KR102654276B1 - 아날로그-디지털 변환기 및 이를 이용한 반도체 장치 - Google Patents

아날로그-디지털 변환기 및 이를 이용한 반도체 장치 Download PDF

Info

Publication number
KR102654276B1
KR102654276B1 KR1020170019541A KR20170019541A KR102654276B1 KR 102654276 B1 KR102654276 B1 KR 102654276B1 KR 1020170019541 A KR1020170019541 A KR 1020170019541A KR 20170019541 A KR20170019541 A KR 20170019541A KR 102654276 B1 KR102654276 B1 KR 102654276B1
Authority
KR
South Korea
Prior art keywords
digital
code
analog
conversion unit
analog conversion
Prior art date
Application number
KR1020170019541A
Other languages
English (en)
Other versions
KR20180093445A (ko
Inventor
김동현
강순구
손관수
정요한
최은지
Original Assignee
에스케이하이닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이하이닉스 주식회사 filed Critical 에스케이하이닉스 주식회사
Priority to KR1020170019541A priority Critical patent/KR102654276B1/ko
Priority to US15/632,648 priority patent/US9859910B1/en
Priority to TW106135000A priority patent/TWI734847B/zh
Priority to CN201711129593.1A priority patent/CN108429552B/zh
Publication of KR20180093445A publication Critical patent/KR20180093445A/ko
Priority to KR1020230138891A priority patent/KR102685478B1/ko
Application granted granted Critical
Publication of KR102654276B1 publication Critical patent/KR102654276B1/ko

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • H03M1/181Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedback mode, i.e. by determining the range to be selected from one or more previous digital output values
    • H03M1/182Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedback mode, i.e. by determining the range to be selected from one or more previous digital output values the feedback signal controlling the reference levels of the analogue/digital converter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/129Means for adapting the input signal to the range the converter can handle, e.g. limiting, pre-scaling ; Out-of-range indication
    • H03M1/1295Clamping, i.e. adjusting the DC level of the input signal to a predetermined value
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/18Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging
    • H03M1/186Automatic control for modifying the range of signals the converter can handle, e.g. gain ranging in feedforward mode, i.e. by determining the range to be selected directly from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • H03K5/2472Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors
    • H03K5/2481Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors with at least one differential stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • H03K5/2472Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors
    • H03K5/249Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude using field effect transistors using clock signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/002Provisions or arrangements for saving power, e.g. by allowing a sleep mode, using lower supply voltage for downstream stages, using multiple clock domains or by selectively turning on stages when needed
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M1/0604Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M1/0607Offset or drift compensation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • H03M1/0678Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy using additional components or elements, e.g. dummy components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1014Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M1/1019Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error by storing a corrected or correction value in a digital look-up table
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/462Details of the control circuitry, e.g. of the successive approximation register
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/56Input signal compared with linear ramp
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/72Sequential conversion in series-connected stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/767Horizontal readout lines, multiplexers or registers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/80Simultaneous conversion using weighted impedances
    • H03M1/802Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices
    • H03M1/804Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices with charge redistribution
    • H03M2201/62

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

본 기술은 제 1 코드에 따라 제 1 노드를 통해 출력되는 기준 전압의 레벨을 가변시키도록 구성된 제 1 디지털-아날로그 변환 유닛; 상기 제 1 노드를 기준으로 상기 제 1 디지털-아날로그 변환 유닛과 병렬 연결되며, 제 2 코드에 따라 상기 기준 전압의 레벨을 가변시키도록 구성된 제 2 디지털-아날로그 변환 유닛; 입력 전압과 상기 기준 전압을 비교하여 비교 결과 신호를 생성하도록 구성된 비교기; 및 상기 제 1 코드와 상기 제 2 코드를 각각의 초기 값으로 저장하며, 상기 비교 결과 신호에 따라 상기 제 1 코드 및 상기 제 2 코드의 값을 가변시켜 저장하도록 구성된 레지스터 어레이를 포함할 수 있다.

Description

아날로그-디지털 변환기 및 이를 이용한 반도체 장치{ANALOG TO DIGITAL CONVERTER AND SEMICONDUCTOR APPARATUS USING THE SAME}
본 발명은 반도체 회로에 관한 것으로서, 특히 아날로그-디지털 변환기에 관한 것이다.
반도체 장치는 아날로그 신호들을 디지털 신호로 변환하여 저장하기 위해 아날로그-디지털 변환기를 포함할 수 있다.
따라서 반도체 장치는 아날로그-디지털 변환기를 포함함에 따른 회로 면적 증가 및 소비 전력 증가가 필연적이므로 아날로그-디지털 변환기의 로직 설계를 간소화함으로써 이를 포함하는 반도체 장치의 회로 면적 증가를 최소화하고 소비 전력 또한 줄일 수 있도록 하는 것이 중요하다.
본 발명의 실시예는 회로 면적 증가를 최소화하고 소비 전력 또한 줄일 수 있는 아날로그-디지털 변환기 및 이를 이용한 반도체 장치를 제공한다.
본 발명의 실시예는 제 1 코드에 따라 제 1 노드를 통해 출력되는 기준 전압의 레벨을 가변시키도록 구성된 제 1 디지털-아날로그 변환 유닛; 상기 제 1 노드를 기준으로 상기 제 1 디지털-아날로그 변환 유닛과 병렬 연결되며, 제 2 코드에 따라 상기 기준 전압의 레벨을 가변시키도록 구성된 제 2 디지털-아날로그 변환 유닛; 입력 전압과 상기 기준 전압을 비교하여 비교 결과 신호를 생성하도록 구성된 비교기; 및 상기 제 1 코드와 상기 제 2 코드를 각각의 초기 값으로 저장하며, 상기 비교 결과 신호에 따라 상기 제 1 코드 및 상기 제 2 코드의 값을 가변시켜 저장하도록 구성된 레지스터 어레이를 포함할 수 있다.
본 발명의 실시예는 제 1 코드에 따라 활성화되는 복수의 제 1 래그 회로, 및 제 2 코드에 따라 활성화되며 제 1 노드를 기준으로 상기 복수의 제 1 래그 회로와 병렬 연결되는 복수의 제 2 래그 회로를 포함하며, 상기 제 1 코드와 상기 제 2 코드 각각의 초기 값을 상기 복수의 제 1 래그 회로와 상기 복수의 제 2 래그 회로 중에서 어느 하나를 모두 활성화시키고 다른 하나를 모두 비 활성화시킬 수 있는 레벨로 설정하며, 상기 복수의 제 1 래그 회로와 상기 복수의 제 2 래그 회로에 의해 가변되는 기준 전압과 입력 전압을 비교한 결과에 따라 상기 제 1 코드 및 상기 제 2 코드를 조정하도록 구성될 수 있다.
본 발명의 실시예는 데이터 출력단의 드라이버를 복제하여 구성되며, 제 1 코드와 제 2 코드에 따라 자신의 전류량을 가변시키도록 구성된 복제 드라이버; 외부 저항; 상기 복제 드라이버의 내부 저항과 상기 외부 저항의 저항 분배 비에 따라 분배된 분배 전압과 기준 전압을 비교한 결과를 출력하도록 구성된 비교기; 상기 비교기의 출력에 따라 상기 제 1 코드를 가변시키도록 구성된 제 1 레지스터 어레이; 및 상기 비교기의 출력에 따라 상기 제 2 코드를 가변시키도록 구성된 제 2 레지스터 어레이를 포함할 수 있다.
본 기술은 아날로그-디지털 변환기를 포함하는 반도체 장치의 회로 면적 증가를 최소화하고 소비 전력 또한 줄일 수 있다.
도 1은 본 발명의 실시예에 따른 아날로그-디지털 변환기(100)의 구성을 나타낸 도면,
도 2A 내지 도 2C는 도 1의 제 1 및 제 2 디지털-아날로그 변환 유닛(101, 102)의 구성 예를 나타낸 도면,
도 3은 본 발명의 실시예에 따른 아날로그-디지털 변환기(100)의 동작을 설명하기 위한 타이밍도,
도 4는 도 1의 비교 결과 신호(CMP)에 따른 제 1 레지스터 어레이(105) 및 제 2 레지스터 어레이(106)의 저장 값 변동을 나타낸 도표,
도 5는 본 발명의 다른 실시예에 따른 아날로그-디지털 변환기(200)의 구성을 나타낸 도면이고,
도 6은 본 발명의 실시예에 따른 반도체 장치(300)의 구성을 나타낸 도면이다.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세히 설명하기로 한다.
도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 아날로그-디지털 변환기(100)는 제 1 디지털-아날로그 변환 유닛(101), 제 2 디지털-아날로그 변환 유닛(102), 비교기(103), 쉬프터(104), 제 1 레지스터 어레이(105) 및 제 2 레지스터 어레이(106)를 포함할 수 있다.
제 1 디지털-아날로그 변환 유닛(101) 및 제 2 디지털-아날로그 변환 유닛(102)은 제 1 코드(R3H, R2H, R1H) 및 제 2 코드(R3L, R2L, R1L)에 따라 기준 전압(VREF)의 레벨을 가변시켜 출력할 수 있다.
제 1 디지털-아날로그 변환 유닛(101)은 기준 전압(VREF)이 출력되는 출력 노드(ND1)를 기준으로 직렬 연결된 복수의 제 1 래그 회로들(4C, 2C, C, C)을 포함할 수 있다.
이때 복수의 제 1 래그 회로들(4C, 2C, C, C)은 바이너리 웨이티드(binary weighted) 방식의 커패시턴스(Capacitance)를 갖도록 한 것으로서, 예를 들어, 2C는 C에 비해 2배의 커패시턴스를 가질 수 있고, 4C는 C에 비해 4배의 커패시턴스를 가질 수 있다.
제 1 디지털-아날로그 변환 유닛(101)의 복수의 제 1 래그 회로들(4C, 2C, C, C) 중에서 래그 회로들 4C, 2C, C에는 제 1 코드(R3H, R2H, R1H)가 각각 입력될 수 있으며, 마지막 래그 회로 C에 입력되는 신호는 로직 하이(H)로 고정시킬 수 있다.
제 1 코드(R3H, R2H, R1H) 중에서 로직 하이의 값을 가지는 신호를 입력 받는 래그 회로가 활성화될 수 있다.
제 2 디지털-아날로그 변환 유닛(102)은 기준 전압(VREF)이 출력되는 출력 노드(ND1)를 기준으로 직렬 연결된 복수의 제 2 래그 회로들(4C, 2C, C, C)을 포함할 수 있다.
제 2 디지털-아날로그 변환 유닛(102)의 복수의 제 2 래그 회로들(4C, 2C, C, C) 중에서 래그 회로들 4C, 2C, C에는 제 2 코드(R3L, R2L, R1L)가 각각 입력될 수 있으며, 마지막 래그 회로 C에 입력되는 신호는 로직 로우(L)로 고정시킬 수 있다.
제 2 코드(R3L, R2L, R1L) 중에서 로직 하이의 값을 가지는 신호를 입력 받는 래그 회로가 활성화될 수 있다.
제 1 디지털-아날로그 변환 유닛(101)의 복수의 제 1 래그 회로들(4C, 2C, C, C)과 제 2 디지털-아날로그 변환 유닛(102)의 복수의 제 2 래그 회로들(4C, 2C, C, C)은 기준 전압(VREF)이 출력되는 출력 노드(ND1)를 기준으로 병렬 연결될 수 있다.
즉, 출력 노드(ND1)를 기준으로 제 1 디지털-아날로그 변환 유닛(101)의 래그 회로(4C)는 제 2 디지털-아날로그 변환 유닛(102)의 래그 회로(4C)와 병렬 연결될 수 있다.
출력 노드(ND1)를 기준으로 제 1 디지털-아날로그 변환 유닛(101)의 래그 회로(2C)는 제 2 디지털-아날로그 변환 유닛(102)의 래그 회로(2C)와 병렬 연결될 수 있다.
출력 노드(ND1)를 기준으로 제 1 디지털-아날로그 변환 유닛(101)의 래그 회로(C)는 제 2 디지털-아날로그 변환 유닛(102)의 래그 회로(C)와 병렬 연결될 수 있다.
제 1 디지털-아날로그 변환 유닛(101)의 복수의 제 1 래그 회로들(4C, 2C, C, C)은 출력 노드(ND1)를 기준으로 직렬 연결되어 있다. 따라서 예를 들어, 복수의 제 1 래그 회로들(4C, 2C, C, C)이 모두 활성화된 경우 제 1 디지털-아날로그 변환 유닛(101)은 4C, 2C, C, C 각각을 합산한 8C의 커패시턴스의 절반에 해당하는 4C 만큼의 커패시턴스를 가질 수 있다.
다른 예를 들어, 제 1 디지털-아날로그 변환 유닛(101)의 복수의 제 1 래그 회로들(4C, 2C, C, C) 중에서 래드 회로들 2C, C, C가 활성화된 경우 제 1 디지털-아날로그 변환 유닛(101)은 4C, 2C, C, C 각각을 합산한 8C의 커패시턴스의 1/4에 해당하는 2C 만큼의 커패시턴스를 가질 수 있다.
비교기(103)는 입력 전압(VIN)과 기준 전압(VREF)을 비교하여 비교 결과 신호(CMP)를 생성할 수 있다.
비교기(103)는 입력 전압(VIN)이 기준 전압(VREF)에 비해 높을 경우 비교 결과 신호(CMP)를 로직 하이로 출력하고, 입력 전압(VIN)이 기준 전압(VREF)에 비해 낮을 경우 비교 결과 신호(CMP)를 로직 로우로 출력할 수 있다.
쉬프터(104)는 클럭 신호(CLK)에 따라 레지스터 제어 신호(SHIFT<3:0>)를 생성할 수 있다.
쉬프터(104)는 클럭 신호(CLK)를 2 분주(Frequency Division)하고 쉬프트시켜 레지스터 제어 신호(SHIFT<3:0>)로서 출력할 수 있다.
제 1 레지스터 어레이(105)는 복수의 제 1 레지스터들(REG3H, REG2H, REG1H)을 포함할 수 있다.
복수의 제 1 레지스터들(REG3H, REG2H, REG1H)은 저장된 신호를 제 1 코드(R3H, R2H, R1H)로서 출력할 수 있다.
제 1 레지스터 어레이(105)는 제 1 코드(R3H, R2H, R1H)를 기 설정된 초기 값으로 저장하며, 레지스터 제어 신호(SHIFT<3:0>)에 따라 비교 결과 신호(CMP)를 제 1 코드(R3H, R2H, R1H) 중 어느 하나로서 대체하여 저장할 수 있다.
예를 들어, 제 1 레지스터 어레이(105)는 제 1 코드(R3H, R2H, R1H)를 기 모두 로직 하이로 저장하며, 비교 결과 신호(CMP)를 복수의 레지스터(REG3H, REG2H, REG1H) 중에서 레지스터 제어 신호(SHIFT<3:0>)에 따라 활성화된 레지스터에 저장할 수 있다.
제 2 레지스터 어레이(106)는 복수의 제 2 레지스터(REG3L, REG2L, REG1L, REG0L)를 포함할 수 있다.
복수의 제 2 레지스터들(REG3L, REG2L, REG1L, REG0L) 중에서 레지스터들(REG3L, REG2L, REG1L)은 저장된 신호를 제 2 코드(R3L, R2L, R1L)로서 출력할 수 있다.
제 2 레지스터 어레이(106)는 제 2 코드(R3L, R2L, R1L)를 기 설정된 초기 값으로 저장하며, 레지스터 제어 신호(SHIFT<3:0>)에 따라 비교 결과 신호(CMP)를 제 2 코드(R3L, R2L, R1L, R0L) 중 어느 하나로서 대체하여 저장할 수 있다.
예를 들어, 제 2 레지스터 어레이(106)는 제 2 코드(R3L, R2L, R1L, ROL)를 기 모두 로직 로우로 저장하며, 비교 결과 신호(CMP)를 복수의 레지스터(REG3L, REG2L, REG1L, REG0L) 중에서 레지스터 제어 신호(SHIFT<3:0>)에 따라 활성화된 레지스터에 저장할 수 있다.
제 1 디지털-아날로그 변환 유닛(101)의 복수의 제 1 래그 회로들(4C, 2C, C)은 제 1 레지스터 어레이(105)의 복수의 제 1 레지스터들(REG3H, REG2H, REG1H)과 직접 연결(Directly Coupled) 될 수 있다.
제 2 디지털-아날로그 변환 유닛(102)의 복수의 제 1 래그 회로들(4C, 2C, C, C)은 제 2 레지스터 어레이(106)의 복수의 제 2 레지스터들(REG3L, REG2L, REG1L, REG0L)과 직접 연결될 수 있다.
본 발명의 실시예에 따른 제 1 및 제 2 디지털-아날로그 변환 유닛(101, 102)은 도 2A 내지 도 2C 중에서 어느 하나와 같이 구성될 수 있다.
도 2A에 도시된 바와 같이, 제 1 및 제 2 디지털-아날로그 변환 유닛(101, 102)은 도 1을 참조하여 설명한 바와 같이, 바이너리 웨이티드 방식의 커패시턴스를 갖도록 복수의 커패시터(111)로 구성할 수 있다.
도 2B에 도시된 바와 같이, 제 1 및 제 2 디지털-아날로그 변환 유닛(101, 102)은 바이너리 웨이티드 방식의 레지스턴스(Resistance)를 갖도록 복수의 저항(112)으로 구성할 수 있다.
도 2C에 도시된 바와 같이, 제 1 및 제 2 디지털-아날로그 변환 유닛(101, 102)은 바이너리 웨이티드 방식에 따른 양의 전류가 흐르도록 복수의 트랜지스터(113)로 구성할 수 있다. 제 1 및 제 2 디지털-아날로그 변환 유닛(101, 102)을 통해 흐르는 전류를 도 2A 및 도 2B의 기준 전압(VREF) 대신 기준 전류(IREF)로서 사용할 수 있다.
도 3 및 도 4를 참조하여 본 발명의 실시예에 따른 아날로그-디지털 변환기(100)의 동작을 설명하기로 한다.
먼저, 도 1을 참조하여 이미 언급한 바와 같이, 초기 동작 시 제 1 코드(R3H, R2H, R1H)는 모두 로직 하이의 값을 가지고, 제 2 코드(R3L, R2L, R1L, ROL)는 모두 로직 로우의 값을 가지고 있다.
활성화된 제 1 디지털-아날로그 변환 유닛(101)의 커패시턴스는 커패시터 직렬 연결 구조로 인하여 최대 커패시턴스 대비 절반이 될 수 있다.
따라서 정전용량 분배(Capacitive Division)에 의해 초기 동작 시 기준 전압(VREF)은 절반 예를 들어, 전원전압의 절반에 해당하는 레벨을 가질 수 있다.
클럭 신호(CLK)의 라이징 엣지를 기준으로 클럭 신호(CLK)의 한 주기 간격으로 레지스터 제어 신호(SHIFT<3:0>)가 순차적으로 활성화될 수 있다.
클럭 신호(CLK)의 폴링 엣지를 기준으로 비교 결과 신호(CMP)가 로직 하이 또는 로직 로우로 천이될 수 있다.
클럭 신호(CLK)의 라이징 엣지를 기준으로 SHIFT<3>이 활성화됨에 따라 비교 결과 신호(CMP)가 제 1 코드(R3H, R2H, R1H) 및 제 2 코드(R3L, R2L, R1L, ROL)의 최상위 비트(MSB: Most Significant Bit) 즉, R3H 및 R3L에 대응되는 레지스터들(REG3H, REG3L)에 동시 저장될 수 있다.
이때 레지스터들(REG3H, REG3L)에 동시 저장되는 신호 값이 로직 하이 또는 로직 로우로 동일하므로 편의상 R3로 표기하기로 한다.
예를 들어, R3가 로직 로우인 경우, 기준 전압(VREF)은 전원전압의 1/4에 대응되는 레벨로 조정될 수 있다.
상술한 방식으로 상승 또는 강하된 기준 전압(VREF)과 입력 전압(VIN)을 비교하여 생성된 비교 결과 신호(CMP)가 레지스터들(REG2H, REG2L)에 R2로서 동시 저장될 수 있다.
클럭 신호(CLK)를 기준으로 다음 순번의 비교 결과 신호(CMP)가 레지스터들(REG1H, REG1L)에 R1으로서 동시 저장될 수 있다.
그리고 클럭 신호(CLK)를 기준으로 다음 순번의 비교 결과 신호(CMP)가 제 2 코드(R3L, R2L, R1L, ROL)의 최하위 비트(LSB: Least Significant Bit)에 대응되는 레지스터(REG0L)에 R0로서 저장됨으로써 아날로그-디지털 변환 동작이 완료될 수 있다.
아날로그-디지털 변환 동작 완료 시, 제 1 코드(R3H, R2H, R1H)와 제 2 코드(R3L, R2L, R1L)는 서로 동일한 값을 가질 수 있다.
따라서 제 2 코드(R3L, R2L, R1L, ROL)가 입력 전압(VIN)을 디지털 신호로 변환한 최종 출력으로서 외부에 제공될 수 있다.
도 5에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 차동(Differential) 타입의 아날로그-디지털 변환기(200)는 제 1 디지털-아날로그 변환 유닛(201), 제 2 디지털-아날로그 변환 유닛(202), 비교기(203), 쉬프터(204), 제 1 레지스터 어레이(205) 및 제 2 레지스터 어레이(206)를 포함할 수 있다.
제 1 디지털-아날로그 변환 유닛(201)은 도 1의 제 1 디지털-아날로그 변환 유닛(101)과 제 2 디지털-아날로그 변환 유닛(102)을 합한 구조와 동일하게 구성할 수 있다.
제 1 디지털-아날로그 변환 유닛(201)은 도 1을 참조하여 설명한 제 1 코드(R3H, R2H, R1H) 및 제 2 코드(R3L, R2L, R1L, ROL) 각각과 동일한 값을 가질 수 있는 CODE_H와 CODE_L에 따라 출력 전압을 생성할 수 있다.
제 2 디지털-아날로그 변환 유닛(202)은 제 1 디지털-아날로그 변환 유닛(201)과 동일하게 구성할 수 있으며, CODE_H와 CODE_L 각각의 차동 신호인 /CODE_H와 /CODE_L에 따라 출력 전압을 생성할 수 있다.
비교기(203)는 제 1 디지털-아날로그 변환 유닛(201)의 출력 전압과 제 2 디지털-아날로그 변환 유닛(202)의 출력 전압을 비교하여 차동 형태의 출력 신호를 생성할 수 있다.
쉬프터(204)는 도 1의 쉬프터(104)와 동일하게 구성할 수 있다.
제 1 레지스터 어레이(205)는 비교기(203)의 출력 및 쉬프터(204)의 출력에 따라 CODE_H와 CODE_H의 차동 신호인 /CODE_H를 생성할 수 있다.
제 1 레지스터 어레이(205)는 도 1의 제 1 레지스터 어레이(105)의 구성을 포함할 수 있고, 이를 이용하여 CODE_H를 생성할 수 있으며, /CODE_H를 생성하기 위한 회로 구성 예를 들어, 인버터 어레이를 더 포함할 수 있다.
제 2 레지스터 어레이(206)는 비교기(203)의 출력 및 쉬프터(204)의 출력에 따라 CODE_L과 CODE_L의 차동 신호인 /CODE_L을 생성할 수 있다.
제 2 레지스터 어레이(206)는 제 1 레지스터 어레이(205)와 동일하게 구성할 수 있다.
본 발명의 실시예에 따른 반도체 장치(300)는 아날로그-디지털 변환기를 이용한 임피던스 조정 회로일 수 있다.
도 6에 도시된 바와 같이, 본 발명의 실시예에 따른 반도체 장치(300)는 복제 드라이버(301), 비교기(303), 쉬프터(304), 제 1 레지스터 어레이(305) 및 제 2 레지스터 어레이(306)를 포함할 수 있다.
복제 드라이버(301)는 반도체 장치의 데이터 출력단에 구성된 드라이버 즉, 데이터 신호를 풀업(Pull-up) 시키기 위한 풀업 드라이버 또는 데이터 신호를 풀다운(Pull-down) 시키기 위한 풀다운 드라이버를 복제한 구성일 수 있다.
복제 드라이버(301)는 예를 들어, 도 2C의 구성을 기준으로 한 도 1의 제 1 디지털-아날로그 변환 유닛(101)과 제 2 디지털-아날로그 변환 유닛(102) 중에서 어느 하나를 포함하거나, 둘의 구성을 모두 포함할 수 있다.
복제 드라이버(301)는 CODE_H와 CODE_L에 따라 전류량을 가변시킬 수 있다.
복제 드라이버(301)를 통해 흐르는 전류가 복제 드라이버(301)의 내부 저항과 외부 저항(RZQ)의 저항 분배 비에 따라 분배된 분배 전압(VZQ)으로 변환될 수 있다.
비교기(303)는 분배 전압(VZQ)과 기준 전압(VREFZQ)을 비교하여 출력 신호를 생성할 수 있다.
쉬프터(304)는 도 1의 쉬프터(104)와 동일하게 구성할 수 있다.
제 1 레지스터 어레이(305)는 비교기(303)의 출력 및 쉬프터(304)의 출력에 따라 CODE_H를 생성할 수 있다.
제 1 레지스터 어레이(305)는 도 1의 제 1 레지스터 어레이(105)의 구성을 포함할 수 있으며, 이를 이용하여 CODE_H를 생성할 수 있다.
제 2 레지스터 어레이(306)는 비교기(303)의 출력 및 쉬프터(304)의 출력에 따라 CODE_L을 생성할 수 있다.
제 2 레지스터 어레이(306)는 제 1 레지스터 어레이(305)와 동일하게 구성할 수 있다.
제 1 레지스터 어레이(305)와 제 2 레지스터 어레이(306)에서 생성된 CODE_H와 CODE_L은 반도체 장치의 데이터 출력단에 구성된 풀업 드라이버와 풀다운 드라이버 각각에 제공될 수 있다.
CODE_H와 CODE_L에 따라 풀업 드라이버와 풀다운 드라이버의 저항 값이 목표 값으로 조정될 수 있다.
이와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (20)

  1. 제 1 코드에 따라 제 1 노드를 통해 출력되는 기준 전압의 레벨을 가변시키도록 구성된 제 1 디지털-아날로그 변환 유닛;
    상기 제 1 노드를 기준으로 상기 제 1 디지털-아날로그 변환 유닛과 병렬 연결되며, 제 2 코드에 따라 상기 기준 전압의 레벨을 가변시키도록 구성된 제 2 디지털-아날로그 변환 유닛;
    입력 전압과 상기 기준 전압을 비교하여 비교 결과 신호를 생성하도록 구성된 비교기; 및
    상기 제 1 코드와 상기 제 2 코드를 각각의 초기 값으로 저장하며, 상기 비교 결과 신호에 따라 상기 제 1 코드 및 상기 제 2 코드의 값을 가변시켜 저장하도록 구성된 레지스터 어레이를 포함하는 아날로그-디지털 변환기.
  2. ◈청구항 2은(는) 설정등록료 납부시 포기되었습니다.◈
    제 1 항에 있어서,
    클럭 신호에 따라 상기 레지스터 어레이의 레지스터들을 선택적으로 활성화시키기 위한 레지스터 제어 신호를 생성하도록 구성된 쉬프터를 더 포함하는 아날로그-디지털 변환기.
  3. ◈청구항 3은(는) 설정등록료 납부시 포기되었습니다.◈
    제 1 항에 있어서,
    클럭 신호를 분주 및 쉬프트시켜 상기 레지스터 어레이의 레지스터들을 선택적으로 활성화시키기 위한 레지스터 제어 신호로서 생성하도록 구성된 쉬프터를 더 포함하는 아날로그-디지털 변환기.
  4. ◈청구항 4은(는) 설정등록료 납부시 포기되었습니다.◈
    제 1 항에 있어서,
    상기 제 1 디지털-아날로그 변환 유닛은
    상기 제 1 노드를 기준으로 직렬 연결된 복수의 제 1 래그 회로들을 포함하는 아날로그-디지털 변환기.
  5. ◈청구항 5은(는) 설정등록료 납부시 포기되었습니다.◈
    제 4 항에 있어서,
    상기 복수의 제 1 래그 회로들은 바이너리 웨이티드(binary weighted) 방식의 커패시턴스(Capacitance)를 갖도록 구성되는 아날로그-디지털 변환기.
  6. ◈청구항 6은(는) 설정등록료 납부시 포기되었습니다.◈
    제 4 항에 있어서,
    상기 제 2 디지털-아날로그 변환 유닛은
    상기 제 1 노드를 기준으로 직렬 연결된 복수의 제 2 래그 회로들을 포함하며,
    상기 복수의 제 2 래그 회로들과 상기 복수의 제 1 래그 회로들은 상기 제 1 노드를 기준으로 병렬 연결되는 아날로그-디지털 변환기.
  7. ◈청구항 7은(는) 설정등록료 납부시 포기되었습니다.◈
    제 1 항에 있어서,
    상기 제 1 디지털-아날로그 변환 유닛 및 상기 제 2 디지털-아날로그 변환 유닛은 상기 레지스터 어레이와 직접 연결되는 아날로그-디지털 변환기.
  8. ◈청구항 8은(는) 설정등록료 납부시 포기되었습니다.◈
    제 6 항에 있어서,
    상기 복수의 제 1 래그 회로들 및 상기 복수의 제 2 래그 회로들은 상기 레지스터 어레이의 복수의 레지스터들과 직접 연결되는 아날로그-디지털 변환기.
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
KR1020170019541A 2017-02-13 2017-02-13 아날로그-디지털 변환기 및 이를 이용한 반도체 장치 KR102654276B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020170019541A KR102654276B1 (ko) 2017-02-13 2017-02-13 아날로그-디지털 변환기 및 이를 이용한 반도체 장치
US15/632,648 US9859910B1 (en) 2017-02-13 2017-06-26 Analog to digital converter and semiconductor apparatus using the same
TW106135000A TWI734847B (zh) 2017-02-13 2017-10-13 類比數位轉換器和利用該類比數位轉換器的半導體裝置
CN201711129593.1A CN108429552B (zh) 2017-02-13 2017-11-15 模数转换器和利用该模数转换器的半导体装置
KR1020230138891A KR102685478B1 (ko) 2017-02-13 2023-10-17 아날로그-디지털 변환기 및 이를 이용한 반도체 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170019541A KR102654276B1 (ko) 2017-02-13 2017-02-13 아날로그-디지털 변환기 및 이를 이용한 반도체 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020230138891A Division KR102685478B1 (ko) 2017-02-13 2023-10-17 아날로그-디지털 변환기 및 이를 이용한 반도체 장치

Publications (2)

Publication Number Publication Date
KR20180093445A KR20180093445A (ko) 2018-08-22
KR102654276B1 true KR102654276B1 (ko) 2024-04-04

Family

ID=60788882

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020170019541A KR102654276B1 (ko) 2017-02-13 2017-02-13 아날로그-디지털 변환기 및 이를 이용한 반도체 장치
KR1020230138891A KR102685478B1 (ko) 2017-02-13 2023-10-17 아날로그-디지털 변환기 및 이를 이용한 반도체 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230138891A KR102685478B1 (ko) 2017-02-13 2023-10-17 아날로그-디지털 변환기 및 이를 이용한 반도체 장치

Country Status (4)

Country Link
US (1) US9859910B1 (ko)
KR (2) KR102654276B1 (ko)
CN (1) CN108429552B (ko)
TW (1) TWI734847B (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10334196B2 (en) * 2016-01-25 2019-06-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6796203B2 (ja) * 2017-06-23 2020-12-02 日立オートモティブシステムズ株式会社 電子制御装置
CN114300015B (zh) * 2021-12-30 2024-09-20 厦门半导体工业技术研发有限公司 存内数据处理电路及阻变存储器
CN115865081B (zh) * 2022-11-30 2024-10-01 贵州振华风光半导体股份有限公司 一种误差减小电路、方法及比较器阵列

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120319880A1 (en) 2010-03-09 2012-12-20 Panasonie Corporation Successive approximation ad converter and mobile wireless device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5427663B2 (ja) * 2010-03-24 2014-02-26 スパンション エルエルシー A/d変換器
CN102480297B (zh) * 2010-11-29 2014-05-14 苏州华芯微电子股份有限公司 逐次比较型ad转换器
US8416105B2 (en) * 2011-02-17 2013-04-09 Taiwan Semiconductor Manufacturing Company, Ltd. ADC calibration apparatus
CN102355266B (zh) * 2011-07-28 2016-03-02 上海华虹宏力半导体制造有限公司 一种逐次逼近模数转化器
US8638248B2 (en) * 2011-10-07 2014-01-28 Nxp, B.V. Input-independent self-calibration method and apparatus for successive approximation analog-to-digital converter with charge-redistribution digital to analog converter
US8981973B2 (en) 2013-03-08 2015-03-17 Microchip Technology Incorporated Successive-approximation-register (SAR) analog-to-digital converter (ADC) attenuation capacitor calibration method and apparatus
KR102103933B1 (ko) * 2013-09-04 2020-04-24 삼성전자주식회사 연속 접근 방식 아날로그-디지털 변환기 및 아날로그-디지털 변환 방법
CN104660261B (zh) * 2013-11-19 2019-01-29 山东共达电声股份有限公司 一种自适应量化的模拟数字转换装置
CN104124972B (zh) * 2014-08-08 2017-05-10 西安电子科技大学 基于电荷再分配的 10 位超低功耗逐次逼近型模数转换器
CN107113003B (zh) * 2014-10-23 2019-04-19 美国莱迪思半导体公司 基于逐次逼近寄存器的模数转换器
US9432037B2 (en) * 2014-11-05 2016-08-30 Samsung Electronics Co., Ltd Apparatus and method for analog-digital converting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120319880A1 (en) 2010-03-09 2012-12-20 Panasonie Corporation Successive approximation ad converter and mobile wireless device

Also Published As

Publication number Publication date
KR20180093445A (ko) 2018-08-22
CN108429552A (zh) 2018-08-21
CN108429552B (zh) 2021-12-31
US9859910B1 (en) 2018-01-02
TW201830872A (zh) 2018-08-16
KR102685478B1 (ko) 2024-07-17
KR20230148310A (ko) 2023-10-24
TWI734847B (zh) 2021-08-01

Similar Documents

Publication Publication Date Title
KR102685478B1 (ko) 아날로그-디지털 변환기 및 이를 이용한 반도체 장치
US6897801B2 (en) High-speed, high-resolution and low-consumption analog/digital converter with single-ended input
US9432046B1 (en) Successive approximation analog-to-digital converter
US8089388B2 (en) Folding analog-to-digital converter
US8830103B2 (en) D/A converter
US20080204300A1 (en) Ad converter circuit and microcontroller
US8035542B2 (en) Digital-to-analog converter and successive approximation type analog-to-digital converter including the same
US11025263B2 (en) Adaptive low power common mode buffer
TWI644518B (zh) 電荷補償電路和類比數位轉換器
US20140354458A1 (en) Sar analog-to-digital conversion method and sar analog-to-digital conversion circuit
JP2007124611A (ja) 浮遊抵抗体ラダーを用いたインバータベースのフラッシュa/d変換器
CN103580691A (zh) 对失调误差和电容失配误差动态补偿的流水线adc子级电路
US20060244647A1 (en) Digital-to-analog converter and successive approximation type analog-to-digital converter utilizing the same
JPS6161578B2 (ko)
WO2020020092A1 (zh) 数模转换器
US6778122B2 (en) Resistor string digital to analog converter with differential outputs and reduced switch count
US10305452B2 (en) Five-level switched-capacitance DAC using bootstrapped switches
JP4004390B2 (ja) 逐次比較型adコンバータおよびマイクロコンピュータ
US5673045A (en) Digital-to-analog conversion circuit and analog-to-digital conversion device using the circuit
JP3984517B2 (ja) Ad変換器
US9973204B1 (en) Resistor string digital to analog converter
US20230261663A1 (en) Analog-to-digital converter circuit and semiconductor integrated circuit
US20240154515A1 (en) Trimming procedure and code reuse for highly precise dc-dc converters
KR101062724B1 (ko) 아날로그/디지털 변환기
JPH09326699A (ja) A/d変換器

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right