WO2015015918A1 - 導電膜形成用組成物及び導電膜の製造方法 - Google Patents
導電膜形成用組成物及び導電膜の製造方法 Download PDFInfo
- Publication number
- WO2015015918A1 WO2015015918A1 PCT/JP2014/065569 JP2014065569W WO2015015918A1 WO 2015015918 A1 WO2015015918 A1 WO 2015015918A1 JP 2014065569 W JP2014065569 W JP 2014065569W WO 2015015918 A1 WO2015015918 A1 WO 2015015918A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive film
- composition
- content
- copper
- mass
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/24—Electrically-conducting paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/63—Additives non-macromolecular organic
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/12—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/001—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
- C22C32/0015—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
- C22C32/0021—Matrix based on noble metals, Cu or alloys thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/08—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
- H05K1/097—Inks comprising nanoparticles and specially adapted for being sintered at low temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/248—Thermal after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
- C08K2003/085—Copper
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2248—Oxides; Hydroxides of metals of copper
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
- C08K5/053—Polyhydroxylic alcohols
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/11—Treatments characterised by their effect, e.g. heating, cooling, roughening
- H05K2203/1157—Using means for chemical reduction
Definitions
- the present invention relates to a composition for forming a conductive film and a method for producing a conductive film using the same.
- a dispersion of metal particles or metal oxide particles is applied to the base material by a printing method, and heat treatment is performed to sinter the conductive film or wiring on a circuit board.
- a technique for forming an electrically conductive portion is known. Since the above method is simpler, energy-saving, and resource-saving than conventional high-heat / vacuum processes (sputtering) and plating processes, it is highly anticipated in the development of next-generation electronics.
- Patent Document 1 discloses a dispersion containing copper oxide particles, copper particles, and a polyhydric alcohol, and a metal thin film obtained by firing the dispersion (claims).
- the present inventors examined a composition containing copper particles, copper oxide particles, a reducing agent having a hydroxy group, and a solvent with reference to Patent Document 1, and as a result, the conductivity of the obtained conductive film was poor. It has been found that there are cases where voids (voids) occur in the obtained conductive film. Note that the formation of voids in the conductive film is a problem because it leads to a decrease in conductivity and durability. Therefore, in view of the above circumstances, the present invention provides a conductive film-forming composition that can form a conductive film that is excellent in conductivity and has few voids, and a method for manufacturing a conductive film using the same. The task is to do.
- the present inventors blended a metal catalyst containing a metal other than copper, and by making the content of each component in a specific range, it has excellent conductivity, And it discovered that it became the composition for electrically conductive film formation in which an electrically conductive film with few voids was formed, and completed this invention. That is, the present inventors have found that the above problem can be solved by the following configuration.
- Copper particles having an average particle diameter of 1 nm to 10 ⁇ m, copper oxide particles having an average particle diameter of 1 to 500 nm, a reducing agent having a hydroxy group, a metal catalyst containing a metal other than copper, a solvent The content of the copper oxide particles is 50 to 300% by mass based on the content of the copper particles, and the content of the reducing agent is based on the content of the copper oxide particles, A composition for forming a conductive film, wherein the composition is 100 to 800 mol%, and the content of the metal catalyst is 10% by mass or less with respect to the content of the copper oxide particles.
- composition for electrically conductive film formation as described in said (1) whose said reducing agent is a compound which has two or more hydroxy groups in a molecule
- Conductive film formation as described in said (2) whose boiling point of the said reducing agent is 250 degrees C or less, and whose said reducing agent is a compound represented by General formula (1) or (2) mentioned later.
- Composition. (4) The conductive film according to any one of (1) to (3), wherein the metal catalyst is a metal catalyst containing at least one metal selected from the group consisting of palladium, platinum, nickel, and silver. Forming composition. (5) The composition for forming a conductive film according to any one of (1) to (4), wherein the metal catalyst is a salt compound.
- SP value solubility parameter
- a conductive film-forming composition capable of forming a conductive film having excellent conductivity and less voids, and a method for producing a conductive film using the same are provided. can do.
- composition for forming a conductive film of the present invention (hereinafter also simply referred to as the composition of the present invention) comprises copper particles having an average particle diameter of 1 nm to 10 ⁇ m, copper oxide particles having an average particle diameter of 1 to 500 nm, And a reducing agent having a hydroxy group, a metal catalyst containing a metal other than copper, and a solvent.
- the content of the copper oxide particles is 50 to 300% by mass with respect to the content of the copper particles, and the content of the reducing agent is 100% with respect to the content of the copper oxide particles.
- the content of the metal catalyst is 10% by mass or less with respect to the content of the copper oxide particles.
- the composition of the present invention is considered to have such a structure, whereby the obtained conductive film is excellent in conductivity and has few voids. This is not clear in detail, but is assumed to be as follows.
- the composition of the present invention contains copper oxide particles, copper particles, and a reducing agent having a hydroxy group
- the reducing agent causes copper oxide to be added.
- the particles are reduced, and at the same time, the reduced copper oxide particles fuse the copper particles.
- the composition of the present invention contains a metal catalyst together with the reducing agent, the reduction reaction of the copper oxide particles easily proceeds, and the fusion of the copper particles with the reduced copper from the copper oxide particles proceeds efficiently. As a result, it is considered that a conductive film having excellent conductivity and few voids is formed.
- composition of the present invention is also characterized in that the content of each component is specific. That is, since the content of the reducing agent with respect to the copper oxide particles is a certain amount or more, the reduction of the copper oxide particles proceeds uniformly throughout the entire system.
- the copper particles contained in the composition of the present invention are not particularly limited as long as it is particulate copper having an average particle diameter of 1 nm to 10 ⁇ m.
- the particulate form refers to a small granular form, and specific examples thereof include a spherical shape and an ellipsoidal shape. It does not have to be a perfect sphere or ellipsoid, and a part may be distorted.
- the average particle diameter of the copper particles is not particularly limited as long as it is in the range of 1 nm to 10 ⁇ m, but in particular, it is preferably 100 nm to 8 ⁇ m, and more preferably 1 to 5 ⁇ m.
- the average particle diameter in this invention points out an average primary particle diameter.
- the average particle size is determined by measuring the particle size (diameter) of at least 50 copper particles by observation with a transmission electron microscope (TEM) and arithmetically averaging them.
- TEM transmission electron microscope
- a major axis is measured as a diameter.
- the content of copper particles is preferably 2 to 60% by mass, more preferably 5 to 50% by mass with respect to the entire composition. Further, the content of the copper particles is preferably 5 to 80% by mass, and preferably 10 to 70% by mass with respect to the entire solid content in the composition.
- the copper oxide particles contained in the composition of the present invention are not particularly limited as long as they are particulate copper oxide having an average particle diameter of 1 to 500 nm.
- the definition of particulate is the same as that of copper particles.
- the copper oxide particles are preferably copper (I) oxide particles (Cu 2 O particles) or copper (II) oxide particles (CuO particles), and are more inexpensive and more stable in the air. From a certain point, copper (II) oxide particles are more preferable.
- the average particle diameter of the copper oxide particles is not particularly limited as long as it is in the range of 1 to 500 nm, but is preferably 5 to 300 nm, and more preferably 10 to 100 nm.
- the measuring method of the average particle diameter is the same as that of the copper particles.
- the content of the copper oxide particles is preferably 2 to 60% by mass, more preferably 5 to 50% by mass with respect to the entire composition. Further, the content of the copper oxide particles is preferably 5 to 80% by mass, and preferably 10 to 70% by mass with respect to the entire solid content in the composition.
- the content of the copper oxide particles is 50 to 300% by mass with respect to the content of the copper particles.
- the content is preferably 80 to 200% by mass.
- the content of the copper oxide particles exceeds 300% by mass with respect to the content of the copper particles, the reduction of the copper oxide does not proceed sufficiently and the conductivity becomes insufficient.
- content of a copper oxide particle is less than 50 mass% with respect to content of a copper particle, the fusion
- the reducing agent contained in the composition of the present invention is a reducing agent having a hydroxy group (hereinafter also simply referred to as a reducing agent), which can reduce copper oxide particles or copper oxide on the surface of copper particles.
- a reducing agent which can reduce copper oxide particles or copper oxide on the surface of copper particles.
- a material that decomposes by generating carbon or hydrogen by applying energy such as heat treatment or light irradiation treatment can be preferably used.
- Examples of the reducing agent include alcohols such as 1-decanol; ascorbic acid; sugar alcohols such as erythritol, xylitol, ribitol, and sorbitol; sugars such as erythrose, xylose, ribose, glucose, fructose, mannose, galactose, and glyceraldehyde.
- alcohols such as 1-decanol
- ascorbic acid sugar alcohols
- sugar alcohols such as erythritol, xylitol, ribitol, and sorbitol
- sugars such as erythrose, xylose, ribose, glucose, fructose, mannose, galactose, and glyceraldehyde.
- Hydroxy hydroxy ketones such as hydroxyacetone and dihydroxyacetone; amino alcohols such as 1-amino-2,3-propanediol and 2-amino-1,3-propanediol; ethylene glycol, propylene glycol, 1,2-butane Diol, 2,3-butanediol, 1,2-pentanediol, 1,2-hexanediol, 1,2-heptanediol, 3,4-heptanediol, 1,2-octanediol, glycerin, Trimethylolpropane, pentaerythritol, dipentaerythritol, ethers of polyhydric alcohols, such as tripentaerythritol; glyoxylic acid; glycolic acid; and polyethylene oxide.
- amino alcohols such as 1-amino-2,3-propanediol and 2-amino-1,3-propanediol
- the reducing agent is preferably a compound having two or more hydroxy groups in the molecule because the resulting conductive film has more excellent conductivity.
- examples of such compounds include polyhydric alcohols including the above-mentioned sugar alcohols, saccharides, and the like.
- the electroconductivity of the electrically conductive film obtained is further excellent, it is more preferable that it is a compound whose boiling point is 250 degrees C or less and is represented by the following general formula (1) or (2).
- the boiling point is preferably 150 to 220 ° C.
- the boiling point is a boiling point at 1 atm.
- R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, a hydroxyalkyl group or an alkoxyalkyl group. However, R 1 , R 2 and R 3 do not contain an aldehyde group or a carbonyl group. That is, R 1 , R 2 and R 3 are not groups having an aldehyde group (—CHO) or a carbonyl group (—CO—) as a substituent.
- the number of carbon atoms of the alkyl group, alkoxy group, hydroxyalkyl group and alkoxyalkyl group is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5.
- the hydroxyalkyl group is an alkyl group having a hydroxy group as a substituent. Specific examples of the hydroxyalkyl group include a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group.
- the hydroxyalkyl group may be an alkyl group having a plurality of hydroxy groups as substituents.
- the alkoxyalkyl group is an alkyl group having an alkoxy group (preferably having 1 to 5 carbon atoms) as a substituent.
- alkoxyalkyl group examples include a methoxymethyl group, a methoxypropyl group, and an ethoxyethyl group.
- the alkoxyalkyl group may be an alkyl group having a plurality of alkoxy groups as substituents.
- R 1 and R 2 are preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
- R 3 is preferably an alkyl group having 1 to 5 carbon atoms.
- the content of the reducing agent is preferably 5 to 60% by mass, and more preferably 10 to 50% by mass with respect to the entire composition.
- the content of the reducing agent is preferably 10 to 90% by mass, and preferably 20 to 80% by mass, based on the entire solid content in the composition.
- the content of the reducing agent is 100 to 800 mol% with respect to the content of the copper oxide particles. That is, the value obtained by dividing the number of moles of the reducing agent by the number of moles of copper oxide is 100 to 800%.
- the number of moles of copper oxide means the mass [g] of copper oxide particles is the molar mass of copper oxide (for example, 143.09 g / mol for copper oxide (I) and 79.55 g / mol for copper oxide (II)). mol).
- the content of the reducing agent is preferably 200 to 700 mol% with respect to the content of the copper oxide particles.
- the reducing agent When the content of the reducing agent exceeds 800 mol% with respect to the content of the copper oxide particles, the reducing agent that did not contribute to the reduction remains as an insulating component in the conductive film, and thus the conductivity is insufficient. And more voids. Further, if the content of the reducing agent is less than 100 mol% with respect to the content of the copper oxide particles, the reduction of the copper oxide particles does not proceed sufficiently, the conductivity becomes insufficient, and there are many voids. Become.
- the reducing agent when the reducing agent is a solvent described later, the reducing agent also serves as a solvent described later. That is, when the reducing agent is a solvent described later, it may or may not contain a solvent other than the reducing agent.
- the metal catalyst contained in the composition of the present invention is not particularly limited as long as it is a metal catalyst containing a metal (metal element) other than copper.
- a metal catalyst include metal particles containing metals other than copper (preferably palladium fine particles, platinum fine particles, nickel fine particles), metal compounds containing metals other than copper, and the like.
- metal particles containing metals other than copper preferably palladium fine particles, platinum fine particles, nickel fine particles
- metal compounds containing metals other than copper preferably palladium fine particles, platinum fine particles, nickel fine particles
- metal compounds containing metals other than copper preferably palladium fine particles, platinum fine particles, nickel fine particles
- metal compounds containing metals other than copper preferably palladium fine particles, platinum fine particles, nickel fine particles
- metal compounds containing metals other than copper preferably palladium fine particles, platinum fine particles, nickel fine particles
- metal compounds containing metals other than copper preferably palladium fine particles, platinum fine particles, nickel fine particles
- metal compounds containing metals other than copper preferably pal
- the metal other than copper is not particularly limited, and examples thereof include alkali metals, alkaline earth metals, transition metals other than copper (Group 3 to 11 metals other than copper), aluminum, germanium, tin, and antimony. Especially, it is preferable that they are transition metals other than copper from the reason which the electroconductivity of the electrically conductive film obtained is more excellent.
- the conductivity of the obtained conductive film is more excellent, it is preferably a group 8-11 metal other than copper, and at least one metal selected from the group consisting of palladium, platinum, nickel and silver It is more preferable that it is at least one metal selected from the group consisting of palladium, platinum and nickel, particularly preferable is palladium and platinum, and most preferable is palladium.
- the metal compound containing a metal other than copper is not particularly limited, and examples thereof include a salt compound of a metal other than copper, a complex compound, a metal alkoxide, a metal aryloxide, and a metal oxide. Especially, since the electroconductivity and uniformity of the electrically conductive film obtained are more excellent, it is preferable that it is a salt compound of metals other than copper.
- the salt compound include hydrochlorides, nitrates, sulfates, carboxylates, sulfonates, phosphates, and phosphonates of metals other than copper, and among them, carboxylates are preferable. .
- the number of carbon atoms of the carboxylic acid forming the carboxylate is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 5.
- the content of the metal catalyst is preferably 0.05 to 10% by mass, more preferably 0.1 to 1.0% by mass, based on the entire composition.
- the content of the metal catalyst is preferably from 0.1 to 15% by mass, and preferably from 0.2 to 5% by mass, based on the entire solid content in the composition.
- the content of the metal catalyst is more than 0% by mass and 10% by mass or less with respect to the content of the copper oxide particles.
- the content is preferably 0.5 to 10% by mass, more preferably 1 to 10% by mass, and further preferably 3 to 10% by mass. If the content of the metal catalyst exceeds 10% by mass with respect to the content of the copper oxide particles, the excess metal catalyst becomes a resistance component, and therefore the conductivity becomes insufficient and the number of voids increases.
- the contained metal catalyst is preferably dissolved in a solvent described later from the viewpoint that the conductivity of the obtained conductive film is more excellent.
- the solvent contained in the composition of the present invention is not particularly limited.
- the solvent may be a single solvent composed of one kind of solvent or a mixed solvent composed of two or more kinds of solvents.
- the type of the solvent is not particularly limited, and for example, water, organic solvents such as alcohols, ethers, and esters can be used.
- the solvent is preferably alcohol, water, or a mixed solvent containing these from the viewpoint of handleability or weak reduction.
- the solubility parameter (SP value) of the solvent contained in the composition of the present invention is not particularly limited, but is 10 to 20 (cal / cm 3 ) 1/2 because the conductivity of the obtained conductive film is more excellent. It is preferably 12 to 18 (cal / cm 3 ) 1/2 .
- the solubility parameter of the solvent is defined by the theory of Hildebrand's regular solution. More specifically, when the heat of vaporization of the solvent is ⁇ H and the molar volume is V, ( ⁇ H / V) A quantity defined by 1/2 (cal / cm 3 ) 1/2 .
- the solubility parameter of the solvent is the sum of products of the volume fraction of each solvent mixed and the solubility parameter of each solvent.
- Examples of the solvent having an SP value of 10 to 20 (cal / cm 3 ) 1/2 include acetone (10.0), isopropanol (11.5), acetonitrile (11.9), dimethylformamide (12.0 ), Diethylene glycol (12.1), acetic acid (12.6), ethanol (12.7), cresol (13.3), formic acid (13.5), ethylene glycol (14.6), phenol (14.5) ), Methanol (14.8), glycerin (16.5), and the like.
- the parentheses indicate SP values.
- the content of the solvent is not particularly limited, but it is preferably 10 to 80% by mass with respect to the entire composition because the increase in viscosity is suppressed and the handleability is excellent. More preferably, it is ⁇ 60% by mass.
- the composition of the present invention may contain components other than the above components.
- the composition of the present invention may contain a surfactant.
- the surfactant plays a role of improving the dispersibility of the copper oxide particles and / or the copper particles.
- the type of the surfactant is not particularly limited, and examples thereof include an anionic surfactant, a cationic surfactant, a nonionic surfactant, a fluorine surfactant, and an amphoteric surfactant. These surfactants can be used alone or in combination of two or more.
- the composition of the present invention preferably contains a resin.
- a resin for example, a thermoplastic resin and a thermosetting resin are mentioned.
- the thermosetting resin is not particularly limited, and a conventionally known thermosetting resin can be used.
- the thermosetting resin is preferably a resin that gels by heat treatment at 200 ° C. for 30 minutes.
- the thermosetting resin include a phenol resin (particularly a resol resin), an epoxy resin, a melamine resin, a polyamideimide resin, a polyimide resin, an isocyanate resin, and a siloxane resin.
- Two or more thermosetting resins may be used in combination. Moreover, you may mix
- the content of the thermosetting resin is preferably 0.1 to 30% by mass, and more preferably 0.5 to 15% by mass with respect to the entire composition.
- the content of the thermosetting resin is preferably 0.5 to 40% by mass, and preferably 1 to 20% by mass, based on the entire solid content in the composition.
- the content of the thermosetting resin is not particularly limited, but for the reason that the conductivity of the obtained conductive film is more excellent, the total content of the copper particles and the copper oxide particles
- the content is preferably 1 to 40% by mass. In particular, the content is more preferably 5 to 20% by mass.
- the viscosity of the composition of the present invention is preferably adjusted to a viscosity suitable for printing applications such as inkjet and screen printing.
- the pressure is preferably 1 to 50 cP, and more preferably 1 to 40 cP.
- screen printing it is preferably 1000 to 100,000 cP, and more preferably 10,000 to 80,000 cP.
- the preparation method in particular of the composition of this invention is not restrict
- the components are dispersed by a known means such as an ultrasonic method (for example, treatment with an ultrasonic homogenizer), a mixer method, a three-roll method, or a ball mill method. can do.
- a known means such as an ultrasonic method (for example, treatment with an ultrasonic homogenizer), a mixer method, a three-roll method, or a ball mill method. can do.
- the manufacturing method of the electrically conductive film of this invention is a method of manufacturing an electrically conductive film using the composition of this invention mentioned above.
- the manufacturing method of the electrically conductive film of this invention will not be restrict
- This step is a step of applying the above-described composition of the present invention on a substrate to form a coating film.
- a precursor film before being subjected to heat treatment is obtained.
- a well-known thing can be used as a base material used at this process.
- the material used for the substrate include resin, paper, glass, silicon-based semiconductor, compound semiconductor, metal oxide, metal nitride, wood, or a composite thereof. More specifically, low density polyethylene resin, high density polyethylene resin, ABS resin, acrylic resin, styrene resin, vinyl chloride resin, polyester resin (polyethylene terephthalate), polyacetal resin, polysulfone resin, polyetherimide resin, polyether ketone Resin base materials such as resin and cellulose derivatives; uncoated printing paper, fine coated printing paper, coated printing paper (art paper, coated paper), special printing paper, copy paper (PPC paper), unbleached wrapping paper ( Paper substrates such as double kraft paper for heavy bags, double kraft paper), bleached wrapping paper (bleached kraft paper, pure white roll paper), coated balls, chip balls, corrugated cardboard; soda glass, borosilicate glass, silica glass, Glass substrates such as quartz glass; silicon-based semiconductor
- the method for applying the composition of the present invention on a substrate to form a coating film is not particularly limited, and a known method can be adopted.
- Application methods include, for example, double roll coater, slit coater, air knife coater, wire bar coater, slide hopper, spray coating, blade coater, doctor coater, squeeze coater, reverse roll coater, transfer roll coater, extrusion roll coater, curtain Examples include a coater, dip coater, die coater, gravure roll coating method, screen printing method, dip coating method, spray coating method, spin coating method, and ink jet method.
- the screen printing method and the ink jet method are preferable because they are simple and easy to produce a large conductive film.
- the shape of application is not particularly limited, and may be a surface covering the entire surface of the substrate or a pattern (for example, a wiring or a dot).
- the coating amount of the composition for forming a conductive film on the substrate may be appropriately adjusted according to the desired film thickness of the conductive film.
- the film thickness of the coating film is preferably 0.01 to 5000 ⁇ m, 0.1 to 1000 ⁇ m is more preferable.
- This step is a step of performing a heat treatment on the coating film formed in the coating film forming step to form a conductive film.
- the heat treatment the copper oxide particles in the coating film and the copper oxide on the surface of the copper particles are reduced, and at the same time, the copper particles are fused via the copper oxide particles.
- the conditions for the heat treatment are not particularly limited, but the heating temperature is preferably 80 to 250 ° C., more preferably 100 to 200 ° C., because the range of base materials that can be used is expanded.
- the heating time is preferably 5 to 120 minutes, more preferably 10 to 60 minutes.
- the heating means is not particularly limited, and known heating means such as an oven and a hot plate can be used.
- a conductive film can be formed by a heat treatment at a relatively low temperature, and thus has an advantage of high versatility of a base material such as a resin substrate having a low glass transition temperature.
- the atmosphere in which the heat treatment is performed is not particularly limited, and examples include an air atmosphere, an inert atmosphere, or a reducing atmosphere.
- the inert atmosphere is, for example, an atmosphere filled with an inert gas such as argon, helium, neon, or nitrogen.
- the reducing atmosphere is a reduction of hydrogen, carbon monoxide, formic acid, alcohol, or the like. It refers to the atmosphere in which sex gas exists.
- the electrically conductive film of this invention is an electrically conductive film manufactured using the composition of this invention mentioned above. Especially, it is preferable that it is an electrically conductive film manufactured with the manufacturing method provided with the coating-film formation process and heat processing process which were mentioned above.
- the film thickness of the conductive film is not particularly limited, and an optimum film thickness is appropriately adjusted according to the intended use. Of these, 0.01 to 1000 ⁇ m is preferable and 0.1 to 100 ⁇ m is more preferable from the viewpoint of printed wiring board use.
- the film thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the conductive film and arithmetically averaging the values.
- the volume resistance value of the conductive film is preferably 2.0 ⁇ 10 ⁇ 4 ⁇ cm or less from the viewpoint of conductive characteristics. The volume resistance value can be calculated by multiplying the obtained surface resistance value by the film thickness after measuring the surface resistance value of the conductive film by the four-probe method.
- the conductive film may be provided on the entire surface of the substrate or in a pattern.
- the patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
- a method for obtaining a patterned conductive film the above-mentioned composition for forming a conductive film is applied to a substrate in a pattern, and the heat treatment is performed, or the conductive film provided on the entire surface of the substrate is patterned. Etching method and the like can be mentioned.
- the etching method is not particularly limited, and a known subtractive method, semi-additive method, or the like can be employed.
- an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the patterned conductive film, and further wiring (metal) is formed on the surface. Pattern) may be formed.
- the material of the insulating film is not particularly limited.
- epoxy resin epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated amorphous resin, etc.) , Polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin and the like.
- an epoxy resin a polyimide resin, or a liquid crystal resin, and more preferably an epoxy resin.
- Specific examples include ABF GX-13 manufactured by Ajinomoto Fine Techno Co., Ltd.
- solder resist which is a kind of insulating layer material used for wiring protection, is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150 and Japanese Patent Application Laid-Open No. 2003-222993. These materials can also be applied to the present invention if desired.
- solder resist commercially available products may be used. Specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.
- the base material (base material with a conductive film) having the conductive film obtained above can be used for various applications.
- a printed wiring board, TFT, FPC, RFID, etc. are mentioned.
- Example 1 Copper particles (Mitsui Metals Co., Ltd., 1200 YP, average particle size 3 ⁇ m) (7.6 parts by mass), copper oxide particles (CI Kasei Co., Ltd., NanoTek CuO, copper oxide (II) particles (CuO particles), average particle size 50 nm ) (7.6 parts by mass), glyceraldehyde (manufactured by Sigma-Aldrich, boiling point: 228 ° C.) (indicated as A in Table 1) (38 parts by mass), palladium acetate (indicated as P in Table 1) (0.38 parts by mass) and water (SP value: 23.4 (cal / cm 3 ) 1/2 ) (46.4 parts by mass) are mixed, and a revolving mixer (made by THINKY, manufactured by Taro Awatori) A composition for forming a conductive film was obtained by treatment with ARE-310) for 5 minutes.
- a revolving mixer made by THINKY, manufactured by Taro Awatori
- Example 2 A conductive film according to the same procedure as in Example 1 except that glucose (decomposition temperature: 205 ° C.) (indicated as B in Table 1) (38 parts by mass) (38 parts by mass) was used instead of glyceraldehyde (38 parts by mass). A forming composition was obtained.
- Example 3 Conduction was conducted according to the same procedure as in Example 1 except that trimethylolpropane (boiling point: 195 ° C.) (indicated as C in Table 1) (38 parts by mass) (38 parts by mass) was used instead of glyceraldehyde (38 parts by mass). A film forming composition was obtained.
- Example 4 Conduction was conducted according to the same procedure as in Example 1, except that 1-decanol (boiling point: 233 ° C.) (denoted as D in Table 1) (38 parts by mass) (38 parts by mass) was used instead of glyceraldehyde (38 parts by mass). A film forming composition was obtained.
- Example 5 A conductive film was formed according to the same procedure as in Example 1 except that sorbitol (boiling point: 296 ° C.) (indicated as E in Table 1) (38 parts by mass) (38 parts by mass) was used instead of glyceraldehyde (38 parts by mass). A composition was obtained.
- Example 6 A conductive film according to the same procedure as in Example 1 except that ethylene glycol (boiling point: 197 ° C.) (indicated as F in Table 1) (38 parts by mass) (38 parts by mass) was used instead of glyceraldehyde (38 parts by mass). A forming composition was obtained.
- Example 7 Further, a conductive resin was formed according to the same procedure as in Example 3 except that phenol resin (Resitop PL-3224, manufactured by Gunei Chemical Co., Ltd.) (indicated as J in Table 1) (1 part by mass as phenol resin) was mixed. A composition was obtained.
- phenol resin Resitop PL-3224, manufactured by Gunei Chemical Co., Ltd.
- Example 8 Except for using palladium fine particle dispersion (manufactured by Wako Pure Chemical Industries, Ltd.) (indicated as Q in Table 1) (0.38 parts by mass as palladium fine particles) instead of palladium acetate (0.38 parts by mass) A conductive film-forming composition was obtained according to the same procedure as in Example 3.
- Example 9 Implementation was performed except that platinum fine particle dispersion (manufactured by Wako Pure Chemical Industries, Ltd.) (indicated as R in Table 1) (0.38 parts by mass as platinum fine particles) was used instead of palladium acetate (0.38 parts by mass).
- R in Table 1 platinum fine particle dispersion (manufactured by Wako Pure Chemical Industries, Ltd.) (0.38 parts by mass as platinum fine particles) was used instead of palladium acetate (0.38 parts by mass).
- a conductive film-forming composition was obtained according to the same procedure as in Example 3.
- Example 10 Except for using palladium fine particle dispersion (manufactured by Wako Pure Chemical Industries, Ltd.) (indicated as S in Table 1) (0.38 parts by mass as nickel fine particles) instead of palladium acetate (0.38 parts by mass) A conductive film-forming composition was obtained according to the same procedure as in Example 3.
- Example 11 Instead of palladium acetate (0.38 parts by mass), a 2% by mass acetone solution of palladium acetate (19 parts by mass) was used, and the amount of water was changed from 46.4 parts by mass to 27.8 parts by mass. Except for the above, a conductive film forming composition was obtained according to the same procedure as in Example 3. In addition, SP value of the mixed solvent which consists of water and acetone contained in the composition for electrically conductive film formation is 17.2.
- Example 3 A conductive film-forming composition was obtained according to the same procedure as in Example 3, except that the amount of trimethylolpropane was changed from 38 parts by mass to 7.6 parts by mass.
- Example 5 A conductive film-forming composition was obtained according to the same procedure as Example 3 except that palladium acetate was not blended.
- Example 3 except that instead of palladium acetate (0.38 parts by mass), a copper fine particle dispersion (manufactured by IOX) (indicated as T in Table 1) (0.38 parts by mass as copper fine particles) was used. A composition for forming a conductive film was obtained according to the same procedure as above.
- Example 7 A conductive film-forming composition was obtained according to the same procedure as in Example 3 except that the copper oxide particles were not blended.
- Examples 1 to 11 and Comparative Examples 1 to 7 were each applied onto a synthetic quartz substrate (manufactured by IGC Corporation) with an application bar to obtain a coating film. . Thereafter, the obtained coating film was heat-treated (200 ° C., 30 minutes) under a nitrogen atmosphere to obtain a conductive film.
- AA Volume resistivity is less than 5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm
- A Volume resistivity is 5 ⁇ 10 ⁇ 5 ⁇ or more and less than 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm
- B Volume resistivity is 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or more and less than 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm
- C Volume resistivity 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or more and less than 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm
- D Volume resistivity 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or more
- the obtained conductive film was subjected to FIB processing using a Helios400S type FIB / SEM-EDS composite machine (manufactured by FEI), and cross-sectional SEM observation was performed.
- the obtained cross-sectional SEM photograph was converted into white and black by adjusting the threshold value using image software (“Adobe Photoshop” manufactured by Adobe Systems, Inc.), and the void ratio (void ratio) was determined from the ratio of the number of white and black dots. Was calculated.
- the calculated void ratio was evaluated according to the following criteria. The results are summarized in Table 1. Practically, it is preferably AA, A or B, more preferably AA or A, and further preferably AA.
- Void ratio is less than 5%-A: Void ratio is 5% or more and less than 15%-B: Void ratio is 15% or more and less than 30%-C: Void ratio is 30% or more and less than 50%-D: Void ratio Is over 50%
- Example 3 and 7 the direction of the electrically conductive film obtained from the composition of Example 7 containing a thermosetting resin had fewer voids.
- Example 3 and 8 the direction of the electrically conductive film obtained from the composition of Example 3 whose metal catalyst is a salt compound showed the more excellent electroconductivity.
- the conductive film obtained from the composition of Example 11 having a solvent solubility parameter of 10 to 20 (cal / cm 3 ) 1/2 was more excellent. It showed conductivity.
- Comparative Example 7 containing no copper oxide particles
- Comparative Example 1 containing copper oxide particles but containing copper oxide particles is less than 50% by mass with respect to the content of copper particles, and containing a reducing agent.
- Comparative Example 2 in which the content of the copper oxide particles is more than 800 mol%
- Comparative Example 3 in which the content of the reducing agent is less than 100 mol% with respect to the content of the copper oxide particles
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nanotechnology (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Conductive Materials (AREA)
- Paints Or Removers (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Manufacturing Of Electric Cables (AREA)
Abstract
本発明は、導電性に優れ、かつ、ボイドの少ない導電膜を形成することのできる導電膜形成用組成物、及び、それを用いた導電膜の製造方法を提供することを課題とする。本発明の導電膜形成用組成物は、平均粒径が1nm~10μmである銅粒子と、平均粒径が1~500nmである酸化銅粒子と、ヒドロキシ基を有する還元剤と、銅以外の金属を含む金属触媒と、溶剤とを含有し、上記酸化銅粒子の含有量が、上記銅粒子の含有量に対して、50~300質量%であり、上記還元剤の含有量が、上記酸化銅粒子の含有量に対して、100~800mol%であり、上記金属触媒の含有量が、上記酸化銅粒子の含有量に対して、10質量%以下である。
Description
本発明は、導電膜形成用組成物及びそれを用いた導電膜の製造方法に関する。
基材上に導電膜を形成する方法として、金属粒子又は金属酸化物粒子の分散体を印刷法により基材に塗布し、加熱処理して焼結させることによって導電膜や回路基板における配線等の電気的導通部位を形成する技術が知られている。
上記方法は、従来の高熱・真空プロセス(スパッタ)やめっき処理による配線作製法に比べて、簡便・省エネ・省資源であることから次世代エレクトロニクス開発において大きな期待を集めている。
上記方法は、従来の高熱・真空プロセス(スパッタ)やめっき処理による配線作製法に比べて、簡便・省エネ・省資源であることから次世代エレクトロニクス開発において大きな期待を集めている。
例えば、特許文献1には、酸化銅粒子と銅粒子と多価アルコールとを含む分散体、及び、上記分散体を焼成して得られる金属薄膜が開示されている(特許請求の範囲)。
しかしながら、本発明者らが、特許文献1を参考に、銅粒子と酸化銅粒子とヒドロキシ基を有する還元剤と溶剤とを含有する組成物について検討したところ、得られる導電膜の導電性が不十分である場合や、得られる導電膜にボイド(空隙)が生じる場合があることが明らかになった。なお、導電膜にボイドが生じると、導電性や耐久性の低下に繋がるため問題である。
そこで、本発明は、上記実情を鑑みて、導電性に優れ、かつ、ボイドの少ない導電膜を形成することのできる導電膜形成用組成物、及び、それを用いた導電膜の製造方法を提供することを課題とする。
そこで、本発明は、上記実情を鑑みて、導電性に優れ、かつ、ボイドの少ない導電膜を形成することのできる導電膜形成用組成物、及び、それを用いた導電膜の製造方法を提供することを課題とする。
本発明者らは、上記課題を解決するため鋭意検討した結果、銅以外の金属を含む金属触媒を配合し、かつ、各成分の含有量を特定の範囲にすることで、導電性に優れ、かつ、ボイドの少ない導電膜が形成される導電膜形成用組成物となることを見出し、本発明を完成させた。すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
(1) 平均粒径が1nm~10μmである銅粒子と、平均粒径が1~500nmである酸化銅粒子と、ヒドロキシ基を有する還元剤と、銅以外の金属を含む金属触媒と、溶剤とを含有し、上記酸化銅粒子の含有量が、上記銅粒子の含有量に対して、50~300質量%であり、上記還元剤の含有量が、上記酸化銅粒子の含有量に対して、100~800mol%であり、上記金属触媒の含有量が、上記酸化銅粒子の含有量に対して、10質量%以下である、導電膜形成用組成物。
(2) 上記還元剤が、分子内にヒドロキシ基を2つ以上有する化合物である、上記(1)に記載の導電膜形成用組成物。
(3) 上記還元剤の沸点が250℃以下であり、かつ、上記還元剤が後述する一般式(1)又は(2)で表される化合物である、上記(2)に記載の導電膜形成用組成物。
(4) 上記金属触媒が、パラジウム、白金、ニッケル及び銀からなる群より選択される少なくとも1種の金属を含む金属触媒である、上記(1)~(3)のいずれかに記載の導電膜形成用組成物。
(5) 上記金属触媒が、塩化合物である、上記(1)~(4)のいずれかに記載の導電膜形成用組成物。
(6) 上記溶剤の溶解度パラメータ(SP値)が、10~20(cal/cm3)1/2である、上記(1)~(5)のいずれかに記載の導電膜形成用組成物。
(7) さらに樹脂を含有する、上記(1)~(6)のいずれかに記載の導電膜形成用組成物。
(8) 上記樹脂が、熱硬化性樹脂である、上記(7)に記載の導電膜形成用組成物。
(9) 上記(1)~(8)のいずれかに記載の導電膜形成用組成物を基材上に塗布して、塗膜を形成する塗膜形成工程と、
上記塗膜に対して加熱処理を行い、導電膜を形成する加熱処理工程とを備える、導電膜の製造方法。
(10) 上記加熱処理の温度が、200℃以下である、上記(9)に記載の導電膜の製造方法。
(2) 上記還元剤が、分子内にヒドロキシ基を2つ以上有する化合物である、上記(1)に記載の導電膜形成用組成物。
(3) 上記還元剤の沸点が250℃以下であり、かつ、上記還元剤が後述する一般式(1)又は(2)で表される化合物である、上記(2)に記載の導電膜形成用組成物。
(4) 上記金属触媒が、パラジウム、白金、ニッケル及び銀からなる群より選択される少なくとも1種の金属を含む金属触媒である、上記(1)~(3)のいずれかに記載の導電膜形成用組成物。
(5) 上記金属触媒が、塩化合物である、上記(1)~(4)のいずれかに記載の導電膜形成用組成物。
(6) 上記溶剤の溶解度パラメータ(SP値)が、10~20(cal/cm3)1/2である、上記(1)~(5)のいずれかに記載の導電膜形成用組成物。
(7) さらに樹脂を含有する、上記(1)~(6)のいずれかに記載の導電膜形成用組成物。
(8) 上記樹脂が、熱硬化性樹脂である、上記(7)に記載の導電膜形成用組成物。
(9) 上記(1)~(8)のいずれかに記載の導電膜形成用組成物を基材上に塗布して、塗膜を形成する塗膜形成工程と、
上記塗膜に対して加熱処理を行い、導電膜を形成する加熱処理工程とを備える、導電膜の製造方法。
(10) 上記加熱処理の温度が、200℃以下である、上記(9)に記載の導電膜の製造方法。
以下に示すように、本発明によれば、導電性に優れ、かつ、ボイドの少ない導電膜を形成することのできる導電膜形成用組成物、及び、それを用いた導電膜の製造方法を提供することができる。
[導電膜形成用組成物]
本発明の導電膜形成用組成物(以下、単に、本発明の組成物とも言う)は、平均粒径が1nm~10μmである銅粒子と、平均粒径が1~500nmである酸化銅粒子と、ヒドロキシ基を有する還元剤と、銅以外の金属を含む金属触媒と、溶剤とを含有する。
ここで、上記酸化銅粒子の含有量は、上記銅粒子の含有量に対して、50~300質量%であり、上記還元剤の含有量は、上記酸化銅粒子の含有量に対して、100~800mol%であり、上記金属触媒の含有量は、上記酸化銅粒子の含有量に対して、10質量%以下である。
本発明の組成物はこのような構成をとることにより、得られる導電膜は、導電性に優れ、かつ、ボイドの少ないものになると考えられる。
これは詳細には明らかではないが、およそ以下のとおりと推測される。
本発明の導電膜形成用組成物(以下、単に、本発明の組成物とも言う)は、平均粒径が1nm~10μmである銅粒子と、平均粒径が1~500nmである酸化銅粒子と、ヒドロキシ基を有する還元剤と、銅以外の金属を含む金属触媒と、溶剤とを含有する。
ここで、上記酸化銅粒子の含有量は、上記銅粒子の含有量に対して、50~300質量%であり、上記還元剤の含有量は、上記酸化銅粒子の含有量に対して、100~800mol%であり、上記金属触媒の含有量は、上記酸化銅粒子の含有量に対して、10質量%以下である。
本発明の組成物はこのような構成をとることにより、得られる導電膜は、導電性に優れ、かつ、ボイドの少ないものになると考えられる。
これは詳細には明らかではないが、およそ以下のとおりと推測される。
本発明の組成物は、酸化銅粒子と銅粒子とヒドロキシ基を有する還元剤とを含有するため、組成物から形成された塗膜に熱や光などのエネルギーを付与すると、還元剤により酸化銅粒子が還元され、同時に、還元された酸化銅粒子が銅粒子を融着する。ここで、本発明の組成物は、還元剤とともに金属触媒を含有するため、酸化銅粒子の還元反応が進み易く、酸化銅粒子からの還元銅による銅粒子の融着が効率的に進む。結果として、導電性に優れ、また、ボイドの少ない導電膜が形成されるものと考えられる。このことは、後述する比較例が示すように、酸化銅を含有しない場合(比較例7)、酸化銅を含有するが酸化銅粒子の含有量が銅粒子の含有量に対して一定量に満たない場合(比較例1)、金属触媒を含有しない場合(比較例5及び6)には、導電膜の導電性が不十分であり、また、ボイドが多く見られることからも推測される。
また、本発明の組成物は、各成分の含有量が特定である点にも特徴がある。すなわち、酸化銅粒子に対する還元剤の含有量が一定量以上であるため、系全体に亘って酸化銅粒子の還元が均一に進む。また、還元剤及び金属触媒の含有量が一定量以下であるため、還元剤や金属触媒が還元後に抵抗成分として残り難い。結果として、導電性に優れ、また、ボイドの少ない導電膜が形成されるものと考えられる。これらのことは、後述する比較例が示すように、還元剤の含有量が一定量に満たない場合(比較例3)や、還元剤又は金属触媒の含有量が一定量を超えた場合(比較例2及び4)には導電膜の導電性が不十分であり、また、ボイドが多く見られることからも推測される。
また、本発明の組成物は、各成分の含有量が特定である点にも特徴がある。すなわち、酸化銅粒子に対する還元剤の含有量が一定量以上であるため、系全体に亘って酸化銅粒子の還元が均一に進む。また、還元剤及び金属触媒の含有量が一定量以下であるため、還元剤や金属触媒が還元後に抵抗成分として残り難い。結果として、導電性に優れ、また、ボイドの少ない導電膜が形成されるものと考えられる。これらのことは、後述する比較例が示すように、還元剤の含有量が一定量に満たない場合(比較例3)や、還元剤又は金属触媒の含有量が一定量を超えた場合(比較例2及び4)には導電膜の導電性が不十分であり、また、ボイドが多く見られることからも推測される。
以下では、まず、導電膜形成用組成物の各成分について詳述し、その後、導電膜の製造方法について詳述する。
<銅粒子>
本発明の組成物に含有される銅粒子は、平均粒径が1nm~10μmである粒子状の銅であれば特に限定されない。
粒子状とは小さい粒状を指し、その具体例としては、球状、楕円体状などが挙げられる。完全な球や楕円体である必要は無く、一部が歪んでいても良い。
本発明の組成物に含有される銅粒子は、平均粒径が1nm~10μmである粒子状の銅であれば特に限定されない。
粒子状とは小さい粒状を指し、その具体例としては、球状、楕円体状などが挙げられる。完全な球や楕円体である必要は無く、一部が歪んでいても良い。
銅粒子の平均粒径は1nm~10μmの範囲であれば特に制限されないが、なかでも、100nm~8μmであることが好ましく、1~5μmであることがより好ましい。
なお、本発明における平均粒径は、平均一次粒径のことを指す。平均粒径は、透過型電子顕微鏡(TEM)観察により、少なくとも50個以上の銅粒子の粒径(直径)を測定し、それらを算術平均して求める。なお、観察図中、銅粒子の形状が真円状でない場合、長径を直径として測定する。
なお、本発明における平均粒径は、平均一次粒径のことを指す。平均粒径は、透過型電子顕微鏡(TEM)観察により、少なくとも50個以上の銅粒子の粒径(直径)を測定し、それらを算術平均して求める。なお、観察図中、銅粒子の形状が真円状でない場合、長径を直径として測定する。
本発明の組成物において、銅粒子の含有量は、組成物全体に対して、2~60質量%であることが好ましく、5~50質量%であることがより好ましい。また、銅粒子の含有量は、組成物中の固形分全体に対して、5~80質量%であることが好ましく、10~70質量%であることが好ましい。
<酸化銅粒子>
本発明の組成物に含有される酸化銅粒子は、平均粒径が1~500nmである粒子状の酸化銅であれば特に限定されない。粒子状の定義は銅粒子と同じである。
本発明の組成物に含有される酸化銅粒子は、平均粒径が1~500nmである粒子状の酸化銅であれば特に限定されない。粒子状の定義は銅粒子と同じである。
酸化銅粒子は、酸化銅(I)粒子(Cu2O粒子)又は酸化銅(II)粒子(CuO粒子)であることが好ましく、安価に入手可能である点、及び、空気中でより安定である点から、酸化銅(II)粒子であることがより好ましい。
酸化銅粒子の平均粒径は1~500nmの範囲であれば特に制限されないが、5~300nmであることが好ましく、10~100nmであることがより好ましい。平均粒径の測定方法は銅粒子と同じである。
本発明の組成物において、酸化銅粒子の含有量は、組成物全体に対して、2~60質量%であることが好ましく、5~50質量%であることがより好ましい。また、酸化銅粒子の含有量は、組成物中の固形分全体に対して、5~80質量%であることが好ましく、10~70質量%であることが好ましい。
本発明の組成物において、酸化銅粒子の含有量は、銅粒子の含有量に対して、50~300質量%である。なかでも、80~200質量%であることが好ましい。
酸化銅粒子の含有量が、銅粒子の含有量に対して、300質量%を超えると、酸化銅の還元が十分に進まず、導電性が不十分となる。また、酸化銅粒子の含有量が、銅粒子の含有量に対して、50質量%未満であると、銅粒子同士の融着が不十分となり、ボイドが増え、導電性が不十分となる。
酸化銅粒子の含有量が、銅粒子の含有量に対して、300質量%を超えると、酸化銅の還元が十分に進まず、導電性が不十分となる。また、酸化銅粒子の含有量が、銅粒子の含有量に対して、50質量%未満であると、銅粒子同士の融着が不十分となり、ボイドが増え、導電性が不十分となる。
<還元剤>
本発明の組成物に含有される還元剤は、ヒドロキシ基を有する還元剤(以下、単に還元剤とも言う)であって、酸化銅粒子、又は、銅粒子表面の酸化銅を還元し得るものであれば特に制限されず、例えば、加熱処理や光照射処理などのエネルギー付与により炭素や水素を発生して分解する素材を好ましく用いることができる。なかでも、酸化銅粒子に対して実質的に常温では還元性を有さないがエネルギー付与により還元性を発揮する還元剤(潜在性還元剤)であることが好ましい。
本発明の組成物に含有される還元剤は、ヒドロキシ基を有する還元剤(以下、単に還元剤とも言う)であって、酸化銅粒子、又は、銅粒子表面の酸化銅を還元し得るものであれば特に制限されず、例えば、加熱処理や光照射処理などのエネルギー付与により炭素や水素を発生して分解する素材を好ましく用いることができる。なかでも、酸化銅粒子に対して実質的に常温では還元性を有さないがエネルギー付与により還元性を発揮する還元剤(潜在性還元剤)であることが好ましい。
還元剤としては、例えば、1-デカノールなどのアルコール類;アスコルビン酸;エリスリトール、キシリトール、リビトール、ソルビトールなどの糖アルコール;エリトロース、キシロース、リボース、グルコース、フルクトース、マンノース、ガラクトース、グリセルアルデヒドなどの糖類;ヒドロキシアセトン、ジヒドロキシアセトンなどのヒドロキシケトン類;1-アミノ-2,3-プロパンジオール、2-アミノ-1,3-プロパンジオールなどのアミノアルコール類;エチレングリコール、プロピレングリコール、1,2-ブタンジオール、2,3-ブタンジオール、1,2-ペンタンジオール、1,2-ヘキサンジオール、1,2-ヘプタンジオール、3,4-ヘプタンジオール、1,2-オクタンジオール、グリセリン、トリメチロールプロパン、ペンタエリトリトール、ジペンタエリトリトール、トリペンタエリトリトールなどの多価アルコール類;グリオキシル酸;グリコール酸;ポリエチレンオキシドなどが挙げられる。
還元剤は、得られる導電膜の導電性がより優れる理由から、分子内にヒドロキシ基を2つ以上有する化合物であることが好ましい。そのような化合物としては、例えば、上述した糖アルコールを含む多価アルコール類、糖類などが挙げられる。
なかでも、得られる導電膜の導電性がさらに優れる理由から、沸点が250℃以下であり、かつ、下記一般式(1)又は(2)で表される化合物であることがより好ましい。上記沸点は、150~220℃であることが好ましい。ここで、沸点は、1気圧における沸点である。
なかでも、得られる導電膜の導電性がさらに優れる理由から、沸点が250℃以下であり、かつ、下記一般式(1)又は(2)で表される化合物であることがより好ましい。上記沸点は、150~220℃であることが好ましい。ここで、沸点は、1気圧における沸点である。
一般式(1)及び(2)中、R1、R2及びR3は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、ヒドロキシアルキル基又はアルコキシアルキル基を表す。ただし、R1、R2及びR3は、アルデヒド基又はカルボニル基を含まない。すなわち、R1、R2及びR3は、置換基としてアルデヒド基(-CHO)又はカルボニル基(-CO-)を有する基ではない。
上記アルキル基、アルコキシ基、ヒドロキシアルキル基及びアルコキシアルキル基の炭素数は特に制限されないが、1~10であることが好ましく、1~5であることがより好ましい。
上記ヒドロキシアルキル基は、置換基としてヒドロキシ基を有するアルキル基である。ヒドロキシアルキル基の具体例としては、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基などが挙げられる。ヒドロキシアルキル基は、置換基としてヒドロキシ基を複数有するアルキル基であってもよい。
上記アルコキシアルキル基は、置換基としてアルコキシ基(好ましくは、炭素数1~5)を有するアルキル基である。アルコキシアルキル基の具体例としては、メトキシメチル基、メトキシプロピル基、エトキシエチル基などが挙げられる。アルコキシアルキル基は、置換基としてアルコキシ基を複数有するアルキル基であってもよい。
上記ヒドロキシアルキル基は、置換基としてヒドロキシ基を有するアルキル基である。ヒドロキシアルキル基の具体例としては、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基などが挙げられる。ヒドロキシアルキル基は、置換基としてヒドロキシ基を複数有するアルキル基であってもよい。
上記アルコキシアルキル基は、置換基としてアルコキシ基(好ましくは、炭素数1~5)を有するアルキル基である。アルコキシアルキル基の具体例としては、メトキシメチル基、メトキシプロピル基、エトキシエチル基などが挙げられる。アルコキシアルキル基は、置換基としてアルコキシ基を複数有するアルキル基であってもよい。
上記R1及びR2は、水素原子または炭素数が1~5のアルキル基であることが好ましい。
上記R3は、炭素数が1~5のアルキル基であることが好ましい。
上記R3は、炭素数が1~5のアルキル基であることが好ましい。
本発明の組成物において、還元剤の含有量は、組成物全体に対して、5~60質量%であることが好ましく、10~50質量%であることがより好ましい。また、還元剤の含有量は、組成物中の固形分全体に対して、10~90質量%であることが好ましく、20~80質量%であることが好ましい。
本発明の組成物において、還元剤の含有量は、上記酸化銅粒子の含有量に対して、100~800mol%である。すなわち、還元剤のモル数を酸化銅のモル数で除した値は、100~800%である。ここで、酸化銅のモル数とは、酸化銅粒子の質量[g]を酸化銅のモル質量(例えば、酸化銅(I)なら143.09g/mol、酸化銅(II)なら79.55g/mol)で除した値である。還元剤の含有量は、酸化銅粒子の含有量に対して、200~700mol%であることが好ましい。
還元剤の含有量が、上記酸化銅粒子の含有量に対して、800mol%を超えると、還元に寄与しなかった還元剤が導電膜中に絶縁成分として残存することにより、導電性が不十分となり、また、ボイドが多くなる。また、還元剤の含有量が、上記酸化銅粒子の含有量に対して、100mol%未満であると、酸化銅粒子の還元が十分に進まず、導電性が不十分となり、また、ボイドが多くなる。
還元剤の含有量が、上記酸化銅粒子の含有量に対して、800mol%を超えると、還元に寄与しなかった還元剤が導電膜中に絶縁成分として残存することにより、導電性が不十分となり、また、ボイドが多くなる。また、還元剤の含有量が、上記酸化銅粒子の含有量に対して、100mol%未満であると、酸化銅粒子の還元が十分に進まず、導電性が不十分となり、また、ボイドが多くなる。
なお、還元剤が後述する溶剤である場合、還元剤は後述する溶剤を兼ねる。すなわち、還元剤が後述する溶剤である場合、還元剤以外の他の溶剤を含有していても、含有していなくてもよい。
<金属触媒>
本発明の組成物に含有される金属触媒は、銅以外の金属(金属元素)を含む金属触媒であれば特に制限されない。そのような金属触媒としては、例えば、銅以外の金属を含む金属粒子(好ましくはパラジウム微粒子、白金微粒子、ニッケル微粒子)、銅以外の金属を含む金属化合物などが挙げられる。なかでも、銅以外の金属を含む金属化合物であることが好ましい。金属触媒に含まれる金属の価数は0よりも大きいことが好ましい。なお、金属触媒が銅以外の金属を含まない場合、酸化銅粒子の還元反応が進み難く、結果として、導電膜の導電性は不十分となり、また、ボイドが多くなる。
本発明の組成物に含有される金属触媒は、銅以外の金属(金属元素)を含む金属触媒であれば特に制限されない。そのような金属触媒としては、例えば、銅以外の金属を含む金属粒子(好ましくはパラジウム微粒子、白金微粒子、ニッケル微粒子)、銅以外の金属を含む金属化合物などが挙げられる。なかでも、銅以外の金属を含む金属化合物であることが好ましい。金属触媒に含まれる金属の価数は0よりも大きいことが好ましい。なお、金属触媒が銅以外の金属を含まない場合、酸化銅粒子の還元反応が進み難く、結果として、導電膜の導電性は不十分となり、また、ボイドが多くなる。
銅以外の金属としては特に制限されず、例えば、アルカリ金属、アルカリ土類金属、銅以外の遷移金属(銅以外の3~11族の金属)、アルミニウム、ゲルマニウム、スズ、アンチモンなどが挙げられる。なかでも、得られる導電膜の導電性がより優れる理由から、銅以外の遷移金属であることが好ましい。なかでも、得られる導電膜の導電性がより優れる理由から、銅以外の8~11族の金属であることが好ましく、パラジウム、白金、ニッケル及び銀からなる群より選択される少なくとも1種の金属であることがより好ましく、パラジウム、白金及びニッケルからなる群より選択される少なくとも1種の金属であることがさらに好ましく、パラジウム、白金であることが特に好ましく、パラジウムであることが最も好ましい。
銅以外の金属を含む金属化合物としては特に制限されず、例えば、銅以外の金属の塩化合物、錯体化合物、金属アルコキシド、金属アリールオキシド、金属酸化物などが挙げられる。なかでも、得られる導電膜の導電性及び均一性がより優れる理由から、銅以外の金属の塩化合物であることが好ましい。
上記塩化合物としては、銅以外の金属の塩酸塩、硝酸塩、硫酸塩、カルボン酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩などが挙げられ、なかでも、カルボン酸塩であることが好ましい。カルボン酸塩を形成するカルボン酸の炭素数は特に制限されないが、1~10であることが好ましく、1~5であることがより好ましい。
上記塩化合物としては、銅以外の金属の塩酸塩、硝酸塩、硫酸塩、カルボン酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩などが挙げられ、なかでも、カルボン酸塩であることが好ましい。カルボン酸塩を形成するカルボン酸の炭素数は特に制限されないが、1~10であることが好ましく、1~5であることがより好ましい。
本発明の組成物において、金属触媒の含有量は、組成物全体に対して、0.05~10質量%であることが好ましく、0.1~1.0質量%であることがより好ましい。また、金属触媒の含有量は、組成物中の固形分全体に対して、0.1~15質量%であることが好ましく、0.2~5質量%であることが好ましい。
本発明の組成物において、金属触媒の含有量は、上記酸化銅粒子の含有量に対して、0質量%超10質量%以下である。なかでも、0.5~10質量%であることが好ましく、1~10質量%であることがより好ましく、3~10質量%であることがさらに好ましい。
金属触媒の含有量が、上記酸化銅粒子の含有量に対して、10質量%を超えると、過剰な金属触媒が抵抗成分となるため、導電性が不十分となり、また、ボイドが多くなる。
金属触媒の含有量が、上記酸化銅粒子の含有量に対して、10質量%を超えると、過剰な金属触媒が抵抗成分となるため、導電性が不十分となり、また、ボイドが多くなる。
本発明の組成物において、含有される金属触媒は、得られる導電膜の導電性がより優れる点から、後述する溶剤に溶解しているのが好ましい。
<溶剤>
本発明の組成物に含有される溶剤は特に制限されない。溶剤は、1種の溶剤からなる単一溶剤でも、2種以上の溶剤からなる混合溶剤でも構わない。
溶剤の種類は特に制限されず、例えば、水や、アルコール類、エーテル類、エステル類などの有機溶剤などを使用することができる。
溶剤は、取り扱い性、又は、弱還元性を有する観点から、アルコール、水、又は、これらを含む混合溶剤であるのが好ましい。
本発明の組成物に含有される溶剤は特に制限されない。溶剤は、1種の溶剤からなる単一溶剤でも、2種以上の溶剤からなる混合溶剤でも構わない。
溶剤の種類は特に制限されず、例えば、水や、アルコール類、エーテル類、エステル類などの有機溶剤などを使用することができる。
溶剤は、取り扱い性、又は、弱還元性を有する観点から、アルコール、水、又は、これらを含む混合溶剤であるのが好ましい。
本発明の組成物に含有される溶剤の溶解度パラメータ(SP値)は特に制限されないが、得られる導電膜の導電性がより優れる理由から、10~20(cal/cm3)1/2であることが好ましく、12~18(cal/cm3)1/2であることがより好ましい。
ここで、溶剤の溶解度パラメータとは、ヒルデブランドの正則溶液の理論により定義されるものであり、より具体的には、溶剤のモル蒸発熱をΔH、モル体積をVとするとき、(ΔH/V)1/2により定義される量(cal/cm3)1/2である。
なお、溶剤が2種以上の溶剤の混合溶剤である場合、溶剤の溶解度パラメータは、混合した各溶剤の体積分率と各溶剤の溶解度パラメータとの積の和とする。例えば、水(SP値:23.4)とアセトン(SP値:10.0)とを水/アセトン=0.5/0.5(体積比)で混合した混合溶剤の溶解度パラメータは、23.4×0.5+10.0×0.5=16.7である。
なお、溶剤が2種以上の溶剤の混合溶剤である場合、溶剤の溶解度パラメータは、混合した各溶剤の体積分率と各溶剤の溶解度パラメータとの積の和とする。例えば、水(SP値:23.4)とアセトン(SP値:10.0)とを水/アセトン=0.5/0.5(体積比)で混合した混合溶剤の溶解度パラメータは、23.4×0.5+10.0×0.5=16.7である。
SP値が10~20(cal/cm3)1/2である溶剤としては、例えば、アセトン(10.0)、イソプロパノール(11.5)、アセトニトリル(11.9)、ジメチルホルムアミド(12.0)、ジエチレングリコール(12.1)、酢酸(12.6)、エタノール(12.7)、クレゾール(13.3)、ギ酸(13.5)、エチレングリコール(14.6)、フェノール(14.5)、メタノール(14.8)、グリセリン(16.5)、などが挙げられる。なお、カッコ内はSP値を表す。
本発明の組成物において、溶剤の含有量は特に制限されないが、粘度の上昇が抑制され、取り扱い性に優れる理由から、組成物全体に対して、10~80質量%であることが好ましく、30~60質量%であることがより好ましい。
<その他成分>
本発明の組成物には、上記各成分以外の成分が含まれていてもよい。
例えば、本発明の組成物には、界面活性剤が含まれていてもよい。界面活性剤は、酸化銅粒子及び/又は銅粒子の分散性を向上させる役割を果たす。界面活性剤の種類は特に制限されず、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、フッ素系界面活性剤、両性界面活性剤などが挙げられる。これら界面活性剤は、1種を単独、又は2種以上を混合して用いることができる。
本発明の組成物には、上記各成分以外の成分が含まれていてもよい。
例えば、本発明の組成物には、界面活性剤が含まれていてもよい。界面活性剤は、酸化銅粒子及び/又は銅粒子の分散性を向上させる役割を果たす。界面活性剤の種類は特に制限されず、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、フッ素系界面活性剤、両性界面活性剤などが挙げられる。これら界面活性剤は、1種を単独、又は2種以上を混合して用いることができる。
(樹脂)
本発明の組成物には樹脂が含まれるのが好ましい。
樹脂としては特に制限されないが、例えば、熱可塑性樹脂や熱硬化性樹脂が挙げられる。なかでも、得られる導電膜の導電性のボイドがより少なくなる理由から、熱硬化性樹脂であることが好ましい。
本発明の組成物には樹脂が含まれるのが好ましい。
樹脂としては特に制限されないが、例えば、熱可塑性樹脂や熱硬化性樹脂が挙げられる。なかでも、得られる導電膜の導電性のボイドがより少なくなる理由から、熱硬化性樹脂であることが好ましい。
上記熱硬化性樹脂としては特に制限されず、従来公知の熱硬化性樹脂を用いることができる。熱硬化性樹脂は、200℃30分の加熱処理でゲル化する樹脂であることが好ましい。
熱硬化性樹脂としては、例えば、フェノール樹脂(特にレゾール樹脂)、エポキシ樹脂、メラミン樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、イソシアナート樹脂、シロキサン樹脂などが挙げられる。2種以上の熱硬化性樹脂を併用してもよい。また、使用する熱硬化性樹脂に合わせて、硬化剤を配合してもよい。さらに、ポリビニルブチラール樹脂、ゴム系樹脂など他の樹脂類を配合してもよい。
熱硬化性樹脂としては、例えば、フェノール樹脂(特にレゾール樹脂)、エポキシ樹脂、メラミン樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、イソシアナート樹脂、シロキサン樹脂などが挙げられる。2種以上の熱硬化性樹脂を併用してもよい。また、使用する熱硬化性樹脂に合わせて、硬化剤を配合してもよい。さらに、ポリビニルブチラール樹脂、ゴム系樹脂など他の樹脂類を配合してもよい。
本発明の組成物において、熱硬化性樹脂の含有量は、組成物全体に対して、0.1~30質量%であることが好ましく、0.5~15質量%であることがより好ましい。また、熱硬化性樹脂の含有量は、組成物中の固形分全体に対して、0.5~40質量%であることが好ましく、1~20質量%であることが好ましい。
本発明の組成物において、熱硬化性樹脂の含有量は特に制限されないが、得られる導電膜の導電性がより優れる理由から、上記銅粒子と上記酸化銅粒子との合計の含有量に対して、1~40質量%であることが好ましい。なかでも、5~20質量%であることがより好ましい。
<導電膜形成用組成物の粘度>
本発明の組成物の粘度は、インクジェット、スクリーン印刷等の印刷用途に適するような粘度に調整させることが好ましい。インクジェット吐出を行う場合、1~50cPであることが好ましく、1~40cPであることがより好ましい。スクリーン印刷を行う場合は、1000~100000cPであることが好ましく、10000~80000cPであることがより好ましい。
本発明の組成物の粘度は、インクジェット、スクリーン印刷等の印刷用途に適するような粘度に調整させることが好ましい。インクジェット吐出を行う場合、1~50cPであることが好ましく、1~40cPであることがより好ましい。スクリーン印刷を行う場合は、1000~100000cPであることが好ましく、10000~80000cPであることがより好ましい。
<導電膜形成用組成物の調製方法>
本発明の組成物の調製方法は特に制限されず、公知の方法を採用できる。例えば、上記溶剤中に上記各成分を添加した後、超音波法(例えば、超音波ホモジナイザーによる処理)、ミキサー法、3本ロール法、ボールミル法などの公知の手段により成分を分散させることによって調製することができる。
本発明の組成物の調製方法は特に制限されず、公知の方法を採用できる。例えば、上記溶剤中に上記各成分を添加した後、超音波法(例えば、超音波ホモジナイザーによる処理)、ミキサー法、3本ロール法、ボールミル法などの公知の手段により成分を分散させることによって調製することができる。
[導電膜の製造方法]
本発明の導電膜の製造方法は、上述した本発明の組成物を用いて導電膜を製造する方法である。本発明の導電膜の製造方法は、本発明の組成物を用いるものであれば特に制限されない。
本発明の導電膜の製造方法は、上述した本発明の組成物を用いて導電膜を製造する方法である。本発明の導電膜の製造方法は、本発明の組成物を用いるものであれば特に制限されない。
本発明の導電膜の製造方法の好適な態様としては、少なくとも塗膜形成工程と加熱処理工程とを備えるものが挙げられる。以下に、それぞれの工程について詳述する。
<塗膜形成工程>
本工程は、上述した本発明の組成物を基材上に塗布して、塗膜を形成する工程である。本工程により加熱処理が施される前の前駆体膜が得られる。
本工程は、上述した本発明の組成物を基材上に塗布して、塗膜を形成する工程である。本工程により加熱処理が施される前の前駆体膜が得られる。
本工程で使用される基材としては、公知のものを用いることができる。基材に使用される材料としては、例えば、樹脂、紙、ガラス、シリコン系半導体、化合物半導体、金属酸化物、金属窒化物、木材、又はこれらの複合物が挙げられる。
より具体的には、低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ABS樹脂、アクリル樹脂、スチレン樹脂、塩化ビニル樹脂、ポリエステル樹脂(ポリエチレンテレフタレート)、ポリアセタール樹脂、ポリサルフォン樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、セルロース誘導体等の樹脂基材;非塗工印刷用紙、微塗工印刷用紙、塗工印刷用紙(アート紙、コート紙)、特殊印刷用紙、コピー用紙(PPC用紙)、未晒包装紙(重袋用両更クラフト紙、両更クラフト紙)、晒包装紙(晒クラフト紙、純白ロール紙)、コートボール、チップボール、段ボール等の紙基材;ソーダガラス、ホウケイ酸ガラス、シリカガラス、石英ガラス等のガラス基材;アモルファスシリコン、ポリシリコン等のシリコン系半導体基材;CdS、CdTe、GaAs等の化合物半導体基材;銅板、鉄板、アルミ板等の金属基材;アルミナ、サファイア、ジルコニア、チタニア、酸化イットリウム、酸化インジウム、ITO(インジウム錫酸化物)、IZO(インジウム亜鉛酸化物)、ネサ(酸化錫)、ATO(アンチモンドープ酸化錫)、フッ素ドープ酸化錫、酸化亜鉛、AZO(アルミドープ酸化亜鉛)、ガリウムドープ酸化亜鉛、窒化アルミニウム基材、炭化ケイ素等のその他無機基材;紙-フェノール樹脂、紙-エポキシ樹脂、紙-ポリエステル樹脂等の紙-樹脂複合物、ガラス布-エポキシ樹脂、ガラス布-ポリイミド系樹脂、ガラス布-フッ素樹脂等のガラス-樹脂複合物等の複合基材等が挙げられる。これらの中でも、ポリエステル樹脂基材、ポリエーテルイミド樹脂基材、紙基材、ガラス基材、ガラス布-エポキシ樹脂、が好ましく使用される。
より具体的には、低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ABS樹脂、アクリル樹脂、スチレン樹脂、塩化ビニル樹脂、ポリエステル樹脂(ポリエチレンテレフタレート)、ポリアセタール樹脂、ポリサルフォン樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、セルロース誘導体等の樹脂基材;非塗工印刷用紙、微塗工印刷用紙、塗工印刷用紙(アート紙、コート紙)、特殊印刷用紙、コピー用紙(PPC用紙)、未晒包装紙(重袋用両更クラフト紙、両更クラフト紙)、晒包装紙(晒クラフト紙、純白ロール紙)、コートボール、チップボール、段ボール等の紙基材;ソーダガラス、ホウケイ酸ガラス、シリカガラス、石英ガラス等のガラス基材;アモルファスシリコン、ポリシリコン等のシリコン系半導体基材;CdS、CdTe、GaAs等の化合物半導体基材;銅板、鉄板、アルミ板等の金属基材;アルミナ、サファイア、ジルコニア、チタニア、酸化イットリウム、酸化インジウム、ITO(インジウム錫酸化物)、IZO(インジウム亜鉛酸化物)、ネサ(酸化錫)、ATO(アンチモンドープ酸化錫)、フッ素ドープ酸化錫、酸化亜鉛、AZO(アルミドープ酸化亜鉛)、ガリウムドープ酸化亜鉛、窒化アルミニウム基材、炭化ケイ素等のその他無機基材;紙-フェノール樹脂、紙-エポキシ樹脂、紙-ポリエステル樹脂等の紙-樹脂複合物、ガラス布-エポキシ樹脂、ガラス布-ポリイミド系樹脂、ガラス布-フッ素樹脂等のガラス-樹脂複合物等の複合基材等が挙げられる。これらの中でも、ポリエステル樹脂基材、ポリエーテルイミド樹脂基材、紙基材、ガラス基材、ガラス布-エポキシ樹脂、が好ましく使用される。
本発明の組成物を基材上に塗布して、塗膜を形成する方法は特に制限されず、公知の方法を採用できる。
塗布の方法としては、例えば、ダブルロールコータ、スリットコータ、エアナイフコータ、ワイヤーバーコータ、スライドホッパー、スプレーコーチィング、ブレードコータ、ドクターコータ、スクイズコータ、リバースロールコータ、トランスファーロールコータ、エクストロージョンコータ、カーテンコータ、ディップコーター、ダイコータ、グラビアロールによる塗工法、スクリーン印刷法、ディップコーティング法、スプレー塗布法、スピンコーティング法、インクジェット法などが挙げられる。なかでも、簡便であり、また、サイズの大きい導電膜を製造することが容易であることから、スクリーン印刷法、インクジェット法であることが好ましい。
塗布の形状は特に制限されず、基材全面を覆う面状であっても、パターン状(例えば、配線状、ドット状)であってもよい。
基材上への導電膜形成用組成物の塗布量としては、所望する導電膜の膜厚に応じて適宜調整すればよいが、通常、塗膜の膜厚は0.01~5000μmが好ましく、0.1~1000μmがより好ましい。
塗布の方法としては、例えば、ダブルロールコータ、スリットコータ、エアナイフコータ、ワイヤーバーコータ、スライドホッパー、スプレーコーチィング、ブレードコータ、ドクターコータ、スクイズコータ、リバースロールコータ、トランスファーロールコータ、エクストロージョンコータ、カーテンコータ、ディップコーター、ダイコータ、グラビアロールによる塗工法、スクリーン印刷法、ディップコーティング法、スプレー塗布法、スピンコーティング法、インクジェット法などが挙げられる。なかでも、簡便であり、また、サイズの大きい導電膜を製造することが容易であることから、スクリーン印刷法、インクジェット法であることが好ましい。
塗布の形状は特に制限されず、基材全面を覆う面状であっても、パターン状(例えば、配線状、ドット状)であってもよい。
基材上への導電膜形成用組成物の塗布量としては、所望する導電膜の膜厚に応じて適宜調整すればよいが、通常、塗膜の膜厚は0.01~5000μmが好ましく、0.1~1000μmがより好ましい。
なお、基材上に導電膜形成用組成物を塗布した後、必要に応じて、溶剤を除去するために乾燥処理を施してもよい。残存する溶剤を除去することにより、後述する加熱処理工程において、溶剤の気化膨張に起因する微小なクラックや空隙の発生を抑制することができる理由から好ましい。乾燥処理の方法としては温風乾燥機などを用いることができる。
<加熱処理工程>
本工程は、上記塗膜形成工程で形成された塗膜に対して加熱処理を行い、導電膜を形成する工程である。上記加熱処理により、塗膜中の酸化銅粒子や銅粒子表面の酸化銅が還元され、それと同時に銅粒子が酸化銅粒子を介して融着される。
本工程は、上記塗膜形成工程で形成された塗膜に対して加熱処理を行い、導電膜を形成する工程である。上記加熱処理により、塗膜中の酸化銅粒子や銅粒子表面の酸化銅が還元され、それと同時に銅粒子が酸化銅粒子を介して融着される。
加熱処理の条件は特に制限されないが、加熱温度は、用いることのできる基材の範囲を広げられる理由から、80~250℃であることが好ましく、100~200℃であることがより好ましい。また、加熱時間は5~120分が好ましく、10~60分がより好ましい。
なお、加熱手段は特に制限されず、オーブン、ホットプレート等公知の加熱手段を用いることができる。
本発明では、比較的低温の加熱処理により導電膜の形成が可能であり、従って、ガラス転移温度の低い樹脂基板など基材の汎用性が高い利点を有する。
なお、加熱手段は特に制限されず、オーブン、ホットプレート等公知の加熱手段を用いることができる。
本発明では、比較的低温の加熱処理により導電膜の形成が可能であり、従って、ガラス転移温度の低い樹脂基板など基材の汎用性が高い利点を有する。
上記加熱処理を実施する雰囲気は特に制限されず、大気雰囲気下、不活性雰囲気下、又は還元性雰囲気下などが挙げられる。なお、不活性雰囲気とは、例えば、アルゴン、ヘリウム、ネオン、窒素等の不活性ガスで満たされた雰囲気であり、また、還元性雰囲気とは、水素、一酸化炭素、ギ酸、アルコール等の還元性ガスが存在する雰囲気を指す。
[導電膜]
本発明の導電膜は、上述した本発明の組成物を用いて製造された導電膜である。なかでも、上述した塗膜形成工程と加熱処理工程とを備える製造方法で製造された導電膜であることが好ましい。
本発明の導電膜は、上述した本発明の組成物を用いて製造された導電膜である。なかでも、上述した塗膜形成工程と加熱処理工程とを備える製造方法で製造された導電膜であることが好ましい。
導電膜の膜厚は特に制限されず、使用される用途に応じて適宜最適な膜厚が調整される。なかでも、プリント配線基板用途の点からは、0.01~1000μmが好ましく、0.1~100μmがより好ましい。
なお、膜厚は、導電膜の任意の点における厚みを3箇所以上測定し、その値を算術平均して得られる値(平均値)である。
導電膜の体積抵抗値は、導電特性の点から、2.0×10-4Ωcm以下であることが好ましい。
体積抵抗値は、導電膜の表面抵抗値を四探針法にて測定後、得られた表面抵抗値に膜厚を乗算することで算出することができる。
なお、膜厚は、導電膜の任意の点における厚みを3箇所以上測定し、その値を算術平均して得られる値(平均値)である。
導電膜の体積抵抗値は、導電特性の点から、2.0×10-4Ωcm以下であることが好ましい。
体積抵抗値は、導電膜の表面抵抗値を四探針法にて測定後、得られた表面抵抗値に膜厚を乗算することで算出することができる。
導電膜は基材の全面、又は、パターン状に設けられてもよい。パターン状の導電膜は、プリント配線基板などの導体配線(配線)として有用である。
パターン状の導電膜を得る方法としては、上記導電膜形成用組成物をパターン状に基材に付与して、上記加熱処理を行う方法や、基材全面に設けられた導電膜をパターン状にエッチングする方法などが挙げられる。
エッチングの方法は特に制限されず、公知のサブトラクティブ法、セミアディティブ法などを採用できる。
パターン状の導電膜を得る方法としては、上記導電膜形成用組成物をパターン状に基材に付与して、上記加熱処理を行う方法や、基材全面に設けられた導電膜をパターン状にエッチングする方法などが挙げられる。
エッチングの方法は特に制限されず、公知のサブトラクティブ法、セミアディティブ法などを採用できる。
パターン状の導電膜を多層配線基板として構成する場合、パターン状の導電膜の表面に、さらに絶縁層(絶縁樹脂層、層間絶縁膜、ソルダーレジスト)を積層して、その表面にさらなる配線(金属パターン)を形成してもよい。
絶縁膜の材料は特に制限されないが、例えば、エポキシ樹脂、アラミド樹脂、結晶性ポリオレフィン樹脂、非晶性ポリオレフィン樹脂、フッ素含有樹脂(ポリテトラフルオロエチレン、全フッ素化ポリイミド、全フッ素化アモルファス樹脂など)、ポリイミド樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂など挙げられる。
これらの中でも、密着性、寸法安定性、耐熱性、電気絶縁性等の観点から、エポキシ樹脂、ポリイミド樹脂、又は液晶樹脂を含有するものであることが好ましく、より好ましくはエポキシ樹脂である。具体的には、味の素ファインテクノ(株)製、ABF GX-13などが挙げられる。
これらの中でも、密着性、寸法安定性、耐熱性、電気絶縁性等の観点から、エポキシ樹脂、ポリイミド樹脂、又は液晶樹脂を含有するものであることが好ましく、より好ましくはエポキシ樹脂である。具体的には、味の素ファインテクノ(株)製、ABF GX-13などが挙げられる。
また、配線保護のために用いられる絶縁層の材料の一種であるソルダーレジストについては、例えば、特開平10-204150号公報や、特開2003-222993号公報等に詳細に記載され、ここに記載の材料を所望により本発明にも適用することができる。ソルダーレジストは市販品を用いてもよく、具体的には、例えば、太陽インキ製造(株)製PFR800、PSR4000(商品名)、日立化成工業(株)製 SR7200G、などが挙げられる。
上記で得られた導電膜を有する基材(導電膜付き基材)は、種々の用途に使用することができる。例えば、プリント配線基板、TFT、FPC、RFIDなどが挙げられる。
以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
<実施例1>
銅粒子(三井金属社製、1200YP、平均粒径3μm)(7.6質量部)、酸化銅粒子(シーアイ化成社製、NanoTek CuO、酸化銅(II)粒子(CuO粒子)、平均粒径50nm)(7.6質量部)と、グリセルアルデヒド(シグマアルドリッチ社製、沸点:228℃)(表1中、Aと表記)(38質量部)、酢酸パラジウム(表1中、Pと表記)(0.38質量部)、水(SP値:23.4(cal/cm3)1/2)(46.4質量部)とを混合し、自転公転ミキサー(THINKY社製、あわとり練太郎ARE-310)で5分間処理することで導電膜形成用組成物を得た。
銅粒子(三井金属社製、1200YP、平均粒径3μm)(7.6質量部)、酸化銅粒子(シーアイ化成社製、NanoTek CuO、酸化銅(II)粒子(CuO粒子)、平均粒径50nm)(7.6質量部)と、グリセルアルデヒド(シグマアルドリッチ社製、沸点:228℃)(表1中、Aと表記)(38質量部)、酢酸パラジウム(表1中、Pと表記)(0.38質量部)、水(SP値:23.4(cal/cm3)1/2)(46.4質量部)とを混合し、自転公転ミキサー(THINKY社製、あわとり練太郎ARE-310)で5分間処理することで導電膜形成用組成物を得た。
<実施例2>
グリセルアルデヒド(38質量部)の代わりに、グルコース(分解温度:205℃)(表1中、Bと表記)(38質量部)を用いた以外は、実施例1と同様の手順に従って導電膜形成用組成物を得た。
グリセルアルデヒド(38質量部)の代わりに、グルコース(分解温度:205℃)(表1中、Bと表記)(38質量部)を用いた以外は、実施例1と同様の手順に従って導電膜形成用組成物を得た。
<実施例3>
グリセルアルデヒド(38質量部)の代わりに、トリメチロールプロパン(沸点:195℃)(表1中、Cと表記)(38質量部)を用いた以外は、実施例1と同様の手順に従って導電膜形成用組成物を得た。
グリセルアルデヒド(38質量部)の代わりに、トリメチロールプロパン(沸点:195℃)(表1中、Cと表記)(38質量部)を用いた以外は、実施例1と同様の手順に従って導電膜形成用組成物を得た。
<実施例4>
グリセルアルデヒド(38質量部)の代わりに、1-デカノール(沸点:233℃)(表1中、Dと表記)(38質量部)を用いた以外は、実施例1と同様の手順に従って導電膜形成用組成物を得た。
グリセルアルデヒド(38質量部)の代わりに、1-デカノール(沸点:233℃)(表1中、Dと表記)(38質量部)を用いた以外は、実施例1と同様の手順に従って導電膜形成用組成物を得た。
<実施例5>
グリセルアルデヒド(38質量部)の代わりに、ソルビトール(沸点:296℃)(表1中、Eと表記)(38質量部)を用いた以外は、実施例1と同様の手順に従って導電膜形成用組成物を得た。
グリセルアルデヒド(38質量部)の代わりに、ソルビトール(沸点:296℃)(表1中、Eと表記)(38質量部)を用いた以外は、実施例1と同様の手順に従って導電膜形成用組成物を得た。
<実施例6>
グリセルアルデヒド(38質量部)の代わりに、エチレングリコール(沸点:197℃)(表1中、Fと表記)(38質量部)を用いた以外は、実施例1と同様の手順に従って導電膜形成用組成物を得た。
グリセルアルデヒド(38質量部)の代わりに、エチレングリコール(沸点:197℃)(表1中、Fと表記)(38質量部)を用いた以外は、実施例1と同様の手順に従って導電膜形成用組成物を得た。
<実施例7>
さらにフェノール樹脂(群栄化学社製、レヂトップPL-3224)(表1中、Jと表記)(フェノール樹脂として1質量部)を混合した以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
さらにフェノール樹脂(群栄化学社製、レヂトップPL-3224)(表1中、Jと表記)(フェノール樹脂として1質量部)を混合した以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
<実施例8>
酢酸パラジウム(0.38質量部)の代わりに、パラジウム微粒子分散液(和光純薬社製)(表1中、Qと表記)(パラジウム微粒子として0.38質量部)を用いた以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
酢酸パラジウム(0.38質量部)の代わりに、パラジウム微粒子分散液(和光純薬社製)(表1中、Qと表記)(パラジウム微粒子として0.38質量部)を用いた以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
<実施例9>
酢酸パラジウム(0.38質量部)の代わりに、白金微粒子分散液(和光純薬社製)(表1中、Rと表記)(白金微粒子として0.38質量部)を用いた以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
酢酸パラジウム(0.38質量部)の代わりに、白金微粒子分散液(和光純薬社製)(表1中、Rと表記)(白金微粒子として0.38質量部)を用いた以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
<実施例10>
酢酸パラジウム(0.38質量部)の代わりに、ニッケル微粒子分散液(和光純薬社製)(表1中、Sと表記)(ニッケル微粒子として0.38質量部)を用いた以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
酢酸パラジウム(0.38質量部)の代わりに、ニッケル微粒子分散液(和光純薬社製)(表1中、Sと表記)(ニッケル微粒子として0.38質量部)を用いた以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
<実施例11>
酢酸パラジウム(0.38質量部)の代わりに、酢酸パラジウムの2質量%アセトン溶液(19質量部)を用い、また水の配合量を46.4質量部から、27.8質量部に変更した以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。なお、導電膜形成用組成物に含有される水およびアセトンからなる混合溶剤のSP値は17.2である。
酢酸パラジウム(0.38質量部)の代わりに、酢酸パラジウムの2質量%アセトン溶液(19質量部)を用い、また水の配合量を46.4質量部から、27.8質量部に変更した以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。なお、導電膜形成用組成物に含有される水およびアセトンからなる混合溶剤のSP値は17.2である。
<比較例1>
酸化銅の配合量を7.6質量部から2.53質量部に変更し、トリメチロールプロパンの配合量を38質量部から12.7質量部に変更し、酢酸パラジウムの配合量を0.38質量部から0.126質量部に変更した以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
酸化銅の配合量を7.6質量部から2.53質量部に変更し、トリメチロールプロパンの配合量を38質量部から12.7質量部に変更し、酢酸パラジウムの配合量を0.38質量部から0.126質量部に変更した以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
<比較例2>
トリメチロールプロパンの配合量を38質量部から114質量部に変更した以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
トリメチロールプロパンの配合量を38質量部から114質量部に変更した以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
<比較例3>
トリメチロールプロパンの配合量を38質量部から7.6質量部に変更した以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
トリメチロールプロパンの配合量を38質量部から7.6質量部に変更した以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
<比較例4>
酢酸パラジウムの配合量を0.38質量部から1.52質量部に変更した以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
酢酸パラジウムの配合量を0.38質量部から1.52質量部に変更した以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
<比較例5>
酢酸パラジウムを配合しなかった以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
酢酸パラジウムを配合しなかった以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
<比較例6>
酢酸パラジウム(0.38質量部)の代わりに、銅微粒子分散液(イオックス社製)(表1中、Tと表記)(銅微粒子として0.38質量部)を用いた以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
酢酸パラジウム(0.38質量部)の代わりに、銅微粒子分散液(イオックス社製)(表1中、Tと表記)(銅微粒子として0.38質量部)を用いた以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
<比較例7>
酸化銅粒子を配合しなかった以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
酸化銅粒子を配合しなかった以外は、実施例3と同様の手順に従って導電膜形成用組成物を得た。
(導電膜の製造)
得られた導電膜形成用組成物(実施例1~11及び比較例1~7)をそれぞれ合成石英基板(アイ・ジー・シー社製)上に塗布バーで塗布して、塗膜を得た。その後、得られた塗膜に対して窒素雰囲気下で加熱処理(200℃、30分間)を行い、導電膜を得た。
得られた導電膜形成用組成物(実施例1~11及び比較例1~7)をそれぞれ合成石英基板(アイ・ジー・シー社製)上に塗布バーで塗布して、塗膜を得た。その後、得られた塗膜に対して窒素雰囲気下で加熱処理(200℃、30分間)を行い、導電膜を得た。
(導電性)
得られた導電膜について、四探針法抵抗率計を用いて体積抵抗率を測定し、以下の基準に従って、導電性を評価した。結果を表1にまとめて示す。実用上、AA又はA~Cであることが好ましく、AA、A又はBであることがより好ましく、AA又はAであることがさらに好ましく、AAであることが特に好ましい。
・AA:体積抵抗率が5×10-5Ω・cm未満
・A:体積抵抗率が5×10-5Ω以上1×10-4Ω・cm未満
・B:体積抵抗率が1×10-4Ω・cm以上5×10-4Ω・cm未満
・C:体積抵抗率が5×10-4Ω・cm以上1×10-3Ω・cm未満
・D:体積抵抗率が1×10-3Ω・cm以上
得られた導電膜について、四探針法抵抗率計を用いて体積抵抗率を測定し、以下の基準に従って、導電性を評価した。結果を表1にまとめて示す。実用上、AA又はA~Cであることが好ましく、AA、A又はBであることがより好ましく、AA又はAであることがさらに好ましく、AAであることが特に好ましい。
・AA:体積抵抗率が5×10-5Ω・cm未満
・A:体積抵抗率が5×10-5Ω以上1×10-4Ω・cm未満
・B:体積抵抗率が1×10-4Ω・cm以上5×10-4Ω・cm未満
・C:体積抵抗率が5×10-4Ω・cm以上1×10-3Ω・cm未満
・D:体積抵抗率が1×10-3Ω・cm以上
(ボイド率)
得られた導電膜をHelios400S型FIB/SEM-EDS複合機(FEI社製)によりFIB加工し、断面SEM観察を行った。得られた断面SEM写真を画像ソフト(Adobe Systems,Inc.社製“Adobe Photoshop”)にて閾値を調整して白・黒二値化し、白と黒のドット数比からボイド率(空隙率)を算出した。算出したボイド率を以下の基準に従って評価した。結果を表1にまとめて示す。実用上、AA、A又はBであることが好ましく、AA又はAであることがより好ましく、AAであることがさらに好ましい。
・AA:ボイド率が5%未満
・A:ボイド率が5%以上15%未満
・B:ボイド率が15%以上30%未満
・C:ボイド率が30%以上50%未満
・D:ボイド率が50%以上
得られた導電膜をHelios400S型FIB/SEM-EDS複合機(FEI社製)によりFIB加工し、断面SEM観察を行った。得られた断面SEM写真を画像ソフト(Adobe Systems,Inc.社製“Adobe Photoshop”)にて閾値を調整して白・黒二値化し、白と黒のドット数比からボイド率(空隙率)を算出した。算出したボイド率を以下の基準に従って評価した。結果を表1にまとめて示す。実用上、AA、A又はBであることが好ましく、AA又はAであることがより好ましく、AAであることがさらに好ましい。
・AA:ボイド率が5%未満
・A:ボイド率が5%以上15%未満
・B:ボイド率が15%以上30%未満
・C:ボイド率が30%以上50%未満
・D:ボイド率が50%以上
表1から分かるように、本願実施例の組成物から得られた導電膜は、いずれも優れた導電性を示し、また、ボイドが少なかった。
また、実施例1~6の対比から、還元剤が分子内にヒドロキシ基を2つ以上有する化合物である実施例1~3、5及び6の組成物から得られた導電膜の方が、より優れた導電性を示した。なかでも、還元剤が「分子内にヒドロキシ基を2つ以上有し、カルボニル基を有さず、沸点が250℃以下である化合物」である実施例3及び6の組成物から得られた導電膜の方が、さらに優れた導電性を示した。
また、実施例3と7との対比から、熱硬化性樹脂を含有する実施例7の組成物から得られた導電膜の方が、よりボイドが少なかった。
また、実施例3と8との対比から、金属触媒が塩化合物である実施例3の組成物から得られた導電膜の方が、より優れた導電性を示した。
また、実施例3と11との対比から、溶剤の溶解度パラメータが10~20(cal/cm3)1/2である実施例11の組成物から得られた導電膜の方が、より優れた導電性を示した。
また、実施例1~6の対比から、還元剤が分子内にヒドロキシ基を2つ以上有する化合物である実施例1~3、5及び6の組成物から得られた導電膜の方が、より優れた導電性を示した。なかでも、還元剤が「分子内にヒドロキシ基を2つ以上有し、カルボニル基を有さず、沸点が250℃以下である化合物」である実施例3及び6の組成物から得られた導電膜の方が、さらに優れた導電性を示した。
また、実施例3と7との対比から、熱硬化性樹脂を含有する実施例7の組成物から得られた導電膜の方が、よりボイドが少なかった。
また、実施例3と8との対比から、金属触媒が塩化合物である実施例3の組成物から得られた導電膜の方が、より優れた導電性を示した。
また、実施例3と11との対比から、溶剤の溶解度パラメータが10~20(cal/cm3)1/2である実施例11の組成物から得られた導電膜の方が、より優れた導電性を示した。
一方、酸化銅粒子を含有しない比較例7、酸化銅粒子を含有するが酸化銅粒子の含有量が銅粒子の含有量に対して50質量%未満である比較例1、還元剤の含有量が酸化銅粒子の含有量に対して800mol%超である比較例2、還元剤の含有量が酸化銅粒子の含有量に対して100mol%未満である比較例3、銅以外の金属を含む金属触媒を含有しない比較例5及び6、並びに、銅以外の金属を含む金属触媒を含有するが上記金属触媒の含有量が酸化銅粒子の含有量に対して10質量%超である比較例4の組成物から得られた導電膜は、いずれも導電性が不十分であり、また、ボイドが多く見られた。
Claims (10)
- 平均粒径が1nm~10μmである銅粒子と、平均粒径が1~500nmである酸化銅粒子と、ヒドロキシ基を有する還元剤と、銅以外の金属を含む金属触媒と、溶剤とを含有し、前記酸化銅粒子の含有量が、前記銅粒子の含有量に対して、50~300質量%であり、前記還元剤の含有量が、前記酸化銅粒子の含有量に対して、100~800mol%であり、前記金属触媒の含有量が、前記酸化銅粒子の含有量に対して、10質量%以下である、導電膜形成用組成物。
- 前記還元剤が、分子内にヒドロキシ基を2つ以上有する化合物である、請求項1に記載の導電膜形成用組成物。
- 前記金属触媒が、パラジウム、白金、ニッケル及び銀からなる群より選択される少なくとも1種の金属を含む金属触媒である、請求項1~3のいずれか1項に記載の導電膜形成用組成物。
- 前記金属触媒が、塩化合物である、請求項1~4のいずれか1項に記載の導電膜形成用組成物。
- 前記溶剤の溶解度パラメータ(SP値)が、10~20(cal/cm3)1/2である、請求項1~5のいずれか1項に記載の導電膜形成用組成物。
- さらに樹脂を含有する、請求項1~6のいずれか1項に記載の導電膜形成用組成物。
- 前記樹脂が、熱硬化性樹脂である、請求項7に記載の導電膜形成用組成物。
- 請求項1~8のいずれか1項に記載の導電膜形成用組成物を基材上に塗布して、塗膜を形成する塗膜形成工程と、
前記塗膜に対して加熱処理を行い、導電膜を形成する加熱処理工程とを備える、導電膜の製造方法。 - 前記加熱処理の温度が、200℃以下である、請求項9に記載の導電膜の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480037398.4A CN105358640B (zh) | 2013-07-29 | 2014-06-12 | 导电膜形成用组合物和导电膜的制造方法 |
EP14832874.3A EP3029119B1 (en) | 2013-07-29 | 2014-06-12 | Electroconductive-film-forming composition and method for producing electroconductive film |
US15/002,464 US9868864B2 (en) | 2013-07-29 | 2016-01-21 | Electroconductive-film-forming composition and method for producing electroconductive film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013156621A JP2015026567A (ja) | 2013-07-29 | 2013-07-29 | 導電膜形成用組成物及び導電膜の製造方法 |
JP2013-156621 | 2013-07-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/002,464 Continuation US9868864B2 (en) | 2013-07-29 | 2016-01-21 | Electroconductive-film-forming composition and method for producing electroconductive film |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015015918A1 true WO2015015918A1 (ja) | 2015-02-05 |
Family
ID=52431462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/065569 WO2015015918A1 (ja) | 2013-07-29 | 2014-06-12 | 導電膜形成用組成物及び導電膜の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9868864B2 (ja) |
EP (1) | EP3029119B1 (ja) |
JP (1) | JP2015026567A (ja) |
CN (1) | CN105358640B (ja) |
TW (1) | TWI613682B (ja) |
WO (1) | WO2015015918A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015083718A1 (ja) * | 2013-12-02 | 2015-06-11 | 富士フイルム株式会社 | 導電膜形成用組成物、導電膜の製造方法、および、導電膜 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015152625A1 (ko) * | 2014-04-01 | 2015-10-08 | 전자부품연구원 | 광 소결용 잉크 조성물, 그를 이용한 배선기판 및 그의 제조 방법 |
JPWO2018179838A1 (ja) * | 2017-03-30 | 2020-02-06 | ハリマ化成株式会社 | 導電性ペースト |
JP2019211243A (ja) * | 2018-05-31 | 2019-12-12 | 旭化成株式会社 | Rfidタグ |
KR20210053968A (ko) * | 2018-10-12 | 2021-05-12 | 카오카부시키가이샤 | 금속 미립자 분산체의 제조 방법 |
ES2966408T3 (es) * | 2018-12-27 | 2024-04-22 | Kao Corp | Dispersión de partículas finas metálicas y método para producir un material impreso |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63257107A (ja) * | 1987-04-13 | 1988-10-25 | 松下電器産業株式会社 | メタライズ組成物 |
JPH01282178A (ja) * | 1988-05-07 | 1989-11-14 | Fujitsu Ltd | 銅ペースト組成物およびガラスセラミック基板への導電パターン形成方法 |
JPH024150A (ja) | 1988-06-22 | 1990-01-09 | Matsushita Seiko Co Ltd | 熱源コントローラ |
JPH10204150A (ja) | 1997-01-24 | 1998-08-04 | Hitachi Chem Co Ltd | 感光性樹脂組成物 |
JP2000315421A (ja) * | 1999-05-06 | 2000-11-14 | Murata Mfg Co Ltd | 銅導電性ペースト |
WO2003051562A1 (fr) | 2001-12-18 | 2003-06-26 | Asahi Kasei Kabushiki Kaisha | Dispersion d'oxyde metallique |
JP2003222993A (ja) | 1997-11-12 | 2003-08-08 | Hitachi Chem Co Ltd | 感光性樹脂組成物 |
JP2007080720A (ja) * | 2005-09-15 | 2007-03-29 | Asahi Kasei Corp | 導電性金属ペースト |
JP2008166590A (ja) * | 2006-12-28 | 2008-07-17 | Japan Aviation Electronics Industry Ltd | 配線の製造方法とそれに用いる導電性インク |
WO2010047350A1 (ja) * | 2008-10-22 | 2010-04-29 | 東ソー株式会社 | 金属膜製造用組成物、金属膜の製造方法及び金属粉末の製造方法 |
WO2014050466A1 (ja) * | 2012-09-26 | 2014-04-03 | 富士フイルム株式会社 | 導電膜の製造方法および導電膜形成用組成物 |
WO2014119498A1 (ja) * | 2013-02-04 | 2014-08-07 | 富士フイルム株式会社 | 導電膜形成用組成物、導電膜の製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100234170B1 (ko) * | 1996-12-10 | 2000-01-15 | 손욱 | 투명도전성 박막 형성용 조성물, 이를 이용한 투명도전성 박막의 제조방법 및 표면도전성 물품 |
JP2003051562A (ja) * | 2001-08-06 | 2003-02-21 | Matsushita Electric Ind Co Ltd | 半導体装置 |
JP4978844B2 (ja) * | 2005-07-25 | 2012-07-18 | 住友金属鉱山株式会社 | 銅微粒子分散液及びその製造方法 |
JP4821396B2 (ja) * | 2006-03-27 | 2011-11-24 | 住友金属鉱山株式会社 | 導電性組成物及び導電膜形成方法 |
CN101000810B (zh) * | 2007-01-05 | 2010-06-23 | 华南理工大学 | 导电组合物 |
EP2234119A4 (en) * | 2007-12-18 | 2015-04-15 | Hitachi Chemical Co Ltd | COPPER CONDUCTIVE FILM AND MANUFACTURING METHOD THEREFOR, CONDUCTIVE SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME, COPPER CONDUCTIVE THREAD AND METHOD FOR MANUFACTURING THE SAME, AND PROCESSING SOLUTION THEREOF |
JP5789544B2 (ja) * | 2011-03-02 | 2015-10-07 | 韓國電子通信研究院Electronics and Telecommunications Research Institute | 伝導性組成物並びにこれを含むシリコン太陽電池及びその製造方法 |
-
2013
- 2013-07-29 JP JP2013156621A patent/JP2015026567A/ja active Pending
-
2014
- 2014-06-12 WO PCT/JP2014/065569 patent/WO2015015918A1/ja active Application Filing
- 2014-06-12 EP EP14832874.3A patent/EP3029119B1/en active Active
- 2014-06-12 CN CN201480037398.4A patent/CN105358640B/zh active Active
- 2014-07-04 TW TW103123235A patent/TWI613682B/zh active
-
2016
- 2016-01-21 US US15/002,464 patent/US9868864B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63257107A (ja) * | 1987-04-13 | 1988-10-25 | 松下電器産業株式会社 | メタライズ組成物 |
JPH01282178A (ja) * | 1988-05-07 | 1989-11-14 | Fujitsu Ltd | 銅ペースト組成物およびガラスセラミック基板への導電パターン形成方法 |
JPH024150A (ja) | 1988-06-22 | 1990-01-09 | Matsushita Seiko Co Ltd | 熱源コントローラ |
JPH10204150A (ja) | 1997-01-24 | 1998-08-04 | Hitachi Chem Co Ltd | 感光性樹脂組成物 |
JP2003222993A (ja) | 1997-11-12 | 2003-08-08 | Hitachi Chem Co Ltd | 感光性樹脂組成物 |
JP2000315421A (ja) * | 1999-05-06 | 2000-11-14 | Murata Mfg Co Ltd | 銅導電性ペースト |
WO2003051562A1 (fr) | 2001-12-18 | 2003-06-26 | Asahi Kasei Kabushiki Kaisha | Dispersion d'oxyde metallique |
JP2007080720A (ja) * | 2005-09-15 | 2007-03-29 | Asahi Kasei Corp | 導電性金属ペースト |
JP2008166590A (ja) * | 2006-12-28 | 2008-07-17 | Japan Aviation Electronics Industry Ltd | 配線の製造方法とそれに用いる導電性インク |
WO2010047350A1 (ja) * | 2008-10-22 | 2010-04-29 | 東ソー株式会社 | 金属膜製造用組成物、金属膜の製造方法及び金属粉末の製造方法 |
WO2014050466A1 (ja) * | 2012-09-26 | 2014-04-03 | 富士フイルム株式会社 | 導電膜の製造方法および導電膜形成用組成物 |
WO2014119498A1 (ja) * | 2013-02-04 | 2014-08-07 | 富士フイルム株式会社 | 導電膜形成用組成物、導電膜の製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015083718A1 (ja) * | 2013-12-02 | 2015-06-11 | 富士フイルム株式会社 | 導電膜形成用組成物、導電膜の製造方法、および、導電膜 |
JP2015129255A (ja) * | 2013-12-02 | 2015-07-16 | 富士フイルム株式会社 | 導電膜形成用組成物、導電膜の製造方法、および、導電膜 |
Also Published As
Publication number | Publication date |
---|---|
EP3029119A4 (en) | 2016-07-13 |
TW201515025A (zh) | 2015-04-16 |
EP3029119A1 (en) | 2016-06-08 |
US20160137855A1 (en) | 2016-05-19 |
JP2015026567A (ja) | 2015-02-05 |
CN105358640A (zh) | 2016-02-24 |
EP3029119B1 (en) | 2020-01-01 |
CN105358640B (zh) | 2018-06-29 |
TWI613682B (zh) | 2018-02-01 |
US9868864B2 (en) | 2018-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9868864B2 (en) | Electroconductive-film-forming composition and method for producing electroconductive film | |
WO2015005276A1 (ja) | 導電膜の製造方法および導電膜 | |
US20160024317A1 (en) | Composition for forming conductive film, and conductive film manufacturing method using same | |
WO2013145954A1 (ja) | 液状組成物、金属銅膜、及び導体配線、並びに金属銅膜の製造方法 | |
TW201412210A (zh) | 導電層的製造方法與印刷配線基板 | |
JP2016058227A (ja) | 導電膜の製造方法 | |
WO2015005046A1 (ja) | 導電膜形成用組成物、導電膜の製造方法、および、導電膜 | |
WO2014156326A1 (ja) | 導電膜形成用組成物およびこれを用いる導電膜の製造方法 | |
JP2015140418A (ja) | インクジェット用導電インク組成物 | |
TW201444854A (zh) | 導電膜形成用組成物及使用其的導電膜的製造方法 | |
WO2014141787A1 (ja) | 導電膜形成用組成物及びこれを用いる導電膜の製造方法 | |
WO2014156345A1 (ja) | 導電膜形成用組成物およびこれを用いる導電膜の製造方法 | |
JP6109130B2 (ja) | 導電膜形成用組成物、導電膜の製造方法、および、導電膜 | |
JP2014167872A (ja) | 導電膜の製造方法、配線基板 | |
WO2015005178A1 (ja) | 導電膜形成用組成物およびこれを用いる導電膜の製造方法 | |
JP2015141752A (ja) | 導電膜形成用組成物、導電膜の製造方法 | |
JP6104782B2 (ja) | 導電膜形成用組成物、導電膜の製造方法、および、導電膜 | |
JP6263630B2 (ja) | 導電膜形成用組成物および導電膜形成方法 | |
JP2014044907A (ja) | 導電膜形成用組成物および導電膜の製造方法 | |
JP6111170B2 (ja) | 導電膜形成用組成物およびこれを用いる導電膜の製造方法 | |
WO2014017288A1 (ja) | 導電膜形成用組成物および導電膜の製造方法 | |
WO2016031404A1 (ja) | 導電膜形成用組成物およびこれを用いる導電膜の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480037398.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14832874 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014832874 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |