WO2018198435A1 - バイアスタイヤ - Google Patents

バイアスタイヤ Download PDF

Info

Publication number
WO2018198435A1
WO2018198435A1 PCT/JP2017/046777 JP2017046777W WO2018198435A1 WO 2018198435 A1 WO2018198435 A1 WO 2018198435A1 JP 2017046777 W JP2017046777 W JP 2017046777W WO 2018198435 A1 WO2018198435 A1 WO 2018198435A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
width direction
bias
carcass layer
height
Prior art date
Application number
PCT/JP2017/046777
Other languages
English (en)
French (fr)
Inventor
隆昌 元満
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN201780089696.1A priority Critical patent/CN110520306B/zh
Priority to US16/608,699 priority patent/US11548327B2/en
Priority to AU2017411632A priority patent/AU2017411632B2/en
Publication of WO2018198435A1 publication Critical patent/WO2018198435A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C15/0603Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead characterised by features of the bead filler or apex
    • B60C15/0607Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead characterised by features of the bead filler or apex comprising several parts, e.g. made of different rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/04Bead cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/04Bead cores
    • B60C15/05Bead cores multiple, i.e. with two or more cores in each bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/0292Carcass ply curvature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C9/06Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship the cords extend diagonally from bead to bead and run in opposite directions in each successive carcass ply, i.e. bias angle ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C13/00Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
    • B60C13/003Tyre sidewalls; Protecting, decorating, marking, or the like, thereof characterised by sidewall curvature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • B60C2015/009Height of the carcass terminal portion defined in terms of a numerical value or ratio in proportion to section height
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C15/0603Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead characterised by features of the bead filler or apex
    • B60C2015/061Dimensions of the bead filler in terms of numerical values or ratio in proportion to section height
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C2015/0614Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead characterised by features of the chafer or clinch portion, i.e. the part of the bead contacting the rim
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles

Definitions

  • the present invention relates to a bias tire.
  • industrial vehicle tires are set to high pressure and high load.
  • a heavy load bias tire used for a gantry crane used in a harbor or the like has a high load setting and a high center of gravity. For this reason, such a bias tire is easily subjected to an uneven load, and vehicle wobbling or tire failure may occur due to excessive deflection.
  • further high pressure setting is difficult due to wheel strength and operational management problems.
  • Patent Document 1 discloses a radial tire.
  • the curvature of the bead portion and the carcass ply is set to an appropriate value.
  • CBU Cord break up
  • ⁇ Ply separation is a peeling failure between a bead filler and a carcass provided in contact with the bead filler.
  • the ply separation occurs in the tire width direction due to distortion between the inner surface side carcass layer close to the tire equatorial plane and the outer surface side carcass layer far from the tire equatorial plane.
  • Patent Document 1 discloses a technology for a passenger car tire and a radial tire. For this reason, it is not appropriate to apply the technique disclosed in Patent Document 1 to a heavy load bias tire.
  • the present invention has been made in view of the above, and an object thereof is to provide a bias tire that can suppress excessive tension of the carcass layer and improve durability.
  • a bias tire according to an aspect of the present invention includes a pair of bead cores, a bead filler disposed on each tire radial outer side of the pair of bead cores, and the pair of bead cores.
  • a bias tire provided between a bead core and a carcass layer wrapped around the bead core and the bead filler and having its end wound back and locked, and the bias tire is incorporated in a cross section in the tire meridian direction
  • the curved shape of the cord on the innermost side in the tire width direction of the carcass layer is convex outward in the tire width direction at any position in the range of 0.9 to 1.6 times the height of the flange of the rim.
  • the radius of curvature R1 of the innermost cord in the tire width direction of the carcass layer from the maximum height position of the carcass layer is 0.5 or more and 1 0.0 or less is preferable.
  • the bead filler In the cross section in the tire meridian direction, it is preferable that the bead filler gradually decreases in thickness in the tire width direction from the bead core toward the outer side in the tire radial direction.
  • a plurality of the bead cores are included, and each of the bead cores includes a plurality of the bead fillers and the carcass layers, and each of the plurality of carcass layers encloses the bead cores and the bead fillers corresponding to the bead cores.
  • the height of the bead filler having the highest height in the tire radial direction is 0.17 with respect to the carcass cross-sectional height. It is preferable that they are 2 times or more and 0.23 times or less.
  • it further includes another carcass layer covering the plurality of carcass layers corresponding to each of the plurality of pairs of bead cores.
  • the radius of curvature R1 of the innermost cord in the tire width direction of the carcass layer and the outermost cord in the tire width direction of the carcass layer is preferably 1.0 or more and 1.8 or less.
  • the ratio R1 / R4 of the curvature radius R1 of the cord on the innermost side in the tire width direction of the carcass layer to the curvature radius R4 of the tire profile line at a position 1.5 times the height of the flange in the section in the tire meridian direction Is preferably 2.5 or less.
  • the number of carcass contained in each carcass layer is preferably 4 or more and 8 or less.
  • the cord angle of the innermost carcass layer in the tire width direction is preferably 25 degrees or more and 45 degrees or less with respect to the tire circumferential direction.
  • the innermost cord in the tire width direction of the carcass layer has an inflection point at which the curved shape changes from a convex on the inner side in the tire width direction to a convex on the outer side in the tire width direction,
  • the inflection point is preferably located in the range of 0.25 times to 0.75 times the height of the flange.
  • the outermost cord in the tire width direction of the carcass layer has an inflection point at which the curved shape changes from a convex on the inner side in the tire width direction to a convex on the outer side in the tire width direction,
  • the inflection point is preferably located in the range of 0.60 times to 1.15 times the height of the flange.
  • the endurance performance can be improved by projecting the curved shape of the innermost cord and the outermost cord of the carcass layer outward in the tire width direction. .
  • FIG. 1 is a cross-sectional view in the meridian direction of a bias tire according to the present embodiment.
  • FIG. 2 is a diagram in which a part of FIG. 1 is omitted.
  • FIG. 3 is a cross-sectional view in the tire meridian direction illustrating the structure in the vicinity of the bead portion of the bias tire in FIG. 1.
  • FIG. 4 is a diagram for explaining the operation of the bias tire of FIG. 1 at a high load.
  • FIG. 5 is a cross-sectional view in the tire meridian direction illustrating the structure in the vicinity of the bead portion of the bias tire of the comparative example.
  • FIG. 6 is a diagram for explaining the operation of the bias tire of FIG. 5 at a high load.
  • FIG. 1 is a cross-sectional view in the meridian direction of a bias tire according to the present embodiment.
  • FIG. 1 shows a cross-sectional view in the tire radial direction.
  • FIG. 2 is a diagram in which a part of FIG. 1 is omitted. 1 and 2 show a heavy load bias tire as an example of the bias tire.
  • the section in the tire meridian direction means a section when the tire is cut along a plane including a tire rotation axis (not shown).
  • Reference sign CL denotes a tire equator plane, which is a plane that passes through the center point of the tire in the tire rotation axis direction and is perpendicular to the tire rotation axis.
  • the tire radial direction means a direction perpendicular to the tire rotation axis.
  • the tire width direction refers to a direction parallel to the tire rotation axis
  • the tire circumferential direction refers to a direction around the tire rotation axis.
  • the bias tire 1 of the present embodiment has an annular structure centered on the tire rotation axis.
  • the bias tire 1 of the present embodiment includes a plurality of bead cores 3a, 3b, and 3c (three in FIG. 1) embedded in a pair of left and right bead portions 2 and 2, respectively.
  • the prescribed rim is indicated by a broken line.
  • the bias tire 1 shown in FIG. 1 shows a shape in which the rim is assembled, and when the rim 30 is not assembled with the rim 30, the positions of the end portions of the bead portions 2 and 2 are more tires than the illustrated positions. Radially inward.
  • Specified rim means “Applicable rim” defined in JATMA, “Design Rim” defined in TRA, or “Measuring Rim” defined in ETRTO.
  • the specified internal pressure refers to the “maximum air pressure” specified by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified by TRA, or “INFLATION PRESSURES” specified by ETRTO.
  • the specified load is the “maximum load capacity” specified in JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” specified in TRA, or “LOAD CAPACITY” specified in ETRTO.
  • the bias tire 1 has a corresponding bead filler 4a, 4b, 4c in each bead core 3a, 3b, 3c.
  • the bead fillers 4a, 4b, and 4c are rubber materials that are disposed on the outer side in the tire radial direction of the pair of bead cores 3a, 3b, and 3c.
  • the thickness of the bead fillers 4a, 4b, and 4c in the tire width direction gradually decreases from the position of the corresponding bead cores 3a, 3b, and 3c toward the outer side in the tire radial direction.
  • the bias tire 1 has a plurality of carcass layers 10a, 10b, and 10c in which the cord directions intersect with each other on the bead cores 3a, 3b, and 3c.
  • the carcass layers 10a, 10b, and 10c are wound up from the inner side to the outer side in the tire width direction so that the cord directions intersect with each other between adjacent pairs.
  • Each of the carcass layers 10a, 10b, and 10c is bridged between a pair of bead cores.
  • the end portions of the carcass layers 10a, 10b, 10c are wound and locked while wrapping the bead cores 3a, 3b, 3c and the corresponding bead fillers 4a, 4b, 4c.
  • the height of the bead filler having the highest height in the tire radial direction among the plurality of bead fillers 4a, 4b, and 4c is 0.17 times or more with respect to the carcass cross-sectional height CH.
  • the range is 0.23 times or less.
  • the height of the bead filler having the highest height in the tire radial direction is set within this range in order to prevent separation between the CBU and the carcass ply in a high load and high torque vehicle having a plurality of pairs of bead cores. Is particularly effective.
  • the bias tire 1 further includes another carcass layer 100 that covers the plurality of carcass layers 10a, 10b, and 10c corresponding to each of the plurality of pairs of bead cores 3a, 3b, and 3c.
  • the carcass layer 100 has a so-called turn-down structure that terminates at the inner side in the tire radial direction of the bead portion 2 without winding up the end portion.
  • the end portion of the carcass layer 100 may be rolled up, and the carcass layers 100a, 10b, and 10c may be entirely wrapped and terminated.
  • the end portion of the carcass layer 100 may be terminated on the side of the bead core 3c, that is, on the outer side in the tire width direction. In FIG. 1, some of the carcass layers 10a, 10b, 10c, and 100 are not shown.
  • the number of carcass contained in each of the carcass layers 10a, 10b, 10c, 100 is preferably 4 or more and 8 or less. If the number of carcasses included in each of the carcass layers 10a, 10b, 10c, and 100 is less than 4 in a high-load and high-torque vehicle, it is not sufficient to support the bead, and if the number of carcasses exceeds 8, Since workability at the time of molding the tire 1 is significantly impaired, it is not preferable.
  • the carcass plies of the carcass layers 10a, 10b, 10c, 100 are formed by rolling a plurality of carcass cords made of steel or organic fiber materials (for example, aramid, nylon, polyester, rayon, etc.) with a coat rubber. Is done.
  • a plurality of the same ones may be used, or different ones may be mixed.
  • one outermost carcass ply of the plurality of carcass plies to be wound may have a different vulcanization degree from other carcass plies.
  • the bias tire 1 has two or more carcass layers.
  • the bias tire 1 has a groove 11 in the tread portion 5.
  • the groove bottom of the groove 11 is indicated by a broken line.
  • Both ends of the tread portion 5 in the tire width direction are formed as shoulder portions 6, and sidewall portions 7 are disposed from the shoulder portions 6 to predetermined positions inside the tire radial direction.
  • the sidewall portions 7 are disposed at two places on both sides of the bias tire 1 in the tire width direction.
  • the sidewall portions 7 and 7 have a pair of sidewall rubbers 17 and 17.
  • the bias tire 1 has belts 8 and 8a which are fiber reinforcing layers on the outer peripheral side of the carcass layer 100 in the tread portion 5.
  • An inner liner 9 is formed along the carcass layer 100 on the inner side of the bias tire 1.
  • the tread rubber 15 is arranged on the outer circumference in the tire radial direction of the carcass layer 100 and the belts 8 and 8a to constitute the tread portion 5 of the tire.
  • the pair of sidewall rubbers 17, 17 are arranged on the outer sides in the tire width direction of the carcass layers 10 a, 10 b, 10 c, 100 to constitute the left and right sidewall portions 7.
  • the pair of rim cushion rubbers 20, 20 are respectively disposed on the inner side in the tire radial direction of the winding portions of the left and right bead cores 3 a, 3 b, 3 c and the carcass layers 10 a, 10 b, 10 c, 100.
  • a contact surface of the bead portion 2 is formed.
  • the radius of curvature of the innermost cord 10in in the tire width direction is R3.
  • the curvature radius R ⁇ b> 3 is a curvature radius of the carcass innermost surface portion of the shoulder portion 6.
  • the ratio R1 / R3 of the curvature radius R1 to the curvature radius R3 is preferably in the range of 0.5 or more and 1.0 or less.
  • the radius of curvature of the cord 10in on the innermost side in the tire width direction of the carcass layers 10a, 10b, 10c, 100 at the position of the bias tire 1 that is 1.5 times the height FH of the flange 30F. Is R1.
  • the radius of curvature of the cord 10out on the outermost side in the tire width direction of the carcass layers 10a, 10b, 10c, 100 at the position of the bias tire 1 that is 1.5 times the height FH of the flange 30F is R2.
  • the ratio R1 / R2 of the curvature radius R1 to the curvature radius R2 is 1.0 or more and 1.8 or less.
  • the curvature radius R1 side can be easily bent by setting the curvature radius R1 to be equal to or greater than 1.8 times the curvature radius R2.
  • the tensile stresses of the carcass layers 10a, 10b, 10c, 100 are equal on the curvature radius R1 side and the curvature radius R2 side. For this reason, distortion between the carcass layers 10a, 10b, 10c, and 100 is reduced, and ply separation can be prevented.
  • the radius of curvature of the innermost cord 10in of the carcass layers 10a, 10b, 10c, 100 of the bias tire 1 is R1
  • the radius of curvature of the tire profile line is R4.
  • the ratio R1 / R4 of the curvature radius R1 to the curvature radius R4 is 2.5 or less.
  • the ratio R1 / R4 is more preferably 0.5 or more. If the ratio R1 / R4 is less than 0.5, the possibility of strain concentration due to buckling increases, which is not preferable.
  • the angle of the cord 10in of the innermost carcass layer 10a in the tire width direction is in a range of 25 degrees to 45 degrees with respect to the tire circumferential direction.
  • the angle is less than 25 degrees, excessive tension is applied to each cord when the bias tire 1 is deformed, which is not preferable. Further, if it exceeds 45 degrees, the deformation of the bias tire 1 when subjected to stress becomes too large, which is not preferable. More preferably, the angle of the cord 10in is in the range of 30 to 40 with respect to the tire circumferential direction.
  • FIG. 3 is a sectional view in the tire meridian direction for explaining the structure in the vicinity of the bead portion 2 of the bias tire 1.
  • the innermost cord 10in of the carcass layers 10a, 10b, 10c, 100 has a curved shape protruding from the inner side in the tire width direction, and the outer side in the tire width direction as indicated by an arrow Y1 in the figure.
  • the inflection point Q is located in the range of 0.25 times to 0.75 times the height FH of the flange 30F.
  • the outermost cord 10out of the carcass layers 10a, 10b, 10c, 100 has a curved shape protruding from the inner side in the tire width direction, and the tire width direction as indicated by an arrow Y2 in the figure.
  • the inflection point P is located in the range of 0.60 times or more and 1.15 times or less of the height FH of the flange 30F.
  • the carcass is located at any position in the range of 0.9 times to 1.6 times the height FH of the flange 30F of the rim 30 in which the bias tire 1 is assembled.
  • the curved shape of the cord 10in on the innermost side in the tire width direction of the layers 10a, 10b, 10c, 100 is convex outward in the tire width direction.
  • the curve shape of the cord 10out on the outermost side in the tire width direction of 100 is convex outward in the tire width direction.
  • the curvature radius R1 is, for example, 418 mm before the internal pressure filling.
  • the radius of curvature R1 is, for example, 800 mm ⁇ 40 mm.
  • the curvature radius R2 is, for example, 391 mm before filling with internal pressure.
  • the radius of curvature R2 is 748 mm ⁇ 37 mm.
  • the curvature radius R3 is, for example, not less than 418 mm and not more than 836 mm before filling with the internal pressure.
  • the radius of curvature R3 is, for example, 800 m ⁇ 40 mm or more and 1600 mm ⁇ 80 mm or less.
  • the curvature radius R4 is, for example, 355 mm before filling with internal pressure.
  • the radius of curvature R4 is, for example, 680 mm ⁇ 34 mm.
  • the flange height FH of the rim 30 is, for example, 89 mm.
  • FIG. 4 is a diagram for explaining the operation of the bias tire 1 at a high load.
  • stress including a component toward the outer side in the tire width direction is applied to the inner liner 9 and the sidewall portion 7 as indicated by arrows Y ⁇ b> 11 and Y ⁇ b> 12.
  • the bias tire 1 is subjected to a greater stress as indicated by the arrows Y21 and Y22 at the time of high load, so that the inner liner 9 and the sidewall portion 7 bend and move from the position indicated by the solid line to the position indicated by the broken line.
  • the innermost cord 10in in the tire width direction moves from the solid line position to the broken line position as indicated by an arrow Y11 in the figure.
  • the radius of curvature R1 of the cord 10in is, for example, 418 mm
  • the radius of curvature R4 of the cord 10out on the outermost side in the tire width direction is, for example, 355 mm.
  • FIG. 5 is a sectional view in the tire meridian direction for explaining the structure in the vicinity of the bead portion of the bias tire of the comparative example.
  • FIG. 6 is a diagram for explaining the operation of the bias tire of FIG. 5 at a high load.
  • the cord 10in on the innermost side in the tire width direction is convex outward in the tire width direction as indicated by an arrow Y1 in the tire radial direction outside the inflection point Q.
  • the inflection point P is located on the outer side in the tire radial direction than in the case of FIG.
  • the cord 10out is convex inward in the tire width direction as indicated by an arrow Y3 in the figure on the inner side in the tire radial direction from the inflection point P.
  • FIG. 6 in the bias tire of the comparative example, stress including a component toward the outer side in the tire width direction is applied to the inner liner 9 and the sidewall portion 7 as indicated by an arrow Y13, as well as arrows Y14 and Y15.
  • a stress including a component toward the outside in the tire radial direction is applied to the tire.
  • the bias tire of the comparative example is subjected to a greater stress as indicated by the arrows Y23, Y24, and Y25 at the time of high load, so that the inner liner 9 and the sidewall portion 7 are bent, and the position shown by the solid line is shown. Move to the position indicated by the dashed line.
  • the innermost cord 10in in the tire width direction moves from the solid line position to the broken line position.
  • the bias tire 1 according to the present embodiment is 0.9 times or more the height FH of the flange 30F of the rim 30 in which the bias tire 1 is incorporated in the cross section in the tire meridian direction of the bias tire 1.
  • the curved shape of the cord 10in on the innermost side in the tire width direction of the carcass layers 10a, 10b, 10c, 100 is convex outward in the tire width direction at any position within the range of 1.6 times or less, and the flange 30F
  • the curved shape of the cord 10out on the outermost side in the tire width direction of the carcass layers 10a, 10b, 10c, 100 is in the tire width direction at any position in the range of 1.1 times to 1.6 times the height FH of Convex outward.
  • the durability performance of the bias tire 1 of this embodiment was evaluated.
  • 29.5-25 L22 size tires were mounted on the specified rim, and the vehicle was run under the condition of 650 kPa (TRA standard: 350 kPa), 150% load, and the running time until the bead failure occurred. Durability performance was evaluated.
  • the cord 10in on the innermost side in the tire width direction has a substantially linear shape
  • the curved shape of the cord 10out on the outermost side in the tire width direction is convex inward in the tire width direction, and the value of the ratio R1 / R3 is 0. 26
  • the thickness of the bead filler gradually decreases toward the outer side in the tire radial direction
  • the height of the bead filler having the highest height in the tire radial direction is 0.15 times the carcass cross-sectional height CH.
  • the ratio R1 / R2 is 3.0
  • the ratio R1 / R4 is 2.8
  • the position of the inflection point of the cord 10in Is outside the range of 0.25 to 0.75 times the height of the flange
  • the position of the inflection point of the cord 10out is outside the range of 0.60 to 1.15 times the height of the flange A tire was prepared.
  • the curved shape of the cord 10in on the innermost side in the tire width direction is convex outward in the tire width direction
  • the curved shape of the cord 10out on the outermost side in the tire width direction is convex on the inner side in the tire width direction.
  • the value of R3 is 0.26
  • the thickness of the bead filler gradually decreases toward the outer side in the tire radial direction
  • the height of the bead filler having the highest height in the tire radial direction is 0.15 times the carcass section height CH.
  • the ratio R1 / R2 is 3.0
  • the ratio R1 / R4 is 2.8
  • the code 10in The position of the inflection point is outside the range of 0.25 times to 0.75 times the height of the flange, and the position of the inflection point of the cord 10out is 0.60 times to 1.15 of the flange height. Prepare tires that are out of range did.
  • the curved shape of the cord 10in on the innermost side in the tire width direction is convex outward in the tire width direction and the outermost in the tire width direction
  • the curved shape of the cord 10out is convex outward in the tire width direction.
  • bias tires having ratios R1 / R3 of 0.26, 0.5, 0.75, and 1.0 were used.
  • the thickness of the bead filler gradually decreases as it goes outward in the tire radial direction.
  • the height of the bead filler having the highest height in the tire radial direction is 0.15 times, 0.16 times, and 0.17 times the carcass section height CH. , 0.20 times and 0.23 times bias tires.
  • the bias tires of Examples 1 to 6 have no other carcass layer that further covers the carcass layer corresponding to each bead core, and the bias tires of Examples 7 to 13 correspond to each bead core. It was assumed that another carcass layer further covering the carcass layer was provided.
  • bias tires having ratios R1 / R2 of 1.0, 1.4, 1.8, and 3.0 were used.
  • bias tires having ratios R1 / R4 of 0.5, 1.5, 2.5, and 2.8 were used.
  • the position of the inflection point of the cord 10in is in the range of 0.25 times to 0.75 times the height of the flange, and the position of the inflection point of the cord 10out is the flange.
  • the bias tire is in the range of 0.60 times to 1.15 times the height of the tire.
  • the number of carcass plies constituting each of the carcass layers 10a, 10b, 10c, and 100 is set to 4 or more and 8 or less, and the most in the tire width direction.
  • the angle of the cord of the inner carcass layer was set to 25 degrees or more and 45 degrees or less with respect to the tire circumferential direction.
  • the curved shapes of the innermost cord 10in and the outermost cord 10out are both convex toward the outer side in the tire width direction, and the ratio R1 / R3 is 0.5 or more and 1.0.
  • the height of the bead filler having the highest height in the tire radial direction is in the range of 0.17 times to 0.23 times the carcass cross-sectional height CH, the carcass corresponding to each bead core
  • the ratio R1 / R2 is 1.0 or more and 1.8 or less
  • the ratio R1 / R4 is 2.5 or less
  • the point position is in the range of 0.25 times to 0.75 times the height of the flange, and the inflection point position of the cord 10out is 0.60 times to 1.15 times the height of the flange. Good results for within range Obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

耐久性能を向上させることができるバイアスタイヤを提供する。バイアスタイヤは、一対のビードコアと、一対のビードコアそれぞれのタイヤ径方向外側に配置されるビードフィラーと、一対のビードコア間に架け渡されると共にビードコアおよびビードフィラーを包み込みつつ端部が巻き返されて係止されるカーカス層とを備えるバイアスタイヤであり、タイヤ子午線方向の断面で、バイアスタイヤが組込まれるリムのフランジの高さの0.9倍以上1.6倍以下の範囲のいずれかの位置において、カーカス層の最もタイヤ幅方向内側のコードの湾曲形状がタイヤ幅方向の外側に凸であり、かつ、タイヤ子午線方向の断面で、フランジの高さの1.1倍以上1.6倍以下の範囲のいずれかの位置において、カーカス層の最もタイヤ幅方向外側のコードの湾曲形状がタイヤ幅方向の外側に凸である。

Description

バイアスタイヤ
 本発明は、バイアスタイヤに関する。
 一般に、産業車両用タイヤは負荷が高く高圧に設定されている。例えば、港湾等で使用されるガントリークレーン等に使用される重荷重用のバイアスタイヤは、高負荷設定であり、かつ高重心である。このため、そのようなバイアスタイヤは、偏荷重を受けやすく、過たわみによる車輌のふらつきやタイヤ故障が発生することがある。しかしながら、ホイール強度やオペレーション管理の問題から、更なる高圧設定は困難な状況にある。
 ところで、特許文献1は、ラジアルタイヤを開示している。特許文献1のラジアルタイヤでは、ビード部の耐久性を向上するために、ビード部、カーカスプライの曲率などを適切な値に設定している。
特開2004-17692号公報
 重荷重用バイアスタイヤにおいて、近年の車両進化によるトルク向上に伴いビード周りのカーカスへの負荷が上昇する傾向にある。特に、過荷重条件で使用されている、偏平率の低いWB(Wide Base)サイズのバイアスタイヤにおいては、コード破断やプライセパレーションが発生することがある。コード破断(Cord Broken Up、以下CBUと呼ぶ)は、カーカスプライがタイヤ軸方向の最内側の点でビードコアのスチールワイヤの巻付け端と強く接触して破断に至るものである。CBUは、タイヤ幅方向の最内面側のビードおよびカーカスの過度な引張りによって発生する。
 プライセパレーションは、ビードフィラーと、そのビードフィラーに接触して設けられるカーカスとの剥離破壊である。プライセパレーションは、タイヤ幅方向において、タイヤ赤道面に近い内面側カーカス層とタイヤ赤道面から遠い外面側カーカス層との間の歪みによって発生する。
 特許文献1は、乗用車用タイヤで、しかもラジアルタイヤに関する技術を開示している。このため、特許文献1に開示の技術を重荷重用のバイアスタイヤに適用することは適切ではない。
 本発明は、上記に鑑みてなされたものであって、その目的は、カーカス層の過度な引張りを抑制し、耐久性能を向上させることができるバイアスタイヤを提供することである。
 上述した課題を解決し、目的を達成するために、本発明のある態様によるバイアスタイヤは、一対のビードコアと、前記一対のビードコアそれぞれのタイヤ径方向外側に配置されるビードフィラーと、前記一対のビードコア間に架け渡されると共に前記ビードコアおよび前記ビードフィラーを包み込みつつ端部が巻き返されて係止されるカーカス層とを備えるバイアスタイヤであって、タイヤ子午線方向の断面で、前記バイアスタイヤが組込まれるリムのフランジの高さの0.9倍以上1.6倍以下の範囲のいずれかの位置において、前記カーカス層の最もタイヤ幅方向内側のコードの湾曲形状がタイヤ幅方向の外側に凸であり、かつ、タイヤ子午線方向の断面で、前記フランジの高さの1.1倍以上1.6倍以下の範囲のいずれかの位置において、前記カーカス層の最もタイヤ幅方向外側のコードの湾曲形状がタイヤ幅方向の外側に凸である。
 また、タイヤ子午線方向の断面で、前記フランジの高さの1.5倍の位置において、前記カーカス層の最もタイヤ幅方向内側のコードの曲率半径R1の、前記カーカス層の最大高さ位置から前記カーカス層の最大幅位置までのタイヤ径方向に沿った長さの1/3の位置での前記カーカス層の最もタイヤ幅方向内側のコードの曲率半径R3に対する比R1/R3が0.5以上1.0以下であることが好ましい。
 タイヤ子午線方向の断面において、前記ビードフィラーは、タイヤ幅方向の厚みが前記ビードコアからタイヤ径方向外側に向かうに従って漸減することが好ましい。
 前記ビードコアを複数対含み、前記ビードコアそれぞれに対応して、前記ビードフィラーと前記カーカス層とを複数含み、複数の前記カーカス層は、それぞれ、前記ビードコアと前記ビードコアに対応する前記ビードフィラーとを包み込みつつ巻き返されて係止され、タイヤ子午線方向の断面において、複数の前記ビードフィラーのうち、タイヤ径方向の高さが最も高いビードフィラーの高さは、カーカス断面高さに対して0.17倍以上0.23倍以下であることが好ましい。
 複数対の前記ビードコアそれぞれに対応する複数の前記カーカス層を覆う他のカーカス層をさらに含むことが好ましい。
 タイヤ子午線方向の断面で、前記フランジの高さの1.5倍の位置において、前記カーカス層の最もタイヤ幅方向内側のコードの曲率半径R1の、前記カーカス層の最もタイヤ幅方向外側のコードの曲率半径R2に対する比R1/R2が1.0以上1.8以下であることが好ましい。
 タイヤ子午線方向の断面で、前記フランジの高さの1.5倍の位置において、前記カーカス層の最もタイヤ幅方向内側のコードの曲率半径R1の、タイヤプロファイルラインの曲率半径R4に対する比R1/R4が2.5以下であることが好ましい。
 前記カーカス層それぞれに含まれるカーカスの枚数は、4枚以上8枚以下であることが好ましい。
 タイヤ幅方向で最も内側のカーカス層のコードの角度は、タイヤ周方向に対して、25度以上45度以下であることが好ましい。
 タイヤ子午線方向の断面において、前記カーカス層の最もタイヤ幅方向内側のコードは、前記湾曲形状がタイヤ幅方向の内側に凸からタイヤ幅方向の外側に凸へ変化する変曲点を有し、前記変曲点は、前記フランジの高さの0.25倍以上0.75倍以下の範囲に位置していることが好ましい。
 タイヤ子午線方向の断面において、前記カーカス層の最もタイヤ幅方向外側のコードは、前記湾曲形状がタイヤ幅方向の内側に凸からタイヤ幅方向の外側に凸へ変化する変曲点を有し、前記変曲点は、前記フランジの高さの0.60倍以上1.15倍以下の範囲に位置していることが好ましい。
 本発明にかかるバイアスタイヤによれば、カーカス層の最もタイヤ幅方向内側のコードおよび最も外側のコードの湾曲形状を、タイヤ幅方向の外側に凸とすることにより、耐久性能を向上させることができる。
図1は、本実施形態に係るバイアスタイヤの子午線方向の断面図である。 図2は、図1の一部を省略して示す図である。 図3は、図1のバイアスタイヤのビード部の付近の構造を説明するタイヤ子午線方向の断面図である。 図4は、図1のバイアスタイヤの高負荷時の作用を説明する図である。 図5は、比較例のバイアスタイヤのビード部の付近の構造を説明するタイヤ子午線方向の断面図である。 図6は、図5のバイアスタイヤの高負荷時の作用を説明する図である。
 以下に、本発明に係るバイアスタイヤの実施形態を図面に基づいて詳細に説明する。この実施形態によりこの発明が限定されるものではない。また、この実施形態の構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。この実施形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。なお、以下の各図の説明において、他の図と同一又は同等の構成部分については同一の符号を付し、その説明を簡略又は省略する。
 本発明の実施形態に係るバイアスタイヤについて説明する。図1は、本実施形態に係るバイアスタイヤの子午線方向の断面図である。図1は、タイヤ径方向の断面図を示している。図2は、図1の一部を省略して示す図である。また、図1および図2は、バイアスタイヤの一例として、重荷重用のバイアスタイヤを示している。
 図1において、タイヤ子午線方向の断面とは、タイヤ回転軸(図示省略)を含む平面でタイヤを切断したときの断面をいう。また、符号CLは、タイヤ赤道面であり、タイヤ回転軸方向にかかるタイヤの中心点を通りタイヤ回転軸に垂直な平面をいう。また、タイヤ径方向とは、タイヤ回転軸に垂直な方向をいう。タイヤ幅方向とは、タイヤ回転軸に平行な方向をいい、タイヤ周方向とは、タイヤ回転軸周りの方向をいう。
 図1において、本実施形態のバイアスタイヤ1は、タイヤ回転軸を中心とする環状構造を有する。本実施形態のバイアスタイヤ1は、左右一対のビード部2、2にそれぞれ複数(図1では3つ)埋設されたビードコア3a、3b、3cを有する。図1には、規定リムを破線で示す。図1に示すバイアスタイヤ1は、リム組みされている状態の形状を示し、リム30に対してリム組みしていない場合はビード部2、2の端部の位置が、図示の位置よりもタイヤ径方向内側になる。
 規定リムとは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、規定内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、規定荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。
 バイアスタイヤ1は、各ビードコア3a、3b、3cに、対応するビードフィラー4a、4b、4cを有する。ビードフィラー4a、4b、4cは、一対のビードコア3a、3b、3cそれぞれのタイヤ径方向外側に配置されるゴム材である。タイヤ子午線方向の断面において、ビードフィラー4a、4b、4cのタイヤ幅方向の厚みは、対応するビードコア3a、3b、3cの位置から、タイヤ径方向外側に向かうに従って漸減する。タイヤ径方向外側に向かうに従ってビードフィラー4a、4b、4cの剛性を徐々に落とすことで、バイアスタイヤ1がたわんだ際の歪みの集中を防止し、局所的な歪み集中によるCBUおよびカーカスプライ間のセパレーションを防止できる。
 バイアスタイヤ1は、それぞれのビードコア3a、3b、3cに、互いに層間でコード方向を交差させた複数のカーカス層10a、10b、10cを有する。カーカス層10a、10b、10cは、相隣接する対間で互いにコード方向が交差してタイヤ幅方向の内側から外側に向かって巻き上げられている。カーカス層10a、10b、10cは、それぞれ、一対のビードコア間に架け渡される。それと共に、カーカス層10a、10b、10cは、ビードコア3a、3b、3cとそれらに対応するビードフィラー4a、4b、4cとを包み込みつつ端部が巻き返されて係止される。
 また、タイヤ子午線方向の断面において、複数のビードフィラー4a、4b、4cのうち、タイヤ径方向の高さが最も高いビードフィラーの高さは、カーカス断面高さCHに対して0.17倍以上0.23倍以下の範囲である。タイヤ径方向の高さが最も高いビードフィラーの高さが、この範囲に設定されることは、複数対のビードコアを有する高荷重かつ高トルク車両において、CBUおよびカーカスプライ間のセパレーションを防止する上で特に有効である。
 さらに、バイアスタイヤ1は、複数対のビードコア3a、3b、3cそれぞれに対応する複数のカーカス層10a、10b、10cを覆う他のカーカス層100をさらに含む。カーカス層100は、端部を巻き上げることなくビード部2のタイヤ径方向内側で終端する、いわゆるターンダウン構造になっている。もっとも、カーカス層100は、その端部が巻き上げられ、複数のカーカス層10a、10b、10c全体を包み込んで終端されていてもよい。また、カーカス層100は、その端部がビードコア3cの側方すなわちタイヤ幅方向の外側で終端されていてもよい。なお、図1では、カーカス層10a、10b、10cおよび100について、一部の図示を省略している。
 カーカス層10a、10b、10c、100それぞれに含まれるカーカスの枚数は、4枚以上8枚以下であることが好ましい。高荷重かつ高トルクの車両において、カーカス層10a、10b、10c、100それぞれに含まれるカーカスの枚数が4枚未満だとビードを支えるのに十分ではなく、カーカスの枚数が8枚を超えるとバイアスタイヤ1の成形時の作業性が著しく損なわれるので好ましくない。
 また、カーカス層10a、10b、10c、100のカーカスプライは、スチールあるいは有機繊維材(例えば、アラミド、ナイロン、ポリエステル、レーヨンなど)から成る複数のカーカスコードをコートゴムで被覆して圧延加工して構成される。カーカス層10a、10b、10c、100のカーカスプライは、同じものを複数枚用いてもよいし、異なるものを混在させてもよい。例えば、巻き返される複数枚のカーカスプライの最外側のカーカスプライ1枚が他のカーカスプライと加硫度が異なってもよい。このように、バイアスタイヤ1は、2層以上のカーカス層を有している。
 バイアスタイヤ1は、トレッド部5に溝11を有する。図1では、溝11の溝底を破線で示す。トレッド部5のタイヤ幅方向における両端は、ショルダー部6として形成されており、ショルダー部6から、タイヤ径方向内側の所定の位置までは、サイドウォール部7が配設されている。サイドウォール部7は、タイヤ幅方向におけるバイアスタイヤ1の両側2箇所に配設されている。サイドウォール部7、7は、一対のサイドウォールゴム17、17を有する。
 さらに、バイアスタイヤ1は、トレッド部5におけるカーカス層100の外周側に、繊維補強層である、ベルト8、8aを有する。バイアスタイヤ1の内部側には、インナーライナー9がカーカス層100に沿って形成されている。
 トレッドゴム15は、カーカス層100およびベルト8、8aのタイヤ径方向外周に配置されてタイヤのトレッド部5を構成する。一対のサイドウォールゴム17、17は、カーカス層10a、10b、10c、100のタイヤ幅方向外側にそれぞれ配置されて左右のサイドウォール部7を構成する。一対のリムクッションゴム20、20は、左右のビードコア3a、3b、3cおよびカーカス層10a、10b、10c、100の巻き返し部のタイヤ径方向内側にそれぞれ配置されて、リム30のフランジ30Fに対する左右のビード部2の接触面を構成する。
 図2に示すように、フランジ30Fの高さFHの1.5倍の位置(FH×1.5)において、カーカス層10a、10b、10c、100の最もタイヤ幅方向内側のコード10inの曲率半径をR1とする。そして、カーカス層100の最大高さCHの位置からカーカス層100の最大幅位置までのタイヤ径方向に沿った長さHの1/3の位置すなわちH/3でのカーカス層10a、10b、10c、100の最もタイヤ幅方向内側のコード10inの曲率半径をR3とする。曲率半径R3は、ショルダー部6のカーカス最内面部の曲率半径である。バイアスタイヤ1は、曲率半径R1の、曲率半径R3に対する比R1/R3が0.5以上1.0以下の範囲であることが好ましい。比R1/R3を上記範囲内とすることで、内圧充填時およびたわみ時に、曲率半径R1の位置と曲率半径R3の位置とのどちらか一方に歪みが集中することはなく、CBUおよびプライセパレーションを防止できる。
 また、図2に示すように、バイアスタイヤ1の、フランジ30Fの高さFHの1.5倍の位置において、カーカス層10a、10b、10c、100の最もタイヤ幅方向内側のコード10inの曲率半径をR1とする。また、バイアスタイヤ1の、フランジ30Fの高さFHの1.5倍の位置において、カーカス層10a、10b、10c、100の最もタイヤ幅方向外側のコード10outの曲率半径をR2とする。このとき、曲率半径R2に対する曲率半径R1の比R1/R2が1.0以上1.8以下である。通常、バイアスタイヤ1がたわんだ際には、曲率半径R1側の引張応力よりも、曲げの外側である曲率半径R2側の引張応力の方が強い。このため、曲率半径R1を曲率半径R2に対して、同等以上かつ1.8倍以下の範囲に設定することで曲率半径R1側を屈曲し易くすることができる。これにより、カーカス層10a、10b、10c、100の引張応力が曲率半径R1側と曲率半径R2側とで同等になる。このため、カーカス層10a、10b、10c、100の間の歪みが減少し、プライセパレーションを防止できる。
 さらに、図2に示すように、バイアスタイヤ1の、カーカス層10a、10b、10c、100の最もタイヤ幅方向内側のコード10inの曲率半径をR1とし、タイヤプロファイルラインの曲率半径をR4とする。フランジ30Fの高さFHの1.5倍の位置において、曲率半径R1の、曲率半径R4に対する比R1/R4は2.5以下である。バイアスタイヤ1において、比R1/R4を上記範囲とすることにより、タイヤプロファイルのたわみにカーカス層10a、10b、10c、100が追従してたわむことができ、過度な引張りによるCBUを防止できる。さらに、比R1/R4は、より好ましくは0.5以上である。比R1/R4が0.5未満であると、座屈による歪み集中の可能性が高まるので好ましくない。
 タイヤ幅方向で最も内側のカーカス層10aのコード10inの角度は、タイヤ周方向に対して、25度以上45度以下の範囲である。角度が25度未満であると、バイアスタイヤ1の変形の際に各コードに過度な引張りがかかるため好ましくない。また、45度を超えると応力を受けた際のバイアスタイヤ1の変形が大きくなり過ぎるため好ましくない。より好ましくは、コード10inの角度は、タイヤ周方向に対して、30以上40以下の範囲である。
 図3は、バイアスタイヤ1のビード部2の付近の構造を説明するタイヤ子午線方向の断面図である。図3において、カーカス層10a、10b、10c、100の最もタイヤ幅方向内側のコード10inは、その湾曲形状がタイヤ幅方向の内側に凸から、図中の矢印Y1のようにタイヤ幅方向の外側に凸へ変化する変曲点Qを有する。そして、変曲点Qは、フランジ30Fの高さFHの0.25倍以上0.75倍以下の範囲に位置している。
 また、図3において、カーカス層10a、10b、10c、100の最もタイヤ幅方向外側のコード10outは、その湾曲形状がタイヤ幅方向の内側に凸から、図中の矢印Y2のようにタイヤ幅方向の外側に凸へ変化する変曲点Pを有する。そして、変曲点Pは、フランジ30Fの高さFHの0.60倍以上1.15倍以下の範囲に位置している。
 ここで、バイアスタイヤ1のタイヤ子午線方向の断面において、バイアスタイヤ1が組込まれるリム30のフランジ30Fの高さFHの0.9倍以上1.6倍以下の範囲のいずれかの位置において、カーカス層10a、10b、10c、100の最もタイヤ幅方向内側のコード10inの湾曲形状は、タイヤ幅方向の外側に凸である。また、バイアスタイヤ1のタイヤ子午線方向の断面において、リム30のフランジ30Fの高さFHの1.1倍以上1.6倍以下の範囲のいずれかの位置において、カーカス層10a、10b、10c、100の最もタイヤ幅方向外側のコード10outの湾曲形状がタイヤ幅方向の外側に凸である。
 [実寸法の例]
 ここで、曲率半径R1は、内圧充填前において、例えば、418mmである。バイアスタイヤ1に規定内圧を適用した場合、曲率半径R1は、例えば、800mm±40mmになる。曲率半径R2は、内圧充填前において、例えば、391mmである。バイアスタイヤ1に規定内圧を適用した場合、曲率半径R2は748mm±37mmになる。曲率半径R3は、内圧充填前において、例えば、418mm以上836mm以下である。バイアスタイヤ1に規定内圧を適用した場合、曲率半径R3は、例えば、800m±40mm以上1600mm±80mm以下になる。曲率半径R4は、内圧充填前において、例えば、355mmである。バイアスタイヤ1に規定内圧を適用した場合、曲率半径R4は、例えば、680mm±34mmになる。なお、リム30のフランジ高さFHは、例えば89mmである。
 [高負荷時の作用]
 図4は、バイアスタイヤ1の高負荷時の作用を説明する図である。図4において、バイアスタイヤ1は、インナーライナー9、サイドウォール部7に、矢印Y11、矢印Y12のようにタイヤ幅方向外側への成分を含む応力が加えられる。また、バイアスタイヤ1は、高負荷時に、矢印Y21、矢印Y22のようにより大きな応力が加えられるため、インナーライナー9、サイドウォール部7がたわみ、実線で示す位置から破線で示す位置に移動する。破線で示す位置にインナーライナー9’、サイドウォール部7’が移動することにより、図中の矢印Y11のように、最もタイヤ幅方向内側のコード10inは実線の位置から破線の位置に移動する。このとき、コード10inの曲率半径R1は、例えば、418mm、最もタイヤ幅方向外側のコード10outの曲率半径R4は、例えば、355mmである。破線で示す位置にコード10in’が移動しても、比R1/R2が1.0以上1.8以下であることにより、CBUやプライセパレーションは発生しない。
 一方、図5は、比較例のバイアスタイヤのビード部の付近の構造を説明するタイヤ子午線方向の断面図である。図6は、図5のバイアスタイヤの高負荷時の作用を説明する図である。
 図5において、比較例のバイアスタイヤでは、最もタイヤ幅方向内側のコード10inは、変曲点Qよりタイヤ径方向外側では図中の矢印Y1のようにタイヤ幅方向の外側に凸である。しかしながら、最もタイヤ幅方向外側のコード10outは、変曲点Pが図3の場合よりもタイヤ径方向外側に位置している。このため、コード10outは、変曲点Pよりタイヤ径方向内側では図中の矢印Y3のようにタイヤ幅方向の内側に凸である。リム30のフランジ30Fの高さFHの1.1倍以上1.6倍以下の範囲のいずれの位置においても、最もタイヤ幅方向外側のコード10outは、タイヤ幅方向の内側に凸である。このため、図5に示す比較例のバイアスタイヤについては、高負荷時に、プライセパレーション200が発生する可能性がある。
 また、図6において、比較例のバイアスタイヤは、インナーライナー9、サイドウォール部7に、矢印Y13のようにタイヤ幅方向外側への成分を含む応力が加えられるほかに、矢印Y14、Y15のようにタイヤ径方向外側への成分を含む応力が加えられる。また、図6において、比較例のバイアスタイヤは、高負荷時に、矢印Y23、矢印Y24およびY25のようにより大きな応力が加えられるため、インナーライナー9、サイドウォール部7がたわみ、実線で示す位置から破線で示す位置に移動する。破線で示す位置にインナーライナー9’、サイドウォール部7’が移動することにより、最もタイヤ幅方向内側のコード10inは実線の位置から破線の位置に移動する。破線で示す位置に移動した状態では、コード10in’はほぼ直線の曲率半径R1’(例えば、R1’=1002mm)になる。最もタイヤ幅方向外側のコードの曲率半径R4’(例えば、R4’=355mm)は、図4の場合と同等の値である。この状態において、さらに大きな応力がタイヤ径方向外側にかかり、ビードコア3a、3bおよび3cがタイヤ径方向外側に浮き上がり、CBUに至ることがある。
 これに対し、本実施形態によるバイアスタイヤ1は、上述したように、バイアスタイヤ1のタイヤ子午線方向の断面において、バイアスタイヤ1が組込まれるリム30のフランジ30Fの高さFHの0.9倍以上1.6倍以下の範囲のいずれかの位置において、カーカス層10a、10b、10c、100の最もタイヤ幅方向内側のコード10inの湾曲形状がタイヤ幅方向の外側に凸であり、かつ、フランジ30Fの高さFHの1.1倍以上1.6倍以下の範囲のいずれかの位置において、カーカス層10a、10b、10c、100の最もタイヤ幅方向外側のコード10outの湾曲形状がタイヤ幅方向の外側に凸である。これにより、タイヤ赤道面CLに近い内面側のカーカス層10aの過度な引張りを抑制することができ、CBUを防止することができる。また、隣り合うカーカスプライの圧縮方向(動く方向)を同一とすることで、カーカスプライ間のせん断歪みを減少しプライセパレーションを防止できる。
 [まとめ]
 カーカスの過度な引張りによるCBU、タイヤ赤道面に近い内面側カーカス層と遠い外面側カーカス層との間の歪みによるプライセパレーションを防止するには、一般的な対策としては過度な引張りに耐えうるようにカーカス枚数増、層間歪みに耐えうるようにカーカス層間ゴムゲージの増加が考えられる。しかしながら、これらの対策はコスト増加や重量増加に繋がる。また、リムのビードベース幅などカーカス枚数やゴムゲージの増加には限界がある。本実施形態のバイアスタイヤによれば、ビード部やカーカス層の過度な引張りを抑制することができ、カーカス枚数やゴムゲージを増やすことなく耐久性能を向上させることができる。
 本実施形態のバイアスタイヤ1について、耐久性能を評価した。本実施例では、29.5-25 L22サイズのタイヤを規定リムに装着し、650kPa(TRA規格:350kPa)、150%荷重条件にて実車走行を行い、ビード故障が発生までの走行時間にて耐久性能を評価した。
 従来例として、最もタイヤ幅方向内側のコード10inがほぼ直線形状であり、かつ、最もタイヤ幅方向外側のコード10outの湾曲形状がタイヤ幅方向内側に凸で、比R1/R3の値が0.26、ビードフィラーの厚みがタイヤ径方向外側に向かうに従って漸減し、タイヤ径方向の高さが最も高いビードフィラーの高さがカーカス断面高さCHに対して0.15倍であり、各ビードコアに対応するカーカス層をさらに覆う他のカーカス層を有しておらず、比R1/R2の値が3.0で、比R1/R4の値が2.8で、コード10inの変曲点の位置がフランジの高さの0.25倍以上0.75倍以下の範囲外であり、コード10outの変曲点の位置がフランジの高さの0.60倍以上1.15倍以下の範囲外であるタイヤを用意した。
 比較例として、最もタイヤ幅方向内側のコード10inの湾曲形状がタイヤ幅方向外側に凸であり、かつ、最もタイヤ幅方向外側のコード10outの湾曲形状がタイヤ幅方向内側に凸で、比R1/R3の値が0.26、ビードフィラーの厚みがタイヤ径方向外側に向かうに従って漸減し、タイヤ径方向の高さが最も高いビードフィラーの高さがカーカス断面高さCHに対して0.15倍であり、各ビードコアに対応するカーカス層をさらに覆う他のカーカス層を有しておらず、比R1/R2の値が3.0で、比R1/R4の値が2.8で、コード10inの変曲点の位置がフランジの高さの0.25倍以上0.75倍以下の範囲外であり、コード10outの変曲点の位置がフランジの高さの0.60倍以上1.15倍以下の範囲外であるタイヤを用意した。
 表1、表2に示すように、実施例1から実施例13のバイアスタイヤは、最もタイヤ幅方向内側のコード10inの湾曲形状がタイヤ幅方向外側に凸で、かつ、最もタイヤ幅方向外側のコード10outの湾曲形状がタイヤ幅方向外側に凸とした。実施例1から実施例13においては、比R1/R3の値が0.26、0.5、0.75、1.0のバイアスタイヤとした。実施例1から実施例13のバイアスタイヤは、ビードフィラーの厚みがタイヤ径方向外側に向かうに従って漸減するものとした。実施例1から実施例13のバイアスタイヤは、タイヤ径方向の高さが最も高いビードフィラーの高さが、カーカス断面高さCHに対して0.15倍、0.16倍、0.17倍、0.20倍、0.23倍のバイアスタイヤとした。実施例1から実施例6のバイアスタイヤは、各ビードコアに対応するカーカス層をさらに覆う他のカーカス層を有していないもの、実施例7から実施例13のバイアスタイヤは、各ビードコアに対応するカーカス層をさらに覆う他のカーカス層を有しているものとした。実施例1から実施例13においては、比R1/R2の値が1.0、1.4、1.8、3.0のバイアスタイヤとした。実施例1から実施例13においては、比R1/R4の値が0.5、1.5、2.5、2.8のバイアスタイヤとした。実施例1から実施例13においては、コード10inの変曲点の位置がフランジの高さの0.25倍以上0.75倍以下の範囲内であり、コード10outの変曲点の位置がフランジの高さの0.60倍以上1.15倍以下の範囲内であるバイアスタイヤとした。
 なお、従来例、比較例、実施例1から実施例13では、カーカス層10a、10b、10c、100を構成するそれぞれのカーカスプライ枚数を4枚以上8枚以下の枚数とし、タイヤ幅方向で最も内側のカーカス層のコードの角度を、タイヤ周方向に対して、25度以上45度以下とした。
 表1および表2によると、最もタイヤ幅方向内側のコード10inおよび最もタイヤ幅方向外側のコード10outの湾曲形状がともにタイヤ幅方向外側に凸で、比R1/R3が0.5以上1.0以下である場合、タイヤ径方向の高さが最も高いビードフィラーの高さがカーカス断面高さCHに対して0.17倍以上0.23倍以下の範囲である場合、各ビードコアに対応するカーカス層をさらに覆う他のカーカス層を有している場合、比R1/R2が1.0以上1.8以下である場合、比R1/R4が2.5以下である場合、コード10inの変曲点の位置がフランジの高さの0.25倍以上0.75倍以下の範囲内であり、コード10outの変曲点の位置がフランジの高さの0.60倍以上1.15倍以下の範囲内である場合について良好な結果が得られた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
1 バイアスタイヤ
2 ビード部
3a、3b、3c ビードコア
4a、4b、4c ビードフィラー
5 トレッド部
6 ショルダー部
7 サイドウォール部
8、8a ベルト
9 インナーライナー
10a、10b、10c、100 カーカス層
10in、10out コード
11 溝
15 トレッドゴム
17 サイドウォールゴム
20 リムクッションゴム
30 リム
30F フランジ
CL タイヤ赤道面
P、Q 変曲点

Claims (11)

  1.  一対のビードコアと、前記一対のビードコアそれぞれのタイヤ径方向外側に配置されるビードフィラーと、前記一対のビードコア間に架け渡されると共に前記ビードコアおよび前記ビードフィラーを包み込みつつ端部が巻き返されて係止されるカーカス層とを備えるバイアスタイヤであって、
     タイヤ子午線方向の断面で、前記バイアスタイヤが組込まれるリムのフランジの高さの0.9倍以上1.6倍以下の範囲のいずれかの位置において、前記カーカス層の最もタイヤ幅方向内側のコードの湾曲形状がタイヤ幅方向の外側に凸であり、かつ、
     タイヤ子午線方向の断面で、前記フランジの高さの1.1倍以上1.6倍以下の範囲のいずれかの位置において、前記カーカス層の最もタイヤ幅方向外側のコードの湾曲形状がタイヤ幅方向の外側に凸であるバイアスタイヤ。
  2.  タイヤ子午線方向の断面で、前記フランジの高さの1.5倍の位置において、前記カーカス層の最もタイヤ幅方向内側のコードの曲率半径R1の、前記カーカス層の最大高さ位置から前記カーカス層の最大幅位置までのタイヤ径方向に沿った長さの1/3の位置での前記カーカス層の最もタイヤ幅方向内側のコードの曲率半径R3に対する比R1/R3が0.5以上1.0以下である請求項1に記載のバイアスタイヤ。
  3.  タイヤ子午線方向の断面において、前記ビードフィラーは、タイヤ幅方向の厚みが前記ビードコアからタイヤ径方向外側に向かうに従って漸減する
    請求項1または2に記載のバイアスタイヤ。
  4.  前記ビードコアを複数対含み、
     前記ビードコアそれぞれに対応して、前記ビードフィラーと前記カーカス層とを複数含み、
     複数の前記カーカス層は、それぞれ、前記ビードコアと前記ビードコアに対応する前記ビードフィラーとを包み込みつつ巻き返されて係止され、
     タイヤ子午線方向の断面において、複数の前記ビードフィラーのうち、タイヤ径方向の高さが最も高いビードフィラーの高さは、カーカス断面高さに対して0.17倍以上0.23倍以下である
    請求項1から請求項3のいずれか1つに記載のバイアスタイヤ。
  5.  複数対の前記ビードコアそれぞれに対応する複数の前記カーカス層を覆う他のカーカス層をさらに含む
    請求項4に記載のバイアスタイヤ。
  6.  タイヤ子午線方向の断面で、前記フランジの高さの1.5倍の位置において、
     前記カーカス層の最もタイヤ幅方向内側のコードの曲率半径R1の、前記カーカス層の最もタイヤ幅方向外側のコードの曲率半径R2に対する比R1/R2が1.0以上1.8以下である
    請求項1から請求項5のいずれか1つに記載のバイアスタイヤ。
  7.  タイヤ子午線方向の断面で、前記フランジの高さの1.5倍の位置において、
     前記カーカス層の最もタイヤ幅方向内側のコードの曲率半径R1の、
     タイヤプロファイルラインの曲率半径R4に対する比R1/R4が2.5以下である
    請求項1から請求項6のいずれか1つに記載のバイアスタイヤ。
  8.  前記カーカス層それぞれに含まれるカーカスの枚数は、4枚以上8枚以下である
    請求項1から請求項7のいずれか1つに記載のバイアスタイヤ。
  9.  タイヤ幅方向で最も内側のカーカス層のコードの角度は、タイヤ周方向に対して、25度以上45度以下である
    請求項1から請求項8のいずれか1つに記載のバイアスタイヤ。
  10.  タイヤ子午線方向の断面において、前記カーカス層の最もタイヤ幅方向内側のコードは、前記湾曲形状がタイヤ幅方向の内側に凸からタイヤ幅方向の外側に凸へ変化する変曲点を有し、
     前記変曲点は、前記フランジの高さの0.25倍以上0.75倍以下の範囲に位置している
    請求項1から請求項9のいずれか1つに記載のバイアスタイヤ。
  11.  タイヤ子午線方向の断面において、前記カーカス層の最もタイヤ幅方向外側のコードは、前記湾曲形状がタイヤ幅方向の内側に凸からタイヤ幅方向の外側に凸へ変化する変曲点を有し、
     前記変曲点は、前記フランジの高さの0.60倍以上1.15倍以下の範囲に位置している
    請求項1から請求項10のいずれか1つに記載のバイアスタイヤ。
PCT/JP2017/046777 2017-04-28 2017-12-26 バイアスタイヤ WO2018198435A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780089696.1A CN110520306B (zh) 2017-04-28 2017-12-26 斜交轮胎
US16/608,699 US11548327B2 (en) 2017-04-28 2017-12-26 Bias tire
AU2017411632A AU2017411632B2 (en) 2017-04-28 2017-12-26 Bias tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017090422A JP6907681B2 (ja) 2017-04-28 2017-04-28 バイアスタイヤ
JP2017-090422 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018198435A1 true WO2018198435A1 (ja) 2018-11-01

Family

ID=63918895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046777 WO2018198435A1 (ja) 2017-04-28 2017-12-26 バイアスタイヤ

Country Status (5)

Country Link
US (1) US11548327B2 (ja)
JP (1) JP6907681B2 (ja)
CN (1) CN110520306B (ja)
AU (1) AU2017411632B2 (ja)
WO (1) WO2018198435A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7315846B2 (ja) * 2020-01-21 2023-07-27 横浜ゴム株式会社 空気入りタイヤ

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136202A (en) * 1977-04-28 1978-11-28 Bridgestone Corp Pneumatic tyre for heavy duty and high speed use
US4142930A (en) * 1975-05-08 1979-03-06 The Goodyear Tire & Rubber Company Method of fabricating large tires
JPS63265703A (ja) * 1987-04-23 1988-11-02 Bridgestone Corp 耐久性に優れる空気入りバイアスタイヤ
JPH0544606A (ja) * 1991-08-13 1993-02-23 Toyota Motor Corp 燃料噴射式内燃機関の吸気装置
JPH06179307A (ja) * 1992-12-15 1994-06-28 Bridgestone Corp 重荷重用空気入りバイアスタイヤ
JPH06191241A (ja) * 1992-12-24 1994-07-12 Yokohama Rubber Co Ltd:The 航空機用バイアスタイヤ
JPH06191206A (ja) * 1992-12-24 1994-07-12 Yokohama Rubber Co Ltd:The 航空機用バイアスタイヤ
WO2001017801A1 (en) * 1999-09-03 2001-03-15 The Goodyear Tire & Rubber Company Farm implement tire
WO2008099899A1 (ja) * 2007-02-14 2008-08-21 Bridgestone Corporation 空気入りタイヤ
JP2013028200A (ja) * 2011-07-26 2013-02-07 Bridgestone Corp 空気入りラジアルタイヤ
WO2017057705A1 (ja) * 2015-10-02 2017-04-06 株式会社ブリヂストン 建設車両用タイヤ

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU83748A1 (de) * 1980-11-12 1982-02-18 Bridgestone Tire Co Ltd Hochleistungsluftreifen
JPS58101554A (ja) * 1981-12-11 1983-06-16 Funai Denki Kk 電話機による画像送受信装置
JP2614461B2 (ja) * 1987-10-05 1997-05-28 横浜ゴム株式会社 空気入りラジアルタイヤ
US4890660A (en) * 1987-12-11 1990-01-02 The Goodyear Tire & Rubber Company Pneumatic tire having a reversed bead tie-in
JPH02225105A (ja) * 1989-02-25 1990-09-07 Sumitomo Rubber Ind Ltd 高速重荷重用ラジアルタイヤ
US5335707A (en) * 1991-02-15 1994-08-09 Sumitomo Rubber Industries, Ltd. High speed heavy duty cross ply tire
CA2063340A1 (en) * 1991-11-12 1993-05-13 Mahmoud Cherif Assaad Biased pneumatic tire having a belt structure with six annular layers
JP2978627B2 (ja) * 1992-04-09 1999-11-15 株式会社ブリヂストン 建設車両用空気入りベルテッドバイアスタイヤ
JPH0624215A (ja) * 1992-07-09 1994-02-01 Bridgestone Corp 重荷重用空気入りバイアスタイヤ
JPH0648106A (ja) * 1992-07-27 1994-02-22 Bridgestone Corp 重荷重用バイアスタイヤ
JP3426278B2 (ja) * 1993-03-09 2003-07-14 株式会社ブリヂストン 操縦安定性に優れた空気入りタイヤ
US5509455A (en) * 1994-04-12 1996-04-23 The Goodyear Tire & Rubber Company Aircraft tire including reinforcement inserts
JPH08244404A (ja) * 1995-03-14 1996-09-24 Sumitomo Rubber Ind Ltd 高速重荷重用クロスプライタイヤ
JPH11227414A (ja) * 1998-02-18 1999-08-24 Yokohama Rubber Co Ltd:The 建設車両用空気入りラジアルタイヤ
JP3848787B2 (ja) * 1998-05-18 2006-11-22 横浜ゴム株式会社 建設車両用空気入りバイアスタイヤ
JP4407018B2 (ja) * 2000-07-24 2010-02-03 横浜ゴム株式会社 空気入りタイヤ
JP4315647B2 (ja) 2002-06-12 2009-08-19 住友ゴム工業株式会社 空気入りタイヤ
JP2005041368A (ja) * 2003-07-23 2005-02-17 Yokohama Rubber Co Ltd:The 重荷重用空気入りバイアスタイヤ
JP2006044407A (ja) * 2004-08-03 2006-02-16 Bridgestone Corp 応急用バイアスタイヤ
JP2007331707A (ja) * 2006-06-19 2007-12-27 Yokohama Rubber Co Ltd:The 航空機用バイアスタイヤ
JP4659099B2 (ja) * 2009-02-16 2011-03-30 住友ゴム工業株式会社 自動二輪車用タイヤ、及びその製造方法
DE102013112049A1 (de) * 2013-10-31 2015-04-30 Hamilton Bonaduz Ag Deckel für Zellkulturbehälter
CN203995486U (zh) * 2014-05-08 2014-12-10 厦门正新橡胶工业有限公司 斜交充气轮胎胎体结构

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142930A (en) * 1975-05-08 1979-03-06 The Goodyear Tire & Rubber Company Method of fabricating large tires
JPS53136202A (en) * 1977-04-28 1978-11-28 Bridgestone Corp Pneumatic tyre for heavy duty and high speed use
JPS63265703A (ja) * 1987-04-23 1988-11-02 Bridgestone Corp 耐久性に優れる空気入りバイアスタイヤ
JPH0544606A (ja) * 1991-08-13 1993-02-23 Toyota Motor Corp 燃料噴射式内燃機関の吸気装置
JPH06179307A (ja) * 1992-12-15 1994-06-28 Bridgestone Corp 重荷重用空気入りバイアスタイヤ
JPH06191241A (ja) * 1992-12-24 1994-07-12 Yokohama Rubber Co Ltd:The 航空機用バイアスタイヤ
JPH06191206A (ja) * 1992-12-24 1994-07-12 Yokohama Rubber Co Ltd:The 航空機用バイアスタイヤ
WO2001017801A1 (en) * 1999-09-03 2001-03-15 The Goodyear Tire & Rubber Company Farm implement tire
WO2008099899A1 (ja) * 2007-02-14 2008-08-21 Bridgestone Corporation 空気入りタイヤ
JP2013028200A (ja) * 2011-07-26 2013-02-07 Bridgestone Corp 空気入りラジアルタイヤ
WO2017057705A1 (ja) * 2015-10-02 2017-04-06 株式会社ブリヂストン 建設車両用タイヤ

Also Published As

Publication number Publication date
JP2018187980A (ja) 2018-11-29
AU2017411632A1 (en) 2019-10-24
CN110520306A (zh) 2019-11-29
US11548327B2 (en) 2023-01-10
JP6907681B2 (ja) 2021-07-21
US20210114418A1 (en) 2021-04-22
AU2017411632B2 (en) 2021-07-22
CN110520306B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
US10040322B2 (en) Pneumatic tire
JP4482504B2 (ja) 空気入りタイヤ
WO2013024516A1 (ja) 空気入りタイヤ
US20200023691A1 (en) Pneumatic tire
EP2910392B1 (en) Pneumatic tire
WO2014203909A1 (ja) 空気入りタイヤ
WO2018135374A1 (ja) 空気入りタイヤ
JP6454181B2 (ja) 重荷重用空気入りタイヤ及びその製造方法
JP7011461B2 (ja) 空気入りタイヤ
JP2010006322A (ja) 空気入りタイヤ
JP2001018619A (ja) ビード部耐久性にすぐれる空気入りタイヤ
WO2018198435A1 (ja) バイアスタイヤ
JPH05155208A (ja) 重荷重用空気入りラジアルタイヤ
JP6311810B1 (ja) 空気入りタイヤ
JP5071137B2 (ja) 空気入りタイヤ
JP2004074826A (ja) 空気入りラジアルタイヤ
JP4215567B2 (ja) 重荷重用空気入りラジアルタイヤ
JP4561633B2 (ja) 建設車両用ラジアルタイヤの製造方法
JP2012081951A (ja) 空気入りタイヤ
JP5926915B2 (ja) 空気入りタイヤ
JP2004306680A (ja) 空気入りラジアルタイヤおよびそれの製造方法
JP6953822B2 (ja) 空気入りバイアスタイヤ
JP2001001716A (ja) 重荷重用空気入りラジアルタイヤ
JP6773551B2 (ja) 空気入りタイヤ
JP2018192960A (ja) 空気入りバイアスタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017411632

Country of ref document: AU

Date of ref document: 20171226

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907919

Country of ref document: EP

Kind code of ref document: A1