WO2018214200A1 - 微发光二极管显示面板及其制作方法 - Google Patents

微发光二极管显示面板及其制作方法 Download PDF

Info

Publication number
WO2018214200A1
WO2018214200A1 PCT/CN2017/089253 CN2017089253W WO2018214200A1 WO 2018214200 A1 WO2018214200 A1 WO 2018214200A1 CN 2017089253 W CN2017089253 W CN 2017089253W WO 2018214200 A1 WO2018214200 A1 WO 2018214200A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
substrate
insulating layer
emitting diode
Prior art date
Application number
PCT/CN2017/089253
Other languages
English (en)
French (fr)
Inventor
卢马才
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to KR1020197037980A priority Critical patent/KR102319307B1/ko
Priority to EP17911299.0A priority patent/EP3633729B1/en
Priority to JP2019565231A priority patent/JP6838247B2/ja
Priority to US15/548,104 priority patent/US10263138B2/en
Priority to PL17911299.0T priority patent/PL3633729T3/pl
Publication of WO2018214200A1 publication Critical patent/WO2018214200A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a micro light emitting diode display panel and a method of fabricating the same.
  • Flat display devices are widely used in various consumer electronics such as mobile phones, televisions, personal digital assistants, digital cameras, notebook computers, desktop computers, etc. due to their high image quality, power saving, thin body and wide application range. Products have become the mainstream in display devices.
  • a micro LED display is a display that realizes image display by using a high-density and small-sized LED array integrated on one substrate as a display pixel. As with a large-sized outdoor LED display, each pixel can be addressed. It can be seen as a miniature version of the outdoor LED display, which reduces the pixel distance from millimeter to micrometer.
  • the Micro LED display is the same as the Organic Light-Emitting Diode (OLED) display. Light-emitting display, but Micro LED display has the advantages of better material stability, longer life, no image imprinting than OLED display, and is considered to be the biggest competitor of OLED display.
  • the micro-light-emitting diode In the fabrication process of the micro-light-emitting diode display panel, the micro-light-emitting diode must first be grown on the original substrate (such as a sapphire-based substrate) by molecular beam epitaxy, and the display panel must also be used to make the micro-light-emitting diode device original.
  • the substrate is transferred to a receiving substrate for forming a display panel, and is arranged as a display array. Specifically, a micro light emitting diode is formed on the original substrate, and then the micro light emitting diode is removed from a laser lift-off (LLO) method.
  • LLO laser lift-off
  • the original substrate is peeled off and a transfer head made of a material such as polydimethylsiloxane (PDMS) is used, such as adsorbing the micro light-emitting diode from the original substrate to a predetermined position on the receiving substrate.
  • a transfer head made of a material such as polydimethylsiloxane (PDMS) is used, such as adsorbing the micro light-emitting diode from the original substrate to a predetermined position on the receiving substrate.
  • PDMS polydimethylsiloxane
  • the micro-light-emitting diode After the micro-light-emitting diode is transferred onto the receiving substrate, it needs to be bonded to the bonding material pre-installed on the receiving substrate, involving solid phase-liquid phase-solid phase conversion of the bonding material, bonding process Complex, difficult and low reliability.
  • the object of the present invention is to provide a micro light emitting diode display panel, which can reduce the electrode bonding difficulty of the micro light emitting diode and improve the reliability of the electrode bonding of the micro light emitting diode.
  • Another object of the present invention is to provide a method for fabricating a micro light emitting diode display panel, which can reduce the electrode bonding difficulty of the micro light emitting diode and improve the reliability of the electrode bonding of the micro light emitting diode.
  • the present invention provides a micro light emitting diode display panel, including: a substrate substrate, a pixel defining layer disposed on the substrate substrate, and a pixel recess formed in the pixel defining layer. a resin adhesive layer in the pixel recess, a micro light emitting diode disposed in the pixel recess and embedded in the resin adhesive layer, and a pixel defining layer on each side of the pixel groove An electrode contact and a second electrode contact;
  • the micro light emitting diode includes: a connection electrode, an LED semiconductor layer disposed above the connection electrode and in contact with the connection electrode, and a first electrode disposed above the LED semiconductor layer and in contact with the LED semiconductor layer a second electrode disposed above the LED semiconductor layer and in contact with the connection electrode, and an insulating protective layer surrounding the LED semiconductor layer;
  • connection electrode in contact with the second electrode and an upper surface of the LED semiconductor layer are exposed outside the resin adhesive layer, and the first electrode and the second electrode are respectively in contact with the first electrode The point is in contact with the second electrode contact.
  • the method further includes: a TFT layer disposed between the substrate substrate and the pixel defining layer;
  • the TFT layer includes: an active layer disposed on the base substrate, a gate insulating layer covering the active layer and the base substrate, and a gate insulating layer disposed above the active layer a gate electrode, an interlayer insulating layer covering the gate electrode and the gate insulating layer, and a source and a drain connected to both ends of the active layer provided on the interlayer insulating layer;
  • the first electrode contact is also in contact with the source.
  • the material of the resin adhesive layer is PMMA.
  • the invention also provides a method for manufacturing a micro light emitting diode display panel, comprising the following steps:
  • Step 1 providing an original substrate on which an LED semiconductor layer, a first insulating layer covering the LED semiconductor layer and the original substrate, and a first insulating layer and the LED are sequentially formed on the original substrate a connection electrode in contact between the semiconductor layer and the original substrate;
  • Step 2 providing a transfer substrate, bonding the surface of the transfer substrate to the connection electrode, and peeling off the original substrate, so that all the LED semiconductor layers, the first insulating layer and the connection electrode are transferred to the transfer substrate, exposing the device The LED semiconductor layer, the first insulating layer, and a portion where the connection electrode is in contact with the original substrate;
  • Step 3 forming a second insulating layer on the exposed LED semiconductor layer, the first insulating layer, and the connecting electrode, wherein the second insulating layer is formed with a first electrode connecting hole and a second electrode connecting hole,
  • the first electrode connection hole and the second electrode connection hole respectively expose a portion of the LED semiconductor layer and a portion of the connection electrode to obtain a semi-finished product of the micro light-emitting diode;
  • Step 4 providing a transfer head and a receiving substrate, the receiving substrate comprising: a base substrate, a pixel defining layer disposed on the base substrate, a pixel groove formed in the pixel defining layer, and a resin adhesive layer in the pixel recess, and first and second electrode contacts on the pixel defining layer on both sides of the pixel recess;
  • Step 5 transferring the semi-finished product of the micro light-emitting diode on the transfer substrate to the pixel groove on the receiving substrate by the transfer head, so that the semi-finished product of the micro light-emitting diode is pressed into and fixed on the resin adhesive layer And the portion of the connection electrode exposed by the second electrode connection hole and the upper surface of the LED semiconductor layer are exposed outside the resin adhesive layer;
  • Step 6 Form a first electrode and a second electrode on the semi-finished product of the micro light-emitting diode, the first electrode is in contact with the LED semiconductor layer and the first electrode contact, and the second electrode and the connection electrode Contact with the second electrode contact.
  • the step 1 specifically includes:
  • Step 11 providing an original substrate, forming an LED semiconductor film on the original substrate, forming a patterned first photoresist layer on the LED semiconductor film;
  • Step 12 etch the LED semiconductor film by using the first photoresist layer as an occlusion to form an LED semiconductor layer;
  • Step 13 covering the LED semiconductor layer and the original substrate with a first insulating layer, and forming a patterned second photoresist layer on the first insulating layer;
  • Step 14 etch the first insulating layer by using the second photoresist layer as an occlusion to form a first through hole and a second through hole penetrating the first insulating layer, the first through hole and the first through hole
  • the two via holes respectively expose a portion of the LED semiconductor layer and a portion of the original substrate
  • Step 15 Form a first metal thin film on the first insulating layer, the LED semiconductor layer, and the original substrate, and form a patterned third photoresist layer on the first metal thin film;
  • Step 16 etch the first metal film by using a third photoresist layer to form a connection electrode, and the connection electrode contacts the LED semiconductor layer and the original substrate through the first through hole and the second through hole respectively .
  • the transport substrate in the step 2 is a rigid substrate provided with an adhesive layer on the surface; in the step 2, the original substrate is peeled off by a laser lift-off process.
  • the step 3 specifically includes:
  • Step 31 forming a second insulating layer on the LED semiconductor layer, the first insulating layer, and the connection electrode, and forming a patterned fourth photoresist layer on the second insulating layer;
  • Step 32 etch the second insulating layer by using the fourth photoresist layer as an occlusion to form a first electrode connection hole and a second electrode connection hole penetrating the second insulation layer, the first The electrode connection hole and the second electrode connection hole respectively expose a part of the LED semiconductor layer and the connection Part of the electrode.
  • the receiving substrate provided in the step 4 further includes: a TFT layer between the substrate substrate and the pixel defining layer;
  • the TFT layer includes: an active layer disposed on the base substrate, a gate insulating layer covering the active layer and the base substrate, and a gate insulating layer disposed above the active layer a gate electrode, an interlayer insulating layer covering the gate electrode and the gate insulating layer, and a source and a drain connected to both ends of the active layer provided on the interlayer insulating layer;
  • the second electrode contact is also in contact with the source.
  • the step 6 specifically includes:
  • Step 61 forming a conductive film on the semi-finished product of the micro light-emitting diode, the pixel defining layer, the first electrode contact, the second electrode contact, and the resin adhesive layer;
  • Step 62 forming a patterned fifth photoresist layer on the conductive film
  • Step 63 etching the conductive film with the fifth photoresist layer as an occlusion to form a first electrode and a second electrode.
  • the material of the resin adhesive layer is PMMA.
  • the invention also provides a method for manufacturing a micro light emitting diode display panel, comprising the following steps:
  • Step 1 providing an original substrate on which an LED semiconductor layer, a first insulating layer covering the LED semiconductor layer and the original substrate, and a first insulating layer and the LED are sequentially formed on the original substrate a connection electrode in contact between the semiconductor layer and the original substrate;
  • Step 2 providing a transfer substrate, bonding the surface of the transfer substrate to the connection electrode, and peeling off the original substrate, so that all the LED semiconductor layers, the first insulating layer and the connection electrode are transferred to the transfer substrate, exposing the device The LED semiconductor layer, the first insulating layer, and a portion where the connection electrode is in contact with the original substrate;
  • Step 3 forming a second insulating layer on the exposed LED semiconductor layer, the first insulating layer, and the connecting electrode, wherein the second insulating layer is formed with a first electrode connecting hole and a second electrode connecting hole,
  • the first electrode connection hole and the second electrode connection hole respectively expose a portion of the LED semiconductor layer and a portion of the connection electrode to obtain a semi-finished product of the micro light-emitting diode;
  • Step 4 providing a transfer head and a receiving substrate, the receiving substrate comprising: a base substrate, a pixel defining layer disposed on the base substrate, a pixel groove formed in the pixel defining layer, and a resin adhesive layer in the pixel recess, and first and second electrode contacts on the pixel defining layer on both sides of the pixel recess;
  • Step 5 transferring the semi-finished product of the micro light-emitting diode on the transfer substrate to the pixel groove on the receiving substrate by the transfer head, so that the semi-finished product of the micro light-emitting diode is pressed into and fixed on the resin adhesive layer And the portion of the connection electrode exposed by the second electrode connection hole and The upper surface of the LED semiconductor layer is exposed outside the resin adhesive layer;
  • Step 6 Form a first electrode and a second electrode on the semi-finished product of the micro light-emitting diode, the first electrode is in contact with the LED semiconductor layer and the first electrode contact, and the second electrode and the connection electrode Contacting the second electrode contact;
  • step 1 specifically includes:
  • Step 11 providing an original substrate, forming an LED semiconductor film on the original substrate, forming a patterned first photoresist layer on the LED semiconductor film;
  • Step 12 etch the LED semiconductor film by using the first photoresist layer as an occlusion to form an LED semiconductor layer;
  • Step 13 covering the LED semiconductor layer and the original substrate with a first insulating layer, and forming a patterned second photoresist layer on the first insulating layer;
  • Step 14 etch the first insulating layer by using the second photoresist layer as an occlusion to form a first through hole and a second through hole penetrating the first insulating layer, the first through hole and the first through hole
  • the two via holes respectively expose a portion of the LED semiconductor layer and a portion of the original substrate
  • Step 15 Form a first metal thin film on the first insulating layer, the LED semiconductor layer, and the original substrate, and form a patterned third photoresist layer on the first metal thin film;
  • Step 16 etch the first metal film by using a third photoresist layer to form a connection electrode, and the connection electrode contacts the LED semiconductor layer and the original substrate through the first through hole and the second through hole respectively ;
  • the transport substrate in the step 2 is a hard substrate provided with an adhesive layer on the surface; in the step 2, the original substrate is peeled off by a laser lift-off process.
  • a micro light emitting diode display panel is provided by filling a resin adhesive layer in a pixel groove and pressing and fixing the micro light emitting diode into a resin adhesive layer.
  • the electrode at the bottom of the micro light emitting diode is guided to the top of the micro light emitting diode through the connecting electrode, so that both electrodes of the micro light emitting diode are at the top, which facilitates the connection between the electrode of the micro light emitting diode and the electrode contact, and can reduce the micro
  • the electrode bonding difficulty of the light emitting diode improves the reliability of the electrode bonding of the micro light emitting diode.
  • the invention also provides a manufacturing method of the micro light emitting diode display panel, which can reduce the electrode bonding difficulty of the micro light emitting diode and improve the reliability of the electrode bonding of the micro light emitting diode.
  • FIG. 8 are schematic diagrams showing the first step of the method for fabricating the micro LED display panel of the present invention.
  • step 9 is a schematic diagram of step 2 of a method for fabricating a micro light emitting diode display panel according to the present invention.
  • FIG. 10 to FIG. 11 are schematic diagrams showing a step 3 of a method for fabricating a micro light emitting diode display panel according to the present invention.
  • FIG. 13 are schematic diagrams showing steps 4 and 5 of the method for fabricating the micro LED display panel of the present invention.
  • step 61 is a schematic diagram of step 61 of a method for fabricating a micro light emitting diode display panel according to the present invention.
  • step 62 is a schematic diagram of step 62 of a method for fabricating a micro light emitting diode display panel according to the present invention.
  • 16 is a schematic diagram of a step 63 of a method for fabricating a micro-light-emitting diode display panel according to the present invention. and a schematic structural view of the micro-light-emitting diode display panel of the present invention;
  • 17 is a schematic top plan view of the step 63 of the method for fabricating the micro LED display panel of the present invention.
  • FIG. 18 is a flow chart of a method of fabricating a micro light emitting diode display panel of the present invention.
  • the present invention provides a micro light emitting diode display panel, including: a substrate substrate 41 , a pixel defining layer 45 disposed on the substrate substrate 41 , and a pixel concave formed in the pixel defining layer 45 .
  • the micro-light emitting diode 200 includes a connection electrode 6 , an LED semiconductor layer 2 disposed above the connection electrode 6 and in contact with the connection electrode 6 , and disposed above the LED semiconductor layer 2 and with the LED semiconductor a first electrode 71 contacting the layer 2, a second electrode 72 disposed above the LED semiconductor layer 2 and in contact with the connection electrode 6, and an insulating protective layer 14 surrounding the LED semiconductor layer 2;
  • connection electrode 6 in contact with the second electrode 72 and an upper surface of the LED semiconductor layer 2 are exposed outside the resin adhesive layer 13, the first electrode 71 and the second electrode The poles 72 are in contact with the first electrode contact 43 and the second electrode contact 44, respectively.
  • the micro-light-emitting diode display panel further includes: a TFT layer 42 disposed between the base substrate 41 and the pixel defining layer 45;
  • the TFT layer 42 includes: disposed on the base substrate 41 An active layer 421, a gate insulating layer 422 covering the active layer 421 and the base substrate 41, and a gate 423 disposed on the gate insulating layer 422 above the active layer 421, covering the a gate electrode 423 and an interlayer insulating layer 424 of the gate insulating layer 422, and a source electrode 425 and a drain electrode 426 disposed on the interlayer insulating layer 424 in contact with both ends of the active layer 421;
  • the first electrode contact 43 is also in contact with the source 425. Specifically, the first electrode contact 43 is in contact with the source 425 through a via extending through the pixel defining layer 45.
  • the micro light emitting diode display panel further includes: a reflective metal layer 16 located at a bottom of the pixel recess 15 .
  • the LED semiconductor layer 2 includes an N+ layer, a P+ layer, and a multiple quantum well layer in contact with the N+ layer and the P+ layer.
  • the material of the connection electrode 6 may be one or a combination of metals such as nickel (Ni), molybdenum (Mo), aluminum (Al), gold (Au), platinum (Pt), and titanium (Ti). .
  • the first electrode 71 and the second electrode 72 are transparent electrodes, and the material is indium tin oxide (ITO), indium zinc oxide (IZO), or a mixture of polyethylene dioxythiophene and polystyrene sulfonic acid (PEDOT: PSS), the material of the insulating protective layer 14 is silicon oxide (SiOx), silicon nitride (SiNx), or aluminum oxide (Al 2 O 3 ).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • PEDOT polystyrene sulfonic acid
  • the material of the insulating protective layer 14 is silicon oxide (SiOx), silicon nitride (SiNx), or aluminum oxide (Al 2 O 3 ).
  • the material of the resin adhesive layer 13 is a material having a large adhesiveness and being curable by ultraviolet (UV) light or heat curing.
  • the material of the resin adhesive layer 13 is polymethyl. Methyl methacrylate (PMMA).
  • the top of the 200 makes the two electrodes of the micro-light-emitting diode 200 at the top, which not only facilitates the connection between the electrodes of the micro-light-emitting diode 200 and the electrode contacts, but also reduces the electrode bonding difficulty of the micro-light-emitting diode 200 and enhances the micro-lighting. The reliability of the electrode bonding of the diode 200.
  • the present invention further provides a method for fabricating the above micro light emitting diode display panel, comprising the following steps:
  • Step 1 referring to FIG. 1 to FIG. 8 , an original substrate 1 is provided on which an LED semiconductor layer 2 , a first insulating layer 3 covering the LED semiconductor layer 2 and the original substrate 1 , and A connection electrode 6 provided on the first insulating layer 3 and in contact with the LED semiconductor layer 2 and the original substrate 1.
  • the step 1 specifically includes:
  • Step 11 Referring to FIG. 1, an original substrate 1 is formed on the original substrate 1.
  • An LED semiconductor film 2' is formed on the LED semiconductor film 2' to form a patterned first photoresist layer 10;
  • Step 12 please refer to FIG. 2, using the first photoresist layer 10 as a shield, etching the LED semiconductor film 2' to form an LED semiconductor layer 2;
  • Step 13 please refer to FIG. 3 and FIG. 4, covering the LED semiconductor layer 2 and the original substrate 1 with a first insulating layer 3, and forming a patterned second photoresist layer 20 on the first insulating layer 3;
  • Step 14 referring to FIG. 5 , the first insulating layer 3 is etched by using the second photoresist layer 20 as an occlusion to form a first through hole 4 and a second through hole penetrating the first insulating layer 3 . 5, the first through hole 4 and the second through hole 5 respectively expose a portion of the LED semiconductor layer 2 and a portion of the original substrate 1;
  • Step 15 a first metal thin film 6' is formed on the first insulating layer 3, the LED semiconductor layer 2, and the original substrate 1, and a pattern is formed on the first metal thin film 6'.
  • Step 16 as shown in FIG. 8, the first metal film 6' is etched by using the third photoresist layer 30 as an occlusion to form a connection electrode 6, and the connection electrode 6 passes through the first through hole 4 and the first The two via holes 5 are in contact with the LED semiconductor layer 2 and the original substrate 1.
  • the original substrate 1 is a sapphire substrate (Al 2 O 3 ), a silicon substrate (Si), a silicon carbide substrate (SiC), or a gallium nitride substrate (GaN), etc.
  • the LED semiconductor layer 2 includes: N+ A layer, a P+ layer, and a multi-quantum well layer in contact with the N+ layer and the P+ layer.
  • the material of the connection electrode 6 may be a combination of one or more of metals such as nickel, molybdenum, aluminum, gold, platinum, and titanium.
  • the material of the first insulating layer 3 is silicon oxide, silicon nitride, or aluminum oxide or the like.
  • Step 2 Referring to FIG. 9, a transfer substrate 8 is provided, the surface of the transfer substrate 8 is bonded to the connection electrode 6, and the original substrate 1 is peeled off so that all the LED semiconductor layers 2, the first insulating layer 3 and the connection are connected.
  • the electrodes 6 are all transferred onto the transfer substrate 8, exposing the LED semiconductor layer 2, the first insulating layer 3, and the portion of the connection electrode 6 in contact with the original substrate 1.
  • the transfer substrate 8 in the step 2 is a rigid substrate provided with an adhesive layer on the surface, and the connection electrode 6 is bonded through the adhesive layer on the surface of the hard substrate, so that the connection electrode 6 is connected to the transfer substrate 8. And removing the original substrate 1 by a laser lift-off process, so that the LED semiconductor layer 2, the first insulating layer 3 and the connection electrode 6 are transferred to the transfer substrate 8, and the LED semiconductor layer 2, the first insulating layer 3 and the connection electrode 6 are connected Inverted, that is, the portion of the LED semiconductor layer 2, the first insulating layer 3, and the connection electrode 6 in contact with the original substrate 1 is away from the transfer substrate 8 to expose the LED semiconductor layer 2 and the connection electrode 6 and the original substrate 1 part of the contact.
  • Step 3 referring to FIG. 10 and FIG. 11, a second insulating layer 9 is formed on the exposed LED semiconductor layer 2, the first insulating layer 3, and the connection electrode 6, and the second insulating layer 9 is formed thereon.
  • the second insulating layer 9 and the first insulating layer 3 together constitute an insulating protective layer 14 surrounding the LED semiconductor layer 2 .
  • the step 3 specifically includes:
  • Step 31 referring to FIG. 10, a second insulating layer 9 is formed on the LED semiconductor layer 2, the first insulating layer 3, and the connection electrode 6, and a patterned fourth light is formed on the second insulating layer 9.
  • Step 32 referring to FIG. 11, the second photoresist layer 9 is occluded, and the second insulating layer 9 is etched to form a first electrode connection hole 11 and a second through the second insulating layer 9.
  • the two electrode connection holes 12, the first electrode connection hole 11 and the second electrode connection hole 12 respectively expose a portion of the LED semiconductor layer 2 and a portion of the connection electrode 6.
  • the material of the second insulating layer 9 is silicon oxide, silicon nitride, or aluminum oxide or the like.
  • the receiving substrate 400 includes a substrate substrate 41 , a pixel defining layer 45 disposed on the substrate substrate 41 , a pixel recess 15 formed in the pixel defining layer 45, a resin adhesive layer 13 disposed in the pixel recess 15, and a first electrode on the pixel defining layer 45 respectively located on both sides of the pixel recess 15 Contact 43 and second electrode contact 44.
  • the receiving substrate 400 provided in the step 4 further includes: a TFT layer 42 between the substrate substrate 41 and the pixel defining layer 45;
  • the TFT layer 42 includes an active layer 421 disposed on the base substrate 41, a gate insulating layer 422 covering the active layer 421 and the base substrate 41, and the active layer a gate electrode 423 on the gate insulating layer 422 over 421, an interlayer insulating layer 424 covering the gate electrode 423 and the gate insulating layer 422, and the active layer provided on the interlayer insulating layer 424 a source 425 and a drain 426 are contacted at both ends of the layer 421; wherein the first electrode contact 43 is further in contact with the source 425, specifically, the first electrode contact 43 is defined by penetrating the pixel A via of layer 45 is in contact with source 425.
  • Step 5 referring to FIG. 12 and FIG. 13, the semi-finished product 100 of the micro light-emitting diode on the transfer substrate 8 is transferred into the pixel groove 15 on the receiving substrate 400 by the transfer head 300, so that the micro light-emitting diode
  • the semi-finished product 100 is press-fitted and fixed in the resin adhesive layer 13, and the portion of the connection electrode 6 exposed by the second electrode connection hole 12 and the upper surface of the LED semiconductor layer 2 are exposed to the resin
  • the adhesive layer 13 is outside.
  • the material of the resin adhesive layer 13 has a large adhesiveness and can pass through.
  • Ultraviolet (UV) light-curing or heat-curing material preferably, the material of the resin adhesive layer 13 is polymethyl methacrylate (PMMA).
  • Step 6 referring to FIG. 14 to FIG. 17, forming a first electrode 71 and a second electrode 72 on the semi-finished product 100 of the micro light emitting diode to obtain a micro light emitting diode 200, the first electrode 71 and the LED semiconductor Layer 2 is in contact with first electrode contact 43, which is in contact with said connection electrode 6 and second electrode contact 44.
  • the step 6 specifically includes:
  • Step 61 please refer to FIG. 14, forming a conductive film 7' on the semi-finished product 100 of the micro-light emitting diode, the pixel defining layer 45, the first electrode contact 43, the second electrode contact 44, and the resin adhesive layer 13;
  • Step 62 please refer to FIG. 15, forming a patterned fifth photoresist layer 50 on the conductive film 7';
  • Step 63 referring to FIG. 16 and FIG. 17, the conductive film 7' is etched by using the fifth photoresist layer 50 as a mask to form a first electrode 71 and a second electrode 72.
  • the first electrode 71 and the second electrode 72 are both transparent electrodes, and the material is ITO, IZO, or PEDOT:PSS.
  • the electrode at the bottom of the micro-light-emitting diode 200 is guided to the top of the micro-light-emitting diode 200 through the connection electrode 6, so that both electrodes of the micro-light-emitting diode 200 are at the top, not only
  • the connection between the electrodes of the micro light-emitting diode 200 and the electrode contacts can be facilitated, and the electrode bonding difficulty of the micro light-emitting diode 200 can be reduced, and the reliability of the electrode bonding of the micro light-emitting diode 200 can be improved.
  • the present invention provides a micro light emitting diode display panel, which is filled with a resin adhesive layer in a pixel groove, and presses and fixes the micro light emitting diode into the resin adhesive layer.
  • the electrode at the bottom of the micro light emitting diode is guided to the top of the micro light emitting diode through the connecting electrode, so that both electrodes of the micro light emitting diode are at the top, which facilitates the connection between the electrode of the micro light emitting diode and the electrode contact, and can reduce the micro light emission.
  • the diode bonding difficulty of the diode enhances the reliability of the electrode bonding of the micro LED.
  • the invention also provides a manufacturing method of the micro light emitting diode display panel, which can reduce the electrode bonding difficulty of the micro light emitting diode and improve the reliability of the electrode bonding of the micro light emitting diode.

Abstract

提供一种微发光二极管显示面板及其制作方法。微发光二极管显示面板通过在像素凹槽(15)内填充树脂粘合层(13),并将微发光二极管(200)压入并固定到树脂粘合层(13)中,同时通过连接电极(6)将微发光二极管(200)的底部的电极引导到微发光二极管(200)的顶部,使得微发光二极管(200)两个电极(71、72)都处于顶部,方便所述微发光二极管(200)的电极(71、72)与电极触点(43、44)的连接,能够降低微发光二极管(200)的电极(71、72)绑定难度,提升微发光二极管(200)的电极(71、72)绑定的可靠性。

Description

微发光二极管显示面板及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种微发光二极管显示面板及其制作方法。
背景技术
平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
微发光二极管(Micro LED)显示器是一种以在一个基板上集成的高密度微小尺寸的LED阵列作为显示像素来实现图像显示的显示器,同大尺寸的户外LED显示屏一样,每一个像素可定址、单独驱动点亮,可以看成是户外LED显示屏的缩小版,将像素点距离从毫米级降低至微米级,Micro LED显示器和有机发光二极管(Organic Light-Emitting Diode,OLED)显示器一样属于自发光显示器,但Micro LED显示器相比OLED显示器还具有材料稳定性更好、寿命更长、无影像烙印等优点,被认为是OLED显示器的最大竞争对手。
在微发光二极管显示面板的制作过程中,微发光二极管必须先在原始基板(如蓝宝石类基板)上通过分子束外延的方法生长出来,而做成显示面板,还必须要把微发光二极管器件原始基板上转移到用于形成显示面板的接收基板上排成显示阵列,具体为:先原始基板上形成微发光二极管,随后通过激光剥离技术(Laser lift-off,LLO)等方法将微发光二极管从原始基板上剥离开,并使用一个采用诸如聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)等材料制作的转印头,如将微发光二极管从原始基板上吸附到接收基板上预设的位置。
目前,微发光二极管转印到接收基板上后,需要与接收基板上预安装的邦定(Bonding)材料进行粘合邦定,涉及邦定材料固相-液相-固相转化,邦定过程复杂,邦定难度大,可靠性低。
发明内容
本发明的目的在于提供一种微发光二极管显示面板,能够降低微发光二极管的电极邦定难度,提升微发光二极管的电极邦定的可靠性。
本发明的目的还在于提供一种微发光二极管显示面板的制作方法,能够降低微发光二极管的电极邦定难度,提升微发光二极管的电极邦定的可靠性。
为实现上述目的,本发明提供了一种微发光二极管显示面板,包括:衬底基板、设于所述衬底基板上的像素定义层、形成于所述像素定义层中的像素凹槽、设于所述像素凹槽内的树脂粘合层、设于所述像素凹槽内并嵌入所述树脂粘合层中的微发光二极管、以及分别位于像素凹槽两侧的像素定义层上的第一电极触点和第二电极触点;
所述微发光二极管包括:连接电极、设于所述连接电极的上方并与所述连接电极接触的LED半导体层、设于所述LED半导体层上方并与所述LED半导体层接触的第一电极、设于所述LED半导体层上方并与所述连接电极接触的第二电极、以及包围所述LED半导体层的绝缘保护层;
所述连接电极与所述第二电极接触的部分以及所述LED半导体层的上表面均暴露于所述树脂粘合层外,所述第一电极和第二电极分别与所述第一电极触点和第二电极触点接触。
还包括:设于所述衬底基板与像素定义层之间的TFT层;
所述TFT层包括:设于所述衬底基板上的有源层、覆盖所述有源层与所述衬底基板的栅极绝缘层、设于所述有源层上方的栅极绝缘层上的栅极、覆盖所述栅极以及栅极绝缘层的层间绝缘层、以及设于所述层间绝缘层上的与所述有源层的两端接触的源极和漏极;所述第一电极触点还与所述源极接触。
所述树脂粘合层的材料为PMMA。
本发明还提供一种微发光二极管显示面板的制作方法,包括如下步骤:
步骤1、提供一原始基板,在所述原始基板上依次形成LED半导体层、覆盖所述LED半导体层和原始基板的第一绝缘层、以及设于所述第一绝缘层上并与所述LED半导体层和原始基板接触的连接电极;
步骤2、提供一转运基板,将所述转运基板表面与连接电极粘合,剥离所述原始基板,使得所有的LED半导体层、第一绝缘层和连接电极均转移到转运基板上,暴露出所述LED半导体层、第一绝缘层、以及连接电极与原始基板接触的部分;
步骤3、在所述暴露出的LED半导体层、第一绝缘层、以及连接电极上形成第二绝缘层,所述第二绝缘层上形成有第一电极连接孔和第二电极连接孔,所述第一电极连接孔和第二电极连接孔分别暴露出所述LED半导体层的一部分和连接电极的一部分,得到微发光二极管的半成品;
步骤4、提供一转印头和一接收基板,所述接收基板包括:衬底基板、设于所述衬底基板上的像素定义层、形成于所述像素定义层中的像素凹槽、设于所述像素凹槽内的树脂粘合层、以及分别位于像素凹槽两侧的像素定义层上的第一电极触点和第二电极触点;
步骤5、通过所述转印头将转运基板上的微发光二极管的半成品转印到接收基板上的像素凹槽内,使得所述微发光二极管的半成品压入并固定在所述树脂粘合层中,且所述连接电极被第二电极连接孔暴露出的部分以及所述LED半导体层的上表面均暴露于所述树脂粘合层外;
步骤6、在所述微发光二极管的半成品上形成第一电极和第二电极,所述第一电极与所述LED半导体层和第一电极触点接触,所述第二电极与所述连接电极和第二电极触点接触。
所述步骤1具体包括:
步骤11、提供一原始基板,在所述原始基板上的形成LED半导体薄膜,在所述LED半导体薄膜上形成图案化的第一光阻层;
步骤12、以所述第一光阻层为遮挡,对所述LED半导体薄膜进行刻蚀,形成LED半导体层;
步骤13、在所述LED半导体层和原始基板上覆盖第一绝缘层,在所述第一绝缘层上形成图案化的第二光阻层;
步骤14、以第二光阻层为遮挡,对所述第一绝缘层进行刻蚀,形成贯穿所述第一绝缘层的第一通孔和第二通孔,所述第一通孔和第二通孔分别暴露出所述LED半导体层的一部分以及原始基板的一部分;
步骤15、在所述第一绝缘层、LED半导体层、及原始基板上形成第一金属薄膜,在所述第一金属薄膜上形成图案化的第三光阻层;
步骤16、以第三光阻层为遮挡,对所述第一金属薄膜进行刻蚀,形成连接电极,所述连接电极分别通过第一通孔和第二通孔与LED半导体层和原始基板接触。
所述步骤2中的转运基板为表面设有粘合层的硬质基板;所述步骤2中通过激光剥离工艺剥离原始基板。
所述步骤3具体包括:
步骤31、在所述LED半导体层、第一绝缘层、及连接电极上形成第二绝缘层,在所述第二绝缘层上形成图案化的第四光阻层;
步骤32、以所述第四光阻层为遮挡,对所述第二绝缘层进行刻蚀,形成贯穿所述第二绝缘层的第一电极连接孔和第二电极连接孔,所述第一电极连接孔和第二电极连接孔分别暴露出所述LED半导体层的一部分和连接 电极的一部分。
所述步骤4中提供的接收基板还包括:位于所述衬底基板和像素定义层之间的TFT层;
所述TFT层包括:设于所述衬底基板上的有源层、覆盖所述有源层与所述衬底基板的栅极绝缘层、设于所述有源层上方的栅极绝缘层上的栅极、覆盖所述栅极以及栅极绝缘层的层间绝缘层、以及设于所述层间绝缘层上的与所述有源层的两端接触的源极和漏极;所述第二电极触点还与所述源极接触。
所述步骤6具体包括:
步骤61、在所述微发光二极管的半成品、像素定义层、第一电极触点、第二电极触点、以及树脂粘合层上形成导电薄膜;
步骤62、在所述导电薄膜上形成图案化的第五光阻层;
步骤63、以所述第五光阻层为遮挡对所述导电薄膜进行刻蚀,形成第一电极和第二电极。
所述树脂粘合层的材料为PMMA。
本发明还提供一种微发光二极管显示面板的制作方法,包括如下步骤:
步骤1、提供一原始基板,在所述原始基板上依次形成LED半导体层、覆盖所述LED半导体层和原始基板的第一绝缘层、以及设于所述第一绝缘层上并与所述LED半导体层和原始基板接触的连接电极;
步骤2、提供一转运基板,将所述转运基板表面与连接电极粘合,剥离所述原始基板,使得所有的LED半导体层、第一绝缘层和连接电极均转移到转运基板上,暴露出所述LED半导体层、第一绝缘层、以及连接电极与原始基板接触的部分;
步骤3、在所述暴露出的LED半导体层、第一绝缘层、以及连接电极上形成第二绝缘层,所述第二绝缘层上形成有第一电极连接孔和第二电极连接孔,所述第一电极连接孔和第二电极连接孔分别暴露出所述LED半导体层的一部分和连接电极的一部分,得到微发光二极管的半成品;
步骤4、提供一转印头和一接收基板,所述接收基板包括:衬底基板、设于所述衬底基板上的像素定义层、形成于所述像素定义层中的像素凹槽、设于所述像素凹槽内的树脂粘合层、以及分别位于像素凹槽两侧的像素定义层上的第一电极触点和第二电极触点;
步骤5、通过所述转印头将转运基板上的微发光二极管的半成品转印到接收基板上的像素凹槽内,使得所述微发光二极管的半成品压入并固定在所述树脂粘合层中,且所述连接电极被第二电极连接孔暴露出的部分以及 所述LED半导体层的上表面均暴露于所述树脂粘合层外;
步骤6、在所述微发光二极管的半成品上形成第一电极和第二电极,所述第一电极与所述LED半导体层和第一电极触点接触,所述第二电极与所述连接电极和第二电极触点接触;
其中,所述步骤1具体包括:
步骤11、提供一原始基板,在所述原始基板上的形成LED半导体薄膜,在所述LED半导体薄膜上形成图案化的第一光阻层;
步骤12、以所述第一光阻层为遮挡,对所述LED半导体薄膜进行刻蚀,形成LED半导体层;
步骤13、在所述LED半导体层和原始基板上覆盖第一绝缘层,在所述第一绝缘层上形成图案化的第二光阻层;
步骤14、以第二光阻层为遮挡,对所述第一绝缘层进行刻蚀,形成贯穿所述第一绝缘层的第一通孔和第二通孔,所述第一通孔和第二通孔分别暴露出所述LED半导体层的一部分以及原始基板的一部分;
步骤15、在所述第一绝缘层、LED半导体层、及原始基板上形成第一金属薄膜,在所述第一金属薄膜上形成图案化的第三光阻层;
步骤16、以第三光阻层为遮挡,对所述第一金属薄膜进行刻蚀,形成连接电极,所述连接电极分别通过第一通孔和第二通孔与LED半导体层和原始基板接触;
其中,所述步骤2中的转运基板为表面设有粘合层的硬质基板;所述步骤2中通过激光剥离工艺剥离原始基板。
本发明的有益效果:本发明提供一种微发光二极管显示面板,该微发光二极管显示面板通过在像素凹槽内填充树脂粘合层,并将微发光二极管压入并固定到树脂粘合层中,同时通过连接电极将微发光二极管的底部的电极引导到微发光二极管的顶部,使得微发光二极管两个电极都处于顶部,方便所述微发光二极管的电极与电极触点的连接,能够降低微发光二极管的电极邦定难度,提升微发光二极管的电极邦定的可靠性。本发明还提供一种微发光二极管显示面板的制作方法,能够降低微发光二极管的电极邦定难度,提升微发光二极管的电极邦定的可靠性。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1至图8为本发明的微发光二极管显示面板的制作方法的步骤1的示意图;
图9为本发明的微发光二极管显示面板的制作方法的步骤2的示意图;
图10至图11为本发明的微发光二极管显示面板的制作方法的步骤3的示意图;
图12至图13为本发明的微发光二极管显示面板的制作方法的步骤4和步骤5的示意图;
图14为本发明的微发光二极管显示面板的制作方法的步骤61的示意图;
图15为本发明的微发光二极管显示面板的制作方法的步骤62的示意图;
图16为本发明的微发光二极管显示面板的制作方法的步骤63的示意图暨本发明的微发光二极管显示面板的结构示意图;
图17为本发明的微发光二极管显示面板的制作方法的步骤63的俯视示意图;
图18为本发明的微发光二极管显示面板的制作方法的流程图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图16,本发明提供一种微发光二极管显示面板,包括:衬底基板41、设于所述衬底基板41上的像素定义层45、形成于所述像素定义层45中的像素凹槽15、设于所述像素凹槽15内的树脂粘合层13、设于所述像素凹槽15内并嵌入所述树脂粘合层13中的微发光二极管200、以及分别位于像素凹槽15两侧的像素定义层45上的第一电极触点43第二电极触点44;
所述微发光二极管200包括:连接电极6、设于所述连接电极6的上方并与所述连接电极6接触的LED半导体层2、设于所述LED半导体层2上方并与所述LED半导体层2接触的第一电极71、设于所述LED半导体层2上方并与所述连接电极6接触的第二电极72、以及包围所述LED半导体层2的绝缘保护层14;
所述连接电极6与所述第二电极72接触的部分以及所述LED半导体层2的上表面均暴露于所述树脂粘合层13外,所述第一电极71和第二电 极72分别与所述第一电极触点43和第二电极触点44接触。
具体地,所述微发光二极管显示面板还包括:设于所述衬底基板41与像素定义层45之间的TFT层42;所述TFT层42包括:设于所述衬底基板41上的有源层421、覆盖所述有源层421与所述衬底基板41的栅极绝缘层422、设于所述有源层421上方的栅极绝缘层422上的栅极423、覆盖所述栅极423以及栅极绝缘层422的层间绝缘层424、以及设于所述层间绝缘层424上的与所述有源层421的两端接触的源极425和漏极426;
其中,所述第一电极触点43还与所述源极425接触,具体为所述第一电极触点43通过贯穿所述像素定义层45的一过孔与所述源极425接触。
具体地,所述微发光二极管显示面板还包括:位于所述像素凹槽15的底部的反光金属层16。
具体地,所述LED半导体层2包括:N+层、P+层、以及与N+层和P+层接触的多量子井层。所述连接电极6的材料可以为镍(Ni)、钼(Mo)、铝(Al)、金(Au)、铂(Pt)、及钛(Ti)等金属中的一种或多种的组合。所述第一电极71和第二电极72均为透明电极,材料为氧化铟锡(ITO)、氧化铟锌(IZO)、或聚乙撑二氧噻吩和聚苯乙烯磺酸的混合物(PEDOT:PSS),所述绝缘保护层14的材料为氧化硅(SiOx)、氮化硅(SiNx)、或氧化铝(Al2O3)等。
需要说明的是,所述树脂粘合层13的材料为具有较大胶黏度、可通过紫外(UV)光固化或热固化的材料,优选地,所述树脂粘合层13的材料为聚甲基丙烯酸甲酯(PMMA)。在微发光二极管200转印时,树脂粘合层13可固定微发光二极管200,防止微发光二极管200的位置偏移,同时通过连接电极6将微发光二极管200的底部的电极引导到微发光二极管200的顶部,使得微发光二极管200两个电极都处于顶部,不仅可以方便所述微发光二极管200的电极与电极触点的连接,还能够降低微发光二极管200的电极邦定难度,提升微发光二极管200的电极邦定的可靠性。
请参阅图18,本发明还提供一种上述微发光二极管显示面板的制作方法,包括如下步骤:
步骤1、请参阅图1至图8,提供一原始基板1,在所述原始基板1上依次形成LED半导体层2、覆盖所述LED半导体层2和原始基板1的第一绝缘层3、以及设于所述第一绝缘层3上并与所述LED半导体层2和原始基板1接触的连接电极6。
具体地,所述步骤1具体包括:
步骤11、请参阅图1,提供一原始基板1,在所述原始基板1上的形成 LED半导体薄膜2’,在所述LED半导体薄膜2’上形成图案化的第一光阻层10;
步骤12、请参阅图2,以所述第一光阻层10为遮挡,对所述LED半导体薄膜2’进行刻蚀,形成LED半导体层2;
步骤13、请参阅图3和图4,在所述LED半导体层2和原始基板1上覆盖第一绝缘层3,在所述第一绝缘层3上形成图案化的第二光阻层20;
步骤14、请参阅图5,以第二光阻层20为遮挡,对所述第一绝缘层3进行刻蚀,形成贯穿所述第一绝缘层3的第一通孔4和第二通孔5,所述第一通孔4和第二通孔5分别暴露出所述LED半导体层2的一部分以及原始基板1的一部分;
步骤15、请参阅图6和图7,在所述第一绝缘层3、LED半导体层2、及原始基板1上形成第一金属薄膜6’,在所述第一金属薄膜6’上形成图案化的第三光阻层30;
步骤16、请参阅图8,以第三光阻层30为遮挡,对所述第一金属薄膜6’进行刻蚀,形成连接电极6,所述连接电极6分别通过第一通孔4和第二通孔5与LED半导体层2和原始基板1接触。
具体的,所述原始基板1为蓝宝石基板(Al2O3)、硅基板(Si)、碳化硅基板(SiC)、或氮化镓基板(GaN)等,所述LED半导体层2包括:N+层、P+层、以及与N+层和P+层接触的多量子井层。所述连接电极6的材料可以为镍、钼、铝、金、铂、及钛等金属中的一种或多种的组合。所述第一绝缘层3的材料为氧化硅、氮化硅、或氧化铝等。
步骤2、请参阅图9,提供一转运基板8,将所述转运基板8表面与连接电极6粘合,剥离所述原始基板1,使得所有的LED半导体层2、第一绝缘层3和连接电极6均转移到转运基板8上,暴露出所述LED半导体层2、第一绝缘层3、以及连接电极6与原始基板1接触的部分。
具体地,所述步骤2中的转运基板8为表面设有粘合层的硬质基板,通过所述硬质基板表面的粘合层粘合连接电极6,使得连接电极6与转运基板8相连,再通过激光剥离工艺去除原始基板1,使得LED半导体层2、第一绝缘层3和连接电极6转移到转运基板8,且所述LED半导体层2、第一绝缘层3和连接电极6上下倒转,也即所述LED半导体层2、第一绝缘层3及连接电极6和所述原始基板1接触的部分远离所述转运基板8,以暴露出LED半导体层2和连接电极6与原始基板1接触的部分。
步骤3、请参阅图10和图11,在所述暴露出的LED半导体层2、第一绝缘层3、以及连接电极6上形成第二绝缘层9,所述第二绝缘层9上形成 有第一电极连接孔11和第二电极连接孔12,所述第一电极连接孔11和第二电极连接孔12分别暴露出所述LED半导体层2的一部分和连接电极6的一部分,得到微发光二极管的半成品100。
具体地,所述第二绝缘层9与第一绝缘层3共同构成包围所述LED半导体层2的绝缘保护层14。
具体地,所述步骤3具体包括:
步骤31、请参阅图10,在所述LED半导体层2、第一绝缘层3、及连接电极6上形成第二绝缘层9,在所述第二绝缘层9上形成图案化的第四光阻层40;
步骤32、请参阅图11,以所述第四光阻层40为遮挡,对所述第二绝缘层9进行刻蚀,形成贯穿所述第二绝缘层9的第一电极连接孔11和第二电极连接孔12,所述第一电极连接孔11和第二电极连接孔12分别暴露出所述LED半导体层2的一部分和连接电极6的一部分。
具体地,所述第二绝缘层9的材料为氧化硅、氮化硅、或氧化铝等。
步骤4、请参阅图12和图13,提供一转印头300和一接收基板400,所述接收基板400包括:衬底基板41、设于所述衬底基板41上的像素定义层45、形成于所述像素定义层45中的像素凹槽15、设于所述像素凹槽15内的树脂粘合层13、以及分别位于像素凹槽15两侧的像素定义层45上的第一电极触点43和第二电极触点44。
具体地,所述步骤4中提供的接收基板400还包括:位于所述衬底基板41和像素定义层45之间的TFT层42;
所述TFT层42包括:设于所述衬底基板41上的有源层421、覆盖所述有源层421与所述衬底基板41的栅极绝缘层422、设于所述有源层421上方的栅极绝缘层422上的栅极423、覆盖所述栅极423以及栅极绝缘层422的层间绝缘层424、以及设于所述层间绝缘层424上的与所述有源层421的两端接触的源极425和漏极426;其中,所述第一电极触点43还与所述源极425接触,具体为所述第一电极触点43通过贯穿所述像素定义层45的一过孔与所述源极425接触。
步骤5、请参阅图12和图13,通过所述转印头300将转运基板8上的微发光二极管的半成品100转印到接收基板400上的像素凹槽15内,使得所述微发光二极管的半成品100压入并固定在所述树脂粘合层13中,且所述连接电极6被第二电极连接孔12暴露出的部分以及所述LED半导体层2的上表面均暴露于所述树脂粘合层13外。
需要说明的是,所述树脂粘合层13的材料为具有较大胶黏度、可通过 紫外(UV)光固化或热固化的材料,优选地,所述树脂粘合层13的材料为聚甲基丙烯酸甲酯(PMMA)。通过将微发光二极管的半成品100压入树脂粘合层13中,对微发光二极管的半成品100进行固定,能够有效防止后续制得的微发光二极管200的位置偏移。
步骤6、请参阅图14至图17,在所述微发光二极管的半成品100上形成第一电极71和第二电极72,制得微发光二极管200,所述第一电极71与所述LED半导体层2和第一电极触点43接触,所述第二电极72与所述连接电极6和第二电极触点44接触。
具体地,所述步骤6具体包括:
步骤61、请参阅图14,在所述微发光二极管的半成品100、像素定义层45、第一电极触点43、第二电极触点44、以及树脂粘合层13上形成导电薄膜7’;
步骤62、请参阅图15,在所述导电薄膜7’上形成图案化的第五光阻层50;
步骤63、请参阅图16和图17,以所述第五光阻层50为遮挡对所述导电薄膜7’进行刻蚀,形成第一电极71和第二电极72。
具体地,所述第一电极71和第二电极72均为透明电极,材料为ITO、IZO、或PEDOT:PSS。
需要说明的是,上述微发光二极管显示面板的制作方法,通过连接电极6将微发光二极管200的底部的电极引导到微发光二极管200的顶部,使得微发光二极管200两个电极都处于顶部,不仅可以方便所述微发光二极管200的电极与电极触点的连接,还能够降低微发光二极管200的电极邦定难度,提升微发光二极管200的电极邦定的可靠性。
综上所述,本发明提供一种微发光二极管显示面板,该微发光二极管显示面板通过在像素凹槽内填充树脂粘合层,并将微发光二极管压入并固定到树脂粘合层中,同时通过连接电极将微发光二极管的底部的电极引导到微发光二极管的顶部,使得微发光二极管两个电极都处于顶部,方便所述微发光二极管的电极与电极触点的连接,能够降低微发光二极管的电极邦定难度,提升微发光二极管的电极邦定的可靠性。本发明还提供一种微发光二极管显示面板的制作方法,能够降低微发光二极管的电极邦定难度,提升微发光二极管的电极邦定的可靠性。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (15)

  1. 一种微发光二极管显示面板,包括:衬底基板、设于所述衬底基板上的像素定义层、形成于所述像素定义层中的像素凹槽、设于所述像素凹槽内的树脂粘合层、设于所述像素凹槽内并嵌入所述树脂粘合层中的微发光二极管、以及分别位于像素凹槽两侧的像素定义层上的第一电极触点和第二电极触点;
    所述微发光二极管包括:连接电极、设于所述连接电极的上方并与所述连接电极接触的LED半导体层、设于所述LED半导体层上方并与所述LED半导体层接触的第一电极、设于所述LED半导体层上方并与所述连接电极接触的第二电极、以及包围所述LED半导体层的绝缘保护层;
    所述连接电极与所述第二电极接触的部分以及所述LED半导体层的上表面均暴露于所述树脂粘合层外,所述第一电极和第二电极分别与所述第一电极触点和第二电极触点接触。
  2. 如权利要求1所述的微发光二极管显示面板,还包括:设于所述衬底基板与像素定义层之间的TFT层;
    所述TFT层包括:设于所述衬底基板上的有源层、覆盖所述有源层与所述衬底基板的栅极绝缘层、设于所述有源层上方的栅极绝缘层上的栅极、覆盖所述栅极以及栅极绝缘层的层间绝缘层、以及设于所述层间绝缘层上的与所述有源层的两端接触的源极和漏极;所述第一电极触点还与所述源极接触。
  3. 如权利要求1所述的微发光二极管显示面板,其中,所述树脂粘合层的材料为PMMA。
  4. 一种微发光二极管显示面板的制作方法,包括如下步骤:
    步骤1、提供一原始基板,在所述原始基板上依次形成LED半导体层、覆盖所述LED半导体层和原始基板的第一绝缘层、以及设于所述第一绝缘层上并与所述LED半导体层和原始基板接触的连接电极;
    步骤2、提供一转运基板,将所述转运基板表面与连接电极粘合,剥离所述原始基板,使得所有的LED半导体层、第一绝缘层和连接电极均转移到转运基板上,暴露出所述LED半导体层、第一绝缘层、以及连接电极与原始基板接触的部分;
    步骤3、在所述暴露出的LED半导体层、第一绝缘层、以及连接电极上形成第二绝缘层,所述第二绝缘层上形成有第一电极连接孔和第二电极 连接孔,所述第一电极连接孔和第二电极连接孔分别暴露出所述LED半导体层的一部分和连接电极的一部分,得到微发光二极管的半成品;
    步骤4、提供一转印头和一接收基板,所述接收基板包括:衬底基板、设于所述衬底基板上的像素定义层、形成于所述像素定义层中的像素凹槽、设于所述像素凹槽内的树脂粘合层、以及分别位于像素凹槽两侧的像素定义层上的第一电极触点和第二电极触点;
    步骤5、通过所述转印头将转运基板上的微发光二极管的半成品转印到接收基板上的像素凹槽内,使得所述微发光二极管的半成品压入并固定在所述树脂粘合层中,且所述连接电极被第二电极连接孔暴露出的部分以及所述LED半导体层的上表面均暴露于所述树脂粘合层外;
    步骤6、在所述微发光二极管的半成品上形成第一电极和第二电极,所述第一电极与所述LED半导体层和第一电极触点接触,所述第二电极与所述连接电极和第二电极触点接触。
  5. 如权利要求4所述的微发光二极管显示面板的制作方法,其中,所述步骤1具体包括:
    步骤11、提供一原始基板,在所述原始基板上的形成LED半导体薄膜,在所述LED半导体薄膜上形成图案化的第一光阻层;
    步骤12、以所述第一光阻层为遮挡,对所述LED半导体薄膜进行刻蚀,形成LED半导体层;
    步骤13、在所述LED半导体层和原始基板上覆盖第一绝缘层,在所述第一绝缘层上形成图案化的第二光阻层;
    步骤14、以第二光阻层为遮挡,对所述第一绝缘层进行刻蚀,形成贯穿所述第一绝缘层的第一通孔和第二通孔,所述第一通孔和第二通孔分别暴露出所述LED半导体层的一部分以及原始基板的一部分;
    步骤15、在所述第一绝缘层、LED半导体层、及原始基板上形成第一金属薄膜,在所述第一金属薄膜上形成图案化的第三光阻层;
    步骤16、以第三光阻层为遮挡,对所述第一金属薄膜进行刻蚀,形成连接电极,所述连接电极分别通过第一通孔和第二通孔与LED半导体层和原始基板接触。
  6. 如权利要求4所述的微发光二极管显示面板的制作方法,其中,所述步骤2中的转运基板为表面设有粘合层的硬质基板;所述步骤2中通过激光剥离工艺剥离原始基板。
  7. 如权利要求4所述的微发光二极管显示面板的制作方法,其中,所述步骤3具体包括:
    步骤31、在所述LED半导体层、第一绝缘层、及连接电极上形成第二绝缘层,在所述第二绝缘层上形成图案化的第四光阻层;
    步骤32、以所述第四光阻层为遮挡,对所述第二绝缘层进行刻蚀,形成贯穿所述第二绝缘层的第一电极连接孔和第二电极连接孔,所述第一电极连接孔和第二电极连接孔分别暴露出所述LED半导体层的一部分和连接电极的一部分。
  8. 如权利要求4所述的微发光二极管显示面板的制作方法,其中,所述步骤4中提供的接收基板还包括:位于所述衬底基板和像素定义层之间的TFT层;
    所述TFT层包括:设于所述衬底基板上的有源层、覆盖所述有源层与所述衬底基板的栅极绝缘层、设于所述有源层上方的栅极绝缘层上的栅极、覆盖所述栅极以及栅极绝缘层的层间绝缘层、以及设于所述层间绝缘层上的与所述有源层的两端接触的源极和漏极;所述第二电极触点还与所述源极接触。
  9. 如权利要求4所述的微发光二极管显示面板的制作方法,其中,所述步骤6具体包括:
    步骤61、在所述微发光二极管的半成品、像素定义层、第一电极触点、第二电极触点、以及树脂粘合层上形成导电薄膜;
    步骤62、在所述导电薄膜上形成图案化的第五光阻层;
    步骤63、以所述第五光阻层为遮挡对所述导电薄膜进行刻蚀,形成第一电极和第二电极。
  10. 如权利要求4所述的微发光二极管显示面板的制作方法,其中,所述树脂粘合层的材料为PMMA。
  11. 一种微发光二极管显示面板的制作方法,包括如下步骤:
    步骤1、提供一原始基板,在所述原始基板上依次形成LED半导体层、覆盖所述LED半导体层和原始基板的第一绝缘层、以及设于所述第一绝缘层上并与所述LED半导体层和原始基板接触的连接电极;
    步骤2、提供一转运基板,将所述转运基板表面与连接电极粘合,剥离所述原始基板,使得所有的LED半导体层、第一绝缘层和连接电极均转移到转运基板上,暴露出所述LED半导体层、第一绝缘层、以及连接电极与原始基板接触的部分;
    步骤3、在所述暴露出的LED半导体层、第一绝缘层、以及连接电极上形成第二绝缘层,所述第二绝缘层上形成有第一电极连接孔和第二电极连接孔,所述第一电极连接孔和第二电极连接孔分别暴露出所述LED半导 体层的一部分和连接电极的一部分,得到微发光二极管的半成品;
    步骤4、提供一转印头和一接收基板,所述接收基板包括:衬底基板、设于所述衬底基板上的像素定义层、形成于所述像素定义层中的像素凹槽、设于所述像素凹槽内的树脂粘合层、以及分别位于像素凹槽两侧的像素定义层上的第一电极触点和第二电极触点;
    步骤5、通过所述转印头将转运基板上的微发光二极管的半成品转印到接收基板上的像素凹槽内,使得所述微发光二极管的半成品压入并固定在所述树脂粘合层中,且所述连接电极被第二电极连接孔暴露出的部分以及所述LED半导体层的上表面均暴露于所述树脂粘合层外;
    步骤6、在所述微发光二极管的半成品上形成第一电极和第二电极,所述第一电极与所述LED半导体层和第一电极触点接触,所述第二电极与所述连接电极和第二电极触点接触;
    其中,所述步骤1具体包括:
    步骤11、提供一原始基板,在所述原始基板上的形成LED半导体薄膜,在所述LED半导体薄膜上形成图案化的第一光阻层;
    步骤12、以所述第一光阻层为遮挡,对所述LED半导体薄膜进行刻蚀,形成LED半导体层;
    步骤13、在所述LED半导体层和原始基板上覆盖第一绝缘层,在所述第一绝缘层上形成图案化的第二光阻层;
    步骤14、以第二光阻层为遮挡,对所述第一绝缘层进行刻蚀,形成贯穿所述第一绝缘层的第一通孔和第二通孔,所述第一通孔和第二通孔分别暴露出所述LED半导体层的一部分以及原始基板的一部分;
    步骤15、在所述第一绝缘层、LED半导体层、及原始基板上形成第一金属薄膜,在所述第一金属薄膜上形成图案化的第三光阻层;
    步骤16、以第三光阻层为遮挡,对所述第一金属薄膜进行刻蚀,形成连接电极,所述连接电极分别通过第一通孔和第二通孔与LED半导体层和原始基板接触;
    其中,所述步骤2中的转运基板为表面设有粘合层的硬质基板;所述步骤2中通过激光剥离工艺剥离原始基板。
  12. 如权利要求11所述的微发光二极管显示面板的制作方法,其中,所述步骤3具体包括:
    步骤31、在所述LED半导体层、第一绝缘层、及连接电极上形成第二绝缘层,在所述第二绝缘层上形成图案化的第四光阻层;
    步骤32、以所述第四光阻层为遮挡,对所述第二绝缘层进行刻蚀,形 成贯穿所述第二绝缘层的第一电极连接孔和第二电极连接孔,所述第一电极连接孔和第二电极连接孔分别暴露出所述LED半导体层的一部分和连接电极的一部分。
  13. 如权利要求11所述的微发光二极管显示面板的制作方法,其中,所述步骤4中提供的接收基板还包括:位于所述衬底基板和像素定义层之间的TFT层;
    所述TFT层包括:设于所述衬底基板上的有源层、覆盖所述有源层与所述衬底基板的栅极绝缘层、设于所述有源层上方的栅极绝缘层上的栅极、覆盖所述栅极以及栅极绝缘层的层间绝缘层、以及设于所述层间绝缘层上的与所述有源层的两端接触的源极和漏极;所述第二电极触点还与所述源极接触。
  14. 如权利要求11所述的微发光二极管显示面板的制作方法,其中,所述步骤6具体包括:
    步骤61、在所述微发光二极管的半成品、像素定义层、第一电极触点、第二电极触点、以及树脂粘合层上形成导电薄膜;
    步骤62、在所述导电薄膜上形成图案化的第五光阻层;
    步骤63、以所述第五光阻层为遮挡对所述导电薄膜进行刻蚀,形成第一电极和第二电极。
  15. 如权利要求11所述的微发光二极管显示面板的制作方法,其中,所述树脂粘合层的材料为PMMA。
PCT/CN2017/089253 2017-05-23 2017-06-20 微发光二极管显示面板及其制作方法 WO2018214200A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197037980A KR102319307B1 (ko) 2017-05-23 2017-06-20 마이크로 발광다이오드 디스플레이 패널 및 그 제조방법
EP17911299.0A EP3633729B1 (en) 2017-05-23 2017-06-20 Micro light emitting diode display panel and manufacturing method therefor
JP2019565231A JP6838247B2 (ja) 2017-05-23 2017-06-20 マイクロ発光ダイオードディスプレイパネル及びその製造方法
US15/548,104 US10263138B2 (en) 2017-05-23 2017-06-20 Micro light-emitting-diode display panel and manufacturing method thereof
PL17911299.0T PL3633729T3 (pl) 2017-05-23 2017-06-20 Panel wyświetlający z mikro-diodami elektroluminescencyjnymi oraz sposób jego wytwarzania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710370731.9A CN106941108B (zh) 2017-05-23 2017-05-23 微发光二极管显示面板及其制作方法
CN201710370731.9 2017-05-23

Publications (1)

Publication Number Publication Date
WO2018214200A1 true WO2018214200A1 (zh) 2018-11-29

Family

ID=59465082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089253 WO2018214200A1 (zh) 2017-05-23 2017-06-20 微发光二极管显示面板及其制作方法

Country Status (7)

Country Link
US (2) US10263138B2 (zh)
EP (1) EP3633729B1 (zh)
JP (1) JP6838247B2 (zh)
KR (1) KR102319307B1 (zh)
CN (1) CN106941108B (zh)
PL (1) PL3633729T3 (zh)
WO (1) WO2018214200A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110189628A (zh) * 2019-06-28 2019-08-30 京东方科技集团股份有限公司 一种背光模组及显示装置

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102587215B1 (ko) * 2016-12-21 2023-10-12 삼성디스플레이 주식회사 발광 장치 및 이를 구비한 표시 장치
CN107170773B (zh) * 2017-05-23 2019-09-17 深圳市华星光电技术有限公司 微发光二极管显示面板及其制作方法
CN107393940B (zh) * 2017-09-06 2020-02-21 严光能 Led显示设备及其制造方法
CN107742636B (zh) * 2017-10-25 2020-04-03 上海天马微电子有限公司 一种显示面板和显示装置
CN109786307B (zh) * 2017-11-15 2021-02-05 鸿富锦精密工业(深圳)有限公司 微型led显示面板的制备方法
CN108231968B (zh) 2017-12-11 2020-02-11 厦门市三安光电科技有限公司 微发光二极管及其转移方法
CN108364971B (zh) * 2018-03-20 2021-03-30 厦门市三安光电科技有限公司 微发光元件、微发光二极管及其转印方法
TWI721435B (zh) * 2018-05-28 2021-03-11 鴻海精密工業股份有限公司 微型發光二極體顯示面板
CN108807556B (zh) * 2018-06-11 2021-01-29 京东方科技集团股份有限公司 一种光学传感器件及其制作方法、显示器件、显示设备
CN110828500A (zh) * 2018-08-07 2020-02-21 深圳Tcl新技术有限公司 一种led显示屏及其制作方法
CN109148506B (zh) * 2018-08-24 2021-04-13 上海天马微电子有限公司 Micro LED转移方法及显示面板、显示装置
CN109300931B (zh) 2018-09-30 2021-02-26 上海天马微电子有限公司 一种Micro LED显示面板及制作方法、显示装置
WO2020132882A1 (zh) * 2018-12-25 2020-07-02 深圳市柔宇科技有限公司 发光装置及其制造方法、显示面板及显示装置
CN109599037B (zh) * 2018-12-29 2020-07-10 武汉华星光电技术有限公司 显示面板及其制备方法
CN109585488A (zh) * 2019-01-02 2019-04-05 京东方科技集团股份有限公司 Led显示基板及其制作方法、显示装置
KR20200099037A (ko) * 2019-02-13 2020-08-21 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법
KR20200105568A (ko) * 2019-02-28 2020-09-08 삼성디스플레이 주식회사 전자 장치, 전자 장치 제조 방법, 및 발광 소자 전이 방법
DE102019112733A1 (de) * 2019-05-15 2020-11-19 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Lichtemittierendes Bauelement und Anzeigevorrichtung
CN110164322A (zh) * 2019-05-22 2019-08-23 深圳市华星光电半导体显示技术有限公司 一种显示面板及电子装置
CN112018227A (zh) * 2019-05-31 2020-12-01 云谷(固安)科技有限公司 显示面板及显示装置
CN110289279B (zh) * 2019-06-04 2021-09-24 上海天马微电子有限公司 一种转移方法、阵列基板、其制作方法及显示装置
TWI750488B (zh) * 2019-07-17 2021-12-21 錼創顯示科技股份有限公司 半導體結構與微型半導體顯示裝置
KR20210012516A (ko) 2019-07-25 2021-02-03 삼성전자주식회사 Led 패키지를 구비한 디스플레이 모듈 및 그 제조 방법
CN112310115B (zh) * 2019-07-26 2023-06-06 京东方科技集团股份有限公司 一种驱动背板、显示面板及显示装置
CN112802789B (zh) * 2019-11-14 2022-08-30 成都辰显光电有限公司 一种微元件的转移方法
CN111029360B (zh) * 2019-11-19 2022-06-07 深圳市华星光电半导体显示技术有限公司 micro-LED显示器件的制作方法
CN111128942B (zh) * 2019-12-04 2021-07-23 深圳市华星光电半导体显示技术有限公司 一种微发光二极管显示基板及其制备方法
CN111211213B (zh) * 2020-04-21 2020-09-04 南京中电熊猫平板显示科技有限公司 一种显示背板及其制造方法
CN111509015A (zh) * 2020-04-27 2020-08-07 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN113451494B (zh) * 2020-05-09 2022-09-27 重庆康佳光电技术研究院有限公司 一种led背板
CN111584507B (zh) * 2020-05-13 2023-05-02 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法、显示终端
CN113707788B (zh) * 2020-05-22 2022-07-22 重庆康佳光电技术研究院有限公司 背板结构及其制作方法、巨量转移方法、显示设备
KR20210148536A (ko) * 2020-05-29 2021-12-08 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN112582519B (zh) * 2020-12-02 2022-03-11 苏州芯聚半导体有限公司 微发光二极管的转移方法及转移设备
KR20220088565A (ko) * 2020-12-18 2022-06-28 삼성디스플레이 주식회사 표시 장치
CN113078249A (zh) * 2021-03-31 2021-07-06 錼创显示科技股份有限公司 微型发光元件结构及显示装置
TWI765631B (zh) * 2021-03-31 2022-05-21 錼創顯示科技股份有限公司 微型發光元件結構及顯示裝置
CN113594198B (zh) * 2021-10-08 2021-12-28 罗化芯显示科技开发(江苏)有限公司 微发光二极管显示器件及其制作方法
KR20230069286A (ko) * 2021-11-11 2023-05-19 삼성디스플레이 주식회사 표시 장치
CN115425120B (zh) * 2022-08-09 2023-10-20 惠科股份有限公司 显示面板的制备方法
CN115295706B (zh) * 2022-09-29 2022-12-06 惠科股份有限公司 Led芯片转移方法及显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140267683A1 (en) * 2013-03-15 2014-09-18 LuxVue Technology Corporation Method of fabricating a light emitting diode display with integrated defect detection test
CN104838508A (zh) * 2012-12-10 2015-08-12 勒克斯维科技公司 发光器件反射隔堤结构
CN104952899A (zh) * 2015-06-16 2015-09-30 友达光电股份有限公司 发光二极管显示器及其制造方法
CN105324858A (zh) * 2013-06-17 2016-02-10 勒克斯维科技公司 用于集成光发射设备的反射堤结构和方法
CN106058010A (zh) * 2016-07-26 2016-10-26 深圳市华星光电技术有限公司 微发光二极管阵列的转印方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3906653B2 (ja) * 2000-07-18 2007-04-18 ソニー株式会社 画像表示装置及びその製造方法
JP2003282478A (ja) * 2002-01-17 2003-10-03 Sony Corp 合金化方法及び配線形成方法、表示素子の形成方法、画像表示装置の製造方法
JP2010251360A (ja) * 2009-04-10 2010-11-04 Sony Corp 表示装置の製造方法および表示装置
US9698563B2 (en) * 2010-11-03 2017-07-04 3M Innovative Properties Company Flexible LED device and method of making
US8518204B2 (en) * 2011-11-18 2013-08-27 LuxVue Technology Corporation Method of fabricating and transferring a micro device and an array of micro devices utilizing an intermediate electrically conductive bonding layer
US8573469B2 (en) * 2011-11-18 2013-11-05 LuxVue Technology Corporation Method of forming a micro LED structure and array of micro LED structures with an electrically insulating layer
KR20140073351A (ko) * 2012-12-06 2014-06-16 엘지이노텍 주식회사 발광 소자
US9105714B2 (en) * 2012-12-11 2015-08-11 LuxVue Technology Corporation Stabilization structure including sacrificial release layer and staging bollards
KR101820275B1 (ko) * 2013-03-15 2018-01-19 애플 인크. 리던던시 스킴을 갖춘 발광 다이오드 디스플레이 및 통합 결함 검출 테스트를 갖는 발광 다이오드 디스플레이를 제작하는 방법
JP5628460B1 (ja) 2013-03-28 2014-11-19 東芝ホクト電子株式会社 発光装置、その製造方法、および発光装置使用装置
CN107078094B (zh) * 2014-06-18 2020-04-03 艾克斯瑟乐普林特有限公司 用于制备用于微组装的GaN及相关材料的系统及方法
KR101888608B1 (ko) * 2014-10-17 2018-09-20 엘지이노텍 주식회사 발광 소자 패키지 및 조명 장치
JP6483246B2 (ja) * 2014-10-17 2019-03-13 インテル・コーポレーション 微小持ち上げ・接合組立法
KR101629268B1 (ko) * 2014-10-29 2016-06-10 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
US9478583B2 (en) 2014-12-08 2016-10-25 Apple Inc. Wearable display having an array of LEDs on a conformable silicon substrate
US20160181476A1 (en) 2014-12-17 2016-06-23 Apple Inc. Micro led with dielectric side mirror
JP5866561B1 (ja) * 2014-12-26 2016-02-17 パナソニックIpマネジメント株式会社 発光装置及びその製造方法
US11605757B2 (en) 2015-08-21 2023-03-14 Lg Electronics Inc. Display device using semiconductor light emitting diode
KR102416621B1 (ko) * 2015-08-31 2022-07-05 삼성디스플레이 주식회사 발광 다이오드 트랜스퍼
CN105723528A (zh) * 2015-11-04 2016-06-29 歌尔声学股份有限公司 微发光二极管的转移方法、制造方法、装置和电子设备
CN105870265A (zh) * 2016-04-19 2016-08-17 京东方科技集团股份有限公司 发光二极管基板及其制备方法、显示装置
CN114695425A (zh) * 2016-12-22 2022-07-01 夏普株式会社 显示装置及制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104838508A (zh) * 2012-12-10 2015-08-12 勒克斯维科技公司 发光器件反射隔堤结构
US20140267683A1 (en) * 2013-03-15 2014-09-18 LuxVue Technology Corporation Method of fabricating a light emitting diode display with integrated defect detection test
CN105324858A (zh) * 2013-06-17 2016-02-10 勒克斯维科技公司 用于集成光发射设备的反射堤结构和方法
CN104952899A (zh) * 2015-06-16 2015-09-30 友达光电股份有限公司 发光二极管显示器及其制造方法
CN106058010A (zh) * 2016-07-26 2016-10-26 深圳市华星光电技术有限公司 微发光二极管阵列的转印方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633729A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110189628A (zh) * 2019-06-28 2019-08-30 京东方科技集团股份有限公司 一种背光模组及显示装置

Also Published As

Publication number Publication date
CN106941108B (zh) 2019-09-17
US10505084B2 (en) 2019-12-10
US20190181295A1 (en) 2019-06-13
KR20200004893A (ko) 2020-01-14
EP3633729A4 (en) 2021-02-17
KR102319307B1 (ko) 2021-11-03
US20180342691A1 (en) 2018-11-29
JP2020521181A (ja) 2020-07-16
US10263138B2 (en) 2019-04-16
CN106941108A (zh) 2017-07-11
EP3633729B1 (en) 2022-05-18
EP3633729A1 (en) 2020-04-08
PL3633729T3 (pl) 2022-09-19
JP6838247B2 (ja) 2021-03-03

Similar Documents

Publication Publication Date Title
WO2018214200A1 (zh) 微发光二极管显示面板及其制作方法
WO2018214199A1 (zh) 微发光二极管显示面板及其制作方法
US11715816B2 (en) Display apparatus and manufacturing method thereof
KR102531884B1 (ko) 디스플레이 장치 및 디스플레이 장치 형성 방법
JP6483246B2 (ja) 微小持ち上げ・接合組立法
US10741608B2 (en) Manufacturing method of micro light-emitting diode display panel
CN108140664B (zh) 微发光二极管阵列转移方法、制造方法和显示装置
US10923529B2 (en) Display substrate, method for manufacturing display substrate, and display device
JP4211256B2 (ja) 半導体集積回路、半導体集積回路の製造方法、電気光学装置、電子機器
US11233038B2 (en) Light emitting diode display substrate, manufacturing method thereof, and display device
JP2008141026A (ja) 電子機器及びその製造方法、並びに、発光ダイオード表示装置及びその製造方法
TWI584491B (zh) 發光裝置與其製作方法
JP2020043209A (ja) マイクロledアレイの製造方法、及びマイクロledディスプレイの製造方法、並びにマイクロledアレイ、及びマイクロledディスプレイ
TW202034029A (zh) 顯示裝置及其製造方法
US20180350782A1 (en) Display device and method for forming the same
TWI559511B (zh) 導電元件基板、導電元件基板的製造方法以及顯示面板
CN108803135B (zh) 显示设备
TWI759839B (zh) 微型發光二極體顯示元件與其製造方法
US20230109528A1 (en) Micro-led display device
KR101718652B1 (ko) 무전사 플렉서블 수직형 발광다이오드 및 이의 제작 방법
TW201104799A (en) Method for making flexible semiconductor device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15548104

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565231

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197037980

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017911299

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017911299

Country of ref document: EP

Effective date: 20200102