JP5897437B2 - 導電層の製造方法、プリント配線基板 - Google Patents

導電層の製造方法、プリント配線基板 Download PDF

Info

Publication number
JP5897437B2
JP5897437B2 JP2012202421A JP2012202421A JP5897437B2 JP 5897437 B2 JP5897437 B2 JP 5897437B2 JP 2012202421 A JP2012202421 A JP 2012202421A JP 2012202421 A JP2012202421 A JP 2012202421A JP 5897437 B2 JP5897437 B2 JP 5897437B2
Authority
JP
Japan
Prior art keywords
layer
copper oxide
conductive layer
porous layer
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012202421A
Other languages
English (en)
Other versions
JP2014057024A (ja
Inventor
浩史 太田
浩史 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2012202421A priority Critical patent/JP5897437B2/ja
Priority to KR20157006065A priority patent/KR20150041112A/ko
Priority to PCT/JP2013/071944 priority patent/WO2014041956A1/ja
Priority to TW102130141A priority patent/TW201412210A/zh
Publication of JP2014057024A publication Critical patent/JP2014057024A/ja
Priority to US14/642,488 priority patent/US20150177620A1/en
Application granted granted Critical
Publication of JP5897437B2 publication Critical patent/JP5897437B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1208Pretreatment of the circuit board, e.g. modifying wetting properties; Patterning by using affinity patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • G03F7/0043Chalcogenides; Silicon, germanium, arsenic or derivatives thereof; Metals, oxides or alloys thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0116Porous, e.g. foam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1157Using means for chemical reduction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

本発明は、導電層の製造方法に係り、特に、所定の充填率を示す酸化銅粒子含有層に光照射を行い、導電層を製造する方法に関する。また、本発明は、この導電層の製造方法より製造される導電層を有するプリント配線基板にも関する。
基材上に金属層を形成する方法として、金属粒子または金属酸化物粒子の分散体を印刷法により基材に塗布し、光照射を行い焼結させることによって金属層や回路基板における配線等の電気的導通部位を形成する技術が知られている。
上記方法は、従来の高熱・真空プロセス(スパッタ)やめっき処理による配線作製法に比べて、簡便・省エネ・省資源であることから次世代エレクトロニクス開発において大きな期待を集めている。
より具体的には、特許文献1においては、基板の表面上に複数の酸化銅ナノ粒子を含有するフィルムを堆積させ、フィルムの少なくとも一部を露光して、露光部分を導電性にする方法が開示されている。
特表2010−528428号公報
一方、近年、回路基板などを含む製品のより一層の性能向上が求められており、それに伴って、酸化銅粒子を含む組成物を用いて形成される導電層の導電特性のより一層の改良が求められている。
本発明者らが、特許文献1に記載される方法で導電層の作製を試みたところ、得られた導電層の導電性は昨今求められるレベルに到達しておらず、さらなる改良が必要であった。
本発明は、上記実情に鑑みて、優れた導電性を示す導電層を形成することができる導電層の製造方法を提供することを目的とする。
本発明者らは、従来技術の問題点について鋭意検討した結果、光照射処理が施される酸化銅粒子を含む前駆体層中の酸化銅粒子の充填率を制御することにより、上記課題を解決できることを見出した。
すなわち、以下の構成により上記目的を達成することができることを見出した。
(1) 支持体と支持体上に配置された酸化銅粒子を含む前駆体層とを有する前駆体層付き支持体に対して、光照射を行い、酸化銅粒子を還元して金属銅を含有する導電層を形成する還元工程を備える導電層の製造方法であって、前駆体層の酸化銅粒子の充填率が65%以上である、導電層の製造方法。
(2) 支持体が、基板と基板上に配置された多孔質層とを有する多孔質層付き基板であり、還元工程の前に、さらに、多孔質層付き基板上に酸化銅粒子を含有する溶液を付与して、前駆体層を形成する前駆体層形成工程を有する、(1)に記載の導電層の製造方法。
(3) 多孔質層の平均孔径が、酸化銅粒子の平均粒子径よりも小さい、(2)に記載の導電層の製造方法。
(4) 多孔質層を構成する材料が、シリカおよびジルコニアからなる群から選ばれる少なくとも一つを含有する、(2)または(3)に記載の導電層の製造方法。
(5) 多孔質層の空隙率が50〜80%である、(2)〜(4)のいずれかに記載の導電層の製造方法。
(6) 多孔質層の平均孔径が5〜20nmである、(2)〜(5)のいずれかに記載の導電層の製造方法。
(7) 多孔質層の熱伝導率が前駆体層の熱伝導率よりも小さい、(2)〜(6)のいずれかに記載の導電層の製造方法。
(8) (1)〜(7)のいずれかに記載の導電層の製造方法より製造される導電層を有するプリント配線基板。
本発明によれば、優れた導電性を示す導電層を形成することができる導電層の製造方法を提供することができる。
従来技術において、光照射処理が施される酸化銅粒子を含む前駆体層を作製する手順を示す模式的断面図である。 多孔質層付き基板を用いて、前駆体層を作製する手順を示す模式的断面図である。 前駆体層付き支持体の製造方法の他の好適態様の手順を示す模式的断面図である。
以下に、本発明の導電層の製造方法の好適態様について詳述する。
まず、本発明の従来技術と比較した特徴点について詳述する。
上述したように、本発明の一つの特徴点は、酸化銅粒子を含む前駆体層中の酸化銅粒子の充填率を制御した点が挙げられる。本発明者らは、本発明の効果が得られる理由を以下のように推測する。なお、この推測によって本発明の範囲が限定的に解釈されるものではない。
光照射により酸化銅の還元を行う場合、酸化銅を含む層の表面で照射された光の大部分が吸収され、その後層の表面で吸収された光は熱に変換され、熱が層の内部に伝達することにより酸化銅の還元が進行していると推測される。本発明においては、前駆体層中の酸化銅粒子の充填率を高める、つまり酸化銅粒子間の距離を小さくすることにより、熱伝導の効率が向上し、結果として導電層中の金属銅の割合が向上し、導電層の導電率が向上したと考えられる。また、酸化銅粒子の充填率の向上に伴い、酸化銅粒子間に残存する溶媒の量が減り、光照射時の昇温で気化する溶媒が減ったため、導電層中でのボイドの形成が抑制され、結果として導電層中でのクラックの発生が抑制され、導電層の導電率が向上したものと考えられる。
以下では、まず、導電層の製造方法の還元工程で使用される前駆体層付き支持体について詳述し、その後、還元工程における光照射の手順について詳述する。
[前駆体層付き支持体]
本工程で使用される前駆体層付き支持体は、支持体、および、支持体上に配置された酸化銅粒子を含む前駆体層を有する。なお、前駆体層中の酸化銅粒子の充填率は65%以上である。
以下では、まず、支持体について詳述し、その後前駆体層の構成およびその製造手順について詳述する。
(支持体)
使用される支持体の種類は特に制限されず、前駆体層を支持するものであればその種類は特に制限されない。支持体を構成する材料としては、例えば、樹脂、紙、ガラス、シリコン系半導体、化合物半導体、金属酸化物、金属窒化物、木材、またはこれらの複合物が挙げられる。
より具体的には、低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ABS樹脂、アクリル樹脂、スチレン樹脂、塩化ビニル樹脂、ポリエステル樹脂(ポリエチレンテレフタレート)、ポリアセタール樹脂、ポリサルフォン樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、セルロース誘導体等の樹脂基材;非塗工印刷用紙、微塗工印刷用紙、塗工印刷用紙(アート紙、コート紙)、特殊印刷用紙、コピー用紙(PPC用紙)、未晒包装紙(重袋用両更クラフト紙、両更クラフト紙)、晒包装紙(晒クラフト紙、純白ロール紙)、コートボール、チップボール、段ボール等の紙基材;ソーダガラス、ホウケイ酸ガラス、シリカガラス、石英ガラス等のガラス基材;アモルファスシリコン、ポリシリコン等のシリコン系半導体基材;CdS、CdTe、GaAs等の化合物半導体基材;銅板、鉄板、アルミ板等の金属基材;アルミナ、サファイア、ジルコニア、チタニア、酸化イットリウム、酸化インジウム、ITO(インジウム錫酸化物)、IZO(インジウム亜鉛酸化物)、ネサ(酸化錫)、ATO(アンチモンドープ酸化錫)、フッ素ドープ酸化錫、酸化亜鉛、AZO(アルミドープ酸化亜鉛)、ガリウムドープ酸化亜鉛、窒化アルミニウム基材、炭化ケイ素等のその他無機基材;紙−フェノール樹脂、紙−エポキシ樹脂、紙−ポリエステル樹脂等の紙−樹脂複合物、ガラス布−エポキシ樹脂、ガラス布−ポリイミド系樹脂、ガラス布−フッ素樹脂等のガラス−樹脂複合物等の複合基材等が挙げられる。
なお、後述するように、支持体は2層以上の積層構造を有していてもよい。
(前駆体層)
前駆体層は、酸化銅粒子を含み、後述する光照射により酸化銅が金属銅に還元され、導体層になる。
前駆体層中における酸化銅粒子の充填率は、65%以上である。なかでも、得られる導電層の導電性がより優れる点で、70%以上が好ましく、75%以上がより好ましい。上限は特に制限されないが、工業的な生産性の観点からは、85%以下の場合が多い。
前駆体層中での酸化銅粒子の充填率が65%未満の場合、得られる導電層の導電性が劣る。
なお、前駆体層中での酸化銅粒子の充填率の測定方法は、前駆体層の断面3箇所以上を走査型電子顕微鏡で観察し、グレースケール256階調の画像を得る。256階調の内100を閾値として白黒二値化し、白い部分を酸化銅粒子とする。それぞれの観察写真中の領域(縦:1μm×横:2μm)における酸化銅粒子の占める面積を測定して充填率(%)を計算し、上記3箇所以上の写真で計算された充填率の値を算術平均したものを本発明の充填率とする。
前駆体層の厚みは特に制限されず、形成される導電層の用途に応じて適宜最適な厚みが選択される。なかでも、後述する光照射による酸化銅粒子の還元効率がより優れる点で、0.5〜10μmが好ましく、1.0〜5.0μmがより好ましい。
なお、前駆体層は支持体全面に設けられていてもよく、パターン状に設けられていてもよい。
前駆体層は酸化銅粒子が密に充填されていることから、加熱処理においても重量減少率が小さい。より具体的には、前駆体層を300℃で加熱した際の重量減少率は、30質量%以下が好ましく、20質量%以下がより好ましい。重量減少率が小さい場合、前駆体層に含まれる溶媒などの揮発成分の量が少ないことを意味し、後述する光照射の際に導電層中にボイド・クラックなどが生じにくい。
なお、上記重量減少率の測定方法としては、まず、前駆体層付き支持体を製造し、150度で30分間乾燥処理を施し、その後前駆体層を支持体から剥離して、剥離された前駆体層のTG−DTA測定(装置:Rigaku製 TG8100、大気雰囲気下、昇温速度10℃/min)を実施する。
なお、特許文献1などの従来技術においては、光照射前の酸化銅粒子を含む層の重量減少率は上記前駆体層の重量減量率の約2倍程度(具体的には、光照射前の酸化銅粒子を含む層の重量減少率は30%超)であり、結果として光照射の際に導電層中にボイドなどが生じて、導電性が劣化する。
前駆体層には酸化銅粒子が含まれ、特に、主成分として含まれることが好ましい。ここで主成分とは、前駆体層全質量中、酸化銅粒子の占める質量が80質量%以上であることを意図し、85質量%以上が好ましく、90質量%以上がより好ましい。上限は特に制限されないが、100質量%が挙げられる。
本発明における「酸化銅」とは、酸化されていない銅を実質的に含まない化合物であり、具体的には、X線回折による結晶解析において、酸化銅由来のピークが検出され、かつ金属由来のピークが検出されない化合物のことを指す。銅を実質的に含まないとは、限定的ではないが、銅の含有量が酸化銅粒子に対して1質量%以下であることをいう。
酸化銅としては、酸化銅(I)または酸化銅(II)が好ましく、安価に入手可能であること、低抵抗であることから酸化銅(II)であることが更に好ましい。
酸化銅粒子の平均粒子径は特に制限されないが、200nm以下が好ましく、100nm以下がより好ましい。下限も特に制限されないが、10nm以上が好ましい。
平均粒子径が10nm以上であれば、粒子表面の活性が高くなりすぎず、取扱い性に優れるため好ましい。また、200nm以下であれば、酸化銅粒子を含有する溶液をインクジェット用インクとして用い、印刷法により配線等のパターン形成を行うことが容易となると共に、金属銅への還元が十分となり、得られる導電層の導電性が良好であるため好ましい。
なお、平均粒子径は、平均一次粒径のことを指す。平均粒子径は、透過型電子顕微鏡(TEM)観察または走査型電子顕微鏡(SEM)観察により、少なくとも50個以上の酸化銅粒子の粒子径(直径)を測定し、それらを算術平均して求める。なお、観察図中、酸化銅粒子の形状が真円状でない場合、長径を直径として測定する。
酸化銅粒子としては、例えば、関東化学社製のCuOナノ粒子、シグマアルドリッチ社製のCuOナノ粒子等を好ましく使用することができる。
前駆体層には、本発明の効果を損なわない範囲で酸化銅粒子以外の成分が含まれていてもよい。例えば、バインダー成分として高分子化合物(ポリマー)が含まれていてもよい。高分子化合物は、天然、合成高分子またはこれらの混合物のいずれでもよく、例えば、ビニル系ポリマー(例えば、ポリビニルピロリドン)、ポリエーテル、アクリル系ポリマー、エポキシ樹脂、ウレタン樹脂、ロジン配合物などが好適に挙げられる。また、前駆体層には、後述する多孔質層に含まれていてもよい還元性基を有するポリマーが含まれていてもよい。
酸化銅粒子以外の成分を含む場合は、その他の成分の前駆体層中における含有量は、0.1〜20質量%であることが好ましく、0.5〜15質量%であることがより好ましく、1〜13質量%であることが更に好ましい。
(前駆体層の製造方法)
上記前駆体層付き支持体の製造方法は、前駆体層中の酸化銅粒子の充填率が所定範囲になれば特に制限されない。
例えば、前駆体層付き支持体の製造方法の好適態様の一つとしては、基板および基板上に配置された多孔質層を有する多孔質層付き基板上に酸化銅粒子を含有する溶液を付与して、前駆体層を形成する方法が挙げられる。この実施態様について、図1および図2をもとに説明する。
特許文献1で挙げられた従来技術においては、光照射処理が施される酸化銅粒子を含む前駆体層を作製する際には、まず、図1(A)に示されるように、酸化銅粒子Cを含有する溶液を支持体10上に塗布して塗膜12を形成し、その後溶媒を除去して酸化銅粒子Cを含む層14を形成する(図1(B))。この方法においては、溶媒を除去する際に、層中にボイドが形成されやすくなり、結果として酸化銅粒子C間の空隙が増え、層14中での酸化銅粒子Cの充填率が減少する。このような層14に対して、後述する光照射を行うと、層14表面での光吸収により生じた熱は、酸化銅粒子Cの充填率の低さのため層14内部に効率よく伝達せず、結果として層14内部は還元焼結されないまま酸化銅粒子Cが残存してしまい、導電特性が劣化することになる。
一方、図2(A)に示す、基板16および基板16上に配置された多孔質層18を有する多孔質層付き基板20を使用した場合、まず、従来技術と同じように、酸化銅粒子Cを含有する溶液を多孔質層付き基板20上に塗布して塗膜22を形成する。その際、塗膜22の下部に配置される多孔質層18が塗膜22中の溶媒を吸収し、塗膜22中の溶媒量が減少する。つまり、多孔質層18がフィルター(濾紙)のように溶媒を吸収する駆動力として働き、結果として酸化銅粒子Cがより密にパッキング(充填)した形で前駆体層24が形成される。このような前駆体層24に光照射を行うと、上述したように、前駆体層24表面で発生した熱が効率よく前駆体層24内部まで浸透し、内部の酸化銅粒子Cも金属銅に還元され、結果として導電特性に優れた導電層が得られる。
なお、酸化銅粒子Cを含有する溶液を図1に示す支持体10上および図2に示す多孔質層付き基板20上に同条件で塗布した場合、図2に示す前駆体層24の層厚は、通常、図1に示す酸化銅粒子Cを含む層14の層厚よりも小さくなる。これは、図1および図2に示すように、前駆体層24のほうが酸化銅粒子Cを含む層14よりもより酸化銅粒子Cが密に充填されているためである。なお、上記のように、酸化銅粒子Cを含有する溶液を支持体10上および多孔質層付き基板20上に同条件で塗布した場合、前駆体層24の層厚は、酸化銅粒子Cを含む層14の層厚の約60%以下程度となる場合が多い。
多孔質層付き基板中の基板の種類は特に制限されず、多孔質層を支持できれば特にその種類は限定されず、上述した支持体で例示した材料で構成される基板などが挙げられる。なかでも、熱可塑性フィルムであることが好ましく、熱可塑性フィルムとしては、例えば、ポリイミドフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリアミドフィルム、ポリウレタンフィルム、ポリカーボネートフィルム、ポリスチレンフィルム、ポリテトラフロロエチレンフィルム、ポリブタジエンフィルム、ポリオレフィンフィルム、ポリ−4−メチルペンテンフィルム、アイオノマーフィルム、ABS樹脂フィルム、ポリスルホンフィルム、三酢酸セルロースフィルム、エチルセルロースフィルム、酢酸ブチルセルロースフィルム、ポリジメチルシロキサンフィルム、ポリエステルフィルム、エチレン−酢酸ビニルコポリマーフィルム、フッ化ポリオレフィンフィルム、ポリクロロプレンフィルム、およびブチルゴムフィルムからなる群から選択されるフィルムが好ましい。
多孔質層としては、多数の孔が存在している層であればよく、例えば、微多孔膜状、不織布状のような三次元ネットワーク状の多孔質構造を有した層などが挙げられる。なお、微多孔膜状の層とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体または液体が通過可能となった層のことをいう。
多孔質層の厚みは特に制限されないが、得られる導電層の導電特性がより優れる点で、0.5〜500μmが好ましく、1.0〜100μmがより好ましい。
多孔質層の平均孔径は特に制限されないが、得られる導電層の導電特性がより優れる点で、酸化銅粒子の平均粒子径よりも小さいことが好ましい。この態様であれば、多孔質層内部に酸化銅粒子が浸透することが抑制され、結果として多孔質層上に酸化銅粒子がより密に充填(パッキング)された前駆体層を得ることができる。
多孔質層の平均孔径としては、1〜100nmが好ましく、1〜50nmがより好ましく、5〜20nmがさらに好ましい。上記範囲内であれば、得られる導電層の導電特性がより優れる。
なお、多孔質層の平均孔径の測定方法は、水銀圧入法が挙げられ、水銀圧入法で測定された測定データ中のピーク位置を多孔質層の平均孔径として採用する。
多孔質層の空隙率は特に制限されないが、得られる導電層の導電特性がより優れる点で、30〜90%が好ましく、50〜80%がより好ましい。
多孔質層の空隙率の測定は、オイル含浸法を用いる。具体的には、多孔質層にジエチレングリコールのような高沸点溶剤を吸収させ、吸収しきれなかった余剰分を除去した後、吸収による重量増加を求め、溶剤の密度から吸収体積(=空隙体積)を求める。
多孔質層を構成する材料の熱導電率は特に制限されないが、得られる導電層の導電特性がより優れる点で、20(W/mK)以下が好ましく、10(W/mK)以下がより好ましい。多孔質層の熱伝導率が小さい場合、前駆体層の下部部分に位置する酸化銅粒子も還元されやすくなる。より具体的には、多孔質層を構成する材料としては、例えば、シリカ(酸化ケイ素)、チタニア(酸化チタン)、ジルコニア(酸化ジルコニウム)、アルミナ(酸化アルミニウム)などの金属酸化物(特に、周期律表の5A族、3B族、および4B族からなる群から選ばれる元素を含む酸化物)が挙げられる。なかでも、得られる導電層の導電性がより優れる点で、シリカ、ジルコニアが好ましい。
また、多孔質層の熱伝導率は上述した前駆体層の熱伝導率よりも小さいことが好ましい。このような態様であれば、導電層の導電性がより向上する。
なお、本発明においては、多孔質層および前駆体層の熱伝導率は、以下のMaxwell式から計算され、式(1)で表される見かけ熱伝導率λeを採用する。

上記式(1)中、λsは多孔質層または前駆体層を構成する材料の熱伝導率を、λgは空気の熱伝導率(0.02)を、φは多孔質層または前駆体層の空隙率を意図する。例えば、酸化銅粒子の熱伝導率は3、シリカの熱伝導率は1.4、ジルコニアの熱伝導率は2.0である。
多孔質層には有機ポリマーが含まれていてもよく、なかでも得られる導電層の導電特性がより優れる点で、還元性基を有するポリマーが含まれていてもよい。このポリマーが多孔質層に含まれることにより、酸化銅の還元がより促進され、より導電特性に優れた導電層が得られる。
還元性基とは、酸化銅の還元に寄与する基を意図し、例えば、ヒドロキシル基、アミノ基などが挙げられる。還元性基を有する有機ポリマーの具体例としては、例えば、ポリビニルアルコールなどが挙げられる。
上記基板上への多孔質層の製造方法は特に制限されないが、例えば、上述したシリカ、ジルコニアなどの材料(特に、金属酸化物)の粒子および溶媒を含む組成物を基板上に塗布して、その後溶媒を除去することにより、基板上に多孔質層を形成する方法が挙げられる。他の方法としては、別途作製した多孔質層を基板上にラミネートする方法も挙げられる。
上述した多孔質層付き基板上に酸化銅粒子を含有する溶液を付与する方法は特に制限されず、公知の方法を使用できる。例えば、スクリーン印刷法、ディップ法、スプレー塗布法、スピンコーティング法、インクジェット法などの塗布法が挙げられる。
塗布の形状は特に制限されず、多孔質層全面を覆う面状であっても、パターン状(例えば、配線状、ドット状)であってもよい。
また、溶液を多孔質層付き基板に付与した後、必要に応じて、乾燥処理を行い、溶媒を除去してもよい。残存する溶媒を除去することにより、後述する光照射において、溶媒の気化膨張に起因する微小なクラックや空隙の発生を抑制することができ、導電層の導電性および導電層と多孔質層付き基板との密着性の点で好ましい。
乾燥処理の方法としては温風乾燥機などを用いることができ、温度としては、酸化銅粒子の還元が生じないような温度が好ましく、40〜200℃で加熱処理を行なうことが好ましく、50℃以上150℃未満で加熱処理を行なうことがより好ましく、70〜120℃で加熱処理を行うことがさらに好ましい。
酸化銅粒子を含有する溶液中に含まれる溶媒の種類は特に制限されないが、例えば、水や、アルコール類、エーテル類、エステル類などの有機溶媒などを使用することができる。なかでも、酸化銅粒子との相溶性がより優れる点から、水、1〜3価のヒドロキシル基を有する脂肪族アルコール、この脂肪族アルコール由来のアルキルエーテル、この脂肪族アルコール由来のアルキルエステル、またはこれらの混合物が好ましく用いられる。
溶媒として、水を用いる場合には、イオン交換水のレベルの純度を有するものが好ましい。
1〜3価のヒドロキシル基を有する脂肪族アルコールとしては、メタノール、エタノール、1−プロパノール、1−ブタノール、1−ペンタノール、1−ヘキサノール、シクロヘキサノール、1−ヘプタノール、1−オクタノール、1−ノナノール、1−デカノール、グリシドール、メチルシクロヘキサノール、2−メチル−1−ブタノール、3−メチル−2−ブタノール、4−メチル−2−ペンタノール、イソプロピルアルコール、2−エチルブタノール、2−エチルヘキサノール、2−オクタノール、テルピネオール、ジヒドロテルピネオール、2−メトキシエタノール、2−エトキシエタノール、2−n−ブトキシエタノール、カルビトール、エチルカルビトール、n−ブチルカルビトール、ジアセトンアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、トリメチレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブチレングリコール、1,3−ブチレングリコール、1,4−ブチレングリコール、ペンタメチレングリコール、へキシレングリコール、グリセリン等が挙げられる。
なかでも、1〜3価のヒドロキシル基を有する炭素数1〜6の脂肪族アルコールは、沸点が高すぎず導電層形成後に残存しにくいこと、上記ビニル系ポリマーおよび酸化銅粒子の相溶性を図りやすいことから好ましく、具体的には、メタノール、エチレングリコール、グリセリン、2−メトキシエタノール、ジエチレングリコール、イソプロピルアルコールがより好ましい。
エーテル類としては、上記アルコール由来のアルキルエーテルが挙げられ、ジエチルエーテル、ジイソブチルエーテル、ジブチルエーテル、メチル−t−ブチルエーテル、メチルシクロヘキシルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,4−ジオキサン等が例示される。なかでも、1〜3価のヒドロキシル基を有する炭素数1〜4の脂肪族アルコール由来の炭素数2〜8のアルキルエーテルが好ましく、具体的には、ジエチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフランがより好ましい。
エステル類としては、上記アルコール由来のアルキルエステルが挙げられ、ギ酸メチル、ギ酸エチル、ギ酸ブチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、γ−ブチロラクトン等が例示される。なかでも、1〜3価のヒドロキシル基を有する炭素数1〜4の脂肪族アルコール由来の炭素数2〜8のアルキルエステルが好ましく、具体的には、ギ酸メチル、ギ酸エチル、酢酸メチルがより好ましい。
上記溶媒の中でも、沸点が高すぎないことから、特に水を主溶媒として用いることが好ましい。主溶媒とは、溶媒の中で含有率が最も多い溶媒である。
上記溶液には、酸化銅粒子および溶媒以外にも他の成分が含まれていてもよい。
例えば、上記溶液には、界面活性剤が含まれていてもよい。界面活性剤は、酸化銅粒子の分散性を向上させる役割を果たす。界面活性剤の種類は特に制限されず、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、フッ素系界面活性剤、両性界面活性剤などが挙げられる。これら界面活性剤は、1種を単独、または2種以上を混合して用いることができる。
また、バインダー成分として高分子化合物(ポリマー)が含まれていてもよい。高分子化合物の種類としては、前駆体層に含まれる高分子化合物の種類と同義である。
上記溶液中における酸化銅粒子の含有量は特に制限されないが、導電特性により優れる十分な層厚の導電層が得られると共に、粘度の上昇が抑制され、溶液をインクジェット用インクとして用いることができる点から、溶液全質量に対して、5〜60質量%が好ましく、10〜50質量%がより好ましい。
上記溶液中における溶媒の含有量は特に制限されないが、粘度の上昇が抑制され、取扱い性により優れる点から、溶液全質量に対して、5〜90質量%が好ましく、15〜80質量%がより好ましい。また、溶媒として水が含有されることが好ましく、特にその含有量が溶液全量に対して50質量%以上であることが好ましい。
上記溶液の粘度は、インクジェット、スクリーン印刷等の印刷用途に適するような粘度に調整させることが好ましい。インクジェット吐出を行う場合、1〜50cPが好ましく、5〜20cPがより好ましい。スクリーン印刷を行う場合は、1000〜100000cPが好ましく、10000〜80000cPがより好ましい。
上記溶液の調製方法は特に制限されず、公知の方法を採用できる。例えば、溶媒中に酸化銅粒子を添加した後、超音波法(例えば、超音波ホモジナイザーによる処理)、ミキサー法、3本ロール法、ボールミル法などの公知の手段により成分を分散させることによって、溶液を得ることができる。
前駆体層付き支持体の製造方法の他の好適態様としては、支持体上に酸化銅粒子を含有する溶液を付与して酸化銅粒子と溶媒とを含む塗膜を形成し、貫通孔を有する膜を塗膜に押圧しながら、貫通孔を介して塗膜中の溶媒を除去し、前駆体層を形成する方法が挙げられる。この実施態様について、図3をもとに説明する。
まず、図3(A)に示すように、支持体10上に酸化銅粒子Cを含有する溶液を付与して塗膜30を形成する。その後、図3(B)に示すように、貫通孔を有する膜32が表面に配置されたフィルター部材34を用意して、貫通孔を有する膜32が塗膜30の表面に接するように、フィルター部材34を塗膜30に押圧する。なお、フィルター部材34は、貫通孔を有する膜32を保持する膜保持部材36を有する。フィルター部材34を塗膜30に押圧しつつ、膜32の貫通孔を介して塗膜30中の溶媒を減圧除去することにより、塗膜30中での酸化銅粒子Cの充填率を向上させる(図3(C))。さらに、フィルター部材34の押圧および溶媒の減圧除去を実施することにより、上述した前駆体層38を得る(図3(D))。
貫通孔を有する膜としては、溶媒が通ることができる貫通孔を有する膜であれば特に制限されず、微多孔膜状、不織布状のような三次元ネットワーク状の多孔質構造を有する膜などが挙げられる。なお、貫通孔とは、一方の面から他方の面へと気体または液体が通過できる程度の孔を意図する。貫通孔を有する膜としては、例えば、ミリポア社製Isoporeメンブレンフィルターなどが挙げられる。
また、貫通孔の平均孔径は特に制限されないが、前駆体層中の酸化銅粒子の充填率がより向上する点より、100nm以下が好ましい。
図3においては、溶媒を除去するために減圧乾燥を行っているが、溶媒の種類によっては特に減圧処理を実施せずに常温常圧下で上記処理を実施してもよい。
(光照射の手順)
還元工程においては、上述した前駆体層付き支持体の前駆体層に向かって光照射処理を行う。光照射処理は、前駆体層が付与された部分に対して光を短時間照射することで酸化銅の還元および焼結が可能となり、長時間の加熱による支持体の劣化が起こらず、導電層と支持体との密着性がより良好となる。より具体的には、光照射処理を行うことにより、酸化銅粒子が光を吸収して酸化銅の還元が進行すると共に、吸収された光が熱に変換され、前駆体層内部に熱が浸透することにより、内部の酸化銅が還元され、さらに焼結されて金属銅が得られる。つまり、上記処理を施すことにより、酸化銅粒子が還元されて得られる金属銅粒子同士が互いに融着してグレインを形成し、さらにグレイン同士が接着・融着して導電層を形成する。
光照射処理で使用される光源は特に制限されず、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、カーボンアーク灯などがある。放射線としては、電子線、X線、イオンビーム、遠赤外線などがある。また、g線、i線、Deep−UV光、高密度エネルギービーム(レーザービーム)も使用される。
具体的な態様としては、赤外線レーザーによる走査露光、キセノン放電灯などの高照度フラッシュ露光、赤外線ランプ露光などが好適に挙げられる。
光照射は、フラッシュランプによる光照射が好ましく、フラッシュランプによるパルス光照射であることがより好ましい。高エネルギーのパルス光の照射は、前駆体層の表面を、極めて短い時間で集中して加熱することができるため、支持体への熱の影響を極めて小さくすることができる。
パルス光の照射エネルギーとしては、1〜100J/cm2が好ましく、1〜30J/cm2がより好ましく、パルス幅としては1μ秒〜100m秒が好ましく、10μ秒〜10m秒がより好ましい。パルス光の照射時間は、1〜100m秒が好ましく、1〜50m秒がより好ましく、1〜20m秒が更に好ましい。
光照射処理の際、または、その後に、必要に応じて、加熱処理を実施してもよい。なかでも、短時間で、導電性により優れる導電層を形成することができる点で、加熱温度は100〜300℃が好ましく、150〜250℃がより好ましく、また、加熱時間は5〜120分が好ましく、10〜60分がより好ましい。
光照射処理を実施する雰囲気は特に制限されず、大気雰囲気下、不活性雰囲気下、または還元性雰囲気下などが挙げられる。なお、不活性雰囲気とは、例えば、アルゴン、ヘリウム、ネオン、窒素等の不活性ガスで満たされた雰囲気であり、また、還元性雰囲気とは、水素、一酸化炭素等の還元性ガスが存在する雰囲気を指す。
(導電層)
上記工程を実施することにより、金属銅を含有する導電層(金属銅層)が得られる。
導電層の層厚は特に制限されず、使用される用途に応じて適宜最適な層厚が調整される。なかでも、プリント配線基板用途の点からは、0.01〜1000μmが好ましく、0.1〜100μmがより好ましい。
なお、層厚は、導電層の任意の点における厚みを3箇所以上測定し、その値を算術平均して得られる値(平均値)である。
導電層の体積抵抗値は、導電特性の点から、1×10-3Ωcm未満が好ましく、1×10-4Ωcm未満がより好ましく、0.5×10-5Ωcm未満がさらに好ましい。
体積抵抗値は、導電層の表面抵抗値を四探針法にて測定後、得られた表面抵抗値に層厚を乗算することで算出することができる。
導電層は支持体の全面、または、パターン状に設けられてもよい。パターン状の導電層は、プリント配線基板などの導体配線(配線)として有用である。
パターン状の導電層を得る方法としては、上記前駆体層をパターン状に支持体上に配置させ、光照射処理を行う方法や、支持体全面に設けられた導電層をパターン状にエッチングする方法などが挙げられる。
エッチングの方法は特に制限されず、公知のサブトラクティブ法、セミアディティブ法などを採用できる。
パターン状の導電層を多層配線基板として構成する場合、パターン状の導電層の表面に、さらに絶縁層(絶縁樹脂層、層間絶縁膜、ソルダーレジスト)を積層して、その表面にさらなる配線(金属パターン)を形成してもよい。
絶縁層の材料は特に制限されないが、例えば、エポキシ樹脂、アラミド樹脂、結晶性ポリオレフィン樹脂、非晶性ポリオレフィン樹脂、フッ素含有樹脂(ポリテトラフルオロエチレン、全フッ素化ポリイミド、全フッ素化アモルファス樹脂など)、ポリイミド樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂など挙げられる。
これらの中でも、密着性、寸法安定性、耐熱性、電気絶縁性等の観点から、エポキシ樹脂、ポリイミド樹脂、または液晶樹脂を含有するものであることが好ましく、より好ましくはエポキシ樹脂である。具体的には、味の素ファインテクノ(株)製、ABF GX−13などが挙げられる。
また、配線保護のために用いられる絶縁層の材料の一種であるソルダーレジストについては、例えば、特開平10−204150号公報や、特開2003−222993号公報等に詳細に記載され、ここに記載の材料を所望により本発明にも適用することができる。ソルダーレジストは市販品を用いてもよく、具体的には、例えば、太陽インキ製造(株)製PFR800、PSR4000(商品名)、日立化成工業(株)製 SR7200G、などが挙げられる。
上記で得られた導電層を有する支持体(導電層付き支持体)は、種々の用途に使用することができる。例えば、プリント配線基板、TFT、FPC、RFIDなどが挙げられる。
以下、実施例により、本発明について更に詳細に説明するが、本発明はこれらに限定されるものではない。
後述する酸化銅粒子を含有する溶液としてはNovacentrix社製酸化銅インク(ICI−003、酸化銅粒子の平均粒子径:88nm)(以後、酸化銅粒子含有溶液Xとも称する)、および、関東化学株式会社製CuO粒子(平均粒子径61nm)を分散剤等を用いずに水に分散させた水分散液(CuO粒子の含有率:10質量%)(以後、酸化銅粒子含有溶液Yとも称する)を使用し、金属銅粒子を含む溶液(以後、金属銅粒子含有溶液とも称する)としてはIntrinsiq社製銅インク(CI)を使用した。
(合成例1:多孔質層付き基板1の製造)
シリカ粒子(TECNAN社製、TECHNAPOW−SIO2)50gと、ポリビニルアルコール10gとを、水(100g)に加えて、多孔質層形成用組成物を調製した。その後、基板(PET)上に多孔質層形成用組成物を塗布し、60℃で60分間加熱処理を行い、多孔質層付き基板1を製造した。多孔質層の厚みは、40μmであった。
得られた多孔質層の平均孔径、空隙率を表1にまとめて示す。なお、多孔質層の平均孔径の測定は水銀圧入法を用い、水銀圧入法で測定された測定データ中のピーク位置を多孔質層の平均孔径とした。また、空隙率は、得られた多孔質層にジエチレングリコールを吸収させ、吸収しきれなかった余剰分を除去した後、吸収による重量増加を求め、溶剤の密度から吸収体積(=空隙体積)を求め、空隙率(空隙体積/多孔質層の全体積)を計算した。
(合成例2:多孔質層付き基板2の製造)
シリカ粒子の代わりに、ジルコニア粒子(TECNAN社製、TECNAPOW−ZRO2)を使用した以外は、合成例1と同様の手順に従い、多孔質層付き基板2を製造した。
(合成例3:多孔質層付き基板3の製造)
合成例1のポリビニルアルコール量を5gに変更した以外は、合成例1と同様の手順に従い、多孔質層付き基板3を製造した。
(合成例4:多孔質層付き基板4の製造)
合成例1で使用したシリカ粒子の量を80gに変更した以外は、合成例1と同様の手順に従い、多孔質層付き基板4を製造した。
(合成例5:多孔質層付き基板5の製造)
シリカ粒子の代わりに、チタニア粒子(TECNAN社製 TECNAPOW−TIO2)を使用し、PVAを5gに変更した以外は合成例1と同様の手順に従い、多孔質層付き基板5を製造した。
(合成例6:多孔質層付き基板6の製造)
シリカ粒子の代わりに、チタニア粒子(TECNAN社製 TECNAPOW−TIO2)を使用した以外は合成例1と同様の手順に従い、多孔質層付き基板6を製造した。
(合成例7:多孔質層付き基板7の製造)
シリカ粒子の代わりに、アルミナ粒子(TECNAN社製 TECNAPOW−AL2O3)を使用した以外は合成例1と同様の手順に従い、多孔質層付き基板7を製造した。
(実施例1)
インクジェット印刷装置(FUJIFILM Dimatix製DMP−2800プリンター)を用いて、酸化銅粒子含有溶液Xを多孔質層付き基板1上(10×10mm)に付与して塗膜を形成後、塗膜を有する多孔質層付き基板1をホットプレート上に載置し、100℃で10分間乾燥処理を施して溶媒を除去して、前駆体層付き支持体1を製造した。得られた前駆体層中での酸化銅粒子の充填率は、76%であった。前駆体層の厚みは、2.0μmであった。
なお、前駆体層中での酸化銅粒子の充填率は、まず、前駆体層の断面3箇所以上を走査型電子顕微鏡で観察し、それぞれの観察写真中の領域(縦:1μm×横:2μm)における酸化銅粒子の面積を上述した方法により測定して充填率(%)を計算し、上記3箇所以上の写真で計算された充填率の値を算術平均して求めた。
次に、Xenon社製光焼結装置Sinteron2000を用いて、照射エネルギー5J/cm2で、前駆体層付き支持体1の前駆体層に光照射を行い、導電層を得た。
その後、得られた導電層の層厚は触針式段差計Dektak3を用いて測定した。なお、層厚は、導電層の任意の位置の層厚を3箇所測定して、それらを算術平均して求めた。また、得られた層厚の値に基づいて、四探針法抵抗率計(三菱化学製低抵抗率計ロレスタ)を用いて四端子法により体積抵抗率を測定した。評価結果を表1にまとめて示す。
なお、得られた体積抵抗率は、以下の評価基準に従って評価した。実用上、「AA」「A」「B」であることが必要である。
「AA」:0.5×10-5Ωcm未満
「A」:0.5×10-5Ωcm以上0.1×10-4Ωcm未満
「B」:0.1×10-4Ωcm以上0.1×10-3Ωcm未満
「C」:0.1×10-3Ωcm以上0.1×10−2Ωcm未満
「D」:0.1×10-2Ωcm以上
(実施例2)
多孔質層付き基板1の代わりに多孔質層付き基板2を使用した以外は、実施例1と同様の手順に従って、導電層を得た。評価結果を表1にまとめて示す。
(実施例3)
多孔質層付き基板1の代わりに多孔質層付き基板3を使用した以外は、実施例1と同様の手順に従って、導電層を得た。評価結果を表1にまとめて示す。
(実施例4)
多孔質層付き基板1の代わりに多孔質層付き基板4を使用した以外は、実施例1と同様の手順に従って、導電層を得た。評価結果を表1にまとめて示す。
(実施例5)
多孔質層付き基板1の代わりに多孔質層付き基板5を使用した以外は、実施例1と同様の手順に従って、導電層を得た。評価結果を表1にまとめて示す。
(実施例6)
多孔質層付き基板1の代わりに多孔質層付き基板6を使用し、照射エネルギー5J/cm2を照射エネルギー10J/cm2に変更した以外は、実施例1と同様の手順に従って、導電層を得た。評価結果を表1にまとめて示す。
(実施例7)
多孔質層付き基板1の代わりに多孔質層付き基板7を使用し、照射エネルギー5J/cm2を照射エネルギー10J/cm2に変更した以外は、実施例1と同様の手順に従って、導電層を得た。評価結果を表1にまとめて示す。
(実施例8)
酸化銅粒子含有溶液Xの代わりに、酸化銅粒子含有溶液Yを使用した以外は、実施例3と同様の手順に従って、導電層を得た。評価結果を表1にまとめて示す。
(実施例9)
酸化銅粒子含有溶液Xの代わりに、酸化銅粒子含有溶液Yを使用した以外は、実施例4と同様の手順に従って、導電層を得た。評価結果を表1にまとめて示す。
(比較例1)
多孔質層付き基板1の代わりに基板(PET)を使用した以外は、実施例1と同様の手順に従って、導電層を得た。評価結果を表1にまとめて示す。
比較例1では、多孔質層が使用されていない。
(比較例2)
酸化銅粒子含有溶液Xの代わりに、金属銅粒子含有溶液を使用した以外は、比較例1と同様の手順に従って、導電層を得た。評価結果を表1にまとめて示す。
比較例2では、多孔質層が使用されておらず、かつ、酸化銅粒子が使用されていない。
(比較例3)
酸化銅粒子含有溶液Xの代わりに、金属銅粒子含有溶液を使用した以外は、実施例1と同様の手順に従って、導電層を得た。評価結果を表1にまとめて示す。
比較例3では、酸化銅粒子が使用されていない。
(比較例4)
酸化銅粒子含有溶液Xの代わりに、金属銅粒子含有溶液を使用し、照射エネルギー5J/cm2を照射エネルギー5.5J/cm2に変更した以外は、実施例1と同様の手順に従って、導電層の製造を行ったところ、光照射時に層が飛び散ってしまい、導電層の製造ができなかった。
比較例4では、酸化銅粒子が使用されていない。
以下の表1中、「使用溶液」欄の「種類」中、「X」は酸化銅粒子含有溶液Xを表し、「Y」は酸化銅粒子含有溶液Yを表し、「CI」は金属銅粒子含有溶液を表す。
「多孔質層」欄および「前駆体層」欄の「見かけ熱伝導率」は、上述した式(1)で表される見かけ熱伝導率λeより計算される。
上記表1の結果より、酸化銅粒子の充填率が65%以上の前駆体層に光照射を行って得られる導電層は優れた導電性を示すことが確認された。
特に、実施例1、2,6および7の比較より、多孔質層の材質がシリカまたはジルコニアの場合、導電層の導電性がより優れることが確認された。
また、実施例1、3および4の比較より、多孔質層の平均孔径が5〜20nmで、空隙率が50〜80%の場合、導電層の導電性がより優れることが確認された。
さらに、実施例1〜7の比較より、前駆体層の熱伝導率が多孔質層の熱伝導率よりも大きい場合、導電層の導電性がより優れることが確認された。
一方、本発明の導電層の製造方法の要件を満たさない比較例1〜3においては、得られた導電層の導電性に劣っていた。
例えば、酸化銅粒子の充填率が所定値以下である比較例1、酸化銅粒子を使用していない比較例2〜3では、得られた導電層の導電性が実施例と比較して劣っていた。
また、比較例4においては、そもそも層の作製ができなかった。
10 支持体
12,22,30 塗膜
14 層
16 基板
18 多孔質層
20 多孔質層付き基板
24,38 前駆体層
32 貫通孔を有する膜
34 フィルター部材
36 膜保持部材
C 酸化銅粒子

Claims (5)

  1. 支持体と前記支持体上に配置された酸化銅粒子を含む前駆体層とを有する前駆体層付き支持体に対して、光照射を行い、前記酸化銅粒子を還元して金属銅を含有する導電層を形成する還元工程を備える導電層の製造方法であって、
    前記前駆体層の前記酸化銅粒子の充填率が65%以上であり、
    前記支持体が、基板と前記基板上に配置された多孔質層とを有する多孔質層付き基板であり、
    前記多孔質層を構成する材料が、シリカおよびジルコニアからなる群から選ばれる少なくとも一つを含有し、
    前記還元工程の前に、
    前記多孔質層付き基板上に酸化銅粒子を含有する溶液を付与して、前記前駆体層を形成する前駆体層形成工程を有する、導電層の製造方法。
  2. 前記多孔質層の平均孔径が、前記酸化銅粒子の平均粒子径よりも小さい、請求項に記載の導電層の製造方法。
  3. 前記多孔質層の空隙率が50〜80%である、請求項1または2のいずれかに記載の導電層の製造方法。
  4. 前記多孔質層の平均孔径が5〜20nmである、請求項のいずれかに記載の導電層の製造方法。
  5. 前記多孔質層の熱伝導率が前記前駆体層の熱伝導率よりも小さい、請求項のいずれかに記載の導電層の製造方法。
JP2012202421A 2012-09-14 2012-09-14 導電層の製造方法、プリント配線基板 Active JP5897437B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012202421A JP5897437B2 (ja) 2012-09-14 2012-09-14 導電層の製造方法、プリント配線基板
KR20157006065A KR20150041112A (ko) 2012-09-14 2013-08-15 도전층의 제조 방법, 프린트 배선 기판
PCT/JP2013/071944 WO2014041956A1 (ja) 2012-09-14 2013-08-15 導電層の製造方法、プリント配線基板
TW102130141A TW201412210A (zh) 2012-09-14 2013-08-23 導電層的製造方法與印刷配線基板
US14/642,488 US20150177620A1 (en) 2012-09-14 2015-03-09 Conductive layer manufacturing method and printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012202421A JP5897437B2 (ja) 2012-09-14 2012-09-14 導電層の製造方法、プリント配線基板

Publications (2)

Publication Number Publication Date
JP2014057024A JP2014057024A (ja) 2014-03-27
JP5897437B2 true JP5897437B2 (ja) 2016-03-30

Family

ID=50278081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012202421A Active JP5897437B2 (ja) 2012-09-14 2012-09-14 導電層の製造方法、プリント配線基板

Country Status (5)

Country Link
US (1) US20150177620A1 (ja)
JP (1) JP5897437B2 (ja)
KR (1) KR20150041112A (ja)
TW (1) TW201412210A (ja)
WO (1) WO2014041956A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6042793B2 (ja) * 2012-12-07 2016-12-14 富士フイルム株式会社 導電膜の製造方法、プリント配線基板
JP6313474B2 (ja) * 2015-01-06 2018-04-18 株式会社フジクラ 導体層の製造方法及び配線基板
JP6715450B2 (ja) * 2016-01-13 2020-07-01 小林 博 金属ないしは金属酸化物からなる個々のナノ粒子が、液体の有機化合物に囲まれて該有機化合物中に分散した懸濁体を製造する製造方法
JP6565710B2 (ja) * 2016-01-27 2019-08-28 三菱マテリアル株式会社 銅部材接合体の製造方法
US10367169B2 (en) 2016-10-17 2019-07-30 Corning Incorporated Processes for making light extraction substrates for an organic light emitting diode using photo-thermal treatment
US11539053B2 (en) * 2018-11-12 2022-12-27 Utility Global, Inc. Method of making copper electrode
US20230092683A1 (en) * 2021-09-10 2023-03-23 Utility Global, Inc. Method of making an electrode
WO2024124468A1 (zh) * 2022-12-15 2024-06-20 李文熙 制作积层固态铝电容器与零欧姆铝电阻器的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355807A (ja) * 1986-08-27 1988-03-10 古河電気工業株式会社 導電性ペ−スト
JPH0537126A (ja) * 1991-07-30 1993-02-12 Toshiba Corp 金属酸化物を用いた配線基板および情報記録媒体
JP4683743B2 (ja) * 2001-02-28 2011-05-18 京セラ株式会社 配線基板の製造方法
JP4042497B2 (ja) * 2002-04-15 2008-02-06 セイコーエプソン株式会社 導電膜パターンの形成方法、配線基板、電子デバイス、電子機器、並びに非接触型カード媒体
ATE474441T1 (de) * 2003-03-05 2010-07-15 Intune Circuits Oy Verfahren zur herstellung einer elektrisch leitfähigen struktur
JP3887337B2 (ja) * 2003-03-25 2007-02-28 株式会社東芝 配線部材およびその製造方法
TWI499466B (zh) * 2007-03-22 2015-09-11 Hitachi Chemical Co Ltd 金屬微粒子與其製造方法以及金屬微粒子分散液與其製造方法
US10231344B2 (en) * 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink
JP5188915B2 (ja) * 2008-09-30 2013-04-24 富士フイルム株式会社 配線形成方法
JP2010161118A (ja) * 2009-01-06 2010-07-22 Ube Nitto Kasei Co Ltd 多孔質膜、多孔質膜形成用塗工液、その製造方法、積層基板および配線材料
JP5866690B2 (ja) * 2009-09-04 2016-02-17 国立研究開発法人産業技術総合研究所 球状ナノ粒子の製造方法及び同製造方法によって得られた球状ナノ粒子
JP5713181B2 (ja) * 2011-01-27 2015-05-07 日立化成株式会社 印刷用液状組成物及びそれを用いて得られる導体配線及びその形成方法、熱伝導路、接合材
TW201339279A (zh) * 2011-11-24 2013-10-01 Showa Denko Kk 導電圖型形成方法及藉由光照射或微波加熱的導電圖型形成用組成物
JP2013120864A (ja) * 2011-12-08 2013-06-17 Showa Denko Kk 導体パターン形成方法および導体パターンを備える基板

Also Published As

Publication number Publication date
KR20150041112A (ko) 2015-04-15
US20150177620A1 (en) 2015-06-25
WO2014041956A1 (ja) 2014-03-20
TW201412210A (zh) 2014-03-16
JP2014057024A (ja) 2014-03-27

Similar Documents

Publication Publication Date Title
JP5897437B2 (ja) 導電層の製造方法、プリント配線基板
JP6042793B2 (ja) 導電膜の製造方法、プリント配線基板
JP5993812B2 (ja) 導電膜の製造方法
TWI564352B (zh) 液狀組成物、金屬銅膜及導體配線、以及金屬銅膜的製造方法
WO2014156594A1 (ja) 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP2014192465A (ja) 電気回路配線基板の製造方法
WO2015015918A1 (ja) 導電膜形成用組成物及び導電膜の製造方法
WO2015033823A1 (ja) 導電膜の製造方法
WO2014156326A1 (ja) 導電膜形成用組成物およびこれを用いる導電膜の製造方法
WO2015005046A1 (ja) 導電膜形成用組成物、導電膜の製造方法、および、導電膜
WO2014157303A1 (ja) 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP5871762B2 (ja) 導電膜形成用組成物および導電膜の製造方法
JP2014167872A (ja) 導電膜の製造方法、配線基板
WO2014156345A1 (ja) 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP2014186952A (ja) 被覆銅粒子の製造方法、導電膜形成用組成物の製造方法、導電膜の製造方法
WO2015005178A1 (ja) 導電膜形成用組成物およびこれを用いる導電膜の製造方法
JP2014186831A (ja) 導電膜の製造方法
JP2022110919A (ja) 紙基材、導電性紙基板及び導電性紙基板の製造方法
JP2015144089A (ja) 導電膜の製造方法
JP2014025085A (ja) 導電膜形成用組成物および導電膜の製造方法
JP2015026680A (ja) 多層配線基板の製造方法
JP2014044907A (ja) 導電膜形成用組成物および導電膜の製造方法
JP2014139893A (ja) 導電層含有積層体の製造方法
WO2016031409A1 (ja) 導電膜形成用組成物および導電膜形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160302

R150 Certificate of patent or registration of utility model

Ref document number: 5897437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250