JP6295080B2 - 導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物 - Google Patents

導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物 Download PDF

Info

Publication number
JP6295080B2
JP6295080B2 JP2013545983A JP2013545983A JP6295080B2 JP 6295080 B2 JP6295080 B2 JP 6295080B2 JP 2013545983 A JP2013545983 A JP 2013545983A JP 2013545983 A JP2013545983 A JP 2013545983A JP 6295080 B2 JP6295080 B2 JP 6295080B2
Authority
JP
Japan
Prior art keywords
conductive pattern
copper
particles
forming
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013545983A
Other languages
English (en)
Other versions
JPWO2013077448A1 (ja
Inventor
内田 博
博 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JPWO2013077448A1 publication Critical patent/JPWO2013077448A1/ja
Application granted granted Critical
Publication of JP6295080B2 publication Critical patent/JP6295080B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/003Apparatus or processes specially adapted for manufacturing conductors or cables using irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0218Composite particles, i.e. first metal coated with second metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0257Nanoparticles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Conductive Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

本発明は、導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物の改良に関する。
微細な配線パターンを作製する技術として、従来銅箔とフォトレジストを組み合わせてリソグラフィー法で配線パターンを形成する方法が一般的に用いられているが、この方法は工程数も長い上に、排水、廃液処理の負担が大きく、環境的に改善が望まれている。また、加熱蒸着法やスパッタリング法で作製した金属薄膜をフォトリソグラフィー法によりパターニングする手法も知られている。しかし、加熱蒸着法やスパッタリング法は真空環境が不可欠である上に、価格も非常に高価になり、配線パターンへ適用した場合には製造コストを低減させることが困難であった。
そこで、金属インキ(酸化物を還元剤により還元して金属化するものも含む)を用いて印刷により配線を作製する技術が提案されている。印刷による配線技術は、低コストで多量の製品を高速に作製することが可能であるため、既に一部で実用的な電子デバイスの作製が検討されている。
しかし、加熱炉を用いて金属インキを加熱焼成する方法では、加熱工程で時間がかかる上に、金属インキの焼成に必要な加熱温度にプラスチック基材が耐えることが出来ない場合には、プラスチック基材が耐える温度で焼成せざるを得ず、満足な導電率に到達しないと言う問題があった。
そこで、特許文献1〜3に記載のように、ナノ粒子を含む組成物(インキ)を用いて、光照射により金属配線に転化させようとの試みがあった。
光エネルギーやマイクロ波を加熱に用いる方法は、インキ部分のみを加熱出来る可能性があり、非常に良い方法ではあるが、金属粒子そのものを用いた場合には、得られる導電パターンの導電率が満足に向上しないという問題や、酸化銅を用いた場合には、得られる導電パターンの空隙率が大きかったり一部還元されないまま、酸化銅粒子が残るという問題があった。
また、これらの焼結には少なくとも直径が1μm以下の金属または金属酸化物粒子を用いる必要があり、これらのナノ粒子の調製には非常にコストがかかるという問題があった。
特表2008−522369号公報 WO2010/110969号公報 特表2010−528428号公報
一般に、基板上に形成された導電パターンは、導電率が高い(体積抵抗率が低い)ほど性能が高いといえる。そのため、上記従来の技術により形成された導電パターンも、さらに導電率を向上させることが望ましい。
本発明の目的は、導電パターンの導電率を向上させることができる導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物を提供することにある。
上記目的を達成するために、本発明の一実施形態は、光照射またはマイクロ波加熱による導電パターン形成用組成物であって、表面の全部または一部に酸化銅の薄膜が形成された銅粒子と、前記銅粒子より小径の酸化銅粒子と、還元剤と、バインダー樹脂と、を含むことを特徴とする。
また、上記銅粒子の個数基準の平均粒径D50が100nm〜10μmであり、前記酸化銅粒子の個数基準の平均粒径D50が5nm〜1000nmであることを特徴とする。
また、上記銅粒子と前記酸化銅粒子との質量割合が、銅粒子:酸化銅粒子=98:2〜50:50であることを特徴とする。
また、上記酸化銅粒子が、酸化第一銅粒子または酸化第二銅粒子のいずれかまたはこれらの混合粒子であることを特徴とする。
また、上記還元剤が、多価アルコール、カルボン酸またはポリアルキレングリコールであることを特徴とする。
また、上記銅粒子の個数基準の平均粒径D50は、500nm〜3μmであるのが好適である。
また、上記銅粒子における酸化銅の割合が、金属銅と酸化銅との合計に対して20質量%以下であることを特徴とする。
また、本発明の一実施形態は、導電パターン形成方法であって、上記いずれかの導電パターン形成用組成物を準備し、前記導電パターン形成用組成物に光照射またはマイクロ波加熱を行うことを特徴とする。
また、上記導電パターン形成用組成物に照射する光は、200〜3000nmの波長のパルス光であることを特徴とする。
また、上記導電パターン形成用組成物を加熱するマイクロ波は、1m〜1mmの波長であることを特徴とする。
本発明によれば、導電パターンの導電率を向上させることができる導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物を得ることができる。
パルス光の定義を説明するための図である。 実施例で製造した導電パターンの表面SEM写真を示す図である。
以下、本発明を実施するための形態(以下、実施形態という)について説明する。
本実施形態にかかる光照射またはマイクロ波加熱による導電パターン形成用組成物は、表面の全部または一部に酸化銅の薄膜が形成された銅粒子と、上記銅粒子より小径の酸化銅粒子と、還元剤と、バインダー樹脂と、を含むことが特徴となっている。
また、本実施形態にかかる導電パターン形成方法では、上記導電パターン形成用組成物を準備し、上記導電パターン形成用組成物に光照射またはマイクロ波加熱を行うことが特徴となっている。ここで、準備とは、例えばスクリーン印刷、グラビア印刷等により、あるいはインクジェットプリンタ等の印刷装置を使用し、適宜な基板上に上記導電パターン形成用組成物で任意形状の組成物層を形成することをいい、より具体的には、上記導電パターン形成用組成物で印刷パターンを形成すること、あるいは基板の全面に上記組成物層を形成する(ベタパターンを形成する)こと等をいう。なお、本明細書中において、導電パターンとは、バインダー樹脂中に銅粒子および酸化銅粒子が分散された組成物を印刷パターンに形成し光照射することにより、銅粒子および酸化銅粒子が焼結された結果、パターン状(ベタパターンを含む)に形成された金属からなる導電性の金属薄膜である導電膜をいう。
上記銅粒子の粒径は、100nm〜10μmが好適であり、好ましくは200nm〜5μmの範囲であり、より好ましくは500nm〜3μmである。なお、銅粒子の表面の全部または一部に存在している酸化銅の薄膜は、酸化第一銅または酸化第二銅のいずれであってもよい。酸化銅の割合としては、XRDで分析したこれら酸化銅の比率(酸化銅/(金属銅+酸化銅))が20質量%以下、好ましくは5質量%以下、より好ましくは3質量%以下である。20質量%を超えると形成される導電膜の体積抵抗率の低下割合が低くなる。ただし、光照射またはマイクロ波加熱による銅粒子と酸化銅粒子との反応性を確保するためには、上記酸化銅の割合は、0.01質量%以上であるのが好適である。酸化銅については表面に存在する極僅かな量でも効果があり、上記割合が好ましい存在量である。また、最初XRDでほとんど検出されないような量であっても、空気下でのインキ調製、印刷工程で受ける表面酸化により生成する酸化銅を用いることも出来る。銅粒子は大気に曝されれば表面に酸化銅の薄膜が形成される。
銅粒子が100nmより小さい場合には、比表面積が大きくなり非常に酸化を受け易くなるために金属銅粒子として使用することが難しい。100nmから500nmの範囲では、金属銅として使用出来るが、空気下で放置することにより徐徐に酸化を受けるために、インクの経時変化が大きく、実用に耐えないという問題がある。また、粒径が10μmを超える場合には、ファインパターン印刷が出来ないし、3μmを超えた場合には、粒径の小さな酸化銅とお互いに均一に分散させることが非常に難しく、分散剤、配合比の最適化が必要になってくるという問題がある。
また、上記酸化銅粒子の粒径は上記銅粒子の粒径より小さいものを用いる。5nm〜1000nmが好適であり、さらに好ましくは10nm〜500nmの範囲がよい。なお、酸化銅粒子は、酸化第一銅粒子または酸化第二銅粒子のいずれかまたはこれらの混合粒子であってよい。
酸化銅粒子の粒径が1000nmを超えると還元を完結することが難しくなる。また、粒径が5nm以下の場合には、調製するのが難しいという問題がある。
なお、上記銅粒子および酸化銅粒子の粒径とは、500nm以上の粒子径の場合には、レーザー回折・散乱法で、500nm未満の場合には動的散乱法で各々測定した、個数基準の平均粒径D50(メジアン径)の粒子径を意味する。
また、上記導電パターン形成用組成物中の銅粒子と酸化銅粒子との混合比(質量比)は、銅粒子:酸化銅粒子=98:2〜50:50が好適であり、さらに好ましくは95:5〜70:30の範囲である。
導電パターン形成用組成物に照射する光としては、波長200nm〜3000nmのパルス光がよい。本明細書中において「パルス光」とは、光照射期間(照射時間)が数マイクロ秒から数十ミリ秒の短時間の光であり、光照射を複数回繰り返す場合は図1に示すように、第一の光照射期間(on)と第二の光照射期間(on)との間に光が照射されない期間(照射間隔(off))を有する光照射を意味する。図1ではパルス光の光強度が一定であるように示しているが、1回の光照射期間(on)内で光強度が変化してもよい。上記パルス光は、キセノンフラッシュランプ等のフラッシュランプを備える光源から照射される。このような光源を使用して、上記導電パターン形成用組成物の層にパルス光を照射する。n回繰り返し照射する場合は、図1における1サイクル(on+off)をn回反復する。なお、繰り返し照射する場合には、次パルス光照射を行う際に、基材を室温付近まで冷却できるようにするため基材側から冷却することが好ましい。
パルス光の1回の照射時間(on)としては、約20マイクロ秒から約10ミリ秒の範囲が好ましい。20マイクロ秒よりも短いと焼結が進まず、導電膜の性能向上の効果が低くなる。また、10ミリ秒よりも長いと基板の光劣化、熱劣化による悪影響のほうが大きくなる。パルス光の照射は単発で実施しても効果はあるが、上記の通り繰り返し実施することもできる。繰返し実施する場合、照射間隔(off)は20マイクロ秒から30秒、より好ましくは2000マイクロ秒から5秒の範囲とすることが好ましい。20マイクロ秒よりも短いと、連続光に近くなってしまい一回の照射後に放冷される間も無く照射されるので、基材が加熱され温度が高くなって劣化する可能性がある。また、30秒より長いと、放冷が進むのでまったく効果が無いわけはないが、繰り返し実施する効果が低減する。
また、導電パターン形成用組成物をマイクロ波により加熱することもできる。導電パターン形成用組成物をマイクロ波加熱する場合に使用するマイクロ波は、波長範囲が1m〜1mm(周波数が300MHz〜300GHz)の電磁波である。
なお、上記基板としては、特に限定されず、例えばプラスチック基板、ガラス基板、セラミックス基板等を採用することができる。
また、還元剤としては、メタノール、エタノール、イソプロピルアルコール、ブタノール、シクロヘキサノール、テルピネオールのような一価アルコール化合物、エチレングリコール、プロピレングリコール、グリセリン等の多価アルコール、蟻酸、酢酸、蓚酸、コハク酸のようなカルボン酸、アセトン、メチルエチルケトン、ベンズアルデヒド、オクチルアルデヒドのようなカルボニル化合物、酢酸エチル、酢酸ブチル、酢酸フェニルのようなエステル化合物、ヘキサン、オクタン、トルエン、ナフタリン、デカリン、シクロヘキサンのような炭化水素化合物を使用することが出来る。この中で、還元剤の効率を考えると、エチレングリコール、プロピレングリコールやグリセリン等の多価アルコール、蟻酸、酢酸、蓚酸のようなカルボン酸が好適である。
金属銅と酸化銅粒子とを含む導電パターン形成用組成物を印刷するためには、バインダー樹脂が必要となるが、還元剤もかねたバインダー樹脂を使用することも出来る。還元剤にも兼用できる高分子化合物としては、ポリビニルピロリドン、ポリビニルカプロラクトンのようなポリ−N−ビニル化合物、ポリエチレングリコール、ポリプロピレングリコール、ポリTHFのようなポリアルキレングリコール化合物、ポリウレタン、セルロース化合物およびその誘導体、エポキシ化合物、ポリエステル化合物、塩素化ポリオレフィン、ポリアクリル化合物のような熱可塑性樹脂、熱硬化性樹脂が使用できる。この中でもバインダー効果を考えるとポリビニルピロリドン、常温で固形状のフェノキシタイプのエポキシ樹脂、セルロース化合物が、還元効果を考えるとポリエチレングリコール、ポリプロピレングリコール、ポリウレタン化合物が好ましい。なお、ポリエチレングリール、ポリプロピレングリコールは多価アルコールの分類に入り、特に還元剤として好適な特性を有する。
バインダー樹脂の存在は必須であるが、あまり多く用いると導電性が発現しにくくなるという問題があり、またあまりに少なすぎると粒子同士を繋ぎ止める能力が低くなってしまう。そのため、バインダー樹脂の使用量は金属銅および酸化銅粒子の合計量に対して、1〜50質量%、より好ましくは3〜20質量%であることが好ましい。
使用する溶媒としては所望する印刷方法によっても違うが、公知の有機溶媒、水溶媒等を使用することが出来る。
なお、本実施形態にかかる導電パターン形成用組成物には、公知のインキの添加剤(消泡剤や、表面調整剤、チクソ剤等)を存在させても良い。
本発明と異なり、銅粒子(金属銅の粒子)のみを使用して光照射により導電パターンを形成する場合には、銅粒子の表面に酸化銅の層が存在するので、銅粒子に多価アルコール等の還元剤を混合して光照射をすることにより、銅粒子の表面に存在する酸化銅を還元しつつ加熱焼結して、銅の焼結体を生成する。しかし、この方法で形成した導電パターンは、十分に体積抵抗率を下げることができない。これは、銅粒子の内部は金属銅そのものであるので、融点が1084.6℃であり、直径が数百nm以上の粒子では光照射による焼結時に形状が変形せず、粒子同士の接触面積を大きくできないからである。
また、酸化銅粒子のみを使用して光照射により導電パターンを形成する場合には、酸化銅粒子に多価アルコール等の還元剤を混合して光照射をすることにより、酸化銅を還元しつつ加熱焼結して、銅の焼結体を生成する。特に粒径の小さい酸化銅粒子を用いた場合には、化学還元焼結により、粒子が連続的に連結された金属パターンを与える。しかし、酸化銅粒子の中心部まですべて還元するためには、照射する光のエネルギーを大きくし、かつ小さい粒子径の酸化銅粒子を使用する必要がある。このため、光照射中に酸化銅粒子が一部吹き飛んでしまい、導電パターンの厚さを厚くすることが困難であるという問題がある。また、焼結時に酸素が抜けること、及び酸化銅と金属銅とに比重差(酸化銅がd=6.31、金属銅がd=8.94)があるので、焼結処理中の体積収縮が大きく、焼結体自体は連続しているものの、その内部に空孔が生じやすいという問題もある。空孔の存在は単に体積抵抗率が大きくなるということ以外に、強度を低下させるので好ましくない。また、照射する光のエネルギーが大きいので、エネルギーコストが高くなる。
以上に対して、本実施形態では、銅粒子に酸化銅粒子と還元剤とバインダー樹脂とを混合した導電パターン形成用組成物に光照射またはマイクロ波加熱を行うことにより銅の焼結体を生成し、導電パターンを形成する点に特徴がある。この場合、還元剤の存在下に光照射またはマイクロ波加熱すると、酸化銅粒子が還元されて金属銅となる。また、銅粒子の表面に存在する酸化銅の層も同様に金属銅に還元される。この過程で、酸化銅粒子が還元されて生じた金属銅の粒子が、酸化銅粒子に較べて大粒径の銅粒子間の間隙をうめつつ焼結される。このように、銅粒子の周囲に酸化銅粒子が還元されて生じた金属銅が焼結しているので、抵抗値を十分下げることができる。
また、銅粒子と酸化銅粒子とを併用することにより、酸化銅の割合を低くすることができるので、照射する光のエネルギーを低くすることができ、エネルギーコストを低減できる。また、照射する光のエネルギーが低いこととあわせて、比重の大きい銅粒子(d=8.94)が存在することにより、比重の小さい酸化銅粒子(d=6.31)が光照射中に吹き飛ぶことを抑制できる。このため、導電膜の厚さを厚くすることができる。また、銅粒子の内部は還元する必要がないため、印刷パターンの線幅に応じて適宜大粒径の銅粒子を使用できるので、導電パターンの厚さを厚くする点で有利である。
なお、本実施形態にかかる導電パターン形成用組成物には、公知のインキの添加剤(消泡剤や、表面調整剤、チクソ剤等)を必要に応じて存在させても良い。
以下、本発明の実施例を具体的に説明する。なお、以下の実施例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。
また、以下の実施例及び比較例において、体積抵抗率は、株式会社三菱アナリテック製ロレスタGPにより測定し、SEMは、日立ハイテク株式会社製 FE−SEM S−5200により撮影し、XRD(X線回折)は、株式会社リガク製 UltimaIVにより測定し、粒子径は、日機装株式会社製 マイクロトラック粒度分布測定装置 MT3000IIシリーズ USVR(レーザー回折・散乱法)、またはナノトラックUPA−EX150(動的光散乱法)により測定し、球近似により粒径を求めメジアン径をD50とした。
実施例1
還元剤としてエチレングリコール、グリセリン(関東化学株式会社製の試薬)の混合水溶液(質量比エチレングリコール:グリセリン:水=70:15:15)に、バインダー樹脂としてポリビニルピロリドン(日本触媒株式会社製)を溶解して、40質量%のバインダー樹脂溶液を調製した。この溶液1.5gと上記混合水溶液0.5gとを混合し、三井金属鉱業株式会社製銅粉1020Y(球形、D50=380nm)5.4gに、酸化銅粒子としてシーアイ化成株式会社製NanoTek CuO(球形、D50=270nm)0.6gとを混合し(銅粒子:酸化銅粒子=90:10)、自転・公転真空ミキサー あわとり練太郎 ARV−310(株式会社シンキー製)を用いて良く混合し、印刷用のペースト(導電パターン形成用組成物)を作製した。
得られたペーストをスクリーン印刷にて、2cm×2cm角のパターンをポリイミドフィルム(厚み25μm)(カプトン100N、東レ・デュポン株式会社製)上に印刷した。このようにして得られたサンプルについて、Xenone社製Sinteron3300を用いてパルス光照射を行って上記印刷パターンを導電パターンに転化した。照射条件は、パルス幅2000マイクロ秒、電圧3000V、照射距離20cmから単発照射した。その際のパルスエネルギーは2070Jであった。以上により形成した導電パターンの厚さは25μmであった。なお、上記一連の作業は大気下で実施した。
実施例2
三井金属鉱業株式会社製銅粉1050Y(球形、D50=716nm)5.4gと酸化銅粒子としてシーアイ化成株式会社製NanoTek CuO(球形、D50=270nm)0.6gとを使用し、実施例1と同様にして印刷用のペーストを作製した。得られたペーストを実施例1と同様にしてパターン印刷し、光照射を行った。形成した導電パターンの厚さは17μmであった。
実施例3
三井金属鉱業株式会社製銅粉1050YP(扁平形状、D50=1080nm)5.4gと酸化銅粒子としてシーアイ化成株式会社製NanoTek CuO(球形、D50=270nm)0.6gとを使用し、実施例1と同様にして印刷用のペーストを作製した。得られたペーストを実施例1と同様にしてパターン印刷し、光照射を行った。形成した導電パターンの厚さは19μmであった。
実施例4
三井金属鉱業株式会社製銅粉1100Y(球形、D50=1110nm)5.4gと酸化銅粒子としてシーアイ化成株式会社製NanoTek CuO(球形、D50=270nm)0.6gとを使用し、実施例1と同様にして印刷用のペーストを作製した。得られたペーストを実施例1と同様にしてパターン印刷し、光照射を行った。形成した導電パターンの厚さは24μmであった。
実施例5
三井金属鉱業株式会社製銅粉1100YP(扁平形状、D50=1200nm)5.4gと酸化銅粒子としてシーアイ化成株式会社製NanoTek CuO(球形、D50=270nm)0.6gとを使用し、実施例1と同様にして印刷用のペーストを作製した。得られたペーストを実施例1と同様にしてパターン印刷し、光照射を行った。形成した導電パターンの厚さは20μmであった。
実施例6
三井金属鉱業株式会社製銅粉1400Y(球形、D50=5700nm)5.4gと酸化銅粒子としてシーアイ化成株式会社製NanoTek CuO(球形、D50=270nm)0.6gとを使用し、実施例1と同様にして印刷用のペーストを作製した。得られたペーストを実施例1と同様にしてパターン印刷し、光照射を行った。形成した導電パターンの厚さは22μmであった。
実施例7
三井金属鉱業株式会社製銅粉MA−C04J(アトマイズ粉、D50=4640nm)5.4gと酸化銅粒子としてシーアイ化成株式会社製NanoTek CuO(球形、D50=270nm)0.6gとを使用し、実施例1と同様にして印刷用のペーストを作製した。得られたペーストを実施例1と同様にしてパターン印刷し、光照射を行った。形成した導電パターンの厚さは26μmであった。
実施例8
三井金属鉱業株式会社製銅粉1030Y(球形、D50=500nm)5.4gと酸化銅粒子としてシーアイ化成株式会社製NanoTek CuO(球形、D50=270nm)0.6gとを使用し、実施例1と同様にして印刷用のペーストを作製した。得られたペーストを実施例1と同様にしてパターン印刷し、光照射を行った。形成した導電パターンの厚さは21μmであった。
比較例1
三井金属鉱業株式会社製銅粉1020Y(球形、D50=380nm)5.4gと酸化銅粒子として古河ケミカルズ株式会社製FCO−500(球形、D50=3850nm)0.6gとを使用し、実施例1と同様にして印刷用のペーストを作製した。得られたペーストを実施例1と同様にしてパターン印刷し、光照射を行った。形成した導電パターンの厚さは21μmであった。
比較例2
三井金属鉱業株式会社製銅粉1020Y(球形、D50=380nm)5.4gと酸化銅粒子として古河ケミカルズ株式会社製1−550(球形、D50=720nm)0.6gとを使用し、実施例1と同様にして印刷用のペーストを作製した。得られたペーストを実施例1と同様にしてパターン印刷し、光照射を行った。形成した導電パターンの厚さは23μmであった。
比較例3
三井金属鉱業株式会社製銅粉1020Y(球形、D50=380nm)6.0gを使用し(酸化銅は使用せず)、実施例1と同様にして印刷用のペーストを作製した。得られたペーストを実施例1と同様にしてパターン印刷し、光照射を行った。形成した導電パターンの厚さは22μmであった。
比較例4
酸化銅粒子としてシーアイ化成株式会社製NanoTek CuO(球形、D50=270nm)6.0gとを使用し(銅粉は使用せず)、実施例1と同様にして印刷用のペーストを作製した。得られたペーストを実施例1と同様にしてパターン印刷し、光照射を行った。形成した導電パターンの厚さは32μmであった。
比較例5
銅粒子として三井金属鉱業株式会社製銅粉1020Y(球形、D50=380nm)を空気中で酸化し、XRDによる分析で酸化第一銅が18.7質量%、酸化第二銅が8.4質量%、金属銅が72.9質量%になったもの5.4gと酸化銅粒子として古河ケミカルズ株式会社製FCO−500(球形、D50=3850nm)0.6gとを使用し、実施例1と同様にして印刷用のペーストを作製した。得られたペーストを実施例1と同様にしてパターン印刷し、光照射を行った。形成した導電パターンの厚さは23μmであった。
以上の工程により製造した導電パターンについて、株式会社三菱アナリテック製 ロレスタGP体積抵抗率(Ω・cm)を使用して体積抵抗率を測定した。結果を表1に示す。
Figure 0006295080
なお、表1に示されるMIT試験は、基板(ポリイミドフィルム)上に形成した導電パターンの耐折性試験であり、株式会社マイズ試験機製MIT耐折試験機を使用し、試験条件を、折り曲げクランプ先端0.38mm、間隙0.25mm、荷重10N、屈曲角度左右135度、屈曲速度毎分10回として行った。試験サンプルは、ポリイミド基材に100mm×0.2mmの直線のパターン印刷をし、上記条件での光焼結を行った配線について、MIT試験100回屈曲前後の導通の有無を確認した。
○:導通が維持された
×:MIT試験後に断線により導通が確認できなかった
ことを示している。
表1に示されるように、いずれの実施例も、比較例1〜3よりも小さい体積抵抗率が得られた。なお、実施例6、7では、他の実施例よりも体積抵抗率が高くなっているが、これは、銅粒子の粒径(D50)が3μmを超えて大きくなっているからである。一方、実施例8では、D50が500nmの1030Yを使用したが、良好な体積抵抗率が得られた。また、比較例4を除いてMIT試験後に導通が維持された。
一方、比較例4は、酸化銅粒子のみを使用して導電パターンを形成したものであり、体積抵抗率(MIT試験前)は良好であった。しかし、導電パターンの空隙率が高いので、機械的強度が低く、MIT試験後導通が確認できなくなった。
また、比較例5は、実施例1と同じ銅粒子を使用し、これを空気中で酸化させているが、実施例1よりも体積抵抗率が上昇している。これは、銅粒子の表面に存在する酸化銅(酸化第一銅+酸化第二銅)の割合が、20%を超えているからである。
図2には、製造した導電パターンの表面SEM写真が示される。図2において、酸化銅のみを用いた場合(CuO100%と表示)には、空孔が非常に多く(低倍率でのSEM写真)、銅粒子のみを用いた場合(Cu1020Y100%と表示)には、略球形の銅粒子の形状がそのままの状態(高倍率でのSEM写真)であることがわかる。
一方、銅粒子と酸化銅粒子とを使用した場合(Cu1020Y+CuO10%と表示)では、空孔が減少している。これは、銅粒子の間を酸化銅粒子が光照射により転化した銅粒子で埋めたからである。
なお、XRD測定により、上記実施例及び比較例で使用した銅粒子及び酸化銅粒子の銅と酸化銅の組成を分析した。結果を表2に示す。
Figure 0006295080
表2に示されるように、銅粉1020Y、1100Y、1100YPともに、少量の酸化銅を含んでいる。これは、粒子表面が酸化されているためである。このように、銅粉表面に酸化銅が存在することにより、還元剤の存在下で光照射またはマイクロ波加熱を行うと、酸化銅粒子が銅に還元される際に、銅粉表面の酸化銅も還元され、この過程で酸化銅粒子から転化した銅粒子が銅粉と接着しやすくなる。

Claims (12)

  1. 光照射またはマイクロ波加熱による導電パターン形成用組成物であって、
    表面の全部または一部に酸化銅の薄膜が形成された銅粒子と、
    前記銅粒子より小径の酸化銅粒子と、
    還元剤と、
    バインダー樹脂と、
    を含み、前記銅粒子の個数基準の平均粒径D50が100nm〜10μmであり、前記酸化銅粒子の個数基準の平均粒径D50が5nm〜1000nmであり、前記バインダー樹脂の使用量が、前記銅粒子および前記酸化銅粒子の合計量に対して3〜20質量%であることを特徴とする導電パターン形成用組成物。
  2. 導電パターンの形成が、大気下で光照射により行われることを特徴とする請求項1に記載の導電パターン形成用組成物。
  3. 前記銅粒子と前記酸化銅粒子との質量割合が、銅粒子:酸化銅粒子=98:2〜50:50であることを特徴とする請求項1または請求項2に記載の導電パターン形成用組成物。
  4. 前記酸化銅粒子が、酸化第一銅粒子または酸化第二銅粒子のいずれかまたはこれらの混合粒子であることを特徴とする請求項1から請求項3のいずれか一項に記載の導電パターン形成用組成物。
  5. 前記還元剤が、多価アルコール、カルボン酸またはポリアルキレングリコールであることを特徴とする請求項1から請求項4のいずれか一項に記載の導電パターン形成用組成物。
  6. 前記銅粒子の個数基準の平均粒径D50が、500nm〜3μmであることを特徴とする請求項1から請求項5のいずれか一項に記載の導電パターン形成用組成物。
  7. 前記銅粒子における酸化銅の割合が、金属銅と酸化銅との合計に対して20質量%以下であることを特徴とする請求項1から請求項6のいずれか一項に記載の導電パターン形成用組成物。
  8. 前記バインダー樹脂が、ポリビニルピロリドン、常温で固形状のフェノキシタイプのエポキシ樹脂、セルロース化合物、ポリウレタン化合物であることを特徴とする請求項1から請求項7のいずれか一項に記載の導電パターン形成用組成物
  9. 請求項1、請求項3から請求項のいずれか一項に記載の導電パターン形成用組成物を準備し、
    前記導電パターン形成用組成物に光照射またはマイクロ波加熱を行う、
    ことを特徴とする導電パターン形成方法。
  10. 前記導電パターン形成用組成物に照射する光は、200〜3000nmの波長のパルス光であることを特徴とする請求項に記載の導電パターン形成方法。
  11. 前記導電パターン形成用組成物を加熱するマイクロ波は、1m〜1mmの波長であることを特徴とする請求項に記載の導電パターン形成方法。
  12. 光照射が大気下で行われる、請求項10に記載の導電パターン形成方法。
JP2013545983A 2011-11-24 2012-11-26 導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物 Active JP6295080B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011256252 2011-11-24
JP2011256252 2011-11-24
PCT/JP2012/080468 WO2013077448A1 (ja) 2011-11-24 2012-11-26 導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物

Publications (2)

Publication Number Publication Date
JPWO2013077448A1 JPWO2013077448A1 (ja) 2015-04-27
JP6295080B2 true JP6295080B2 (ja) 2018-03-14

Family

ID=48469887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013545983A Active JP6295080B2 (ja) 2011-11-24 2012-11-26 導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物

Country Status (7)

Country Link
US (1) US9318243B2 (ja)
EP (1) EP2785158B1 (ja)
JP (1) JP6295080B2 (ja)
KR (1) KR101608295B1 (ja)
CN (1) CN103947305B (ja)
TW (1) TW201339279A (ja)
WO (1) WO2013077448A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401205B (zh) * 2008-01-31 2013-07-11 Ind Tech Res Inst 利用光熱效應製作應用基板的方法
TWI499647B (zh) * 2012-04-26 2015-09-11 Univ Osaka 透明導電性油墨及透明導電圖型之形成方法
JP5275498B1 (ja) * 2012-07-03 2013-08-28 石原薬品株式会社 導電膜形成方法及び焼結進行剤
JP5897437B2 (ja) * 2012-09-14 2016-03-30 富士フイルム株式会社 導電層の製造方法、プリント配線基板
JP2014067617A (ja) * 2012-09-26 2014-04-17 Fujifilm Corp 導電膜の製造方法および導電膜形成用組成物
US10622244B2 (en) 2013-02-18 2020-04-14 Orbotech Ltd. Pulsed-mode direct-write laser metallization
JP5700864B2 (ja) * 2013-05-15 2015-04-15 石原ケミカル株式会社 銅微粒子分散液、導電膜形成方法及び回路基板
US9190188B2 (en) * 2013-06-13 2015-11-17 E I Du Pont De Nemours And Company Photonic sintering of polymer thick film copper conductor compositions
CN105393312B (zh) * 2013-07-23 2018-01-02 旭化成株式会社 铜和/或铜氧化物分散体、以及使用该分散体形成的导电膜
US10537027B2 (en) 2013-08-02 2020-01-14 Orbotech Ltd. Method producing a conductive path on a substrate
JP2015046369A (ja) * 2013-08-29 2015-03-12 富士フイルム株式会社 導電膜の製造方法および導電膜
JP2015050107A (ja) * 2013-09-03 2015-03-16 富士フイルム株式会社 導電膜の製造方法
CN105658745B (zh) * 2013-10-31 2019-06-04 昭和电工株式会社 薄膜印刷用导电性组合物及薄膜导电图案形成方法
JP6092134B2 (ja) * 2014-01-30 2017-03-08 富士フイルム株式会社 有機薄膜トランジスタの製造方法
JP6071913B2 (ja) * 2014-01-30 2017-02-01 富士フイルム株式会社 インクジェット用導電インク組成物
WO2015152625A1 (ko) 2014-04-01 2015-10-08 전자부품연구원 광 소결용 잉크 조성물, 그를 이용한 배선기판 및 그의 제조 방법
KR102084575B1 (ko) * 2014-12-23 2020-03-05 전자부품연구원 광 소결용 잉크 조성물 및 그를 이용한 배선기판의 제조 방법
CN106133891B (zh) * 2014-04-10 2020-03-03 奥博泰克有限公司 脉冲模式的直接写入激光金属化
JP6574553B2 (ja) * 2014-06-26 2019-09-11 昭和電工株式会社 導電パターン形成用組成物および導電パターン形成方法
KR101698159B1 (ko) 2014-08-04 2017-01-19 주식회사 엘지화학 도전성 패턴 형성용 조성물 및 도전성 패턴을 갖는 수지 구조체
US9649730B2 (en) * 2015-08-12 2017-05-16 E I Du Pont De Nemours And Company Paste and process for forming a solderable polyimide-based polymer thick film conductor
US9637647B2 (en) * 2015-08-13 2017-05-02 E I Du Pont De Nemours And Company Photonic sintering of a polymer thick film copper conductor composition
US9637648B2 (en) * 2015-08-13 2017-05-02 E I Du Pont De Nemours And Company Photonic sintering of a solderable polymer thick film copper conductor composition
US11270809B2 (en) 2017-03-16 2022-03-08 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern
US11328835B2 (en) 2017-03-16 2022-05-10 Asahi Kasei Kabushiki Kaisha Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern
KR102481993B1 (ko) * 2017-04-07 2022-12-29 아주대학교산학협력단 도전입자의 미세 패터닝 방법
WO2019017363A1 (ja) 2017-07-18 2019-01-24 旭化成株式会社 導電性パターン領域を有する構造体及びその製造方法、積層体及びその製造方法、並びに、銅配線
CN114395292B (zh) * 2017-07-27 2023-03-10 旭化成株式会社 带导电性图案的制品
FR3074163B1 (fr) * 2017-11-30 2019-10-25 Mcve Technologie Compose precurseur de pistes de circuits imprime, procede de fabrication de pistes de circuits imprime a partir de ce compose et support comportant de telles pistes de circuits imprime.
JP7172224B2 (ja) 2018-07-19 2022-11-16 昭和電工マテリアルズ株式会社 導体形成用組成物、及び、導体層を有する物品の製造方法
KR102213925B1 (ko) 2019-10-31 2021-02-08 (주)쎄미시스코 실리카 입자를 포함하는 광소결용 잉크 조성물
CN114716158A (zh) * 2022-02-22 2022-07-08 上海沚明电子材料有限公司 导电玻璃基板及其制备方法、玻璃显示装置
CN116013580B (zh) * 2023-01-05 2023-11-28 哈尔滨理工大学 一种用于功率半导体封装的自还原型铜烧结浆料及其制备方法和应用

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072771A (en) * 1975-11-28 1978-02-07 Bala Electronics Corporation Copper thick film conductor
US5062891A (en) * 1987-08-13 1991-11-05 Ceramics Process Systems Corporation Metallic inks for co-sintering process
US20060159838A1 (en) * 2005-01-14 2006-07-20 Cabot Corporation Controlling ink migration during the formation of printable electronic features
JP2004319781A (ja) * 2003-04-16 2004-11-11 Shin Etsu Polymer Co Ltd フレキシブルプリント基板およびその製造方法
JP2005071805A (ja) * 2003-08-25 2005-03-17 Fuji Photo Film Co Ltd 金属酸化物及び/又は金属水酸化物の粒子と金属の粒子を含む組成物、組成物を用いたプリント配線基板、その製造方法及びそれに用いるインク
US7820097B2 (en) 2004-11-24 2010-10-26 Ncc Nano, Llc Electrical, plating and catalytic uses of metal nanomaterial compositions
JP2006173408A (ja) * 2004-12-16 2006-06-29 Catalysts & Chem Ind Co Ltd 回路付基板の製造方法および該方法で得られた回路付基板
US20060163744A1 (en) * 2005-01-14 2006-07-27 Cabot Corporation Printable electrical conductors
WO2006095611A1 (ja) * 2005-03-11 2006-09-14 Toyo Ink Mfg. Co., Ltd. 導電性インキ、導電回路、及び非接触型メディア
JP4762582B2 (ja) * 2005-03-22 2011-08-31 古河電気工業株式会社 焼結助剤を添加した金属酸化物粒子等の高周波電磁波照射による還元・相互融着方法及びそれを用いた各種電子部品と金属酸化物粒子等の焼成用材料
KR100768341B1 (ko) * 2005-11-09 2007-10-17 주식회사 나노신소재 금속성 잉크, 그리고 이를 이용한 전극형성방법 및 기판
US8945686B2 (en) 2007-05-24 2015-02-03 Ncc Method for reducing thin films on low temperature substrates
JP5252473B2 (ja) * 2006-10-19 2013-07-31 独立行政法人産業技術総合研究所 導電パターン形成フィルムと、そのための導電パターン形成方法及び導電パターン形成装置
KR20080088712A (ko) * 2007-03-30 2008-10-06 삼성전자주식회사 전도성 잉크 조성물 및 이를 이용한 전도성 패턴의 형성방법
US8404160B2 (en) 2007-05-18 2013-03-26 Applied Nanotech Holdings, Inc. Metallic ink
US10231344B2 (en) * 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink
JP2008293821A (ja) * 2007-05-25 2008-12-04 Panasonic Corp 導電性ペースト、それを用いた回路基板および電子電気機器
JP5067426B2 (ja) * 2007-10-22 2012-11-07 日立化成工業株式会社 銅配線パターン形成方法及びそれに用いる酸化銅粒子分散液
WO2009078448A1 (ja) * 2007-12-18 2009-06-25 Hitachi Chemical Company, Ltd. 銅導体膜及びその製造方法、導電性基板及びその製造方法、銅導体配線及びその製造方法、並びに処理液
JP5286846B2 (ja) * 2008-03-12 2013-09-11 日立化成株式会社 導電性基板及びその製造方法、並びに銅配線基板及びその製造方法
US9730333B2 (en) * 2008-05-15 2017-08-08 Applied Nanotech Holdings, Inc. Photo-curing process for metallic inks
JP2009283547A (ja) * 2008-05-20 2009-12-03 Dainippon Printing Co Ltd 導電性パターンの形成方法とその形成装置並びに導電性基板
EP2347032B1 (en) * 2008-10-17 2017-07-05 Ncc Nano, Llc Method for reducing thin films on low temperature substrates
JP2010118449A (ja) * 2008-11-12 2010-05-27 Toray Ind Inc 導電膜の製造方法
JP2011047003A (ja) * 2009-08-27 2011-03-10 Toray Ind Inc 銅膜の製造方法
JP2011060654A (ja) 2009-09-11 2011-03-24 Toyobo Co Ltd 銅薄膜製造方法および銅薄膜
JP5747821B2 (ja) * 2009-09-16 2015-07-15 日立化成株式会社 金属銅膜及びその製造方法、金属銅パターン及びそれを用いた導体配線、金属銅バンプ、熱伝導路、接合材、並びに液状組成物
JP2011142052A (ja) * 2010-01-08 2011-07-21 Hitachi Chem Co Ltd 銅導体インク及び導電性基板及びその製造方法
TWI481326B (zh) * 2011-11-24 2015-04-11 Showa Denko Kk A conductive pattern forming method, and a conductive pattern forming composition by light irradiation or microwave heating
TWI569700B (zh) * 2011-11-25 2017-02-01 昭和電工股份有限公司 導電性圖案生成方法

Also Published As

Publication number Publication date
EP2785158A4 (en) 2015-04-29
TWI561608B (ja) 2016-12-11
CN103947305B (zh) 2017-03-08
US20150024120A1 (en) 2015-01-22
WO2013077448A1 (ja) 2013-05-30
US9318243B2 (en) 2016-04-19
EP2785158A1 (en) 2014-10-01
KR20140082810A (ko) 2014-07-02
EP2785158B1 (en) 2016-09-28
JPWO2013077448A1 (ja) 2015-04-27
KR101608295B1 (ko) 2016-04-04
CN103947305A (zh) 2014-07-23
TW201339279A (zh) 2013-10-01

Similar Documents

Publication Publication Date Title
JP6295080B2 (ja) 導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物
JP5618309B2 (ja) 導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物
Perelaer et al. Roll‐to‐roll compatible sintering of inkjet printed features by photonic and microwave exposure: from non‐conductive ink to 40% bulk silver conductivity in less than 15 seconds
KR101840917B1 (ko) 구리 미립자 분산액, 도전막 형성 방법 및 회로 기판
JP7477581B2 (ja) 分散体並びにこれを用いた導電性パターン付構造体の製造方法及び導電性パターン付構造体
CN103947303A (zh) 导电图案形成方法
JP6737773B2 (ja) 導電パターン形成用組成物及び導電パターン形成方法
JP2019090110A (ja) 導電性パターン領域付構造体及びその製造方法
KR20150064054A (ko) 은 하이브리드 구리분과 그의 제조법, 상기 은 하이브리드 구리분을 함유하는 도전성 페이스트, 도전성 접착제, 도전성 막 및 전기 회로
JP5991830B2 (ja) 導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物
JP6562196B2 (ja) 銅微粒子焼結体と導電性基板の製造方法
JP6574553B2 (ja) 導電パターン形成用組成物および導電パターン形成方法
JP6175304B2 (ja) 銅複合粒子、これを含む銅ペースト及びこれを用いた回路基板の製造方法
KR20170075890A (ko) 전도막 및 이를 제조하는 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R150 Certificate of patent or registration of utility model

Ref document number: 6295080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350