WO2019017363A1 - 導電性パターン領域を有する構造体及びその製造方法、積層体及びその製造方法、並びに、銅配線 - Google Patents

導電性パターン領域を有する構造体及びその製造方法、積層体及びその製造方法、並びに、銅配線 Download PDF

Info

Publication number
WO2019017363A1
WO2019017363A1 PCT/JP2018/026835 JP2018026835W WO2019017363A1 WO 2019017363 A1 WO2019017363 A1 WO 2019017363A1 JP 2018026835 W JP2018026835 W JP 2018026835W WO 2019017363 A1 WO2019017363 A1 WO 2019017363A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
copper
support
phosphorus
conductive pattern
Prior art date
Application number
PCT/JP2018/026835
Other languages
English (en)
French (fr)
Inventor
正人 齋藤
徹 湯本
雅典 鶴田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN202310310339.0A priority Critical patent/CN116209147A/zh
Priority to JP2019530558A priority patent/JP7005625B2/ja
Priority to US16/631,715 priority patent/US11109492B2/en
Priority to KR1020197038732A priority patent/KR102390722B1/ko
Priority to EP18835287.6A priority patent/EP3657916A4/en
Priority to CN201880046322.6A priority patent/CN110870392B/zh
Publication of WO2019017363A1 publication Critical patent/WO2019017363A1/ja
Priority to JP2021168193A priority patent/JP7345532B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/027Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed by irradiation, e.g. by photons, alpha or beta particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0257Nanoparticles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/121Metallo-organic compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods

Definitions

  • the present invention relates to a structure having a conductive pattern area, a method of manufacturing the same, a laminate, a method of manufacturing the same, and a copper wiring.
  • the circuit board has a structure in which conductive wiring is provided on the board.
  • the method of manufacturing the circuit board is generally as follows. First, a photoresist is applied on a substrate to which metal foils are bonded. The photoresist is then exposed and developed to obtain the desired negative pattern of the circuit pattern. Next, the metal foil not covered with the photoresist is removed by chemical etching to form a pattern. Thus, a high performance conductive substrate can be manufactured.
  • the conventional method has many steps and is complicated, and has disadvantages such as requiring a photoresist material.
  • a copper wiring by applying a dispersion containing aggregates of cuprous oxide in a thickness of 10 to 20 ⁇ m on a polyethylene terephthalate (PET) support and baking it with a laser.
  • PET polyethylene terephthalate
  • a low heat-resistant resin material such as a PET support can be used because the portions other than the laser irradiation portion are not heated.
  • colloidal silica which is particles of silicon oxide, as an underlayer (for example, Patent Document 4).
  • a first coating layer is formed on the substrate, and a portion of the first coating layer is irradiated with light to form a first conductive portion, and then a second coating layer is formed on the first coating layer.
  • a method of manufacturing a multilayer wiring board in which light is irradiated from the second coating layer to the first conductive portion to form the second conductive portion see, for example, Patent Document 5).
  • Patent Document 6 there is known a method of obtaining a conductive film by forming a pattern-like coating film using a copper or copper oxide dispersion on a substrate and performing baking treatment (see, for example, Patent Document 6).
  • colloidal silica used for the base layer disclosed by patent document 4 is excellent in the adhesiveness with respect to a metal, adhesiveness with resin is bad. For this reason, when the material of a base material is resin, peeling may arise between a base layer and a base material, and its reliability is low.
  • an unbaked paste material composed of cupric oxide particles and a resin binder remains in a region where laser irradiation is not performed, but the cupric oxide particles are large and the resin binder and the particles In the state as it is, the electrical insulation between the wiring patterns is not sufficient.
  • Patent Document 6 In the structure described in Patent Document 6, there is nothing to be filled between the wiring patterns, and in the state as it is, electrical insulation between the wiring patterns can not be secured. In addition, in a high humidity environment, moisture containing air gets in between the wiring patterns, which tends to cause dielectric breakdown.
  • the present invention has been made in view of these points, and has a structure having a conductive pattern region which can extremely simplify the manufacturing process, is excellent in electrical insulation between conductive pattern regions, and is excellent in long-term reliability. It aims at providing a body and its manufacturing method.
  • An object of the present invention is to provide a laminate capable of reducing manufacturing costs and a method of manufacturing the same.
  • Another object of the present invention is to provide a copper interconnection capable of enhancing the conductivity of the interconnection.
  • the inventors of the present invention completed the present invention as a result of intensive studies to solve the above problems.
  • one aspect of the structure of the present invention comprises a support and a layer disposed on the surface formed by the support, and a conductive pattern region containing copper in the layer; It is characterized in that the insulating regions containing copper oxide and phosphorus are adjacent to each other.
  • another aspect of the structure of the present invention has a support and a layer disposed on the surface of the support, and the conductive pattern area containing copper in the layer. And insulating regions containing copper oxide and hydrazine or hydrazine hydrate are adjacent to each other.
  • another aspect of the structure of the present invention has a support and a layer disposed on the surface of the support, and the conductive pattern area containing copper in the layer. And an insulating region containing copper oxide, phosphorus and hydrazine or hydrazine hydrate is adjacent to each other.
  • another aspect of the structure of the present invention comprises a support and a layer disposed on the surface of the support, wherein the layer contains copper and phosphorus. It is characterized in that the pattern area and the insulating area containing copper oxide and phosphorus are adjacent to each other.
  • a support a coating layer containing copper oxide and phosphorus, disposed on the surface of the support, and a resin disposed to cover the coating layer. And a layer.
  • a support a coated layer containing copper oxide and hydrazine or hydrazine hydrate, disposed on the surface of the support, and covering the coated layer And a resin layer disposed on the substrate.
  • a support a coated layer comprising copper oxide, phosphorus and hydrazine or hydrazine hydrate, disposed on the surface of the support, and the coated layer. And a resin layer disposed to cover.
  • one aspect of the copper wiring of the present invention is a copper wiring containing reduced copper, phosphorus and carbon in which copper oxide is reduced, and the element concentration ratio of phosphorus / copper is 0.02 or more and 0.30 or less And the element concentration ratio of carbon / copper is 1.0 or more and 6.0 or less.
  • a step of disposing a coating layer containing copper oxide and hydrazine or hydrazine hydrate on the surface of the support and the step of applying the light beam Selectively reduce the copper oxide to copper, and the support, and an insulating region containing the copper oxide and the hydrazine or hydrazine hydrate on the surface constituted by the support, and the copper Obtaining a conductive pattern region including the layers, and a layer disposed adjacent to each other.
  • a step of disposing a coating layer containing copper oxide, a phosphorus-containing organic substance, and hydrazine or hydrazine hydrate on the surface of a support, and a light beam Selectively irradiating the coating layer to reduce the copper oxide to copper, and containing the copper oxide and phosphorus and the hydrazine or hydrazine hydrate on the surface constituted by the support and the support Obtaining an insulating region and a layer in which the conductive pattern region containing copper is disposed adjacent to each other.
  • a structure having a conductive pattern region which can be extremely simplified in the manufacturing process, has excellent electrical insulation between conductive pattern regions, and has excellent long-term reliability, and a method of manufacturing the same. Can.
  • FIG. 12A It is a cross-sectional schematic diagram which shows an example of the structure which has a conductive pattern area
  • the present inventors arrange a coated layer containing copper oxide on the surface of a support, and selectively irradiate light to the coated layer to reduce copper oxide to copper to form a conductive pattern area. If the electrical insulating property of the region containing reduced copper oxide is enhanced, insulation between the conductive pattern regions can be secured by leaving the region as it is without removing it, and the step of removing the region becomes unnecessary.
  • the present invention has been completed.
  • phosphorus is contained in the coating layer containing copper oxide disposed on the surface of the support. Thereafter, the coating layer is selectively irradiated with light to form a conductive pattern region, and an insulating region containing copper oxide and phosphorus is provided between the conductive pattern regions.
  • FIG. 1 is a schematic view showing a relationship between copper oxide fine particles and a phosphate ester salt contained in an insulating region in a structure having a conductive pattern region according to the present embodiment.
  • a phosphate ester salt 3 which is an example of a phosphorus-containing organic substance is an ester salt with phosphorus 3a inside. It surrounds 3b outward respectively. Since phosphoric acid ester salt 3 exhibits electrical insulation, electrical conduction between adjacent copper oxide microparticles 2 is hindered.
  • the copper oxide fine particles 2 are covered with the phosphate ester salt 3 which is a semiconductor and is conductive but exhibits electrical insulation. Therefore, insulating region 1 exhibits electrical insulation, and in cross section (cross section along the vertical direction shown in FIG. 2), insulation between conductive pattern regions (described later) adjacent to both sides of insulating region 1 is secured. can do.
  • the conductive pattern area is irradiated with light to a partial area of the coating layer containing copper oxide and phosphorus to reduce copper oxide to copper in the partial area. Copper in which copper oxide is reduced in this manner is called reduced copper. Moreover, in the said some area
  • the heat of the laser or the like changes the copper oxide into reduced copper and sinters, and the adjacent copper oxide fine particles 2 are integrated. .
  • conductive pattern region a region having excellent electrical conductivity
  • the phosphorus element In the conductive pattern area, the phosphorus element remains in the reduced copper.
  • the phosphorus element is present as at least one of a phosphorus element alone, a phosphorus oxide, and a phosphorus-containing organic substance.
  • the remaining phosphorus element is segregated and present in the conductive pattern area, and there is no possibility that the resistance of the conductive pattern area will be increased.
  • FIG. 2 is a schematic cross-sectional view showing a structure having a conductive pattern region according to the first embodiment.
  • the structure 10 is configured to include a support 11 and a layer 14 disposed on the surface formed by the support 11.
  • the layer 14 has an insulating region 12 containing copper oxide and phosphorus and a conductive pattern region 13 containing copper adjacent to each other. It is preferable that copper said here is said reduction copper.
  • region 12 is contained as a phosphorus containing organic substance.
  • the conductive pattern area containing copper can be isolated by the insulating area containing copper oxide and phosphorus. Therefore, the manufacturing process can be reduced, and the manufacturing cost can be reduced because a solvent or the like is unnecessary. Further, the insulating region is used to insulate the conductive pattern region, the insulating region is less likely to be cracked, and the reliability can be improved.
  • the support 11 constitutes a surface on which the layer 14 is disposed.
  • the shape is not particularly limited.
  • the material of the support 11 is preferably an insulating material in order to ensure electrical insulation between the conductive pattern areas 13 separated by the insulating area 12. However, it is not necessary that the entire support 11 be an insulating material. It is sufficient if only the part constituting the surface on which the layer 14 is disposed is an insulating material.
  • the support 11 may be a flat body, a film or a sheet.
  • the flat body is, for example, a support (also referred to as a base) used for a circuit board such as a printed board.
  • the film or sheet is, for example, a base film which is a thin film-like insulator used for a flexible printed circuit.
  • the support 11 may be a three-dimensional object. It is also possible to arrange a layer having a conductive pattern region on a surface including a curved surface or a step or the like that a three-dimensional object has, that is, a three-dimensional surface.
  • the housing casing of electric devices, such as a mobile telephone terminal, a smart phone, a smart glass, a television, a personal computer, is mentioned.
  • a dashboard an instrument panel, a handle, a chassis and the like can be mentioned.
  • the material of the three-dimensional object is not limited, for example, from polypropylene resin, polyamide resin, acrylonitrile butadiene styrene resin, polyethylene resin, polycarbonate resin, polyacetal resin, polybutylene terephthalate resin, modified polyphenylene ether resin and polyphenylene sulfide resin It is preferable that it is at least one selected from the group consisting of
  • the layer 14 is a mixture of the insulating region 12 and the conductive pattern region 13.
  • the term “layer” may be simply expressed, or may be rephrased as a layer having a conductive pattern area or a layer disposed on a support.
  • the layer 14 can be said to be an integral layer.
  • Layer 14 may also be referred to as a single layer that is not a multilayer structure.
  • “Integral” or “single” means that the insulating region 12 and the conductive pattern region 13 adjacent to each other in cross section are continuous along the surface. By “adjacent” is meant that another layer is not included between the insulating area 12 and the conductive pattern area 13. "Continuous” means that it does not include, for example, a state in which a space between patterned wiring layers is buried with a solder paste as seen in a printed circuit board.
  • a step may be generated between the surface of the insulating region 12 and the surface of the conductive pattern region 13. That is, since the film thickness is reduced in the reduction process from copper oxide to copper, the film thicknesses of the conductive region and the insulating region may be different even in a continuous layer.
  • the insulating region 12 and the conductive pattern region 13 are adjacent means that in the layer, the electrical conductivity, the particle state (baked and unfired), etc. gradually change along the surface of the support. It also means that a boundary (interface) may exist between the insulating region 12 and the conductive pattern region 13.
  • the insulating region 12 and the conductive pattern region 13 are formed of coating layers derived from the same composition. That is, the conductive pattern area 13 is formed by irradiating a part of the coating layer with a laser. Therefore, in the insulating area 12 and the conductive pattern area 13, the same element such as a copper element or a phosphorus element is used. Including.
  • Insulating region 12 contains copper oxide and phosphorus and exhibits electrical insulation.
  • the insulating region 12 can be said to be a non-irradiated region which has not been irradiated with light.
  • the insulating region 12 can also be said to be an unreduced region in which copper oxide is not reduced by light irradiation.
  • the insulating region 12 can also be said to be a non-sintered region not fired by light irradiation.
  • the conductive pattern area 13 contains copper and exhibits electrical conductivity.
  • the conductive pattern area 13 can be said to be an irradiated area or a laser irradiation area that has been irradiated with light.
  • the conductive pattern area 13 can also be said to be a reduced area containing reduced copper in which copper oxide is reduced by light irradiation.
  • the conductive pattern region 13 can also be said to be a fired region including a fired body obtained by firing the insulating region 12 by light irradiation.
  • the shape of the conductive pattern area 13 in a plan view may be any of linear, curved, circular, square, bent, etc., and is not particularly limited.
  • the pattern is formed by light irradiation through a mask or drawing by a laser, so it is not subject to shape restrictions.
  • the boundary between the insulating region 12 and the conductive pattern region 13 is preferably a straight line along the thickness direction of the layer 14 (vertical direction shown in FIG. 2) in cross sectional view, but even if the taper angle is given Well, not particularly limited. However, it is not essential that the boundaries are clear. For example, when the composition ratio of copper is measured near the boundary, there may be a composition modulation region which gradually changes from the conductive pattern region 13 side to the insulating region 12 side.
  • the conductive pattern area 13 does not have to be completely reduced in cross section. For example, it is preferable that there is an unreduced portion in a portion close to the support 11. Thereby, the adhesion between the conductive pattern area 13 and the support 11 is enhanced.
  • the film thickness of the conductive pattern region 13 and the film thickness of the insulating region 12 are different, for example, such that the film thickness of the insulating region 12 is larger. Also good. That is, in the reduction process from copper oxide to copper by laser irradiation, the conductive pattern region 13 is likely to be thinner than the insulating region 12. Since the creeping distance between the conductive pattern area 13 and the conductive pattern area 13 opposed to each other across the insulating area 12 can be increased by changing the film thickness, the insulation can be enhanced.
  • the film thickness of the insulating region 12 is preferably 0.1 ⁇ m to 30 ⁇ m, more preferably 0.1 to 15 ⁇ m, and still more preferably 0.1 ⁇ m to 10 ⁇ m.
  • the insulating property can be maintained as the insulating area 12, and the conductive pattern area 13 having more excellent adhesion to the substrate and conductivity can be manufactured by light irradiation described later. It is preferable because it can be done.
  • the film thickness of the conductive pattern area 13 is preferably 10% to 90%, more preferably 20% to 80%, and still more preferably 30% to 70% with respect to the film thickness of the insulating area 12. In particular, by setting the content to 30% or more and 70% or less, the adhesion to a substrate can be maintained, and sufficient electrical conductivity can be obtained for electrical wiring applications, which is preferable.
  • the support 11 includes an adhesive layer (not shown) between the support 11 and the layer 14 having a conductive pattern area.
  • the adhesion layer By the adhesion layer, the adhesion of the layer 14 to the support 11 can be enhanced, the peeling of the insulating region 12 and the conductive pattern region 13 can be prevented, and the long-term stability of the structure 10 can be enhanced.
  • the adhesion layer includes, for example, (i) a roughened surface of the support 11 and (ii) a coating layer disposed on the support 11. In the example of (i), it is a part of support body 11 itself. In this case, the adhesion layer may be combined with another layer (for example, a primer (underlayer) layer).
  • the adhesion layer may be a coating layer alone or a laminate of other layers.
  • the coating layer may contain a primer material.
  • the support include, for example, a support made of an inorganic material (hereinafter, “inorganic support”), or a support made of a resin (hereinafter, referred to as “resin support”).
  • inorganic support a support made of an inorganic material
  • resin support a support made of a resin
  • the inorganic support is made of, for example, glass, silicon, mica, sapphire, quartz, a clay film, and a ceramic material.
  • the ceramic material is, for example, alumina, silicon nitride, silicon carbide, zirconia, yttria and aluminum nitride, and a mixture of at least two of them.
  • a support made of glass, sapphire, quartz or the like, which has particularly high light transmittance, can be used as the inorganic support.
  • the resin support examples include polypropylene (PP), polyimide (PI), polyethylene terephthalate (PET), polyether sulfone (PES), polyethylene naphthalate (PEN), polyester, polycarbonate (PC), polyvinyl alcohol (PVA) ), Polyvinyl butyral (PVB), polyacetal (POM), polyarylate (PAR), polyamide (PA), polyamide imide (PAI), polyether imide (PEI), polyphenylene ether (PPE), modified polyphenylene ether (m-PPE) ), Polyphenylene sulfide (PPS), polyether ketone (PEK), polyphthalamide (PPA), polyether nitrile (PENt), polybenzimidazole (PBI), polycarbo) Imide, polysiloxane, polymethacrylamide, nitrile rubber, acrylic rubber, polyethylene tetrafluoride, epoxy resin, phenol resin, melamine resin, urea resin, polymethyl methacrylate resin (
  • the resin sheet containing a cellulose nanofiber can also be used as a support body.
  • At least one member selected from the group consisting of PI, PET and PEN is excellent in adhesion to the layer having the conductive pattern region and the adhesion layer, and has good market circulation and is available at low cost. It is significant and preferable from the business point of view.
  • At least one member selected from the group consisting of PP, PA, ABS, PE, PC, POM, PBT, m-PPE, and PPS is a layer having a conductive pattern region and an adhesion layer, particularly when it is a housing. And excellent in moldability and mechanical strength after molding. Furthermore, they are preferable because they have heat resistance sufficiently resistant to laser irradiation and the like when forming the conductive pattern region.
  • the deflection temperature under load of the resin support is preferably 400 ° C. or less, more preferably 280 ° C. or less, and still more preferably 250 ° C. or less. Substrates having a deflection temperature under load of 400 ° C. or less are available at low cost, are significant from a business point of view, and are preferred.
  • the deflection temperature under load is, for example, in accordance with JIS K7191.
  • the thickness of the support can be, for example, 1 ⁇ m to 100 mm, preferably 25 ⁇ m to 10 mm, and more preferably 25 ⁇ m to 250 ⁇ m. If the thickness of the support is 250 ⁇ m or less, it is preferable because the manufactured electronic device can be reduced in weight, space and flexibility.
  • the thickness can be, for example, 1 ⁇ m to 1000 mm, preferably 200 ⁇ m to 100 mm, and 200 ⁇ m to 5 mm.
  • the inventors of the present invention have made it possible to develop mechanical strength and heat resistance after molding by selecting this range.
  • the light transmittance at a wavelength of 445 nm of the support including the adhesion layer is preferably 30% or more, more preferably 40% or more, and still more preferably 50% or more. .
  • the upper limit of the light transmittance may be 98% or less.
  • a near ultraviolet to near infrared wavelength such as 355 nm, 405 nm, 450 nm, 532 nm, 1064 nm can be selected.
  • an insulating region containing copper oxide and a phosphorus-containing organic substance is adjacent to a conductive pattern region containing copper.
  • copper oxide includes, for example, cuprous oxide and cupric oxide.
  • Cuprous oxide is particularly preferred as it tends to be susceptible to low temperature sintering.
  • cuprous oxide and cupric oxide these may be used alone or as a mixture of these.
  • the copper oxide fine particles have a core / shell structure, and either one of the core and the shell may be cuprous oxide, and may further contain cupric oxide.
  • the copper oxide contained in the insulating region has, for example, a fine particle shape.
  • the average particle size of the fine particles containing copper oxide is 1 nm or more and 100 nm or less, more preferably 1 nm or more and 50 nm or less, and still more preferably 1 nm or more and 20 nm or less.
  • the insulating region may contain copper particles. That is, copper may be added to the dispersion described later.
  • the phosphorus-containing organic substance is adsorbed also on the surface of the copper particles, and can exhibit electrical insulation.
  • the phosphorus contained in the insulating region is preferably a phosphorus-containing organic substance.
  • the phosphorus-containing organic substance is a material that exhibits electrical insulation in the insulating region.
  • the phosphorus-containing organic substance is preferably capable of fixing copper oxide to a support or an adhesion layer.
  • the phosphorus-containing organic substance may be a single molecule or a mixture of multiple types of molecules.
  • the phosphorus-containing organic substance may be adsorbed to the copper oxide fine particles.
  • the number average molecular weight of the phosphorus-containing organic material is not particularly limited, but is preferably 300 to 300,000. If it is 300 or more, it is excellent in electrical insulation.
  • the phosphorus-containing organic substance is easily decomposed or evaporated by light or heat.
  • the residue of the organic substance hardly remains after baking, and a conductive pattern region with low resistivity can be obtained.
  • the decomposition temperature of the phosphorus-containing organic substance is not limited, but is preferably 600 ° C. or less, more preferably 400 ° C. or less, and still more preferably 200 ° C. or less.
  • the boiling point of the phosphorus-containing organic substance is not limited, but is preferably 300 ° C. or less, more preferably 200 ° C. or less, and still more preferably 150 ° C. or less.
  • the absorption characteristic of the phosphorus-containing organic substance is not limited, it is preferable that it can absorb light used for firing.
  • a phosphorus-containing organic substance that absorbs light of its emission wavelength (center wavelength), for example, 355 nm, 405 nm, 445 nm, 450 nm, 532 nm, 1064 nm .
  • the wavelengths are 355 nm, 405 nm, 445 nm and 450 nm.
  • a phosphoric acid ester salt of a high molecular weight copolymer having a group having an affinity to copper oxide is preferable.
  • the structure of the chemical formula (1) is preferable because it adsorbs with copper oxide and is excellent in adhesion to a support.
  • Chemical formula (3) can be mentioned as an example of a phosphorus containing organic substance.
  • the organic structure of the phosphorus-containing organic substance includes polyethylene glycol (PEG), polypropylene glycol (PPG), polyimide, polyethylene terephthalate (PET), polyether sulfone (PES), polyethylene naphthalate (PEN), polyester, polycarbonate (PC) ), Polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyacetal, polyarylate (PAR), polyamide (PA), polyamide imide (PAI), polyether imide (PEI), polyphenylene ether (PPE), polyphenylene sulfide (PPS) ), Polyether ketone (PEK), polyphthalamide (PPA), polyether nitrile (PENt), polybenzimidazole (PBI), polycarbodiimide , Polysiloxane, polymethacrylamide, nitrile rubber, acrylic rubber, polyethylene tetrafluoride, epoxy resin, phenol resin, melamine resin, urea resin, polymethyl methacrylate resin
  • the structure which modified the functional group of these structures can also be used, the structure which modified these structures can also be used, and the copolymer of these structures can also be used.
  • a phosphorus-containing organic substance having a skeleton selected from a polyethylene glycol structure, a polypropylene glycol structure, a polyacetal structure, a polybutene structure, and a polysulfide structure is preferable because it is easily decomposed and hardly leaves a residue in a conductive pattern region obtained after firing. .
  • a commercially available material can be used. Specifically, DISPERBYK (registered trademark) -102, DISPERBYK-103, DISPERBYK-106, DISPERBYK-109, DISPERBYK-109, DISPERBYK-110 manufactured by Big Chemie, Inc.
  • DISPERBYK-111 DISPERBYK-118
  • DISPERBYK-140 DISPERBYK-145
  • DISPERBYK-168 DISPERBYK-180
  • DISPERBYK-182 DISPERBYK-187
  • DISPERBYK-190 DISPERBYK-191 DISPERBYK-193 DISPERBYK-194 N DISPERBYK-194 N -199, DISPERBYK-2000, DISPERBYK-20 1, DISPERBYK-2008, DISPERBYK-2009, DISPERBYK-2010, DISPERBYK-2012, DISPERBYK-2013, DISPERBYK-2015, DISPERBYK-2022, DISPERBYK-2025, DISPERBYK-2050, DISPERBYK-2052, DISPERBYK-2152, DISPERBYK-2055, DISPERBYK-2060 DISPER
  • copper oxide fine particles fine particles containing copper oxide (hereinafter referred to as "copper oxide fine particles") and the phosphorus-containing organic substance are mixed, and the content of the phosphorus-containing organic substance is 100 parts by volume of the total volume of copper oxide fine particles It may be 5 parts by volume or more and 900 parts by volume or less.
  • the lower limit value is preferably 10 parts by volume or more, more preferably 30 parts by volume or more, and still more preferably 60 parts by volume or more.
  • the upper limit value is preferably 480 parts by volume or less, more preferably 240 parts by volume or less.
  • the content of the phosphorus-containing organic compound is preferably 1 part by weight or more and 150 parts by weight or less based on 100 parts by weight of the copper oxide fine particles in terms of part by weight.
  • the lower limit value is preferably 2 parts by weight or more, more preferably 5 parts by weight or more, and still more preferably 10 parts by weight or more.
  • the upper limit value is preferably 80 parts by weight or less, more preferably 40 parts by weight or less.
  • the content of the phosphorus-containing organic substance with respect to the copper oxide fine particles is 5 parts by volume or more or 1 part by weight or more, a thin film with a thickness of submicron can be formed. If the content of the phosphorus-containing organic substance is 10 parts by volume or more or 5 parts by weight or more, a thick film having a thickness of several tens of ⁇ m can be formed as a layer. When the content of the phosphorus-containing organic substance is 30 parts by volume or more or 10 parts by weight or more, it is possible to obtain a highly flexible layer which is not easily cracked even when bent.
  • the content of the phosphorus-containing organic substance with respect to the copper oxide fine particles is 900 parts by volume or less or 150 parts by weight or less, a good conductive pattern area can be obtained by firing.
  • Hydrazine or hydrazine hydrate can be contained in the coating layer and also remains in the insulating region which is a non-sintered region.
  • the inclusion of hydrazine or hydrazine hydrate further improves the dispersion stability of copper oxide, contributes to the reduction of copper oxide in firing, and further reduces the resistance of the conductive film.
  • the hydrazine content is preferably as follows. 0.0001 ⁇ (hydrazine mass / copper oxide mass) ⁇ 0.10 (1) When the mass ratio of hydrazine is 0.0001 or more, the resistance of the copper film is reduced. Moreover, since it is long-term stability of a copper oxide ink improving as it is 0.1 or less, it is preferable.
  • the insulating region may contain copper particles in addition to the copper oxide fine particles.
  • the mass ratio of copper particles to copper oxide fine particles (hereinafter referred to as "copper particles / copper oxide fine particles”) is preferably 1.0 or more and 7.0 or less.
  • the copper particles / copper oxide fine particles of 1.0 or more and 7.0 or less are preferable from the viewpoint of conductivity and crack prevention.
  • the average secondary particle diameter of the copper oxide fine particles is not particularly limited, but is preferably 500 nm or less, more preferably 200 nm or less, and still more preferably 80 nm or less.
  • the average secondary particle diameter of the fine particles is preferably 5 nm or more, more preferably 10 nm or more, and still more preferably 15 nm or more.
  • the average secondary particle size refers to the average particle size of aggregates (secondary particles) formed by collecting a plurality of primary particles. It is preferable for the average secondary particle diameter to be 500 nm or less because the fine conductive pattern region tends to be easily formed on the support. If the average secondary particle diameter is 5 nm or more, it is preferable because long-term storage stability of the dispersion is improved.
  • the average secondary particle size of the fine particles can be measured, for example, by a transmission electron microscope or a scanning electron microscope.
  • the average primary particle diameter of the primary particles constituting the secondary particles is preferably 100 nm or less, more preferably 50 nm or less, and still more preferably 20 nm or less.
  • the average primary particle size is preferably 1 nm or more, more preferably 2 nm or more, and still more preferably 5 nm or more.
  • the baking temperature to be described later tends to be able to be lowered.
  • the reason why such low temperature firing is possible is considered to be because the smaller the particle diameter of the particles, the larger the surface energy and the lower the melting point.
  • an average primary particle diameter is 1 nm or more, since favorable dispersibility can be obtained, it is preferable.
  • the thickness is preferably 2 nm or more and 100 nm or less, more preferably 5 nm or more and 50 nm or less. This tendency is remarkable when the base is resin.
  • the average primary particle size of the fine particles can be measured by a transmission electron microscope or a scanning electron microscope.
  • the content of the copper oxide fine particles in the layer disposed on the support is preferably 40% by mass or more and 55% by mass or more based on the unit mass of the region containing the copper oxide and the phosphorus-containing organic substance. Is more preferably 70% by mass or more.
  • the content is preferably 98% by mass or less, more preferably 95% by mass or less, and still more preferably 90% by mass or less.
  • the content of copper oxide fine particles in the layer disposed on the support is preferably 10% by volume or more, more preferably 15% by volume or more, and more preferably 25% by volume, based on unit volume. It is more preferable that it is more than.
  • the content is preferably 90% by volume or less, more preferably 76% by volume or less, and still more preferably 60% by volume or less.
  • the content of copper oxide fine particles in the insulating region is 40% by mass or more or 10% by volume or more, the fine particles adhere to each other by firing to express conductivity, and the higher the concentration, the higher the conductivity is to be obtained. Is preferable. If the content is 98% by mass or less or 90% by volume or less, the layer disposed on the support can be attached as a film to the support or the adhesive layer, which is preferable. Moreover, if the said content rate is 95 mass% or less or 76 volume% or less, it can adhere more strongly to a support body or a contact layer, and is preferable.
  • the content is 90% by mass or less or 60% by volume or less, the flexibility of the layer is high, and when it is bent, cracks are less likely to occur, and the reliability is enhanced.
  • the content of copper oxide fine particles in the insulating region is 90% by volume or more, the insulation resistance value of the insulating region is low, which is preferable because of excellent electrical insulation.
  • copper oxide there are cuprous oxide and cupric oxide, and from the viewpoint of resistance reduction and absorbance, cuprous oxide is preferable.
  • a commercial item may be used for the copper oxide contained in the insulation area
  • a commercial item for example, cuprous oxide fine particles having an average primary particle diameter of 18 nm sold by EM Japan Ltd. can be mentioned.
  • Examples of the method for synthesizing microparticles containing cuprous oxide include the following methods. (1) Water and copper acetylacetonato complex are added to the polyol solvent, the organic copper compound is once dissolved by heating, water is further added in an amount necessary for the reaction, and reduction is performed by heating to the reduction temperature of organic copper Method. (2) A method of heating an organic copper compound (copper-N-nitrosophenylhydroxylamine complex) at a high temperature of about 300 ° C. in an inert atmosphere in the presence of a protective agent such as hexadecylamine. (3) A method of reducing a copper salt dissolved in an aqueous solution with hydrazine.
  • the method of the above (1) can be carried out, for example, under the conditions described in Angelbanthe Chemi International Edition, No. 40, Volume 2, p. 359 (2001).
  • a divalent copper salt can be suitably used as the copper salt, and examples thereof include, for example, copper (II) acetate, copper (II) nitrate, copper (II) carbonate, Copper (II) chloride, copper (II) sulfate and the like can be mentioned.
  • the amount of hydrazine used is preferably 0.2 mol to 2 mol, and more preferably 0.25 mol to 1.5 mol, per 1 mol of the copper salt.
  • a water-soluble organic substance may be added to the aqueous solution in which the copper salt is dissolved.
  • the addition of the water-soluble organic substance to the aqueous solution lowers the melting point of the aqueous solution, thereby enabling reduction at lower temperatures.
  • the water-soluble organic substance for example, alcohol, water-soluble polymer and the like can be used.
  • the alcohol for example, methanol, ethanol, propanol, butanol, hexanol, octanol, decanol, ethylene glycol, propylene glycol, glycerin and the like can be used.
  • the water-soluble polymer for example, polyethylene glycol, polypropylene glycol, polyethylene glycol-polypropylene glycol copolymer and the like can be used.
  • the temperature in the reduction in the method (3) may be, for example, -20 to 60 ° C, and preferably -10 to 30 ° C.
  • the reduction temperature may be constant during the reaction, or may be raised or lowered during the reaction. It is preferable to reduce at 10 ° C. or less, and more preferable to reduce at 0 ° C. or less at the initial stage of the reaction in which the activity of hydrazine is high.
  • the reduction time is preferably 30 minutes to 300 minutes, and more preferably 90 minutes to 200 minutes.
  • the atmosphere for reduction is preferably an inert atmosphere such as nitrogen or argon.
  • the method (3) is preferable because the operation is easy and particles having a small particle diameter can be obtained.
  • the insulating region contained copper oxide and phosphorus.
  • the insulating region contains copper oxide and hydrazine or hydrazine hydrate, or the insulating region contains copper oxide and hydrazine or hydrazine hydrate and phosphorus.
  • the layer is configured such that the conductive pattern area containing copper and the insulating area containing copper oxide and hydrazine or hydrazine hydrate are adjacent to each other.
  • the layer may have a conductive pattern area containing copper, a configuration in which an insulating area containing copper oxide and hydrazine or hydrazine hydrate and phosphorus is adjacent to each other, or a conductive pattern area containing copper and phosphorus.
  • the insulating region containing copper oxide and hydrazine or hydrazine hydrate and phosphorus can also be adjacent to each other.
  • hydrazine or hydrazine hydrate can be included in the insulating region.
  • copper oxide is easily reduced to copper when exposed to light.
  • the inclusion of hydrazine or hydrazine hydrate makes it possible to reduce the resistance of copper after reduction. Hydrazine or hydrazine hydrate remains in the insulating area not irradiated with light.
  • copper in the conductive pattern area may have a structure in which fine particles containing copper are fused to each other.
  • the shape of the fine particles may not be present and all may be in a fused state.
  • a part may be in the form of fine particles, and a large part may be in a fused state.
  • the copper is preferably reduced copper as already described.
  • the conductive pattern region preferably includes a fired body obtained by firing the insulating region. Thereby, the conductivity of the conductive pattern region can be enhanced.
  • the conductive pattern region can be formed by firing the insulating region, the conductive pattern region can be easily formed, and in the present embodiment, the conductive pattern region and the insulating region are mixed.
  • the "layer" in the form can be formed with high accuracy.
  • the conductive pattern region contains at least one of copper oxide (cuprous oxide, cupric oxide, cuprous oxide), a phosphorus element, a phosphorus oxide, and a phosphorus-containing organic substance. It may be.
  • the surface side portion of the conductive pattern region may have a structure in which copper-containing fine particles are fused to each other, and the support side portion may have a structure including copper oxide or a phosphorus-containing organic substance.
  • copper oxide or a phosphorus-containing organic substance produces a strong bond between copper particles, and copper oxide or a phosphorus-containing organic substance is preferable because it can enhance the adhesion to a support or an adhesion layer.
  • the content ratio of phosphorus / copper in the conductive pattern area is preferably 0.02 or more and 0.30 or less, and more preferably 0.05 or more and 0.28 or less. More preferably, it is 0.1 or more and 0.25 or less.
  • the conductive pattern region containing copper and phosphorus and the insulating region containing copper oxide and phosphorus can be adjacent to each other. This makes it possible to simultaneously improve the conductivity in the conductive pattern region and the insulation in the insulating region.
  • the conductive pattern area it is considered that phosphorus is oxidized before copper is oxidized in the manufacturing process, so that the resistance change of the conductive pattern area can be suppressed to a low level.
  • the content of copper in the conductive pattern region is preferably 50% by volume or more, more preferably 60% by volume or more, still more preferably 70% by volume or more, and 100% by volume with respect to the unit volume. It may be.
  • the conductivity is preferably high.
  • the surface of the conductive pattern region in contact with the later-described resin layer may have a predetermined roughness or more.
  • the surface roughness Ra is preferably 20 nm or more and 500 nm or less, more preferably 50 nm or more and 300 nm or less, and still more preferably 50 nm or more and 200 nm or less.
  • the support preferably includes an adhesive layer between the layer having the conductive pattern area. That is, it is preferable that an adhesive layer is provided on the surface of the support, and a layer having a conductive pattern area is disposed on the surface of the adhesive layer.
  • the surface which a support body comprises is roughened by the contact
  • the surface of the support is roughened to firmly adhere the copper oxide and phosphorus-containing organic substance and copper in the layer disposed on the surface of the support to the surface formed by the support Can.
  • the adhesion layer may be formed by roughening the surface of the support by rough polishing treatment, sand blast treatment, chemical etching treatment, reactive ion etching treatment, plasma treatment, sputtering treatment, UV ozone treatment or the like.
  • the adhesion layer may be formed by applying a coating material to the surface of the support to roughen the surface. It can be suitably selected according to the material of a support body.
  • coating material examples include organic materials, inorganic materials, and organic-inorganic composite materials.
  • the coating material preferably has a cohesive structure.
  • the binding structure for example, a hydroxyl group (-OH group), an amino group, a thiol group, a phosphoric acid group, a phosphonic acid group, a phosphonic acid ester group, a functional group having a succinimide skeleton, a functional group having a pyrrolidone skeleton, a selenol group And polysulfide group, polyselenide group, carboxyl group, functional group having acid anhydride skeleton, sulfonic acid group, nitro group, cyano group, isocyanate group, azide group, silanol group, silyl ether group, hydrosilyl group, etc. it can.
  • the bonding structure is preferably at least one or more groups selected from the group consisting of a hydroxyl group (—OH group), an amino group, a phosphonic acid group, and a carboxylic acid group.
  • —OH group is more preferably an Ar—OH group (Ar represents aromatic) and / or a Si—OH group.
  • the coating material preferably has an Ar—O structure (Ar represents aromatic) and / or a Si—O structure from the viewpoint of adhesion.
  • the coating material may be an organic material shown in the following chemical formula group.
  • n is an integer of 1 or more
  • X is a main skeleton of the organic material
  • R is a functional group.
  • the functional group represented by R in the above chemical formula group includes, for example, hydrogen, halogen, alkyl group (eg, methyl group, isopropyl group, tertiary butyl group etc.), aryl group (eg, phenyl group, naphthyl group, thienyl group Group, etc.), haloaryl group (eg, pentafluorophenyl group, 3-fluorophenyl group, 3,4,5-trifluorophenyl group etc.), alkenyl group, alkynyl group, amido group, acyl group, alkoxy group (eg, Methoxy group etc.), aryloxy group (eg phenoxy group, naphthyl group etc.), haloalkyl group (eg perfluoroalkyl group etc.), thiocyano group
  • an organic material having an aromatic structure (Ar) can be suitably used as the organic material.
  • An organic material having an aromatic structure has high softening temperature and decomposition temperature, so that deformation of the support at the time of firing can be suppressed, and a conductive pattern disposed on the support by decomposition gas of the support It is hard to produce the tear of the layer which has a field. Therefore, a conductive film with low resistance can be obtained by firing.
  • aromatic structure examples include aromatic hydrocarbons such as benzene, naphthalene, anthracene, tetracene, pentacene, phenanthrene, pyrene, perylene, and triphenylene; and thiophene, thiazole, pyrrole, furan, pyridine, pyrazole, imidazole, pyridazine, Pyrimidines and heteroaromatics such as pyrazine can be used.
  • the number of electrons contained in the ⁇ electron system of the aromatic structure is preferably 22 or less, more preferably 14 or less, and still more preferably 10 or less.
  • the crystallinity is not too high, and a soft and highly smooth adhesion layer can be obtained.
  • part of hydrogen bonded to an aromatic ring may be substituted with a functional group.
  • halogen alkyl group (for example, methyl group, isopropyl group, tertiary butyl group and the like), aryl group (for example, phenyl group, naphthyl group, thienyl group and the like), haloaryl group (for example, pentafluoro group) Phenyl group, 3-fluorophenyl group, 3,4,5-trifluorophenyl group etc., alkenyl group, alkynyl group, amido group, acyl group, alkoxy group (eg methoxy group etc.), aryloxy group (eg A phenoxy group, a naphthyl group etc.), a haloalkyl group (for example, perfluoroalkyl group etc.), a thiocyano group, a hydroxyl group etc.
  • alkyl group for example, methyl group, isopropyl group, tertiary butyl group and the like
  • aryl group for
  • the organic material preferably has an aromatic hydroxyl group (Ar-OH group), and particularly preferably a phenol group (Ph-OH group). Further, an organic material having an Ar—O structure in which oxygen of aromatic hydroxyl group is bonded to another structure is preferable because it tends to be difficult to be decomposed at the time of firing.
  • organic material for example, polyimide, polyethylene terephthalate (PET), polyether sulfone (PES), polyethylene naphthalate (PEN), polyester, polycarbonate (PC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyacetal , Polyarylate (PAR), polyamide (PA), polyamide imide (PAI), polyether imide (PEI), polyphenylene ether (PPE), polyphenylene sulfide (PPS), polyether ketone (PEK), polyphthalamide (PPA) , Polyether nitrile (PENt), polybenzimidazole (PBI), polycarbodiimide, polysiloxane, polymethacrylamide, nitrile rubber, acrylic rubber, polyethylene Tetrafluoride, epoxy resin, phenol resin, melamine resin, urea resin, polymethyl methacrylate resin (PMMA), polybutene, polypentene, ethylene-propylene copolymer, ethylene-
  • the inorganic material examples include metals, alloys, metal oxides, metal nitrides, metal carbides, metal carbonates, and metal fluorides.
  • specific examples of inorganic materials include silicon oxide, silver oxide, copper oxide, aluminum oxide, zirconia, titanium oxide, hafnium oxide, tantalum oxide, tin oxide, calcium oxide, cerium oxide, cerium oxide, chromium oxide, cobalt oxide, holmium oxide , Lanthanum oxide, magnesium oxide, manganese oxide, molybdenum oxide, nickel oxide, antimony oxide, samarium oxide, terbium oxide, tungsten oxide, yttrium oxide, yttrium oxide, zinc oxide, indium oxide, indium tin oxide (ITO), silver fluoride, fluoride fluoride Silicon fluoride, aluminum fluoride, zirconium fluoride, titanium fluoride, hafnium fluoride, tantalum fluoride, tin fluoride, calcium fluoride, cerium fluor
  • the inorganic material having a hydroxyl group is preferable because it is excellent in adhesion to a support and a layer having a conductive pattern region.
  • metal oxides are preferred because hydroxyl groups are present on the metal oxide surface.
  • inorganic materials having a Si—O structure are more preferable.
  • the inorganic material is at least one selected from the group consisting of silicon oxide, titanium oxide, zirconia, indium tin oxide, and aluminum oxide.
  • silicon oxide and aluminum oxide are preferable.
  • the adhesion layer preferably contains fine particles having a particle diameter of 10 nm to 500 nm. Specifically, the adhesion layer preferably contains fine particles of silicon oxide or aluminum oxide having a particle diameter of 10 nm to 500 nm. This makes it possible to increase the specific surface area when forming a layer having a conductive pattern region, and to improve the adhesion to the layer having a conductive pattern region.
  • the particles may be porous particles.
  • An inorganic semiconductor can also be used as the inorganic material.
  • the inorganic semiconductor material include elemental semiconductors, oxide semiconductors, compound semiconductors, and sulfide semiconductors.
  • Examples of single element semiconductors include silicon and germanium.
  • oxide semiconductor for example, IGZO (indium-gallium-zinc oxide), IZO (indium-zinc oxide), zinc oxide, indium oxide, titanium oxide, titanium oxide, tin oxide, tungsten oxide, niobium oxide, and first oxide Copper etc. are illustrated.
  • Examples of compound semiconductors include, for example, gallium arsenide (GaAs), gallium arsenide phosphorus (GaAsP), gallium phosphorus (GaP), cadmium selenium (CdSe), silicon carbide (SiC), indium antimony (InSb), gallium nitride and the like. Be done.
  • Examples of sulfide semiconductors include molybdenum sulfide and cadmium sulfide.
  • organic-inorganic composite material for example, an organic material in which inorganic fine particles are dispersed, and an organic metal compound can be used.
  • inorganic fine particles particles of the above-described inorganic material can be used.
  • organic metal compound include silicates, titanates, and aluminates.
  • silicate methyl silicate, ethyl silicate or the like can be used.
  • the thickness of the adhesion layer is preferably 20 ⁇ m or less. Thereby, the warp of the support can be prevented. Further, the thickness of the adhesion layer is more preferably 10 ⁇ m or less, still more preferably 1 ⁇ m or less, and from the viewpoint of adhesion, preferably 0.01 ⁇ m or more, and 0.05 ⁇ m or more. Is more preferably 0.1 ⁇ m or more.
  • the adhesion layer may be formed of a single material, or may be formed by mixing or laminating multiple types of materials.
  • the adhesion layer may comprise a primer material.
  • a layer made of a primer material may be disposed between a support and a layer made of a coating material, or between a layer made of a coating material and a layer having a conductive pattern area.
  • the adhesion layer includes a layer made of a primer material
  • adhesion tends to be further improved.
  • the layer of primer material can be formed, for example, by a primer treatment that forms a thin layer of primer material on the surface.
  • the primer material preferably has a binding structure.
  • the bonding structure includes the bonding structure described in the item of (Coating material) above.
  • the bondable structure is introduced into the adhesion layer, and high adhesion tends to be obtained.
  • a layer made of a coating material may be disposed to form an adhesion layer.
  • a layer made of a coating material may be disposed on a support and then primer treatment may be performed on the layer to form an adhesive layer.
  • the adhesion layer may be formed by mixing the coating material and the primer material in advance and then placing the mixture on the support, and the layer made of the primer material is disposed on the support to form the adhesion layer. It is also good.
  • the primer treatment on the layer made of the coating material can increase the density of the bonding structure on the surface, resulting in higher adhesion.
  • primer material examples include a silane coupling agent, a phosphonic acid-based low molecular weight material, and a thiol-based material.
  • silane coupling agent for example, functional groups such as vinyl group, amino group, epoxy group, styryl group, methacryl group, acrylic group, isocyanurate group, ureido group, thiol group, isocyanate group and phosphonic acid group at the end
  • functional groups such as vinyl group, amino group, epoxy group, styryl group, methacryl group, acrylic group, isocyanurate group, ureido group, thiol group, isocyanate group and phosphonic acid group at the end
  • functional groups such as vinyl group, amino group, epoxy group, styryl group, methacryl group, acrylic group, isocyanurate group, ureido group, thiol group, isocyanate group and phosphonic acid group at the end
  • phosphonic acid group at the end The compound which it has is mentioned.
  • silane coupling agent examples include vinylmethoxysilane, vinylethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxy Propyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane , 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane , N-2- (aminoethyl)
  • the phosphonic acid material for example, a vinyl group, an amino group, an epoxy group, a styryl group, a methacryl group, an acrylic group, an isocyanurate group, a ureido group, a thiol group, an isocyanate group, a silyl group, a silanol group, a silyl ether at the terminal
  • the compound which has functional groups, such as a group, is mentioned.
  • phosphonic acid-based materials include aminomethylphosphonic acid, 2-aminoethylphosphonic acid, O-phosphoryl ethanolamine, 12-aminododecylphosphonic acid, 12-aminoundecylphosphonic acid hydrochloride, 6-aminohexyl Phosphonic acid, 6-aminohexyl phosphonic acid salt, 12-azidododecylphosphonic acid, (12-dodecylphosphonic acid) N, N-dimethyl-N-octadecylammonium bromide, (12-dodecylphosphonic acid) N, N-dimethyl -N-octadecylammonium chloride, (12-dodecylphosphonic acid) pyridinium bromide, (12-dodecylphosphonic acid) triethylammonium bromide, (12-dodecylphosphonic acid) triethylammonium chloride, 11-
  • thiol material for example, a vinyl group, an amino group, an epoxy group, a styryl group, a methacryl group, an acrylic group, an isocyanurate group, a ureido group, an isocyanate group, a silyl group, a silanol group, a silyl ether group, a phosphonic acid at the terminal
  • a vinyl group an amino group, an epoxy group, a styryl group, a methacryl group, an acrylic group, an isocyanurate group, a ureido group, an isocyanate group, a silyl group, a silanol group, a silyl ether group, a phosphonic acid at the terminal
  • a vinyl group for example, a vinyl group, an amino group, an epoxy group, a styryl group, a methacryl group, an acrylic group, an isocyanurate group, a ureido group, an isocyanate group
  • thiol material examples include 4-cyano-1-butanethiol, 1,11-undecanedithiol, 1,16-hexadecanedithiol, 1,2-ethanedithiol, 1,3-propanedithiol, 1, 4-butanedithiol, 1,5-pentanedithiol, 1,6-hexanedithiol, 1,8-octanedithiol, 1,9-nonanedithiol, 2,2 '-(ethylenedioxy) diethanethiol, 2,3 -Butanedithiol, 5,5'-bis (mercaptomethyl) -2,2'-bipyridine, hexa (ethylene glycol) dithiol, tetra (ethylene glycol) dithiol, benzene-1,4-dithiol, (11-mercaptoundecyl ) Hexa (ethylene glycol), (11-mercaptoundecyl)
  • Coating, vapor deposition, sol-gel method etc. may be mentioned as a method of forming the layer made of the coating material.
  • the thickness of the layer made of the coating material is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 1 ⁇ m or less from the viewpoint of preventing warping of the support; preferably 0.01 ⁇ m or more, more preferably It is 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the phosphorus-containing organic substance may have one or more bonding structures.
  • the bonding structure includes the bonding structure described in the item of (Coating material) above.
  • the bonding structure one having at least one selected from the group consisting of a hydroxyl group, an amino group, a phosphonic acid group, a phosphonic acid ester group, and an isocyanate group is particularly preferable.
  • the layer having a conductive pattern region contains a phosphorus-containing organic substance having such a bonding structure, the adhesion to the adhesion layer tends to be good.
  • FIG. 3 is a schematic cross-sectional view showing a structure having a conductive pattern region according to the second embodiment.
  • the structure 20 having a conductive pattern area has a support 21 and a layer 24 disposed on the surface of the support 21.
  • the insulating region 22 containing copper oxide and phosphorus and the conductive pattern region 23 containing reduced copper are disposed adjacent to each other.
  • an oxygen barrier layer 25 is provided to cover the layer 24.
  • the oxygen barrier layer 25 is light transmissive.
  • the insulating region 22 may be configured to include copper oxide and hydrazine or hydrazine hydrate, or may be configured to include copper oxide, phosphorus and hydrazine or hydrazine hydrate.
  • the conductive pattern area 23 may be configured to contain copper and phosphorus.
  • Layer 24 in the present embodiment has a configuration in which conductive pattern region 23 containing copper and insulating region 22 containing copper oxide and phosphorus are adjacent to each other, or conductive pattern region 23 containing copper, A configuration in which copper oxide and insulating region 22 containing hydrazine or hydrazine hydrate are adjacent to each other, or conductive pattern region 23 containing copper and phosphorus and insulating region 22 containing copper oxide and phosphorus Adjacent configurations can be presented.
  • the layer 24 may have a structure in which the conductive pattern area 23 containing copper and the insulating area 22 containing copper oxide and hydrazine or hydrazine hydrate and phosphorus are adjacent to each other, or a conductive pattern containing copper and phosphorus Alternatively, the region 23 and the insulating region 22 containing copper oxide and hydrazine or hydrazine hydrate and phosphorus can be adjacent to each other.
  • the structural body 20 in the second embodiment differs from the structural body 10 in the first embodiment in that a resin layer (oxygen barrier layer 25) is provided.
  • the conductive pattern area containing copper can be isolated by the insulating area containing copper oxide and the phosphorus-containing organic substance, the unbaked portion of the layer 24 is removed for manufacturing. There is no need. Therefore, the manufacturing process can be reduced, and the manufacturing cost can be reduced because a solvent or the like is unnecessary. Further, the insulating region is used to insulate the conductive pattern region, the insulating region is less likely to be cracked, and the reliability can be improved.
  • the layer 24 is covered with the resin layer (oxygen barrier layer 25), the conductive pattern area and the insulating area can be protected from external stress, and the long-term reliability of the structure having the conductive pattern area can be improved.
  • the structures of the support 21, the insulating region 22, the conductive pattern region 23, and the layer 24 constituting the structure 20 are the same as those of the support 11, the insulating region 12, the conductive pattern region 13, and the layer 14 described above. Each configuration of applies.
  • the structure 20 can also include the above-described adhesion layer.
  • the resin layer will be described in detail. ⁇ Resin layer> As shown in FIG. 3, the resin layer is disposed so as to cover the surface of the layer 24.
  • the oxygen barrier layer 25 can prevent the applied layer (described later) from contacting oxygen during light irradiation in the method of manufacturing the structure 20 described later, and can promote reduction of copper oxide. This eliminates the need for equipment for making the periphery of the coating layer an oxygen-free or low-oxygen atmosphere at the time of light irradiation, for example, a vacuum atmosphere or an inert gas atmosphere, thereby reducing manufacturing costs.
  • the oxygen barrier layer 25 can prevent the conductive pattern area 23 from peeling or scattering due to the heat of light irradiation or the like. Thereby, the structure 20 can be manufactured with high yield.
  • FIG. 4 is a schematic cross-sectional view showing another example of a structure having a conductive pattern region which is partially different from FIG. 3.
  • the structure 30 having the conductive pattern area shown in FIG. 4 is the same as FIG. 3 except that the sealing material layer 31 covers the surface of the layer 24 instead of the oxygen barrier layer 25 (see FIG. 3).
  • the structure is the same as that of the structure 20 shown.
  • the sealing material layer 31 is newly disposed, for example, after the oxygen barrier layer 25 is peeled off.
  • the oxygen barrier layer 25 (see FIG. 3) mainly plays an important role in manufacturing.
  • the encapsulant layer 31 protects the conductive pattern area 23 from external stress in the finished product (the structure 30 having the conductive pattern area itself and a product including the same) after manufacture, The long-term stability of the structure 30 having the conductive pattern area can be improved.
  • the sealing material layer 31 which is an example of a resin layer has a moisture permeability of 1.0 g / m 2 / day or less. This is to ensure long-term stability, and by preventing the moisture mixing from the outside of the sealing material layer 31 and suppressing the oxidation of the conductive pattern area 23 by sufficiently lowering the moisture permeability. is there.
  • the sealing material layer 31 is an example of a functional layer that gives a function to the structure 30 having a conductive pattern area after peeling off the oxygen barrier layer 25, and in addition to this, a structure 30 having a conductive pattern area.
  • the structure 20 can also be made rigid by using a tough resin to impart anti-scratch properties when handling, or providing anti-staining properties to protect it from contamination from the outside world.
  • the oxygen barrier layer 25 (see FIG. 3) is disposed so as to cover the coating layer, and after the light baking process, the oxygen barrier layer
  • the sealing material layer 31 which is an example of another resin layer
  • the structure 20 can be said to be a precursor structure for obtaining the structure 30 (see FIG. 4) having a conductive pattern region as a finished product.
  • the structure 20 in which the oxygen barrier layer 25 is left as it is may be used as it is as a finished product.
  • fusing point is 150 to 300 degreeC of resin which comprises the above-mentioned resin layer.
  • a safety factor of twice or more of the actual use temperature range (up to 75 ° C.) can be secured, and it can be heat-melted to form a laminate coating when forming a resin layer. .
  • an opening in the resin layer is preferable to provide an opening in the resin layer. This is for external electrical connection to the conductive pattern area, and the electrical contact portion can be attached to the opening by a method such as metal plating or soldering.
  • the resin layer will be described in more detail.
  • the oxygen barrier layer prevents oxygen from entering the coating layer from the outside during irradiation of light.
  • the materials listed below can be used as the material of the oxygen barrier layer.
  • an adhesive layer may be provided between the oxygen barrier layer and the coating layer, and the oxygen barrier layer may be attached to the coating layer.
  • the sealing material layer which is an example of another resin layer ensures long-term stability.
  • the sealing material layer preferably has a sufficiently low moisture permeability. This is to prevent the mixing of moisture from the outside of the sealing material layer and to suppress the oxidation of the conductive pattern area.
  • the moisture permeability of the encapsulant layer is preferably 1.0 g / m 2 / day or less, more preferably 0.5 g / m 2 / day or less, and still more preferably 0.1 g / m 2 / day. It is below.
  • the material that can be used for the encapsulant layer can be selected, for example, from the same materials as the above-mentioned oxygen barrier layer, and further, fine particles of silicon oxide or aluminum oxide can be mixed with those materials,
  • the moisture permeability can be reduced by providing a layer made of silicon oxide or aluminum oxide as a moisture barrier layer on the surface of the above material.
  • the encapsulant layer does not have to be made of a single material, and a plurality of the aforementioned materials may be used.
  • the structure having the conductive pattern area described above is manufactured using a laminate as an intermediate described below. That is, in order to obtain a structure having a desired conductive pattern area, it is necessary to optimize the configuration of the laminate as an intermediate. So, below, the composition of the layered product in this embodiment is explained.
  • the inventors of the present invention disposed a coated layer containing copper oxide on the surface of the support, and selectively irradiated the coated layer with light to reduce the copper oxide to copper to form a conductive pattern area. Under the present circumstances, if the electrical insulation property of the area
  • the laminate 40 according to the present embodiment includes a support 41, and an application layer 44 containing copper oxide and phosphorus disposed on the surface formed by the support 41, and an application layer. And an oxygen barrier layer 45, which is an example of a resin layer disposed to cover 44.
  • the oxygen barrier layer 45 is light transmissive.
  • an adhesive layer 46 is disposed between the coating layer 44 and the oxygen barrier layer 45 as needed.
  • the coating layer 44 is covered with a resin layer (oxygen barrier layer 45), the coating layer 44 can be prevented from being exposed to oxygen during light baking, and the reduction of copper oxide can be promoted. As a result, equipment for making the periphery of the coating layer 44 an oxygen-free or low-oxygen atmosphere at the time of light irradiation becomes unnecessary, and the manufacturing cost can be reduced. Therefore, by using the laminate of the present embodiment, it is possible to manufacture a desired laminate with a conductive pattern region accurately and at low cost.
  • the respective structures of the support 11 and the resin layer (oxygen barrier layer 25) described above are applied to the support 41 constituting the laminate 40 and the resin layer (the oxygen barrier layer 45 as an example in FIG. 5). Ru. Also in the laminate 40, the adhesion layer described above can be included between the support 41 and the application layer 44.
  • the application layer 44 is formed by applying a dispersion of a phosphorus-containing organic substance, in particular, a phosphorus-containing organic substance, among the phosphorus that also acts as a dispersant, on the surface of the support 41.
  • the application layer 44 is configured to have substantially the same composition as the insulating region 22 of FIG.
  • the coating layer 44 similarly to the insulating regions 12 and 22 shown in FIG. 1 and FIG. 3, in the coating layer 44, the microparticles containing copper oxide and the phosphorus-containing organic substance are mixed, and the content of the phosphorus-containing organic substance is the entire copper oxide microparticles.
  • the product is 100 parts by volume, it is preferably 5 parts by volume or more and 900 parts by volume or less. As a result, it is possible to obtain the coated layer 44 which is highly flexible and hardly cracked even when bent, and which can form a good conductive pattern region by firing.
  • the coating layer 44 further includes copper particles, and the mass ratio of copper particles to copper oxide fine particles in the coating layer is preferably 1.0 or more and 7.0 or less. Thereby, while being able to suppress generation
  • fine-particles with respect to the application layer 44 is 10 volume% or more and 90 volume% or less.
  • the average particle diameter (average primary particle diameter) of the copper oxide fine particle contained in the application layer 44 is 1 nm or more and 50 nm or less. Thereby, the baking temperature for the coating layer 44 can be lowered, and the dispersibility of the copper oxide fine particles in the coating layer 44 can be improved.
  • the coating layer 44 may be configured to include copper oxide and hydrazine or hydrazine hydrate, or may be configured to include copper oxide and a phosphorus-containing organic substance and hydrazine or hydrazine hydrate.
  • the inclusion of hydrazine or hydrazine hydrate facilitates reduction of copper oxide to copper when illuminated.
  • the adhesive layer 46 is disposed between the coating layer 44 and the oxygen barrier layer 45 as needed, and the oxygen barrier layer 45 is bonded to the surface of the coating layer 44.
  • the adhesive strength of the adhesive layer 46 is preferably 5 mN / 10 mm or more and 10 N / 10 mm or less.
  • the oxygen barrier layer 45 can be fixed to the application layer 44 via the adhesive layer 46, and the oxygen barrier layer 45 can be easily peeled off in the subsequent steps. Can.
  • the oxygen barrier layer 45 can be firmly fixed to the application layer 44 via the adhesive layer 46.
  • the adhesive layer 46 is an adhesive sheet, an adhesive film, or an adhesive material.
  • the pressure-sensitive adhesive contained in the pressure-sensitive adhesive layer 46 is not particularly limited, and examples thereof include acrylate resin, epoxy resin, silicone resin and the like.
  • the oxygen barrier layer 45 is a resin film provided with the adhesive layer 46, it is preferable to bond the resin film to the surface of the application layer 44 because the oxygen barrier layer 45 can be easily formed. Further, by selecting the adhesive force as described above, the oxygen barrier layer 45 can be peeled off as needed. Thus, the structure 10 shown in FIG. 2 can be obtained by peeling the oxygen barrier layer 45.
  • the adhesive layer can be omitted.
  • a layer containing silicon oxide or aluminum oxide between the coating layer 44 and the resin layer.
  • a layer containing silicon oxide or aluminum oxide can function as a moisture barrier layer, and the moisture permeability can be reduced.
  • FIG. 6 is a cross-sectional view of a structure 50 having a conductive pattern region formed using the laminate shown in FIG.
  • a structure 50 having a conductive pattern region includes a support 51, an insulating region 52 containing copper oxide and a phosphorus-containing organic substance, and reduced copper on the surface formed by the support 51.
  • a layer 54 disposed adjacent to each other, a conductive pattern area 53, an oxygen barrier layer 55 which is an example of a resin layer provided so as to cover the layer 54, and between the layer 54 and the oxygen barrier layer 55 And an adhesive layer 56 interposed therebetween.
  • a structure 50 having a conductive pattern area shown in FIG. 6 has basically the same structure as the structure 20 shown in FIG. 3, but in FIG. 6, an adhesive layer 56 is provided between the layer 54 and the oxygen barrier layer 55. It differs in the point to intervene.
  • the adhesion between the oxygen barrier layer 55 and the layer 54 can be improved by having the adhesive layer 56, and a structure 50 having a conductive pattern region excellent in durability can be realized.
  • the moisture barrier property can also be improved.
  • the oxygen barrier layer 55 can be replaced with another resin layer as needed. At this time, the oxygen barrier layer 55 can be easily peeled off from the layer 54 by using an adhesive having a weak adhesive strength in advance for the adhesive layer 56.
  • An adhesive layer 56 may be interposed between another resin layer and the layer 54, or a layer containing silicon oxide or aluminum oxide may be interposed. In the case where another layer is directly bonded to the surface of the layer 54 without interposing the adhesive layer 56 or a layer containing silicon oxide or aluminum oxide, it has a conductive pattern region according to the structure shown in FIG. The structure 50 is obtained.
  • the inventors of the present invention have developed a copper wiring composed of a conductive pattern region among the above-described structures. That is, in the present embodiment, the conductive pattern region of the layer in which the conductive pattern region and the insulating region are adjacent to each other is the copper wiring described below. In addition, in this embodiment, the insulating region can be removed to obtain a copper wiring.
  • the copper interconnection in the present embodiment contains reduced copper, phosphorus and carbon in which copper oxide is reduced.
  • the element concentration ratio of phosphorus / copper is 0.02 or more and 0.30 or less, and the element concentration ratio of carbon / copper is 1.0 or more and 6.0 or less.
  • the arithmetic mean roughness Ra of the surface of the copper wiring is preferably 20 nm or more and 500 nm or less.
  • the content of the phosphorus element is preferably in the range of 0.02 or more and 0.30 or less with respect to the copper element.
  • the range is more preferably 0.05 or more and 0.28 or less, and still more preferably 0.1 or more and 0.25 or less.
  • the content of the carbon element is preferably in the range of 1.0 or more and 6.0 or less with respect to the element of copper.
  • the range is more preferably 1.5 or more and 5.5 or less, and still more preferably 2.0 or more and 5.0 or less.
  • Ra is preferably 20 nm or more and 500 nm or less. 50 nm or more and 300 nm or less are more preferable, and 50 nm or more and 200 nm or less are more preferable.
  • Ra is arithmetic mean roughness of the copper wiring surface, and when covering a copper wiring with a resin layer, it points out the surface roughness of the surface which contacts a resin layer. Adhesiveness with a resin layer can be improved by Ra being 20 nm or more and 500 nm or less, which is preferable.
  • the copper wiring may contain nitrogen.
  • the element concentration ratio of nitrogen / copper is preferably 0.04 or more and 0.6 or less, more preferably 0.1 or more and 0.55 or less, and 0.2 or more and 0.5 or less It is further preferred that By setting the element concentration ratio of nitrogen / copper to 0.04 or more, the corrosion resistance of the copper wiring can be improved, and by setting the element concentration ratio of nitrogen / copper to 0.6 or less, the resistance of the wiring can be improved. The value can be lowered, which is preferable.
  • the nitrogen is derived from the residue generated when hydrazine or hydrazine hydrate in the coating layer reduces copper oxide.
  • the copper wiring contains reduced copper, phosphorus and carbon in which copper oxide is reduced, and the respective element concentration ratio is in the range of 0.02: 1: 1 to 0.3: 6: 1 of phosphorus: carbon: copper. It is preferably inside. More preferably, it is in the range of 0.05: 1.5: 1 to 0.28: 5.5: 1, and it is in the range of 0.1: 2: 1 to 0.25: 5: 1. Is more preferred. In addition, the said range is the ratio which set element concentration of copper to one. By containing reduced copper, phosphorus and carbon in this range, the resistance value of the wiring can be lowered, and both the suppression of copper oxidation and the flexibility of copper can be supported at the maximum.
  • the copper wiring contains reduced copper, phosphorus, carbon and nitrogen in which copper oxide is reduced, and the respective element concentration ratios are: phosphorus: carbon: nitrogen: copper, 0.02: 1: 0.04: 1 to 0 It is preferable to be in the range of .3: 6: 0.6: 1. More preferably, it is in the range of 0.05: 1.5: 0.1: 1 to 0.28: 5.5: 0.55: 1, and 0.1: 2: 0.2: 1 to 0. More preferably, it is within the range of .25: 5: 0.5: 1. In addition, the said range is the ratio which set element concentration of copper to one. By containing reduced copper, phosphorus, carbon and nitrogen in this range, the resistance value of the wiring can be lowered, and both the oxidation inhibition of copper, the flexibility of copper and the corrosion resistance can be supported at the maximum.
  • the method of manufacturing the first structure 10 mainly includes the following steps. (A) disposing a coating layer containing copper oxide and a phosphorus-containing organic substance on the surface of the support; (B) The coated layer is selectively irradiated with a light beam to reduce the copper oxide to copper, and an insulating region containing copper oxide and the phosphorus-containing organic substance on the surface formed by the support and the support; Obtaining a structure having a conductive pattern area comprising: a conductive pattern area including; and a layer disposed adjacent to each other.
  • a coating layer containing copper oxide and hydrazine or hydrazine hydrate may be disposed on the surface of the support.
  • a coating layer containing copper oxide, a phosphorus-containing organic substance, and hydrazine or hydrazine hydrate may be disposed on the surface of the support.
  • a coated layer containing copper oxide and phosphorus is disposed on the surface formed by the support.
  • this method (a) a method of applying a dispersion containing copper oxide and a phosphorus-containing organic substance, (b) a method of scattering copper oxide fine particles and then applying a phosphorus-containing organic substance, (c) a phosphorus-containing organic substance And then the copper oxide fine particles are dispersed.
  • the method of (a) is mentioned as an example and demonstrated, it is not limited to this.
  • a copper oxide dispersion is prepared by dispersing copper oxide fine particles together with a phosphorus-containing organic substance in a dispersion medium.
  • the copper oxide fine particles synthesized by the above method (3) are soft aggregates, and since they are not suitable for coating as they are, they need to be dispersed in a dispersion medium.
  • separation of the synthesis solution and the copper oxide fine particles is performed by a known method such as, for example, centrifugation.
  • the dispersion medium and the phosphorus-containing organic substance are added to the obtained copper oxide fine particles, and stirred by a known method such as a homogenizer, for example, to disperse the copper oxide fine particles in the dispersion medium.
  • the phosphorus-containing organic substance according to the present embodiment functions as a dispersant.
  • other dispersants may be added as long as the electrical insulating properties of the insulating region (the insulating region 12 shown in FIG. 2) are not affected.
  • the copper oxide fine particles may be difficult to disperse, and the dispersion may be insufficient.
  • substitution with a desired dispersion medium and concentration to a desired concentration are performed.
  • One example is a method of repeating concentration with a UF membrane and dilution and concentration with a desired dispersion medium.
  • a thin film made of the dispersion according to the present embodiment is formed on the surface of the support as described above. More specifically, for example, the dispersion is coated on a support, and if necessary, the dispersion medium is removed by drying to form a coated layer.
  • the formation method of the said coating layer is not specifically limited, Coating methods, such as a die coat, spin coat, a slit coat, a bar coat, a knife coat, a spray coat, a dip coat, can be used. It is desirable to apply the dispersion with uniform thickness on the support using these methods.
  • the oxygen barrier layer is disposed to cover the coating layer disposed on the support.
  • the arrangement of the oxygen barrier layer is not essential.
  • the copper oxide in the coating layer is reduced to form copper particles, and heating is performed under the condition that integration of the produced copper particles occurs by fusion.
  • a process is performed to form a conductive pattern area. This process is called firing process.
  • a selective light irradiation method is used as a method of baking treatment.
  • the light baking method for example, a flash light method or a laser light method using a discharge tube such as xenon as a light source is applicable.
  • a flash light method or a laser light method using a discharge tube such as xenon as a light source is applicable.
  • light of high intensity can be exposed for a short time, and the coating layer formed on the support can be raised to a high temperature for a short time to be baked. Since the baking time is short, damage to the support is small, and application to a resin film substrate having low heat resistance is possible.
  • the flash light method is, for example, a method of using a xenon lamp (discharge tube) to discharge electric charges stored in a capacitor instantaneously.
  • a pulse light xenon lamp light
  • the exposure dose can be adjusted by the light intensity, the light emission time, the light irradiation interval and the number of times.
  • the light emission source is different, the same effect can be obtained by using a laser light source.
  • the laser light source in addition to the adjustment item of the flash light system, there is freedom of wavelength selection, and it is possible to select in consideration of the light absorption wavelength of the coating layer or the absorption wavelength of the support.
  • the laser beam system exposure by beam scanning is possible, adjustment of the exposure range is easy, light irradiation (drawing) can be selectively performed on the coating layer without using a mask.
  • YAG yttrium aluminum garnet
  • YVO yttrium vanadate
  • Yb ytterbium
  • semiconductor lasers GaAs, GaAlAs, GaInAs
  • carbon dioxide gas etc.
  • the laser not only the fundamental wave but also a harmonic may be extracted and used as needed.
  • the light beam is preferably a laser beam having a central wavelength of 355 nm or more and 532 nm or less.
  • a central wavelength 355 nm or more and 532 nm or less.
  • the support transparent to light, the light passes through the support, so that it is possible to appropriately fire part of the coating layer.
  • one side of a support body or a coating layer shall be light transmittance, and a light ray will be permeate
  • the oxygen barrier layer is disposed on the surface of the coating layer, after the conductive pattern region is formed, the oxygen barrier layer is removed, whereby the structure 10 shown in FIG. 2 can be obtained.
  • FIG. 7 is an explanatory view showing each step of the method for manufacturing a support with a conductive pattern region according to the first embodiment.
  • copper acetate is dissolved in a mixed solvent of water and propylene glycol (PG), and hydrazine or hydrazine hydrate is added and stirred.
  • PG propylene glycol
  • dispersion I is applied onto a PET support (described as “PET” in FIG. 7 (h)) by a spray coating method, and contains copper oxide and phosphorus.
  • a coated layer containing an organic substance (described as “Cu 2 O” in FIG. 7 (h)) is formed.
  • FIG. 7 (i) of FIG. 7 laser irradiation is performed on the coating layer to selectively bake part of the coating layer, and copper oxide is described as copper (in FIG. 7 (i), described as “Cu” Reduced to As a result, in FIG. 7 (j), an insulating region containing copper oxide and phosphorus (denoted as “A” in FIG. 7 (j)) and a conductive pattern region containing copper (FIG. 7 (j)) In 7 (j), a structure having a conductive pattern area is obtained, in which layers are disposed adjacent to each other as "B".
  • the insulating region may be further removed by cleaning. It is possible to obtain a form in which a copper wiring (denoted as "C" in FIG. 7 (K)) is patterned on a support.
  • the copper wiring C is the same layer as the conductive pattern area B.
  • it can seal by the 2nd resin layer (it describes as "D" in FIG. 7 (l)) on the support body between copper wiring C on copper wiring C's.
  • the second resin layer D can be formed to cover at least the copper wiring C as the conductive pattern area B.
  • the second resin layer corresponds to the “other resin layer” mentioned above.
  • water or an alcohol such as ethanol, propanol, butanol, isopropyl alcohol, methanol, ethylene glycol or glycerin, or an organic solvent such as ketones, esters or ethers can be used.
  • water, ethanol, propanol, butanol and isopropyl alcohol are preferred in view of the cleaning performance of the insulating region.
  • the laminated body 40 as shown in FIG. 5 is not used.
  • structure 10 is possible.
  • equipment for a vacuum atmosphere or an inert gas atmosphere is not required, and the manufacturing cost of a structure having a conductive pattern region can be reduced. You can get the benefits.
  • the method of manufacturing a structure having the second conductive pattern region has the following steps.
  • a coating layer containing copper oxide and hydrazine or hydrazine hydrate may be disposed on the surface of the support.
  • a coating layer containing copper oxide, a phosphorus-containing organic substance, and hydrazine or hydrazine hydrate may be disposed on the surface of the support.
  • step (C) is the same as the step (A) described above.
  • step (D) a resin layer is formed on the surface of the coating layer.
  • the method of manufacturing the laminate 40 includes a step of disposing a coating layer containing copper oxide and a phosphorus-containing organic substance on the surface of the support, and a resin layer (oxygen barrier layer 45) so as to cover the coating layer.
  • the method of manufacturing the laminate 40 includes a step of disposing a coating layer containing copper oxide and hydrazine or hydrazine hydrate on the surface of the support, and a resin layer (oxygen Disposing a barrier layer 45).
  • the oxygen barrier layer 45 is attached to the application layer 44 via the adhesive layer 46.
  • the adhesive layer 46 is not essential.
  • the adhesive layer 46 is not necessarily required.
  • the material constituting the oxygen barrier layer can be heated and softened, and pressed against the coating layer while applying pressure to laminate.
  • a resin layer is an oxygen barrier layer, Comprising: It is a resin film provided with the adhesion layer. Thereby, by sticking a resin film on the surface of the application layer 44, the laminated body 40 shown in FIG. 5 can be manufactured simply and appropriately.
  • an adhesive is not specifically limited, An acrylate resin, an epoxy resin, a silicone resin, etc. can be illustrated.
  • the adhesive strength of the adhesive layer is preferably 5 mN / 10 mm or more and 10 N / 10 mm or less.
  • the oxygen barrier layer can be appropriately fixed to the coating layer via the adhesive layer, and the oxygen barrier layer can be easily peeled off in the subsequent steps.
  • the oxygen barrier layer can be firmly fixed to the coating layer via the adhesive layer.
  • the above-described firing process is performed on the laminate formed through the steps (C) and (D) to form a conductive pattern region.
  • either the oxygen barrier layer or the support is made to be light transmissive.
  • a light ray can permeate
  • the structure 20 shown in FIG. 3 and the structure 50 having the conductive pattern region shown in FIG. 6 can be manufactured.
  • the oxygen barrier layer may be replaced with another resin layer as needed.
  • the oxygen barrier layer is dissolved and removed with a solvent.
  • the oxygen barrier layer can be peeled off without using a solvent by peeling off the oxygen barrier layer from the layer having the conductive pattern region by using an adhesive having weak adhesive power in advance.
  • a sealing material layer which is an example of another resin layer is disposed to cover the layer having the exposed conductive pattern area.
  • the sealing material layer can be formed by bonding a resin sheet made of the material forming the above-mentioned sealing material layer to the coating layer with a separately prepared adhesive.
  • the sealing material layer may be formed by heating and softening the above-described sealing material layer and pressing it against the coating layer while applying pressure and laminating.
  • a curable material that is photocured or thermally cured is selected, and a coating layer made of the curable material is formed on the layer having the exposed conductive pattern area, and then cured by light or heat to form It is also good.
  • FIG. 8 is an explanatory view showing each step of a method of manufacturing a support with a conductive pattern region according to the present embodiment.
  • copper acetate is dissolved in a mixed solvent of water and propylene glycol (PG), and hydrazine or hydrazine hydrate is added and stirred.
  • PG propylene glycol
  • dispersion I is applied onto a PET support (described as “PET” in FIG. 8 (h)) by a spray coating method, and contains copper oxide and phosphorus.
  • a coated layer containing an organic substance (described as “Cu 2 O” in FIG. 8 (h)) is formed.
  • an oxygen barrier layer (denoted as “barrier” in FIG. 8 (i)) is disposed on the coating layer.
  • FIG. 8 (j) laser irradiation is performed on the coating layer through the oxygen barrier layer to selectively bake part of the coating layer, and copper oxide is contained in copper (FIG. 8 (j)). , Described as "Cu”).
  • FIG. 8 (k) an insulating region containing copper oxide and a phosphorus-containing organic substance (described as “A” in FIG. 8 (k)) and a conductive pattern region containing copper on the support A layer is obtained in which (shown as “B” in FIG. 8 (k)) is disposed adjacent to each other.
  • FIGS. 8 (l) and 8 (m) the oxygen barrier layer is removed by a solvent to expose a layer in which the conductive pattern area and the insulating area are adjacent to each other.
  • FIG. 8N the surface of the layer in which the conductive pattern region and the insulating region are adjacent to each other is covered with a sealing material layer (described as “sealing” in FIG. 8N).
  • a sealing material layer described as “sealing” in FIG. 8N.
  • the insulating region may be further removed by cleaning. It is possible to obtain a form in which a copper wiring (denoted as "C" in FIG. 8 (o)) is patterned on a support.
  • the copper wiring C is the same layer as the conductive pattern area B.
  • it can seal by the 2nd resin layer (it describes as "D" in FIG. 8 (p)) over the support body between copper wiring C and copper wiring C.
  • the second resin layer D can be formed to cover at least the copper wiring C as the conductive pattern area B.
  • the second resin layer corresponds to the “other resin layer” mentioned above.
  • water or an alcohol such as ethanol, propanol, butanol, isopropyl alcohol, methanol, ethylene glycol or glycerin, or an organic solvent such as ketones, esters or ethers can be used.
  • water, ethanol, propanol, butanol and isopropyl alcohol are preferred in view of the cleaning performance of the insulating region.
  • the insulating area can be selectively washed and removed by using an etching solution which does not melt the conductive pattern region and dissolves the insulating region.
  • the boundary between the conductive pattern area and the insulating area can be clearly distinguished, and selective removal of only the above-described insulating area can be appropriately performed.
  • the second surface is covered so as to cover the surface of the conductive pattern region.
  • a resin layer may be disposed. Thereby, the insulation on the conductive pattern area and between the conductive pattern areas can be secured. Further, the durability of copper wiring as a barrier film is also effective.
  • the "other resin layer" mentioned above is applicable to a 2nd resin layer.
  • the insulating region can be removed, and the copper wiring can be left on the support.
  • a conductive pattern region containing reduced copper oxide, reduced phosphorus, and carbon, which is left on a support, can be manufactured as the copper wiring of the present embodiment.
  • the conductive pattern area can be regarded as a copper wiring without removing the insulating area.
  • the element concentration ratio of phosphorus / copper is 0.02 or more and 0.30 or less
  • the element concentration ratio of carbon / copper is 1.0 or more and 6.0 or less.
  • Ra can be 20 nm or more and 500 nm or less.
  • an application layer containing copper oxide and a phosphorus-containing organic substance is disposed, and light is irradiated to reduce copper from reduced copper oxide. It can be manufactured by obtaining.
  • the element concentration ratio of phosphorus / copper can be adjusted by adjusting the ratio of copper oxide to the phosphorus-containing organic substance.
  • a coating layer containing copper oxide and an organic substance is disposed, and light is irradiated to obtain reduced copper from copper oxide. can do.
  • the element concentration ratio of carbon / copper can be adjusted by adjusting the ratio of copper oxide to the organic substance.
  • desired Ra can be obtained, for example, by adjusting the light irradiation intensity and irradiation speed and irradiation interval when irradiating light. .
  • the light transmittance of the resin layer or the support at a wavelength of 445 nm is preferably 30% or more, and 40% or more. More preferably, 50% or more is more preferable. The upper limit of the light transmittance may be 98% or less.
  • a near ultraviolet to near infrared wavelength such as 355 nm, 405 nm, 450 nm, 532 nm, 1064 nm can be selected.
  • the copper oxide contained in the coating layer is preferably cuprous oxide.
  • reduced copper can be obtained by the baking treatment, and a layer in which the conductive pattern region and the insulating region are mixed can be formed with high accuracy.
  • the phosphorus-containing organic substance contained in the coating layer is a compound represented by the following chemical formula (1) (wherein R is an ester: It is preferable to have a skeleton represented by
  • the structure of the above-mentioned chemical formula (1) adsorbs with copper oxide and is also excellent in adhesion to a support. Thereby, while ensuring insulation, peeling between a support body and an application layer can be prevented effectively.
  • the support is a three-dimensional object. That is, in the present embodiment, only a flat support may not be a target, and a curved surface, a step, or the like may be used. It is possible to form a structure having a pattern area.
  • the structure having the conductive pattern area according to the present embodiment is, for example, a wiring material such as an electronic circuit board (printed board, RFID, replacement of wire harness in automobile, etc.), a case of portable information device (smartphone etc.) It can apply suitably to the antenna formed in, the mesh electrode (electrode film for electrostatic capacity type touch panels), an electromagnetic wave shielding material, and a heat dissipation material.
  • a wiring material such as an electronic circuit board (printed board, RFID, replacement of wire harness in automobile, etc.), a case of portable information device (smartphone etc.) It can apply suitably to the antenna formed in, the mesh electrode (electrode film for electrostatic capacity type touch panels), an electromagnetic wave shielding material, and a heat dissipation material.
  • the conductive pattern area containing copper can be insulated with the insulating area containing copper oxide and phosphorus. Therefore, since it is not necessary to remove the unsintered portion of the layer disposed on the support for the production, the production process can be reduced and the production cost can be lowered since the solvent and the like are unnecessary. Further, the insulating region is used to insulate the conductive pattern region, the insulating region is less likely to be cracked, and the reliability can be improved.
  • a part of the coating layer containing copper oxide and the phosphorus-containing organic substance is baked by a laser to form a conductive pattern area,
  • the unfired portion can be used to isolate the conductive pattern area. Therefore, it is not necessary to remove the unfired part of the coated layer. For this reason, the manufacturing process can be reduced, and since the solvent and the like are unnecessary, the manufacturing cost can be reduced. In addition, since it is not necessary to provide a solder resist or the like for the insulation of the conductive pattern region, the manufacturing process can be reduced accordingly.
  • the laminate according to the present embodiment by covering the coating layer with the resin layer, it is possible to prevent the coating layer from being in contact with oxygen at the time of light baking and to promote reduction of copper oxide. This eliminates the need for equipment for making the periphery of the coating layer an oxygen-free or low-oxygen atmosphere at the time of light irradiation, thereby reducing the manufacturing cost.
  • the coating layer since the coating layer is covered with the resin layer, the coating layer can be protected from external stress and handling can be improved.
  • a step of forming an application layer containing copper oxide and a phosphorus-containing organic substance on the surface of a support, and forming a resin layer on the surface of the application layer It is possible to manufacture a laminated body simply and appropriately by using the following steps.
  • DISPERBYK-145 (trade name, manufactured by BIC Chemie Co., Ltd.) (BYK-145 in Table 1) as a phosphorus-containing organic substance
  • ethanol manufactured by Wako Pure Chemical Industries, Ltd.
  • 6 g was added and dispersed using a homogenizer. Further, dilution with ethanol and concentration were repeated to obtain a dispersion (a) containing cuprous oxide fine particles containing cuprous oxide (copper (I) oxide).
  • the weight of the cuprous oxide fine particles in the precipitate was measured by vacuum drying the precipitate, and it was found that 2.0 g of the cuprous oxide fine particles was contained in 2.8 g of the precipitate.
  • the content rate (volume) of the cuprous oxide in cuprous oxide microparticles is measured by observing a cuprous oxide fine particle obtained by vacuum drying with a transmission electron microscope and analyzing it by energy dispersive X-ray spectroscopy. %) was 100% by volume (see Table 1).
  • Dispersion (b) to (g) containing cuprous oxide microparticles by the same procedure as above except that the amount of phosphorus-containing organic substance added to 2.8 g of the precipitate is changed as described in Table 1 respectively I got As a result of measuring the content (volume%) of copper oxide in all the fine particles contained in the dispersions (b) to (g), it was 100 volume% (see Table 1).
  • dispersions (h) and (i) were obtained by adding copper powder (average particle diameter: 1 ⁇ m, spherical particles) in the amount as described in Table 1 to dispersion (c).
  • copper powder average particle diameter: 1 ⁇ m, spherical particles
  • dispersion (c) As a result of measuring the content rate (volume%) of the copper oxide in all the microparticles
  • the type of support, the type of dispersion, and the thickness of the coating layer were changed as shown in Table 2 to obtain Samples 1 to 19.
  • a PET film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m was used.
  • Example 20 As a support, the surface of a 100 ⁇ m thick PET film (Cosmo Shine A4100, manufactured by Toyobo Co., Ltd.) is subjected to UV ozone treatment, and then the surface is roughened by reactive ion etching (RIE) treatment with oxygen gas to form an adhesion layer. did.
  • RIE reactive ion etching
  • the dispersion (c) was bar-coated on the adhesion layer to a predetermined thickness of 0.5 ⁇ m, and dried at room temperature for 10 minutes to obtain Sample 20.
  • Samples 21 to 23 were obtained in the same manner as in the case of Sample 20 except that the type of the support was changed as described in Table 2. The specific surface area and surface roughness of the obtained adhesion layer were measured and are shown in Table 2.
  • PEN film and PI film used the following.
  • PEN film manufactured by Teijin Film Solutions, Theonex Q65H, thickness 100 ⁇ m
  • PI film made by Toray Dupont, Kapton 500H, thickness 125 ⁇ m
  • m-PPE sheet Alignment-PPE sheet
  • Example 24 As a support, the surface of a 100 ⁇ m-thick PET film (Cosmo Shine A4100, manufactured by Toyobo Co., Ltd.) was subjected to UV ozone treatment, and then a coating solution containing silicon oxide fine particles (average particle diameter 25 nm) was applied. Then, it was dried at room temperature for 30 minutes to form an adhesion layer having a thickness of 5 ⁇ m.
  • a coating solution containing silicon oxide fine particles average particle diameter 25 nm
  • Example 25 As a support, the surface of a 100 ⁇ m thick PET film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) was subjected to UV ozone treatment, and then a coating solution containing aluminum oxide fine particles (average particle diameter 110 nm) was applied by a blade coater. Then, it was dried at room temperature for 30 minutes to form an adhesion layer having a thickness of 10 ⁇ m.
  • FIG.9 and FIG.10 is an electron micrograph for demonstrating the state of the crack in the application layer in an Example.
  • FIG. 9 shows an example of a crack-free coated layer
  • FIG. 10 shows an example of a cracked coated layer.
  • a laser beam (wavelength 445 nm, power 1.2 W, continuous wave (CW)) is applied to a substrate of a sample in an argon gas atmosphere while moving the focal position at a maximum velocity of 300 mm / min using a galvano scanner.
  • CW continuous wave
  • a tester was applied to both ends of the conductive pattern area to evaluate the conductivity. Evaluation criteria are as follows. ⁇ : Resistance value less than 1 k ⁇ ⁇ : Resistance value 1 k ⁇ or more and less than 1 M ⁇ ⁇ : Resistance value 1 m ⁇ or more
  • conductivity can be exhibited in the conductive pattern area by either of the baking by laser and the baking by xenon flash, it can be used as a support with a conductive pattern area.
  • the average primary particle size of the cuprous oxide fine particles can be measured by a transmission electron microscope or a scanning electron microscope. The specific operation will be described.
  • the sample was cut into an appropriate size, and processed by broad ion beam (BIB) using an ion milling apparatus E-3500 manufactured by Hitachi High-Technologies Corporation. At this time, BIB processing was performed while cooling the sample as needed.
  • the processed sample was subjected to a conductive treatment, and the cross section of the conductive pressure-sensitive adhesive portion was observed with a scanning electron microscope S-4800 manufactured by Hitachi, Ltd. All primary particle diameters in an image in which ten or more primary particles exist in one field of view were measured, and the average value was taken as the average primary particle diameter.
  • the average secondary particle size of the cuprous oxide fine particles can be measured by a transmission electron microscope or a scanning electron microscope. The specific operation will be described.
  • the sample was cut into an appropriate size and subjected to BIB processing using an ion milling apparatus E-3500 manufactured by Hitachi High-Technologies Corporation. At this time, BIB processing was performed while cooling the sample as needed.
  • the processed sample was subjected to a conductive treatment, and the cross section of the conductive pressure-sensitive adhesive portion was observed with a scanning electron microscope S-4800 manufactured by Hitachi, Ltd.
  • the diameters of all secondary particles in an image in which 10 or more secondary particles exist in one field of view were measured, and the average value was taken as the average secondary particle diameter.
  • the deflection temperature under load of the support can be measured by a method in accordance with JIS 7191.
  • FIG. 11 is an electron micrograph showing a cross section of a layer disposed on a support in an example.
  • the inorganic matter is observed brighter than the organic matter, and the conductive metal is observed brighter than the oxide. Therefore, in a certain observation area in the layer of the electron micrograph, the inorganic cuprous oxide fine particles and copper powder (hereinafter referred to as "all particles") and the phosphorus-containing organic matter are distinguished by shape, size and contrast It is possible.
  • cross sectional image By taking the quotient of the area occupied by all particles in the image of the cross section of the layer included in the observation area (hereinafter referred to as “cross sectional image”) and the total area of the layer in the cross sectional image and multiplying by 100 The content (volume%) of all particles could be determined.
  • cuprous oxide fine particles and copper powder can be similarly distinguished by shape, size, and contrast. Therefore, taking the quotient of the area occupied by the cuprous oxide fine particles in the cross-sectional image and the area occupied by all the particles in the cross-sectional image, the content ratio of copper oxide in all particles (volume%) I was able to ask for Also, the quotient of the area occupied by copper powder in the cross-sectional image and the area occupied by all particles in the cross-sectional image is taken and multiplied by 100 to obtain the content (volume%) of the copper powder in all particles. It was possible.
  • the content rate (volume%) of the phosphorus-containing organic substance could be obtained by taking the quotient of the area occupied by the phosphoric acid organic substance in the cross-sectional image and the total area of the layer in the cross-sectional image and multiplying by 100. .
  • Image analysis software may be used for image analysis, and examples include ImageJ (manufactured by the National Institutes of Health).
  • ImageJ manufactured by the National Institutes of Health
  • a cross-sectional image was read into ImageJ, converted to a black and white 8-bit image, default threshold settings were made, and particle analysis was performed to determine the contents of cuprous oxide microparticles and copper powder.
  • the content (% by weight) can be calculated from the content (% by volume) obtained from the cross-sectional image and the specific gravity of each of the copper oxide, copper and phosphorus-containing organic substance.
  • the specific gravity of copper oxide, copper and phosphorus-containing organic compounds can be used as follows. Copper oxide: 6.0 g / cm 3 Copper: 8.9 g / cm 3 Phosphorus-containing organic matter: 1.0 g / cm 3
  • Cuprous oxide fine particles in the insulating region of the layer or, based on the contents (volume%) of the cuprous oxide fine particles, copper powder and phosphorus-containing organic substance in the insulating region in the layer thus determined
  • fine-particles and copper powder was made into 100 volume parts was calculated, and it showed in Table 2.
  • the total mass of the cuprous oxide fine particles or the cuprous oxide fine particles and the copper powder when the copper powder is contained is 100 parts by mass, The parts by mass were calculated and are shown in Table 2.
  • Adhesion to support The adhesion of the conductive pattern area obtained by firing to the support was determined visually by the following evaluation criteria. ⁇ : A state in which the conductive pattern area is in intimate contact with the support ⁇ : A state in which a part of the conductive pattern area is in close contact with the support as a whole State
  • PET polyethylene terephthalate resin
  • PEN polyethylene naphthalate resin
  • PP polypropylene resin
  • PA polyamide resin ABS: acrylonitrile butadiene styrene resin
  • PE polyethylene resin
  • PC polycarbonate resin
  • POM polyacetal resin
  • PBT polybutylene terephthalate resin
  • m- PPE Modified polyphenylene ether resin
  • PPS Polyphenylene sulfide resin
  • the smoothness of the coated layer surface of each sample was measured.
  • the measuring method measured arithmetic mean height Ra in the length of 1000 micrometers using a stylus type film thickness measuring machine (ULVAC Inc. Dektak XT). Evaluation criteria are as follows. ⁇ : Ra is less than 30 nm ⁇ : Ra is 30 nm or more and less than 100 nm ⁇ : Ra is 100 nm or less
  • the film thickness of the conductive pattern area of each sample was measured.
  • part of the conductive pattern area is peeled off to expose the support, and the step of the conductive pattern area remaining from the support is measured using a stylus film thickness measuring machine (ULVAC Inc. Dektak XT) It was measured. Furthermore, the ratio to the unfired insulating region was calculated.
  • the surface roughness of the conductive pattern area of each sample was measured.
  • the measuring method measured arithmetic mean height Ra in the length of 1000 micrometers using a stylus type film thickness measuring machine (ULVAC Inc. Dektak XT). Evaluation criteria are as follows. ⁇ : Ra is 50 nm or more and less than 200 nm ⁇ : Ra is 20 nm or more and less than 50 nm, 200 nm or more and less than 500 nm ⁇ : Ra is less than 20 nm, 500 nm or more
  • the conductive pattern areas of 25 mm ⁇ 1 mm described above are arranged at intervals of 1 mm, and there are unfired portions of cuprous oxide and phosphorus-containing organic substance and hydrazine or hydrazine hydrate between them. Withstand voltage measurement was performed on the insulating region included.
  • a needle type prober was connected to two conductive pattern areas, and an AC voltage was applied between the two needle type probers using a withstanding voltage tester TOS 5300 manufactured by Kikusui Electronics Co., Ltd. . The voltage was gradually increased, and the voltage value causing breakdown was measured. Evaluation criteria are as follows. ⁇ : Withstand voltage of 1.7 kV / mm or more ⁇ : Withstand voltage of 1 kV / mm or more and less than 1.7 kV / mm ⁇ : Withstand voltage of less than 1 kV / mm
  • Dispersions (a) to (i) were all good dispersions of dispersability without the occurrence of flocculated precipitates in visual evaluation.
  • Sample 1 Although peeling was observed in a part of the conductive pattern area in laser firing, the sample 1 was in close contact with the support as a whole, and it was possible to confirm the conductivity. In the xenon flash firing, the dispersion applied during firing was blown off, and a conductive pattern region could not be obtained.
  • Samples 5 and 6 contained a large amount of the phosphorus-containing organic substance in the layer, and the evaluation result of conductivity was ⁇ .
  • the layer disposed on the support after the cuprous oxide firing was in close contact with the support.
  • the sample 8 was able to obtain the electroconductive pattern area
  • the samples 18 and 19 were able to obtain the conductive pattern area by laser firing, but the adhesion to the support was in a state in which a part was peeled off during the laser firing.
  • Samples 20 to 25 had an adhesive layer, and both of the laser firing and the xenon flash firing were able to obtain a conductive pattern region in close contact with the support.
  • Samples 26 to 34 As a support, a case having no adhesion layer and different materials shown in Table 2 was prepared.
  • the shape of the housing is a curved body having a mortar shape with a curvature radius of 500 mm.
  • the dispersion (c) was applied to the prepared case by a spray coating method to a dry film thickness of 5 ⁇ m to obtain Samples 26 to 34.
  • laser light wavelength 445 nm, output 1
  • a conductive pattern area containing copper of a desired size of 25 mm ⁇ 1 mm was obtained on the surface of the housing.
  • the resulting conductive pattern region had a fine crack in part, but was in close contact with the casing and was excellent in conductivity.
  • Dispersion (j) (k) (l) was a dispersion having good dispersibility, without generation of flocculated precipitates in visual evaluation.
  • the resistance value of the conductive pattern area of Samples 35 to 40 was evaluated.
  • the evaluation results are shown in Table 3.
  • the coating layer was ablated, and a suitable conductive pattern area could not be obtained.
  • the film thicknesses of the conductive pattern regions of the samples 35 to 37, 39, and 40 were measured, and the film thickness ratio to the unfired insulating region was calculated.
  • the evaluation results are shown in Table 3.
  • the film thickness ratio was in the range of 45 to 50%.
  • a resin layer (PET film: manufactured by Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 um) having a function as a sealing layer was disposed on the sample 36.
  • a layer containing silicon oxide is provided as a moisture barrier layer, and an adhesive layer (Lintech Co., Ltd., optical adhesive sheet MO series) is provided in order to adhere to the layer having a conductive pattern region disposed on the support.
  • an adhesive layer Litech Co., Ltd., optical adhesive sheet MO series
  • sealing was performed using a thermosetting type sealing material (Ajinomoto Fine Techno Co., Ltd. AES-210).
  • a glass wine glass was prepared as a support having a three-dimensional curved surface.
  • the radius of curvature of the wine glass was 35 mm.
  • the wine glass was immersed in the container filled with the dispersion (c) and pulled up at a constant speed to obtain a coated layer having a dry film thickness of 2 ⁇ m on the outer surface of the wine glass.
  • laser marker Keyence Corporation laser marker MD-S9910A
  • laser light (wavelength 532 nm, output 0.22 W, pulse repetition frequency 260 kHz) is applied in air at a speed of 20 mm / sec. Irradiated. Thereby, the conductive pattern area containing reduced copper was obtained on the surface of the wine glass.
  • the photograph is shown in FIG. 12A.
  • the schematic diagram is shown to FIG. 12B.
  • the obtained conductive pattern area was in close contact with the glass, the resistance evaluation of the conductive pattern area was ⁇ , and the withstand voltage evaluation of the insulating pattern area was ⁇ .
  • the coating layer in the insulating region which is a portion not irradiated with the laser light was removed using ethanol as a washing solvent.
  • the photograph after removal is shown in FIG. 12C.
  • the resistance value of the copper wiring after the removal was evaluated as ⁇ , which was good.
  • a wine glass made of glass was prepared as a sample 42 as a support having a three-dimensional curved surface.
  • the radius of curvature of the wine glass was 35 mm.
  • the wine glass was immersed in the container filled with the dispersion (c) and pulled up at a constant speed to obtain a coated layer having a dry film thickness of 2 ⁇ m on the outer surface of the wine glass.
  • the laser light (wavelength 355 nm, output 0.25 W, pulse repetition frequency 300 kHz) is applied to the coating layer in air at a speed of 20 mm. Irradiated at a speed of 1 / sec. Thereby, the conductive pattern area containing reduced copper was obtained on the surface of the wine glass. The obtained conductive pattern area was in close contact with the glass and was excellent in conductivity.
  • a slightly adhesive PET film (SRL-0753 manufactured by Lintec Corporation) is attached to the surface of the coating layer of sample 36 as a resin layer having oxygen barrier properties, and a laser marker (Keyence Corporation laser marker MD-S9910A) Using a laser beam (wavelength 532 nm, output 0.22 W, pulse repetition frequency 260 kHz), the resin layer was transmitted through the resin layer at a speed of 20 mm / sec in air to irradiate the coating layer. After that, the resin layer was removed. The obtained conductive pattern area was in close contact with the PI film, the resistance evaluation of the conductive pattern area was ⁇ ⁇ , and the withstand voltage evaluation of the insulating area was ⁇ .
  • a resin layer which is an example of another resin layer
  • a resin layer (PET film: Cosmo Shine A4100, manufactured by Toyobo Co., Ltd.) 100 um thick).
  • a layer containing silicon oxide is provided as a moisture barrier layer
  • an adhesive layer (Lintech Co., Ltd., optical adhesive sheet MO series) is provided in order to adhere to the layer having a conductive pattern region disposed on the support.
  • sealing was performed using a thermosetting type sealing material (Ajinomoto Fine Techno Co., Ltd. AES-210).
  • Comparative Example 1 A dispersion (x) containing cuprous oxide microparticles was obtained by the same operation as the dispersion (a) except using polyvinyl violidone (hereinafter, PVP) instead of the phosphorus-containing organic substance.
  • the composition of the dispersion (x) is 2.8 g of precipitate, 0.2 g of polyvinyl pyrrolidone, and 6.6 g of ethanol dispersion medium, and the content of copper oxide in the cuprous oxide fine particles is 100% by volume. is there.
  • Comparative Example in which the coating layer of the dispersion (x) was formed with a thickness of 0.5 um on a PET film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m as a support by the same operation as Samples 1 to 19 I got one.
  • a PET film Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.
  • the substrate of the sample is irradiated with laser light (wavelength 445 nm, output 1.2 W, continuous wave (CW)) while moving the focal position at a maximum speed of 300 mm / min.
  • laser light wavelength 445 nm, output 1.2 W, continuous wave (CW)
  • CW continuous wave
  • the withstand voltage measurement was performed on the insulating region containing the unburned portion cuprous oxide and not containing the phosphorus-containing organic substance and hydrazine or hydrazine hydrate.
  • the withstand voltage was 0.9 kV / mm and the evaluation was x.
  • Comparative Example 2 Samples 1-19 using Novacentrix Metallon ICI-021 as a dispersion comprising cupric oxide particles instead of a dispersion comprising cuprous oxide particles, a phosphorus containing organic matter and hydrazine or hydrazine hydrate By the same operation as in Comparative Example 2, Comparative Example 2 was obtained in which the thickness of the coating layer was 1.0 ⁇ m on the support PI film ((Toray Dupont, Kapton 500H thickness 125 ⁇ m)).
  • the resistance value of the conductive pattern area was x. It is considered that reduction and sintering of copper oxide particles by laser light can not be suitably performed because the coated layer has poor smoothness and does not contain hydrazine or hydrazine hydrate and a phosphorus-containing organic substance.
  • the film thickness of the conductive pattern area was measured, and the film thickness ratio to the unfired insulating area was calculated.
  • the film thickness ratio was 68%.
  • the surface roughness of the conductive pattern area was x.
  • the smoothness of the coating layer is poor, and since hydrazine or hydrazine hydrate and the phosphorus-containing organic substance are not contained, reduction and sintering of copper oxide particles by laser light can not be suitably performed, and thus particles and particles It is believed that the surface of the surface has become rough without progressing to bonding.
  • reduction and sintering of copper oxide particles by laser light can not be performed even when at least one of hydrazine or hydrazine hydrate and a phosphorus-containing organic substance is not contained.
  • Comparative Example 3 A coated layer (thickness: 0) in which two 25 mm ⁇ 1 mm patterns are arranged in parallel at a distance of 1 mm on a support borosilicate glass substrate (Tenpax by SCHOTT) using the dispersion (c) by a reverse transfer method. .8 ⁇ m). Furthermore, the coating layer was reduced by plasma baking to obtain two conductive pattern areas of 25 mm ⁇ 1 mm containing reduced copper and phosphorus.
  • the samples 35 to 37 were subjected to laser firing as described above, and then the phosphorus element in the formed conductive pattern area was measured.
  • the evaluation results are shown in Table 3. It was shown that the element concentration ratio of phosphorus / copper was 0.02 or more and 0.30 or less in all the samples. Similarly, the measurement of carbon element in the conductive pattern area and the measurement of nitrogen element were performed. The evaluation results are shown in Table 3. It was shown that the elemental concentration ratio of carbon / copper was 1 or more and 6 or less in all the samples. Moreover, the elemental concentration ratio of nitrogen / copper was 0.04 or more and 0.6 or less also in any sample. Table 3 is shown below.
  • the present invention is not limited to the above embodiments and examples.
  • a change in design or the like may be added to the above embodiment or example based on the knowledge of a person skilled in the art, or the above embodiment or example may be arbitrarily combined, and such a change or the like is added Embodiments are also included within the scope of the present invention.
  • a manufacturing process can be extremely simplified, and a structure having a conductive pattern region excellent in electrical insulation between conductive pattern regions and high in reliability can be provided.
  • the structure or the laminate of the present invention can be suitably used as a wiring material such as an electronic circuit board, a mesh electrode, an electromagnetic shielding material, and a heat dissipation material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Structure Of Printed Boards (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

製造工程を極めて簡略にでき、導電性パターン領域間の電気絶縁性に優れ、且つ、信頼性が高い導電性パターン領域を有する構造体を提供すること。導電性パターン領域を有する構造体(10)は、支持体(11)と、支持体が構成する面上に、酸化銅及びリン含有有機物を含む絶縁領域(12)と、銅を含む導電性パターン領域(13)と、が互いに隣接して配置された層(14)と、を具備する。また、積層体は、支持体と、支持体が構成する面上に配置された、酸化銅及びリンを含む塗布層と、塗布層を覆うように配置された樹脂層と、を具備する。

Description

導電性パターン領域を有する構造体及びその製造方法、積層体及びその製造方法、並びに、銅配線
 本発明は、導電性パターン領域を有する構造体及びその製造方法、積層体及びその製造方法、並びに、銅配線に関する。
 回路基板は、基板上に導電性の配線を施した構造を有する。回路基板の製造方法は、一般的に、次の通りである。まず、金属箔を貼り合せた基板上にフォトレジストを塗布する。次に、フォトレジストを露光及び現像して所望の回路パターンのネガ状の形状を得る。次に、フォトレジストに被覆されていない部分の金属箔をケミカルエッチングにより除去してパターンを形成する。これにより、高性能の導電性基板を製造することができる。
 しかしながら、従来の方法は、工程数が多く、煩雑であると共に、フォトレジスト材料を要する等の欠点がある。
 これに対し、金属微粒子及び金属酸化物微粒子からなる群から選択された微粒子を分散させた分散体(以下、「ペースト材料」ともいう)で基板上に所望の配線パターンを直接印刷する直接配線印刷技術が注目されている。この技術は、工程数が少なく、フォトレジスト材料を用いる必要がない等、極めて生産性が高い。
 直接印刷配線技術の一例としては、ペースト材料をスクリーン印刷やインクジェット印刷に支持体上に印刷し、その後ペースト材料を熱焼成することで低抵抗な配線パターンを得ることが知られている(例えば、特許文献1参照)。
 また、ペースト材料を基板の全面に塗布し、ペースト材料にレーザ光をパターン状に照射して選択的に熱焼成することで、所望の配線パターンを得る方法が知られている(例えば、特許文献1、2参照)。
 また、ポリエチレンテレフタレート(PET)支持体上に、酸化第一銅の凝集体粒子を含む分散液を厚み10~20μmで塗布し、これをレーザで焼成することで銅配線を製造する方法が知られている(例えば、特許文献3参照)。この方法によれば、レーザ照射部以外は加熱されないため、PET支持体のような低耐熱樹脂材料を用いることができる。
 また、支持体と、銅ペーストを焼成して得られる金属質銅含有膜との密着性を向上させるため、下地層として酸化ケイ素の粒子であるコロイダルシリカを用いることが知られている(例えば、特許文献4参照)。
 また、基板上に、第1塗布層を形成し、第1塗布層の一部に光を照射して第1導電部を形成し、続いて、第1塗布層上に第2塗布層を形成し、第2塗布層から第1導電部にかけて光を照射して第2導電部を形成する多層配線基板の製造方法が知られている(例えば、特許文献5参照)。
 また、基板上に、銅又は銅酸化物分散体を用いたパターン状の塗布膜を形成し、焼成処理することで、導電膜を得る方法が知られている(例えば、特許文献6参照)。
国際公開第2010/024385号パンフレット 特開平5-37126号公報 特許5449154号公報 国際公開第2016/031860号パンフレット 特開2015-26681号公報 国際公開第2015/012264号パンフレット
 特許文献1~3に記載された、ペースト材料に対するレーザ照射により配線パターンを形成する直接配線印刷技術では、レーザ照射がされなかった領域に未焼成のペースト材料が残る。未焼成のペースト材料は導電性があり、そのままでは、配線パターン間での電気絶縁性を確保できない。このため、未焼成のペースト材料を除去し、ソルダーレジスト等の絶縁性材料を配線パターン間に充填することが行なわれている。
 このため、従来の直接配線印刷技術では、未焼成ペースト材料の除去及び絶縁材料の充填のための工程が必須であり、工程数の削減のメリットが少ない。また、未焼成ペースト材料の除去のための溶剤、リンス剤等を用意する必要があり、製造コストの増加につながる。
 従来の直接配線印刷技術をフレキシブルな基材の上への配線パターン形成に適用した場合、得られた回路基板について低温環境及び高温環境を行き来するヒートサイクル試験を実施した場合に、ソルダーレジストと配線との間にクラックが生じるという問題があった。
 さらに、特許文献4に開示された下地層に使用されるコロイダルシリカは、金属に対する密着性に優れるが、樹脂との密着性が悪い。このため、基材の材質が樹脂である場合、下地層と基材との間で剥離が生じることがあり、信頼性が低い。
 特許文献5に記載の方法は、レーザ照射がされなかった領域に酸化第二銅粒子と樹脂バインダーからなる未焼成のペースト材料が残るが、酸化第二銅粒子が大きく、樹脂バインダーと粒子が局在化しており、そのままの状態では配線パターン間の電気絶縁性が十分ではない。
 特許文献6に記載の構造は、配線パターン間に充填されるものはなく、そのままの状態では配線パターン間の電気絶縁性を確保できない。また、湿度が高い環境においては配線パターン間に水分を含んだ空気が入り込むことによって、絶縁破壊を生じ易く成ってしまう。
 本発明は、かかる点に鑑みてなされたものであり、製造工程を極めて簡略にでき、導電性パターン領域間の電気絶縁性に優れ、且つ、長期信頼性に優れた導電性パターン領域を有する構造体及びその製造方法を提供することを目的の一つとする。
 また、本発明は、かかる点に鑑みてなされたものであり、酸化銅の光焼成処理において、真空雰囲気又は不活性ガス雰囲気のための設備が不要になり、導電性パターン領域を有する構造体の製造コストを削減できる積層体及びその製造方法を提供することを目的の一つとする。
 更に、本発明は、配線の導電性を高めることができる銅配線を提供することを目的の一つする。
 本発明者らは、上記の課題を解決するために鋭意研究を重ねた結果、本発明を完成するに至った。
 すなわち、本発明の構造体の一態様は、支持体と、前記支持体が構成する面上に配置された層と、を有し、前記層中に、銅を含有する導電性パターン領域と、酸化銅とリンを含有する絶縁領域とが互いに隣接することを特徴とする。
 また、本発明の構造体の別の一態様は、支持体と、前記支持体が構成する面上に配置された層と、を有し、前記層中に、銅を含有する導電性パターン領域と、酸化銅とヒドラジンまたはヒドラジン水和物を含有する絶縁領域とが互いに隣接することを特徴とする。
 また、本発明の構造体の別の一態様は、支持体と、前記支持体が構成する面上に配置された層と、を有し、前記層中に、銅を含有する導電性パターン領域と、酸化銅とリンとヒドラジンまたはヒドラジン水和物を含む絶縁領域とが互いに隣接することを特徴とする。
 また、本発明の構造体の別の一態様は、支持体と、前記支持体が構成する面上に配置された層と、を有し、前記層中に、銅とリンを含有する導電性パターン領域と、酸化銅とリンを含有する絶縁領域とが互いに隣接していることを特徴とする。
 また、本発明の積層体の一態様は、支持体と、前記支持体が構成する面上に配置された、酸化銅及びリンを含む塗布層と、前記塗布層を覆うように配置された樹脂層と、を具備することを特徴とする。
 また、本発明の積層体の一態様は、支持体と、前記支持体が構成する面上に配置された、酸化銅及びヒドラジンまたはヒドラジン水和物を含む塗布層と、前記塗布層を覆うように配置された樹脂層と、を具備することを特徴とする。
 また、本発明の積層体の一態様は、支持体と、前記支持体が構成する面上に配置された、酸化銅とリンとヒドラジンまたはヒドラジン水和物を含む塗布層と、前記塗布層を覆うように配置された樹脂層と、を具備することを特徴とする。
 また、本発明の銅配線の一態様は、酸化銅が還元された還元銅とリンと炭素を含む銅配線であって、リン/銅の元素濃度比が0.02以上、0.30以下であり、炭素/銅の元素濃度比が1.0以上、6.0以下であることを特徴とする。
 また、本発明の構造体の製造方法の一態様は、支持体が構成する面上に、酸化銅とリン含有有機物と、を含む塗布層を配置する工程と、光線を前記塗布層に選択的に照射して前記酸化銅を銅に還元し、前記支持体と、前記支持体が構成する面上に、前記酸化銅及びリンを含む絶縁領域と、前記銅を含む導電性パターン領域と、が互いに隣接して配置された層と、を得る工程と、を具備することを特徴とする。
 また、本発明の構造体の製造方法の一態様は、支持体が構成する面上に、酸化銅とヒドラジンまたはヒドラジン水和物と、を含む塗布層を配置する工程と、光線を前記塗布層に選択的に照射して前記酸化銅を銅に還元し、前記支持体と、前記支持体が構成する面上に、前記酸化銅及び前記ヒドラジンまたはヒドラジン水和物を含む絶縁領域と、前記銅を含む導電性パターン領域と、が互いに隣接して配置された層と、を得る工程と、を具備することを特徴とする。
 また、本発明の構造体の製造方法の一態様は、支持体が構成する面上に、酸化銅とリン含有有機物とヒドラジンまたはヒドラジン水和物と、を含む塗布層を配置する工程と、光線を前記塗布層に選択的に照射して前記酸化銅を銅に還元し、前記支持体と、前記支持体が構成する面上に、前記酸化銅及びリン及び前記ヒドラジンまたはヒドラジン水和物を含む絶縁領域と、前記銅を含む導電性パターン領域と、が互いに隣接して配置された層と、を得る工程と、を具備することを特徴とする。
 また、本発明の積層体の製造方法の一態様は、支持体が構成する面上に、酸化銅とリン含有有機物と、を含む塗布層を配置する工程と、前記塗布層を覆うように樹脂層を配置する工程と、を具備することを特徴とする。
 また、本発明の積層体の製造方法の一態様は、支持体が構成する面上に、酸化銅とヒドラジンまたはヒドラジン水和物と、を含む塗布層を配置する工程と、前記塗布層を覆うように樹脂層を配置する工程と、を具備することを特徴とする。
 また、本発明の積層体の製造方法の一態様は、支持体が構成する面上に、酸化銅とリン含有有機物とヒドラジンまたはヒドラジン水和物と、を含む塗布層を配置する工程と、前記塗布層を覆うように樹脂層を配置する工程と、を具備することを特徴とする。
 本発明によれば、製造工程を極めて簡略にでき、導電性パターン領域間の電気絶縁性に優れ、且つ、長期信頼性に優れた導電性パターン領域を有する構造体及びその製造方法を提供することができる。
 また、本発明によれば、酸化銅の光焼成処理において、真空雰囲気又は不活性ガス雰囲気のための設備が不要になり、導電性パターン領域を有する構造体の製造コストを削減できる積層体及びその製造方法を提供することができる。
 また、本発明によれば、配線の導電性を高めることができる銅配線を提供することができる。
本実施の形態に係る導電性パターン領域を有する構造体における絶縁領域に含まれる酸化第一銅微粒子とリン酸エステル塩との関係を示す模式図である。 第1の実施の形態に係る導電性パターン領域を有する構造体を示す断面模式図である。 第2の実施の形態に係る導電性パターン領域を有する構造体を示す断面模式図である。 図3とは一部で異なる、導電性パターン領域を有する構造体を示す断面模式図である。 本実施の形態に係る積層体の一例を示す断面模式図である。 本実施の形態に係る積層体を用いて製造される導電性パターン領域を有する構造体の一例を示す断面模式図である。 第1の実施の形態に係る導電性パターン領域を有する構造体の製造方法を示す各工程の説明図(一例)である。 第2の実施の形態に係る導電性パターン領域を有する構造体の製造方法を示す各工程の説明図(一例)である。 実施例での塗布層におけるクラックの状態を説明するための電子顕微鏡写真である。 実施例での塗布層におけるクラックの状態を説明するための電子顕微鏡写真である。 実施例での支持体上に形成された層の断面を示す電子顕微鏡写真である。 ガラス表面に形成した導電性パターン領域を示す写真である。 図12Aの模式図である。 図12Aから絶縁領域を除去した後の写真である。
 以下、本発明の一実施の形態(以下、「実施の形態」と略記する。)について、詳細に説明する。
<本実施の形態の導電性パターン領域を有する構造体(導電性パターン領域付構造体)の概要>
 本発明者らは、支持体の表面に酸化銅を含む塗布層を配置し、当該塗布層に選択的に光照射し、酸化銅を銅に還元して導電性パターン領域を形成する際、未還元の酸化銅を含む領域の電気絶縁性を高めれば、当該領域を除去せずにそのまま残すことで、導電性パターン領域間の絶縁を確保でき、且つ、当該領域を除去する工程が不要になることを見出し、本発明を完成するに至った。
 すなわち、本実施の形態に係る導電性パターン領域を有する構造体は、支持体の表面に配置する酸化銅を含む塗布層に、リンを含有させる。その後、塗布層を選択的に光照射し、導電性パターン領域を形成すると共に、導電性パターン領域間に酸化銅及びリンを含む絶縁領域を設けることを特徴とする。
 図1は、本実施の形態に係る導電性パターン領域を有する構造体における絶縁領域に含まれる酸化銅微粒子とリン酸エステル塩との関係を示す模式図である。図1中に示すように、絶縁領域1において、酸化銅の一例である酸化銅微粒子2の周囲には、リン含有有機物の一例であるリン酸エステル塩3が、リン3aを内側に、エステル塩3bを外側にそれぞれ向けて取り囲んでいる。リン酸エステル塩3は電気絶縁性を示すため、隣接する酸化銅微粒子2との間の電気的導通は妨げられる。
 したがって、酸化銅微粒子2は半導体であり導電性であるが、電気絶縁性を示すリン酸エステル塩3で覆われている。よって、絶縁領域1は電気絶縁性を示し、断面視(図2中に示す上下方向に沿った断面)で、絶縁領域1の両側に隣接する導電性パターン領域(後述)の間の絶縁を確保することができる。
 一方、導電性パターン領域は、酸化銅及びリンを含む塗布層の一部の領域に光照射し、当該一部の領域において、酸化銅を銅に還元する。このように酸化銅が還元された銅を還元銅という。また、当該一部の領域において、リン含有有機物は、リン酸化物に変性する。リン酸化物では、上述のエステル塩3b(図1参照)のような有機物は、レーザ等の熱によって分解し、電気絶縁性を示さないようになる。
 また、図1に示すように、酸化銅微粒子2が用いられている場合、レーザ等の熱によって、酸化銅が還元銅に変化すると共に焼結し、隣接する酸化銅微粒子2同士が一体化する。これによって、優れた電気導電性を有する領域(以下、「導電性パターン領域」という)を形成することができる。
 導電性パターン領域において、還元銅の中にリン元素が残存している。リン元素は、リン元素単体、リン酸化物及びリン含有有機物のうち少なくとも1つとして存在している。このように残存するリン元素は導電性パターン領域中に偏析して存在しており、導電性パターン領域の抵抗が大きくなる恐れはない。
<導電性パターン領域を有する構造体の構成:第1の実施の形態>
 図2は、第1の実施の形態に係る導電性パターン領域を有する構造体を示す断面模式図である。図2に示すように、構造体10は、支持体11と、支持体11が構成する面上に配置された層14と、を有して構成される。層14は、酸化銅及びリンを含む絶縁領域12と、銅を含む導電性パターン領域13と、が互いに隣接している。ここでいう銅は、上記の還元銅であることが好ましい。また、絶縁領域12に含まれるリンは、リン含有有機物として含まれることが好ましい。
 この構成により、銅を含む導電性パターン領域の間を、酸化銅及びリンを含む絶縁領域で絶縁できるので、製造のために、層14の未焼成部分を除去する必要がない。したがって、製造工程を削減でき、溶剤等が不要であるので製造コストを下げることができる。また、導電性パターン領域の絶縁のために絶縁領域を利用し、当該絶縁領域は、クラックを生じにくく、信頼性を向上できる。
 以下、第1の実施の形態の導電性パターン領域を有する構造体の各構成要素について説明する。
<支持体>
 支持体11は、層14を配置するための面を構成するものである。形状は、特に限定されない。
 支持体11の材質は、絶縁領域12により離間された導電性パターン領域13の間での電気絶縁性を確保するため、絶縁材料であることが好ましい。ただし、支持体11の全体が絶縁材料であることは必ずしも必要がない。層14が配置される面を構成する部分だけが絶縁材料であれば足りる。
 支持体11は、より具体的には、平板状体、フィルム又はシートであってもよい。平板状体は、例えば、プリント基板等の回路基板に用いられる支持体(基材とも呼ばれる)である。フィルム又はシートは、例えば、フレキシブルプリント基板に用いられる、薄膜状の絶縁体であるベースフィルムである。
 支持体11は、立体物であってもよい。立体物が有する曲面又は段差等を含む面、すなわち立体面に、導電性パターン領域を有する層を配置することもできる。
 立体物の一例としては、携帯電話端末、スマートフォン、スマートグラス、テレビ、パーソナルコンピュータ等の電気機器の筐体が挙げられる。また、立体物の他の例としては、自動車分野では、ダッシュボード、インストルメントパネル、ハンドル、シャーシ等が挙げられる。
 また、立体物の材質を限定するものではないが、例えば、ポリプロピレン樹脂、ポリアミド樹脂、アクリロニトリルブタジエンスチレン樹脂、ポリエチレン樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリブチレンテレフタレート樹脂、変性ポリフェニレンエーテル樹脂及びポリフェニレンサルファイド樹脂からなる群から選択される少なくとも1種であることが好ましい。
<支持体の面上に配置された層(導電性パターン領域を有する層)>
 本実施の形態では、層14は、絶縁領域12と導電性パターン領域13とが混在してなると言える。以下、単に、「層」と表現する場合や、導電性パターン領域を有する層、支持体上に配置された層、と言い換えることがある。
 層14は、一体化層であると言える。また、層14は、多層構造でない単一層であるとも言える。「一体化」や「単一」とは、断面視で隣接する絶縁領域12と導電性パターン領域13とが、面上に沿って連続していることを意味する。「隣接」とは、絶縁領域12と導電性パターン領域13との間に別の層が含まれないことを意味する。「連続している」とは、例えば、プリント基板で見られるような、パターニングされた配線層の間をソルダーペーストで埋めて一層としているような状態を含まないことを意味する。
 本実施の形態では、絶縁領域12の表面と導電性パターン領域13の表面との間で、段差が生じてもよい。つまり、酸化銅から銅への還元過程で、膜厚が薄くなるため、連続する層であっても導電領域と絶縁領域の膜厚は違うことがある。
 また、絶縁領域12と導電性パターン領域13とが隣接するとは、層内では、電気導電性、粒子状態(焼成と未焼成)等が、支持体の面上に沿って漸次的に変化してもよいし、絶縁領域12と導電性パターン領域13との間に境界(界面)が存在していてもよいことを意味する。
 また、絶縁領域12と導電性パターン領域13とは、同じ組成由来の塗布層から形成されたものである。すなわち、導電性パターン領域13は、塗布層の一部をレーザ照射して形成されたものであり、したがって、絶縁領域12と導電性パターン領域13とでは、銅元素やリン元素等の同じ元素を含む。
<絶縁領域>
 絶縁領域12は、酸化銅及びリンを含み、電気絶縁性を示す。絶縁領域12は、光照射を受けていない未照射領域と言える。また、絶縁領域12は、光照射によって酸化銅が還元されていない未還元領域とも言える。また、絶縁領域12は、光照射によって焼成されていない未焼成領域とも言える。
<導電性パターン領域>
 導電性パターン領域13は、銅を含み、電気導電性を示す。導電性パターン領域13は、光照射を受けた被照射領域やレーザ照射領域と言える。また、導電性パターン領域13は、光照射によって酸化銅が還元された還元銅を含む還元領域とも言える。また、導電性パターン領域13は、絶縁領域12を光照射によって焼成した焼成体を含む焼成領域とも言える。
 導電性パターン領域13の、平面視における形状、すなわちパターンは、直線状、曲線状、円状、四角状、屈曲形状等のいずれであってもよく、特に限定されない。パターンは、マスクを介した光照射、又は、レーザによる描画により形成されるので、形状による制約は受けにくい。
 絶縁領域12と導電性パターン領域13との境界は、断面視において、層14の厚み方向(図2に示す上下方向)に沿って直線であることが好ましいが、テーパ角がつけられていてもよく、特に限定されない。ただし、当該境界が明確であることは必須ではない。例えば、銅の組成比を境界付近で測定したとき、導電性パターン領域13側から絶縁領域12側にかけて漸次的に変化する組成変調領域があってもよい。
 導電性パターン領域13は、断面視において完全に還元されている必要はない。例えば、支持体11に近い部分に未還元部分があることが好ましい。これにより、導電性パターン領域13及び支持体11の間の密着性が高くなる。
 図2に示すように、本実施の形態では、導電性パターン領域13の膜厚と、絶縁領域12の膜厚とは、例えば、絶縁領域12の膜厚の方が厚いように、異なっていても良い。すなわち、レーザ照射による、酸化銅から銅への還元過程で、導電性パターン領域13は、絶縁領域12より膜厚が薄くなりやすい。膜厚が異なることにより、導電性パターン領域13と絶縁領域12を挟んで対向する導電性パターン領域13との沿面距離を長くすることが出来るため、絶縁性を高くすることが出来る。絶縁領域12の膜厚は、0.1μm以上30μm以下が好ましく、0.1以上15μm以下がより好ましく、0.1μm以上10μm以下がさらに好ましい。特に、1μm以上10μm以下の範囲内では、絶縁領域12として絶縁性を維持することができ、後述する光線照射によって基材密着性および導電性がより優れた導電性パターン領域13を製造することができるため好ましい。導電性パターン領域13の膜厚は、絶縁領域12の膜厚に対して、10%以上90%以下が好ましく、20%以上80%以下がより好ましく、30%以上70%以下がさらに好ましい。特に30%以上70%以下にすることによって、基材密着性を維持することができ、電気配線用途として十分な電気伝導性を得ることが出来るため好ましい。
<密着層>
 支持体11は、導電性パターン領域を有する層14との間に、密着層(不図示)を備えることが好ましい。密着層により、支持体11に対する層14の密着性を高め、絶縁領域12及び導電性パターン領域13の剥離を防止し、構造体10の長期安定性を高めることができる。
 密着層は、例えば、(i)支持体11が構成する面を粗面化したもの、及び、(ii)支持体11が構成する面にコーティング層を配置したもの、を包含する。(i)の例では、支持体11そのものの一部である。この場合において、密着層にその他の層(例えば、プライマー(下地)層)を組み合わせもよい。
 (ii)の例において、密着層は、コーティング層単独又はその他の層を積層したものであってもよい。また、コーティング層が、プライマー材料を含んでいてもよい。
<導電性パターン領域を有する構造体の詳細>
 以下、本実施の形態に係る構造体10の各構成について更に、具体的に説明する。しかし、各構成は、以下に挙げる具体例に限定されるものではない。
(支持体)
 支持体の具体例として、例えば、無機材料からなる支持体(以下、「無機支持体」)、または樹脂からなる支持体(以下、「樹脂支持体」という)が挙げられる。
 無機支持体は、例えば、ガラス、シリコン、雲母、サファイア、水晶、粘土膜、及び、セラミックス材料等から構成される。セラミックス材料は、例えば、アルミナ、窒化ケイ素、炭化ケイ素、ジルコニア、イットリア及び窒化アルミニウム、並びに、これらのうち少なくとも2つの混合物である。また、無機支持体としては、特に光透過性が高い、ガラス、サファイア、水晶等から構成される支持体を用いることができる。
 樹脂支持体としては、例えば、ポリプロピレン(PP)、ポリイミド(PI)、ポリエチレンテレフタレート(PET)、ポリエーテルサルフォン(PES)、ポリエチレンナフタレート(PEN)、ポリエステル、ポリカーボネート(PC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリアセタール(POM)、ポリアリレート(PAR)、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリフェニレンエーテル(PPE)、変性ポリフェニレンエーテル(m-PPE)、ポリフェニレンサルファイド(PPS)、ポリエーテルケトン(PEK)、ポリフタルアミド(PPA)、ポリエーテルニトリル(PENt)、ポリベンズイミダゾール(PBI)、ポリカルボジイミド、ポリシロキサン、ポリメタクリルアミド、ニトリルゴム、アクリルゴム、ポリエチレンテトラフルオライド、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ウレア樹脂、ポリメタクリル酸メチル樹脂(PMMA)、ポリブテン、ポリペンテン、エチレン-プロピレン共重合体、エチレン-ブテン-ジエン共重合体、ポリブタジエン、ポリイソプレン、エチレン-プロピレン-ジエン共重合体、ブチルゴム、ポリメチルペンテン(PMP)、ポリスチレン(PS)、スチレン-ブタジエン共重合体、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVDF)、ポリエーテルエーテルケトン(PEEK)、フェノールノボラック、ベンゾシクロブテン、ポリビニルフェノール、ポリクロロピレン、ポリオキシメチレン、ポリスルホン(PSF)、ポリフェニルスルホン樹脂(PPSU)、シクロオレフィンポリマー(COP)、アクリロ二トリル・ブタジエン・スチレン樹脂(ABS)、アクリロニトリル・スチレン樹脂(AS)、ナイロン樹脂(PA6、PA66)ポリブチルテレフタレート樹脂(PBT)ポリエーテルスルホン樹脂(PESU)、ポリテトラフルオロエチレン樹脂(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、及びシリコーン樹脂等から構成される支持体を用いることができる。
 また、上記に区別されないが、セルロースナノファイバーを含有した樹脂シートを支持体として用いることもできる。
 特に、PI、PET及びPENからなる群から選択される少なくとも一種は、導電性パターン領域を有する層及び密着層との密着性に優れ、且つ、市場流通性が良く低コストで入手可能であり、事業の観点から有意であり、好ましい。
 さらに、PP、PA、ABS、PE、PC、POM、PBT、m-PPE及びPPSからなる群から選択される少なくとも一種は、特に筐体である場合、導電性パターン領域を有する層及び密着層との密着性に優れ、また、成型性や成型後の機械的強度に優れる。更に、これらは、導電性パターン領域を形成するときのレーザ照射等にも十分耐えうる耐熱性も有しているため、好ましい。
 樹脂支持体の荷重たわみ温度は、400℃以下であることが好ましく、280℃以下であることがより好ましく、250℃以下であることがさらに好ましい。荷重たわみ温度が400℃以下の支持体は、低コストで入手可能であり、事業の観点から有意であり、好ましい。荷重たわみ温度は、例えば、JIS K7191に準拠したものである。
 支持体の厚さは、例えば、1μm~100mmとすることができ、好ましくは25μm~10mmであり、より好ましくは25μm~250μmである。支持体の厚さが250μm以下であれば、作製される電子デバイスを、軽量化、省スペース化及びフレキシブル化できるため、好ましい。
 なお、支持体が筐体である場合、その厚さは、例えば1μm~1000mmとすることができ、好ましくは、200μm~100mmであり、200μm~5mmである。この範囲を選択することで、成型後の機械的強度や耐熱性を発現させることが、本発明者らにより明らかになった。
 支持体又は支持体が密着層を備えている場合は密着層を含む支持体の波長445nmの光線透過率は30%以上であることが好ましく、40%以上がより好ましく、50%以上がさらに好ましい。光線透過率の上限は、98%以下であってもよい。波長は、445nmの他に、例えば、355nm、405nm、450nm、532nm、1064nmなどの近紫外から近赤外の波長を選択することもできる。このような波長における光線透過率を高くすることで、支持体側から光照射して塗布層を焼成して導電性パターン領域を有する層を形成することができる。
(支持体の面上に配置された層(導電性パターン領域を有する層))
 該層は、酸化銅及びリン含有有機物を含む絶縁領域と、銅を含む導電性パターン領域とが隣接してなる。
(酸化銅)
 本実施の形態において、酸化銅は、例えば、酸化第一銅及び酸化第二銅を包含する。酸化第一銅は、低温焼結しやすい傾向にあるので特に好ましい。酸化第一銅及び酸化第二銅は、これらを単独で用いてもよいし、これらを混合して用いてもよい。
 また、酸化銅微粒子は、コア/シェル構造を有し、コア又はシェルのいずれか一方が酸化第一銅であってもよく、他に酸化第二銅を含んでもよい。
 絶縁領域に含まれる酸化銅は、例えば、微粒子形状を成している。酸化銅を含む微粒子の平均粒子径は、1nm以上100nm以下、より好ましくは1nm以上50nm以下、さらに好ましくは1nm以上20nm以下である。粒子径が小さいほど、絶縁領域の電気絶縁性に優れるため、好ましい。
 絶縁領域に銅粒子が含まれていてもよい。すなわち、後述の分散体に銅を添加してもよい。銅粒子の表面にもリン含有有機物が吸着し、電気絶縁性を示すことができる。
(リン含有有機物)
 絶縁領域に含まれるリンは、リン含有有機物であることが好ましい。リン含有有機物は、絶縁領域において電気絶縁性を示す材料である。リン含有有機物は、酸化銅を、支持体又は密着層に固定できることが好ましい。リン含有有機物は、単一分子であってよいし、複数種類の分子の混合物でもよい。また、リン含有有機物は、酸化銅の微粒子に吸着していてもよい。
 リン含有有機物の数平均分子量は、特に制限はないが、300~300,000であることが好ましい。300以上であれば、電気絶縁性に優れる。
 リン含有有機物は、光や熱によって分解又は蒸発しやすいことが好ましい。光や熱によって分解又は蒸発しやすい有機物を用いることによって、焼成後に有機物の残渣が残りにくくなり、抵抗率の低い導電性パターン領域を得ることができる。
 リン含有有機物の分解温度は、限定されないが、600℃以下であることが好ましく、400℃以下であることがより好ましく、200℃以下であることがさらに好ましい。リン含有有機物の沸点は、限定されないが、300℃以下であることが好ましく、200℃以下であることがより好ましく、150℃以下であることがさらに好ましい。
 リン含有有機物の吸収特性は、限定されないが、焼成に用いる光を吸収できることが好ましい。例えば、焼成のための光源としてレーザ光を用いる場合は、その発光波長(中心波長)の、例えば355nm、405nm、445nm、450nm、532nm、1064nmなどの光を吸収するリン含有有機物を用いることが好ましい。支持体が樹脂の場合、特に好ましくは、355nm、405nm、445nm、450nmの波長である。
 また、構造としては、酸化銅に親和性のある基を有する高分子量共重合物のリン酸エステル塩がよい。例えば、化学式(1)の構造は、酸化銅と吸着し、また支持体への密着性にも優れるため、好ましい。
Figure JPOXMLDOC01-appb-C000001
 エステル塩の一例として、化学式(2)の構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000002
 また、リン含有有機物の一例として、化学式(3)の構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000003
 リン含有有機物が有する有機構造としては、ポリエチレングリコール(PEG)、ポリプロピレングリコール(PPG)、ポリイミド、ポリエチレンテレフタレート(PET)、ポリエーテルサルフォン(PES)、ポリエチレンナフタレート(PEN)、ポリエステル、ポリカーボネート(PC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリアセタール、ポリアリレート(PAR)、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリフェニレンエーテル(PPE)、ポリフェニレンサルファイド(PPS)、ポリエーテルケトン(PEK)、ポリフタルアミド(PPA)、ポリエーテルニトリル(PENt)、ポリベンズイミダゾール(PBI)、ポリカルボジイミド、ポリシロキサン、ポリメタクリルアミド、ニトリルゴム、アクリルゴム、ポリエチレンテトラフルオライド、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ウレア樹脂、ポリメタクリル酸メチル樹脂(PMMA)、ポリブテン、ポリペンテン、エチレン-プロピレン共重合体、エチレン-ブテン-ジエン共重合体、ポリブタジエン、ポリイソプレン、エチレン-プロピレン-ジエン共重合体、ブチルゴム、ポリメチルペンテン(PMP)、ポリスチレン(PS)、スチレン-ブタジエン共重合体、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVDF)、ポリエーテルエーテルケトン(PEEK)、フェノールノボラック、ベンゾシクロブテン、ポリビニルフェノール、ポリクロロピレン、ポリオキシメチレン、ポリスルホン(PSF)、ポリスルフィド、シリコーン樹脂、アルドース、セルロース、アミロース、プルラン、デキストリン、グルカン、フルクタン、キチン等の構造を用いることができる。これら構造の官能基を変性した構造を用いることもできるし、これら構造を修飾した構造を用いることもできるし、これら構造の共重合体を用いることもできる。ポリエチレングリコール構造、ポリプロピレングリコール構造、ポリアセタール構造、ポリブテン構造、及びポリスルフィド構造から選択される骨格を有するリン含有有機物は、分解しやすく、焼成後に得られる導電性パターン領域中に残渣を残し難いため、好ましい。
 リン含有有機物の具体例としては、市販の材料を用いることができ、具体的には、ビックケミー社製のDISPERBYK(登録商標)-102、DISPERBYK-103、DISPERBYK-106、DISPERBYK-109、DISPERBYK-110、DISPERBYK-111、DISPERBYK-118、DISPERBYK-140、DISPERBYK-145、DISPERBYK-168、DISPERBYK-180、DISPERBYK-182、DISPERBYK-187、DISPERBYK-190、DISPERBYK-191、DISPERBYK-193、DISPERBYK-194N、DISPERBYK-199、DISPERBYK-2000、DISPERBYK-2001、DISPERBYK-2008、DISPERBYK-2009、DISPERBYK-2010、DISPERBYK-2012、DISPERBYK-2013、DISPERBYK-2015、DISPERBYK-2022、DISPERBYK-2025、DISPERBYK-2050、DISPERBYK-2152、DISPERBYK-2055、DISPERBYK-2060、DISPERBYK-2061、DISPERBYK-2164、DISPERBYK-2096、DISPERBYK-2200、BYK(登録商標)-405、BYK-607、BYK-9076、BYK-9077、BYK-P105、第一工業製薬社製のプライサーフ(登録商標)M208F、プライサーフDBS等を挙げることができる。これらは単独で用いてもよいし、複数を混合して用いてもよい。
 絶縁領域において、酸化銅を含む微粒子(以下、「酸化銅微粒子」と記載する)とリン含有有機物とは混在し、リン含有有機物の含有量は、酸化銅微粒子の全体積を100体積部としたときの、5体積部以上900体積部以下であり得る。下限値は、好ましくは10体積部以上、より好ましくは30体積部以上、さらに好ましくは60体積部以上である。上限値は、好ましくは480体積部以下、より好ましくは240体積部以下である。
 重量部に換算すると、酸化銅微粒子100重量部に対するリン含有有機物の含有量は、1重量部以上150重量部以下であることが好ましい。下限値は、好ましくは2重量部以上、より好ましくは5重量部以上、さらに好ましくは10重量部以上である。上限値は、好ましくは80重量部以下、より好ましくは40重量部以下である。
 酸化銅微粒子に対するリン含有有機物の含有量は、5体積部以上又は1重量部以上であれば、厚みサブミクロンの薄膜を形成することができる。また、リン含有有機物の含有量は、10体積部以上又は5重量部以上であれば、層として厚み数十μmの厚膜を形成することができる。リン含有有機物の含有量は、30体積部以上又は10重量部以上であれば曲げてもクラックが入りにくい可撓性の高い層を得ることができる。
 酸化銅微粒子に対するリン含有有機物の含有量は、900体積部以下又は150重量部以下であれば、焼成によって良好な導電性パターン領域を得ることができる。
(ヒドラジンまたはヒドラジン水和物)
 ヒドラジンまたはヒドラジン水和物は、塗布層中に含ませることができ、未焼成領域である絶縁領域にも残存する。ヒドラジンまたはヒドラジン水和物を含むことで、酸化銅の分散安定性がより向上するとともに、焼成において酸化銅の還元に寄与し、導電膜の抵抗がより低下する。ヒドラジン含有量は下記が好ましい。
  0.0001≦(ヒドラジン質量/酸化銅質量)≦0.10 (1)
 還元剤の含有量は、ヒドラジンの質量比率が0.0001以上であると銅膜の抵抗が低下する。また、0.1以下であると酸化銅インクの長期安定性が向上する為好ましい。
(絶縁領域中の銅粒子/酸化銅微粒子の質量比率)
 絶縁領域には、酸化銅微粒子の他に銅粒子が含まれていてもよい。この場合、酸化銅微粒子に対する銅粒子の質量比率(以下、「銅粒子/酸化銅微粒子」と記載する)が、1.0以上7.0以下であることが好ましい。
 銅粒子/酸化銅微粒子が1.0以上7.0以下であることにより、導電性とクラック防止の観点で好ましい。
(酸化銅微粒子中の平均粒子径)
 酸化銅微粒子の平均二次粒子径は、特に制限されないが、好ましくは500nm以下、より好ましくは200nm以下、さらに好ましくは80nm以下である。当該微粒子の平均二次粒子径は、好ましくは5nm以上、より好ましくは10nm以上、さらに好ましくは15nm以上である。
 平均二次粒子径とは、一次粒子が複数個集まって形成される凝集体(二次粒子)の平均粒子径のことである。この平均二次粒子径が500nm以下であると、支持体上に微細な導電性パターン領域を形成しやすい傾向があるので好ましい。平均二次粒子径が5nm以上であれば、分散体の長期保管安定性が向上するため好ましい。当該微粒子の平均二次粒子径は、例えば、透過型電子顕微鏡又は走査型電子顕微鏡によって測定することができる。
 二次粒子を構成する一次粒子の平均一次粒子径は、好ましくは100nm以下、より好ましくは50nm以下、さらに好ましくは20nm以下である。平均一次粒子径は、好ましくは1nm以上、より好ましくは2nm以上、さらに好ましくは5nm以上である。
 平均一次粒子径が100nm以下の場合、後述する焼成温度を低くすることができる傾向にある。このような低温焼成が可能になる理由は、粒子の粒子径が小さいほど、その表面エネルギーが大きくなって、融点が低下するためと考えられる。
 また、平均一次粒子径が1nm以上であれば、良好な分散性を得ることができるため好ましい。支持体に配線パターンを形成する場合、下地との密着性や低抵抗化の観点で、2nm以上、100nm以下が好ましく、より好ましくは5nm以上、50nm以下がより好ましい。この傾向は下地が樹脂の時に顕著である。当該微粒子の平均一次粒子径は、透過型電子顕微鏡又は走査型電子顕微鏡によって測定することができる。
 支持体上に配置された層中の酸化銅微粒子の含有率は、酸化銅及びリン含有有機物を含む領域の単位質量に対して、40質量%以上であることが好ましく、55質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。また、当該含有率は、98質量%以下であることが好ましく、95質量%以下であることがより好ましく、90質量%以下であることがさらに好ましい。
 また、支持体上に配置された層中の酸化銅微粒子の含有率は、単位体積に対して、10体積%以上であることが好ましく、15体積%以上であることがより好ましく、25体積%以上であることがさらに好ましい。また、当該含有率は、90体積%以下であることが好ましく、76体積%以下であることがより好ましく、60体積%以下であることがさらに好ましい。
 絶縁領域における酸化銅微粒子の含有率が、40質量%以上又は10体積%以上であれば、焼成によって微粒子同士が融着して導電性を発現し、より高濃度になるほど高い導電性を得ることができ、好ましい。また、当該含有率が、98質量%以下又は90体積%以下であれば、支持体上に配置された層は、膜として支持体又は密着層に付着することができ、好ましい。また、当該含有率が、95質量%以下又は76体積%以下であれば、より強く支持体又は密着層に付着することができ、好ましい。また、当該含有率が、90質量%以下又は60体積%以下であれば、層の可撓性が高くなり、折り曲げたときクラックが生じにくくなり、信頼性が高まる。また、絶縁領域における酸化銅微粒子の含有率が、90体積%以上であれば、絶縁領域の絶縁抵抗値が低くなり、電気絶縁性に優れるので、好ましい。酸化銅としては、酸化第一銅と酸化第二銅とがあり、低抵抗化と吸光度の観点から、酸化第一銅が好ましい。
 本実施の形態における絶縁領域に含まれる酸化銅は、市販品を用いてもよいし、合成物を用いてもよい。市販品としては、例えば、イーエムジャパン社より販売されている平均一次粒子径18nmの酸化第一銅微粒子が挙げられる。
 酸化第一銅を含む微粒子の合成法としては、例えば、次の方法が挙げられる。
 (1)ポリオール溶剤中に、水及び銅アセチルアセトナト錯体を加え、一旦有機銅化合物を加熱溶解させ、反応に必要な量の水を更に添加し、有機銅の還元温度に加熱して還元する方法。
 (2)有機銅化合物(銅-N-ニトロソフェニルヒドロキシルアミン錯体)を、ヘキサデシルアミン等の保護剤の存在下、不活性雰囲気中で、300℃程度の高温で加熱する方法。
 (3)水溶液に溶解した銅塩をヒドラジンで還元する方法。
 上記(1)の方法は、例えば、アンゲバンテ・ケミ・インターナショナル・エディション、40号、2巻、p.359、2001年に記載の条件で行うことができる。
 上記(2)の方法は、例えば、ジャーナル・オブ・アメリカン・ケミカル・ソサイエティ・1999年、121巻、p.11595に記載の条件で行うことができる。
 上記(3)の方法において、銅塩としては、二価の銅塩を好適に用いることができ、その例として、例えば、酢酸銅(II)、硝酸銅(II)、炭酸銅(II)、塩化銅(II)、硫酸銅(II)等を挙げることができる。ヒドラジンの使用量は、銅塩1モルに対して、0.2モル~2モルとすることが好ましく、0.25モル~1.5モルとすることがより好ましい。
 銅塩を溶解した水溶液には、水溶性有機物を添加してもよい。該水溶液に水溶性有機物を添加することによって該水溶液の融点が下がるので、より低温における還元が可能となる。水溶性有機物としては、例えば、アルコール、水溶性高分子等を用いることができる。
 アルコールとしては、例えば、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、オクタノール、デカノール、エチレングリコール、プロピレングリコール、グリセリン等を用いることができる。水溶性高分子としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体等を用いることができる。
 上記(3)の方法における還元の際の温度は、例えば-20~60℃とすることができ、-10~30℃とすることが好ましい。この還元温度は、反応中一定でもよいし、途中で昇温又は降温してもよい。ヒドラジンの活性が高い反応初期は、10℃以下で還元することが好ましく、0℃以下で還元することがより好ましい。還元時間は、30分~300分とすることが好ましく、90分~200分とすることがより好ましい。還元の際の雰囲気は、窒素、アルゴン等の不活性雰囲気であることが好ましい。
 上記(1)~(3)の方法の中でも、(3)の方法は操作が簡便で、且つ、粒子径の小さい粒子が得られるので好ましい。
 上記に挙げた実施の形態では、絶縁領域に、酸化銅とリンが含まれていた。これに対し、別の実施の形態としては、絶縁領域に、酸化銅とヒドラジンまたはヒドラジン水和物を含むもの、又は、絶縁領域に、酸化銅とヒドラジンまたはヒドラジン水和物とリンとを含むものを提示することができる。すなわち、層は、銅を含む導電性パターン領域と、酸化銅及びヒドラジンまたはヒドラジン水和物を含む絶縁領域とが互いに隣接した構成とされている。あるいは、層は、銅を含む導電性パターン領域と、酸化銅とヒドラジンまたはヒドラジン水和物とリンとを含む絶縁領域とが互いに隣接した構成、又は、銅とリンを含む導電性パターン領域と、酸化銅とヒドラジンまたはヒドラジン水和物とリンとを含む絶縁領域とが互いに隣接した構成とすることもできる。
 このように、本実施の形態では、絶縁領域にヒドラジンまたはヒドラジン水和物を含むことができる。ヒドラジンまたはヒドラジン水和物を、塗布層に含むことによって、光をあてた際に酸化銅が銅に還元しやすい。ヒドラジンまたはヒドラジン水和物を含むことで、還元後の銅の低抵抗化が可能となる。光が照射されない絶縁領域には、ヒドラジンまたはヒドラジン水和物が残存する。
(導電性パターン領域)
 導電性パターン領域における銅は、例えば、銅を含む微粒子同士が互いに融着した構造を示していてもよい。また、微粒子の形状が無く、全てが融着した状態になっていてもよい。さらに、一部分は微粒子の形状であって、大部分は融着した状態であってもよい。この銅は、既に記載したように還元銅であることが好ましい。また、導電性パターン領域は、絶縁領域を焼成した焼成体を含むことが好ましい。これにより、導電性パターン領域の導電性を高めることができる。また、絶縁領域を焼成することで、導電性パターン領域を形成することができるため、容易に導電性パターン領域を形成することができると共に、導電性パターン領域と絶縁領域とが混在した本実施の形態における「層」を精度よく形成することができる。
 また、導電性パターン領域は、銅の他に酸化銅(酸化第一銅、酸化第二銅、亜酸化銅)や、リン元素、リン酸化物、及びリン含有有機物の少なくともいずれか1つを含んでいてもよい。例えば、導電性パターン領域の表面側の部分は、銅を含む微粒子同士が互いに融着した構造であり、支持体側の部分は、酸化銅又はリン含有有機物を含む構造であってもよい。これにより、酸化銅又はリン含有有機物が銅粒子同士の強固な結合を生じ、さらに酸化銅又はリン含有有機物が支持体又は密着層との密着性を高めることができるため、好ましい。
 導電性パターン領域におけるリン元素の含有率は、リン/銅の元素濃度比が0.02以上、0.30以下であることが好ましく、0.05以上、0.28以下であることがより好ましく、0.1以上、0.25以下であることがさらに好ましい。リン/銅の元素濃度比を0.02以上とすることによって、銅の酸化抑制をすることができ、銅配線回路としての信頼性を向上させることが出来、好ましい。また、リン/銅の元素濃度比を0.30以下にすることで、導電性パターン領域の抵抗値を下げることが出来、好ましい。
 上記により、本実施の形態における層は、銅とリンを含有する導電性パターン領域と、酸化銅とリンを含有する絶縁領域とが互いに隣接した構成とすることができる。これにより、導電性パターン領域における導電性と、絶縁領域における絶縁性とを同時に向上させることが可能になる。導電性パターン領域では、製造工程において、銅が酸化される前にリンが酸化され、そのため、導電性パターン領域の抵抗変化を低く抑えることができると考えられる。
 導電性パターン領域における銅の含有率は、単位体積に対して、50体積%以上であることが好ましく、60体積%以上であることがより好ましく、70体積%以上がさらに好ましく、100体積%であってもよい。銅の含有率が50体積%以上あることで、導電率が高くなるため、好ましい。
 導電性パターン領域における、後述する樹脂層と接触する面は、表面が所定以上の粗さを有していても良い。具体的には表面粗さRaが、20nm以上500nm以下が好ましく、50nm以上300nm以下がより好ましく、50nm以上200nm以下がさらに好ましい。この範囲内にあることによって樹脂層の一部が、導電性パターン領域表面の凹凸部に侵入し、密着性を向上させることができ、好ましい。
(密着層)
 本実施の形態に係る配線パターン領域付構造体において、支持体は、導電性パターン領域を有する層との間に密着層を備えていることが好ましい。すなわち、支持体が構成する面上に密着層を有し、密着層を構成する面上に、導電性パターン領域を有する層が配置されていることが好ましい。
 支持体が構成する面は、密着層によって粗面化されていることが好ましい。
 支持体が構成する面が粗面化されていることによって、支持体の面に配置される層中の、酸化銅及びリン含有有機物並びに銅を、強固に支持体が構成する面に密着させることができる。
 密着層は、支持体の表面を、粗研磨処理、サンドブラスト処理、化学エッチング処理、反応性イオンエッチング処理、プラズマ処理、スパッタリング処理、UVオゾン処理等によって粗化加工して形成してもよい。また、密着層は、支持体が構成する面に、コーティング材料を塗布することで表面を粗化して形成してもよい。いずれにするかは、支持体の材質によって適宜選択することができる。
(コーティング材料)
 コーティング材料としては、例えば、有機材料、無機材料、及び有機無機複合材料が挙げられる。
 コーティング材料は、結合性構造を有することが好ましい。結合性構造としては、例えば、水酸基(-OH基)、アミノ基、チオール基、リン酸基、ホスホン酸基、ホスホン酸エステル基、スクシンイミド骨格を有する官能基、ピロリドン骨格を有する官能基、セレノール基、ポリスルフィド基、ポリセレニド基、カルボキシル基、酸無水物骨格を有する官能基、スルホン酸基、ニトロ基、シアノ基、イソシアネート基、アジド基、シラノール基、シリルエーテル基、及びヒドロシリル基等を挙げることができる。結合性構造としては、水酸基(-OH基)、アミノ基、ホスホン酸基、及びカルボン酸基からなる群から選択される少なくとも一つ以上の基であることが好ましい。-OH基は、Ar-OH基(Arは芳香族を指す)及び/又はSi-OH基であることがより好ましい。
 コーティング材料は、Ar-O構造(Arは芳香族を指す)及び/又はSi-O構造を有することもまた密着性の観点から好ましい。
 コーティング材料は、以下の化学式群に示す有機材料であってもよい。
Figure JPOXMLDOC01-appb-C000004
 上記化学式群において、nは1以上の整数であり、Xは有機材料の主骨格であり、Rは官能基である。上記化学式群においてRで表される官能基としては、例えば、水素、ハロゲン、アルキル基(例えば、メチル基、イソプロピル基、ターシャリーブチル基等)、アリール基(例えば、フェニル基、ナフチル基、チエニル基等)、ハロアリール基(例えば、ペンタフルオロフェニル基、3-フルオロフェニル基、3,4,5-トリフルオロフェニル基等)、アルケニル基、アルキニル基、アミド基、アシル基、アルコキシ基(例えば、メトキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチル基等)、ハロアルキル基(例えば、パーフルオロアルキル基等)、チオシアノ基、水酸基、アミノ基、チオール基、ホスホン酸基、ホスホン酸エステル基、スクシンイミド骨格を有する官能基、ピロリドン骨格を有する官能基、セレノール基、ポリスルフィド基、ポリセレニド基、カルボン酸基、酸無水物骨格を有する官能基、スルホン酸基、ニトロ基、シアノ基、及びこれらを組み合わせた構造を挙げることができる。密着層がこれらの結合性構造を有する有機材料を含む場合、支持体及び導電性パターン領域を有する層との密着性が良好である傾向にある。
 有機材料としては、芳香族構造(Ar)を有する有機材料を好適に用いることができる。芳香族構造を有する有機材料は、軟化温度及び分解温度が高いため、焼成時の支持体の変形を抑制することができ、また支持体の分解ガスによる、支持体上に配置された導電性パターン領域を有する層の破れが生じにくい。このため、焼成によって低抵抗な導電性膜を得ることができる。芳香族構造としては、例えば、ベンゼン、ナフタレン、アントラセン、テトラセン、ペンタセン、フェナントレン、ピレン、ペリレン、及びトリフェニレン等の芳香族炭化水素;並びにチオフェン、チアゾール、ピロール、フラン、ピリジン、ピラゾール、イミダゾール、ピリダジン、ピリミジン、及びピラジン等の複素芳香族を用いることができる。芳香族構造のπ電子系に含まれる電子数は、22以下であることが好ましく、14以下であることがより好ましく、10以下であることがさらに好ましい。π電子系に含まれる電子数が22以下であると結晶性が高くなりすぎず、柔軟で平滑性の高い密着層を得ることができる。これら芳香族構造は、芳香環に結合した水素の一部が官能基に置換されていてもよい。官能基としては、例えば、ハロゲン、アルキル基(例えば、メチル基、イソプロピル基、ターシャリーブチル基等)、アリール基(例えば、フェニル基、ナフチル基、チエニル基等)、ハロアリール基(例えば、ペンタフルオロフェニル基、3-フルオロフェニル基、3,4,5-トリフルオロフェニル基等)、アルケニル基、アルキニル基、アミド基、アシル基、アルコキシ基(例えば、メトキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチル基等)、ハロアルキル基(例えば、パーフルオロアルキル基等)、チオシアノ基、及び水酸基等を挙げることができる。有機材料は、芳香族性水酸基(Ar-OH基)を有することが好ましく、特にフェノール基(Ph-OH基)が好ましい。また、芳香族性水酸基の酸素が他の構造と結合したAr-O構造を有する有機材料は、焼成時に分解しにくい傾向にあるため好ましい。
 有機材料としては、例えば、ポリイミド、ポリエチレンテレフタレート(PET)、ポリエーテルサルフォン(PES)、ポリエチレンナフタレート(PEN)、ポリエステル、ポリカーボネート(PC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリアセタール、ポリアリレート(PAR)、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリフェニレンエーテル(PPE)、ポリフェニレンサルファイド(PPS)、ポリエーテルケトン(PEK)、ポリフタルアミド(PPA)、ポリエーテルニトリル(PENt)、ポリベンズイミダゾール(PBI)、ポリカルボジイミド、ポリシロキサン、ポリメタクリルアミド、ニトリルゴム、アクリルゴム、ポリエチレンテトラフルオライド、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ウレア樹脂、ポリメタクリル酸メチル樹脂(PMMA)、ポリブテン、ポリペンテン、エチレン-プロピレン共重合体、エチレン-ブテン-ジエン共重合体、ポリブタジエン、ポリイソプレン、ポリクロロプレン、エチレン-プロピレン-ジエン共重合体、ニトリルゴム、クロロスルホン化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、ウレタンゴム、ブチルゴム、フッ素ゴム、ポリメチルペンテン(PMP)、ポリスチレン(PS)、スチレン-ブタジエン共重合体、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVDF)、ポリエーテルエーテルケトン(PEEK)、フェノールノボラック、ベンゾシクロブテン、ポリビニルフェノール、ポリクロロピレン、ポリオキシメチレン、ポリスルホン(PSF)及びシリコーン樹脂等が挙げられる。有機材料としては、フェノール樹脂、フェノールノボラック、ポリビニルフェノール、及びポリイミドからなる群から選択される少なくとも一つであることが好ましい。
 無機材料としては、例えば、金属、合金、金属酸化物、金属窒化物、金属炭化物、金属炭酸化物、及び金属フッ化物等が挙げられる。無機材料としては、具体的には、酸化ケイ素、酸化銀、酸化銅、酸化アルミニウム、ジルコニア、酸化チタン、酸化ハフニウム、酸化タンタル、酸化スズ、酸化カルシウム、酸化セリウム、酸化クロム、酸化コバルト、酸化ホルミウム、酸化ランタン、酸化マグネシウム、酸化マンガン、酸化モリブデン、酸化ニッケル、酸化アンチモン、酸化サマリウム、酸化テルビウム、酸化タングステン、酸化イットリウム、酸化亜鉛、酸化インジウム、酸化スズインジウム(ITO)、フッ化銀、フッ化ケイ素、フッ化アルミニウム、フッ化ジルコニウム、フッ化チタン、フッ化ハフニウム、フッ化タンタル、フッ化スズ、フッ化カルシウム、フッ化セリウム、フッ化コバルト、フッ化ホルミウム、フッ化ランタン、フッ化マグネシウム、フッ化マンガン、フッ化モリブデン、フッ化ニッケル、フッ化アンチモン、フッ化サマリウム、フッ化テルビウム、フッ化タングステン、フッ化イットリウム、フッ化亜鉛、フッ化リチウム、チタン酸ジルコン酸鉛(PZT)、チタン酸バリウム、チタン酸ストロンチウム、窒化銅、窒化ケイ素、窒化アルミニウム、窒化チタン、窒化ハフニウム、窒化タンタル、窒化スズ、窒化カルシウム、窒化セリウム、窒化コバルト、窒化ホルミウム、窒化ランタン、窒化マグネシウム、窒化マンガン、窒化モリブデン、窒化ニッケル、窒化アンチモン、窒化サマリウム、窒化テルビウム、窒化タングステン、窒化イットリウム、窒化亜鉛、窒化リチウム、窒化ガリウム、SiC、SiCN、及びダイヤモンドライクカーボン(DLC)等が挙げられる。水酸基を有する無機材料は、支持体及び導電性パターン領域を有する層との密着性に優れるため好ましい。特に、金属酸化物表面には水酸基が存在するため、金属酸化物が好ましい。金属酸化物の中でも特に、Si-O構造を有する無機材料がより好ましい。
 無機材料は、より具体的には、酸化ケイ素、酸化チタン、ジルコニア、及び酸化スズインジウム、酸化アルミニウムからなる群から選択される少なくとも1つであることが好ましい。特に、酸化ケイ素や酸化アルミニウムであることが好ましい。
 また、密着層は、粒子径が10nm~500nmの微粒子を含むことが好ましい。具体的には、密着層は、粒子径が10nm~500nmの、酸化ケイ素又は酸化アルミニウムの微粒子を含むことが好ましい。これにより、導電性パターン領域を有する層を成したときの比表面積を大きくでき、導電性パターン領域を有する層との密着性を向上させることができる。微粒子は、多孔質粒子であってもよい。
 無機材料としては、無機半導体を用いることもできる。無機半導体材料としては、例えば、単体元素半導体、酸化物半導体、化合物半導体、及び硫化物半導体等が挙げられる。単体元素半導体としては、例えば、シリコン、及びゲルマニウムが例示される。酸化物半導体としては、例えば、IGZO(インジウム-ガリウム-亜鉛酸化物)、IZO(インジウム-亜鉛酸化物)、酸化亜鉛、酸化インジウム、酸化チタン、酸化スズ、酸化タングステン、酸化ニオブ、及び酸化第一銅等が例示される。化合物半導体としては、例えば、ガリウムヒ素(GaAs)、ガリウムヒ素リン(GaAsP)、ガリウムリン(GaP)、カドミウムセレン(CdSe)、炭化ケイ素(SiC)、インジウムアンチモン(InSb)、及び窒化ガリウム等が例示される。硫化物半導体としては、硫化モリブデン、及び硫化カドミウム等が例示される。
 有機無機複合材料としては、例えば、無機微粒子を分散した有機材料、及び有機金属化合物を用いることができる。無機微粒子としては、上述した無機材料の粒子を用いることができる。有機金属化合物としては、例えば、シリケート、チタネート、及びアルミナート等が挙げられる。シリケートとしては、メチルシリケート、及びエチルシリケート等を用いることができる。
 また、密着層の厚さは、20μm以下であることが好ましい。これにより、支持体の反りを防止できる。また、密着層の膜厚は、10μm以下であることがより好ましく、1μm以下であることが更に好ましく、密着性の観点から、0.01μm以上であることが好ましく、0.05μm以上であることがより好ましく、0.1μm以上であることが更に好ましい。
(プライマー材料)
 密着層は単独の材料で形成してもよいし、複数種類の材料を混合又は積層して形成してもよい。例えば、密着層がプライマー材料を含んでもよい。また、例えば、支持体とコーティング材料からなる層との間、又は、コーティング材料からなる層と導電性パターン領域を有する層との間に、プライマー材料からなる層を配置してもよい。
 密着層がプライマー材料からなる層を含むと、密着性がより向上する傾向にある。プライマー材料からなる層は、例えば、表面に薄いプライマー材料の層を形成するプライマー処理で形成することができる。
 プライマー材料は結合性構造を有することが好ましい。結合性構造としては、上記「(コーティング材料)」の項目で説明した結合性構造が挙げられる。プライマー材料が結合性構造を有することで、密着層に結合性構造が導入され、高い密着性が得られる傾向にある。
 支持体上にプライマー処理をしてからコーティング材料からなる層を配置して密着層を形成してもよい。あるいは、支持体上にコーティング材料からなる層を配置してから当該層の上にプライマー処理をして密着層を形成してもよい。または、コーティング材料とプライマー材料とを予め混合してから支持体上に配置することにより密着層を形成してもよく、支持体上にプライマー材料からなる層を配置して密着層を形成してもよい。コーティング材料からなる層の上にプライマー処理を施すと、表面の結合構造の密度を増加することができるため、より高い密着性が得られる。
 プライマー材料としては、例えば、シランカップリング剤、ホスホン酸系低分子材料、及びチオール系材料等が挙げられる。
 シランカップリング剤としては、例えば、末端にビニル基、アミノ基、エポキシ基、スチリル基、メタクリル基、アクリル基、イソシアヌレート基、ウレイド基、チオール基、イソシアネート基、ホスホン酸基等の官能基を有する化合物が挙げられる。シランカップリング剤としては、具体的には、ビニルメトキシシラン、ビニルエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピルトリアルコキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、及び3-イソシアネートプロピルトリエトキシシランが挙げられる。
 ホスホン酸系材料としては、例えば、末端にビニル基、アミノ基、エポキシ基、スチリル基、メタクリル基、アクリル基、イソシアヌレート基、ウレイド基、チオール基、イソシアネート基、シリル基、シラノール基、シリルエーテル基等の官能基を有する化合物が挙げられる。ホスホン酸系材料としては、具体的には、アミノメチルホスホン酸、2-アミノエチルホスホン酸、O-ホスホリルエタノールアミン、12-アミノドデシルホスホン酸、12-アミノウンデシルホスホン酸塩酸塩、6-アミノヘキシルホスホン酸、6-アミノヘキシルホスホン酸塩酸塩、12-アジドドデシルホスホン酸、(12-ドデシルホスホン酸)N,N-ジメチル-N-オクタデシルアンモニウムブロミド、(12-ドデシルホスホン酸)N,N-ジメチル-N-オクタデシルアンモニウムクロリド、(12-ドデシルホスホン酸)ピリジニウムブロミド、(12-ドデシルホスホン酸)トリエチルアンモニウムブロミド、(12-ドデシルホスホン酸)トリエチルアンモニウムクロリド、11-ヒドロキシウンデシルホスホン酸、12-メルカプトドデシルホスホン酸、11-メルカプトウンデシルホスホン酸、11-メタクリロイルオキシウンデシルホスホン酸、4-ニトロベンジルホスホン酸、12-ホスホノ-1-ドデカンスルホン酸、(6-ホスホノヘキシル)ホスホン酸、11-ホスホノウンデカン酸、11-ホスホノウンデシルアクリレート、プロピレンジホスホン酸、4-アミノベンジルホスホン酸、1,8-オクタンジホスホン酸、1,10-デシルジホスホン酸、6-ホスホノヘキサン酸、(1-アミノ-2-メチルプロピル)ホスホン酸、(1-アミノプロピル)ホスホン酸、(3-ニトロフェニル)ホスホン酸、1-ヒドロキシエタン-1,1,-ジホスホン酸、3-アミノプロピルホスホン酸、4-アミノブチルホスホン酸、ニトリロトリス(メチレン)トリホスホン酸、及びメチレンジホスホン酸等が挙げられる。
 チオール系材料としては、例えば、末端にビニル基、アミノ基、エポキシ基、スチリル基、メタクリル基、アクリル基、イソシアヌレート基、ウレイド基、イソシアネート基、シリル基、シラノール基、シリルエーテル基、ホスホン酸基等の官能基を有する化合物を好適に用いることができる。チオール系材料としては、具体的には、4-シアノ-1-ブタンチオール、1,11-ウンデカンジチオール、1,16-ヘキサデカンジチオール、1,2-エタンジチオール、1,3-プロパンジチオール、1,4-ブタンジチオール、1,5-ペンタンジチオール、1,6-ヘキサンジチオール、1,8-オクタンジチオール、1,9-ノナンジチオール、2,2’-(エチレンジオキシ)ジエタンチオール、2,3-ブタンジチオール、5,5’-ビス(メルカプトメチル)-2,2’-ビピリジン、ヘキサ(エチレングリコール)ジチオール、テトラ(エチレングリコール)ジチオール、ベンゼン-1,4-ジチオール、(11-メルカプトウンデシル)ヘキサ(エチレングリコール)、(11-メルカプトウンデシル)テトラ(エチレングリコール)、1-メルカプト-2-プロパノール、11-アミノ-1-ウンデカンチオール、11-アミノ-1-ウンデカンチオール塩酸塩、11-アジド-1-ウンデカンチオール、11-メルカプト-1-ウンデカノール、11-メルカプトウンデカンアミド、11-メルカプトウンデカン酸、11-メルカプトウンデシルヒドロキノン、11-メルカプトウンデシルホスホン酸、12-メルカプトドデカン酸、16-アミノ-1-ヘキサデカンチオール、16-アミノ-1-ヘキサデカンチオール塩酸塩、16-メルカプトヘキサデカンアミド、16-メルカプトヘキサデカン酸、3-アミノ-1-プロパンチオール、3-アミノ-1-プロパンチオール塩酸塩、3-メルカプト-1-プロパノール、3-メルカプトプロピオン酸、4-メルカプト-1-ブタノール、6-アミノ-1-ヘキサンチオール、6-アミノ-1-ヘキサンチオール塩酸塩、6-メルカプト-1-ヘキサノール、6-メルカプトヘキサン酸、8-アミノ-1-オクタンチオール、8-アミノ-1-オクタンチオール塩酸塩、8-メルカプト-1-オクタノール、8-メルカプトオクタン酸、9-メルカプト-1-ノナノール、1,4-ベンゼンジメタンチオール、4,4’-ビス(メルカプトメチル)ビフェニル、4,4’-次メルカプトスチルベン、4-メルカプト安息香酸、ビフェニル-4,4-ジチオール等が挙げられる。
 コーティング材料からなる層の形成方法としては、塗布、蒸着、ゾルゲル法等が挙げられる。コーティング材料からなる層の厚みは、支持体の反り防止の観点から、好ましくは20μm以下、より好ましくは10μm以下、更に好ましくは1μm以下;密着性の観点から好ましくは0.01μm以上、より好ましくは0.05μm以上、更に好ましくは0.1μm以上である。
 本実施の形態において支持体が密着層を備える場合、リン含有有機物は、結合性構造を1種類以上有していてもよい。結合性構造としては、上記「(コーティング材料)」の項目で説明した結合性構造が挙げられる。結合性構造としては、特に水酸基、アミノ基、ホスホン酸基、ホスホン酸エステル基、及びイソシアネート基からなる群から選択される少なくとも一つを有するものが好ましい。導電性パターン領域を有する層がこれらの結合性構造を有するリン含有有機物を含むと、密着層との密着性が良好である傾向にある。
<導電性パターン領域を有する構造体の構成:第2の実施の形態>
 図3は、第2の実施の形態に係る導電性パターン領域を有する構造体を示す断面模式図である。図3に示すように、導電性パターン領域を有する構造体20は、支持体21と、支持体21が構成する面上に配置された層24とを有する。そして、層24は、酸化銅及びリンを含む絶縁領域22と、還元銅を含む導電性パターン領域23と、が互いに隣接して配置されている。更に、酸素バリア層25が、層24を覆うようにして設けられている。酸素バリア層25は、光線透過性である。
 なお、絶縁領域22は、酸化銅及びヒドラジンまたはヒドラジン水和物を含む構成であってもよく、或いは、酸化銅、リン及びヒドラジンまたはヒドラジン水和物を含む構成であってもよい。また、導電性パターン領域23は、銅とリンを含有する構成であってもよい。本実施の形態における層24は、銅を含有する導電性パターン領域23と、酸化銅とリンを含有する絶縁領域22とが互いに隣接した構成、或いは、銅を含有する導電性パターン領域23と、酸化銅とヒドラジンまたはヒドラジン水和物を含有する絶縁領域22とが互いに隣接する構成、又は、銅とリンを含有する導電性パターン領域23と、酸化銅とリンを含有する絶縁領域22とが互いに隣接する構成を提示できる。あるいは、層24は、銅を含む導電性パターン領域23と、酸化銅とヒドラジンまたはヒドラジン水和物とリンとを含む絶縁領域22とが互いに隣接した構成、又は、銅とリンを含む導電性パターン領域23と、酸化銅とヒドラジンまたはヒドラジン水和物とリンとを含む絶縁領域22とが互いに隣接した構成とすることもできる。
 第2の実施の形態における構造体20は、第1の実施の形態における構造体10に対し、樹脂層(酸素バリア層25)を有する点で異なる。
 第2の実施の形態の構成により、銅を含む導電性パターン領域の間を、酸化銅及びリン含有有機物を含む絶縁領域で絶縁できるので、製造のために、層24の未焼成部分を除去する必要がない。したがって、製造工程を削減でき、溶剤等が不要であるので製造コストを下げることができる。また、導電性パターン領域の絶縁のために絶縁領域を利用し、当該絶縁領域は、クラックを生じにくく、信頼性を向上できる。
 さらに、層24を樹脂層(酸素バリア層25)で覆っているため、導電性パターン領域及び絶縁領域を外部のストレスから保護し、導電性パターン領域を有する構造体の長期信頼性を向上できる。
 構造体20を構成する支持体21、絶縁領域22、導電性パターン領域23、及び層24の各構成については、上記で説明した支持体11、絶縁領域12、導電性パターン領域13、及び層14の各構成が適用される。また、構造体20においても、上述した密着層を含むことができる。
 樹脂層について詳しく説明する。
<樹脂層>
 図3に示すように、層24の表面を覆うようにして樹脂層が配置されている。
(酸素バリア層)
 樹脂層の一例は、酸素バリア層25である。酸素バリア層25は、後述の構造体20の製造方法において、光照射の際に塗布層(後述)が酸素に触れるのを防止し、酸化銅の還元を促進できる。これにより、光照射のときに塗布層の周囲を無酸素又は低酸素雰囲気にする、例えば、真空雰囲気又は不活性ガス雰囲気のための設備が不要になり、製造コストを削減できる。
 また、酸素バリア層25は、光照射の熱等によって導電性パターン領域23が剥離又は飛散するのを防止できる。これにより、構造体20を歩留まりよく製造できる。
(封止材層)
 樹脂層の他の例は、封止材層である。図4は、図3とは一部で異なる、導電性パターン領域を有する構造体の他の例を示す断面模式図である。図4に示す導電性パターン領域を有する構造体30は、酸素バリア層25(図3参照)に代わって、封止材層31が、層24の表面を覆っていることを除き、図3に示す構造体20と同様の構成である。
 封止材層31は、例えば、酸素バリア層25を剥離した後に新たに配置される。
 酸素バリア層25(図3参照)は、主に製造時に重要な働きをする。これに対して、封止材層31は、製造後の完成品(導電性パターン領域を有する構造体30そのもの及びそれを含む製品)において、導電性パターン領域23を外部からのストレスから保護し、導電性パターン領域を有する構造体30の長期安定性を向上することができる。
 この場合、樹脂層の一例である封止材層31は、透湿度が1.0g/m/day以下であることが好ましい。これは、長期安定性を確保するものであって、透湿度を十分低くすることで、封止材層31の外部からの水分の混入を防ぎ、導電性パターン領域23の酸化を抑制するためである。
 封止材層31は、酸素バリア層25を剥離した後に、導電性パターン領域を有する構造体30に機能を与える機能層の一例であり、これ以外にも、導電性パターン領域を有する構造体30を取り扱った際の耐傷性を持たせたり、外界からの汚染から守るために防汚性を持たせたり、強靭な樹脂を用いることで構造体20に剛性を持たせることもできる。
 なお、本明細書では、酸素バリア層以外の封止材層等の機能層を単に「他の樹脂層」ともいう。
 本実施の形態では、導電性パターン領域を有する構造体の製造方法(後述)において、塗布層を覆うようにして酸素バリア層25(図3参照)を配置し、光焼成処理後に、酸素バリア層25を除去し、層24を覆うようにして他の樹脂層の一例である封止材層31(図4参照)を配置する場合を例に挙げて説明する。すなわち、構造体20(図3参照)は、完成品としての導電性パターン領域を有する構造体30(図4参照)を得るための前駆構造体と言える。しかしながら、酸素バリア層25をそのまま残した構造体20(図2参照)を完成品としてそのまま使用しても構わない。
 上述の樹脂層を構成する樹脂は、融点が150℃以上300℃以下であることが好ましい。このような樹脂を用いることによって、実使用温度域(最大75℃)の2倍以上の安全率を確保すると共に、樹脂層を形成するときに熱溶させてラミネートコーティングさせることができるため、好ましい。
 樹脂層には、開口部を設けることが好ましい。これは、外部から導電性パターン領域に電気的な接続を行うためのものであって、開口部には金属めっきやはんだ付けなどの方法によって電気コンタクト部を取り付けることができる。
 樹脂層について更に詳細に説明する。まず、酸素バリア層について説明する。酸素バリア層は、光線を照射中に外界から塗布層に酸素が混入することを防止する。例えば、以下に挙げる材料を酸素バリア層の材料として用いることができる。ポリプロピレン(PP)、ポリイミド(PI)、ポリエチレンテレフタレート(PET)、ポリエーテルサルフォン(PES)、ポリエチレンナフタレート(PEN)、ポリエステル、ポリカーボネート(PC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリアセタール(POM)、ポリアリレート(PAR)、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリフェニレンエーテル(PPE)、変性ポリフェニレンエーテル(m-PPE)、ポリフェニレンサルファイド(PPS)、ポリエーテルケトン(PEK)、ポリフタルアミド(PPA)、ポリエーテルニトリル(PENt)、ポリベンズイミダゾール(PBI)、ポリカルボジイミド、ポリシロキサン、ポリメタクリルアミド、ニトリルゴム、アクリルゴム、ポリエチレンテトラフルオライド、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ウレア樹脂、ポリメタクリル酸メチル樹脂(PMMA)、ポリブテン、ポリペンテン、エチレン-プロピレン共重合体、エチレン-ブテン-ジエン共重合体、ポリブタジエン、ポリイソプレン、エチレン-プロピレン-ジエン共重合体、ブチルゴム、ポリメチルペンテン(PMP)、ポリスチレン(PS)、スチレン-ブタジエン共重合体、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVDF)、ポリエーテルエーテルケトン(PEEK)、フェノールノボラック、ベンゾシクロブテン、ポリビニルフェノール、ポリクロロピレン、ポリオキシメチレン、ポリスルホン(PSF)、ポリフェニルスルホン樹脂(PPSU)、シクロオレフィンポリマー(COP)、アクリロ二トリル・ブタジエン・スチレン樹脂(ABS)、アクリロニトリル・スチレン樹脂(AS)、ナイロン樹脂(PA6、PA66)ポリブチルテレフタレート樹脂(PBT)ポリエーテルスルホン樹脂(PESU)、ポリテトラフルオロエチレン樹脂(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、及びシリコーン樹脂等から構成される樹脂材料を用いることができる。
 また、酸素バリア層と塗布層の間に、粘着層を設けて酸素バリア層を塗布層に貼り合わせてもよい。
 次に、他の樹脂層について説明する。他の樹脂層の一例である封止材層は、長期安定性を確保するものである。封止材層は、透湿度を十分低くすることが好ましい。封止材層の外部からの水分の混入を防ぎ、導電性パターン領域の酸化を抑制するためである。封止材層の透湿度は1.0g/m/day以下であることが好ましく、より好ましくは0.5g/m/day以下であって、さらに好ましくは0.1g/m/day以下である。このような範囲の封止材層を用いることで、例えば、85℃、85%環境における長期安定性試験において、導電性パターン領域の酸化による抵抗変化を抑止することができる。
 封止材層に用いることができる材料は、例えば、前述の酸素バリア層と同じ材料の中から選択することができ、さらにそれらの材料に酸化ケイ素や酸化アルミニウムからなる微粒子を混合させたり、それらの材料の表面に酸化ケイ素や酸化アルミニウムからなる層を、水分バリア層として設けることで透湿度を下げることができる。
 また、封止材層は、単一の材料からなる必要はなく、前述の材料を複数用いてもよい。
 上記にて説明した導電性パターン領域を有する構造体は、次に説明する中間体としての積層体を用いて製造される。すなわち、所望の導電性パターン領域を有する構造体を得るには、中間体としての積層体の構成を適正化することが必要である。そこで、以下では、本実施の形態における積層体の構成について説明する。
<本実施の形態の積層体の概要>
 本発明者らは、支持体の表面に酸化銅を含む塗布層を配置し、当該塗布層に選択的に光照射し、酸化銅を銅に還元して導電性パターン領域を形成した。この際、未還元の酸化銅を含む領域の電気絶縁性を高めれば、当該領域を除去せずにそのまま残すことで、導電性パターン領域間の絶縁を確保でき、且つ、当該領域を除去する工程が不要になることを見出した。
 さらに、塗布層上に樹脂層を配置することにより、光線を照射して酸化銅を焼成する処理(以下、「光焼成処理」という)の際に、真空雰囲気又は不活性ガス雰囲気のための設備が不要になり、前述した導電性パターン領域を有する構造体の製造コストを削減できることを見出し、本発明を完成するに至った。
 すなわち、本実施の形態における積層体40は、図5に示すように、支持体41と、支持体41が構成する面上に配置された、酸化銅及びリンを含む塗布層44と、塗布層44を覆うように配置された樹脂層の一例である酸素バリア層45と、を具備することを特徴とする。酸素バリア層45は、光線透過性である。
 図5に示すように、塗布層44及び酸素バリア層45の間には、必要に応じて粘着層46が配置されている。
 図5に示すように、塗布層44を樹脂層(酸素バリア層45)で覆っているため、光焼成時に塗布層44が酸素に触れるのを防止し、酸化銅の還元を促進できる。これにより、光照射のときに塗布層44の周囲を無酸素又は低酸素雰囲気にするための設備が不要になり、製造コストを削減できる。したがって、本実施の形態の積層体を用いることで、所望の導電性パターン領域付積層体を精度よく且つ低コストで製造することが可能になる。
 積層体40を構成する支持体41、及び樹脂層(図5では一例としての酸素バリア層45)については上記で説明した支持体11、及び樹脂層(酸素バリア層25)の各構成が適用される。また、積層体40においても、支持体41と塗布層44との間に、上述した密着層を含むことができる。
 以下、塗布層44、及び、粘着層46について詳述する。
<塗布層>
 塗布層44は、酸化銅を分散剤としても作用するリンのうち特にリン含有有機物を用いて分散媒に分散した分散体を支持体41が構成する面に塗布して形成される。
 リン含有有機物、分散媒及び分散体の調製方法の詳細については後述する。
 塗布層44は、図3の絶縁領域22と実質的に同じ組成を有して構成される。
 また、図1や図3に示す絶縁領域12、22と同様に、塗布層44において、酸化銅を含む微粒子とリン含有有機物とが混在し、リン含有有機物の含有量は、酸化銅微粒子の全体積を100体積部としたときの、5体積部以上900体積部以下であることが好ましい。これにより、可撓性が高く曲げてもクラックが入りにくく、また、焼成によって良好な導電性パターン領域を形成することが可能な塗布層44を得ることができる。
 また、塗布層44は、銅粒子をさらに含み、塗布層中の銅粒子/酸化銅微粒子の質量比率が、1.0以上7.0以下であることが好ましい。これにより、クラックの発生を抑制できるとともに、焼成によって良好な導電性パターン領域を形成することができる。
 また、塗布層44に対する酸化銅微粒子の含有率は、10体積%以上90体積%以下であることが好ましい。これにより、塗布層44を焼成したときに、微粒子同士を融着させて導電性を発現させやすい。また、塗布層44を支持体又は密着層に効果的に付着させることができる。
 また、塗布層44中に含まれる酸化銅微粒子の平均粒子径(平均一次粒子径)は、1nm以上50nm以下であることが好ましい。これにより、塗布層44に対する焼成温度を低くすることができるとともに、塗布層44中での酸化銅微粒子の分散性を向上させることが出来る。
 また、塗布層44は、酸化銅とヒドラジンまたはヒドラジン水和物を含む構成、或いは、酸化銅とリン含有有機物とヒドラジンまたはヒドラジン水和物とを含む構成であってもよい。ヒドラジンまたはヒドラジン水和物を含むことによって、光をあてた際に酸化銅を銅に還元しやすい。
<粘着層>
 粘着層46は、必要に応じて、塗布層44及び酸素バリア層45の間に配置され、酸素バリア層45を塗布層44の表面に貼り合わせる。
 粘着層46の粘着力は、5mN/10mm以上10N/10mm以下であることが好ましい。5mN/10mm以上1N/10mm未満であることによって、塗布層44に粘着層46を介して酸素バリア層45を固定することができ、且つ、その後の工程で酸素バリア層45を簡単に剥離することができる。さらに、1N/10mm以上10N/10mm以下であることによって、塗布層44に粘着層46を介して酸素バリア層45を強固に固定することができる。
 粘着層46は、粘着シート、粘着フィルム、或いは、粘着材料である。粘着層46に含まれる粘着剤は、特に限定されないが、アクリレート樹脂やエポキシ樹脂、シリコーン樹脂などを例示することができる。
 酸素バリア層45が、粘着層46を備えた樹脂フィルムである場合、塗布層44の表面に樹脂フィルムを貼り合わせることによって、簡便に酸素バリア層45を形成することができるため好ましい。また、前述のように粘着力を選択することで、必要に応じて酸素バリア層45を剥離することができる。このように、酸素バリア層45を剥離することで、図2に示すような構造の構造体10を得ることができる。
 なお、酸素バリア層45が、樹脂硬化物によって形成される層や、または熱可塑性樹脂を加熱して押圧ラミネートすることによって形成される層の場合は、粘着層を省略することができる。
 また、本実施の形態では、塗布層44と樹脂層との間に、酸化ケイ素又は酸化アルミニウムを含有する層を有することが好ましい。酸化ケイ素又は酸化アルミニウムを含有する層を、水分バリア層として機能させることができ、透湿度を下げることができる。
 図6は、図5に示す積層体を用いて形成した導電性パターン領域を有する構造体50の断面図である。図6に示すように、導電性パターン領域を有する構造体50は、支持体51と、支持体51が構成する面上に、酸化銅及びリン含有有機物を含む絶縁領域52と、還元銅を含む導電性パターン領域53と、が互いに隣接して配置された層54と、層54を覆うようにして設けられた樹脂層の一例である酸素バリア層55と、層54と酸素バリア層55の間に介在する粘着層56と、を具備する。
 図6に示す導電性パターン領域を有する構造体50は、図3に示す構造体20と基本的に同じ構造であるが、図6では、層54と酸素バリア層55の間に粘着層56を介在する点で異なる。図6では、粘着層56を有することで、酸素バリア層55と層54間の密着性を向上させることができ、耐久性に優れた導電性パターン領域を有する構造体50を実現できる。また、酸素バリア層55と層54の間に、酸化ケイ素や酸化アルミニウムを含有する層を介在させることで、水分バリア性を向上させることもできる。
 また、図6では、必要に応じて酸素バリア層55を他の樹脂層に置き換えることもできる。このとき、粘着層56に予め粘着力の弱い粘着剤を用いることで、酸素バリア層55を層54から簡単に引き剥がすことができる。他の樹脂層と、層54との間には、粘着層56を介在させたり、酸化ケイ素や酸化アルミニウムを含有する層を介在させることもできる。粘着層56や、酸化ケイ素や酸化アルミニウムを含有する層を介在させず、他の層を、直接、層54の表面に貼り合わせる場合は、図3に示す構造に準じた導電性パターン領域を有する構造体50となる。
<本実施の形態の銅配線の概要>
 本発明者らは、上記した構造体のうち、導電性パターン領域からなる銅配線を開発するに至った。すなわち、本実施の形態では、導電性パターン領域と絶縁領域とが隣接した層の導電性パターン領域が以下に説明する銅配線である。また、本実施の形態では、絶縁領域を除去して銅配線を得ることもできる。
 本実施の形態における銅配線は、酸化銅が還元された還元銅とリンと炭素を含む。そして、リン/銅の元素濃度比が0.02以上、0.30以下であり、炭素/銅の元素濃度比が1.0以上、6.0以下であることを特徴とする。銅配線の表面の算術平均粗さRaは、20nm以上、500nm以下であることが好ましい。
 上記のように、リン元素の含有率は、銅の元素に対して、0.02以上、0.30以下の範囲であることが好ましい。より好ましくは0.05以上、0.28以下の範囲であることが好ましく、さらに好ましくは0.1以上、0.25以下の範囲である。リン/銅の元素濃度を、0.02以上とすることで、銅の酸化抑制をすることができ、銅配線回路としての信頼性を向上させることが出来、好ましい。また、リン/銅の元素濃度を、0.30以下とすることで、配線の抵抗値を下げることが出来、好ましい。
 上記のように、炭素元素の含有率は、銅の元素に対して、1.0以上6.0以下の範囲であることが好ましい。より好ましくは1.5以上、5.5以下の範囲であることが好ましく、さらに好ましくは2.0以上、5.0以下の範囲である。炭素/銅の元素濃度を、1.0以上とすることで、銅配線の屈曲性を担持させることができる。また、炭素/銅の元素濃度を、6.0以下とすることで、配線の抵抗値を下げることが出来、好ましい。
 炭素は、塗布層中のリン含有有機物やグリコール類などの有機成分が、酸化銅を還元する際に生じた残渣に由来する。
 上記のように、Raは、20nm以上500nm以下であることが好ましい。50nm以上300nm以下がより好ましく、50nm以上200nm以下がさらに好ましい。Raは、銅配線表面の算術平均粗さであり、銅配線を樹脂層で覆う場合は、樹脂層と接触する面の表面粗さを指す。Raが、20nm以上500nm以下とすることで、樹脂層との密着性を向上させることが出来、好ましい。
 さらに銅配線は、窒素を含んでいても良い。窒素/銅の元素濃度比は、0.04以上、0.6以下であることが好ましく、0.1以上、0.55以下であることがより好ましく、0.2以上、0.5以下であることがさらに好ましい。窒素/銅の元素濃度比を、0.04以上とすることで銅配線の耐腐食性を向上させることができ、窒素/銅の元素濃度比を、0.6以下にすることで配線の抵抗値を下げることが出来、好ましい。窒素は、塗布層中のヒドラジンまたはヒドラジン水和物が、酸化銅を還元する際に生じた残渣に由来する。
 銅配線は、酸化銅が還元された還元銅とリンと炭素を含み、それぞれの元素濃度比は、リン:炭素:銅が、0.02:1:1から0.3:6:1の範囲内であることが好ましい。0.05:1.5:1から0.28:5.5:1の範囲内であることがより好ましく、0.1:2:1から0.25:5:1の範囲内であることがさらに好ましい。なお、前記の範囲は、銅の元素濃度を1とした規定した比率である。この範囲で還元銅とリンと炭素を含むことによって、配線の抵抗値を下げ、かつ銅の酸化抑制と銅の屈曲性を最大限共に担持させることが出来る。
 銅配線は、酸化銅が還元された還元銅とリンと炭素と窒素を含み、それぞれの元素濃度比は、リン:炭素:窒素:銅が、0.02:1:0.04:1から0.3:6:0.6:1の範囲内であることが好ましい。0.05:1.5:0.1:1から0.28:5.5:0.55:1の範囲内であることがより好ましく、0.1:2:0.2:1から0.25:5:0.5:1の範囲内であることがさらに好ましい。なお、前記の範囲は、銅の元素濃度を1とした規定した比率である。この範囲で還元銅とリンと炭素と窒素を含むことによって、配線の抵抗値を下げ、かつ銅の酸化抑制と銅の屈曲性と耐腐食性を最大限共に担持させることが出来る。
 次に、図2に示す第1の構造体10の製造方法について説明する。第1の構造体10の製造方法は、主に以下の工程を備える。
(A)支持体が構成する面上に、酸化銅及びリン含有有機物を含む塗布層を配置する工程、
(B)光線を塗布層に選択的に照射して前記酸化銅を銅に還元し、支持体と、支持体が構成する面上に、酸化銅及び前記リン含有有機物を含む絶縁領域と、銅を含む導電性パターン領域と、が互いに隣接して配置された層と、を具備する導電性パターン領域を有する構造体を得る工程。
 上記(A)では、支持体が構成する面上に、酸化銅及びヒドラジンまたはヒドラジン水和物を含む塗布層を配置してもよい。または、支持体が構成する面上に、酸化銅、リン含有有機物、及びヒドラジンまたはヒドラジン水和物を含む塗布層を配置してもよい。ヒドラジンまたはヒドラジン水和物を含むことで、光による還元をより進行させることが出来、抵抗の低い銅膜を得ることができる。
 上記(A)に示したように、まず、支持体が構成する面上に、酸化銅及びリンを含む塗布層を配置する。この方法としては、(a)酸化銅及びリン含有有機物を含有する分散体を塗布する方法、(b)酸化銅微粒子を散布し、次いで、リン含有有機物を塗布する方法、(c)リン含有有機物を塗布し、次いで酸化銅微粒子を散布する方法等が挙げられる。以下、(a)の方法を例に挙げて説明するが、これに限定されるものではない。
(分散体の調製方法)
 次に、分散体の調製方法について説明する。まず、酸化銅微粒子をリン含有有機物と共に分散媒に分散させた酸化銅分散体を調製する。
 例えば、上記(3)の方法で合成された酸化銅微粒子は、軟凝集体であり、このままでは塗布に適さないため、分散媒に分散させる必要がある。
 上記(3)の方法で合成が終了した後、合成溶液と酸化銅微粒子との分離を、例えば、遠心分離のような公知の方法で行う。得られた酸化銅微粒子に、分散媒、及びリン含有有機物を加え、例えば、ホモジナイザのような公知の方法で撹拌し、酸化銅微粒子を分散媒に分散させる。
 本実施の形態に係るリン含有有機物は、分散剤として機能する。しかし、絶縁領域(図2に示す絶縁領域12)の電気絶縁性に影響がない範囲であれば、他の分散剤を追加しても構わない。
 なお、分散媒によっては、酸化銅微粒子が分散しにくく、分散が不充分な場合がある。このような場合は、例えば、分散しやすいアルコール類、例えば、ブタノールなどを用い、酸化銅を分散させた後、所望の分散媒への置換と所望の濃度への濃縮を行う。一例として、UF膜による濃縮、並びに、所望の分散媒による希釈及び濃縮を繰り返す方法が挙げられる。
(塗布)
 上述のような支持体の表面に、本実施の形態に係る分散体からなる薄膜を形成する。より具体的には、例えば、分散体を支持体上に塗布し、必要に応じて乾燥により分散媒を除去し、塗布層を形成する。当該塗布層の形成方法は、特に限定されないが、ダイコート、スピンコート、スリットコート、バーコート、ナイフコート、スプレーコート、ディツプコート等の塗布法を用いることができる。これらの方法を用いて、支持体上に均一な厚みで分散体を塗布することが望ましい。
 支持体上に配置された塗布層を覆うように、酸素バリア層を配置することが好ましい。ただし、図2に示す構造体10の製造方法としては、酸素バリア層の配置を必須とするものではない。
(焼成処理)
 上記(B)に示すように、本実施の形態では、塗布層中の酸化銅を還元し、銅粒子を生成させると共に、生成された銅粒子同士の融着による一体化が生じる条件下で加熱処理を施し、導電性パターン領域を形成する。この処理を焼成処理と呼ぶ。
 本実施の形態では、焼成処理の方法には、選択的な光照射法を用いる。本実施の形態において、光焼成法としては、例えば、光源としてキセノンなどの放電管を用いたフラッシュ光方式又はレーザ光方式が適用可能である。これらの方法は、強度の大きい光を短時間露光し、支持体上に形成した塗布層を短時間高温に上昇させ、焼成することができる。焼成時間が短時間であるため支持体へのダメージが少なく、耐熱性が低い樹脂フィルム基板への適用が可能である。
 フラッシュ光方式とは、例えば、キセノンランプ(放電管)を用い、コンデンサに蓄えられた電荷を瞬時に放電する方式である。この方式によれば、大光量のパルス光(キセノンランプ光)を発生させ、支持体上に形成された塗布層に照射することにより塗布層を瞬時に高温に加熱する。露光量は、光強度、発光時間、光照射間隔及び回数で調整可能である。
 導電性パターン領域を形成するため、塗布層に光源からマスクを介して選択的に光照射することが可能である。
 発光光源は異なるが、レーザ光源を用いても同様な効果が得られる。レーザ光源の場合は、フラッシュ光方式の調整項目に加え、波長選択の自由度があり、塗布層の光吸収波長又は支持体の吸収波長を考慮し、選択することも可能である。
 また、レーザ光方式によれば、ビームスキャンによる露光が可能であり、露光範囲の調整が容易であり、マスクを使用せず、塗布層に選択的に光照射(描画)が可能である。
 レーザ光源の種類としては、YAG(イットリウム・アルミニウム・ガーネット)、YVO(イットリウムバナデイト)、Yb(イッテルビウム)、半導体レーザ(GaAs,GaAlAs,GaInAs)、炭酸ガスなどを用いることができる。レーザとしては、基本波だけでなく必要に応じ、高調波を取り出して使用してもよい。
 本実施の形態において、光線が、中心波長が355nm以上、532nm以下のレーザ光であることが好ましい。本波長にすることで、酸化第一銅を含有する塗布層が吸収する波長のため、酸化第一銅の還元が均一に起こり、抵抗が低い領域(導電性パターン領域)を得ることができる。
 本実施の形態では、支持体を光線透過性とすることで、光線が、支持体を透過するため、塗布層の一部を適切に焼成することが可能になる。
 なお、塗布層の表面に酸素バリア層を有する構成であれば、支持体、或いは、塗布層の一方を光線透過性とし、支持体、或いは、酸素バリア層を介して塗布層に光線を透過させることで、塗布層の一部を適切に焼成することが可能である。
 また、酸素バリア層を、塗布層の表面に配置した構成では、導電性パターン領域を形成した後、該酸素バリア層を除去することで、図2に示す構造体10を得ることができる。
 図7を参照して、第1の実施の形態に係る導電性パターン領域を有する支持体の製造方法について、より具体的に説明する。図7は、第1の実施の形態に係る導電性パターン領域付支持体の製造方法の各工程を示す説明図である。図7中(a)において、水、プロピレングリコール(PG)の混合溶媒中に酢酸銅を溶かし、ヒドラジンまたはヒドラジン水和物を加えて攪拌する。
 次に、図7中(b)、(c)において、遠心分離で上澄みと沈殿物に分離した。次に、図7中(d)において、得られた沈殿物に、分散剤及びアルコールを加え、分散する。
 次いで、図7中(e)、(f)において、UF膜モジュールによる濃縮及び希釈を繰り返し、溶媒を置換し、酸化銅微粒子を含有する分散体Iを得る。
 図7中(g)、(h)において、分散体Iをスプレーコート法によりPET製の支持体(図7(h)中、「PET」と記載する)上に塗布し、酸化銅及びリン含有有機物を含む塗布層(図7(h)中、「CuO」と記載する)を形成する。
 次に、図7中(i)において、塗布層に対してレーザ照射を行い、塗布層の一部を選択的に焼成し、酸化銅を銅(図7(i)中、「Cu」と記載する)に還元する。この結果、図7中(j)において、支持体上に、酸化銅及びリンを含む絶縁領域(図7(j)中、「A」と記載する)と、銅を含む導電性パターン領域(図7(j)中、「B」と記載する)と、が互いに隣接して配置された層が形成された導電性パターン領域を有する構造体が得られる。
 本実施の形態では、さらに絶縁領域を洗浄することにより除去してもよい。銅配線(図7(K)中、「C」と記載する)が支持体上にパターン形成された形態を得ることができる。なお、銅配線Cは、導電性パターン領域Bと同じ層である。また、銅配線C上から銅配線C間の支持体上にかけて、第二樹脂層(図7(l)中、「D」と記載する)で封止することができる。なお、少なくとも、導電性パターン領域Bとしての銅配線C上を覆うように第二樹脂層Dを形成することができる。第二樹脂層は、上記に挙げた「他の樹脂層」に該当する。
 絶縁領域を除去する場合は、水またはエタノール、プロパノール、ブタノール、イソプロピルアルコール、メタノール、エチレングリコール、グリセリン等のアルコール類や、ケトン類、エステル類、エーテル類などの有機溶媒を用いることができる。特に、絶縁領域の洗浄性能の点で、水、エタノール、プロパノール、ブタノール、イソプロピルアルコールが好ましい。また、上記溶媒にリン系の分散剤を添加しても良い。添加することでさらに洗浄性能が向上する。
 図2に示す構造体10を製造するにあたり、図5に示すような積層体40を用いず、例えば、真空雰囲気中等であれば、樹脂層の一例としての酸素バリア層が無くても(図7(h))、構造体10は可能である。ただし、当然のことながら、酸素バリア層を含む積層体を用いることで、真空雰囲気又は不活性ガス雰囲気のための設備が不要になり、導電性パターン領域を有する構造体の製造コストを削減できるといったメリットを得ることができる。
 次に、説明する図3や図4、図6に示す第2の構造体20、30、50の製造方法では、図5で示した積層体40を用いることが好ましい。
 すなわち、第2の導電性パターン領域を有する構造体の製造方法は、以下の工程を有する。
(C) 支持体が構成する面上に、酸化銅及びリン含有有機物を含む塗布層を配置する工程、
(D) 塗布層を覆うように樹脂層(第一樹脂層)を配置する工程、
(E) 樹脂層又は支持体のいずれか一方を介して光線を前記塗布層に選択的に照射して酸化銅を銅に還元し、支持体と、支持体が構成する面上に、酸化銅及びリン含有有機物を含む絶縁領域と、銅を含む導電性パターン領域と、が互いに隣接して配置された層と、当該層を覆うように形成された樹脂層と、を具備する導電性パターン領域を有する構造体を得る工程。
 上記(C)では、支持体が構成する面上に、酸化銅及びヒドラジンまたはヒドラジン水和物を含む塗布層を配置してもよい。または、支持体が構成する面上に、酸化銅、リン含有有機物、及びヒドラジンまたはヒドラジン水和物を含む塗布層を配置してもよい。ヒドラジンまたはヒドラジン水和物を含むことで、光による還元をより進行させることが出来、抵抗の低い銅膜を得ることができる。
 ここで、(C)の工程は、既に記載の上記(A)の工程と同じである。(D)の工程では、樹脂層を塗布層の表面に形成する。(C)及び(D)の工程を得ることで、図5に示す中間体としての積層体40を製造することが出来る。
 すなわち、積層体40の製造方法は、支持体が構成する面上に、酸化銅とリン含有有機物と、を含む塗布層を配置する工程と、塗布層を覆うように樹脂層(酸素バリア層45)を配置する工程と、を具備する。あるいは、積層体40の製造方法は、支持体が構成する面上に、酸化銅とヒドラジンまたはヒドラジン水和物と、を含む塗布層を配置する工程と、塗布層を覆うように樹脂層(酸素バリア層45)を配置する工程と、を具備する。または、積層体40の製造方法は、支持体が構成する面上に、酸化銅とリン含有有機物とヒドラジンまたはヒドラジン水和物と、を含む塗布層を配置する工程と、塗布層を覆うように樹脂層(酸素バリア層45)を配置する工程と、を具備する。
 図5に示す積層体40では、酸素バリア層45を、塗布層44に粘着層46を介して貼り付ける。ただし、粘着層46は必須でない。例えば、酸素バリア層45を、樹脂硬化物によって形成する場合や、熱可塑性樹脂を加熱して押圧ラミネートする場合、必ずしも粘着層46が必要ではない。例えば、酸素バリア層を構成する材料を、加熱して軟化させ、圧力を加えながら塗布層に押し当ててラミネート加工して形成することができる。
 上記では、樹脂層の一例として酸素バリア層45を例示したが、好ましい形態としては、樹脂層は、酸素バリア層であって、粘着層を備えた樹脂フィルムである。これにより、樹脂フィルムを塗布層44の表面に貼り付けることで、簡単且つ適切に、図5に示す積層体40を製造することができる。
 なお、粘着剤は特に限定されず、アクリレート樹脂やエポキシ樹脂、シリコーン樹脂などを例示できる。
 また、粘着層の粘着力は、5mN/10mm以上10N/10mm以下であることが好ましい。これによって、塗布層に粘着層を介して適切に酸素バリア層を固定することができ、且つ、その後の工程で酸素バリア層を簡単に剥離することができる。さらに、1N/10mm以上10N/10mm以下であることによって、塗布層に粘着層を介して酸素バリア層を強固に固定することができる。
 上記の(C)及び(D)の工程を経て形成された積層体に対して、上記した焼成処理を施し、導電性パターン領域を形成する。
 本実施の形態では、酸素バリア層又は支持体のいずれか一方を光線透過性とする。これにより、光照射法の際、光線が、酸素バリア層又は支持体を透過し、塗布層の一部を焼成することができる。
 以上により、図3に示す構造体20や、図6に示す導電性パターン領域を有する構造体50を製造することができる。
(他の樹脂層の配置)
 次に、必要に応じて酸素バリア層を他の樹脂層に置き換えてもよい。まず、酸素バリア層を、溶剤で溶解除去する。このとき、上述の粘着層を用いて形成している場合は、粘着層だけを溶剤で溶解除去してもよい。また、予め粘着力の弱い粘着剤を用いることにより、酸素バリア層を、導電性パターン領域を有する層から引き剥がすことにより、溶剤を用いずとも、酸素バリア層を剥離させることもできる。
 その後、露出した導電性パターン領域を有する層を覆うように、他の樹脂層の一例である封止材層を配置する。封止材層は、上述の封止材層を構成する材料からなる樹脂シートを、別に用意する粘着剤によって塗布層に貼り合わせて形成することができる。
 また、封止材層は、上述の封止材層を構成する材料を、加熱して軟化させ、圧力を加えながら塗布層に押し当ててラミネート加工して形成してもよい。さらに、光硬化や熱硬化する硬化性材料を選択して、露出した導電性パターン領域を有する層の上に硬化性材料からなる塗布層を形成し、その後光や熱で硬化させて形成してもよい。
 図8を参照して、第2の実施の形態に係る導電性パターン領域付支持体の製造方法について、より具体的に説明する。図8は、本実施の形態に係る導電性パターン領域付支持体の製造方法の各工程を示す説明図である。図8中(a)において、水、プロピレングリコール(PG)の混合溶媒中に酢酸銅を溶かし、ヒドラジンまたはヒドラジン水和物を加えて攪拌する。
 次に、図8中(b)、(c)において、遠心分離で上澄みと沈殿物に分離した。次に、図8中(d)において、得られた沈殿物に、分散剤及びアルコールを加え、分散する。
 次いで、図8中(e)、(f)において、UF膜モジュールによる濃縮及び希釈を繰り返し、溶媒を置換し、酸化銅微粒子を含有する分散体Iを得る。
 図8中(g)、(h)において、分散体Iをスプレーコート法によりPET製の支持体(図8(h)中、「PET」と記載する)上に塗布し、酸化銅及びリン含有有機物を含む塗布層(図8(h)中、「CuO」と記載する)を形成する。
 次に、図8中(i)において、塗布層上に酸素バリア層(図8(i)中、「バリア」と記載する)を配置する。
 次に、図8中(j)において、酸素バリア層を介して塗布層に対してレーザ照射を行い、塗布層の一部を選択的に焼成し、酸化銅を銅(図8(j)中、「Cu」と記載する)に還元する。この結果、図8中(k)において、支持体上に、酸化銅及びリン含有有機物を含む絶縁領域(図8(k)中、「A」と記載する)と、銅を含む導電性パターン領域(図8(k)中、「B」と記載する)と、が互いに隣接して配置された層が得られる。
 次に、図8(l)、(m)において、酸素バリア層を溶剤で除去し、導電性パターン領域と絶縁領域とが隣接する層を露出させる。その後、図8(n)において、封止材層(図8(n)中、「封止」と記載する)で、導電性パターン領域と絶縁領域とが隣接する層の表面を覆うことで、図4に示す、導電性パーン領域を有する構造体を得ることができる。
 本実施の形態では、さらに絶縁領域を洗浄することにより除去してもよい。銅配線(図8(o)中、「C」と記載する)が支持体上にパターン形成された形態を得ることができる。なお、銅配線Cは、導電性パターン領域Bと同じ層である。また、銅配線C上から銅配線C間の支持体上にかけて、第二樹脂層(図8(p)中、「D」と記載する)で封止することができる。なお、少なくとも、導電性パターン領域Bとしての銅配線C上を覆うように第二樹脂層Dを形成することができる。第二樹脂層は、上記に挙げた「他の樹脂層」に該当する。
 絶縁領域を除去する場合は、水またはエタノール、プロパノール、ブタノール、イソプロピルアルコール、メタノール、エチレングリコール、グリセリン等のアルコール類や、ケトン類、エステル類、エーテル類などの有機溶媒を用いることができる。特に、絶縁領域の洗浄性能の点で、水、エタノール、プロパノール、ブタノール、イソプロピルアルコールが好ましい。また、上記溶媒にリン系の分散剤を添加しても良い。添加することでさらに洗浄性能が向上する。
 なお、酸素バリア層を除去せずに封止材層として機能させることも可能である。このとき、図3及び図6に示す導電性パターン領域を有する構造体を製造することができる。したがって、酸素バリア層の除去以降の工程は、本実施の形態の導電性パターン領域を有する構造体の製造方法で必須ではない。
 本実施の形態の構造体の製造方法では、光線を照射して導電性パターン領域と絶縁領域とを有する層を得た後、図7(k)や、図8(o)に示すように、導電性パターン領域と絶縁領域とが密接した層から絶縁領域を除去することも可能である。例えば、導電性パターン領域は溶けず、絶縁領域を溶解させるエッチング液を用いるなどして、選択的に、絶縁領域を洗浄、除去することができる。本実施の形態では、導電性パターン領域と絶縁領域との境界を明確に区別でき、上記した絶縁領域のみの選択的な除去を適切に行うことができる。
 また、本実施の形態では、上記のように、層から絶縁領域を除去した後、図7(l)や図8(p)に示すように、導電性パターン領域の表面を覆うように第二樹脂層を配置してもよい。これにより、導電性パターン領域上及び導電性パターン領域間の絶縁性を確保することができる。また、バリア膜として銅配線の耐久性にも効果がある。なお、第二樹脂層には、上記に挙げた「他の樹脂層」を適用することができる。
 本実施の形態では、例えば、上記のように、絶縁領域を除去し、支持体上に銅配線を残すことができる。支持体上に残された、酸化銅が還元された還元銅とリンと炭素を含む導電性パターン領域を、本実施の形態の銅配線として製造することができる。或いは、絶縁領域を除去しなくとも、導電性パターン領域と絶縁領域のうち、導電性パターン領域を銅配線と見做すことができる。このとき、本実施の形態では、銅配線において、リン/銅の元素濃度比を0.02以上、0.30以下とし、炭素/銅の元素濃度比を1.0以上、6.0以下とし、好ましくは、Raを20nm以上、500nm以下することができる。リン/銅の元素濃度比を0.02以上、0.30以下とするには、一例として、酸化銅及びリン含有有機物を含む塗布層を配置し、光線を照射して酸化銅から還元銅を得ることで製造することができる。酸化銅とリン含有有機物との比率を調整することで、リン/銅の元素濃度比を調整することが出来る。炭素/銅の比を1.0以上、6.0以下とするには、一例として、酸化銅及び有機物を含む塗布層を配置し、光線を照射して酸化銅から還元銅を得ることで製造することができる。酸化銅と有機物との比率を調整することで、炭素/銅の元素濃度比を調整することが出来る。また、銅配線の表面のRaを20nm以上、500nm以下するには、一例として、光線を照射するときの光線照射強度と照射速度、照射間隔を調節することにより、所望のRaを得ることが出来る。
 また、本実施の形態の導電性パターン領域を有する構造体、或いは積層体の製造方法では、樹脂層又は支持体の波長445nmの光線透過率は30%以上であることが好ましく、40%以上がより好ましく、50%以上がさらに好ましい。光線透過率の上限は、98%以下であってもよい。波長は、445nmの他に、例えば、355nm、405nm、450nm、532nm、1064nmなどの近紫外から近赤外の波長を選択することもできる。このような波長における光線透過率を高くすることで、支持体側から光照射して塗布層を焼成し、導電性パターン領域を形成することができる。
 また、本実施の形態の導電性パターン領域を有する構造体、或いは積層体の製造方法では、塗布層中に含まれる酸化銅は、酸化第一銅であることが好ましい。これにより、焼成処理により、還元銅を得ることができ、導電性パターン領域と絶縁領域とが混在した層を精度よく形成することが可能になる。
 また、本実施の形態の導電性パターン領域を有する構造体、或いは積層体の製造方法では、塗布層中に含まれるリン含有有機物は、下記化学式(1)(化学式(1)中、Rはエステル塩である)で示す骨格を有することが好ましい。
Figure JPOXMLDOC01-appb-C000005
 上記した化学式(1)の構造は、酸化銅と吸着し、また支持体への密着性にも優れる。これにより、絶縁性の確保とともに、支持体と塗布層との間の剥離を効果的に防止することができる。
 また、本実施の形態の導電性パターン領域を有する構造体、或いは積層体の製造方法では、支持体が立体物であることを例示することができる。すなわち、本実施の形態では、平坦な支持体のみが対象でなく、曲面や段差等であってもよく、例えば、筐体やシャーシ等の表面を支持体表面として、本実施の形態における導電性パターン領域を有する構造体を形成することが可能である。
<適用例>
 本実施の形態に係る導電性パターン領域を有する構造体は、例えば、電子回路基板等の配線材(プリント基板、RFID、自動車におけるワイヤハーネスの代替など)、携帯情報機器(スマートフォン等)の筐体に形成されたアンテナ、メッシュ電極(静電容量式タッチパネル用電極フィルム)、電磁波シールド材、及び、放熱材料、に好適に適用することができる。
 以上説明したように、本実施の形態に係る導電性パターン領域を有する構造体によれば、銅を含む導電性パターン領域の間を、酸化銅及びリンを含む絶縁領域で絶縁できる。したがって、製造のために、支持体上に配置された層の未焼成部分を除去する必要がないため、製造工程を削減でき、溶剤等が不要であるので製造コストを下げることができる。また、導電性パターン領域の絶縁のために絶縁領域を利用し、当該絶縁領域は、クラックを生じにくく、信頼性を向上できる。
 また、本実施の形態に係る導電性パターン領域を有する構造体の製造方法によれば、酸化銅及びリン含有有機物を含む塗布層の一部をレーザで焼成して導電性パターン領域とすると共に、未焼成部分を導電性パターン領域の絶縁のために使用できる。したがって、塗布層の未焼成部分を除去する必要がない。このため、製造工程を削減でき、溶剤等が不要であるので製造コストを下げることができる。また、導電性パターン領域の絶縁のためにソルダ―レジスト等を設ける必要がないので、その分も製造工程を削減できる。
 また、本実施の形態に係る積層体によれば、樹脂層で塗布層を覆うことにより、光焼成時に塗布層が酸素に触れるのを防止し、酸化銅の還元を促進できる。これにより、光照射のときに塗布層の周囲を無酸素又は低酸素雰囲気にするための設備が不要になり、製造コストを削減できる。また、塗布層を樹脂層で覆っているため、塗布層を外部のストレスから保護し、ハンドリング性を向上できる。
 また、本実施の形態に係る積層体の製造方法によれば、支持体の面上に、酸化銅及びリン含有有機物を含む塗布層を形成する工程、及び、塗布層の表面に樹脂層を形成する工程、を用いることで、簡単且つ適切に積層体を製造することが可能である。
 以下、具体的な実施例により、本発明をより詳細に説明する。
<分散体の製造>
 水800g及び1,2-プロピレングリコール(和光純薬製)400gからなる混合溶媒中に、酢酸銅(II)一水和物(和光純薬製)80gを溶解し、ヒドラジンまたはヒドラジン水和物水和物(和光純薬製)20gを加えて攪拌した後、遠心分離を用いて上澄みと沈殿物とに分離した。
 得られた沈殿物2.8gに、リン含有有機物としてDISPERBYK-145(商品名、ビックケミー社製)(表1中、BYK-145)0.05g及び分散媒としてエタノール(和光純薬製)6.6gを加え、ホモジナイザを用いて分散した。さらにエタノールによる希釈と濃縮を繰り返し、これにより、酸化第一銅(酸化銅(I))を含む酸化第一銅微粒子を含有する分散体(a)を得た。沈殿物を真空乾燥することで沈殿物中の酸化第一銅微粒子の重量を測定したところ、沈殿物2.8g中に酸化第一銅微粒子は2.0g含有されていた。
 なお、真空乾燥によって得られた酸化第一銅微粒子を、透過型電子顕微鏡観察しエネルギー分散型X線分光法によって解析することで、酸化第一銅微粒子中の酸化第一銅の含有率(体積%)は100体積%であった(表1参照)。
 沈殿物2.8gに加えるリン含有有機物の量を、それぞれ表1に記載の通りに変更した他は上記と同様の操作により、酸化第一銅微粒子を含有する分散体(b)~(g)を得た。分散体(b)~(g)に含まれる全微粒子中の酸化銅の含有率(体積%)を測定した結果、100体積%であった(表1参照)。
Figure JPOXMLDOC01-appb-T000006
 また、分散体(c)に、銅粉(平均粒径1μm、球状粒子)を表1に記載の通りの量で添加することにより、分散体(h)、(i)を得た。分散体(h)、(i)に含まれる全微粒子(酸化銅微粒子及び銅粉)中の酸化銅の含有率(体積%)を測定した結果、それぞれ、59.7体積%及び42.6体積%であった(表1参照)。
<試料の製造>
[試料1~19]
 支持体の表面にUVオゾン処理を施した後、分散体を所定の厚みになるようにバーコートし、室温で10分間乾燥することで、支持体上に塗布層が形成された試料を得た。
 支持体の種類、分散体の種類及び塗布層の厚みをそれぞれ表2に示す通りに変更し、試料1~19を得た。
 支持体PETとしては、厚み100μmのPETフィルム(東洋紡社製、コスモシャインA4100)を用いた。
[試料20]
 支持体として、厚み100μmのPETフィルム(東洋紡社製、コスモシャインA4100)の表面にUVオゾン処理を施した後、酸素ガスによる反応性イオンエッチング(RIE)処理によって表面を粗化して密着層を形成した。
 次いで、密着層上に分散体(c)を所定の厚み0.5μmになるようにバーコートし、室温で10分間乾燥することで、試料20を得た。
[試料21~23]
 支持体の種類を表2に記載の通りに変更した他は、上記試料20の場合と同様の操作により、試料21~23を得た。得られた密着層の比表面積及び表面粗さを測定し、表2に示した。
 支持体として、PENフィルムとPIフィルム、m-PPEシートは下記を用いた。
 PENフィルム(帝人フィルムソリューション社製、テオネックスQ65H、厚み100μm)
 PIフィルム (東レ・デュポン社製、カプトン500H、厚み125μm)
 m-PPEシート (旭化成社製、E1000、厚み125μm)
[試料24]
 支持体として、厚み100μmのPETフィルム(東洋紡社製、コスモシャインA4100)の表面にUVオゾン処理を施した後、酸化シリコン微粒子(平均粒子径25nm)を含有するコーティング液を塗布した。そして、室温で30分乾燥させて、厚みが5μmの密着層を形成した。
 その後、分散体(a)を分散体(c)に変更した他は、上記試料1~19の場合と同様の操作により、試料24を得た。
[試料25]
 支持体として、厚み100μmのPETフィルム(東洋紡社製、コスモシャインA4100)の表面にUVオゾン処理を施した後、酸化アルミニウム微粒子(平均粒子径110nm)を含有するコーティング液をブレードコーターで塗布した。そして、室温で30分乾燥させて、厚みが10μmの密着層を形成した。
 その後、分散体(a)を分散体(c)に変更した他は、上記試料1~19の場合と同様の操作により、試料25を得た。
<評価及び測定方法>
(分散体の成膜性評価)
 得られた試料の、塗布層の成膜性を、形状測定レーザーマイクロスコープ(キーエンス社製、VK-9510)で観察した。このとき、10倍の対物レンズを用いた。評価基準は以下の通りである。図9及び図10は、実施例での塗布層におけるクラックの状態を説明するための電子顕微鏡写真である。図9にクラックのない塗布層の例を、図10にクラックのある塗布層の例を示す。
(レーザによる焼成及び導電性評価)
 ガルバノスキャナーを用いて、最大速度300mm/分で焦点位置を動かしながらレーザ光(波長445nm、出力1.2W、連続波発振(Continuous Wave:CW))を、アルゴンガス雰囲気の試料の基板に照射することで、所望とする25mm×1mmの寸法の銅を含む導電性パターン領域を得た。
 導電性の評価方法を以下に述べる。導電性パターン領域の両端にテスタを当て、導電性を評価した。評価基準は以下の通りである。
 ○:抵抗値が1kΩ未満
 △:抵抗値が1kΩ以上1MΩ未満
 ×:抵抗値が1MΩ以上
(キセノンフラッシュによる焼成及び導電性評価)
 30mm角の試料をアルゴンガス雰囲気にしたステージ上に設置した。その上に25mm×1mmの寸法で開口部を設けた遮光マスクを載せ、さらにその上からキセノンフラッシュ(照射エネルギー3J/cm、照射時間4m秒)を照射した。これによって、25mm×1mmの寸法の銅を含む導電性パターン領域を得た。遮光マスクの開口部ではない部分は、キセノンフラッシュを照射する前と同じ状態であった。
 導電性パターン領域の両端にテスタを当て、導電性を評価した。評価基準は以下の通りである。
 ○:抵抗値が1kΩ未満
 △:抵抗値が1kΩ以上1MΩ未満
 ×:抵抗値が1MΩ以上
 レーザによる焼成及びキセノンフラッシュによる焼成のうち、いずれか一方で、導電性パターン領域で導電性を発現することができれば、導電性パターン領域付支持体として使用することができる。
(絶縁抵抗の測定)
 焼成後の各試料の未焼成部分である酸化第一銅及びリン含有有機物を含む絶縁領域に、針式プローバーを、5mmの間隔を置いて2本設置した。菊水電子工業株式会社製の絶縁抵抗試験機TOS7200を用いて、2本の針式プローバーの間に直流500Vの電圧を1分間印加し、そのときの抵抗値を評価した。評価基準は以下の通りである。
 ○:5000MΩ以上
 △:1MΩ以上5000MΩ未満
 ×:1MΩ未満
(平均粒子径)
 酸化第一銅微粒子の平均一次粒子径は、透過型電子顕微鏡又は走査型電子顕微鏡によって測定することができる。具体的な操作を説明する。試料を適当なサイズに切り分け、日立ハイテクノロジーズ社製、イオンミリング装置E-3500を用いてブロードイオンビーム(BIB)加工した。この際、必要に応じて試料を冷却しながらBIB加工を行った。加工した試料に導電処理を施し、導電性粘着剤部の断面を、日立製作所社製、走査型電子顕微鏡S-4800にて観察した。1視野内に10点以上の一次粒子が存在する画像内のすべての一次粒子径を測定し、その平均値を、平均一次粒子径とした。
 酸化第一銅微粒子の平均二次粒子径は、透過型電子顕微鏡又は走査型電子顕微鏡によって測定することができる。具体的な操作を説明する。試料を適当なサイズに切り分け、日立ハイテクノロジーズ社製、イオンミリング装置E-3500を用いてBIB加工した。この際、必要に応じて試料を冷却しながらBIB加工を行った。加工した試料に導電処理を施し、導電性粘着剤部の断面を、日立製作所社製、走査型電子顕微鏡S-4800にて観察した。1視野内に10点以上の二次粒子が存在する画像内のすべての二次粒子径を測定し、その平均値を、平均二次粒子径とした。
(荷重たわみ温度)
 支持体の荷重たわみ温度は、JIS7191に準拠した方法で測定することができる。
(酸化第一銅微粒子、銅粉及びリン含有有機物の含有率(体積%)の測定)
 走査型電子顕微鏡(SEM)で、支持体上に配置された層の断面を観察することにより、層中の絶縁領域における酸化第一銅微粒子、含まれている場合は銅粉及びリン含有有機物の含有率(体積%)を測定した。
 図11は、実施例での、支持体上に配置された層の断面を示す電子顕微鏡写真である。図11に示すように、電子顕微鏡写真においては、電子密度が大きい材料ほど明るく観察されるため、無機物は有機物より明るく、導電性の金属は酸化物より明るく観察される。したがって、電子顕微鏡写真の層中のある観察領域において、無機物の酸化第一銅微粒子及び銅粉(以下、「全粒子」と記載する)とリン含有有機物とを、形状、サイズ及びコントラストで区別することが可能である。当該観察領域に含まれる層の断面の画像(以下、「断面画像」と記載する)中の全粒子が占める面積と、断面画像中の層の総面積との商をとって100を乗じることで全粒子の含有率(体積%)を求めることができた。
 また、酸化第一銅微粒子及び銅粉も同様に、形状、サイズ、及びコントラストで区別することが可能である。したがって、断面画像中の酸化第一銅微粒子が占める面積と、断面画像中の全粒子が占める面積との商をとって100を乗じることで、全粒子中の酸化銅の含有率(体積%)を求めることができた。また、断面画像中の銅粉が占める面積と、断面画像中の全粒子が占める面積との商をとって100を乗じることで、全粒子中の銅粉の含有率(体積%)を求めることができた。
 また、リン含有有機物の含有率(体積%)は、断面画像中のリン酸有機物の占める面積と、断面画像中の層の総面積との商をとって100を乗じることで求めることができた。
 画像の解析には、画像解析ソフトを用いることができ、例えば、ImageJ(アメリカ国立衛生研究所製)が挙げられる。実施例においては、ImageJに断面画像を読み込み、白黒8ビット画像に変換し、デフォルトの閾値設定を行い、粒子解析すること酸化第一銅微粒子及び銅粉の含有率を求めた。
(酸化第一銅微粒子、銅粉及びリン含有有機物の含有率(重量%)の測定)
 断面画像から求めた含有率(体積%)と、それぞれの酸化銅、銅及びリン含有有機物の比重から含有率(重量%)を計算することができる。酸化銅、銅及びリン含有有機物の比重はそれぞれ以下の値を用いることができる。
酸化銅:6.0g/cm
銅:8.9g/cm
リン含有有機物:1.0g/cm
 これら以外の材料については、化学便覧、理化年表等に記載の数値を用いてもよい。
 このようにして求めた層中の絶縁領域における酸化第一銅微粒子、銅粉及びリン含有有機物の含有率(体積%)に基づいて、層の絶縁領域中の、酸化第一銅微粒子、又は、銅粉が含まれている場合は酸化第一銅微粒子及び銅粉の全体積を100体積部としたときのリン含有有機物の体積部を計算し、表2に示した。同様に、層の絶縁領域中の、酸化第一銅微粒子、又は、銅粉が含まれている場合は酸化第一銅微粒子及び銅粉の全質量を100質量部としたときのリン含有有機物の質量部を計算し、表2に示した。
(支持体密着性)
 焼成によって得られた導電性パターン領域の、支持体との密着性は、目視によって下記の評価基準によって行った。
 ○:導電性パターン領域が支持体と密着している状態
 △:一部に剥離が見られるものの、全体としては支持体に密着している状態
 ×:導電性パターン領域が支持体から剥離している状態
Figure JPOXMLDOC01-appb-T000007
 表2中の略号はそれぞれ以下の化合物を指す。
 PET:ポリエチレンテレフタラート樹脂
 PEN:ポリエチレンナフタレート樹脂
 PI:ポリイミド樹脂
 PP:ポリプロピレン樹脂
 PA:ポリアミド樹脂
 ABS:アクリロニトリルブタジエンスチレン樹脂
 PE:ポリエチレン樹脂
 PC:ポリカーボネート樹脂
 POM:ポリアセタール樹脂
 PBT:ポリブチレンテレフタレート樹脂
 m-PPE:変性ポリフェニレンエーテル樹脂
 PPS:ポリフェニレンサルファイド樹脂
[試料35~40]
 上記に挙げた分散体(a)、(c)、(d)と、分散体(j)(沈殿物2.8g、銅粉0g、有機物BYK145 2.0g、溶媒エタノール 6.6g)と、分散体(c)にヒドラジン水和物を添加した分散体(k)(沈殿物2.8g、銅粉0g、有機物BYK145 2.0g、溶媒エタノール 6.6g、ヒドラジン水和物0.01g)と、分散体(c)にヒドラジン水和物を添加した分散体(l)(沈殿物2.8g、銅粉0g、有機物BYK145 2.0g、溶媒エタノール 6.6g、ヒドラジン水和物0.1g)を用いて、試料1と同様の方法によって、支持体PIフィルムの上に厚み0.8μmの塗布層を形成した試料35~40を得た。尚、分散体(k)(l)におけるヒドラジン質量/酸化銅質量は、分散体(k)が0.003で、分散体(l)が0.03であった。
 各試料の塗布層表面の平滑性を測定した。測定方法は、触針式膜厚測定機(株式会社アルバック DektakXT)を用いて1000μmの長さにおける算術平均高さRaを測定した。評価基準は以下の通りである。
 ○:Raが30nm未満
 △:Raが30nm以上100nm未満
 ×:Raが100nm以下
 ガルバノスキャナーを用いて最大速度100mm/秒で焦点位置を動かしながらレーザ光(波長532nm、出力0.45W、連続波発振(Continuous Wave:CW))を、アルゴンガス雰囲気の試料の基板に照射することで、所望とする25mm×1mmの寸法の銅を含む導電性パターン領域を得た。
 各試料の導電性パターン領域の膜厚を測定した。測定方法は、導電性パターン領域の一部を剥離して支持体を露出させ、支持体から残った導電性パターン領域の段差を、触針式膜厚測定機(株式会社アルバック DektakXT)を用いて測定した。さらに未焼成である絶縁領域との比を算出した。
 各試料の導電性パターン領域の表面粗さを測定した。測定方法は、触針式膜厚測定機(株式会社アルバック DektakXT)を用いて1000μmの長さにおける算術平均高さRaを測定した。評価基準は以下の通りである。
 ○:Raが50nm以上200nm未満
 △:Raが20nm以上50nm未満、200nm以上500nm未満
 ×:Raが20nm未満、500nm以上
 導電性パターン領域の両端を、4端子測定法を用いて抵抗値評価した。評価基準は以下の通りである。
 ○:抵抗値が30μΩcm未満
 △:抵抗値が30μΩcm以上100μΩcm未満
 ×:抵抗値が100μΩcm以上
(耐電圧の測定)
 前述の25mm×1mmの寸法の導電性パターン領域を、1mmの間隔を開けて2本配置し、その間にある、未焼成部分である酸化第一銅及びリン含有有機物及びヒドラジンまたはヒドラジン水和物を含む絶縁領域に対して耐電圧測定を行った。
 測定の方法は、針式プローバーを2本の導電性パターン領域に接続し、菊水電子工業株式会社製の耐電圧試験機TOS5300を用いて、2本の針式プローバーの間に交流電圧を印加した。徐々に電圧を上げ、絶縁破壊を生じる電圧値を測定した。評価基準は以下の通りである。
 ○: 耐電圧が1.7kV/mm以上
 △: 耐電圧が1kV/mm以上1.7kV/mm未満
 ×: 耐電圧が1kV/mm未満
(評価結果)
[試料1~25]
 分散体(a)~(i)は、目視評価において凝集沈殿物が発生することなく、すべて分散性の良好な分散体であった。
 試料1は、レーザ焼成では導電性パターン領域の一部に剥離が見られるものの、全体としては支持体に密着しており、導電性の確認を行うことができた。キセノンフラッシュ焼成では、焼成中に塗布した分散体が吹き飛んでしまい、導電性パターン領域を得ることができなかった。
 試料2~4、7、9~17は、レーザ焼成では導電性パターン領域と支持体が密着しており、導電性の確認を行うことができた。キセノンフラッシュ焼成では、焼成中に塗布した分散体が吹き飛んでしまい、導電性パターン領域を得ることができなかった。
 試料5、6は、層中のリン含有有機物の含有量が多く、導電性の評価結果は△であった。酸化第一銅焼成後の、支持体上に配置された層は支持体と密着している状態であった。
 試料8は、レーザ焼成及びキセノンフラッシュ焼成の両方ともに、支持体に密着した導電性に優れた導電性パターン領域を得ることができた。
 試料18、19は、レーザ焼成によって導電性パターン領域を得ることができたが、支持体との密着性はレーザ焼成中に一部が剥離した状態であった。
 試料20~25は密着層を有し、レーザ焼成及びキセノンフラッシュ焼成の両方とも、支持体に密着した導電性パターン領域を得ることができた。
[試料26~34]
 支持体として、表2に示す材質が異なる、密着層のない筐体を用意した。筐体の形状は、曲率半径500mmのすり鉢形状を有する曲面体である。用意した筐体に、スプレーコート法を用いて分散体(c)を乾燥膜厚5μmになるように塗布し、試料26~34を得た。この後、試料26~34に対して、ガルバノスキャナーを用いて最大速度300mm/分で、焦点位置を筐体のすり鉢形状の表面に焦点が合うように動かしながら、レーザ光(波長445nm、出力1.5W、連続波発振(Continuous Wave:CW))をアルゴン雰囲気で照射することで、筐体の表面に所望とする25mm×1mmの寸法の銅を含む導電性パターン領域を得た。得られた導電性パターン領域は、一部に細かいクラックが生じているが、筐体と密着し、導電性に優れていた。
[試料35~40]
 分散体(j)(k)(l)は、目視評価において凝集沈殿物が発生することなく、分散性の良好な分散体であった。
 試料35~40の塗布層の平滑性を評価した。評価結果は表3に示す。平滑であることにより、光線を照射したときに塗布層の表面で乱反射されることなく好適に光を吸収することが出来る。
 試料35~40の導電性パターン領域の抵抗値を評価した。評価結果は表3に示す。試料38は、レーザ光を照射すると塗布層がアブレーションしてしまい、好適な導電性パターン領域を得ることが出来なかった。
 試料35~37、39、40の導電性パターン領域の膜厚を測定し、未焼成である絶縁領域との膜厚比を算出した。評価結果は表3に示す。膜厚比は45~50%の範囲内であった。
 試料35~37、39、40の導電性パターン領域の表面粗さを評価した。評価結果は表3に示す。いずれも好適な表面粗さを有していた。
 試料35~37、39,40の絶縁領域の耐電圧評価を行った。評価結果は表3に示す。試料36、37、39、40は良好な耐電圧を有していた。
 試料36に封止層としての機能を有する樹脂層(PETフィルム:東洋紡社製、コスモシャインA4100、厚み100um)を配置した。樹脂層には、酸化ケイ素を含む層を水分バリア層として設け、支持体上に配置された導電性パターン領域を有する層と接着させるために、接着層(リンテック株式会社 光学粘着シートMOシリーズ)を設けた。また、樹脂層の縁からの水分混入を防ぐために熱硬化型封止材(味の素ファインテクノ株式会社 AES-210)で封止した。さらに、樹脂層の一部を開口して導電性パターン領域を露出させて、そこに低温はんだ(千住金属工業株式会社 エコソルダーLEO)を用いて電極を設けた。この状態で85℃85RH%の環境におき、導電性パターン領域の導電性劣化の加速試験を実施した。1000時間経過後に抵抗値を評価した結果、抵抗変化率が+5%以下で、良好であった。これは、加速試験中に封止した内部に微量に混入する酸素と水分により、銅が酸化される前にリンが酸化されたことで、導電性パターン領域の抵抗変化が低く抑えられたためと考えられる。
 試料41として、立体的な曲面を有する支持体として、ガラス製のワイングラスを用意した。ワイングラスの曲率半径は35mmであった。分散体(c)で満たした容器にワイングラスを浸し、一定速度で引き上げることで、ワイングラスの外側表面に乾燥膜厚2μmの塗布層を得た。この後、塗布層にレーザーマーカー(キーエンス株式会社レーザーマーカーMD-S9910A)を用いて、レーザ光(波長532nm、出力0.22W、パルス繰返し周波数260kHz)を空気中で速度20mm/秒の速さで照射した。これにより、ワイングラスの表面に還元銅を含む導電性パターン領域を得た。図12Aにその写真を示す。図12Bに、その模式図を示す。得られた導電性パターン領域はガラスと密着し、導電性パターン領域の抵抗値評価は○であり、絶縁パターン領域の耐電圧評価は○であった。
 さらに銅配線を得るために、レーザ光を照射していない部分である絶縁領域にある塗布層を、洗浄溶媒であるエタノールを用いて除去した。除去後の写真を図12Cに示す。除去後の銅配線の抵抗値評価は○であり、良好であった。
 また上記の実験と同様に、試料42として、立体的な曲面を有する支持体として、ガラス製のワイングラスを用意した。ワイングラスの曲率半径は35mmであった。分散体(c)で満たした容器にワイングラスを浸し、一定速度で引き上げることで、ワイングラスの外側表面に乾燥膜厚2μmの塗布層を得た。この後、塗布層に、上記実験とは異なるレーザーマーカー(キーエンス株式会社レーザーマーカーMD-U1000C)を用いて、レーザ光(波長355nm、出力0.25W、パルス繰返し周波数300kHz)を空気中で速度20mm/秒の速さで照射した。これにより、ワイングラスの表面に還元銅を含む導電性パターン領域を得た。得られた導電性パターン領域はガラスと密着し、導電性に優れていた。
 試料43として、試料36の塗布層の表面に、酸素バリア性を有する樹脂層として微粘着PETフィルム(リンテック社製SRL-0753)を貼り付け、レーザーマーカー(キーエンス株式会社レーザーマーカーMD-S9910A)を用いて、レーザ光(波長532nm、出力0.22W、パルス繰返し周波数260kHz)を、空気中で速度20mm/秒の速さで、樹脂層を透過させて塗布層に照射した。その後、樹脂層を取り外した。得られた導電性パターン領域はPIフィルムと密着し、導電性パターン領域の抵抗値評価は○であり、絶縁領域の耐電圧評価は○であった。
 さらに、樹脂層を取り外したことで露出した導電性パターン領域と絶縁領域の上に、他の樹脂層の一例である封止材層として、樹脂層(PETフィルム:東洋紡社製、コスモシャインA4100、厚み100um)を配置した。樹脂層には、酸化ケイ素を含む層を水分バリア層として設け、支持体上に配置された導電性パターン領域を有する層と接着させるために、接着層(リンテック株式会社 光学粘着シートMOシリーズ)を設けた。また、樹脂層の縁からの水分混入を防ぐために熱硬化型封止材(味の素ファインテクノ株式会社 AES-210)で封止した。さらに、樹脂層の一部を開口して導電性パターン領域を露出させて、そこに低温はんだ(千住金属工業株式会社 エコソルダーLEO)を用いて電極を設けた。この状態で85℃85RH%の環境におき、導電性パターン領域の導電性劣化の加速試験を実施した。1000時間経過後に抵抗値を評価した結果、抵抗変化率が+5%以下であり、良好であった。これは、加速試験中に封止した内部に微量に混入する酸素と水分により、銅が酸化される前にリンが酸化されたことで、導電性パターン領域の抵抗変化が低く抑えられたためと考えられる。
[比較例1]
 リン含有有機物の代わりにポリビニルビロリドン(以下、PVP)を用いること以外は分散体(a)と同様の操作により、酸化第一銅微粒子を含有する分散体(x)を得た。なお、分散体(x)の組成は、沈殿物2.8g、ポリビニルピロリドン0.2g、エタノール分散媒6.6gであって、酸化第一銅微粒子中の酸化銅の含有率は100体積%である。
 試料1~19と同様の操作により、支持体として、厚み100μmのPETフィルム(東洋紡社製、コスモシャインA4100)の上に分散体(x)の塗布層が厚み0.5umで形成された比較例1を得た。
 比較例1に、ガルバノスキャナーを用いて、最大速度300mm/分で焦点位置を動かしながらレーザ光(波長445nm、出力1.2W、連続波発振(Continuous Wave:CW))を、試料の基板に照射することで、所望とする25mm×1mmの寸法の銅を含む導電性パターン領域を得た。
 焼成後の比較例1の未焼成部分である絶縁領域に、針式プローバーを、5mmの間隔を置いて2本設置した。菊水電子工業株式会社製の絶縁抵抗試験機TOS7200を用いて、2本の針式プローバーの間に直流500Vの電圧を1分間印加し、そのときの抵抗値を評価した結果、抵抗値は1MΩ未満であって、絶縁性は不十分であった。
 さらに前述の操作と同様にして、未焼成部分である酸化第一銅を含み、リン含有有機物及びヒドラジンまたはヒドラジン水和物を含まない絶縁領域に対して耐電圧測定を行った。その結果、耐電圧は0.9kV/mmで評価は×であった。
[比較例2]
 酸化第一銅粒子とリン含有有機物とヒドラジンまたはヒドラジン水和物と、を含む分散体の代わりに、酸化第二銅粒子を含む分散体としてNovacentrix社Metalon ICI-021を用いて、試料1~19と同様の操作により、支持体PIフィルム((東レ・デュポン社製、カプトン500H厚み125μm)の上に塗布層の厚みが1.0μmで形成された比較例2を得た。
 試料35~38と同様の操作により、レーザ光を照射して導電性パターン領域を得た。
 試料35~38と同様に、各項目の評価を行った結果を表3に記す。塗布層の平滑性は×であった。塗布層を形成する工程において、分散体と支持体との濡れ性が悪く、またヒドラジンまたはヒドラジン水和物とリン含有有機物を含まない為、塗布層にした状態での酸化銅粒子の分散性が悪く、凝集したものと考えられる。
 導電性パターン領域の抵抗値は×であった。塗布層の平滑性が悪く、またヒドラジンまたはヒドラジン水和物とリン含有有機物を含まない為、好適にレーザ光による酸化銅粒子の還元と焼結が行えなかったものと考えられる。
 導電性パターン領域の膜厚を測定し、未焼成である絶縁領域との膜厚比を算出した。膜厚比は68%であった。
 導電性パターン領域の表面粗さは×であった。比較例2では、塗布層の平滑性が悪く、またヒドラジンまたはヒドラジン水和物とリン含有有機物を含まない為、好適にレーザ光による酸化銅粒子の還元と焼結が行えず、故に粒子と粒子の結合が進まずに表面が粗くなってしまったと考えられる。なお、ヒドラジンまたはヒドラジン水和物及びリン含有有機物の少なくとも一方を含まないことでも、レーザ光による酸化銅粒子の還元と焼結が行えないと考えられる。
 絶縁領域の耐電圧評価した結果、△であった。比較例2では、ヒドラジンまたはヒドラジン水和物とリン含有有機物を含まない為、塗布層にした状態での酸化銅粒子の分散性が悪く、絶縁性を十分に発現出来できていないと考えられる。なお、ヒドラジンまたはヒドラジン水和物及びリン含有有機物の少なくとも一方を含まないことでも、塗布層にした状態での酸化銅粒子の分散性が悪くなると考えられる。
[比較例3]
 分散体(c)を用いて、支持体ホウケイ酸ガラス基板(SCHOTT社テンパックス)に、反転転写法によって25mm×1mmパターンを、間隔を1mm開けて平行に2本並べた塗布層(厚さ0.8μm)を形成した。さらに、プラズマ焼成法により、塗布層を還元し、還元銅、リンを含む25mm×1mmの2本の導電性パターン領域を得た。
 得られた2本の導電性パターン領域に、耐電圧評価を行った結果、×であった。これは、2本の導電性パターン領域の間に絶縁領域を含まず空気だけの状態であるため、絶縁性を発現出来できていないと考えられる。
[導電性パターン領域中のリンの測定]
 試料8に対して、上記の通りレーザ焼成を行った後、形成された導電性パターン領域中のリン元素の測定を行った。
1)試料調製、XPS測定
 レーザ焼成後の試料8から約3mm四方の小片を切り出して、5mmφのマスクを被せてXPS測定を実施した。XPS測定は、Arイオンスパッターによる深さ方向分析を行った。
<XPS測定条件>
 使用機器       :アルバックファイ Versa probeII
 励起源        :mono.AlKα 15kV×3.3mA
 分析サイズ      :約200μmφ
 光電子取出角     :45°±20°
   取込領域     :Cu 2p3/2、P 2p、C 1s、O 1s、N 1s
 Pass Energy:93.9eV
<Arイオンスパッター条件>
 加速電圧     :3kV
 試料電流     :1.6μA
 ラスターサイズ  :2mm×2mm
 試料回転     :あり
 XPS測定の結果、試料8については、銅に対するリン元素の含有量が、原子組成百分率で0.127atom/atom%、質量百分率で0.062w/w%であることが確認された。
 試料35~37に対して、上記の通りレーザ焼成を行った後、形成された導電性パターン領域中のリン元素の測定を行った。評価結果は表3に示す。いずれの試料もリン/銅の元素濃度比が0.02以上、0.30以下であることが示された。また、同様に導電性パターン領域中の炭素元素の測定、及び、窒素元素の測定を行った。評価結果は表3に示す。いずれの試料も炭素/銅の元素濃度比が1以上、6以下であることが示された。また、いずれの試料も窒素/銅の元素濃度比が、0.04以上、0.6以下であった。
 以下、表3を示す。
Figure JPOXMLDOC01-appb-T000008
 なお、本発明は、上記実施の形態や実施例に限定されるものではない。当業者の知識に基づいて上記実施の形態や実施例に設計の変更等を加えてもよく、また、上記実施の形態や実施例を任意に組み合わせてもよく、そのような変更等を加えた態様も本発明の範囲に含まれる。
 本発明により、製造工程を極めて簡略にでき、導電性パターン領域間の電気絶縁性に優れ、且つ、信頼性が高い導電性パターン領域を有する構造体を提供することができる。
 また、本発明により、酸化銅の光焼成処理において、真空雰囲気又は不活性ガス雰囲気のための設備が不要になり、構造体の製造コストを削減できる積層体及びその製造方法を提供することができる。
 以上により、本発明の構造体や積層体を、電子回路基板等の配線材、メッシュ電極、電磁波シールド材、及び、放熱材料に好適に利用できる。
 本出願は、2017年7月18日出願の特願2017-139133、特願2017-139134、2017年7月21日出願の特願2017-141518、特願2017-141519、2017年7月27日出願の特願2017-145188号、2018年2月13日の特願2018-023239号に基づく。この内容は全てここに含めておく。

Claims (27)

  1.  支持体と、前記支持体が構成する面上に配置された層と、を有し、前記層中に、銅を含有する導電性パターン領域と、酸化銅とリンを含む絶縁領域とが互いに隣接することを特徴とする構造体。
  2.  支持体と、前記支持体が構成する面上に配置された層と、を有し、前記層中に、銅を含有する導電性パターン領域と、酸化銅とヒドラジンまたはヒドラジン水和物を含む絶縁領域とが互いに隣接することを特徴とする構造体。
  3.  支持体と、前記支持体が構成する面上に配置された層と、を有し、前記層中に、銅を含有する導電性パターン領域と、酸化銅とリンとヒドラジンまたはヒドラジン水和物を含む絶縁領域とが互いに隣接することを特徴とする構造体。
  4.  支持体と、前記支持体が構成する面上に配置された層と、を有し、前記層中に、銅とリンを含有する導電性パターン領域と、酸化銅とリンを含有する絶縁領域とが互いに隣接していることを特徴とする構造体。
  5.  前記絶縁領域における前記酸化銅は、前記酸化銅を含む微粒子であり、前記リンはリン含有有機物であり、前記リン含有有機物の含有量は、前記微粒子の全体積を100体積部としたときの5体積部以上900体積部以下であることを特徴とする請求項1、請求項3、又は請求項4に記載の構造体。
  6.  前記層の上に、酸素バリア性を有する樹脂層を配置することを特徴とする請求項1から請求項5のいずれかに記載の構造体。
  7.  前記樹脂層の一部に、前記導電性パターン領域に電気的な接続を行うための開口部が設けられていることを特徴とする請求項6に記載の構造体。
  8.  前記層は、立体面を有する前記支持体に配置されていることを特徴とする請求項1から請求項7のいずれかに記載の構造体。
  9.  前記導電性パターン領域に含まれる銅は、前記酸化銅を還元した還元銅であることを特徴とする請求項1から請求項8のいずれかに記載の構造体。
  10.  支持体と、前記支持体が構成する面上に配置された、酸化銅及びリンを含む塗布層と、前記塗布層を覆うように配置された樹脂層と、を具備することを特徴とする積層体。
  11.  支持体と、前記支持体が構成する面上に配置された、酸化銅及びヒドラジンまたはヒドラジン水和物を含む塗布層と、前記塗布層を覆うように配置された樹脂層と、を具備することを特徴とする積層体。
  12.  支持体と、前記支持体が構成する面上に配置された、酸化銅とリンとヒドラジンまたはヒドラジン水和物を含む塗布層と、前記塗布層を覆うように配置された樹脂層と、を具備することを特徴とする積層体。
  13.  前記酸化銅は、前記酸化銅を含む微粒子であり、前記リンはリン含有有機物であり、前記リン含有有機物の含有量は、前記微粒子の全体積を100体積部としたときの5体積部以上900体積部以下であることを特徴とする請求項10から請求項12のいずれかに記載の積層体。
  14.  前記塗布層は、立体面を有する前記支持体に配置されていることを特徴とする請求項10から請求項13のいずれかに記載の積層体。
  15.  酸化銅が還元された還元銅とリンと炭素を含む銅配線であって、リン/銅の元素濃度比が0.02以上、0.30以下であり、炭素/銅の元素濃度比が1.0以上、6.0以下であることを特徴とする銅配線。
  16.  前記銅配線の表面の算術平均粗さRaは、20nm以上、500nm以下であることを特徴とする請求項15に記載の銅配線。
  17.  支持体が構成する面上に、酸化銅とリン含有有機物と、を含む塗布層を配置する工程と、光線を前記塗布層に選択的に照射して前記酸化銅を銅に還元し、前記支持体と、前記支持体が構成する面上に、前記酸化銅及びリンを含む絶縁領域と、前記銅を含む導電性パターン領域と、が互いに隣接して配置された層と、を得る工程と、を具備することを特徴とする構造体の製造方法。
  18.  支持体が構成する面上に、酸化銅とヒドラジンまたはヒドラジン水和物と、を含む塗布層を配置する工程と、光線を前記塗布層に選択的に照射して前記酸化銅を銅に還元し、前記支持体と、前記支持体が構成する面上に、前記酸化銅及び前記ヒドラジンまたはヒドラジン水和物を含む絶縁領域と、前記銅を含む導電性パターン領域と、が互いに隣接して配置された層と、を得る工程と、を具備することを特徴とする構造体の製造方法。
  19.  支持体が構成する面上に、酸化銅とリン含有有機物とヒドラジンまたはヒドラジン水和物と、を含む塗布層を配置する工程と、光線を前記塗布層に選択的に照射して前記酸化銅を銅に還元し、前記支持体と、前記支持体が構成する面上に、前記酸化銅及びリン及び前記ヒドラジンまたはヒドラジン水和物を含む絶縁領域と、前記銅を含む導電性パターン領域と、が互いに隣接して配置された層と、を得る工程と、を具備することを特徴とする構造体の製造方法。
  20.  前記塗布層を覆うように第一樹脂層を配置する工程と、をさらに有することを特徴とする請求項17から請求項19のいずれかに記載の構造体の製造方法。
  21.  前記光線は、前記第一樹脂層又は前記支持体のいずれか一方を介して、前記塗布層に選択的に照射することを特徴とする請求項20に記載の構造体の製造方法。
  22.  前記層から前記絶縁領域を除去する工程と、をさらに具備することを特徴とする請求項17から請求項21のいずれかに記載の構造体の製造方法。
  23.  少なくとも前記導電性パターン領域を覆うように第二樹脂層を配置する工程と、をさらに具備することを特徴とする請求項22に記載の構造体の製造方法。
  24.  前記光線が、中心波長が355nm以上532nm以下のレーザ光であることを特徴とする請求項17から請求項23のいずれかに記載の構造体の製造方法。
  25.  支持体が構成する面上に、酸化銅とリン含有有機物と、を含む塗布層を配置する工程と、前記塗布層を覆うように樹脂層を配置する工程と、を具備することを特徴とする積層体の製造方法。
  26.  支持体が構成する面上に、酸化銅とヒドラジンまたはヒドラジン水和物と、を含む塗布層を配置する工程と、前記塗布層を覆うように樹脂層を配置する工程と、を具備することを特徴とする積層体の製造方法。
  27.  支持体が構成する面上に、酸化銅とリン含有有機物とヒドラジンまたはヒドラジン水和物と、を含む塗布層を配置する工程と、前記塗布層を覆うように樹脂層を配置する工程と、を具備することを特徴とする積層体の製造方法。
PCT/JP2018/026835 2017-07-18 2018-07-18 導電性パターン領域を有する構造体及びその製造方法、積層体及びその製造方法、並びに、銅配線 WO2019017363A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202310310339.0A CN116209147A (zh) 2017-07-18 2018-07-18 层积体及其制造方法、以及铜布线
JP2019530558A JP7005625B2 (ja) 2017-07-18 2018-07-18 導電性パターン領域を有する構造体及びその製造方法、積層体及びその製造方法、並びに、銅配線
US16/631,715 US11109492B2 (en) 2017-07-18 2018-07-18 Structure including electroconductive pattern regions, method for producing same, stack, method for producing same, and copper wiring
KR1020197038732A KR102390722B1 (ko) 2017-07-18 2018-07-18 도전성 패턴 영역을 갖는 구조체 및 그 제조 방법, 적층체 및 그 제조 방법, 그리고 구리 배선
EP18835287.6A EP3657916A4 (en) 2017-07-18 2018-07-18 STRUCTURE INCLUDING ELECTRO-CONDUCTIVE REGIONS, ITS PRODUCTION PROCESS, LAMINATE, ITS PRODUCTION PROCESS AND COPPER WIRING
CN201880046322.6A CN110870392B (zh) 2017-07-18 2018-07-18 具有导电性图案区域的结构体及其制造方法、层积体及其制造方法、以及铜布线
JP2021168193A JP7345532B2 (ja) 2017-07-18 2021-10-13 導電性パターン領域を有する構造体及びその製造方法、積層体及びその製造方法、並びに、銅配線

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2017139134 2017-07-18
JP2017-139134 2017-07-18
JP2017139133 2017-07-18
JP2017-139133 2017-07-18
JP2017-141519 2017-07-21
JP2017-141518 2017-07-21
JP2017141518 2017-07-21
JP2017141519 2017-07-21
JP2017-145188 2017-07-27
JP2017145188 2017-07-27
JP2018023239 2018-02-13
JP2018-023239 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019017363A1 true WO2019017363A1 (ja) 2019-01-24

Family

ID=65015451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026835 WO2019017363A1 (ja) 2017-07-18 2018-07-18 導電性パターン領域を有する構造体及びその製造方法、積層体及びその製造方法、並びに、銅配線

Country Status (7)

Country Link
US (1) US11109492B2 (ja)
EP (1) EP3657916A4 (ja)
JP (2) JP7005625B2 (ja)
KR (1) KR102390722B1 (ja)
CN (2) CN116209147A (ja)
TW (3) TWI719646B (ja)
WO (1) WO2019017363A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11520451B2 (en) 2018-07-30 2022-12-06 Asahi Kasei Kabushiki Kaisha Conductive film and conductive film roll, electronic paper, touch panel and flat-panel display comprising the same
US11877391B2 (en) 2018-07-30 2024-01-16 Asahi Kasei Kabushiki Kaisha Conductive film and conductive film roll, electronic paper, touch panel and flat-panel display comprising the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113985A1 (ja) * 2020-11-27 2022-06-02 京セラ株式会社 配線基板
CN112888154B (zh) * 2021-01-14 2023-05-16 京东方科技集团股份有限公司 柔性线路板及制备方法、显示装置
CN112958765B (zh) * 2021-02-25 2022-01-21 哈尔滨工业大学 一种激光辅助复杂曲面异形结构共形3d打印的方法
CN115188681B (zh) * 2022-09-09 2023-01-06 深圳平创半导体有限公司 一种微纳米金属焊膏脉冲电烧结方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129492A (ja) * 1987-11-16 1989-05-22 Fuji Kagakushi Kogyo Co Ltd プリント基板製造方法
JPH0537126A (ja) 1991-07-30 1993-02-12 Toshiba Corp 金属酸化物を用いた配線基板および情報記録媒体
JPH0541575A (ja) * 1991-08-06 1993-02-19 Ibiden Co Ltd プリント配線板の製造方法
JP2004253794A (ja) * 2003-01-29 2004-09-09 Fuji Photo Film Co Ltd プリント配線基板形成用インク、プリント配線基板の形成方法及びプリント配線基板
JP2004327703A (ja) * 2003-04-24 2004-11-18 Konica Minolta Holdings Inc 回路基板及び回路基板の製造方法
JP2008193067A (ja) * 2007-01-10 2008-08-21 Sumitomo Electric Ind Ltd 金属膜パターン形成方法
WO2010024385A1 (ja) 2008-08-29 2010-03-04 石原産業株式会社 金属銅分散液及びその製造方法並びにそれを用いて形成した電極、配線パターン、塗膜、その塗膜を形成した装飾物品、抗菌性物品及びそれらの製造方法
JP2012142318A (ja) * 2010-12-28 2012-07-26 Mitsuboshi Belting Ltd パターン基板の製造方法
JP5449154B2 (ja) 2007-07-26 2014-03-19 エルジー・ケム・リミテッド レーザー照射による電気伝導性銅パターン層の形成方法
WO2015012264A1 (ja) 2013-07-23 2015-01-29 旭化成株式会社 銅及び/又は銅酸化物分散体、並びに該分散体を用いて形成された導電膜
JP2015026681A (ja) 2013-07-25 2015-02-05 富士フイルム株式会社 多層配線基板の製造方法
WO2016031860A1 (ja) 2014-08-28 2016-03-03 石原産業株式会社 金属質銅粒子及びその製造方法
EP3127969A1 (en) * 2014-04-01 2017-02-08 Korea Electronics Technology Institute Ink composition for light sintering, wiring board using same and manufacturing method therefor
JP2017139134A (ja) 2016-02-03 2017-08-10 新日鐵住金株式会社 渦電流式発熱装置
JP2017139133A (ja) 2016-02-03 2017-08-10 パナソニックIpマネジメント株式会社 照明器具
JP2017141519A (ja) 2016-02-09 2017-08-17 株式会社エヌシーエー バイアス織物製造装置
JP2017141518A (ja) 2016-02-09 2017-08-17 ウラベ株式会社 伸縮性経編地
JP2017145188A (ja) 2017-03-14 2017-08-24 日東電工株式会社 可撓性フィルムの製造方法
JP2018023239A (ja) 2016-08-05 2018-02-08 東芝三菱電機産業システム株式会社 電力変換装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60244093A (ja) * 1984-05-18 1985-12-03 株式会社東芝 回路基板の製造方法
JPS6381997A (ja) * 1986-09-26 1988-04-12 株式会社東芝 レ−ザ光による導体路形成方法
US4868034A (en) 1988-02-11 1989-09-19 Heraeus Incorporated Cermalloy Division Non-oxidizing copper thick film conductors
IL98660A (en) 1991-06-28 1996-10-16 Orbotech Ltd Method of printing an image on a substrate particularly useful for producing printed circuit boards
JPH0714427A (ja) 1993-06-25 1995-01-17 Hitachi Chem Co Ltd 導電ペースト
KR100833723B1 (ko) * 1999-10-26 2008-05-29 이비덴 가부시키가이샤 다층프린트배선판 및 다층프린트배선판의 제조 방법
JP4205393B2 (ja) 2002-09-26 2009-01-07 ハリマ化成株式会社 微細配線パターンの形成方法
US20040185388A1 (en) 2003-01-29 2004-09-23 Hiroyuki Hirai Printed circuit board, method for producing same, and ink therefor
US20040211979A1 (en) 2003-04-24 2004-10-28 Konica Minolta Holdings, Inc. Circuit board and method for manufacturing the circuit board
JP4619133B2 (ja) 2005-01-04 2011-01-26 株式会社クレハ 防湿性カバーレイフィルム、及びそれを用いたフレキシブルプリント配線基板
JP4804083B2 (ja) 2005-09-15 2011-10-26 旭化成イーマテリアルズ株式会社 導電性金属ペースト
US8945686B2 (en) 2007-05-24 2015-02-03 Ncc Method for reducing thin films on low temperature substrates
JP2009283547A (ja) 2008-05-20 2009-12-03 Dainippon Printing Co Ltd 導電性パターンの形成方法とその形成装置並びに導電性基板
JP5351454B2 (ja) 2008-07-22 2013-11-27 積水化学工業株式会社 多孔質樹脂フィルムの製造方法、多孔質樹脂フィルム及び電池用セパレータ
JP2010146995A (ja) 2008-12-22 2010-07-01 Hitachi Maxell Ltd 透明導電性シートの製造方法
KR101719850B1 (ko) * 2009-09-30 2017-03-24 다이니폰 인사츠 가부시키가이샤 금속 미립자 분산체, 도전성 기판의 제조 방법 및 도전성 기판
TW201339279A (zh) 2011-11-24 2013-10-01 Showa Denko Kk 導電圖型形成方法及藉由光照射或微波加熱的導電圖型形成用組成物
JP2013115004A (ja) 2011-11-30 2013-06-10 Nippon Parkerizing Co Ltd 水系銅ペースト材料及び導電層の形成方法
US9236162B2 (en) 2012-04-26 2016-01-12 Osaka University Transparent conductive ink and transparent conductive pattern forming method
JP2014041969A (ja) 2012-08-23 2014-03-06 Sumitomo Electric Printed Circuit Inc プリント配線板の製造方法
KR20140072234A (ko) * 2012-11-26 2014-06-13 한국전기연구원 인쇄전자용 고분산성 금속 나노분말 잉크 제조방법
JP6042793B2 (ja) 2012-12-07 2016-12-14 富士フイルム株式会社 導電膜の製造方法、プリント配線基板
JPWO2014098158A1 (ja) 2012-12-19 2017-01-12 株式会社クラレ 膜形成方法、導電膜、及び絶縁膜
JP5972187B2 (ja) 2013-02-04 2016-08-17 富士フイルム株式会社 導電膜形成用組成物、導電膜の製造方法
JP2014199720A (ja) 2013-03-29 2014-10-23 富士フイルム株式会社 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP5615401B1 (ja) * 2013-05-14 2014-10-29 石原ケミカル株式会社 銅微粒子分散液、導電膜形成方法及び回路基板
JP5700864B2 (ja) 2013-05-15 2015-04-15 石原ケミカル株式会社 銅微粒子分散液、導電膜形成方法及び回路基板
US9190188B2 (en) 2013-06-13 2015-11-17 E I Du Pont De Nemours And Company Photonic sintering of polymer thick film copper conductor compositions
US20140377457A1 (en) 2013-06-24 2014-12-25 Xerox Corporation Method of forming metal nanoparticle dispersion and dispersion formed thereby
JP5993812B2 (ja) 2013-07-10 2016-09-14 富士フイルム株式会社 導電膜の製造方法
JP5994811B2 (ja) 2014-04-28 2016-09-21 大日本印刷株式会社 銅ナノ粒子分散体、及び導電性基板の製造方法
JP6316683B2 (ja) 2014-07-03 2018-04-25 株式会社ノリタケカンパニーリミテド 銅微粒子およびその製造方法
KR102097368B1 (ko) 2014-08-29 2020-04-06 미쓰이금속광업주식회사 도전체의 접속 구조 및 그 제조 방법, 도전성 조성물 그리고 전자부품 모듈
JP2016058227A (ja) 2014-09-09 2016-04-21 富士フイルム株式会社 導電膜の製造方法
JP6537172B2 (ja) 2015-06-01 2019-07-03 住友電工プリントサーキット株式会社 プリント配線板
JP6033485B2 (ja) 2016-04-21 2016-11-30 協立化学産業株式会社 被覆銅粒子

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129492A (ja) * 1987-11-16 1989-05-22 Fuji Kagakushi Kogyo Co Ltd プリント基板製造方法
JPH0537126A (ja) 1991-07-30 1993-02-12 Toshiba Corp 金属酸化物を用いた配線基板および情報記録媒体
JPH0541575A (ja) * 1991-08-06 1993-02-19 Ibiden Co Ltd プリント配線板の製造方法
JP2004253794A (ja) * 2003-01-29 2004-09-09 Fuji Photo Film Co Ltd プリント配線基板形成用インク、プリント配線基板の形成方法及びプリント配線基板
JP2004327703A (ja) * 2003-04-24 2004-11-18 Konica Minolta Holdings Inc 回路基板及び回路基板の製造方法
JP2008193067A (ja) * 2007-01-10 2008-08-21 Sumitomo Electric Ind Ltd 金属膜パターン形成方法
JP5449154B2 (ja) 2007-07-26 2014-03-19 エルジー・ケム・リミテッド レーザー照射による電気伝導性銅パターン層の形成方法
WO2010024385A1 (ja) 2008-08-29 2010-03-04 石原産業株式会社 金属銅分散液及びその製造方法並びにそれを用いて形成した電極、配線パターン、塗膜、その塗膜を形成した装飾物品、抗菌性物品及びそれらの製造方法
JP2012142318A (ja) * 2010-12-28 2012-07-26 Mitsuboshi Belting Ltd パターン基板の製造方法
WO2015012264A1 (ja) 2013-07-23 2015-01-29 旭化成株式会社 銅及び/又は銅酸化物分散体、並びに該分散体を用いて形成された導電膜
JP2015026681A (ja) 2013-07-25 2015-02-05 富士フイルム株式会社 多層配線基板の製造方法
EP3127969A1 (en) * 2014-04-01 2017-02-08 Korea Electronics Technology Institute Ink composition for light sintering, wiring board using same and manufacturing method therefor
WO2016031860A1 (ja) 2014-08-28 2016-03-03 石原産業株式会社 金属質銅粒子及びその製造方法
JP2017139134A (ja) 2016-02-03 2017-08-10 新日鐵住金株式会社 渦電流式発熱装置
JP2017139133A (ja) 2016-02-03 2017-08-10 パナソニックIpマネジメント株式会社 照明器具
JP2017141519A (ja) 2016-02-09 2017-08-17 株式会社エヌシーエー バイアス織物製造装置
JP2017141518A (ja) 2016-02-09 2017-08-17 ウラベ株式会社 伸縮性経編地
JP2018023239A (ja) 2016-08-05 2018-02-08 東芝三菱電機産業システム株式会社 電力変換装置
JP2017145188A (ja) 2017-03-14 2017-08-24 日東電工株式会社 可撓性フィルムの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 2, no. 40, 2001, pages 359
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 121, 1999, pages 11595

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11520451B2 (en) 2018-07-30 2022-12-06 Asahi Kasei Kabushiki Kaisha Conductive film and conductive film roll, electronic paper, touch panel and flat-panel display comprising the same
US11620028B2 (en) 2018-07-30 2023-04-04 Asahi Kasei Kabushiki Kaisha Conductive film and conductive film roll, electronic paper, touch panel and flat-panel display comprising the same
US11635863B2 (en) 2018-07-30 2023-04-25 Asahi Kasei Kabushiki Kaisha Conductive film and conductive film roll, electronic paper, touch panel and flat-panel display comprising the same
US11877391B2 (en) 2018-07-30 2024-01-16 Asahi Kasei Kabushiki Kaisha Conductive film and conductive film roll, electronic paper, touch panel and flat-panel display comprising the same

Also Published As

Publication number Publication date
KR20200015609A (ko) 2020-02-12
TW202003259A (zh) 2020-01-16
JP7345532B2 (ja) 2023-09-15
TW202003260A (zh) 2020-01-16
JPWO2019017363A1 (ja) 2020-02-06
KR102390722B1 (ko) 2022-04-26
US11109492B2 (en) 2021-08-31
CN116209147A (zh) 2023-06-02
CN110870392B (zh) 2023-04-14
TW201908138A (zh) 2019-03-01
EP3657916A4 (en) 2020-07-22
TWI681872B (zh) 2020-01-11
TWI691403B (zh) 2020-04-21
JP2022009098A (ja) 2022-01-14
JP7005625B2 (ja) 2022-01-21
US20200170125A1 (en) 2020-05-28
EP3657916A1 (en) 2020-05-27
CN110870392A (zh) 2020-03-06
TWI719646B (zh) 2021-02-21

Similar Documents

Publication Publication Date Title
JP7345532B2 (ja) 導電性パターン領域を有する構造体及びその製造方法、積層体及びその製造方法、並びに、銅配線
JP7257305B2 (ja) 分散体
JP6883010B2 (ja) キャリア付銅箔、並びに配線層付コアレス支持体及びプリント配線板の製造方法
JP6203988B1 (ja) キャリア付銅箔及びその製造方法、並びに配線層付コアレス支持体及びプリント配線板の製造方法
JP6295080B2 (ja) 導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物
JP4807581B2 (ja) ニッケル粉末、その製造方法、導体ペーストおよびそれを用いた積層セラミック電子部品
KR20170139519A (ko) 자기 유전기판, 회로 재료 및 이들을 갖는 어셈블리
JP7094331B2 (ja) 分散体並びにこれを用いた導電性パターン付構造体の製造方法及び導電性パターン付構造体
Zhou et al. The laser writing of highly conductive and anti-oxidative copper structures in liquid
US20120073863A1 (en) Anodized heat-radiating substrate and method of manufacturing the same
JP2019090110A (ja) 導電性パターン領域付構造体及びその製造方法
JP2006269119A (ja) 焼結助剤を添加した金属酸化物粒子等の高周波電磁波照射による還元・相互融着方法及びそれを用いた各種電子部品と金属酸化物粒子等の焼成用材料
JP6562196B2 (ja) 銅微粒子焼結体と導電性基板の製造方法
JP2009181946A (ja) 導電性基板及びその製造方法
JP6748530B2 (ja) 基板
JP7312270B2 (ja) 導電性パターン付構造体及びその製造方法
KR20150098844A (ko) 코어-쉘 구조 나노입자의 제조방법 및 이에 따라 제조되는 코어-쉘 구조 나노입자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530558

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197038732

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018835287

Country of ref document: EP

Effective date: 20200218