WO2018235403A1 - 電子制御装置 - Google Patents

電子制御装置 Download PDF

Info

Publication number
WO2018235403A1
WO2018235403A1 PCT/JP2018/015176 JP2018015176W WO2018235403A1 WO 2018235403 A1 WO2018235403 A1 WO 2018235403A1 JP 2018015176 W JP2018015176 W JP 2018015176W WO 2018235403 A1 WO2018235403 A1 WO 2018235403A1
Authority
WO
WIPO (PCT)
Prior art keywords
discrete
voltage
electronic control
power supply
integrated circuit
Prior art date
Application number
PCT/JP2018/015176
Other languages
English (en)
French (fr)
Inventor
昌宏 土肥
純之 荒田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112018002075.4T priority Critical patent/DE112018002075B4/de
Priority to JP2019525141A priority patent/JP6796203B2/ja
Priority to US16/610,321 priority patent/US10833688B2/en
Priority to CN201880031902.8A priority patent/CN110622096B/zh
Publication of WO2018235403A1 publication Critical patent/WO2018235403A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters

Definitions

  • the present invention relates to an electronic control device having a constant voltage power supply.
  • a microcomputer (microcomputer) mounted on the electronic control device requires a plurality of different power supply voltages depending on its model. Among them, in particular, as the core power supply voltage is miniaturized, the supply of a different power supply voltage is required for each type of microcomputer.
  • Power supply voltage supply to the microcomputer is generally performed by a power supply circuit constituted by a power supply IC (Integrated Circuit), which is a semiconductor integrated circuit, and its peripheral circuits, and the power supply voltage to be applied is determined at the development stage.
  • a power supply circuit constituted by a power supply IC (Integrated Circuit), which is a semiconductor integrated circuit, and its peripheral circuits, and the power supply voltage to be applied is determined at the development stage.
  • IC Integrated Circuit
  • amplification of the operational amplifier is performed by switching the negative feedback resistance ratio connected to the output voltage by a multiplexer according to the setting of a data register such as EEPROM for the purpose of adjusting the output voltage. To make the output voltage variable.
  • Patent Document 1 is a constant voltage power supply circuit configured to control an output voltage using a data register and a multiplexer.
  • the data register is realized by the EEPROM in the power supply IC, a semiconductor process capable of manufacturing the EEPROM is required, which increases the cost of the power supply IC and the power supply circuit.
  • the cost for adding components also increases.
  • the EEPROM mounted on the microcomputer is a memory that can be used after the power supply voltage is supplied to the microcomputer, it can not be used for setting the power supply voltage to the microcomputer.
  • An object of the present invention is to realize a low-cost electronic control device capable of changing a power supply voltage supplied to a microcomputer by a simple method and adapting the same power supply IC to various microcomputers.
  • the present invention is configured as follows.
  • the electronic control device includes an integrated circuit having a voltage adjustment unit and discrete components connected to the integrated circuit, and the voltage output from the voltage adjustment unit is changed by changing the discrete components.
  • the power supply circuit of the present invention it is possible to realize a low-cost electronic control device capable of changing the power supply voltage supplied to the microcomputer by a simple method and adapting the same power supply IC to various microcomputers.
  • Example 1 of this invention It is a schematic block diagram of the electronic control unit which concerns on Example 1 of this invention. It is a schematic block diagram of the electronic control apparatus containing the power supply IC which concerns on Example 2 of this invention. It is the starting time chart of the power supply circuit in Example 1 of this invention. It is a time chart at the time of resetting a register from a microcomputer in Example 1 of the present invention. It is an operation time chart when the terminal to which a discrete resistance is connected in Example 1 of the present invention is short-circuited to the ground. It is a time chart in operation of a power supply circuit in Example 2 of the present invention, and resetting a power supply voltage from a microcomputer. It is a figure which shows only a part different from Example 1 or Example 2 in Example 3 of this invention, and is a figure which shows the structural example of a discrete component.
  • FIG. 1 is a schematic block diagram of a power supply circuit 22 which is an electronic control unit according to a first embodiment of the present invention.
  • the power supply circuit 22 which is the electronic control unit is a circuit for supplying power to a microcomputer (microcomputer) 19.
  • the power supply circuit 22 is configured by a power supply IC (integrated circuit) 18, discrete resistors 10 (first resistance), and peripheral elements such as an inductor 23 and a capacitor 34.
  • the power supply circuit 22 includes a voltage regulator 16 (voltage regulator 1 (first voltage regulator), a voltage regulator 17 (voltage regulator 2 (second voltage regulator)), and a switching power supply 15 for supplying a plurality of power supply voltages to the microcomputer 19. Is equipped.
  • a voltage regulator 16 voltage regulator 1 (first voltage regulator)
  • a voltage regulator 17 voltage regulator 2 (second voltage regulator)
  • a switching power supply 15 for supplying a plurality of power supply voltages to the microcomputer 19. Is equipped.
  • Each of the voltage regulators 16 and 17 and the switching power supply 15 generates the respective desired output voltages V1, V2 and V3 by, for example, performing negative feedback amplification on the reference voltages respectively provided by the operational amplifiers.
  • the power supply IC 18 includes the reference voltage 14 for selectively switching the core voltage V3 of the microcomputer 19 requiring various power supply voltages to a desired voltage.
  • the reference voltage 14 is a variable voltage source.
  • the discrete resistor 10 is connected to the power supply IC 18 and can be selectively attached to a resistor of appropriate resistance value to adjust the reference voltage 14. That is, the voltage value of the voltage V3 can be changed only by selecting the resistance value of the discrete resistor 10 and externally attaching it to the power supply IC 18.
  • the discrete resistor 10 is connected to the register 13 via the switch 21 (first switch) and the AD converter 12. Further, the switch 21 is closed by closing the switch 21 from the current source 11 connected to the internal voltage source 20 of the power supply IC 18 (integrated circuit) and connected between the switch 21 and the AD converter 12. A current flows through the discrete resistor 10 through the resistor. When a current flows through the discrete resistor 10, a voltage is generated at In1, which is a connection terminal between the discrete resistor 10 and the power supply IC 18. The generated voltage is converted into a desired digital code by the AD converter 12.
  • the switching circuit 27 can be provided with a comparator, an operational amplifier, a resistor, a switching element, etc.
  • the capacitor 34 is connected via an inductor 23 outside the power supply IC 18 to generate a desired core voltage V3.
  • the power supply voltages V1 and V2 of the microcomputer 19 are also generated by the voltage regulator 16 and the voltage regulator 17 of the power supply circuit 22, and the power is supplied to enable the microcomputer 19 to operate.
  • the voltage V1 is 5V
  • the voltage V2 is 3.3V
  • the core power supply is 0.9 to 1.6V.
  • FIG. 3 is a start-up time chart of the power supply circuit 22 in the first embodiment of the present invention.
  • FIG. 3 first, when the power supply IC 18 is powered on at time t0, the internal power supply of the power supply IC 18 rises. Next, at time t1, in order to determine the value of the discrete resistor 10, the switch 21 is turned on, and a voltage corresponding to the current value from the current source 11 and the resistance value of the discrete resistor 10 is generated at the In1 terminal.
  • the In1 terminal voltage is AD converted by the AD converter 12, and a digital code corresponding to the discrete resistor 10 selectively connected, "100" in the example of FIG. 3, is detected.
  • the register 13 stores "100" which is the AD conversion result instead of the initial value "000", and the resistance value determination of the discrete resistor 10 by the AD converter 12 is completed.
  • the power supply voltages V1, V2, and V3 start to be activated at time t2.
  • the start order of each power supply voltage is described in the order of V2, V1, and V3, it is not limited to this.
  • the core voltage V3 starts up with a voltage corresponding to the reference voltage 14 set by the value "100" of the register 13, and the desired power supply is completed.
  • the register 13 can read and write data by SPI communication between the SPI interface 28 and the SPI interface 29 of the microcomputer 19 or the like.
  • the microcomputer 19 After the microcomputer 19 is activated by the power supply of the power supply IC 18 in the above-described procedure, the value of the register 13 of the power supply IC 18 can be read to confirm whether the desired digital code is obtained.
  • the EEPROM 24 of the microcomputer 19 By recording the digital code to be reset in the memory), the value of the register 13 can be reset after the microcomputer 19 is started, and the core voltage V3 can be set with higher accuracy.
  • FIG. 4 is a time chart when the register 13 is reset from the microcomputer 19 in the first embodiment of the present invention. The processes until the start of the power supply voltages V1, V2, and V3 are the same as in FIG.
  • the digital code stored in the EEPROM 24 of the microcomputer 19 is read via the SPI interface 29, the SPI bus and the SPI interface 28, set in the register 13, and stored.
  • the reference voltage source 14 supplies the voltage according to the digital code reset in the register 13 to the switch element 27, and the voltage V3 is set.
  • a desired digital code or a digital code which has been found to be reset from the test process is recorded in the EEPROM 24 of the microcomputer 19 and when it is different from the value of the register 13, the digital code recorded in the EEPROM 24 is registered.
  • the core voltage V3 is adjusted to a desired voltage or a voltage with higher precision, and the microcomputer 19 can operate normally.
  • the desired digital code of the EEPROM 24 of the microcomputer 19 is written accordingly. It is possible to reset to the normal core voltage V3.
  • FIG. 5 is an operation time chart when an In1 terminal to which the discrete resistor 10 is connected is short-circuited to the ground in the first embodiment of the present invention.
  • the AD converter 12 determines that the digital code "000" is not a desired value, and this digital code is held in the register 13 (time t1 to t2).
  • the desired voltage is not obtained (time t2 to t3).
  • the microcomputer 19 can be activated at time t3, the desired digital code of the EEPROM 24 is read out and written in the register 13 (time t3 to t4). And the core voltage V3 is reset to a normal value, and the microcomputer 19 can maintain normal operation.
  • the core voltage V3 for the corresponding digital code is set to a voltage that does not exceed the maximum rating of the microcomputer 19, a failure such as a ground short In this case as well, the microcomputer 19 can reset to the normal voltage, and the normal operation of the power supply circuit 22 which is the electronic control device can be continued.
  • the core voltage V3 supplied to the microcomputer 19 can be changed by a simple method of replacing the specific discrete resistor 10 externally attached to the power supply IC 18 It can.
  • the same power supply IC 18 can be diverted, and the manufacturing cost of the power supply IC 18 can be reduced and the development period can be shortened.
  • FIG. 2 is a schematic configuration diagram of a power supply circuit 26 which is an electronic control device including a power supply IC 18 according to a second embodiment of the present invention.
  • the power supply circuit 26 is provided with a discrete resistor 10A (second resistor) and a second switch 21A, and the digital code of the register 13 It is a function to adjust the reference voltage of the power supply voltage V2 of the voltage regulator 17 by the output.
  • the voltage regulator 17 in the second embodiment includes a reference voltage 25, an operational amplifier 35, and resistors 36 and 36.
  • the reference voltage 25 is connected to the positive input terminal of the operational amplifier 35, and the output terminal of the operational amplifier 35 is grounded via the resistors 36 and 37.
  • the connection point between the resistors 36 and 37 is connected to the negative input terminal of the operational amplifier 35. Then, the output of the operational amplifier 35 becomes the output voltage V2.
  • the reference voltage 25 is adjusted to multiple levels by the digital code output of the register 13.
  • the discrete resistor generally has a certain variation in its resistance value, and the resistor 10 attached to the power supply IC 18 which determines its resistance value also has a certain variation. For this reason, one discrete resistor 10 has a limited choice of settable power supply voltages.
  • the digital code can be selected by the discrete resistor (first discrete resistor) 10 with three bits and eight core voltages V3 can be selected.
  • the discrete resistor 10 due to the precision selection of the discrete resistor 10 and the design of the power supply IC 18, not only 3 bits but also more bits can be designed.
  • the core voltage V3 can be set with higher accuracy.
  • another power supply voltage V2 can be a power supply voltage of 3.3 V or 5 V supplied to the microcomputer 19.
  • Typical microcomputers require a 3.3V or 5V power supply. It is possible to switch between the 3.3 V and 5 V of the power supply voltage V2 by switching the setting of the reference voltage 25 using one bit of a settable digital code increased by the second discrete resistor 10A.
  • the discrete resistor 10 and the discrete resistor 10A can be separately connected to the AD converter 12, and a plurality of AD converters 12 can be connected. Discrete resistors 10 and 10A are possible.
  • FIG. 6 is a time chart showing the operation of the power supply circuit 26 and the resetting of the power supply voltage from the microcomputer 19 in the second embodiment.
  • the discrete resistor 10 is first determined by the AD converter 12 as the upper 3 bits, as in the operation shown in FIG. After that, the lower 3 bits of the discrete resistor 10A are determined by the AD converter 12 through the switch 21A, whereby a total of 6 bits of the register 13 are determined (time t0 to t2).
  • the digital code of the EEPROM 24 is written to the register 13 by SPI communication (SPI interface 28 and SPI interface 29).
  • the core voltage V3 can be reset (time t2 to t4).
  • the power supply circuit 26 can be supplied with the core voltage V3 supplied to the microcomputer 19 by a simple method of replacing the specific discrete resistor 10 and the discrete resistor 10A externally attached to the power supply IC 18. And the power supply voltage V2 can be changed.
  • the same power supply IC 18 can be diverted, and the manufacturing cost of the power supply IC 18 can be reduced and the development period can be shortened.
  • the external discrete resistors are two resistors 10 and 10A, and not only the voltage V3 but also the voltage V2 can be set to a large number of voltage values, respectively.
  • the set value of the power supply voltage can be increased, and a more accurate power supply voltage can be set.
  • setting of the core voltage V3 and the power supply voltage V2 is performed by switching between the discrete resistors 10 and 10A.
  • the core voltage V3 and the power supply voltage V2 can be switched not only by switching the resistors but also by other methods.
  • FIG. 7 is a diagram showing only a portion different from the first embodiment or the second embodiment in the third embodiment of the present invention, and is a view showing a configuration example of discrete components including discrete resistors and discrete capacitances or their combination. .
  • FIG. 7A shows a configuration in which the current source 11 in the first and second embodiments is replaced with an internal resistor 32 in order to detect the discrete resistor 10.
  • the voltage generated at the In terminal can be converted into a digital code by the AD converter 12.
  • FIG. 7B shows a configuration in which the discrete resistor 10 is replaced with a discrete capacitor 31.
  • the voltage of the In terminal after a predetermined time can be converted by the AD converter 12.
  • FIG. 7C shows a configuration in which the discrete resistor 10 is replaced by a discrete capacitor 31 and the current source 11 is replaced by an internal capacitor 33.
  • the voltage of the In terminal determined by the capacitance ratio between the discrete capacitance 31 and the internal capacitance 33 can be converted by the AD converter 12.
  • FIG. 7 are configuration examples in the case of using two or more discrete components.
  • (D) in FIG. 7 enables high-precision In terminal voltage design, making it possible to increase the number of bits by high-precision AD conversion. It is easy and many power supply voltage settings are possible.
  • the internal voltage source 20 is output to the Vout terminal of the power supply IC 18.
  • the Vout terminal is connected to GND via the resistors 10B and 10C, and the connection point between the resistor 10B and the resistor 10C is connected to the In terminal.
  • the discrete components are two discrete resistors 10B and 10C connected in series with each other, and the first switch 21 is connected to a connection midpoint between the two discrete resistors 10B and 10C connected in series with each other,
  • the two discrete resistors 10 B and 10 C connected in series with each other are connected to the internal voltage source 20 of the power supply IC (integrated circuit) 18.
  • the voltage divided by the discrete resistors 10 B and 10 C can be input to the In terminal, and the voltage can be converted by the AD converter 12.
  • FIG. 7E is an example in which the resistors 10B and 10C in FIG. 7D are replaced with discrete capacitance 31A and discrete capacitance 32B, and in the configuration using the capacitance ratio between discrete capacitance 31A and discrete capacitance 32B. is there.
  • the first switch 21 is connected to the connection midpoint of the two discrete capacitors 31A and 31B connected in series with each other, and the two discrete capacitors 31A and 31B connected in series with each other form a power supply IC (integrated circuit)
  • the capacitors 31A and 31B connected to the 18 internal voltage sources 20 are once biased to 0 V, and then the internal voltage source 20 is output to output a voltage according to the capacitance ratio between the discrete capacitance 31A and the discrete capacitance 32B at the In terminal. Can be generated by the AD converter 12.
  • FIG. 7F is an example in which the resistors 10B and 10C in FIG. 7D are replaced with a discrete resistor 10D and a discrete capacitor 31C, and the voltage charged according to the time constant determined by the resistor 10D and the capacitor 31C is It occurs at the In terminal.
  • the first switch 21 is connected to the connection midpoint of the discrete resistor 10D and the discrete capacitor 31C connected in series with each other, and the discrete resistor 31C and the discrete capacitor 10D connected in series with each other constitute a power supply IC (integrated circuit) It is connected to 18 internal voltage sources 20.
  • IC integrated circuit
  • the voltage after a predetermined time can be converted by the AD converter 12.
  • Example 3 Also in each of the above-mentioned Example 3, the same effect as Example 1 and Example 2 can be acquired.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • part of the configuration of each embodiment it is possible to add, delete, and replace other configurations.
  • the power supply configurations of the power supply voltages V1, V2 and V3 are respectively the series power supplies 16 and 17 and the switching power supply 15
  • none of the power supplies is dependent on the power supply type and can be realized with various power supply types.
  • the number of bits of the AD converter 12 in the discrete resistors 10 and 10A described in the first and second embodiments is one example, and the number of bits for one discrete resistor and the number of bits by multiple discrete resistors are also possible. is there.
  • the switching by discrete components described in the third embodiment can be combined with the first embodiment and the second embodiment.
  • the electronic control device of the present invention is applicable to an electronic control device used as a voltage source of a microcomputer for vehicle control, and is also applicable to other industrial robots using a microcomputer.
  • the switching power supply 15 and the voltage regulators 16 and 17 can be defined as a voltage regulator, the switching power supply 15 as a first voltage regulator, the voltage regulator 16 as a second voltage regulator, and the voltage regulator 17 as a third voltage regulator. Define.
  • the discrete resistors 10, 10A, 10B, 10C, and 10D, and the discrete capacitors 31, 31A, 31B, and 31C are collectively defined as discrete components.

Abstract

簡便な方法でマイコンへの供給電源電圧を可変でき、同一の電源ICを多様なマイコンに適応可能な低コストの電子制御装置を実現する。 ディスリート抵抗10の値を判定するためスイッチ21がオンし、電流源11からの電流値とディスクリート抵抗10の抵抗値に応じた電圧がIn1端子に発生する。AD変換器12によりIn1端子電圧がAD変換され選択的に接続されたディスクリート抵抗10に応じたデジタルコードが検出される。レジスタ13にはAD変換結果が保存され、AD変換器12によるディスクリート抵抗10の抵抗値判定が完了する。AD変換器12による抵抗値判定完了後に、各電源電圧V1、V2、V3が起動を開始する。コア電圧V3は、レジスタ13で設定された基準電圧14に応じた電圧で起動することで、所望の電源供給が完了する。

Description

電子制御装置
 本発明は、定電圧電源を有する電子制御装置に関する。
 電子制御装置に搭載されるマイクロコンピュータ(マイコン)は、その機種によって複数の異なる電源電圧が必要とされる。その中で、特に、コア電源電圧は半導体の微細化に伴い、マイコンの機種毎に異なる電源電圧の供給が求められている。
 マイコンへの電源電圧供給は、一般的に半導体集積回路である電源IC(Integrated Circuit)およびその周辺回路で構成される電源回路で行われ、開発段階で適用する電源電圧が決定される。
 そのため、異なる電源電圧のマイコンを搭載する制御装置の開発では、電源ICの再設計を含めた電源回路の再設計が必要となる。また、固定の電源電圧を生成する電源ICの場合は、電源ICの再設計が必要となり開発コストが増大し電子制御装置のコスト増となる。
 そこで、同一の電源回路で多様なマイコンの電源電圧を供給することで、電源回路の再設計が必要なく開発費の低減、開発期間の短縮が可能となる。
 この課題に対する従来技術として、オペアンプの増幅度を変更して出力電圧を可変とする方法がある。
 例えば、特許文献1に記載の技術は、出力電圧の調整を目的として、EEPROMなどのデータレジスタの設定に応じて、出力電圧に接続された負帰還抵抗比をマルチプレクサで切替えることでオペアンプの増幅度を変更し出力電圧を可変としている。
特許2577897号公報
 特許文献1に記載された技術は、データレジスタとマルチプレクサを用いて出力電圧を制御するように構成した定電圧電源回路である。このデータレジスタを電源IC内のEEPROMで実現する場合、EEPROMを製造可能な半導体プロセスが必要となり電源IC、電源回路のコストアップとなる。
 また、電源ICの製造時に、各電源電圧に応じたEEPROMの値を記録する場合は、電源ICの種類が増加することで管理コストが増大しコストアップを招くという問題がある。
 また、電源IC外に設置されたEEPROMを使用する場合も部品追加分のコスト増となる。一方で、マイコンに実装されるEEPROMは、マイコンに電源電圧が供給されたあとに使用できるメモリであるため、マイコンへの電源電圧設定用としては使用できない。
 本発明の目的は、簡便な方法でマイコンへの供給電源電圧を可変でき、同一の電源ICを多様なマイコンに適応可能な低コストの電子制御装置を実現することである。
 上記目的を達成するため、本発明は次のように構成される。
 電子制御装置において、電圧調整部を有する集積回路と、上記集積回路に接続されるディスクリート部品と、を備え、上記ディスクリート部品を変更することにより、上記電圧調整部が出力する電圧が変更される。
 本発明に係る電源回路によれば、簡便な方法でマイコンへの供給電源電圧を可変でき、同一の電源ICを多様なマイコンに適応可能な低コストの電子制御装置を実現することができる。
本発明の実施例1に係る電子制御装置の概略構成図である。 本発明の実施例2に係る電源ICを含む電子制御装置の概略構成図である。 本発明の実施例1における電源回路の起動タイムチャートである。 本発明の実施例1においてマイコンからレジスタを再設定した場合のタイムチャートである。 本発明の実施例1においてディスクリート抵抗が接続される端子がグラウンドにショート故障していた場合の動作タイムチャートである。 本発明の実施例2における電源回路の動作およびマイコンから電源電圧を再設定する場合のタイムチャートである。 本発明の実施例3において実施例1又は実施例2と異なる部分のみ示す図であり、ディスクリート部品の構成例を示す図である。
 以下、添付図面を参照して、本発明の実施形態を詳細に説明する。
 (実施例1)
 図1は、本発明の実施例1に係る電子制御装置である電源回路22の概略構成図である。
 この電子制御装置である電源回路22は、マイコン(マイクロコンピュータ)19に電源を供給する回路である。そして、電源回路22は、電源IC(集積回路)18、ディスクリート抵抗10(第1の抵抗)およびインダクタ23、コンデンサ34などの周辺素子で構成される。
 電源回路22は、マイコン19へ複数の電源電圧を供給するための電圧レギュレータ16(電圧レギュレータ1(第1電圧レギュレータ)、電圧レギュレータ17(電圧レギュレータ2(第2電圧レギュレータ))、およびスイッチング電源15を備えている。
 各電圧レギュレータ16、17、およびスイッチング電源15は、例えば、それぞれに備えられた基準電圧をオペアンプで負帰還増幅することで、それぞれの所望の出力電圧V1、V2、V3を生成する。ここで、電源IC18は、多様な電源電圧が必要とされるマイコン19のコア電圧V3を所望の電圧に選択的に切り替えるための、基準電圧14を備えている。この基準電圧14は可変電圧源である。
 ディスクリート抵抗10は、電源IC18に接続され、基準電圧14を調整するため、適切な抵抗値の抵抗に選択的に取り付けることができる。つまり、ディスクリート抵抗10の抵抗値を選択して、電源IC18に外付けするのみで、電圧V3の電圧値を変更することができる。
 ディスクリート抵抗10は、スイッチ21(第1のスイッチ)及びAD変換器12を介してレジスタ13に接続されている。また、電源IC18(集積回路)の内部電圧源20に接続され、かつ、スイッチ21とAD変換器12との間に接続された電流源11から、スイッチ21を閉とすることで、スイッチ21を介してディスクリート抵抗10に電流が流れる。ディスクリート抵抗10に電流が流れることで、ディスクリート抵抗10と電源IC18との接続端子であるIn1に電圧が発生する。この発生した電圧は、AD変換器12で所望のデジタルコードに変換される。
 AD変換器12によるAD変換後のデジタルコードをレジスタ13に保存したあと、レジスタ13に保存したデジタルコードに対応した電圧が基準電圧源14に設定される。そして、基準電圧源14に設定された電圧に従ってスイッチング電源15のスイッチング回路27が起動される。
 スイッチング回路27には、コンパレータ、オペアンプ、抵抗、スイッチング素子等を備えることができ、電源IC18の外部のインダクタ23を介してコンデンサ34が接続され、所望のコア電圧V3が生成される。マイコン19の電源電圧であるV1、V2についても電源回路22の電圧レギュレータ16及び電圧レギュレータ17によって生成され、電源供給されることでマイコン19は動作可能となる。
 図示した例においては、電圧V1は5V、電圧V2は3.3V、コア電源は0.9~1.6Vである。
 図3は、本発明の実施例1における、電源回路22の起動タイムチャートである。
 図3において、まず、時点t0にて、電源IC18に電源が投入されると、電源IC18の内部電源が立上る。次に、時点t1にて、ディスリート抵抗10の値を判定するため、スイッチ21がオンし、電流源11からの電流値とディスクリート抵抗10の抵抗値に応じた電圧がIn1端子に発生する。
 AD変換器12によりIn1端子電圧がAD変換され、選択的に接続されたディスクリート抵抗10に応じたデジタルコード、図3の例では“100”が検出される。
 レジスタ13には初期値“000”に代えてAD変換結果である“100”が保存され、AD変換器12によるディスクリート抵抗10の抵抗値判定が完了する。
 AD変換器12による抵抗値判定完了後に、時点t2にて、各電源電圧V1、V2、V3が起動を開始する。この時、図3に示した例においては、各電源電圧の起動順序はV2、V1、V3の順に記述しているが、この限りではない。
 コア電圧V3は、レジスタ13の値“100”で設定された基準電圧14に応じた電圧で起動することで、所望の電源供給が完了する。
 また、レジスタ13は、SPIインターフェース28と、マイコン19のSPIインターフェース29とのSPI通信などによって、データの読込み、書込みが可能である。
 上述の手順で電源IC18の電源供給によって、マイコン19が起動した後、電源IC18のレジスタ13の値を読込み、所望のデジタルコードとなっているかを確認できる。
 ここで、電源回路22の出荷試験において、所定のディスクリート抵抗10で出力されるコア電圧V3が設計値からずれており、別のデジタルコードの方が設計値に近い場合は、マイコン19のEEPROM24(メモリ)に、再設定するデジタルコードを記録しておくことで、マイコン19の起動後にレジスタ13の値を再設定し、より高精度のコア電圧V3設定が可能となる。
 図4は、本発明の実施例1において、マイコン19からレジスタ13を再設定した場合のタイムチャートである。各電源電圧V1、V2、V3の起動までは、図3と同様である。
 図4の時点t3にて、マイコン19のEEPROM24に格納されたデジタルコードをSPIインターフェース29、SPIバス、SPIインターフェース28を介して読み出し、レジスタ13に設定し、格納する。
 そして、時点t4にて、基準電圧源14が、レジスタ13に再設定されたデジタルコードに従った電圧をスイッチ素子27に供給し、電圧V3が設定される。
 このように、所望のデジタルコードやテスト工程から再設定すべきと判明したデジタルコードをマイコン19のEEPROM24に記録しておき、レジスタ13の値と異なる時は、EEPROM24に記録されたデジタルコードをレジスタ13に書込むことで、コア電圧V3は所望の電圧、またはより高精度の電圧に調整され、マイコン19は正常動作することが出来る。
 また、AD変換器12によるディスクリート抵抗10の検出動作において、何らかの不具合により、レジスタ13が所望のデジタルコードとなっていない場合は、マイコン19のEEPROM24の所望のデジタルコードを書込むことで、それに応じた正常なコア電圧V3に再設定することが可能である。
 図5は、本発明の実施例1において、ディスクリート抵抗10が接続されるIn1端子がグラウンドにショート故障していた場合の動作タイムチャートである。
 図5において、所望のデジタルコードが“101”であるが、In1端子がGNDショートしているため、In1端子は0Vとなる。このため、AD変換器12は所望の値ではないデジタルコード“000”と判定し、このデジタルコードがレジスタ13に保持される(時点t1~t2)。
 レジスタ13に保持されたデジタルコード“000”に応じてコア電圧V3は、設定されるため、所望の電圧とはならない(時点t2~t3)。
 しかし、この所望でないコア電圧V3となっても、時点t3にて、一旦マイコン19が起動することが出来れば、EEPROM24の所望のデジタルコードを読み出し、レジスタ13に書込むことで(時点t3~t4)、正常なコア電圧V3に再設定されマイコン19は正常動作を維持することが可能となる。
 端子In1のグランドショートなど、可能性のある故障モードを考慮して、それに応じたデジタルコードに対するコア電圧V3が、マイコン19の最大定格を超えない電圧設定にしておくことで、グランドショートなどの故障の際も、マイコン19から正常電圧への再設定することができ、電子制御装置である電源回路22の正常動作を継続することが可能となる。
 (実施例1のまとめ)
 以上のように、本発明の実施例1に係る電源回路22は、電源IC18の外付けの特定のディスクリート抵抗10を付け替えるという簡便な方法で、マイコン19へ供給するコア電圧V3を変更することが出来る。
 これにより、異なるマイコンを使用する場合においても、同一の電源IC18を流用することができ、電源IC18の製造コストを低減、開発期間の短縮を可能とする。
 すなわち、簡便な方法でマイコンへの供給電源電圧を可変でき、同一の電源ICを多様なマイコンに適応可能な低コストの電子制御装置を実現することができる。
 (実施例2)
 次に、本発明の実施例2について説明する。
 図2は、本発明の実施例2に係る電源IC18を含む電子制御装置である電源回路26の概略構成図である。
 図1に示した実施例1と図2に示した実施例2との違いは、電源回路26にディスクリート抵抗10A(第2の抵抗)と第2のスイッチ21Aとを備え、レジスタ13のデジタルコード出力によって、電圧レギュレータ17の電源電圧V2の基準電圧が調整される機能を備えることである。
 ここで、実施例2における電圧レギュレータ17は、基準電圧25と、オペアンプ35と、抵抗36、36とを備えている。基準電圧25は、オペアンプ35の正入力端子に接続され、オペアンプ35の出力端子は、抵抗36及び37を介して接地されている。抵抗36と37との接続点はオペアンプ35の負入力端子に接続される。そして、オペアンプ35の出力が出力電圧V2となる。
 基準電圧25が、レジスタ13のデジタルコード出力によって、複数レベルに調整される。
 ディスクリート抵抗は、一般的に、その抵抗値に一定のバラツキを持ち、その抵抗値を判定する電源IC18に取り付ける抵抗10も一定のバラツキを持つ。このため、1つのディスクリート抵抗10では、設定可能な電源電圧の選択肢が限られる。
 実施例1の場合の例では、ディスクリート抵抗(第1のディスクリート抵抗)10でデジタルコードを3ビットで、コア電圧V3が8通り選択できる。ただし、ディスクリート抵抗10の精度選択、および電源IC18の設計によって、3ビットだけでなくより多ビットの設計も可能である。
 ここで、第2のディスクリート抵抗10Aを追加することで、例えば、抵抗10Aに対して、抵抗10と同じ3ビットの設定とすると、抵抗10と抵抗10Aとで合計6ビットの64通りの電源電圧設定が可能となる。
 電源電圧設定種類が増加することにより、より高精度なコア電圧V3が設定可能となる。
 また、別の電源電圧であるV2は、マイコン19へ供給する3.3Vか5Vの電源電圧とすることができる。一般的なマイコンは、3.3Vか5Vの電源を必要とする。第2のディスクリート抵抗10Aにより増えた設定可能なデジタルコードの1ビットを使用し、基準電圧25の設定を切り替えて、電源電圧V2の3.3Vと5Vとを切り替えることが可能となる。
 また、スイッチ21Aを電流源11と第2のディスクリート抵抗10Aとの間に設けることにより、ディスクリート抵抗10とディスクリート抵抗10Aを別々にAD変換器12に接続可能し、1つのAD変換器12で複数のディスクリート抵抗10及び10Aの検出が可能である。
 ディスクリート抵抗10で検出される3ビットを上位ビット、ディスクリート抵抗10Aで検出される3ビットを下位ビットとして、データ6ビットをレジスタ13に保持し、電源電圧14及び基準電圧25を設定することで、所望のコア電圧V3、および電源電圧V2が生成される。
 実施例2は、実施例1と同様に、マイコン19のEEPROM24に所望のデジタルコード設定、もしくは出荷テスト工程でより最適なデジタルコード設定を行うおくことで、マイコン19の起動後に、SPI通信などでレジスタ13にデジタルコードを書込むことで、コア電圧V3、電源電圧V2の再設定が可能である。
 図6は、実施例2における電源回路26の動作およびマイコン19から電源電圧を再設定する場合のタイムチャートである。
 図6において、図4に示した動作と同様に、まず、ディスクリート抵抗10はAD変換器12によって上位3ビット判定される。その後スイッチ21Aを介してディスクリート抵抗10AがAD変換器12によって下位3ビット判定されることで、レジスタ13の計6ビットが確定する(時点t0~t2)。
 ここで、レジスタ13の6ビットの最上位ビットを電源電圧V2の設定に使用し、残り5ビットをコア電圧V3の設定とすると、各設定に応じた所望の電源電圧V2、V3およびV1で電源が起動しマイコン19に供給される。
 マイコン19への電源供給後に、マイコン19のEEPROM24のデジタルデータとレジスタ13のデータとが異なる時は、SPI通信(SPIインターフェース28とSPIインターフェース29)でレジスタ13にEEPROM24のデジタルコードを書込むことで、コア電圧V3の再設定が可能である(時点t2~t4)。
 (実施例2のまとめ)
 以上のように、本発明の実施例2に係る電源回路26は、電源IC18の外付けの特定のディスクリート抵抗10およびディスクリート抵抗10Aを付け替えるという簡便な方法で、マイコン19へ供給するコア電圧V3、および電源電圧V2を変更することが出来る。
 これにより、異なるマイコンを使用する場合においても、同一の電源IC18を流用することができ、電源IC18の製造コストを低減、開発期間の短縮を可能とする。
 すなわち、簡便な方法でマイコンへの供給電源電圧を可変でき、同一の電源ICを多様なマイコンに適応可能な低コストの電子制御装置を実現することができる。
 さらに、本発明の実施例2によれば、外付けのディスクリート抵抗を抵抗10と10Aとの2つとし、電圧V3のみならず電圧V2も、それぞれ多数の電圧値に設定可能に構成したので、電源電圧の設定値を増加することができ、より高精度の電源電圧を設定することができる。
 (実施例3)
 次に、本発明の実施例3について説明する。
 実施例1、2においては、コア電圧V3及び電源電圧V2の設定を、ディスクリート抵抗10、10Aの切り替えで実行している。しかし、コア電圧V3及び電源電圧V2は、抵抗の切り替えに限らず、他の方法でも、切り替え可能である。
 図7は、本発明の実施例3において、実施例1又は実施例2と異なる部分のみ示す図であり、ディスクリート抵抗、およびディスクリート容量、またその組み合わせからなるディスクリート部品の構成例を示す図である。
 図7の(A)は、ディスクリート抵抗10を検出するために、実施例1及び2における電流源11を内部抵抗32に置き換えた構成である。
 図7の(A)に示した構成の場合も、In端子に発生する電圧をAD変換器12でデジタルコードに変換することができる。
 図7の(B)は、ディスクリート抵抗10をディスクリート容量31に置き換えた構成である。
 ディスクリート容量31の容量値を検出するために、電流源11でディスクリート容量31を充電することで、一定時間後のIn端子の電圧をAD変換器12で変換することができる。
 図7の(C)は、ディスクリート抵抗10をディスクリート容量31に置き換え、電流源11を内部容量33に置き換えた構成である。ディスクリート容量31と内部容量33との容量比によって決まるIn端子の電圧をAD変換器12で変換することができる。
 図7の(D)、(E)、(F)は、ディスクリート部品を2個以上用いる場合の構成例である。
 一般的に、ディスクリート部品は高精度の設定が実現できるため、図7の(D)の構成とすることで高精度のIn端子電圧の設計が可能となり、高精度のAD変換による多ビット化が容易で多数の電源電圧設定が可能である。まず、図7の(D)は、内部電圧源20を電源IC18のVout端子に出力する。Vout端子は抵抗10B及10Cを介してGNDに接続され、抵抗10Bと抵抗10Cとの接続点がIn端子に接続されている。
 つまり、ディスクリート部品は、互いに直列に接続された2つのディスクリート抵抗10B及び10Cであり、互いに直列に接続された2つのディスクリート抵抗10Bと10Cとの接続中点に第1のスイッチ21が接続され、互いに直列に接続された2つのディスクリート抵抗10B及び10Cは、電源IC(集積回路)18の内部電圧源20に接続される。
 上記構成により、ディスクリート抵抗10B、10Cで分圧される電圧をIn端子に入力し、その電圧をAD変換器12で変換することができる。
 図7の(E)は、図7の(D)の抵抗10B及び10Cをディスクリート容量31Aとディスクリート容量32Bとに置き換えた例であり、ディスクリート容量31Aとディスクリート容量32Bとの容量比を用いる構成である。
 つまり、互いに直列に接続された2つのディスクリート容量31A及び31Bの接続中点に第1のスイッチ21が接続され、互いに直列に接続された2つのディスクリート容量31A及び31Bは、電源IC(集積回路)18の内部電圧源20に接続される
 各容量31A、31Bを一旦、0Vにバイアスした後、内部電圧源20を出力することでIn端子にディスクリート容量31Aとディスクリート容量32Bの容量比に応じた電圧が発生し、それをAD変換器12で変換することができる。
 図7の(F)は、図7の(D)の抵抗10B及び10Cをディスクリート抵抗10Dとディスクリート容量31Cとに置き換えた例であり、抵抗10Dと容量31Cによって決まる時定数に従い充電される電圧がIn端子に発生する。
 つまり、互いに直列に接続されたディスクリート抵抗10D及びディスクリート容量31Cの接続中点に第1のスイッチ21を接続し、互いに直列に接続されたディスクリート抵抗31C及びディスクリート容量10Dは、電源IC(集積回路)18の内部電圧源20に接続される。
 上記構成により、一定時間後の電圧をAD変換器12で変換することができる。
 上記実施例3のそれぞれにおいても、実施例1、実施例2と同様な効果を得ることができる。
 (本発明の変形例について)
 本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 例えば、電源電圧V1、V2、V3の電源構成を、それぞれシリーズ電源16、17、スイッチング電源15としたが、いずれの電源も電源形式には依存せず、様々な電源形式で実現可能である
 また、実施形態1、2で述べた、ディスクリート抵抗10、10AにおけるAD変換器12のビット数は1例であり、1つのディスクリート抵抗に対するビット数、またディスクリート抵抗の複数化による多ビット化も可能である。
 また、実施形態3で述べた、ディスクリート部品による切替えは、実施形態1、および実施形態2との組み合わせが可能である。また、実施形態3に示した、ディスクリート抵抗、ディスクリート容量、およびその組み合わせに限らず、あらゆるディスクリート部品の組み合わせで構成することが可能である。
 また、本発明の電子制御装置は、車両制御用のマイコンの電圧源に使用される電子制御装置に適用可能である他、マイコンを用いる産業用ロボット等の他のものにも適用可能である。
 上述したスイッチング電源15、電圧レギュレータ16及び17は、電圧調整部と定義でき、スイッチング電源15は第1電圧調整部、電圧レギュレータ16は第2電圧調整部、電圧レギュレータ17は第3電圧調整部と定義する。
 また、ディスクリート抵抗10、10A、10B、10C、10D、ディスクリート容量31、31A、31B、31Cを総称してディスクリート部品と定義する。+
  10、10A、10B、10C、10D・・・ディスクリート抵抗、 11・・・電流源、 12・・・AD変換器、 13・・・レジスタ、 14・・・基準電圧、 15・・・スイッチング電源、 16、17・・・電圧レギュレータ、 18・・・電源IC、 19・・・マイコン、 20・・・内部電圧源、 21、21A・・・スイッチ、 22、26・・・電源回路、 23・・・インダクタ、 24・・・EEPROM、 25・・・基準電圧、27・・・スイッチング回路、28、29・・・SPIインンターフェース、 31、31A、31B、31C・・・ディスクリート容量、 32・・・内部抵抗、 33・・・内部容量、 34・・・コンデンサ、 35・・・オペアンプ、 36、37・・・抵抗

Claims (14)

  1.  電圧調整部を有する集積回路と、
     上記集積回路に接続されるディスクリート部品と、
     を備え、上記ディスクリート部品を変更することにより、上記電圧調整部が出力する電圧が変更されることを特徴とする電子制御装置。
  2.  請求項1に記載の電子制御装置において、
     上記集積回路は、上記ディスクリート部品が接続されAD変換器と、該AD変換器から出力されたデジタルコードを保存するレジスタと、該レジスタに保存されたデジタルコードに対応した電圧が設定される可変電圧源と、を有し、
     上記電圧調整部は、上記可変電圧源の電圧に従って電圧を調整することを特徴とする電子制御装置。
  3.  請求項2に記載の電子制御装置において、
     上記ディスクリート部品は、ディスクリート抵抗であることを特徴とする電子制御装置。
  4.  請求項3に記載の電子制御装置において、
     上記集積回路は、上記抵抗と上記AD変換機器との間に接続された第1のスイッチと、該第1のスイッチと上記AD変換器との間に接続された電流源と、をさらに有することを特徴とする電子制御装置。
  5.  請求項3に記載の電子制御装置において、
     上記ディスクリート部品は、第1の抵抗と第2の抵抗であることを特徴とする電子制御装置。
  6.  請求項5に記載の電子制御装置において、
     上記集積回路は、上記第1の抵抗と上記AD変換機器との間に接続された第1のスイッチと、該第1のスイッチと上記AD変換器との間に接続された電流源と、上記第2の抵抗と上記AD変換機器との間に接続された第2のスイッチと、をさらに有することを特徴とする電子制御装置。
  7.  請求項2に記載の電子制御装置において、
     上記電圧調整部が出力する電圧は、マイクロコンピュータに供給する電圧であり、上記集積回路は、上記マイクロコンピュータのメモリに記録されたデジタルコードを読み込み、上記レジスタに格納するインターフェースを、さらに有することを特徴とする電子制御装置。
  8.  請求項3に記載の電子制御装置において、
     上記集積回路は、上記抵抗と上記AD変換機器との間に接続された第1のスイッチと、該第1のスイッチと上記AD変換器との間に接続されるとともに上記集積回路の内部電圧源に接続された内部抵抗と、をさらに有することを特徴とする電子制御装置。
  9.  請求項2に記載の電子制御装置において、
     上記ディスクリート部品は、ディスクリート容量であり、上記集積回路は、上記ディスクリート容量と上記AD変換機器との間に接続された第1のスイッチと、該第1のスイッチと上記AD変換器との間に接続された電流源と、をさらに有することを特徴とする電子制御装置。
  10.  請求項2に記載の電子制御装置において、
     上記ディスクリート部品は、ディスクリート容量であり、上記集積回路は、上記ディスクリート容量と上記AD変換機器との間に接続された第1のスイッチと、該第1のスイッチと上記AD変換器との間に接続された内部容量と、をさらに有することを特徴とする電子制御装置。
  11.  請求項3に記載の電子制御装置において、
     上記ディスクリート部品は、互いに直列に接続された2つのディスクリート抵抗であり、上記集積回路は、上記互いに直列に接続された2つのディスクリート抵抗の接続中点に接続された第1のスイッチをさらに有し、上記互いに直列に接続された2つのディスクリート抵抗は、上記集積回路の内部電圧源に接続されることを特徴とする電子制御装置。
  12.  請求項2に記載の電子制御装置において、
     上記ディスクリート部品は、互いに直列に接続された2つのディスクリート容量であり、上記集積回路は、上記互いに直列に接続された2つのディスクリート容量の接続中点に接続された第1のスイッチをさらに有し、上記互いに直列に接続された2つのディスクリート容量は、上記集積回路の内部電圧源に接続されることを特徴とする電子制御装置。
  13.  請求項2に記載の電子制御装置において、
     上記ディスクリート部品は、互いに直列に接続されたディスクリート抵抗及びディスクリート容量であり、上記集積回路は、上記互いに直列に接続されたディスクリート抵抗及びディスクリート容量の接続中点に接続された第1のスイッチをさらに有し、上記互いに直列に接続されたディスクリート抵抗及びディスクリート容量は、上記集積回路の内部電圧源に接続されることを特徴とする電子制御装置。
  14.  請求項1乃至13のうちのいずれか一項に記載の電子制御装置において、
     上記電子制御装置は、車両制御用のマイクロコンピュータの電源であることを特徴とする電子制御装置。
PCT/JP2018/015176 2017-06-23 2018-04-11 電子制御装置 WO2018235403A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112018002075.4T DE112018002075B4 (de) 2017-06-23 2018-04-11 Elektronische steuervorrichtung
JP2019525141A JP6796203B2 (ja) 2017-06-23 2018-04-11 電子制御装置
US16/610,321 US10833688B2 (en) 2017-06-23 2018-04-11 Electronic control device
CN201880031902.8A CN110622096B (zh) 2017-06-23 2018-04-11 电子控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017123585 2017-06-23
JP2017-123585 2017-06-23

Publications (1)

Publication Number Publication Date
WO2018235403A1 true WO2018235403A1 (ja) 2018-12-27

Family

ID=64737202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015176 WO2018235403A1 (ja) 2017-06-23 2018-04-11 電子制御装置

Country Status (5)

Country Link
US (1) US10833688B2 (ja)
JP (1) JP6796203B2 (ja)
CN (1) CN110622096B (ja)
DE (1) DE112018002075B4 (ja)
WO (1) WO2018235403A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563569A (ja) * 1991-09-03 1993-03-12 Hitachi Ltd アナログ−デジタル変換装置とインバータシステム及びマイクロコンピユータ
JPH1178771A (ja) * 1997-09-03 1999-03-23 Fujitsu Ten Ltd エアバッグ装置用点火電流制限回路および方法
JPH11503898A (ja) * 1995-02-01 1999-03-30 フィールドバス・インターナショナル・エイエス 交流直流変換器
JP2002009604A (ja) * 2000-06-23 2002-01-11 Toshiba Corp 半導体集積回路及び半導体装置システム
WO2006059438A1 (ja) * 2004-11-30 2006-06-08 Rohm Co., Ltd 電圧生成回路、定電流回路および発光ダイオード駆動回路
JP2009543193A (ja) * 2006-07-06 2009-12-03 マーベル ワールド トレード リミテッド 設定可能な電圧レギュレータ

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665365A (en) * 1971-02-08 1972-05-23 Cts Corp Multi-impedance electrical component
SU851377A1 (ru) * 1979-10-05 1981-07-30 Предприятие П/Я А-3603 Стабилизатор посто нного тока
JP2577897B2 (ja) * 1986-10-31 1997-02-05 日本テキサス・インスツルメンツ 株式会社 定電圧電源回路
JP2577897Y2 (ja) 1993-05-26 1998-08-06 株式会社大井製作所 車両用の施解錠操作装置
JP3783845B2 (ja) * 2001-05-09 2006-06-07 三菱電機株式会社 車載電子制御装置
US7512504B2 (en) * 2002-09-19 2009-03-31 Marvell World Trade Ltd. Testing system using configurable integrated circuit
JP2004126658A (ja) * 2002-09-30 2004-04-22 Toshiba Corp プロセッサシステム
CN100403195C (zh) * 2004-05-28 2008-07-16 长春科新试验仪器有限公司 试验机测控系统
JP4860209B2 (ja) * 2005-08-24 2012-01-25 富士通セミコンダクター株式会社 半導体装置
CN100377068C (zh) * 2005-08-29 2008-03-26 硕颉科技股份有限公司 串行式存储器程序控制器
US7355375B2 (en) * 2005-09-30 2008-04-08 Nxp B.V. Dynamic bias circuit for use with a stacked device arrangement
US7812746B2 (en) * 2005-12-14 2010-10-12 Broadcom Corporation Variable gain and multiplexing in a digital calibration for an analog-to-digital converter
JP4905692B2 (ja) * 2007-03-16 2012-03-28 ペンタックスリコーイメージング株式会社 交換レンズ
CN100577094C (zh) * 2007-11-16 2010-01-06 陆尧胜 无线宫压监护装置
JP5096131B2 (ja) * 2007-12-27 2012-12-12 ルネサスエレクトロニクス株式会社 半導体記憶装置
JP4602433B2 (ja) * 2008-03-27 2010-12-22 ルネサスエレクトロニクス株式会社 半導体装置およびそれを用いた電源装置
US7647919B2 (en) * 2008-05-14 2010-01-19 Delphi Technologies, Inc. Direct fuel injection control with variable injector current profile
CN101332874B (zh) * 2008-08-07 2010-06-16 航天东方红卫星有限公司 卫星系统自主分级引导过程控制方法
CN201262717Y (zh) * 2008-09-25 2009-06-24 上海艾为电子技术有限公司 一种集成电路内外设定电流的自适应控制电路
JP2010171369A (ja) * 2008-12-22 2010-08-05 Elpida Memory Inc 半導体装置
CN101581959B (zh) * 2009-07-02 2012-04-04 华为技术有限公司 多核芯片中复位单个核的方法和设备
CN102270181B (zh) * 2010-06-01 2013-10-02 炬力集成电路设计有限公司 一种内存访问方法和装置
US9606933B2 (en) * 2014-05-22 2017-03-28 Via Alliance Semiconductor Co., Ltd. Multi-core apparatus and method for restoring data arrays following a power gating event
JP6316120B2 (ja) * 2014-06-30 2018-04-25 日立オートモティブシステムズ株式会社 テストケース生成システム及びテストケースを記録した記録媒体
US9362939B1 (en) * 2014-12-31 2016-06-07 Texas Instruments Incorporated Reduction of input dependent capacitor DAC switching current in flash-SAR analog-to-digital converters
US9558008B2 (en) * 2015-04-06 2017-01-31 Psikick, Inc Systems, methods, and apparatus for controlling the power-on or boot sequence of an integrated circuit based on power harvesting conditions
KR102437779B1 (ko) * 2015-08-11 2022-08-30 삼성전자주식회사 3차원 반도체 메모리 장치
CN205375257U (zh) * 2016-01-22 2016-07-06 深圳微步信息股份有限公司 电源模块
US9935643B1 (en) * 2016-03-08 2018-04-03 Marvell International Ltd. Adaptive charging systems and methods for a successive-approximation analog-to-digital converter
CN205540377U (zh) * 2016-03-24 2016-08-31 北京新能源汽车股份有限公司 用于车辆的传感器供电装置和具有其的车辆
CN105955783A (zh) * 2016-05-09 2016-09-21 浙江大学 一种基于fpga控制的远程fpga逻辑代码的下载方法
KR102654276B1 (ko) * 2017-02-13 2024-04-04 에스케이하이닉스 주식회사 아날로그-디지털 변환기 및 이를 이용한 반도체 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563569A (ja) * 1991-09-03 1993-03-12 Hitachi Ltd アナログ−デジタル変換装置とインバータシステム及びマイクロコンピユータ
JPH11503898A (ja) * 1995-02-01 1999-03-30 フィールドバス・インターナショナル・エイエス 交流直流変換器
JPH1178771A (ja) * 1997-09-03 1999-03-23 Fujitsu Ten Ltd エアバッグ装置用点火電流制限回路および方法
JP2002009604A (ja) * 2000-06-23 2002-01-11 Toshiba Corp 半導体集積回路及び半導体装置システム
WO2006059438A1 (ja) * 2004-11-30 2006-06-08 Rohm Co., Ltd 電圧生成回路、定電流回路および発光ダイオード駆動回路
JP2009543193A (ja) * 2006-07-06 2009-12-03 マーベル ワールド トレード リミテッド 設定可能な電圧レギュレータ

Also Published As

Publication number Publication date
DE112018002075B4 (de) 2021-07-01
DE112018002075T5 (de) 2019-12-24
JP6796203B2 (ja) 2020-12-02
US20200083895A1 (en) 2020-03-12
JPWO2018235403A1 (ja) 2020-04-16
US10833688B2 (en) 2020-11-10
CN110622096A (zh) 2019-12-27
CN110622096B (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
KR101136691B1 (ko) 정전압 회로
JP5518134B2 (ja) 内部電圧トリミング回路及び方法、並びに半導体回路装置
JP5581868B2 (ja) 半導体回路及びそれを用いた定電圧回路
US7402988B2 (en) Switching regulator
JP2006191359A (ja) 電圧供給回路、マイクユニットおよびマイクユニットの感度調整方法
KR101038624B1 (ko) 발진 회로 및 메모리 시스템
JP6669856B2 (ja) オンチップレギュレータのioピンレス較正又はトリミングのための装置及びスキーム
US7679214B2 (en) Electronic device incorporating system power supply unit and method for supplying power supply voltage
JP2009003886A (ja) 電圧レギュレータ回路
US7619396B2 (en) Thermal dissipation improved power supply arrangement and control method thereof
JP5573781B2 (ja) Cr発振回路およびその周波数補正方法
JP5225785B2 (ja) 過電流保護回路及びこれを用いた電源装置
US10921837B2 (en) Voltage regulator and operating method thereof
JP4922882B2 (ja) 電圧可変レギュレータ
JP6796203B2 (ja) 電子制御装置
KR20150019000A (ko) 기준 전류 생성 회로 및 이의 구동 방법
JP6247470B2 (ja) センサ装置及びセンサインタフェース
JP2022148990A (ja) シャントレギュレータ
JP7435968B2 (ja) 集積回路装置
JP2010045944A (ja) 電源装置
JP4518471B2 (ja) レギュレータic
JP5782740B2 (ja) スイッチング電源の制御用半導体装置
JP2019047173A (ja) 半導体装置、信号処理システム、及び信号処理方法
JP2022160022A (ja) シャントレギュレータ
CN116368705A (zh) 半导体装置和多转编码器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525141

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18820281

Country of ref document: EP

Kind code of ref document: A1