 있다.
본 발명의 수지 조성물에서, 엘라스토머의 함량은 수지 조성물(단, 유기용매를 제외함)의 총량을 기준으로 약 1 내지 10 중량% 범위인 것이 바람직하다. 만약, 엘라스토머의 함량이 약 1 중량% 미만일 경우, 필러를 바인딩하는 효과가 저하될 수 있고, 한편 엘라스토머의 함량이 10 중량% 초과일 경우, 금속층(예, 동박)과의 접착성이 저하되어 금속 적층체의 제조, 사용시 금속층이 박리될 수 있다.
(b) 불소 수지 필러
본 발명의 수지 조성물에서, 불소 수지 필러는 불소(F)를 함유하는 불소계 수지 입자로, 수지층의 저유전율 및 저유전손실 특성을 구현할 수 있다.
구체적으로, 불소 수지 필러는 약 2.1 이하의 유전정접(Dk) 및 약 0.0002 이하의 유전율(Dk)을 갖는다. 예컨대, PTFE는 약 2.1의 Dk 및 약 0.0002의 Df를 갖고, PFA은 약 2.1의 Dk 및 약 0.0002의 Df를 갖는다. 이와 같이, 불소 수지 필러는 저유전정접 저유전율을 갖기 때문에, 수지층의 저유전율 및 저유전손실 특성을 구현할 수 있다.
게다가, 불소 수지 필러는 용융점(Tm)이 약 300 ℃ 이상으로, 불소 수지 필러는 상온에서 액상이 아닌 고상으로, 소정의 형태를 가진 파우더(powder)나 섬유 등과 같은 입자형 필러이다. 예컨대, PTFE의 Tm은 약 350 ℃이고, PFA의 Tm은 약 320 ℃이다. 따라서, 불소 수지 필러는 고온 프레스 공정 전(前), 수지 조성물의 건조시 입자 형태로 엘라스토머에 의해 바인딩되어 수지층에 포함되어 있는 반면, 약 350 ℃ 이상의 고온 프레스 공정에 의해 용융되어 수지층의 고분자 매트릭스(matrix)를 형성한다. 게다가, 불소 수지 필러는 불소 수지 분산액과 달리, 분산제를 함유하지 않기 때문에, 금속 적층체의 내열성 및 접착성을 향상시킬 수 있다.
본 발명에서 사용 가능한 불소 수지 필러로는 당 업계에서 불소-함유 수지로 형성된 입자라면 특별히 한정되지 않는다. 상기 불소 수지 필러의 예로는 폴리테트라플루오로에틸렌(PTFE), 퍼플루오로알콕시알칸(perfluoroalkoxy alkane, PFA), 테트라플루오로에틸렌-헥사플루오로프로필렌 공중합체(FEP), 폴리클로로트리플루오로에틸렌(PCTFE), 에틸렌-테트라플루오로에틸렌 공중합체(ETFE), 테트라플루오로에틸렌-클로로트리플루오로에틸렌 공중합체(TFE/CTFE), 에틸렌-클로로트리플루오로에틸렌 공중합체(ECTFE), 폴리클로로트리플루오로에틸렌 (PCTFE) 등이 있는데, 이에 한정되지 않는다. 이 중에서 PFA 및 PTFE는 Df가 0.0002 이하로 낮기 때문에 바람직하다.
본 발명의 불소 수지 필러는 약 372 ℃ 및 약 2kg 조건에서의 용융 흐름 속도(Melt Flow Rate, MFR)가 약 1 내지 50 g/10min이다.
이러한 불소 수지 필러는 수지 조성물 내에 균일하게 분산되어 있을수록 수지 조성물의 유전 특성을 개선시킬 수 있고, 또 고온 압출 성형 및 고온 소성없이 단순한 코팅 공정을 통한 금속 적층체의 제조에도 적합하다. 이에 따라, 본 발명에서는 불소 수지 필러의 형상, 크기(평균입경), 함량을 각각 특정 범위로 조절하는 것이 바람직하다.
구체적으로, 불소 수지 필러의 형상은 구형, 플레이크, 침상형(dendrite), 원뿔형, 피라미드형, 무정형(無定形) 등이 있다. 이 중에서 구형 불소 수지 필러를 사용시, 필러의 표면적이 최소가 되기 때문에, 수지 조성물의 가공 특성이 향상될 수 있고, 또 수지층에 등방성 특성을 부여할 수 있다.
또, 불소 수지 필러는 평균 입경이 약 0.01 내지 50 ㎛ 범위일 수 있다. 불소 수지 필러가 전술한 평균 입경을 가질 경우, 불소 수지 필러는 수지 조성물 내 응집 현상 없이 균일하게 분산되어 인쇄회로기판용 수지층을 제작하는 데 적합하다. 전술한 바와 같이, 불소 수지 필러가 전술한 평균 입경을 가질 경우, 수지층의 패킹 밀도는 약 2.1 내지 2.4 g/ml 정도일 수 있다.
본 발명에서는 형상 및 평균 입경이 동일한 1종의 불소 수지 필러를 단독으로 사용하거나, 또는 형상 및/또는 평균 입경이 상이한 2종 이상의 불소 수지 필러를 혼합 사용할 수 있다.
본 발명의 수지 조성물에서, 불소 수지 필러의 함량은 특별히 한정되지 않는다. 다만, 불소 수지 필러의 함량이 너무 적으면 금속 적층체 내 금속층(예, 동박)과의 접착력이 저하되어 금속층의 박리 현상이 초래될 수 있고, 한편 불소 수지 필러의 함량이 너무 많으면 무기 필러의 함량이 상대적으로 적기 때문에, 수지층의 CTE가 저하될 수 있다. 따라서, 불소 수지 필러의 함량은 당해 수지 조성물(단, 유기용매를 제외함)의 총량을 기준으로 약 25 내지 75 중량% 범위로 조절하는 것이 적절하다. 이 경우, 본 발명의 수지 조성물은 내열성 및 접착성이 우수하면서, 유전율 및 유전손실이 낮은 수지층을 형성할 수 있다.
(c) 무기 필러
본 발명에 따른 수지 조성물은 무기 필러를 포함한다. 무기 필러는 수지 조성물로 형성된 수지층과 다른 층(예, 금속박) 간의 열팽창계수(CTE) 차이를 감소시켜 최종 제품의 휨 특성, 저팽창화, 기계적 강도(toughness), 저응력화를 효과적으로 향상시킬 수 있다.
본 발명에서 사용 가능한 무기 필러의 비제한적인 예로는, 천연 실리카(natural silica), 용융 실리카(Fused silica), 비결정질 실리카(amorphous silica), 결정 실리카(crystalline silica) 등과 같은 실리카; 보에마이트(boehmite), 알루미나, 탈크(Talc), 유리(예, 구형 유리), 탄산칼슘, 탄산마그네슘, 마그네시아, 클레이, 규산칼슘, 산화티탄, 산화안티몬, 유리섬유, 붕산알루미늄, 티탄산바륨, 티탄산스트론튬, 티탄산칼슘, 티탄산마그네슘, 티탄산비스무스, 티타니아(예, TiO2), 지르콘산바륨, 지르콘산칼슘, 질화붕소, 질화규소, 활석(talc), 운모(mica) 등이 포함된다. 이러한 무기 필러는 단독 또는 2개 이상으로 혼용하여 사용될 수 있다. 이 중에서 실리카, 알루미나 및 티타니아가 낮은 유전 상수를 갖기 때문에, 수지층과 금속층 간의 열팽창계수 차이를 낮추면서, 수지층의 유전율 및 유전정접을 낮출 수 있다.
일례에 따르면, 무기 필러는 실리카(예, SiO2), 알루미나(예, Al2O3) 및 티타니아(예, TiO2)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다. 구체적으로, 무기 필러는 (a) 실리카, 및 (b) 알루미나 또는 티타니아를 포함할 수 있다. 이때, 실리카와 알루미나(또는 산화티탄)의 혼합 비율에 따라 수지층뿐만 아니라 금속 적층체의 전기적 특성이 달라지며, 특히 온도별 유전 특성이 달라진다. 예컨대, 본 발명의 수지 조성물은 무기 필러가 (a) 실리카와 (b) 알루미나 또는 티타니아를 0.5~12 : 1 중량 비율로 포함할 수 있다. 특히, 본 발명의 수지 조성물은 무기 필러가 (a) 실리카와 (b) 알루미나 또는 티타니아를 1~10 : 1 중량 비율로 포함할 경우, 전기적 특성이 우수하면서, mmWave 영역의 고주파에서의 유전율 온도계수(temperature coefficient of dielectric constant, TCK)가 약 0 ppm/℃에 가까운 수지층을 형성할 수 있다.
이러한 무기 필러의 크기(예, 평균입경), 형상 및 함량은 수지층의 특성에 영향을 미치는 중요한 파라미터(parameter)이다.
구체적으로, 무기 필러는 평균 입경이 약 5 내지 20 ㎛ 범위일 수 있다. 이는 무기 필러의 분산성에서 유리하다.
또한, 무기 필러의 형상은 특별히 한정되지 않으며, 예컨대 구형, 플레이크, 침상형(dendrite), 원뿔형, 피라미드형, 무정형(無定形) 등이 있다.
본 발명에서는 형상 및 평균 입경이 동일한 1종의 무기 필러를 단독으로 사용하거나, 또는 형상 및/또는 평균 입경이 상이한 2종 이상의 무기 필러를 혼합 사용할 수 있다.
본 발명의 수지 조성물에서, 무기 필러의 함량은 특별한 제한이 없으며, 전술한 휨 특성, 기계적 물성 등을 고려하여 적절히 조절할 수 있다. 다만, 무기 필러의 함량이 과량이면 성형성에 불리하고 수지층의 접착력을 저하시킬 수 있다. 일례로, 수지 조성물(단, 유기용매를 제외함)의 총량을 기준으로 하여, 약 15 내지 65 중량%일 수 있다.
(d) 유기 용매
본 발명의 수지 조성물은 유기 용매를 더 포함할 수 있다.
본 발명에서 사용 가능한 유기 용매는 전술한 엘라스토머를 용해시킬 수 있는 것이라면, 특별히 한정되지 않는다. 이러한 유기 용매의 예로는 톨루엔, 크실렌, 에틸벤젠 등의 방향족 화합물, 메탄올, 에탄올, 부탄올, 이소부탄올 등의 알코올계 화합물, 아세톤, 메틸이소부틸케톤, 메틸아밀케톤, 시클로헥사논, 이소포른, N-메틸피롤리돈 등의 케톤계 화합물, 에틸아세테이트, 부틸아세테이트, 메틸셀로솔브아세테이트 등의 에스테르계 화합물 등이 있는데, 이에 한정되지 않는다. 이들은 단독으로 사용될 수 있으며, 또는 2종 이상이 혼합되어 사용될 수도 있다.
상기 유기 용매의 함량은 당해 기술분야에서 공지된 함량으로 사용될 수 있고, 수지 조성물의 총량이 100 중량%가 되도록 조절하는 잔량일 수 있다. 일례로, 수지 조성물(단, 유기 용매는 제외됨)의 100 중량부를 기준으로 약 60 내지 100 중량부 범위, 구체적으로 약 70 내지 90 중량부 범위일 수 있다.
한편, 본 발명의 수지 조성물은 전술한 엘라스토머, 불소 수지 필러, 무기 필러 및 유기 용매 이외에, 그 물성을 해하지 않는 범위 내에서 필요에 따라 당 업계에 알려진 난연제, 다른 열경화성 수지나 열가소성 수지, 자외선 흡수제, 항산화제, 중합개시제, 염료, 안료, 분산제, 증점제, 레벨링제, 착색제 등과 같은 첨가제를 추가로 포함할 수 있다. 첨가제의 함량은 당 업계에 알려진 대로 사용 가능하며, 예컨대 수지 조성물의 총량을 기준으로 약 0.0001 내지 10 중량%일 수 있다.
본 발명에 따른 수지 조성물의 점도는 조성물 내 엘라스토머, 무기 필러, 불소 수지 필러의 종류나 함량 등에 따라 조절될 수 있으며, 예컨대 약 150 내지 500 cps일 수 있다. 일례에 따르면, 수지 조성물이 전술한 점도를 가질 경우, 롤-투-롤 코팅(roll-to-roll coating)법에 의해 금속박 상에 수지층을 형성할 수 있다.
상술한 바와 같은 본 발명의 수지 조성물은 금속 적층체의 제조시 필름화 공정(paste extrusion, calendering)과 고온 소성 공정 없이, 금속박 상에 직접 코팅, 건조하는 방식을 통해 저유전율 및 저유전손실을 갖는 수지층을 포함하는 금속 적층체를 용이하게 형성할 수 있다. 또한, 본 발명의 수지 조성물은 다양한 소재의 기판에 적용될 수 있으며, 예컨대 폴리이미드(PI) 기판 소재에 적용되어 연성 금속 적층체를 제조할 수 있다.
<금속 적층체 및 이의 제조방법>
본 발명은 전술한 수지 조성물을 이용한 금속 적층체를 제공한다.
구체적으로, 상기 금속 적층체는 상기 수지 조성물로 형성된 수지층을 포함한다. 일례에 따르면, 금속 적층체는 도 1에 도시된 바와 같이, 수지층(110) 및 상기 수지층의 양면 상에 각각 배치된 제1 및 제2 금속층(121, 122)을 포함한다. 이러한 금속 적층체는 약 1 내지 100 ㎓의 주파수 대역에서의 유전율 및 유전정접이 낮다. 따라서, 본 발명의 금속 적층체를 고주파수~초고주파수용 인쇄회로기판에 적용할 경우, 인쇄회로기판의 전송 손실을 낮출 수 있다.
본 발명의 금속 적층체에서, 수지층(110)은 전술한 수지 조성물이 경화된 절연성 지지 부재로, 10 ㎓에서의 유전정접(Df)이 약 0.0005 내지 0.0020 정도로 낮다.
일례에 따르면, 본 발명의 금속 적층체는 10 ㎓에서 약 0.0005 내지 0.0020의 유전정접 및 약 2 내지 8, 구체적으로 약 2 내지 6의 유전율을 갖는 수지층을 포함한다.
수지층(110)은 제1 및 제2 금속층(121, 122)과의 접착력이 약 0.5 내지 3 kgf/㎝ 정도로 높다. 따라서, 본 발명은 수지층과 접하는 금속층 표면의 조도와 관계없이, 수지층과 금속층 간의 박리를 최소화할 수 있다.
또, 수지층은 약 0.2 내지 2 GPa의 탄성계수(Modulus)를 갖는다. 이로써, 본 발명에 따른 금속 적층체의 기계적 특성이 향상될 수 있다.
또, 수지층은 약 10 내지 50 ppm/℃의 열팽창계수(Coefficient of Thermal Expansion, CTE)를 갖는다. 따라서, 본 발명의 금속 적층판은 인쇄회로기판의 휨 특성, 저팽창화, 기계적 강도(toughness), 저응력화를 효과적으로 향상시킬 수 있다.
또한, 수지층의 두께는 특별히 한정되지 않으며, 예컨대 약 2.5 내지 25 ㎜일 수 있다. 이때, 수지층의 두께는 금속층 및 금속 적층체의 두께를 고려하여 조절한다. 예컨대, 금속층의 두께(D1)에 대한 수지층의 두께(D2)의 비율(D2/D1)이 약 8 내지 35일 수 있다.
이러한 수지층(110)은 단층일 수도 있고, 2층일 수도 있다. 예컨대, 상기 수지층은 10 ㎓에서 약 0.0005 내지 0.0020의 유전정접(Df)을 갖는 제1 수지층; 및 상기 제1 수지층과 동일하거나 상이하고, 10 ㎓에서 약 0.0005 내지 0.0020의 유전정접(Df)을 갖는 제2 수지층을 포함할 수 있다. 이때, 상기 제1 수지층과 제2 수지층은 일체화되어 있다.
본 발명의 금속 적층체에서, 제1 금속층(121) 및 제2 금속층(122)은 수지층(110)의 양면에 각각 배치된다. 이때, 제1 금속층(121)과 제2 금속층(122)은 서로 동일하거나 상이할 수 있다.
본 발명에서, 제1 및 제2 금속층(121, 122)은 금속 적층체나 인쇄회로기판에 적용될 수 있는 당 분야의 통상적인 금속 성분이라면 특별한 제한 없이 사용할 수 있다. 예를 들면, 각 금속층은 구리(Cu), 철(Fe), 니켈(Ni), 티타늄(Ti), 알루미늄(Al), 은(Ag) 및 금(Au)으로 이루어진 군에서 선택되는 1종의 금속박막, 또는 2종 이상의 합금 박막일 수 있다. 바람직하게, 제1 및 제2 금속층(121, 122)은 전기 전도도가 우수하며 가격이 저렴한 동박(copper foil)일 수 있다. 이때, 동박은 당 분야에 알려진 통상적인 동박을 제한없이 사용할 수 있으며, 압연법 및 전해법으로 제조되는 모든 동박을 사용할 수 있다.
또, 금속층은 수지층과 접하는 표면이 소정의 표면 조도를 갖는 조화면일 수 있다. 조화면의 평균조도(Rz)는 약 0.5 내지 2 ㎛일 수 있다. 이 경우, 본 발명은 고주파~초고주파 영역에서 우수한 전송 특성을 나타낸다.
상기 금속층의 두께는 특별히 한정되지 않으며, 최종 금속 적층체의 두께와 기계적 특성을 고려하여 약 1 내지 50 ㎛ 범위일 수 있다.
한편, 전술한 본 발명의 금속 적층판은 당 업계에 알려진 다양한 방법에 의해 제조될 수 있다. 다만, 본 발명은 금속 적층판을 제조함에 있어, 저유전정접을 갖는 엘라스토머, 바인더 수지, 불소 수지 필러 및 무기 필러를 포함하는 수지 조성물을 이용하기 때문에, 수지 조성물을 별도의 기재에 필름화하지 않고, 금속박 상에 직접 코팅, 건조하는 방식을 통해 수지층을 형성할 수 있다. 또한, 본 발명은 종래와 달리 적층 가압 공정 전에 고온의 소성 공정 없이 수지 조성물의 건조 공정을 통해 수지층을 형성한다. 따라서, 본 발명은 제조비용을 절감할 수 있고, 공정 시간을 단축하여 생산성을 향상시킬 수 있다. 또한, 본 발명은 금속박 상에 수지 조성물을 직접 도포하여 수지층을 형성하기 때문에, 수지층을 별도로 형성하여 금속박과 압착한 경우와 달리, 금속박과 수지층 간의 접착 특성이 우수한 금속 적층판을 제조할 수 있다.
일례로, 금속 적층판의 제조방법은 금속 기재의 일면 상에 전술한 수지 조성물을 도포하고 약 50 내지 180 ℃에서 건조하여, 금속 기재의 일면 상에 10 ㎓에서 약 0.005 내지 0.0020의 유전정접(Df)을 갖는 수지층이 형성된 단위부재 2개를 준비하는 단계; 및 상기 2개의 단위부재를 적층하고 가압하되, 각 단위부재 내 수지층이 서로 접하도록 적층하는 단계;를 포함한다. 다만, 상기 제조방법에 의해서만 한정되는 것은 아니며, 필요에 따라 각 공정의 단계가 변형되거나 또는 선택적으로 혼용되어 수행될 수 있다.
이하, 본 발명에 따른 금속 적층판을 제조하는 각 단계에 대해 설명한다.
(a) 2개의 단위부재 준비 단계
전술한 수지 조성물을 금속 기재의 일면 상에 도포하고 건조하여 2개의 단위 부재를 준비한다(이하, 'S100 단계').
구체적으로, S100 단계는 금속 기재의 일면 상에 수지 조성물을 직접 도포(코팅)하는 단계, 및 상기 도포된 수지 조성물을 건조하는 단계를 포함한다.
상기 직접 도포(코팅)하는 방법은 특별히 한정되지 않으며, 예컨대 롤-투-롤 코팅법 등이 있고, 구체적으로 콤마 코팅(comma coating), 슬롯 다이 코팅, 커튼 코팅 등이 있다.
본 단계에서 사용되는 수지 조성물은 수지 조성물 부분에 기재된 바와 동일하기 때문에, 생략한다.
또, 금속 기재는 당 분야의 통상적인 금속으로 된 부재로, 특별한 제한 없이 사용할 수 있다. 예를 들면, 금속 기재는 구리(Cu), 철(Fe), 니켈(Ni), 티타늄(Ti), 알루미늄(Al), 은(Ag) 및 금(Au)으로 이루어진 군에서 선택되는 1종의 금속박막, 또는 2종 이상의 합금 박막일 수 있다. 바람직하게, 금속 기재는 전기 전도도가 우수하며 가격이 저렴한 동박(copper foil)일 수 있다. 이때, 동박은 당 분야에 알려진 통상적인 동박을 제한없이 사용할 수 있으며, 압연법 및 전해법으로 제조되는 모든 동박을 사용할 수 있다.
상기 수지 조성물의 건조 단계는 수지 조성물 내 유기 용매를 건조하여 제거하기 위한 공정으로, 약 50 내지 180 ℃의 온도에서 약 3 내지 30 분 동안 수행됨으로써, 금속 기재 상에 수지층이 형성될 수 있다. 이와 같이 본 발명은 프레스 공정 전에 수지 조성물을 건조할 뿐, 350 ℃ 이상의 고온 소성 공정을 행하지 않는다.
본 단계를 통해 2개의 단위부재를 제조한다. 제조된 각 단위부재는 서로 동일하거나 상이하며, 금속 기재, 및 상기 금속 기재의 일면에 배치된 수지층을 포함한다.
(b) 단위부재들의 적층 가압 단계
S100 단계에서 얻은 2개의 단위부재를 적층 가압한다(이하,'S200 단계'). 다만, 상기 단위부재들의 적층시, 각 단위부재의 수지층이 서로 접하도록 적층한다.
본 단계는 약 10 내지 50 kgf/㎠의 압력으로 약 1 내지 8 시간 동안 수행될 수 있다. 이때, 약 300 내지 350 ℃의 온도 조건하에서 수행될 수 있다. 일례로, 전술한 온도 조건의 가열 판을 구비하는 프레스 장치를 이용하여 2개의 단위부재를 적층시킨 후 약 10 내지 50 kfg/㎠의 압력으로 약 1 내지 8 시간 동안 가압함으로써, 수지층들이 서로 압착되어 일체화된 금속 적층체를 얻을 수 있다. 특히, 약 300 내지 350 ℃의 온도에서 적층 가압시, 각 단위부재의 수지층 내 불소 수지 필러가 용융되기 때문에, 수지층들 간의 층간 접착력이 더 높아져서 수지층들은 일체화될 수 있다.
<인쇄회로기판>
한편, 본 발명은 전술한 금속 적층체를 포함하는 인쇄회로기판을 제공한다.
일례로, 인쇄회로기판은 상기 금속 적층체를 포함하며, 상기 금속 적층체에 포함된 금속층(제1 금속층 및/또는 제2 금속층)에는 회로 패턴이 형성되어 있을 수 있다. 이 경우, 금속 적층체에 포함된 수지층은 절연성 지지 부재의 역할을 한다.
다른 일례로, 인쇄회로기판은 상기 금속 적층체; 및 상기 금속 적층체 상에 배치된 1개 이상의 단위 적층체를 포함하며, 상기 단위 적층체는 제2 수지층, 및 상기 제2 수지층 상에 배치된 제3 금속층을 포함한다. 이때, 제2 수지층은 층간 절연층으로, 전술한 수지 조성물로 형성된 수지층이거나, 또는 당 업계에 알려진 수지, 예컨대 폴리이미드 등으로 형성된 수지층일 수 있다.
본 발명의 인쇄회로기판은 당 업계에 알려진 통상의 방법에 의해 제조될 수 있다. 예컨대, 전술한 금속 적층체에 구멍을 개구하여 스루홀 도금을 행한 후, 도금막을 포함하는 동박을 에칭 처리하여 회로를 형성함으로써 제조될 수 있다.
전술한 본 발명의 인쇄회로기판은 약 1 GHz ~ 100 GHz의 주파수 대역에서 낮은 유전율 및 유전정접을 갖는 금속 적층체를 포함하기 때문에, 약 1 GHz ~ 100 GHz의 주파수 대역에서의 유전 손실이 작고, 따라서 전송 손실도 낮다. 따라서, 본 발명의 인쇄회로기판은 고주파 내지 초고주파 신호를 취급하는 이동체 통신기기나 그 기지국 장치, 서버, 라우터 등의 네트워크 관련 전자기기, 대형 컴퓨터, 자동차 레이더 기기 등의 각종 전기·전자·통신기기에 유용하게 적용될 수 있다.
이하, 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 다만, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[실시예 1~8 및 비교예 1~4] - 수지 조성물의 제조
하기 표 1의 조성 및 성분을 갖는 수지 조성물을 각각 제조하였다. 하기 표 1에서 불소수지, 무기필러, 엘라스토머의 함량 단위는 각각 중량부로, 수지 조성물(단, 유기용매를 제외함)의 총량을 기준으로 한 것이고, 유기용매의 함량 단위는 중량부로, 수지 조성물(단, 유기용매를 제외함)의 총량 100 중량부를 기준으로 한 것이다.
실시예 비교예
1 2 3 4 5 6 7 8 1 2 3 4
불소수지 PFA 73 43 35 33 41 43 43 37 - 50 43 43
PTFE - - - - - - - - 50 - - -
무기 필러 SiO2 20 40 58 52 18 50 50 50 25 25 50 50
Al2O3 - - - - - - 5 11 25 25 11 11
TiO2 5 29 5 5 39 5 - - - - - -
엘라스토머 SEEPS 2 2 2 10 2 - 2 2 - - - -
FKM - - - - - 2 - - - - - -
NBR - - - - - - - - - - 2 -
PI - - - - - - - - - - - 2
유기 용매 Toulene 80 80 80 80 80 - 80 80 80 80 - -
MEK - - - - - 80 - - - - 80 -
NMP - - - - - - - - - - - 80
* PFA: Perfluoroalkoxy alkanes(Tm: 315 ℃, MFR: 1~30 g/10min, 평균입경: 30~100 ㎛)* PTFE: Polytetrafluoroethylene (Tm: 327 ℃, MFR: 2~80 g/10min, 평균입경: 20~100 ㎛)* SEEPS: styrene-ethylene-ethylene-propylene-styrene (열분해온도: 390 ℃, MFR: < 0.1)* FKM: Fluoro elastomer copolymer* NBR: Nitrile-butadiene rubber (열분해온도: 220℃)* PI: Polyimide
[제조예 1] - 금속 적층체의 제조
제1, 2 코팅롤을 이용하여 동박(두께: 18㎛) 상에, 실시예 1에서 제조된 수지 조성물을 64 ㎛의 두께로 도포한 후, 도포된 수지 조성물을 140 ℃에서 약 3 분 동안 건조하여 유기 용매가 증발한 상태의 수지층이 형성된 제1 단위부재를 제조하였다. 제1 단위부재의 제조방법과 동일한 방법으로 제2 단위부재를 제조하였다. 이후, 상기 제1 단위부재의 수지층과 제2 단위부재의 수지층이 서로 접하도록 상기 제1 단위부재 상에 제2 단위부재를 적층한 다음, 320 ℃의 열판으로 30 kg의 압력으로 4 시간 동안 프레스하여 금속 적층체를 제조하였다.
[제조예 2~8] - 금속 적층체의 제조
제조예 1에서 사용된 실시예 1의 수지 조성물 대신 표 1에 기재된 실시예 2~8의 수지 조성물을 각각 사용하는 것을 제외하고는, 제조예 1과 동일한 방법으로 금속 적층체를 각각 제조하였다.
[비교제조예 1~4] - 금속 적층체의 제조
제조예 1에서 사용된 실시예 1의 수지 조성물 대신 표 1에 기재된 비교예 1~4의 수지 조성물을 각각 사용하는 것을 제외하고는, 제조예 1과 동일한 방법으로 금속 적층체를 각각 제조하였다.
[실험예 1] - 금속 적층체의 유전율 및 유전정접
제조예 1~8 및 비교제조예 1~4에서 제조된 각각의 금속 적층체 내 수지층의 유전율 및 유전손실에 대해 하기와 같이 측정하였고, 그 결과를 하기 표 2, 3에 나타내었다.
IPC TM 650 2.5.5.9 평가 규격에 따라 금속 적층체를, 에칭액(염산 : 과산화수소 = 1 : 2 부피비율)에 함침하여 동박을 제거하고, 유전율 측정장치(RF Impedence/Material Analyzer; Agilent)로 주파수 10 ㎓에서의 유전율(Dk) 및 유전정접(Df)을 각각 측정하였고, - 25 ~ 125 ℃의 유전율(Dk)를 측정하여 온도에 따른 유전율 변화(TCK)를 측정하였다.
실시예
1 2 3 4 5 6 7 8
유전율(Dk, @10㎓) 2.58 5.19 3.14 3.15 6.00 3.02 2.96 3.00
유전정접(Df, @10㎓) 0.0009 0.0009 0.0010 0.0010 0.0013 0.0010 0.0011 0.0011
TCK (ppm/℃) 3.01 1.32 0.33 2.74 2.92 1.32 1.32 0.31
비교예
1 2 3 4
유전율(Dk, @10㎓) 1.97 1.95 1.89 1.98
유전정접(Df, @10㎓) 0.0036 0.0040 0.0043 0.0027
TCK (ppm/℃) 6.24 6.24 5.43 4.26

Claims (23)

  1. 불소계 엘라스토머 및 스티렌계 엘라스토머로 이루어진 군에서 선택된 1종 이상의 엘라스토머;
    불소 수지 필러; 및
    무기 필러;
    를 포함하는 수지 조성물.
  2. 제1항에 있어서,
    상기 엘라스토머는 10 ㎓에서 0.0005 내지 0.0020의 유전정접(Df)을 갖는, 수지 조성물.
  3. 제2항에 있어서,
    상기 엘라스토머는 10 ㎓에서 2.0 내지 3.0의 유전율(dielectric constant, Dk)을 갖는, 수지 조성물.
  4. 제1항에 있어서,
    상기 불소계 엘라스토머는 불소의 함유량이 20 내지 50 중량%이고,
    상기 스티렌계 엘라스토머는 스티렌의 함유량이 20 내지 50 중량%인, 수지 조성물.
  5. 제1항에 있어서,
    상기 엘라스토머는 열분해온도가 350 ℃ 이상인, 수지 조성물.
  6. 제1항에 있어서,
    상기 엘라스토머는 230 ℃ 및 2 kg의 조건에서의 용융 흐름 속도(Melt Flow Rate, MFR)가 0.1 g/10min 이하인, 수지 조성물.
  7. 제1항에 있어서,
    상기 불소 수지 필러는 용융점이 300 ℃ 이상인 수지 조성물.
  8. 제1항에 있어서,
    상기 불소 수지 필러는 372 ℃ 및 2 kg의 조건에서의 용융 흐름 속도(Melt Flow Rate, MFR)가 50 g/10min 이하인, 수지 조성물.
  9. 제1항에 있어서,
    상기 불소 수지 필러는 0.01 내지 50 ㎛의 평균 입경을 갖는, 수지 조성물.
  10. 제1항에 있어서,
    상기 불소 수지 필러는 퍼플루오르알콕시알케인(Perfluoroalkoxy alkanes, PFA) 및 폴리테트라플루오르에틸렌(PTFE)로 이루어진 군에서 선택된 1종 이상을 포함하는, 수지 조성물.
  11. 제1항에 있어서,
    상기 무기 필러는 5 내지 20 ㎛의 평균 입경을 갖는 것을 특징으로 하는 수지 조성물.
  12. 제1항에 있어서,
    상기 무기 필러는 실리카(Silica), 알루미나(Alumina) 및 티타니아(titania)로 이루어진 군에서 선택된 1종 이상을 포함하는 수지 조성물.
  13. 제1항에 있어서,
    상기 무기 필러는 (a) 실리카(Silica); 및 (b) 알루미나(Alumina) 또는 티타니아(titania)를 0.5~12 : 1 중량 비율로 포함하는 수지 조성물.
  14. 제1항에 있어서,
    상기 수지 조성물은 당해 수지 조성물 100 중량%를 기준으로
    1 내지 10 중량%의 엘라스토머(elastomer);
    25 내지 75 중량%의 불소 수지 필러; 및
    15 내지 65 중량%의 무기 필러;
    를 포함하는 수지 조성물.
  15. 제1항에 있어서,
    상기 수지 조성물은 유기 용매를 더 포함하는 수지 조성물.
  16. 제1항 내지 제15항 중 어느 한 항에 기재된 수지 조성물로 형성되고, 10 ㎓에서 0.0005 내지 0.0020의 유전정접(Df)을 갖는 수지층; 및
    상기 수지층의 양면 상에 각각 배치된 금속층
    을 포함하는 금속 적층체.
  17. 제16항에 있어서,
    상기 수지층은 10 ㎓에서 2 내지 8의 유전율(dielectric constant)을 갖는 금속 적층체.
  18. 제16항에 있어서,
    상기 수지층은
    제1항 내지 제15항 중 어느 한 항에 기재된 수지 조성물로 형성되고, 10 ㎓에서 0.0005 내지 0.0020의 유전정접(Df)을 갖는 제1 수지층; 및
    제1항 내지 제4항 중 어느 한 항에 기재된 수지 조성물로 형성되고, 10 ㎓에서 0.0005 내지 0.0020의 유전정접(Df)을 갖는 제2 수지층
    을 포함하되,
    상기 제1 수지층과 제2 수지층은 서로 동일하거나 상이한 금속 적층체.
  19. 제16항에 있어서,
    상기 수지층은 10 내지 50ppm/℃의 열팽창계수(Coefficient of Thermal Expansion, CTE)를 갖는, 금속 적층체.
  20. 제16항에 있어서,
    상기 수지층과 금속층 간의 박리강도(Peel Strength)는 0.5 내지 3 kg/cm인 금속 적층체.
  21. 제16항에 있어서,
    상기 수지층은 탄성계수(Modulus)는 0.2 내지 2 GPa인 금속 적층체.
  22. 제16항에 기재된 금속 적층체를 포함하는 인쇄회로기판.
  23. 금속 기재의 일면 상에 제1항 내지 제15항 중 어느 한 항에 기재된 수지 조성물을 도포하고 50 내지 180 ℃에서 건조하여, 금속 기재의 일면 상에 도포된 수지층이 형성된 단위부재 2개를 준비하는 단계; 및
    상기 2개의 단위부재를 적층하고 가압하되, 각 단위부재의 수지층이 서로 접하도록 적층하는 단계;
    를 포함하는 금속 적층체의 제조방법.
PCT/KR2019/011257 2018-12-27 2019-09-02 수지 조성물, 이를 이용한 금속 적층체와 인쇄회로기판 및 상기 금속 적층체의 제조방법 WO2020138642A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/418,434 US11820885B2 (en) 2018-12-27 2019-09-02 Resin composition, metal laminate and printed circuit board using same, and method for manufacturing metal laminate
JP2021537078A JP7220290B2 (ja) 2018-12-27 2019-09-02 樹脂組成物、これを用いた金属積層体及び印刷回路基板、並びに前記金属積層体の製造方法
EP19902029.8A EP3904449A4 (en) 2018-12-27 2019-09-02 COMPOSITION OF RESIN, METAL LAMINATE AND PRINTED CIRCUIT BOARD USING THE SAME, AND METHOD OF MAKING METAL LAMINATE
CN201980085604.1A CN113227245B (zh) 2018-12-27 2019-09-02 树脂组合物、利用其的金属层叠体和印刷电路基板及上述金属层叠体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180170678A KR102097222B1 (ko) 2018-12-27 2018-12-27 수지 조성물, 이를 이용한 금속 적층체와 인쇄회로기판 및 상기 금속 적층체의 제조방법
KR10-2018-0170678 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020138642A1 true WO2020138642A1 (ko) 2020-07-02

Family

ID=70281913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011257 WO2020138642A1 (ko) 2018-12-27 2019-09-02 수지 조성물, 이를 이용한 금속 적층체와 인쇄회로기판 및 상기 금속 적층체의 제조방법

Country Status (6)

Country Link
US (1) US11820885B2 (ko)
EP (1) EP3904449A4 (ko)
JP (1) JP7220290B2 (ko)
KR (1) KR102097222B1 (ko)
CN (1) CN113227245B (ko)
WO (1) WO2020138642A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235276A1 (ja) * 2020-05-18 2021-11-25 住友電気工業株式会社 誘電体シートの製造方法、高周波プリント配線板用基板の製造方法、誘電体シート、及び高周波プリント配線板用基板
CN112659676A (zh) * 2020-12-24 2021-04-16 广东生益科技股份有限公司 一种金属基板及其应用
CN113881171A (zh) * 2021-09-29 2022-01-04 浙江华正新材料股份有限公司 树脂组合物、胶片、电路基板以及印制电路板
KR20230124159A (ko) * 2022-02-17 2023-08-25 주식회사 두산 롤 타입의 연성 금속 적층판, 이를 제조하는 방법 및 상기 연성 금속 적층판을 포함하는 인쇄회로기판
CN114479324A (zh) * 2022-03-08 2022-05-13 山东森荣新材料股份有限公司 一种高频覆铜板用ptfe保护膜及其制备工艺
US11596066B1 (en) 2022-03-22 2023-02-28 Thintronics. Inc. Materials for printed circuit boards
CN116333361A (zh) * 2023-04-25 2023-06-27 安徽中科宇顺科技有限公司 一种高频柔性电子基膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698736B2 (ja) * 1984-04-13 1994-12-07 ケムファブ コーポレイション フルオロポリマー複合材料及びそれらの新規な製造方法
KR20020033188A (ko) * 1999-09-30 2002-05-04 이노우에 노리유끼 투명한 엘라스토머 조성물
JP2009052028A (ja) * 2007-08-02 2009-03-12 Daikin Ind Ltd 樹脂組成物
JP2012153880A (ja) * 2011-01-05 2012-08-16 Daikin Industries Ltd フッ素ゴム成形品
KR20180121884A (ko) * 2016-03-11 2018-11-09 에이지씨 가부시키가이샤 불소 수지 조성물, 성형 재료 및 성형체

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883066A (ja) * 1981-11-12 1983-05-18 Daikin Ind Ltd 非粘着導電性フツ素ゴム塗料
JPH06248144A (ja) * 1993-02-25 1994-09-06 Uchiyama Mfg Corp フッ素ゴム組成物
KR100912918B1 (ko) * 2001-07-13 2009-08-20 스미토모 베이클리트 컴퍼니 리미티드 수지 부착 금속박 및 다층 인쇄 회로판
JP2007154043A (ja) 2005-12-05 2007-06-21 Nippon Valqua Ind Ltd フッ素ゴム組成物およびそれよりなるシール材
JP6001274B2 (ja) 2012-02-15 2016-10-05 スリーエム イノベイティブ プロパティズ カンパニー フルオロポリマー組成物
WO2015111258A1 (ja) * 2014-01-22 2015-07-30 株式会社村田製作所 圧電発電モジュール、およびリモートコントローラ
JP2015209480A (ja) * 2014-04-25 2015-11-24 三井・デュポンフロロケミカル株式会社 フッ素樹脂組成物
JP6754999B2 (ja) * 2015-03-05 2020-09-16 パナソニックIpマネジメント株式会社 樹脂組成物、低誘電率樹脂シート、プリプレグ、金属箔張り積層板、高周波回路基板および多層配線基板
JP6656854B2 (ja) 2015-09-16 2020-03-04 株式会社リケン シール部材
KR101939449B1 (ko) * 2016-12-23 2019-04-10 주식회사 두산 금속적층판 및 이의 제조방법
KR20220033188A (ko) 2020-09-09 2022-03-16 한양대학교 산학협력단 강유전체 물질 기반의 2차원 플래시 메모리 및 그 동작 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698736B2 (ja) * 1984-04-13 1994-12-07 ケムファブ コーポレイション フルオロポリマー複合材料及びそれらの新規な製造方法
KR20020033188A (ko) * 1999-09-30 2002-05-04 이노우에 노리유끼 투명한 엘라스토머 조성물
JP2009052028A (ja) * 2007-08-02 2009-03-12 Daikin Ind Ltd 樹脂組成物
JP2012153880A (ja) * 2011-01-05 2012-08-16 Daikin Industries Ltd フッ素ゴム成形品
KR20180121884A (ko) * 2016-03-11 2018-11-09 에이지씨 가부시키가이샤 불소 수지 조성물, 성형 재료 및 성형체

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904449A4 *

Also Published As

Publication number Publication date
US20220025167A1 (en) 2022-01-27
CN113227245B (zh) 2023-06-23
KR102097222B1 (ko) 2020-04-06
JP2022514976A (ja) 2022-02-16
EP3904449A4 (en) 2022-08-17
CN113227245A (zh) 2021-08-06
JP7220290B2 (ja) 2023-02-09
EP3904449A1 (en) 2021-11-03
US11820885B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2020138642A1 (ko) 수지 조성물, 이를 이용한 금속 적층체와 인쇄회로기판 및 상기 금속 적층체의 제조방법
CN108752827B (zh) 一种高导热的可交联树脂组合物及其制备的半固化片和热固型覆铜板
JP3676379B2 (ja) 多層配線板用樹脂付金属箔、その製造方法、多層配線板、および電子装置
TW201922905A (zh) 具有改良之熱傳導性之介電層
TWI818904B (zh) 多層配線基板及半導體裝置
WO2015157216A1 (en) Crosslinked fluoropolymer circuit materials, circuit laminates, and methods of manufacture thereof
WO2018117636A1 (ko) 금속적층판 및 이의 제조방법
CN112111176B (zh) 一种氮化硼包覆聚四氟乙烯复合填料及其制备的半固化片和高导热型碳氢覆铜板
EP4442086A1 (en) Materials for printed circuit boards
KR102079309B1 (ko) 유색 초박 커버링 필름 및 이의 제조 방법
US20240124698A1 (en) Composition, as well as metal-clad laminate and method for its production
WO2015088245A1 (ko) 저유전 손실 특성을 가진 고주파용 열경화성 수지 조성물, 이를 이용한 프리프레그, 및 동박적층판
KR102376112B1 (ko) 반도체 소자 밀봉용 조성물 및 반도체 소자 밀봉용 필름
CN109688697B (zh) 一种低插损高频高导热基板及其应用
KR20120068112A (ko) 고 접착력 연성금속적층판의 제조방법
WO2023158259A1 (ko) 롤 타입의 연성 금속 적층판, 이를 제조하는 방법 및 상기 연성 금속 적층판을 포함하는 인쇄회로기판
WO2018004190A1 (ko) 프라이머 코팅-동박 및 동박 적층판
WO2018012775A1 (ko) 열경화성 수지 조성물, 이를 이용한 프리프레그, 적층 시트 및 인쇄회로기판
CN209806155U (zh) 一种低插损高频高导热基板及印制电路板
WO2016105051A1 (ko) 고주파용 열경화성 수지 조성물, 이를 이용한 프리프레그, 적층 시트 및 인쇄회로기판
KR100789129B1 (ko) 고온용 일렉트렛, 그의 제조방법 및 이를 구비하는마이크로폰
JP2023021033A (ja) 樹脂組成物、樹脂シート、積層体、シート硬化物及び回路基板材料
KR20080076036A (ko) 고온용 일렉트릿트, 그의 제조방법 및 이를 구비하는마이크로폰
CN114456502A (zh) 基于三元乙丙橡胶-聚苯醚树脂的组合物、半固化片及制备方法、积层板
WO2020151052A1 (zh) 一种低插损高频导热基板及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537078

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019902029

Country of ref document: EP

Effective date: 20210727