WO2014203909A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2014203909A1
WO2014203909A1 PCT/JP2014/066067 JP2014066067W WO2014203909A1 WO 2014203909 A1 WO2014203909 A1 WO 2014203909A1 JP 2014066067 W JP2014066067 W JP 2014066067W WO 2014203909 A1 WO2014203909 A1 WO 2014203909A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
point
rim
specified
bead
Prior art date
Application number
PCT/JP2014/066067
Other languages
English (en)
French (fr)
Inventor
梨沙 田内
磯部 哲
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to US14/900,042 priority Critical patent/US10538131B2/en
Priority to AU2014282222A priority patent/AU2014282222B2/en
Priority to RU2016101347A priority patent/RU2616483C1/ru
Priority to CN201480032899.3A priority patent/CN105377580B/zh
Publication of WO2014203909A1 publication Critical patent/WO2014203909A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/02Seating or securing beads on rims
    • B60C15/024Bead contour, e.g. lips, grooves, or ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C9/08Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship the cords extend transversely from bead to bead, i.e. radial ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C13/00Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C13/00Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
    • B60C13/003Tyre sidewalls; Protecting, decorating, marking, or the like, thereof characterised by sidewall curvature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • B60C15/0036Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion with high ply turn-up, i.e. folded around the bead core and terminating radially above the point of maximum section width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • B60C15/0054Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion with ply turn-up portion parallel and adjacent to carcass main portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C15/0603Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead characterised by features of the bead filler or apex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/04Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C13/00Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
    • B60C2013/005Physical properties of the sidewall rubber
    • B60C2013/007Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • B60C2015/009Height of the carcass terminal portion defined in terms of a numerical value or ratio in proportion to section height
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C15/0603Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead characterised by features of the bead filler or apex
    • B60C2015/061Dimensions of the bead filler in terms of numerical values or ratio in proportion to section height
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C2015/0614Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead characterised by features of the chafer or clinch portion, i.e. the part of the bead contacting the rim
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles

Definitions

  • the present invention relates to a pneumatic tire, and more particularly to a pneumatic tire that can improve durability.
  • Patent Document 1 As a conventional radial tire for construction vehicles related to this problem, the technology described in Patent Document 1 is known.
  • An object of the present invention is to provide a pneumatic tire capable of improving durability performance.
  • a pneumatic tire according to the present invention is bridged between a pair of bead cores, a pair of bead fillers disposed on the outer side in the tire radial direction of the pair of bead cores, and the pair of bead cores. And a carcass layer that is wrapped and locked while wrapping the bead core and the bead filler, the tire is mounted on a specified rim and filled with an internal pressure of 50 [kPa], and no load is applied.
  • the point P is located at a position of 1.30 ⁇ Hf on the outer surface of the side wall portion and based on the rim flange height Hf of the specified rim.
  • the leg of the normal line L drawn to the carcass line of the main body part of the carcass layer is a point M, and the normal line L and the carcass line of the winding part of the carcass layer
  • the distances a and b at the position (point P) of 1.30 ⁇ Hf are optimized for the specified load x [kN], so that Falling is suppressed. Thereby, the failure of a bead part is suppressed and there exists an advantage which the durable performance of a tire improves.
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is an explanatory view showing a bead portion of the pneumatic tire shown in FIG. 1.
  • FIG. 3 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 4 is a chart showing specific examples of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 5 is a chart showing specific examples of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention. This figure shows one side region of a sectional view in the tire radial direction. In addition, this figure shows a radial tire for construction vehicles called an OR tire (Off the Road Tire) as an example of a pneumatic tire.
  • an OR tire Off the Road Tire
  • the cross section in the tire meridian direction means a cross section when the tire is cut along a plane including the tire rotation axis (not shown).
  • Reference sign CL denotes a tire equator plane, which is a plane that passes through the center point of the tire in the tire rotation axis direction and is perpendicular to the tire rotation axis.
  • the tire width direction means a direction parallel to the tire rotation axis
  • the tire radial direction means a direction perpendicular to the tire rotation axis.
  • the pneumatic tire 1 has an annular structure centered on the tire rotation axis, and includes a pair of bead cores 11, a pair of bead fillers 12, 12, a carcass layer 13, a belt layer 14, and a tread rubber 15. And a pair of sidewall rubbers 16 and 16 and a pair of rim cushion rubbers 17 and 17 (see FIG. 1).
  • the boundaries of the bead filler 12, the tread rubber 15, the side wall rubber 16, and the rim cushion rubber 17 are omitted.
  • the pair of bead cores 11 and 11 is an annular member formed by bundling a plurality of bead wires, and constitutes the core of the left and right bead portions.
  • the pair of bead fillers 12 and 12 are disposed on the outer periphery in the tire radial direction of the pair of bead cores 11 and 11 to reinforce the bead portion.
  • the carcass layer 13 is bridged in a toroidal shape between the left and right bead cores 11 and 11 to form a tire skeleton. Further, both ends of the carcass layer 13 are wound and locked from the inner side in the tire width direction to the outer side in the tire width direction so as to wrap the bead core 11 and the bead filler 12.
  • the carcass layer 13 is formed by coating a plurality of carcass cords made of steel with a coating rubber and rolling the carcass cord, and a carcass angle of 85 [deg] or more and 95 [deg] or less in absolute value (carcass cord with respect to the tire circumferential direction). Of the fiber direction).
  • the belt layer 14 is formed by laminating at least four belt plies 141 to 144, and is arranged around the outer periphery of the carcass layer 13. In a general OR tire, 4 to 8 belt plies are laminated to form a belt layer 14 (not shown).
  • Each belt ply 141 to 144 is formed by rolling a steel cord covered with a coat rubber.
  • Each belt ply 141 to 144 has a belt angle with a different sign with respect to the adjacent belt ply, and the belt cords are laminated with the inclination direction of the belt cords alternately and horizontally reversed. Thereby, a cross-ply structure is formed, and the structural strength of the belt layer 14 is increased.
  • the tread rubber 15 is disposed on the outer circumference in the tire radial direction of the carcass layer 13 and the belt layer 14 to constitute a tread portion of the tire.
  • the pair of side wall rubbers 16 and 16 are respectively arranged on the outer side in the tire width direction of the carcass layer 13 to constitute left and right side wall portions.
  • the pair of rim cushion rubbers 17, 17 are respectively disposed on the inner side in the tire radial direction of the wound portions of the left and right bead cores 11, 11 and the carcass layer 13, and constitute the contact surfaces of the left and right bead portions with respect to the rim flange.
  • the height TUH of the end of the rewinding portion of the carcass layer 13 is in a range of 0.70 ⁇ TUH / SH with respect to the tire cross-section height SH. Thereby, the structural strength of the bead portion and the sidewall portion is ensured appropriately.
  • the upper limit of the ratio TUH / SH is not particularly limited, but in a general tire structure, there is a restriction due to the end of the rewinding portion of the carcass layer 13 being in the tire radial direction from the belt layer 14 (see FIG. 1). .
  • FIG. 2 is an explanatory view showing a bead portion of the pneumatic tire shown in FIG. 1.
  • This figure shows an enlarged cross-sectional view of one bead portion when the tire is mounted on a specified rim and filled with an internal pressure of 50 [kPa] to be in an unloaded state.
  • symbol 10 has shown the rim flange part of the prescription
  • the pneumatic tire 1 has the following bead structure in order to improve durability (see FIG. 2).
  • the tire is mounted on the specified rim, and the tire is filled with an internal pressure of 50 [kPa] to be in an unloaded state.
  • Specified rim means “Applied rim” defined in JATMA, “Design Rim” defined in TRA, or “Measuring Rim” defined in ETRTO.
  • the specified internal pressure is the maximum air pressure specified by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFUREATION PRESSURES” specified by TRA, or “INFLATION PRESSURES” specified by ETRTO.
  • the specified load described later is the maximum load capacity specified by JATMA, the maximum value of “TIRE LOAD LIMITS AT VARIOUS COLD INFUREATION PRESSURES” specified by TRA, or “LOAD CAPACITY” specified by ETRTO.
  • the specified internal pressure is air pressure 180 [kPa]
  • the specified load is 88 [%] of the maximum load capacity.
  • a point is located at a position of 1.30 ⁇ Hf on the outer surface of the sidewall portion and based on the rim flange height Hf of the specified rim.
  • the rim flange height Hf is measured as the maximum height of the rim flange portion 10 with reference to the measurement point of the rim diameter.
  • a leg of a normal line L drawn from the point P to a carcass line (not shown) of the main body 131 of the carcass layer 13 is a point M, and the normal line L and a carcass line (not shown) of the winding portion 132 of the carcass layer 13 are shown.
  • T be the intersection with.
  • the carcass line is a line that passes through the centers of the carcass main body 131 and the rewinding part 132 in a sectional view in the tire meridian direction.
  • the distance a [mm] from the point M to the point T, the distance b [mm] from the point T to the point P, and the specified load x [kN] are expressed by the following equations (1) and (2). Have the relationship. Further, the tolerance of the distances a and b is set to 0 [%] to 20 [%].
  • the radius of curvature R of the contact surface with respect to the rim flange portion 10 of the specified rim has a relationship of 1.2 ⁇ R / R ′ ⁇ 1.6.
  • the fitting surface of the rim flange portion 10 has a straight portion 101 and an arc portion 102 in a sectional view of the rim.
  • the straight portion 101 is a portion extending linearly outward in the tire radial direction, and is inclined in the range of 0 [deg] to 3 [deg] with respect to the rim radial direction.
  • the arc portion 102 is a portion that is curved in an arc shape outward in the tire width direction from the straight portion 101 toward the outer side in the tire radial direction, and is continuously connected to the straight portion 101 at an inflection point Q ′.
  • the radius of curvature R ′ of the rim flange portion 10 is measured as the radius of curvature of the arc portion 102. Further, the center O of the curvature radius R ′ is on a straight line passing through the inflection point Q ′ and parallel to the rotation axis of the rim.
  • the rim fitting surface of the bead portion has a straight portion 171 and a curved portion 172 corresponding to the rim flange portion 10 of the specified rim.
  • the straight line portion 171 is a portion extending linearly from the bead heel toward the outer side in the tire radial direction, and is inclined in the range of 0 [deg] to 3 [deg] with respect to the tire equatorial plane CL (see FIG. 1).
  • the curved portion 172 is a portion that curves outward in the tire width direction from the straight portion 171 toward the outer side in the tire radial direction, and is continuously connected to the straight portion 171 at an inflection point Q.
  • the relationship between the radius LSR of the profile line connecting from the sidewall portion to the curved portion 172 of the bead portion and the tire cross-section height SH is 0.25 ⁇ LSR / SH ⁇ 0.65. (See FIG. 1 and FIG. 2).
  • Radius LSR of the side wall portion is measured as a no-load state by attaching a tire to a specified rim and filling an internal pressure of 50 [kPa].
  • the tire cross-section height SH is 1/2 of the difference between the tire outer diameter and the rim diameter, and is measured as a no-load state with the tire mounted on a specified rim and filled with an internal pressure of 50 [kPa].
  • the gauge c [mm] of the rim cushion rubber 17 at the center of gravity of the bead core 11 and the specified load x [kN] have the relationship of the following mathematical formula (3).
  • the tolerance of the gauge c is 0 [%] or more and 20 [%] or less.
  • the gauge c [mm] of the rim cushion rubber 17 is measured on a virtual line drawn from the center of gravity of the bead core 11 parallel to the tire rotation axis in a sectional view in the tire meridian direction. Is done.
  • the height Hi of the inflection point U of the rewinding portion 132 of the carcass layer 13 and the rim flange height Hf are in the range of 1.65 ⁇ Hi / Hf (see FIG. 2). ).
  • the upper limit of the ratio Hi / Hf is not particularly limited, but is limited by the tire shape.
  • the height Hi of the inflection point U of the rewinding portion 132 is determined by measuring the rim diameter in a cross-sectional view in the tire meridian direction in which a tire is mounted on a specified rim and filled with an internal pressure of 50 [kPa] to be in an unloaded state. Measured with respect to point.
  • the pneumatic tire 1 includes a pair of bead cores 11, 11, a pair of bead cores 11, 11, a pair of bead fillers 12, 12 disposed on the tire radial direction outer side, and a pair of bead cores 11. , 11 and a carcass layer 13 that is wound and wrapped around the bead core 11 and the bead filler 12 (see FIG. 1).
  • a point P is taken at a position of 1.30 ⁇ Hf with respect to Hf, and a leg of a normal line L drawn from the point P to the carcass line of the main body 131 of the carcass layer 13 is set as a point M.
  • the normal line L and the carcass layer An intersection point of the 13 winding portions 132 with the carcass line is defined as a point T (see FIG. 2).
  • the distances a and b at the position (point P) of 1.30 ⁇ Hf are optimized with respect to the specified load x [kN], so that the fall of the carcass layer 13 under tire use conditions is suppressed.
  • The thereby, the failure of a bead part is suppressed and there exists an advantage which the durable performance of a tire improves. That is, when the distance a is within the above range, the shear strain acting on the carcass layer 13 is reduced, and in particular, the breakage of the carcass cord is suppressed.
  • the rubber gauge of the bead portion is optimized, and failure of the bead portion due to compressive strain in a loaded state is suppressed.
  • the shear strain acting on the winding portion 132 of the carcass layer 13 is larger than that in other regions. Therefore, it is very beneficial to optimize the distances a and b at this position.
  • the tire is in contact with the rim flange portion 10 of the prescribed rim in a sectional view in the tire meridian direction in which the tire is mounted on the prescribed rim and filled with an internal pressure of 50 [kPa] to be in an unloaded state.
  • the curvature radius R of the surface and the curvature radius R ′ of the rim flange portion 10 of the specified rim have a relationship of 1.2 ⁇ R / R ′ ⁇ 1.6 (see FIG. 2). This has the advantage that the ratio R / R ′ is optimized.
  • the tire is mounted on a specified rim and filled with an internal pressure of 50 [kPa] and connected to the bead portion from the sidewall portion in a sectional view in the tire meridian direction in which the tire is in an unloaded state.
  • the radius LSR of the profile line and the tire cross-section height SH have a relationship of 0.25 ⁇ LSR / SH ⁇ 0.65 (see FIG. 2).
  • the tolerance between the gauge c [mm] of the rim cushion rubber 17 at the center of gravity of the bead core 11 and the specified load x [kN] is 0 [%] or more and 20 [%] or less.
  • C 0.004 ⁇ x + 13.5 (see FIG. 2). Accordingly, there is an advantage that the gauge c [mm] of the rim cushion rubber 17 is optimized. That is, since the lower limit of the gauge c (when the tolerance is 0 [%]) is in the above range, the gauge c [mm] of the rim cushion rubber 17 is properly secured, and the carcass cord is caused by wear during use of the tire. Exposure is suppressed. In addition, since the upper limit of the gauge c (with a tolerance of 20 [%]) is within the above range, the ease of manufacturing the tire is appropriately ensured.
  • the measurement point of the rim diameter is used as a reference in a cross-sectional view in the tire meridian direction in which the tire is mounted on a specified rim and filled with an internal pressure of 50 [kPa] to be in an unloaded state.
  • the height Hi of the inflection point U of the winding portion 132 of the carcass layer 13 and the rim flange height Hf are in the range of 1.65 ⁇ Hi / Hf (see FIG. 2). In such a configuration, since the height Hi of the inflection point U of the rewinding portion 132 is ensured, there is an advantage that the stress acting on the rim fitting portion of the tire during inflation is effectively reduced.
  • the pneumatic tire 1 is preferably a radial tire for construction vehicles.
  • Radial tires for construction vehicles are tires attached to construction vehicles that run on rough terrain such as civil engineering construction sites, and are attached to construction vehicles such as large dump trucks, tire rollers, scrapers, graders, cranes, and wheel loaders. .
  • the present invention is not limited to this, and the pneumatic tire 1 may be applied to a heavy duty radial tire mounted on a truck, a bus, or the like (not shown).
  • FIG. 3 is a chart showing the results of the performance test of the pneumatic tire according to the embodiment of the present invention.
  • the strain index at the contact portion with the rim flange portion, and (2) the compressive stress index at the turn-up portion of the carcass layer is the strain and strain when the tire is mounted on the specified rim and the specified internal pressure and the specified load are applied.
  • Compressive stress is obtained by analytical calculation by the finite element method.
  • the durability performance is evaluated by a low-pressure durability test using an indoor drum tester. Then, the running speed is set to 25 [km / h], the load is increased by 5 [%] every 12 hours from the specified load, and the running time when the tire breaks is measured. Then, based on this measurement result, index evaluation using the conventional example as a reference (100) is performed. This evaluation is preferable as the numerical value increases.
  • test tires of Examples 1 to 12 and the conventional test tire have the configurations described in FIGS.
  • the figure shows a specific example when the radial tire for construction vehicles of each tire size satisfies the conditions of the above formulas (1) and (2) at the position of 1.30 ⁇ Hf (point P in FIG. 2). Show.
  • numerical values W1pt, W1tm, W2tm and W2pt are predetermined gauges at positions of 1.18 ⁇ Hf and 0.81 ⁇ Hf, and the measurement conditions are described in Japanese Patent No. 4724103. Is the same.

Abstract

 タイヤを規定リムに装着して50[kPa]の内圧を充填して無負荷状態としたタイヤ子午線方向の断面視にて、サイドウォール部の外表面であって規定リムのリムフランジ高さHfを基準とする1.30×Hfの位置に点Pをとり、点Pからカーカス層13の本体部131のカーカスラインに引いた法線Lの足を点Mとし、法線Lとカーカス層13の巻き返し部132のカーカスラインとの交点を点Tとする。このとき、点Mから点Tまでの距離a[mm]と、点Tから点Pまでの距離b[mm]と、規定荷重x[kN]とが、許容差を0[%]以上20[%]以下として、a=0.019×x+13.3およびb=0.052×x+21.6の関係を有する。

Description

空気入りタイヤ
 この発明は、空気入りタイヤに関し、さらに詳しくは、耐久性能を向上できる空気入りタイヤに関する。
 一般に、建設車両用ラジアルタイヤでは、重荷重かつ悪路の条件下にて長期間使用されるため、高い耐久性能が要求される。特に、ビード部の耐久性能を向上すべき要請が強い。
 かかる課題に関する従来の建設車両用ラジアルタイヤとして、特許文献1に記載される技術が知られている。
特許第4724103号公報
 この発明は、耐久性能を向上できる空気入りタイヤを提供することを目的とする。
 上記目的を達成するため、この発明にかかる空気入りタイヤは、一対のビードコアと、前記一対のビードコアのタイヤ径方向外側にそれぞれ配置される一対のビードフィラーと、前記一対のビードコア間に架け渡されると共に前記ビードコアおよび前記ビードフィラーを包み込みつつ巻き返されて係止されるカーカス層とを備える空気入りタイヤであって、タイヤを規定リムに装着して50[kPa]の内圧を充填して無負荷状態としたタイヤ子午線方向の断面視にて、サイドウォール部の外表面であって前記規定リムのリムフランジ高さHfを基準とする1.30×Hfの位置に点Pをとり、点Pから前記カーカス層の本体部のカーカスラインに引いた法線Lの足を点Mとし、法線Lと前記カーカス層の巻き返し部のカーカスラインとの交点を点Tとするときに、点Mから点Tまでの距離a[mm]と、点Tから点Pまでの距離b[mm]と、規定荷重x[kN]とが、許容差を0[%]以上20[%]以下として、a=0.019×x+13.3およびb=0.052×x+21.6の関係を有することを特徴とする。
 この発明にかかる空気入りタイヤでは、1.30×Hfの位置(点P)における距離a、bが規定荷重x[kN]に対して適正化されることにより、タイヤ使用条件下におけるカーカス層の倒れ込みが抑制される。これにより、ビード部の故障が抑制されて、タイヤの耐久性能が向上する利点がある。
図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。 図2は、図1に記載した空気入りタイヤのビード部を示す説明図である。 図3は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。 図4は、この発明の実施の形態にかかる空気入りタイヤの具体例を示す図表である。 図5は、この発明の実施の形態にかかる空気入りタイヤの具体例を示す図表である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。
[空気入りタイヤ]
 図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。同図は、タイヤ径方向の断面図の片側領域を示している。また、同図は、空気入りタイヤの一例として、ORタイヤ(Off the Road Tire)と呼ばれる建設車両用ラジアルタイヤを示している。
 なお、同図において、タイヤ子午線方向の断面とは、タイヤ回転軸(図示省略)を含む平面でタイヤを切断したときの断面をいう。また、符号CLは、タイヤ赤道面であり、タイヤ回転軸方向にかかるタイヤの中心点を通りタイヤ回転軸に垂直な平面をいう。また、タイヤ幅方向とは、タイヤ回転軸に平行な方向をいい、タイヤ径方向とは、タイヤ回転軸に垂直な方向をいう。
 この空気入りタイヤ1は、タイヤ回転軸を中心とする環状構造を有し、一対のビードコア11、11と、一対のビードフィラー12、12と、カーカス層13と、ベルト層14と、トレッドゴム15と、一対のサイドウォールゴム16、16と、一対のリムクッションゴム17、17とを備える(図1参照)。なお、図1では、ビードフィラー12、トレッドゴム15、サイドウォールゴム16およびリムクッションゴム17の境界が省略されている。
 一対のビードコア11、11は、複数のビードワイヤを束ねて成る環状部材であり、左右のビード部のコアを構成する。一対のビードフィラー12、12は、一対のビードコア11、11のタイヤ径方向外周にそれぞれ配置されてビード部を補強する。
 カーカス層13は、左右のビードコア11、11間にトロイダル状に架け渡されてタイヤの骨格を構成する。また、カーカス層13の両端部は、ビードコア11およびビードフィラー12を包み込むようにタイヤ幅方向内側からタイヤ幅方向外側に巻き返されて係止される。また、カーカス層13は、スチールから成る複数のカーカスコードをコートゴムで被覆して圧延加工して構成され、絶対値で85[deg]以上95[deg]以下のカーカス角度(タイヤ周方向に対するカーカスコードの繊維方向の傾斜角)を有する。
 ベルト層14は、少なくとも4枚のベルトプライ141~144を積層して成り、カーカス層13の外周に掛け廻されて配置される。一般的なORタイヤでは、4枚~8枚のベルトプライが積層されて、ベルト層14が構成される(図示省略)。
 各ベルトプライ141~144は、スチールコードをコートゴムで被覆して圧延加工して成る。また、各ベルトプライ141~144が、隣り合うベルトプライに対して異符号のベルト角度を有し、ベルトコードの傾斜方向を交互かつ左右に反転させて積層される。これにより、クロスプライ構造が形成されて、ベルト層14の構造強度が高められている。
 トレッドゴム15は、カーカス層13およびベルト層14のタイヤ径方向外周に配置されてタイヤのトレッド部を構成する。一対のサイドウォールゴム16、16は、カーカス層13のタイヤ幅方向外側にそれぞれ配置されて左右のサイドウォール部を構成する。一対のリムクッションゴム17、17は、左右のビードコア11、11およびカーカス層13の巻き返し部のタイヤ径方向内側にそれぞれ配置されて、リムフランジに対する左右のビード部の接触面を構成する。
 なお、建設車両用ラジアルタイヤでは、カーカス層13の巻き返し部の端部の高さTUHが、タイヤ断面高さSHに対して、0.70≦TUH/SHの範囲にあることが好ましい。これにより、ビード部およびサイドウォール部の構造強度が適正確保される。比TUH/SHの上限は特に限定がないが、一般的なタイヤ構造では、カーカス層13の巻き返し部の端部がベルト層14からタイヤ径方向にあること(図1参照)により、制約を受ける。
[ビード構造]
 図2は、図1に記載した空気入りタイヤのビード部を示す説明図である。同図は、タイヤを規定リムに装着して50[kPa]の内圧を充填して無負荷状態としたときの、一方のビード部の拡大断面図を示している。また、同図では、符号10の仮想線が、規定リムのリムフランジ部を示している。
 一般に、建設車両用ラジアルタイヤでは、重荷重かつ悪路の条件下にて長期間使用されるため、高い耐久性能が要求される。特に、ビード部の耐久性能を向上すべき要請が強い。そこで、この空気入りタイヤ1は、耐久性能を向上させるために、以下のビード構造を備える(図2参照)。
 まず、タイヤを規定リムに装着し、タイヤに50[kPa]の内圧を充填して無負荷状態とする。
 規定リムとは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、参考として、規定内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、後述する規定荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。ただし、JATMAにおいて、乗用車用タイヤの場合には、規定内圧が空気圧180[kPa]であり、規定荷重が最大負荷能力の88[%]である。
 次に、図2に示すように、タイヤ子午線方向の断面視にて、サイドウォール部の外表面であって規定リムのリムフランジ高さHfを基準とする1.30×Hfの位置に、点Pをとる。リムフランジ高さHfは、リム径の測定点を基準とするリムフランジ部10の最大高さとして測定される。
 また、点Pからカーカス層13の本体部131のカーカスライン(図示省略)に引いた法線Lの足を点Mとし、法線Lとカーカス層13の巻き返し部132のカーカスライン(図示省略)との交点を点Tとする。カーカスラインは、タイヤ子午線方向の断面視におけるカーカス本体部131および巻き返し部132のそれぞれの中心を通る線である。
 このとき、点Mから点Tまでの距離a[mm]と、点Tから点Pまでの距離b[mm]と、規定荷重x[kN]とが、以下の数式(1)、(2)の関係を有する。また、距離a、bの許容差は、0[%]以上20[%]以下とする。
 a=0.019×x+13.3                (1)
 b=0.052×x+21.6                (2)
 また、この空気入りタイヤ1では、タイヤを規定リムに装着して50[kPa]の内圧を充填して無負荷状態としたときに、規定リムのリムフランジ部10に対する接触面の曲率半径Rと、規定リムのリムフランジ部10の曲率半径R’とが、1.2≦R/R’≦1.6の関係を有する。
 曲率半径R、R’は、以下のように測定される。
 図2に示すように、建設車両用ラジアルタイヤの規定リムでは、リムの断面視にて、リムフランジ部10の嵌合面が、直線部101と、円弧部102とを有する。直線部101は、タイヤ径方向外側に向かって直線的に延びる部分であり、リム径方向に対して0[deg]~3[deg]の範囲で傾斜する。円弧部102は、直線部101からタイヤ径方向外側に向かうに連れてタイヤ幅方向外側に円弧状に湾曲する部分であり、直線部101に対して変曲点Q’で連続的に接続する。リムフランジ部10の曲率半径R’は、この円弧部102の曲率半径として測定される。また、曲率半径R’の中心Oは、変曲点Q’を通りリムの回転軸に平行な直線上にある。
 また、建設車両用ラジアルタイヤでは、ビード部のリム嵌合面が、規定リムのリムフランジ部10に対応して、直線部171と、湾曲部172とを有する。直線部171は、ビードヒールからタイヤ径方向外側に向かって直線的に延びる部分であり、タイヤ赤道面CL(図1参照)に対して0[deg]~3[deg]の範囲で傾斜する。湾曲部172は、直線部171からタイヤ径方向外側に向かうに連れてタイヤ幅方向外側に湾曲する部分であり、直線部171に対して変曲点Qで連続的に接続する。
 ここで、タイヤを規定リムに装着して50[kPa]の内圧を付与すると共に無負荷状態とすると、タイヤの変曲点Qが、リムフランジ部10の変曲点Q’に対して同位置にあり、また、リムフランジ部10の曲率半径R’の中心Oが、タイヤの変曲点Qからタイヤ回転軸方向に引いた仮想線上にある。このとき、角QOS=45[deg]となる点Sを、タイヤの湾曲部172にとる。タイヤの接触面の曲率半径Rは、上記の測定条件下にて、点Sにおける湾曲部172の曲率半径として測定される。
 また、この空気入りタイヤ1では、サイドウォール部からビード部の湾曲部172に接続するプロファイルラインのラジアスLSRと、タイヤ断面高さSHとが、0.25≦LSR/SH≦0.65の関係を有する(図1および図2参照)。
 サイドウォール部のラジアスLSRは、タイヤを規定リムに装着して50[kPa]の内圧を充填して無負荷状態として測定される。
 タイヤ断面高さSHとは、タイヤ外径とリム径との差の1/2をいい、タイヤを規定リムに装着して50[kPa]の内圧を充填して無負荷状態として測定される。
 また、この空気入りタイヤ1では、ビードコア11の重心位置におけるリムクッションゴム17のゲージc[mm]と、規定荷重x[kN]とが、以下の数式(3)の関係を有する。また、ゲージcの許容差は、0[%]以上20[%]以下とする。
 c=0.004×x+13.5                (3)
 リムクッションゴム17のゲージc[mm]は、図2に示すように、タイヤ子午線方向の断面視にて、ビードコア11の重心からタイヤ回転軸に平行な仮想線を引き、この仮想線上にて測定される。
 また、この空気入りタイヤ1では、カーカス層13の巻き返し部132の変曲点Uの高さHiと、リムフランジ高さHfとが、1.65≦Hi/Hfの範囲にある(図2参照)。比Hi/Hfの上限は、特に限定がないが、タイヤ形状により制約を受ける。
 巻き返し部132の変曲点Uの高さHiは、タイヤを規定リムに装着して50[kPa]の内圧を充填して無負荷状態としたタイヤ子午線方向の断面視にて、リム径の測定点を基準として測定される。
[効果]
 以上説明したように、この空気入りタイヤ1は、一対のビードコア11、11と、一対のビードコア11、11のタイヤ径方向外側にそれぞれ配置される一対のビードフィラー12、12と、一対のビードコア11、11間に架け渡されると共にビードコア11およびビードフィラー12を包み込みつつ巻き返されて係止されるカーカス層13とを備える(図1参照)。また、タイヤを規定リムに装着して50[kPa]の内圧を充填して無負荷状態としたタイヤ子午線方向の断面視にて、サイドウォール部の外表面であって規定リムのリムフランジ高さHfを基準とする1.30×Hfの位置に点Pをとり、点Pからカーカス層13の本体部131のカーカスラインに引いた法線Lの足を点Mとし、法線Lとカーカス層13の巻き返し部132のカーカスラインとの交点を点Tとする(図2参照)。このとき、点Mから点Tまでの距離a[mm]と、点Tから点Pまでの距離b[mm]と、規定荷重x[kN]とが、許容差を0[%]以上20[%]以下として、a=0.019×x+13.3およびb=0.052×x+21.6の関係を有する。
 かかる構成では、1.30×Hfの位置(点P)における距離a、bが規定荷重x[kN]に対して適正化されることにより、タイヤ使用条件下におけるカーカス層13の倒れ込みが抑制される。これにより、ビード部の故障が抑制されて、タイヤの耐久性能が向上する利点がある。すなわち、距離aが上記の範囲内にあることにより、カーカス層13に作用するせん断歪みが低減されて、特に、カーカスコードの破断が抑制される。また、距離bが上記の範囲内にあることにより、ビード部のゴムゲージが適正化されて、負荷状態での圧縮歪みに起因するビード部の故障が抑制される。特に、1.30×Hfの位置は、カーカス層13の巻き返し部132に作用するせん断歪みが、他の領域と比較して大きい。したがって、この位置における距離a、bを適正化することは、非常に有益である。
 また、この空気入りタイヤ1では、タイヤを規定リムに装着して50[kPa]の内圧を充填して無負荷状態としたタイヤ子午線方向の断面視にて、規定リムのリムフランジ部10に対する接触面の曲率半径Rと、規定リムのリムフランジ部10の曲率半径R’とが、1.2≦R/R’≦1.6の関係を有する(図2参照)。これにより、比R/R’が適正化される利点がある。すなわち、1.2≦R/R’であることにより、タイヤのリム接触面の曲率半径Rが適正に確保され、インフレート時におけるビード部のリムフランジ部10に対する食い込み量が低減されて、タイヤのリム接触面に作用する圧縮歪みが低減される。また、R/R’≦1.6であることにより、タイヤとリムとの曲率半径R、R’の差が緩和されて、タイヤのリム接触面に作用する歪みが低減される。また、上記の距離a、bおよび比R/R’の双方が上記の範囲に設定されることにより、ビード部の形状が適正化される利点がある。
 また、この空気入りタイヤ1では、タイヤを規定リムに装着して50[kPa]の内圧を充填して無負荷状態としたタイヤ子午線方向の断面視にて、サイドウォール部からビード部に接続するプロファイルラインのラジアスLSRと、タイヤ断面高さSHとが、0.25≦LSR/SH≦0.65の関係を有する(図2参照)。これにより、比LSR/SHが適正化される利点がある。すなわち、0.25≦LSR/SHであることにより、ラジアスLSRが適正に確保され、インフレート時におけるビード部のリムフランジ部10に対する食い込み量が低減されて、タイヤのリム接触面に作用する圧縮歪みが低減される。また、LSR/SH≦0.65であることにより、タイヤのリム接触面に作用する歪みが低減される。また、上記の距離a、bおよび比LSR/SHの双方が上記の範囲に設定されることにより、ビード部の形状が適正化される利点がある。
 また、この空気入りタイヤ1では、ビードコア11の重心位置におけるリムクッションゴム17のゲージc[mm]と、規定荷重x[kN]とが、許容差を0[%]以上20[%]以下として、c=0.004×x+13.5の関係を有する(図2参照)。これにより、リムクッションゴム17のゲージc[mm]が適正化される利点がある。すなわち、ゲージcの下限(許容差を0[%]時)が上記の範囲にあることにより、リムクッションゴム17のゲージc[mm]が適正に確保されて、タイヤ使用時の摩耗によるカーカスコードの露出が抑制される。また、ゲージcの上限(許容差を20[%]時)が上記の範囲にあることにより、タイヤの製造容易性が適正に確保される。
 また、この空気入りタイヤ1では、タイヤを規定リムに装着して50[kPa]の内圧を充填して無負荷状態としたタイヤ子午線方向の断面視にて、リム径の測定点を基準とするカーカス層13の巻き返し部132の変曲点Uの高さHiと、リムフランジ高さHfとが、1.65≦Hi/Hfの範囲にある(図2参照)。かかる構成では、巻き返し部132の変曲点Uの高さHiが確保されるので、インフレート時にてタイヤのリム嵌合部に作用する応力が効果的に低減される利点がある。
[適用対象]
 この空気入りタイヤ1は、建設車両用ラジアルタイヤを適用対象とすることが好ましい。建設車両用ラジアルタイヤは、土木建設現場などの不整地を走行する建設車両に装着されるタイヤであり、大型ダンプ車、タイヤローラ、スクレーパ、グレーダ、クレーン、ホイールローダ等の建設車両に装着される。
 しかし、これに限らず、空気入りタイヤ1は、トラック、バスなどに装着される重荷重用ラジアルタイヤに適用されても良い(図示省略)。
[性能試験]
 図3は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。
 この性能試験では、相互に異なる複数の試験タイヤについて、(1)リムフランジ部との接触部における歪み指数、(2)カーカス層13の巻き返し部132における圧縮応力指数、および、(3)耐久性能に関する評価が行われた。この性能試験では、タイヤサイズ3300R51 E*2の試験タイヤがTRAの規定リムに組み付けられ、この試験タイヤにTRAの規定空気圧およびTRAの規定荷重(328.52[kN])が付与される。
 (1)リムフランジ部との接触部における歪み指数、および、(2)カーカス層の巻き返し部における圧縮応力指数は、タイヤを規定リムに装着して規定内圧および規定荷重を付与したときに歪みおよび圧縮応力を有限要素法により解析計算して取得される。
 (3)耐久性能に関する評価は、室内ドラム試験機を用いた低圧耐久試験により行われる。そして、走行速度を25[km/h]に設定し、規定荷重から12時間毎に荷重を5[%]ずつ増加させて、タイヤが破壊したときの走行時間が測定される。そして、この測定結果に基づいて従来例を基準(100)とした指数評価が行われる。この評価は、数値が大きいほど好ましい。
 実施例1~12の試験タイヤおよび従来例の試験タイヤは、図1および図2に記載した構成を有する。また、上記のタイヤサイズを有する試験タイヤにおいて、数式(1)~(3)の条件を満たす距離a、bおよびゲージcの数値範囲は、a=20[mm]~24[mm]、b=39[mm]~43[mm]、c=12[mm]~18[mm]である。
 試験結果に示すように、実施例1~12の試験タイヤでは、(1)リムフランジ部との接触部における歪み指数、(2)カーカス層13の巻き返し部132における圧縮応力指数、および、(3)耐久性能が向上することが分かる。
[建設車両用ラジアルタイヤへの適用例]
 図4および図5は、この発明の実施の形態にかかる空気入りタイヤの具体例を示す図表である。
 同図は、各タイヤサイズの建設車両用ラジアルタイヤが、1.30×Hfの位置(図2の点P)にて上記の数式(1)、(2)の条件を満たす場合の具体例を示している。また、同図において、数値W1pt、W1tm、W2tmおよびW2ptは、1.18×Hfおよび0.81×Hfの位置における所定のゲージであり、その測定条件は、特許第4724103号公報に記載されるものと同一である。
 図4および図5に示すように、1.30×Hfの位置にて上記の数式(1)、(2)の条件を満たすタイヤでは、いずれのタイヤサイズにおいても、特許第4724103号公報に記載される所定のゲージの条件を満たさないことが分かる。したがって、上記の数式(1)、(2)の条件と、特許第4724103号公報に記載される所定のゲージの条件とは、両立しない。
 特に、低偏平サイズのタイヤにおいて、1.18×Hfおよび0.81×Hfの位置のゲージが、特許第4724103号公報に記載される条件から大きく乖離することが分かる。逆に、特許第4724103号公報に記載される条件を満たすタイヤ(図示省略)では、上記の数式(1)、(2)の条件が満たされず、1.30×Hfの位置における距離a、bが薄くなる傾向にある。このため、カーカス層13の巻き返し部132に作用するせん断歪みが大きくなり、カーカスコードの破断が生じ易くなることが予測できる。
 1:空気入りタイヤ、11:ビードコア、12:ビードフィラー、13:カーカス層、131:本体部、132:巻き返し部、14:ベルト層、141~144:ベルトプライ、15:トレッドゴム、16:サイドウォールゴム、17:リムクッションゴム、171:直線部、172:湾曲部、10:リムフランジ部、101:直線部、102:円弧部

Claims (6)

  1.  一対のビードコアと、前記一対のビードコアのタイヤ径方向外側にそれぞれ配置される一対のビードフィラーと、前記一対のビードコア間に架け渡されると共に前記ビードコアおよび前記ビードフィラーを包み込みつつ巻き返されて係止されるカーカス層とを備える空気入りタイヤであって、
     タイヤを規定リムに装着して50[kPa]の内圧を充填して無負荷状態としたタイヤ子午線方向の断面視にて、サイドウォール部の外表面であって前記規定リムのリムフランジ高さHfを基準とする1.30×Hfの位置に点Pをとり、点Pから前記カーカス層の本体部のカーカスラインに引いた法線Lの足を点Mとし、法線Lと前記カーカス層の巻き返し部のカーカスラインとの交点を点Tとするときに、
     点Mから点Tまでの距離a[mm]と、点Tから点Pまでの距離b[mm]と、規定荷重x[kN]とが、許容差を0[%]以上20[%]以下として、a=0.019×x+13.3およびb=0.052×x+21.6の関係を有することを特徴とする空気入りタイヤ。
  2.  タイヤを規定リムに装着して50[kPa]の内圧を充填して無負荷状態としたタイヤ子午線方向の断面視にて、前記規定リムのリムフランジ部に対する接触面の曲率半径Rと、前記規定リムのリムフランジ部の曲率半径R’とが、1.2≦R/R’≦1.6の関係を有する請求項1に記載の空気入りタイヤ。
  3.  タイヤを規定リムに装着して50[kPa]の内圧を充填して無負荷状態としたタイヤ子午線方向の断面視にて、サイドウォール部からビード部に接続するプロファイルラインのラジアスLSRと、タイヤ断面高さSHとが、0.25≦LSR/SH≦0.65の関係を有する請求項1または2に記載の空気入りタイヤ。
  4.  前記ビードコアの重心位置におけるリムクッションゴムのゲージc[mm]と、規定荷重x[kN]とが、許容差を0[%]以上20[%]以下として、c=0.004×x+13.5の関係を有する請求項1~3のいずれか一つに記載の空気入りタイヤ。
  5.  タイヤを規定リムに装着して50[kPa]の内圧を充填して無負荷状態としたタイヤ子午線方向の断面視にて、リム径の測定点を基準とする前記カーカス層の巻き返し部の変曲点の高さHiと、リムフランジ高さHfとが、1.65≦Hi/Hfの範囲にある請求項1~4のいずれか一つに記載の空気入りタイヤ。
  6.  建設車両用ラジアルタイヤを適用対象とする請求項1~5のいずれか一つに記載の空気入りタイヤ。
PCT/JP2014/066067 2013-06-21 2014-06-17 空気入りタイヤ WO2014203909A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/900,042 US10538131B2 (en) 2013-06-21 2014-06-17 Pneumatic tire
AU2014282222A AU2014282222B2 (en) 2013-06-21 2014-06-17 Pneumatic tire
RU2016101347A RU2616483C1 (ru) 2013-06-21 2014-06-17 Пневматическая шина
CN201480032899.3A CN105377580B (zh) 2013-06-21 2014-06-17 充气轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-130941 2013-06-21
JP2013130941A JP6318480B2 (ja) 2013-06-21 2013-06-21 空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2014203909A1 true WO2014203909A1 (ja) 2014-12-24

Family

ID=52104639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066067 WO2014203909A1 (ja) 2013-06-21 2014-06-17 空気入りタイヤ

Country Status (6)

Country Link
US (1) US10538131B2 (ja)
JP (1) JP6318480B2 (ja)
CN (1) CN105377580B (ja)
AU (1) AU2014282222B2 (ja)
RU (1) RU2616483C1 (ja)
WO (1) WO2014203909A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087914A (zh) * 2016-12-15 2019-08-02 横滨橡胶株式会社 充气轮胎
US11260702B2 (en) 2017-11-30 2022-03-01 The Yokohama Rubber Co., Ltd. Pneumatic tire

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017228601B2 (en) * 2016-09-25 2023-03-23 The Goodyear Tire & Rubber Company Heavy duty tyre
JP6311810B1 (ja) * 2017-02-28 2018-04-18 横浜ゴム株式会社 空気入りタイヤ
JP2018167772A (ja) * 2017-03-30 2018-11-01 株式会社ブリヂストン タイヤ
FR3069191A1 (fr) * 2017-07-18 2019-01-25 Compagnie Generale Des Etablissements Michelin Pneumatique dont la zone du bourrelet est allegee

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164833A (ja) * 1993-11-16 1995-06-27 Goodyear Tire & Rubber Co:The 公道外用空気入りタイヤ
JP2005212760A (ja) * 2004-02-02 2005-08-11 Bridgestone Corp 航空機用ラジアルタイヤ
JP2005280456A (ja) * 2004-03-29 2005-10-13 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2008143291A (ja) * 2006-12-08 2008-06-26 Bridgestone Corp 重荷重用空気入りラジアルタイヤ
JP2011207319A (ja) * 2010-03-29 2011-10-20 Bridgestone Corp 空気入りタイヤ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4724103Y1 (ja) 1968-02-16 1972-07-31
JP3643191B2 (ja) * 1995-11-29 2005-04-27 株式会社ブリヂストン トラック及びバス用15°テーパラジアルタイヤ
JPH02171308A (ja) * 1988-12-24 1990-07-03 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JPH04218414A (ja) * 1990-12-19 1992-08-10 Bridgestone Corp 空気入りタイヤ
ID20252A (id) * 1997-01-09 1998-11-12 Sumitomo Rubber Ind Ban pneumatik
JP3836595B2 (ja) * 1998-02-18 2006-10-25 株式会社ブリヂストン 重荷重用空気入りラジアル・タイヤ
JP2006069290A (ja) * 2004-08-31 2006-03-16 Bridgestone Corp 空気入りラジアルタイヤ
JP2006218936A (ja) * 2005-02-09 2006-08-24 Bridgestone Corp 重荷重用空気入りラジアルタイヤ
JP2007210363A (ja) * 2006-02-07 2007-08-23 Bridgestone Corp 空気入りタイヤ
FR2952589B1 (fr) 2009-11-13 2011-11-11 Michelin Soc Tech Bourrelet de pneu pour vehicule petit poids lourd.
BR112013006017B1 (pt) 2010-09-16 2021-11-30 Bridgestone Corporation Pneumático

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164833A (ja) * 1993-11-16 1995-06-27 Goodyear Tire & Rubber Co:The 公道外用空気入りタイヤ
JP2005212760A (ja) * 2004-02-02 2005-08-11 Bridgestone Corp 航空機用ラジアルタイヤ
JP2005280456A (ja) * 2004-03-29 2005-10-13 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2008143291A (ja) * 2006-12-08 2008-06-26 Bridgestone Corp 重荷重用空気入りラジアルタイヤ
JP2011207319A (ja) * 2010-03-29 2011-10-20 Bridgestone Corp 空気入りタイヤ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110087914A (zh) * 2016-12-15 2019-08-02 横滨橡胶株式会社 充气轮胎
US11260702B2 (en) 2017-11-30 2022-03-01 The Yokohama Rubber Co., Ltd. Pneumatic tire

Also Published As

Publication number Publication date
US20160137009A1 (en) 2016-05-19
CN105377580A (zh) 2016-03-02
RU2616483C1 (ru) 2017-04-17
US10538131B2 (en) 2020-01-21
CN105377580B (zh) 2017-06-30
JP2015003667A (ja) 2015-01-08
AU2014282222B2 (en) 2016-11-17
AU2014282222A1 (en) 2015-12-24
JP6318480B2 (ja) 2018-05-09

Similar Documents

Publication Publication Date Title
WO2013042255A1 (ja) 空気入りタイヤ
JP5041104B1 (ja) 空気入りタイヤ
WO2014203909A1 (ja) 空気入りタイヤ
JP6217168B2 (ja) 空気入りタイヤ
JP6593046B2 (ja) 空気入りタイヤ
JP4973810B1 (ja) 空気入りタイヤ
WO2017110643A1 (ja) 空気入りタイヤ
WO2016117274A1 (ja) 空気入りタイヤ
US10449803B2 (en) Pneumatic tire
CN109476183B (zh) 充气轮胎
JP6300342B2 (ja) ランフラットタイヤ
WO2017111114A1 (ja) 空気入りタイヤ
US20150114541A1 (en) Tire comprising a carcass reinforcement of which the reinforcing elements are highly penetrated
JP5387423B2 (ja) 空気入りタイヤ
JP6171501B2 (ja) 空気入りタイヤ
JP5760704B2 (ja) 空気入りタイヤ
JP7077556B2 (ja) 乗用車用空気入りタイヤ
WO2018198435A1 (ja) バイアスタイヤ
WO2020084832A1 (ja) 空気入りタイヤ
WO2020084830A1 (ja) 空気入りタイヤ
JP2018062188A (ja) 空気入りタイヤ
JP5469906B2 (ja) 空気入りタイヤ
JP2005297876A (ja) 空気入りラジアルタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814283

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14900042

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014282222

Country of ref document: AU

Date of ref document: 20140617

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016101347

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14814283

Country of ref document: EP

Kind code of ref document: A1