WO2017057705A1 - 建設車両用タイヤ - Google Patents

建設車両用タイヤ Download PDF

Info

Publication number
WO2017057705A1
WO2017057705A1 PCT/JP2016/079078 JP2016079078W WO2017057705A1 WO 2017057705 A1 WO2017057705 A1 WO 2017057705A1 JP 2016079078 W JP2016079078 W JP 2016079078W WO 2017057705 A1 WO2017057705 A1 WO 2017057705A1
Authority
WO
WIPO (PCT)
Prior art keywords
carcass
tire
construction vehicle
main body
cord
Prior art date
Application number
PCT/JP2016/079078
Other languages
English (en)
French (fr)
Inventor
淳 喜寅
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016185614A external-priority patent/JP6785104B2/ja
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US15/764,719 priority Critical patent/US20180290503A1/en
Priority to EP16851874.4A priority patent/EP3357713B1/en
Priority to ES16851874T priority patent/ES2770412T3/es
Priority to CN201680056502.3A priority patent/CN108136839B/zh
Publication of WO2017057705A1 publication Critical patent/WO2017057705A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C9/08Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship the cords extend transversely from bead to bead, i.e. radial ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead

Definitions

  • the present invention relates to a tire for a construction vehicle, and more particularly to a tire for a construction vehicle having improved bead durability.
  • the distance between cords once becomes the smallest in the vicinity of the bead core then becomes wider as it goes outward in the tire radial direction, and becomes the largest at a predetermined height position from the bead portion. ing.
  • the compressive strain generated in the carcass folded portion due to the vertical force (Fz) can be reduced.
  • the carcass folded portion is also subjected to the compressive strain due to the lateral force (Fy). Arise.
  • the inflection point of the carcass folding portion due to the compressive strain may deviate from the inflection point in the situation where the lateral force is low, and the compression strain may not be effectively reduced. It was.
  • the position of the inflection point moves to the end side on the outer side in the tire radial direction of the carcass turn-up portion, and thus the carcass main body portion and carcass of the conventional construction vehicle tire described above.
  • the compression distortion may not always be effectively reduced.
  • the present invention has been made in view of such a situation, and even in a situation close to the actual use environment where a large lateral force is input, the compression strain generated in the carcass folded portion is reduced, and the durability of the bead portion is reduced. It aims at providing the tire for construction vehicles which can improve property.
  • a first feature of the present invention is that a carcass main body (carcass main body 40) covered with a carcass cord (carcass cord 31) and a carcass main body are connected to the carcass main body and tires from the inner side in the tire width direction of the bead core (bead core 61).
  • a construction vehicle tire (construction vehicle tire 1) including a carcass folding portion (carcass folding portion 50) that is folded outward in the width direction and is covered with a carcass cord, the carcass cord of the carcass main body portion,
  • the distance between the cords which is the distance from the carcass cord of the carcass folding portion, decreases from the bead core to the outer side in the tire radial direction and becomes a minimum value a, and goes to the outer side in the tire radial direction where the minimum value a is reached.
  • the height HA of the carcass cord of the carcass main body portion that becomes the minimum value a from the base line of the applied rim, the height HB of the carcass cord of the carcass main body portion that becomes the maximum value b from the base line of the applied rim, and The gist is that the flange height HF of the application rim from the base line of the application rim satisfies the relationship of 1.2HF ⁇ HA ⁇ 2.5HF and 3.1HF ⁇ HB ⁇ 4.5HF.
  • the distance L1 from the position of the minimum value a along the carcass cord of the carcass folded portion to the position of the maximum value b is the maximum along the carcass cord of the carcass folded portion. It may be longer than the distance L2 from the position of the value b to the end portion (end portion 51) on the outer side in the tire radial direction of the carcass folded portion.
  • the ratio b / a between the minimum value a and the maximum value b may be 1.10 or more and less than 2.00.
  • the second feature of the present invention is that a carcass body portion (carcass body portion 40) covered with a carcass cord (carcass cord 31) and a carcass body portion are connected to the carcass body portion and tires from the inside in the tire width direction of the bead core (bead core 61).
  • a construction vehicle tire including a carcass folded portion (carcas folded portion 50) that is folded outward in the width direction and is covered with a carcass cord, the carcass cord of the carcass main body portion,
  • the distance between the cords which is the distance from the carcass cord of the carcass folded portion, decreases from the bead core to the outer side in the tire radial direction and becomes a minimum value a, and after reaching the minimum value a, the outer side in the tire radial direction
  • the construction vehicle tire is mounted on the applicable rim (wheel rim 100).
  • the flange height HF of the applied rim from the baseline of the applied rim satisfies the relationship 1.2HF ⁇ HA ⁇ 2.5HF, 2.6HF ⁇ HB ⁇ 3.5HF, 1.10 ⁇ b / a ⁇ 1.40 And
  • CH is a height from a base line of the application rim to a carcass line of a tread portion of the tire for a construction vehicle, and an end of the carcass folding portion from the base line of the application rim.
  • the height PE may satisfy the relationship of 0.50 ⁇ PE / CH ⁇ 0.58.
  • a straight line SL1 passing through the position of the carcass cord of the carcass main body portion at which the minimum value a is obtained and the position of the carcass cord of the carcass main body portion at which the maximum value b is obtained The intersecting angle ⁇ between the position of the carcass cord of the carcass folded portion at which the local minimum value a is reached and the straight line SL2 passing through the position of the carcass cord of the carcass folded portion at which the local maximum value b is obtained is 2.00 ° ⁇ ⁇ ⁇ 5.00 You may be satisfied.
  • FIG. 1 is a partial cross-sectional view of the construction vehicle tire 1 along the tire width direction and the tire radial direction.
  • FIG. 2 is an enlarged cross-sectional view of the bead portion 60 of the construction vehicle tire 1.
  • FIG. 3 is a diagram showing a specific positional relationship between the carcass main body 40 and the carcass folding portion 50 of the construction vehicle tire 1.
  • FIG. 4 is a diagram showing a specific shape of the carcass folding portion 50 of the construction vehicle tire 1.
  • FIG. 5 is an enlarged cross-sectional view of the bead portion 60 of the construction vehicle tire 1A.
  • FIG. 6 is a diagram showing a specific positional relationship between the carcass main body 40 and the carcass folding portion 50 of the construction vehicle tire 1A.
  • FIG. 7 is a schematic diagram for explaining compression deformation and tensile deformation that occur in the tire 1 for a construction vehicle.
  • FIG. 8 is a diagram illustrating test results of tires for construction vehicles according to a conventional example, a comparative example, and
  • FIG. 1 is a partial cross-sectional view along the tire width direction and the tire radial direction of a construction vehicle tire 1 according to this embodiment.
  • the construction vehicle tire 1 has a symmetrical shape with respect to the tire equator line CL.
  • the construction vehicle tire 1 is suitably used, for example, for construction vehicle tires such as dump trucks, articulated dump trucks, wheel loaders and the like that travel on crushed stones, mines, and dam sites.
  • the construction vehicle tire 1 is connected to the tread portion 10 and the tread portion 10 that are in contact with the road surface, and is connected to the sidewall portion 15 and the sidewall portion 15 that are located on the inner side in the tire radial direction than the tread portion 10.
  • the bead portion 60 is located on the inner side in the tire radial direction than the sidewall portion 15.
  • a belt layer 20 composed of a plurality of (for example, 4 to 6) corded belts is provided inside the tread portion 10 in the tire radial direction.
  • the tread portion 10 is formed with a pattern (not shown) according to the use environment of the construction vehicle tire 1 and the type of construction vehicle to be mounted.
  • a carcass layer 30 that straddles the pair of left and right bead cores 61 and forms the skeleton of the tire 1 for construction vehicles.
  • the carcass layer 30 has a radial structure having carcass cords 31 (not shown in FIG. 1, refer to FIG. 2) arranged radially along the tire radial direction.
  • the present invention is not limited to the radial structure, and a bias structure in which the carcass cords are arranged so as to cross in the tire radial direction may be used.
  • the construction vehicle tire 1 is a pneumatic tire, but the gas filled in the construction vehicle tire 1 assembled to the wheel rim 100 is not limited to air, but may be nitrogen gas or the like.
  • the inert gas may be filled.
  • a cooling liquid may be filled.
  • FIG. 2 is an enlarged cross-sectional view of the bead part 60 of the construction vehicle tire 1.
  • the carcass layer 30 includes a carcass body 40 and a carcass folding portion 50.
  • the carcass main body 40 and the carcass folding portion 50 have a structure in which the carcass cord 31 is covered with rubber.
  • the carcass main body portion 40 is located from the tread portion 10 (see FIG. 1) to the bead core 61, and constitutes a main portion of the carcass layer 30.
  • the carcass folded portion 50 is a portion that is continuous with the carcass main body portion 40 and is folded from the inner side in the tire width direction of the bead core 61 to the outer side in the tire width direction.
  • the carcass folded portion 50 extends from the bead core 61 toward the outer side in the tire radial direction.
  • An end portion 51 of the carcass folded portion 50 terminates at the sidewall portion 15.
  • FIG. 3 shows a specific positional relationship between the carcass main body portion 40 and the carcass folding portion 50 of the construction vehicle tire 1.
  • the inter-cord distance which is the distance between the carcass cord 31 of the carcass main body portion 40 and the carcass cord 31 of the carcass folded-back portion 50, decreases with increasing distance from the bead core 61 in the tire radial direction.
  • Minimum value a After the cord distance reaches the minimum value a, the distance between the cords increases toward the outer side in the tire radial direction and reaches a maximum value b.
  • the distance between the cords in the cross section along the tire width direction and the tire radial direction as shown in FIG. 2 is the carcass cord 31 of the carcass main body 40 with respect to the perpendicular to the carcass cord 31 of the carcass main body 40, and This is the distance (interval) between the carcass folded portion 50 and the carcass cord 31. More specifically, the inter-cord distance is a distance between the center in the thickness direction of the carcass cord 31 of the carcass main body portion 40 and the center in the thickness direction of the carcass cord 31 of the carcass folded portion 50.
  • the height HA of the carcass cord 31 of the carcass main body portion 40 which is a minimum value a from the base line BL of the wheel rim 100, is maximum from the base line BL.
  • the height HB of the carcass cord 31 of the carcass main body 40 having the value b and the height HF from the base line BL to the rim flange 110 of the wheel rim 100 satisfy the following relationship.
  • the base line BL is a straight line that is parallel to the rotation axis of the wheel rim 100 and passes through the end (bead heel) of the bead portion 60 on the outer side in the tire width direction.
  • the applicable rim is, for example, the standard size wheel rim specified in the Japan Auto Tire Association (JATMA) Year Book, and the above-mentioned heights HA, HB and HF are the measurement conditions (applicable to JATMA) Measured with the rim mounted, specified internal pressure setting, set temperature, etc.). In place of JATMA, other standards (TRA, ETRTO, etc.) may be followed.
  • JATMA Japan Auto Tire Association
  • other standards TRA, ETRTO, etc.
  • FIG. 4 shows a specific shape of the carcass folding portion 50 of the construction vehicle tire 1.
  • the distance from the position of the local minimum value a to the position of the local maximum value b along the carcass cord 31 of the carcass folding portion 50 is defined as a distance L1.
  • a distance from the position of the local maximum value b along the carcass cord 31 of the carcass folded portion 50 to the end 51 on the outer side in the tire radial direction of the carcass folded portion 50 is defined as a distance L2.
  • the distance L1 is longer than the distance L2. That is, in the positional relationship between the minimum value a, the maximum value b, and the end portion 51 of the carcass folded portion 50 in the tire radial direction, the location of the maximum value b is located on the outer side in the tire radial direction than the conventional example (described later).
  • the end portion 51 of the carcass folded portion 50 terminates near the position of the maximum width SWmax where the width of the sidewall portion 15 in the tire width direction is maximum.
  • the end 51 is preferably terminated on the inner side in the tire radial direction from the portion of the maximum width SWmax. Therefore, the position of the maximum value b in the tire radial direction is also located on the inner side in the tire radial direction than the portion of the maximum width SWmax.
  • the position of the maximum value b in the tire radial direction is preferably positioned on the outer side in the tire radial direction from the position of half the height from the baseline BL (see FIG. 3) to the maximum width SWmax.
  • the thickness of the rubber gauge at the position of the maximum value b is such that the thickness from the tire surface to the outer surface in the tire width direction of the carcass folded portion 50 is the inner surface in the tire width direction of the carcass folded portion 50 to the carcass main body portion 40. It is thinner than the thickness up to the outer surface in the tire direction.
  • the relationship between the thickness of the rubber gauge at the position of the minimum value a is opposite to the position of the maximum value b, and the thickness from the tire surface to the outer surface in the tire width direction of the carcass folded portion 50 is the same as that of the carcass folded portion 50. It is thicker than the thickness from the inner surface in the tire width direction to the outer surface in the tire direction of the carcass main body 40.
  • the maximum value b is between the bead core 61 and the end portion 51 of the carcass folded portion 50.
  • the number of places where the local maximum value b is not necessarily limited to one.
  • the ratio b / a between the minimum value a and the maximum value b is 1.10 or more and less than 2.00.
  • FIG. 5 is an enlarged cross-sectional view of the bead portion 60 of the construction vehicle tire 1A according to the present embodiment.
  • the structure of the tread portion 10 and the belt layer 20 of the construction vehicle tire 1A is the same as that of the construction vehicle tire 1.
  • the construction vehicle tire 1 is different from the construction vehicle tire 1 in the shape (positional relationship) of the carcass folding portion 50.
  • FIG. 6 shows a specific positional relationship between the carcass main body portion 40 and the carcass folding portion 50 of the construction vehicle tire 1A.
  • the height HA of the carcass cord 31 of the carcass main body 40 that has a minimum value a from the baseline BL of the wheel rim 100
  • the baseline The height HB of the carcass cord 31 of the carcass main body 40 having the maximum value b from BL, and the height HF from the base line BL to the rim flange 110 of the wheel rim 100 Satisfies the following relationship.
  • a straight line SL1 that passes through the position of the carcass cord 31 of the carcass main body portion 40 at which the minimum value a is reached and the position of the carcass cord 31 of the carcass main body portion 40 at which the maximum value b is reached, and the carcass folding portion that has the minimum value a
  • the intersection angle ⁇ between the position of the 50 carcass cords 31 and the straight line SL2 passing through the position of the carcass cord 31 of the carcass folding portion 50 having the maximum value b satisfies the following relationship.
  • intersection angle ⁇ is small, and in the construction vehicle tire 1A, the maximum value b of the inter-cord distance is small as compared with the conventional example and the construction vehicle tire 1.
  • the maximum value b is between the bead core 61 and the end portion 51 of the carcass folded portion 50.
  • the number of places where the local maximum value b is not necessarily limited to one.
  • CH case height
  • PE cass folding part height
  • the carcass line of the tread portion 10 is a straight line passing through the outer end in the tire radial direction of the carcass layer 30 (carcass main body portion 40) and parallel to the tire width direction.
  • FIG. 7 is a schematic diagram for explaining compression deformation and tensile deformation that occur in the tire 1 for a construction vehicle. As shown in FIG. 7, in the vicinity where the distance between the cords is the minimum value a, when the load is applied to the construction vehicle tire 1, the carcass folded portion 50 is compressed and deformed. On the other hand, tensile deformation occurs in the carcass folded portion 50 in the vicinity where the distance between cords reaches the maximum value b.
  • the carcass cord 31 of the carcass folding portion 50 gradually spreads outward in the tire width direction from the position of the minimum value a toward the position of the maximum value b, that is, away from the carcass cord 31 of the carcass main body 40. Therefore, even if the carcass folded portion 50 is compressed and deformed, the carcass folded portion 50 buckles, more specifically, the carcass cord 31 of the carcass folded portion 50 is bent due to the compressive deformation and meanders. The state can be suppressed.
  • the maximum value b is located on the outer side in the tire radial direction compared to the conventional example. Therefore, when the tensile deformation or the compression deformation occurs in the construction vehicle tire 1, the lateral force (Fy ) Is high, the state where the inflection point P between the tensile deformation and the compression deformation is located on the outer side in the tire radial direction from the maximum value b (reverse phenomenon) can be avoided more reliably.
  • the construction vehicle tire 1A when a lateral force (Fy) is input to the construction vehicle tire 1A, the construction vehicle tire 1A is deformed as a whole, and therefore, after the distance between cords reaches the minimum value a, the tire radial direction In the case of a structure that increases toward the outside and reaches the maximum value b, the ply end separation may be induced depending on the position of the end portion 51 of the carcass folded portion 50.
  • a lateral force Fy
  • the construction vehicle tire 1A when a lateral force (Fy) is input to the construction vehicle tire 1A, the construction vehicle tire 1A is deformed as a whole, and therefore, after the distance between cords reaches the minimum value a, the tire radial direction
  • the ply end separation may be induced depending on the position of the end portion 51 of the carcass folded portion 50.
  • FIG. 8 shows the test results of the tires for construction vehicles according to the conventional example, the comparative example, and the examples (Examples 1 and 2).
  • the conventional example shown in FIG. 8 is a construction vehicle tire described in a prior art document (Japanese Patent Laid-Open No. 2009-113715).
  • the comparative example is a tire for a construction vehicle in which the carcass folded portion 50 does not have a convex portion such as the maximum value b.
  • Example 1 is a construction vehicle tire 1 and Example 2 is a construction vehicle tire 1A.
  • Example 3 is a construction vehicle tire 1A, and further, CH (case height) and PE (carcass folded portion height) satisfy the above-described relationship.
  • CH case height
  • PE carrier folded portion height
  • Example 1 has the following set values.
  • Example 2 has the following set values.
  • the third embodiment further has the following setting values.
  • PE / CH 0.56
  • the size of the construction vehicle tire used in the test is 59 / 80R63.
  • the meandering amount (buckling) of the carcass layer (ply) is kept low.
  • the amount of meandering is relatively large even when only the vertical force (Fz) is input.
  • the vertical force (Fz) was set to 120 t.
  • the minimum value a of the distance between cords and The maximum value b, and HA, HB, HF, b / a, ⁇ (in the case of Example 2) satisfy the relationship as described above. Thereby, even in a situation close to the actual use environment where a large lateral force is input, the compressive strain generated in the carcass folded portion 50 can be reduced, and the durability of the bead portion 60 can be improved.
  • Example 3 it was confirmed in the evaluation test that the ply end separation (PES) is reduced by about 20% as compared with Example 1 and Example 2. Specifically, when PE / CH falls below 0.50 and PE / CH rises above 0.58, ply end separation tends to increase.
  • PES ply end separation
  • PES ply end separation
  • the construction vehicle tire used for a dump truck or an articulated dump truck traveling on a crushed stone, a mine, or a dam site is assumed.
  • the scope of the present invention is not necessarily limited to such a construction vehicle. It is not limited to tires.
  • the present invention may be applied to tires for construction vehicles other than dump trucks that travel on construction sites, rough terrain, and muddy grounds.
  • the number of the belt layers 20 is an example, and the configuration of the belt layers 20 may be appropriately changed according to the use of the tire for the construction vehicle.
  • a tire for a construction vehicle that can reduce the compressive strain generated in the carcass folding portion and improve the durability of the bead portion even in a situation close to an actual use environment where a large lateral force is input. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

大きな横力が入力される実際の使用環境に近い状況でも、カーカス折り返し部に生じる圧縮歪を低減し、ビード部の耐久性を向上し得る建設車両用タイヤを提供する。本発明に係る建設車両用タイヤ(1)では、ホイールリム(100)に装着した際に、ホイールリム(100)のベースライン(BL)から極小値aとなるカーカス本体部(40)のカーカスコード(31)の高さ(HA)、ベースライン(BL)から極大値bとなるカーカス本体部(40)のカーカスコード(31)の高さ(HB)、及びベースライン(BL)からホイールリム(100)のフランジ高さHFは、1.2HF≦HA≦2.5HF、2.6HF≦HB≦3.5HF、1.10≦b/a<1.40の関係を満足する。

Description

建設車両用タイヤ
 本発明は、建設車両用タイヤに関し、特に、ビード部の耐久性を向上させた建設車両用タイヤに関する。
 建設現場など凹凸が激しい路面を走行するとともに、積載量が大きい建設車両に装着される建設車両用タイヤには、大きな荷重が掛かるため、特に、ビード部の耐久性を向上させることが、タイヤライフの長期化を図る観点から重要である。
 上述のような環境で使用される建設車両用タイヤでは、カーカス本体部からビードコアでタイヤ径方向外側に折り返されたカーカス折り返し部において、大きな圧縮歪が繰り返し生じるため、このような圧縮歪を低減する方法が提案されている。例えば、カーカス本体部とカーカス折り返し部との間隔、具体的には、タイヤ幅方向に沿った断面におけるカーカスコード間の距離(コード間距離)を、ビード部からの高さ位置に応じて最適化する方法が知られている(特許文献1参照)。
 より具体的には、コード間距離が、ビードコアの近傍で一旦最も小さくなり、その後タイヤ径方向外側に行くに連れて広くなり、ビード部からの所定の高さ位置で最も大きくすることが提案されている。
特開2009-113715号公報(第5-7頁、第4図)
 上述した従来の建設車両用タイヤによれば、上下力(Fz)によってカーカス折り返し部に生じる圧縮歪を低減できるが、実際の使用環境では、横力(Fy)によってもカーカス折り返し部に圧縮歪が生じる。つまり、横力が高い状況では、圧縮歪によるカーカス折り返し部の変曲点が、横力が低い状況における変曲点とずれてしまい、効果的に圧縮歪を低減できない場合があることが分かってきた。
 具体的には、横力が高い状況では、当該変曲点の位置がカーカス折り返し部のタイヤ径方向外側の端部側に移動するため、上述した従来の建設車両用タイヤのカーカス本体部及びカーカス折り返し部の位置関係では、必ずしも圧縮歪を効果的に低減できない場合がある。
 そこで、本発明は、このような状況に鑑みてなされたものであり、大きな横力が入力される実際の使用環境に近い状況でも、カーカス折り返し部に生じる圧縮歪を低減し、ビード部の耐久性を向上し得る建設車両用タイヤの提供を目的とする。
 本発明の第1の特徴は、カーカスコード(カーカスコード31)が被覆されたカーカス本体部(カーカス本体部40)と、前記カーカス本体部に連なり、ビードコア(ビードコア61)のタイヤ幅方向内側からタイヤ幅向外側に折り返されるとともに、カーカスコードが被覆されたカーカス折り返し部(カーカス折り返し部50)とを備える建設車両用タイヤ(建設車両用タイヤ1)であって、前記カーカス本体部のカーカスコードと、前記カーカス折り返し部のカーカスコードとの距離であるコード間距離は、前記ビードコアからタイヤ径方向外側に行くに連れて小さくなって極小値aとなり、前記極小値aとなったタイヤ径方向外側に行くに連れて大きくなって極大値bとなり、前記建設車両用タイヤを適用リム(ホイールリム100)に装着した際に、前記適用リムのベースラインから前記極小値aとなる前記カーカス本体部のカーカスコードの高さHA、前記適用リムのベースラインから前記極大値bとなる前記カーカス本体部のカーカスコードの高さHB、及び前記適用リムのベースラインから前記適用リムのフランジ高さHFは、1.2HF≦HA≦2.5HF、3.1HF≦HB≦4.5HFの関係を満足することを要旨とする。
 本発明の第1の特徴において、前記カーカス折り返し部のカーカスコードに沿った前記極小値aの位置から前記極大値bの位置までの距離L1は、前記カーカス折り返し部のカーカスコードに沿った前記極大値bの位置から前記カーカス折り返し部のタイヤ径方向外側の端部(端部51)までの距離L2よりも長くてもよい。
 本発明の第1の特徴において、前記極大値bとなる箇所は、前記ビードコアから前記カーカス折り返し部のタイヤ径方向外側の端部までの間において1つのみであってもよい。
 本発明の第1の特徴において、前記極小値aと前記極大値bとの比b/aは、1.10以上、2.00未満であってもよい。
 本発明の第2の特徴は、カーカスコード(カーカスコード31)が被覆されたカーカス本体部(カーカス本体部40)と、前記カーカス本体部に連なり、ビードコア(ビードコア61)のタイヤ幅方向内側からタイヤ幅向外側に折り返されるとともに、カーカスコードが被覆されたカーカス折り返し部(カーカス折り返し部50)とを備える建設車両用タイヤ(建設車両用タイヤ1A)であって、前記カーカス本体部のカーカスコードと、前記カーカス折り返し部のカーカスコードとの距離であるコード間距離は、前記ビードコアからタイヤ径方向外側に行くに連れて小さくなって極小値aとなり、前記極小値aとなった後、タイヤ径方向外側に行くに連れて大きくなって極大値bとなり、前記建設車両用タイヤを適用リム(ホイールリム100)に装着した際に、前記適用リムのベースラインから前記極小値aとなる前記カーカス本体部のカーカスコードの高さHA、前記適用リムのベースラインから前記極大値bとなる前記カーカス本体部のカーカスコードの高さHB、及び前記適用リムのベースラインから前記適用リムのフランジ高さHFは、1.2HF≦HA≦2.5HF、2.6HF≦HB≦3.5HF、1.10≦b/a<1.40の関係を満足することを要旨とする。
 本発明の第2の特徴において、前記適用リムのベースラインから前記建設車両用タイヤのトレッド部のカーカスラインまでの高さであるCHと、前記適用リムのベースラインから前記カーカス折り返し部の端部までの高さPEは、0.50≦PE/CH≦0.58の関係を満足してもよい。
 本発明の第2の特徴において、前記極小値aとなる前記カーカス本体部のカーカスコードの位置と、前記極大値bとなる前記カーカス本体部のカーカスコードの位置とを通過する直線SL1と、前記極小値aとなる前記カーカス折り返し部のカーカスコードの位置と、前記極大値bとなる前記カーカス折り返し部のカーカスコードの位置とを通過する直線SL2との交差角度θは、2.00°≦θ≦5.00°を満足してもよい。
 本発明の第2の特徴において、前記極大値bとなる箇所は、前記ビードコアから前記カーカス折り返し部のタイヤ径方向外側の端部までの間において1つのみであってもよい。
図1は、建設車両用タイヤ1のタイヤ幅方向及びタイヤ径方向に沿った一部断面図である。 図2は、建設車両用タイヤ1のビード部60の拡大断面図である。 図3は、建設車両用タイヤ1のカーカス本体部40及びカーカス折り返し部50の具体的な位置関係を示す図である。 図4は、建設車両用タイヤ1のカーカス折り返し部50の具体的な形状を示す図である。 図5は、建設車両用タイヤ1Aのビード部60の拡大断面図である。 図6は、建設車両用タイヤ1Aのカーカス本体部40及びカーカス折り返し部50の具体的な位置関係を示す図である。 図7は、建設車両用タイヤ1に生じる圧縮変形及び引張変形について説明する模式図である。 図8は、従来例、比較例及び実施例に係る建設車両用タイヤの試験結果を示す図である。
 [第1実施形態]
 まず、本発明の第1実施形態に係る建設車両用タイヤについて、図面を参照しながら説明する。
 (1)建設車両用タイヤの概略構成
 図1は、本実施形態に係る建設車両用タイヤ1のタイヤ幅方向及びタイヤ径方向に沿った一部断面図である。建設車両用タイヤ1は、タイヤ赤道線CLを基準として左右対称の形状を有する。
 建設車両用タイヤ1は、例えば、砕石・鉱山・ダム現場を走行するダンプトラックやアーティキュレートダンプ、ホイールローダーなどの建設車両用タイヤに好適に用いられる。図1に示すように、建設車両用タイヤ1は、路面と接するトレッド部10、トレッド部10に連なり、トレッド部10よりもタイヤ径方向内側に位置するサイドウォール部15、サイドウォール部15に連なり、サイドウォール部15よりもタイヤ径方向内側に位置するビード部60を有する。
 トレッド部10のタイヤ径方向内側には、複数枚(例えば、4~6枚)のコード入りベルトによって構成されるベルト層20が設けられている。なお、トレッド部10には、建設車両用タイヤ1の使用環境や装着される建設車両の種別に応じたパターン(不図示)が形成される。
 また、ベルト層20のタイヤ径方向内側には、左右一対のビードコア61に跨がり、建設車両用タイヤ1の骨格を形成するカーカス層30が設けられている。
 本実施形態では、カーカス層30は、タイヤ径方向に沿って放射状に配置されたカーカスコード31(図1において不図示、図2参照)を有するラジアル構造である。但し、ラジアル構造に限定されず、カーカスコードがタイヤ径方向に交錯するように配置されたバイアス構造でも構わない。
 また、建設車両用タイヤ1は、図1に示すように、空気入りタイヤであるが、ホイールリム100に組み付けられた建設車両用タイヤ1に充填される気体は、空気に限らず、窒素ガスなどの不活性ガスを充填してもよい。さらに、冷却用の液体(クーラント)が充填されてもよい。
 (2)ビード部の構成
 図2は、建設車両用タイヤ1のビード部60の拡大断面図である。図2に示すように、カーカス層30は、カーカス本体部40及びカーカス折り返し部50によって構成される。カーカス本体部40及びカーカス折り返し部50は、カーカスコード31をゴムで被覆した構造を有する。
 カーカス本体部40は、トレッド部10(図1参照)からビードコア61までに位置し、カーカス層30の本体的な部分を構成する。カーカス折り返し部50は、カーカス本体部40に連なり、ビードコア61のタイヤ幅方向内側からタイヤ幅向外側に折り返された部分である。カーカス折り返し部50は、ビードコア61からタイヤ径方向外側に向かって延在する。カーカス折り返し部50の端部51は、サイドウォール部15で終端する。
 図3は、建設車両用タイヤ1のカーカス本体部40及びカーカス折り返し部50の具体的な位置関係を示す。図3に示すように、カーカス本体部40のカーカスコード31と、カーカス折り返し部50のカーカスコード31との距離であるコード間距離は、ビードコア61からタイヤ径方向外側に行くに連れて小さくなって極小値aとなる。コード間距離は、極小値aとなった後、タイヤ径方向外側に行くに連れて大きくなって極大値bとなる。
 なお、コード間距離は、図2に示すようなタイヤ幅方向及びタイヤ径方向に沿った断面において、カーカス本体部40のカーカスコード31に対する垂線を基準としたカーカス本体部40のカーカスコード31と、カーカス折り返し部50のカーカスコード31との距離(間隔)である。より具体的には、コード間距離は、カーカス本体部40のカーカスコード31の太さ方向における中心と、カーカス折り返し部50のカーカスコード31の太さ方向における中心との距離である。
 建設車両用タイヤ1を適用リムであるホイールリム100に装着した際に、ホイールリム100のベースラインBLから極小値aとなるカーカス本体部40のカーカスコード31の高さHA、ベースラインBLから極大値bとなるカーカス本体部40のカーカスコード31の高さHB、及びベースラインBLからホイールリム100のリムフランジ110までの高さHFは、次のような関係を満足する。
  1.2HF≦HA≦2.5HF
  3.1HF≦HB≦4.5HF
 なお、ベースラインBLは、ホイールリム100の回転軸と平行であり、ビード部60のタイヤ幅方向外側の端部(ビードヒール)を通過する直線である。
 また、適用リムは、例えば、日本自動車タイヤ協会(JATMA)のYear Bookにおいて規定される標準サイズのホイールリムであり、上述の高さHA, HB及びHFは、JATMAで規定される測定条件(適用リムへの装着、規定内圧の設定、設定温度など)を満たした状態で測定される。なお、JATMAに代えて、他の規格(TRA, ETRTOなど)に従ってもよい。
 図4は、建設車両用タイヤ1のカーカス折り返し部50の具体的な形状を示す。図4に示すように、カーカス折り返し部50のカーカスコード31に沿った極小値aの位置から極大値bの位置までの距離を距離L1とする。また、カーカス折り返し部50のカーカスコード31に沿った極大値bの位置からカーカス折り返し部50のタイヤ径方向外側の端部51までの距離を距離L2とする。
 建設車両用タイヤ1では、距離L1は、距離L2よりも長い。つまり、タイヤ径方向における極小値a、極大値b及びカーカス折り返し部50の端部51の位置関係においては、極大値bの箇所が、従来例(後述)よりもタイヤ径方向外側に位置する。
 カーカス折り返し部50の端部51は、タイヤ幅方向におけるサイドウォール部15の幅が最大となる最大幅SWmaxの位置付近で終端する。なお、端部51は、最大幅SWmaxの部分よりもタイヤ径方向内側で終端することが好ましい。したがって、極大値bのタイヤ径方向における位置も、最大幅SWmaxの部分よりもタイヤ径方向内側に位置する。或いは、極大値bのタイヤ径方向における位置は、ベースラインBL(図3参照)から最大幅SWmaxまでの高さの半分の位置よりもタイヤ径方向外側に位置することが好ましい。
 また、極大値bの位置におけるゴムゲージの厚さの関係は、タイヤ表面~カーカス折り返し部50のタイヤ幅方向外側面までの厚さは、カーカス折り返し部50のタイヤ幅方向内側面~カーカス本体部40のタイヤ方向外側面までの厚さよりも薄い。一方、極小値aの位置におけるゴムゲージの厚さの関係は、極大値bの位置と逆であり、タイヤ表面~カーカス折り返し部50のタイヤ幅方向外側面までの厚さは、カーカス折り返し部50のタイヤ幅方向内側面~カーカス本体部40のタイヤ方向外側面までの厚さよりも厚い。
 本実施形態では、極大値bとなる箇所は、ビードコア61からカーカス折り返し部50の端部51までの間において1つのみである。但し、極大値bとなる箇所は必ずしも1つのみでなくても構わない。また、本実施形態では、極小値aと極大値bとの比b/aは、1.10以上、2.00未満である。
 [第2実施形態]
 次に、本発明の第2実施形態について説明する。以下、上述した第1実施形態に係る建設車両用タイヤ1との相違点について主に説明し、建設車両用タイヤ1と同様の部分については、適宜説明を省略する。
 図5は、本実施形態に係る建設車両用タイヤ1Aのビード部60の拡大断面図である。建設車両用タイヤ1Aのトレッド部10やベルト層20の構造は、建設車両用タイヤ1と同様である。図5に示すように、建設車両用タイヤ1は、建設車両用タイヤ1と比較すると、カーカス折り返し部50の形状(位置関係)が異なっている。
 図6は、建設車両用タイヤ1Aのカーカス本体部40及びカーカス折り返し部50の具体的な位置関係を示す。図6に示すように、建設車両用タイヤ1Aをホイールリム100に装着した際に、ホイールリム100のベースラインBLから極小値aとなるカーカス本体部40のカーカスコード31の高さHA、ベースラインBLから極大値bとなるカーカス本体部40のカーカスコード31の高さHB、及びベースラインBLからホイールリム100のリムフランジ110までの高さHF
は、次のような関係を満足する。
  1.2HF≦HA≦2.5HF
  2.6HF≦HB≦3.5HF
  1.10≦b/a<1.40
 また、極小値aとなるカーカス本体部40のカーカスコード31の位置と、極大値bとなるカーカス本体部40のカーカスコード31の位置とを通過する直線SL1と、極小値aとなるカーカス折り返し部50のカーカスコード31の位置と、極大値bとなるカーカス折り返し部50のカーカスコード31の位置とを通過する直線SL2との交差角度θは、次のような関係を満足する。
  2.00°≦θ≦5.00°
 このように、交差角度θが小さく、建設車両用タイヤ1Aでは、従来例や建設車両用タイヤ1と比較すると、コード間距離の極大値bが小さくなっている。
 なお、第1実施形態に係る建設車両用タイヤ1と同様に、極大値bとなる箇所は、ビードコア61からカーカス折り返し部50の端部51までの間において1つのみである。但し、極大値bとなる箇所は必ずしも1つのみでなくても構わない。
 また、建設車両用タイヤ1Aでは、ベースラインBLから建設車両用タイヤ1Aのトレッド部10のカーカスラインまでの高さであるCH(ケースハイト)と、ベースラインBLからカーカス折り返し部50の端部51までの高さPE(カーカス折り返し部高さ)は、次のような関係を満足することが好ましい。
  0.50≦PE/CH≦0.58
 なお、トレッド部10のカーカスラインとは、カーカス層30(カーカス本体部40)のタイヤ径方向外側端を通過し、タイヤ幅方向と平行な直線である。
 [作用・効果]
 図7は、建設車両用タイヤ1に生じる圧縮変形及び引張変形について説明する模式図である。図7に示すように、コード間距離が極小値aとなる付近では、建設車両用タイヤ1に荷重が掛かると、カーカス折り返し部50に対して圧縮変形が生じる。一方、コード間距離が極大値bとなる付近では、カーカス折り返し部50に対して引張変形が生じる。
 カーカス折り返し部50のカーカスコード31は、極小値aの位置から極大値bの位置に向かって徐々にタイヤ幅方向外側に広がる、つまり、カーカス本体部40のカーカスコード31から離れていく。このため、カーカス折り返し部50に対して圧縮変形が生じても、カーカス折り返し部50の座屈、より具体的には、カーカス折り返し部50のカーカスコード31が圧縮変形により曲げられて蛇行してしまう状態を抑制できる。
 一方、極大値bの位置付近では、充分なコード間距離が保たれているため、カーカス折り返し部50のカーカスコード31の位置が、極大値bの位置付近における曲げの中立軸AXから充分に離れる。このため、カーカス折り返し部50は、引張変形に対してより適応できるとともに、極大値bの位置付近における引張変形が強調される。この結果、極小値aの位置付近における圧縮変形も抑制できる効果もある。
 さらに、建設車両用タイヤ1では、極大値bが従来例と比較してタイヤ径方向外側に位置するため、建設車両用タイヤ1に引張変形や圧縮変形が生じた場合、特に、横力(Fy)が高い状況でも、引張変形と圧縮変形との変曲点Pが、極大値bよりもタイヤ径方向外側に位置してしまう状態(逆転現象)をより確実に回避することができる。
 このような効果は、コード間距離の極大値bを小さくした建設車両用タイヤ1Aでも同様である。建設車両用タイヤ1Aの場合、建設車両用タイヤ1と比較すると引張変形に対する適応度は限定されるものの、極大値bを小さくすることによって、構造剛性の分布が少なくなり、変曲点Pの動きが少なくなるため、上述の逆転現象を抑制できる。
 さらに、建設車両用タイヤ1Aにおいて、CH(ケースハイト)と、PE(カーカス折り返し部高さ)が、0.50≦PE/CH≦0.58の関係を満たす場合、コード間距離が極小値aとなった後、タイヤ径方向外側に行くに連れて大きくなって極大値bとなり、かつ、カーカスコード31の高さHA, HB及びベースラインBLからホイールリム100のリムフランジ110までの高さHFが上述のような関係を満足する場合において、ベルト層20の端部における分離、いわゆるプライ端セパレーション(PES)を効果的に抑制し得る。
 具体的には、建設車両用タイヤ1Aに横力(Fy)が入力されると、建設車両用タイヤ1Aが全体的に変形するため、コード間距離が極小値aとなった後、タイヤ径方向外側に行くに連れて大きくなって極大値bとなるような構造の場合、カーカス折り返し部50の端部51の位置によっては、プライ端セパレーションを誘発する場合がある。
 そこで、CH(ケースハイト)と、PE(カーカス折り返し部高さ)との関係を0.50≦PE/CH≦0.58とすることによって、カーカス折り返し部50に生じる圧縮歪を低減しつつ、端部51とベルト層20との適切な距離を保つことができ、プライ端セパレーションを効果的に抑制することができる。なお、CH(ケースハイト)と、PE(カーカス折り返し部高さ)との関係が、上述した範囲外となると、プライ端セパレーション(PES)の抑制、或いはカーカス折り返し部50に生じる圧縮歪の低減の効果が限定的となる。
 図8は、従来例、比較例及び実施例(実施例1,2)に係る建設車両用タイヤの試験結果を示す。図8に示す従来例は、先行技術文献(特開2009-113715号公報)に記載されている建設車両用タイヤである。比較例は、カーカス折り返し部50に極大値bのような凸形状となる部分がない建設車両用タイヤである。実施例1は建設車両用タイヤ1であり、実施例2は建設車両用タイヤ1Aである。また、実施例3は、建設車両用タイヤ1Aであるが、さらに、CH(ケースハイト)とPE(カーカス折り返し部高さ)とが上述した関係を満足する。なお、実施例3の基本的な構成は、実施例2と同様である。
 具体的には、実施例1は、以下のような設定値を有する。
  HA=2.06HF
  HB=3.55HF
  b/a=1.34
 実施例2は、以下のような設定値を有する。
  HA=2.06HF
  HB=3.00HF
  b/a=1.34
  θ=4°
 実施例3は、さらに、以下のような設定値を有する。
  PE/CH=0.56
 なお、試験に用いた建設車両用タイヤのサイズは何れも59/80R63である。
 図8に示すように、従来例、及び実施例1,2に係る建設車両用タイヤとも、横力(Fy)が入力されず、上下力(Fz)のみが入力される状況(横力=0.00G)では、カーカス層(プライ)の蛇行量(座屈)は、低く抑えられている。一方、比較例では、上下力(Fz)のみが入力される状況でも比較的蛇行量が大きい。なお、上下力(Fz)は、120tに設定した。
 横力が増加するにしたがって、従来例では蛇行量が増加している。つまり、カーカス層が充分に圧縮変形に対応できていない。一方、比較例、及び実施例1,2(特に、実施例2)では、横力が増加しても、極端に蛇行量が増加することはなく、実際の使用環境において充分に対応し得る。
 このように、第1実施形態に係る建設車両用タイヤ1(実施例1)、及び第2実施形態に係る建設車両用タイヤ1A(実施例2)によれば、コード間距離の極小値a及び極大値b、及びHA, HB, HF, b/a, θ(実施例2の場合)が上述のような関係を満たす。これにより、大きな横力が入力される実際の使用環境に近い状況でも、カーカス折り返し部50に生じる圧縮歪を低減し、ビード部60の耐久性を向上し得る。
 なお、HA, HB, HF, b/a, θが上述のような関係を満たさない場合、図8に示した実施例1または実施例2のような特性は得られず、ビード部60の耐久性の向上も限定的となる。
 また、図8に示したように、建設車両用タイヤ1及び建設車両用タイヤ1Aによれば、上下力(Fz)のみが入力される状況でも、カーカス層(プライ)の蛇行量(座屈)は、低く抑えられるため、ビード部60の耐久性に悪影響を与えない。
 さらに、実施例3の場合、実施例1及び実施例2と比較すると、プライ端セパレーション(PES)が約20%軽減されることが評価試験において確認されている。具体的には、PE/CHが0.50を下回った場合、及びPE/CHが0.58を上回った場合、プライ端セパレーションが増加する傾向がある。
 つまり、PE/CHが、上述したような0.50≦PE/CH≦0.58の関係を満たすことによって、プライ端セパレーション(PES)も効果的に抑制できる。
 [その他の実施形態]
 上述したように、本発明の実施形態を通じて本発明の内容を開示したが、例えば、本発明の実施形態は、次のように変更することができる。
 例えば、上述した実施形態では、砕石・鉱山・ダム現場を走行するダンプトラックやアーティキュレートダンプなどに用いられる建設車両用タイヤを前提としていたが、本発明の適用範囲は、必ずしもこのような建設車両用タイヤに限定されない。例えば、工事現場、不整地、泥濘地を走行するダンプトラック以外の建設車両用タイヤに本発明を適用してもよい。
 また、ベルト層20の枚数などは一例であり、建設車両用タイヤの用途に応じてベルト層20の構成は適宜変更されてもよい。
 このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められる。
 なお、日本国特許出願特願2015-196705(2015年10月2日出願)、及び特願2016-185614号(2016年9月23日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明の特徴によれば、大きな横力が入力される実際の使用環境に近い状況でも、カーカス折り返し部に生じる圧縮歪を低減し、ビード部の耐久性を向上し得る建設車両用タイヤを提供することができる。
 1, 1A 建設車両用タイヤ
 10 トレッド部
 15 サイドウォール部
 20 ベルト層
 30 カーカス層
 31 カーカスコード
 40 カーカス本体部
 50 カーカス折り返し部
 51 端部
 60 ビード部
 61 ビードコア
 100 ホイールリム
 110 リムフランジ

Claims (4)

  1.  カーカスコードが被覆されたカーカス本体部と、
     前記カーカス本体部に連なり、ビードコアのタイヤ幅方向内側からタイヤ幅向外側に折り返されるとともに、カーカスコードが被覆されたカーカス折り返し部とを備える建設車両用タイヤであって、
     前記カーカス本体部のカーカスコードと、前記カーカス折り返し部のカーカスコードとの距離であるコード間距離は、前記ビードコアからタイヤ径方向外側に行くに連れて小さくなって極小値aとなり、前記極小値aとなった後、タイヤ径方向外側に行くに連れて大きくなって極大値bとなり、
     前記建設車両用タイヤを適用リムに装着した際に、前記適用リムのベースラインから前記極小値aとなる前記カーカス本体部のカーカスコードの高さHA、前記適用リムのベースラインから前記極大値bとなる前記カーカス本体部のカーカスコードの高さHB、及び前記適用リムのベースラインから前記適用リムのフランジ高さHFは、
      1.2HF≦HA≦2.5HF
      2.6HF≦HB≦3.5HF
      1.10≦b/a<1.40
    の関係を満足する建設車両用タイヤ。
  2.  前記適用リムのベースラインから前記建設車両用タイヤのトレッド部のカーカスラインまでの高さであるCHと、前記適用リムのベースラインから前記カーカス折り返し部の端部までの高さPEは、
      0.50≦PE/CH≦0.58
    の関係を満足する請求項1に記載の建設車両用タイヤ。
  3.  前記極小値aとなる前記カーカス本体部のカーカスコードの位置と、前記極大値bとなる前記カーカス本体部のカーカスコードの位置とを通過する直線SL1と、前記極小値aとなる前記カーカス折り返し部のカーカスコードの位置と、前記極大値bとなる前記カーカス折り返し部のカーカスコードの位置とを通過する直線SL2との交差角度θは、
      2.00°≦θ≦5.00°
    を満足する請求項1に記載の建設車両用タイヤ。
  4.  前記極大値bとなる箇所は、前記ビードコアから前記カーカス折り返し部のタイヤ径方向外側の端部までの間において1つのみである請求項1に記載の建設車両用タイヤ。
PCT/JP2016/079078 2015-10-02 2016-09-30 建設車両用タイヤ WO2017057705A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/764,719 US20180290503A1 (en) 2015-10-02 2016-09-30 Construction vehicle tire
EP16851874.4A EP3357713B1 (en) 2015-10-02 2016-09-30 Construction vehicle tire
ES16851874T ES2770412T3 (es) 2015-10-02 2016-09-30 Neumático de vehículo de construcción
CN201680056502.3A CN108136839B (zh) 2015-10-02 2016-09-30 工程车辆用轮胎

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015196705 2015-10-02
JP2015-196705 2015-10-02
JP2016-185614 2016-09-23
JP2016185614A JP6785104B2 (ja) 2015-10-02 2016-09-23 建設車両用タイヤ

Publications (1)

Publication Number Publication Date
WO2017057705A1 true WO2017057705A1 (ja) 2017-04-06

Family

ID=58423995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079078 WO2017057705A1 (ja) 2015-10-02 2016-09-30 建設車両用タイヤ

Country Status (1)

Country Link
WO (1) WO2017057705A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198435A1 (ja) * 2017-04-28 2018-11-01 横浜ゴム株式会社 バイアスタイヤ

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002096676A1 (fr) * 2001-05-29 2002-12-05 Sumitomo Rubber Industries, Ltd Pneu et procede de fabrication
JP2007196781A (ja) * 2006-01-25 2007-08-09 Bridgestone Corp 空気入りタイヤ
JP2009113715A (ja) * 2007-11-08 2009-05-28 Bridgestone Corp 空気入りタイヤ
JP2010274862A (ja) * 2009-05-29 2010-12-09 Bridgestone Corp 空気入りタイヤ
JP2012183966A (ja) * 2011-03-07 2012-09-27 Bridgestone Corp 空気入りタイヤ
JP2013001333A (ja) * 2011-06-20 2013-01-07 Bridgestone Corp 空気入りタイヤ
JP2014516011A (ja) * 2011-06-07 2014-07-07 コンパニー ゼネラール デ エタブリッスマン ミシュラン 土木工学型重車両用タイヤのビード
JP2014516009A (ja) * 2011-06-07 2014-07-07 コンパニー ゼネラール デ エタブリッスマン ミシュラン 建設プラント型重車両用のタイヤビード
JP2014516010A (ja) * 2011-06-07 2014-07-07 コンパニー ゼネラール デ エタブリッスマン ミシュラン 建設プラント型の重車両用タイヤビード
JP5722899B2 (ja) * 2010-08-05 2015-05-27 株式会社ブリヂストン 空気入りタイヤ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002096676A1 (fr) * 2001-05-29 2002-12-05 Sumitomo Rubber Industries, Ltd Pneu et procede de fabrication
JP2007196781A (ja) * 2006-01-25 2007-08-09 Bridgestone Corp 空気入りタイヤ
JP2009113715A (ja) * 2007-11-08 2009-05-28 Bridgestone Corp 空気入りタイヤ
JP2010274862A (ja) * 2009-05-29 2010-12-09 Bridgestone Corp 空気入りタイヤ
JP5722899B2 (ja) * 2010-08-05 2015-05-27 株式会社ブリヂストン 空気入りタイヤ
JP2012183966A (ja) * 2011-03-07 2012-09-27 Bridgestone Corp 空気入りタイヤ
JP2014516011A (ja) * 2011-06-07 2014-07-07 コンパニー ゼネラール デ エタブリッスマン ミシュラン 土木工学型重車両用タイヤのビード
JP2014516009A (ja) * 2011-06-07 2014-07-07 コンパニー ゼネラール デ エタブリッスマン ミシュラン 建設プラント型重車両用のタイヤビード
JP2014516010A (ja) * 2011-06-07 2014-07-07 コンパニー ゼネラール デ エタブリッスマン ミシュラン 建設プラント型の重車両用タイヤビード
JP2013001333A (ja) * 2011-06-20 2013-01-07 Bridgestone Corp 空気入りタイヤ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198435A1 (ja) * 2017-04-28 2018-11-01 横浜ゴム株式会社 バイアスタイヤ
AU2017411632B2 (en) * 2017-04-28 2021-07-22 The Yokohama Rubber Co., Ltd. Bias tire
US11548327B2 (en) 2017-04-28 2023-01-10 The Yokohama Rubber Co., Ltd. Bias tire

Similar Documents

Publication Publication Date Title
JP5030978B2 (ja) 空気入りタイヤ
JP5702421B2 (ja) 重荷重用空気入りタイヤ
US9944128B2 (en) Pneumatic tire
JP5628946B2 (ja) 重荷重用タイヤ
WO2015063978A1 (ja) タイヤ
JP2007112394A (ja) 空気入りタイヤ
WO2006103831A1 (ja) 重荷重用空気入りタイヤ
JP2008143291A (ja) 重荷重用空気入りラジアルタイヤ
WO2017057705A1 (ja) 建設車両用タイヤ
JP5623867B2 (ja) 空気入りタイヤ
JP4945136B2 (ja) 空気入りタイヤ
WO2009154282A1 (ja) 空気入りタイヤ
JP6417274B2 (ja) 建設車両用ラジアルタイヤ
JP6785104B2 (ja) 建設車両用タイヤ
WO2016051685A1 (ja) 重荷重用空気入りタイヤ
JP6533444B2 (ja) 建設車両用タイヤ
JP6437879B2 (ja) 建設車両用ラジアルタイヤ
JP2013237344A (ja) 重荷重用空気入りラジアルタイヤ
WO2016024390A1 (ja) 空気入りタイヤ
JP5559835B2 (ja) 空気入りタイヤ及びその製造方法
US20190023076A1 (en) Pneumatic Tire
JP5823795B2 (ja) 重荷重用空気入りラジアルタイヤ
JP6208071B2 (ja) 空気入りタイヤ
JP5529586B2 (ja) タイヤ
JP5469906B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851874

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15764719

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016851874

Country of ref document: EP