WO2018184574A1 - 待充电设备、无线充电装置及其控制方法 - Google Patents

待充电设备、无线充电装置及其控制方法 Download PDF

Info

Publication number
WO2018184574A1
WO2018184574A1 PCT/CN2018/081963 CN2018081963W WO2018184574A1 WO 2018184574 A1 WO2018184574 A1 WO 2018184574A1 CN 2018081963 W CN2018081963 W CN 2018081963W WO 2018184574 A1 WO2018184574 A1 WO 2018184574A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
wireless
charged
output voltage
wireless charging
Prior art date
Application number
PCT/CN2018/081963
Other languages
English (en)
French (fr)
Inventor
万世铭
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP18780574.2A priority Critical patent/EP3609037B1/en
Priority to JP2019553928A priority patent/JP6987148B2/ja
Priority to CN201880005253.4A priority patent/CN110121823B/zh
Priority to KR1020197030861A priority patent/KR102269323B1/ko
Publication of WO2018184574A1 publication Critical patent/WO2018184574A1/zh
Priority to US16/589,074 priority patent/US11196306B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00038Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors
    • H02J7/00041Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors in response to measured battery parameters, e.g. voltage, current or temperature profile
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H04B5/24
    • H04B5/79
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/30Charge provided using DC bus or data bus of a computer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of wireless charging, and more particularly, to a device to be charged, a wireless charging device, and a control method thereof.
  • the device to be charged is mainly charged by a wired charging method.
  • the charging method of mobile phones is still based on wired charging.
  • the mobile phone when it is required to charge the mobile phone, the mobile phone can be connected to the power supply device through a charging cable (such as a universal serial bus (USB) cable), and the power supply device is provided through the charging cable.
  • the output power is transmitted to the phone to charge the battery inside the phone.
  • a charging cable such as a universal serial bus (USB) cable
  • the wired charging method requires the use of a charging cable, resulting in cumbersome operation in the charging preparation phase. Therefore, wireless charging methods are increasingly favored by people. However, the traditional wireless charging method is inferior and needs to be improved.
  • the present application provides a device to be charged, a wireless charging device, and a control method thereof, which can improve a wireless charging process.
  • a device to be charged includes: a wireless receiving circuit, configured to receive an electromagnetic signal emitted by a wireless charging device, and convert the electromagnetic signal into an output voltage of the wireless receiving circuit; a step-down circuit for receiving an output voltage of the wireless receiving circuit, performing a step-down process on an output voltage of the wireless receiving circuit, obtaining an output voltage of the step-down circuit, and based on an output voltage of the step-down circuit Charging a battery of the device to be charged; a temperature detecting circuit for detecting a temperature of the device to be charged; and a communication control circuit, configured to: when the temperature of the device to be charged is greater than a preset threshold, to the wireless device The charging device sends feedback information for triggering the wireless charging device to control the wireless charging process to reduce the output voltage of the wireless receiving circuit.
  • a wireless charging device including: a wireless transmitting circuit for transmitting an electromagnetic signal to wirelessly charge a charging device; and a communication control circuit for receiving the device to be charged at the device to be charged
  • a third aspect provides a control method of a device to be charged, the device to be charged includes: a wireless receiving circuit, configured to receive an electromagnetic signal emitted by a wireless charging device, and convert the electromagnetic signal into the wireless receiving circuit An output voltage; a step-down circuit, configured to receive an output voltage of the wireless receiving circuit, perform a step-down process on an output voltage of the wireless receiving circuit, obtain an output voltage of the step-down circuit, and based on the step-down circuit The output voltage is used to charge the battery of the device to be charged; the control method includes: detecting a temperature of the device to be charged; and sending a temperature to the wireless charging device when the temperature of the device to be charged is greater than a preset threshold Feedback information, the feedback information is used to trigger the wireless charging device to control a wireless charging process to reduce an output voltage of the wireless receiving circuit.
  • a method for controlling a wireless charging device comprising: a wireless transmitting circuit configured to transmit an electromagnetic signal to wirelessly charge a battery of a charging device; the controlling method comprising: receiving the The feedback information sent by the device to be charged when the temperature of the device to be charged is greater than a preset threshold; according to the feedback information, the wireless charging process is controlled to reduce the output voltage of the wireless receiving circuit of the device to be charged.
  • FIG. 1 is a diagram showing an example of the structure of a conventional wireless charging system.
  • FIG. 2 is a schematic structural diagram of a wireless charging system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a wireless charging system according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a wireless charging system according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a wireless charging system according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a wireless charging system according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a device to be charged according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a wireless charging method according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a wireless charging method according to another embodiment of the present invention.
  • the charging device is charged based on the wireless charging technology, and the wireless charging technology can complete the power transmission without using a cable, and the operation in the charging preparation phase can be simplified.
  • the conventional wireless charging technology generally connects a power supply device (such as an adapter) with a wireless charging device (such as a wireless charging base), and wirelessly charges the output power of the power supply device (such as electromagnetic signal or electromagnetic wave) through the wireless charging device. Transfer to the device to be charged and wirelessly charge the device to be charged.
  • a power supply device such as an adapter
  • a wireless charging device such as a wireless charging base
  • wireless charging methods are mainly divided into magnetic coupling (or electromagnetic induction), magnetic resonance and radio waves.
  • mainstream wireless charging standards include the QI standard, the power matters alliance (PMA) standard, and the alliance for wireless power (A4WP). Both the QI standard and the PMA standard use magnetic coupling for wireless charging.
  • the A4WP standard uses magnetic resonance to wirelessly charge.
  • the wireless charging system includes a power supply device 110 , a wireless charging device 120 , and a device to be charged 130 .
  • the wireless charging device 120 can be, for example, a wireless charging base
  • the device to be charged 130 can be, for example, a terminal.
  • the wireless charging device 120 can convert the output current of the power supply device 110 into an electromagnetic signal (or electromagnetic wave) by the internal wireless transmitting circuit 121.
  • the wireless transmitting circuit 121 may convert an output current of the power supply device 110 into an alternating current, and convert the alternating current into an electromagnetic signal through a transmitting coil or a transmitting antenna (not shown).
  • the device to be charged 130 can receive the electromagnetic signal transmitted by the wireless transmitting circuit 121 through the wireless receiving circuit 131 and convert the electromagnetic signal into an output current of the wireless receiving circuit 131.
  • the wireless receiving circuit 131 may convert an electromagnetic signal emitted by the wireless transmitting circuit 121 into an alternating current through a receiving coil or a receiving antenna (not shown), and perform rectification and/or filtering operations on the alternating current, and the alternating current It is converted into an output voltage and an output current of the wireless receiving circuit 131.
  • the wireless charging device 120 and the device to be charged 130 pre-negotiate the transmission power of the wireless transmitting circuit 121 before wireless charging.
  • the output voltage and output current of the wireless receiving circuit 131 are generally 5 V and 1 A.
  • the output voltage and output current of the wireless receiving circuit 131 are generally 9 V and 1.2 A.
  • the output voltage of the wireless receiving circuit 131 is not suitable for direct loading to both ends of the battery 133, but needs to be converted by the conversion circuit 132 in the device 130 to be charged to obtain the charging voltage expected by the battery 133 in the device 130 to be charged. And / or charging current.
  • Transform circuit 132 can be used to transform the output voltage of wireless receiving circuit 131 (e.g., constant voltage and/or constant current control) to meet the desired charging voltage and/or charging current requirements of battery 133.
  • wireless receiving circuit 131 e.g., constant voltage and/or constant current control
  • the transform circuit 132 can refer to a charge management module, such as an integrated circuit (IC).
  • the conversion circuit 132 can be used to manage the charging voltage and/or charging current of the battery 133 during charging of the battery 133.
  • the conversion circuit 132 can include a voltage feedback function, and/or a current feedback function to enable management of the charging voltage and/or charging current of the battery 133.
  • the charging process of the battery may include one or more of a trickle charging phase, a constant current charging phase, and a constant voltage charging phase.
  • the conversion circuit 132 can utilize the current feedback function such that the current entering the battery 133 during the trickle charge phase satisfies the magnitude of the charge current expected by the battery 133 (e.g., the first charge current).
  • the conversion circuit 132 can utilize the current feedback function such that the current entering the battery 133 during the constant current charging phase satisfies the magnitude of the charging current expected by the battery 133 (eg, the second charging current, which can be greater than the first charging current) recharging current).
  • the conversion circuit 132 can utilize the voltage feedback function such that the magnitude of the voltage applied across the battery 133 during the constant voltage charging phase satisfies the magnitude of the charging voltage expected by the battery 133.
  • the converting circuit 132 can be used to perform a step-down process on the output voltage of the wireless receiving circuit 131 to enable charging after the step-down conversion.
  • the voltage satisfies the charging voltage demand expected by the battery 133.
  • the converting circuit 132 can be used to perform a step-up process on the output voltage of the wireless receiving circuit 131 to obtain the boosted voltage.
  • the charging voltage satisfies the charging voltage demand expected by the battery 133.
  • the conversion circuit 132 can be stepped down (for example, a Buck step-down circuit) so that the charged voltage obtained after the step-down is satisfied with the charging voltage demand expected by the battery 133.
  • the conversion circuit 132 may perform a boosting process on the output voltage of the wireless receiving circuit 131 so that the charged voltage obtained after the boosting satisfies the charging voltage demand expected by the battery 133.
  • the conversion circuit 132 is limited by the reason that the circuit conversion efficiency is low, so that the electric energy of the unconverted portion is dissipated as heat. This portion of the heat will focus on the interior of the device 130 to be charged.
  • the design space and the heat dissipation space of the device to be charged 130 are small (for example, the physical size of the mobile terminal used by the user is getting thinner and lighter, and a large number of electronic components are densely arranged in the mobile terminal to improve the performance of the mobile terminal). Not only the design difficulty of the conversion circuit 132 is improved, but also the heat focused on the device to be charged 130 is difficult to remove in time, thereby causing an abnormality of the device 130 to be charged.
  • the heat accumulated on the conversion circuit 132 may cause thermal interference to the electronic components in the vicinity of the conversion circuit 132, causing abnormal operation of the electronic components.
  • the heat accumulated on the conversion circuit 132 may shorten the useful life of the conversion circuit 132 and nearby electronic components.
  • the heat accumulated on the conversion circuit 132 may cause thermal interference to the battery 133, which may cause abnormal charging and discharging of the battery 133.
  • the heat accumulated on the conversion circuit 132 which may cause the temperature of the device to be charged 130 to rise, affecting the user's experience in charging.
  • the heat accumulated on the conversion circuit 132 may cause a short circuit of the conversion circuit 132 itself, so that the output voltage of the wireless receiving circuit 131 is directly loaded across the battery 133 to cause charging abnormality, if the battery 133 is overcharged for a long time. The state may even cause an explosion of the battery 133, endangering user safety.
  • the embodiment of the present application provides a wireless charging system.
  • the wireless charging device in the wireless charging system is capable of wireless communication with the device to be charged, so that the wireless charging device can control the wireless charging process, so that the transmitting power of the wireless charging device and the battery inside the device to be charged are currently required.
  • the charging voltage and/or charging current match (or match the charging phase in which the battery inside the device to be charged is currently located).
  • the matching of the transmission power of the wireless charging device with the charging voltage and/or the charging current currently required by the battery may mean that the wireless charging device configures the transmission power of the electromagnetic signal such that the electromagnetic signal is received by the wireless receiving circuit after the wireless receiving circuit
  • the output voltage and/or output current matches the charging voltage and/or charging current required by the battery inside the device to be charged (or the output voltage and/or output current of the wireless receiving circuit meets the charging requirements of the battery inside the device to be charged) .
  • the output voltage and/or the output current of the wireless receiving circuit can be directly loaded on both ends of the battery to charge the battery (hereinafter, the charging method of the device to be charged becomes direct charging) Therefore, problems such as energy loss, heat generation, and the like caused by the conversion circuit described above for converting the output voltage and/or the output current of the wireless receiving circuit can be avoided.
  • the main heat sources of the wireless charging process are concentrated in the wireless transmitting circuit (including the transmitting coil) and the wireless receiving circuit (including the receiving coil).
  • the charging power is equal to 20W, and the charging voltage/charging current of a single cell is equal to 5V/4A as an example.
  • the wireless transmitting circuit can generate an electromagnetic signal based on 5V/4A, and accordingly, the wireless receiving circuit converts the electromagnetic signal into an output voltage/output current of 5V/4A, which is based on a low-voltage and high-current charging method. It will cause the wireless transmitting circuit and the wireless receiving circuit to generate a large amount of heat during the power transmission process.
  • the embodiment of the present application further improves the above direct charging mode, and sets a step-down circuit between the wireless receiving circuit and the battery, and uses the output voltage of the step-down circuit as the charging of the battery.
  • the charging power is equal to 20W
  • the charging voltage/charging current of a single cell is equal to 5V/4A as an example.
  • the output voltage/output current of the step-down circuit needs to be maintained at 5V/4A. Assuming that the step-down circuit is a half-voltage circuit, the voltage before the step-down is 10V/2A.
  • the wireless transmitting circuit generates an electromagnetic signal based on 10V/2A, and accordingly, the wireless receiving circuit converts the electromagnetic signal into an output voltage/output current of 10V/2A, and the heat generated by the power transmission process is reduced due to the current being reduced from 4A to 2A. It will be reduced accordingly.
  • the wireless charging system 200 provided by the embodiment of the present application is described in detail below with reference to FIG. 2 .
  • the wireless charging system 200 may include a wireless charging device 220 and a device to be charged 230.
  • the wireless charging device 220 may include a wireless transmitting circuit 221 and a communication control circuit 222.
  • the control function in the communication control circuit 222 can be implemented, for example, by a micro control unit (MCU).
  • MCU micro control unit
  • the wireless transmit circuit 221 can be used to transmit electromagnetic signals to wirelessly charge the charging device 230.
  • wireless transmit circuitry 221 can include a wireless transmit drive circuit and a transmit coil or transmit antenna (not shown).
  • the wireless transmit drive circuit can be used to generate higher frequency alternating current, and the transmit coil or transmit antenna can be used to convert the higher frequency alternating current into an electromagnetic signal for transmission.
  • the communication control circuit 222 can be used to wirelessly communicate with the device 230 to be charged during wireless charging. Specifically, the communication control circuit 222 can communicate with the communication control circuit 236 in the device 230 to be charged.
  • the communication mode between the communication control circuit 222 and the communication control circuit 236 and the communication information exchanged between the communication control circuit 222 and the communication control circuit 236 are not specifically limited in the embodiment of the present application, and will be described in detail below with reference to specific embodiments.
  • the device to be charged 230 may include a wireless receiving circuit 231, a battery 232, a step-down circuit 234 temperature detecting circuit 235, and a communication control circuit 236.
  • the control function in the communication control circuit 236 can be implemented, for example, by a micro control unit (MCU), or can be implemented by an MCU together with an application processor (AP) inside the device to be charged.
  • MCU micro control unit
  • AP application processor
  • the wireless receiving circuit 231 can be configured to receive an electromagnetic signal and convert the electromagnetic signal into an output voltage and an output current of the wireless receiving circuit 231.
  • the wireless receiving circuit 231 may include a receiving coil or a receiving antenna (not shown), and a shaping circuit such as a rectifying circuit and/or a filtering circuit connected to the receiving coil and the receiving antenna.
  • a receiving antenna or a receiving coil can be used to convert the electromagnetic signal into an alternating current
  • the shaping circuit can be used to convert the alternating current into an output voltage and an output current of the wireless receiving circuit 231.
  • the specific form of the shaping circuit and the form of the output voltage and the output current of the wireless receiving circuit 231 obtained after shaping the shaping circuit are not specifically limited.
  • the shaping circuit may include a rectifying circuit and a filtering circuit, and the output voltage of the wireless receiving circuit 231 may be a stable voltage obtained after filtering.
  • the shaping circuit may include a rectifying circuit, and the output voltage of the wireless receiving circuit 231 may be a voltage of a pulsating waveform obtained after rectification, and the voltage of the pulsating waveform is directly loaded to the battery 232 of the device 230 to be charged to The battery 232 is charged.
  • the filtering circuit in the wireless receiving circuit 231 can be removed, and only the rectifier circuit is retained.
  • the output current of the wireless receiving circuit 231 can charge the battery 232 in an intermittent manner, and the period of the output current of the wireless receiving circuit 231 can be changed according to the frequency of the alternating current input to the wireless charging system 200, such as the AC grid, for example,
  • the frequency corresponding to the period of the output current of the wireless receiving circuit 231 is an integer multiple or a reciprocal of the grid frequency.
  • the current waveform corresponding to the output current of the wireless receiving circuit 231 may be composed of one or a group of pulses synchronized with the power grid. The pulsating form of the voltage/current is periodically changed.
  • the conventional constant direct current it can reduce the lithium deposition of the lithium battery, improve the service life of the battery, and help reduce the polarization effect of the battery, increase the charging speed, and reduce The heat of the battery ensures safe and reliable charging of the device to be charged.
  • the step-down circuit 234 can be configured to receive the output voltage of the wireless receiving circuit 231, perform a step-down process on the output voltage of the wireless receiving circuit 231, obtain an output voltage and an output current of the step-down circuit 234, and based on the output voltage of the step-down circuit 234.
  • the output current charges the battery 232.
  • buck circuit 234 can be a Buck circuit.
  • the buck circuit 234 can be a charge pump.
  • the introduction of the buck circuit 234 keeps the voltage generated during the wireless transmission (such as the output voltage of the wireless receiving circuit, etc.) at a higher voltage, thereby further reducing the heat generation of the system.
  • the embodiment of the present application introduces a temperature detecting circuit 235 that detects the temperature of the charging device 230 based on the temperature detecting circuit 235 to form a wireless charging system with a temperature feedback mechanism, which can be used for the charging device 230.
  • the temperature is monitored, and when the temperature of the device to be charged 230 is greater than a certain threshold, the working efficiency of the step-down circuit 234 is increased in time to reduce the heat generation of the system.
  • the temperature monitoring mechanism of the temperature detecting circuit 235 and the communication control circuit 236 will be described in detail below with reference to FIG.
  • the temperature detecting circuit 235 can be used to detect the temperature of the device 230 to be charged.
  • the temperature detection circuit 235 can be implemented in various forms.
  • the temperature detecting circuit 235 may include a temperature detecting resistor.
  • the temperature detecting resistor can be, for example, a thermistor.
  • the temperature detecting circuit 235 can determine the temperature of the device 230 to be charged based on the resistance of the thermistor.
  • the position of the temperature detecting circuit 235 in the device to be charged 230 is not specifically limited in the embodiment of the present application.
  • the temperature detecting circuit 235 may be disposed near a heat source inside the device to be charged 230.
  • the temperature detecting resistor in the temperature detecting circuit 235 can be disposed in the vicinity of the step-down circuit 234.
  • a temperature detecting resistor can be added to the BUCK IC.
  • the temperature of the device to be charged 230 can also be understood as the temperature of the step-down circuit 234, that is, the temperature of the step-down circuit 234 is regarded as the temperature of the device 230 to be charged.
  • the communication control circuit 236 can be configured to send feedback information to the wireless charging device 220 when the temperature of the device to be charged 230 is greater than a preset threshold, and the feedback information is used to trigger the wireless charging device 220 to control the wireless charging process to reduce the wireless receiving circuit 231.
  • the output voltage (“lowering the output voltage of the wireless receiving circuit 231" herein may be replaced by reducing the difference between the input voltage and the output voltage of the step-down circuit 234; alternatively, it may be replaced by increasing the operating efficiency of the step-down circuit 234).
  • the demand for the charging voltage and the charging current of the battery 232 is generally determined by the charging phase at which the battery 232 is currently located. Since the charging voltage and the charging current of the battery 232 are the output voltage and output current of the buck circuit 234, the output voltage and output current of the buck circuit 234 are also determined by the charging phase in which the battery 232 is currently located. In order to increase the operating efficiency of the buck circuit 234, it is necessary to reduce the voltage difference between the input voltage and the output voltage of the buck circuit 234. Since the output voltage of the buck circuit 234 depends on the charging phase in which the battery 232 is currently located, it cannot be adjusted arbitrarily.
  • the buck circuit 234 can be lowered.
  • the input voltage that is, the output voltage of the wireless receiving circuit 231 is lowered (in the embodiment of the present application, the output voltage of the wireless receiving circuit 231 and the input voltage of the step-down circuit 234 are the same voltage).
  • the embodiment of the present application sends feedback information to the wireless charging device 220 through the communication control circuit 236 to trigger the wireless charging process to reduce the output of the wireless receiving circuit 231. Voltage.
  • the wireless charging device 220 may reduce the output voltage of the wireless receiving circuit 231 in accordance with the feedback information.
  • the wireless transmitting device 220 may reduce the duty ratio of the wireless transmitting circuit 221 according to the feedback information to reduce the output voltage of the wireless receiving circuit 231.
  • the wireless transmitting device 220 may adjust the transmission frequency of the wireless transmitting circuit 221 according to the feedback information to reduce the output voltage of the wireless receiving circuit 231.
  • the wireless transmitting device 220 may lower the output voltage of the voltage converting circuit 224 to lower the output voltage of the wireless receiving circuit 231.
  • a detailed description of the structure and function of the voltage conversion circuit 224 will be described later with reference to Figs. 5-6.
  • the wireless transmitting device 220 may reduce the output voltage of the wireless receiving circuit 231 by using one of the above methods, or may combine the above manner to reduce the output voltage of the wireless receiving circuit 231.
  • the wireless transmitting device 220 may achieve the purpose of reducing the output voltage of the wireless receiving circuit 231 only by reducing the output voltage of the voltage converting circuit 224; for example, the wireless transmitting device 220 may first reduce the output voltage of the voltage converting circuit 224.
  • the mode roughly adjusts the output voltage of the wireless receiving circuit 231 (or the operating efficiency of the step-down circuit 234), and then adjusts the output voltage of the wireless receiving circuit 231 by adjusting the duty ratio and/or the transmitting frequency of the wireless transmitting circuit (or The operating efficiency of the voltage circuit 234 is fine-tuned.
  • the feedback information may be information indicating the temperature of the device 230 to be charged; for example, the feedback information may be information indicating that the temperature of the device 230 to be charged is too high; and the wireless charging device 220 passes the voltage conversion circuit 224. For example, the output voltage of the wireless receiving circuit 231 is lowered.
  • the feedback information may be information indicating that the output voltage of the voltage converting circuit 224 is too high; and the wireless charging device 220 adjusts the transmitting frequency and/or the duty ratio of the wireless transmitting circuit 221 by the wireless charging device 220. For example, the output voltage of the wireless receiving circuit 231 is lowered.
  • the feedback information may be information indicating that the transmitting frequency and/or the duty ratio of the wireless transmitting circuit 221 is too high.
  • the communication control circuit 236 can also be used to wirelessly communicate with the communication control circuit 222 such that the communication control circuit 222 controls the wireless charging process such that the output voltage and/or output current of the buck circuit 234 is current with the battery 232.
  • the required charging voltage and / or charging current match.
  • the communication control circuit 236 can be used to wirelessly communicate with the communication control circuit 222 such that the communication control circuit 222 controls the wireless charging process such that the output voltage and/or output current of the buck circuit 234 satisfies the 232 current of the battery 232. Charging requirements for at least one of a charging phase, a constant voltage charging phase, and a constant current charging phase.
  • the communication control circuit 236 can obtain the output voltage and/or the output current of the buck circuit 234 through some detection circuit (such as a voltage detection circuit and/or a current detection circuit) or a certain detection mode, and based on the output voltage of the buck circuit 234. And/or the output current is communicated with the communication control circuit 222 for the wireless communication described above.
  • some detection circuit such as a voltage detection circuit and/or a current detection circuit
  • a certain detection mode based on the output voltage of the buck circuit 234.
  • the output current is communicated with the communication control circuit 222 for the wireless communication described above.
  • the device to be charged used in the embodiment of the present application may refer to a terminal, and the “terminal” may include, but is not limited to, being configured to be connected via a wire line (eg, via a public switched telephone network (PSTN), Digital subscriber line (DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (eg, for cellular networks, wireless local area network (WLAN), Digital television networks such as handheld digital video broadcasting handheld (DVB-H) networks, satellite networks, amplitude modulation-frequency modulation (AM-FM) broadcast transmitters, and/or another communication terminal
  • PSTN public switched telephone network
  • DSL Digital subscriber line
  • WLAN wireless local area network
  • Digital television networks such as handheld digital video broadcasting handheld (DVB-H) networks
  • satellite networks amplitude modulation-frequency modulation (AM-FM) broadcast transmitters, and/or another communication terminal
  • AM-FM amplitude modulation-frequency modulation
  • a terminal configured to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal”, and/or a “mobile terminal.”
  • mobile terminals include, but are not limited to, satellite or cellular telephones; personal communication system (PCS) terminals that can combine cellular radio telephones with data processing, fax, and data communication capabilities; may include radio telephones, pagers, the Internet/ Intranet access, web browser, memo pad, calendar, and/or personal digital assistant (PDA) for global positioning system (GPS) receivers; and conventional laptop and/or palm Receiver or other electronic device including a radiotelephone transceiver.
  • the device or terminal to be charged used in the embodiments of the present application may further include a power bank capable of receiving charging of the wireless charging device to store energy to provide energy for other electronic devices.
  • the communication mode and communication sequence between the wireless charging device 220 and the device to be charged 230 are not specifically limited in the embodiment of the present application.
  • the wireless communication between the wireless charging device 220 and the device to be charged 230 may be a one-way wireless communication.
  • the device to be charged 230 may be specified as the initiator of the communication, and the wireless charging device 220 is the receiver of the communication.
  • the device 230 to be charged can detect the charging current of the battery 232 (ie, the output current of the wireless receiving circuit 231) in real time, when the charging current of the battery 232 does not match the current charging current required by the battery.
  • the device to be charged 230 transmits adjustment information to the wireless charging device 220, instructing the wireless charging device 220 to adjust the transmission power of the wireless transmitting circuit 221.
  • the wireless communication between the wireless charging device 220 and the device to be charged 230 may be a two-way wireless communication.
  • Two-way wireless communication generally requires the receiver to send response information to the initiator after receiving the communication request initiated by the initiator, and the two-way communication mechanism can make the communication process more secure.
  • the above description of the embodiments of the present application does not limit the master-slave of the wireless charging device 220 (the communication control circuit 222 in the wireless charging device 220) and the device to be charged 230 (the communication control circuit 236 in the device 230 to be charged).
  • either the wireless charging device 220 and the device to be charged 230 can initiate a two-way communication session as the master device, and accordingly the other party can make the first response as the slave device initiates communication to the master device or First reply.
  • the identity of the master and slave devices can be determined by comparing the link conditions between the wireless charging device 220 and the device to be charged 230 during communication.
  • the wireless link that the wireless charging device 220 transmits information to the device to be charged 230 is the uplink
  • the wireless link that the device to be charged 230 transmits information to the wireless charging device 220 is the downlink
  • the wireless charging device 220 can be set as the master device for communication
  • the device to be charged 230 can be set as the slave device for communication.
  • the embodiment of the present application does not limit the specific implementation of the two-way communication between the wireless charging device 220 and the device to be charged 230, that is, the wireless charging device 220 and the device to be charged 230 initiate a communication session as the master device.
  • the other party makes a first response or a first reply as a communication session initiated by the slave device to the master device side, and the master device side can make a second response to the first response or the first reply of the slave device side.
  • a communication negotiation process has been completed between the master and the slave.
  • One way in which the master device can make a second response according to the first response or the first reply of the slave device for the communication session may be that the master device side can receive the slave device side for the communication session. And generating a first response or a first reply, and making a targeted second response according to the received first response or the first reply of the slave device.
  • One way that the master device can make a further second response according to the first response or the first response of the slave device to the communication session may also be that the master device does not receive the preset time.
  • the master device side also makes a targeted second response to the first response or the first reply of the slave device.
  • the wireless charging device 220 when the device to be charged 230 initiates a communication session as a master device, the wireless charging device 220 does not need to make a first response or a first reply as a communication session initiated by the device to the master device side.
  • the charging device 230 makes a targeted second response to the first response or the first reply of the wireless charging device 220, that is, a communication negotiation process is completed between the wireless charging device 220 and the device to be charged 230.
  • the embodiment of the present application does not specifically limit the wireless communication mode between the communication control circuit 222 in the wireless charging device 220 and the communication control circuit 236 in the device 230 to be charged.
  • the communication control circuit and the communication control circuit can perform wireless communication based on a Bluetooth, a wireless fidelity (Wi-Fi), or a backscatter modulation method (or a power load modulation method).
  • the communication content between the communication control circuit 236 and the communication control circuit 222 is not specifically limited in the embodiment of the present application.
  • other communication information may be included, which is described in detail below in conjunction with specific embodiments. .
  • communication control circuit 236 can send output voltage and/or output current of buck circuit 234 to communication control circuit 222. Further, the communication control circuit 236 can also transmit battery status information to the communication control circuit 222, wherein the battery status information includes the current power and/or current voltage of the battery 232 in the device 230 to be charged. The communication control circuit 222 can first determine the current charging phase of the battery 232 based on the battery 232 status information, and thereby determine the target charging voltage and/or the target charging current that match the current charging voltage and/or charging current required by the battery 232.
  • the communication control circuit 222 can compare the output voltage and/or the output current of the buck circuit 234 sent from the communication control circuit 236 with the target charging voltage and/or the target charging current to determine the output of the buck circuit 234. Whether the voltage and/or output current matches the current desired charging voltage and/or charging current of battery 232, and the output voltage and/or output current of buck circuit 234 and the current desired charging voltage and/or charging of battery 232. In the event of a current mismatch, the transmit power of the wireless transmit circuit 221 is adjusted until the output voltage and/or output current of the buck circuit 234 matches the current desired charge voltage and/or charge current of the battery 232.
  • the communication control circuit 236 can transmit adjustment information to the communication control circuit 222 to instruct the communication control circuit 222 to adjust the transmission power of the wireless transmission circuit 221.
  • communication control circuit 236 can instruct communication control circuit 222 to increase the transmit power of wireless transmit circuit 221; for example, communication control circuit 236 can instruct communication control circuit 222 to reduce the transmit power of wireless transmit circuit 221.
  • the wireless charging device 220 can set a plurality of gear positions of the transmitting power for the wireless transmitting circuit 221, and the first communication control unit 222 adjusts the gear position of the transmitting power of the wireless transmitting circuit 221 every time the adjustment information is received.
  • One cell until the output voltage and/or output current of the buck circuit 234 matches the current desired charging voltage and/or charging current of the battery 232.
  • communication control circuitry 222 and communication control circuitry 236 may exchange information for security protection, anomaly detection, or fault handling, such as temperature information for battery 232, indications for entering overvoltage protection or overcurrent protection.
  • information for security protection, anomaly detection, or fault handling such as temperature information for battery 232, indications for entering overvoltage protection or overcurrent protection.
  • the information, power transmission efficiency information (which can be used to indicate the power transmission efficiency between the wireless transmission circuit 221 and the wireless reception circuit 231).
  • the communication control circuit 222 and/or the communication control circuit 236 can control the charging circuit to enter a protection state, such as controlling the charging circuit to stop wireless charging.
  • the communication control circuit 222 can reduce the transmission power or control the wireless transmission circuit 221 to stop operating.
  • the wireless transmission circuit 221 can be controlled to stop working, and notify the user of the event, such as by displaying The screen display power transmission efficiency is too low, or the power transmission efficiency can be indicated by the indicator light, so that the user can adjust the wireless charging environment.
  • communication control circuitry 222 and communication control circuitry 236 may interact with other information that may be used to adjust the transmit power adjustment of wireless transmit circuitry 221, such as temperature information of battery 232, indicating the output voltage of buck circuit 234. And/or information on the peak or average of the output current, power transmission efficiency information (which can be used to indicate the power transmission efficiency between the wireless transmission circuit 221 and the wireless reception circuit 231), and the like.
  • the communication control circuit 236 can transmit power transmission efficiency information to the communication control circuit 222, and the communication control circuit 222 is further configured to determine an adjustment range of the transmission power of the wireless transmission circuit 221 based on the power transmission efficiency information. Specifically, if the power transmission efficiency information indicates that the power transmission efficiency between the wireless transmission circuit 221 and the wireless reception circuit 231 is low, the communication control circuit 222 can increase the adjustment range of the transmission power of the wireless transmission circuit 221 such that the wireless transmission circuit 221 The transmit power quickly reaches the target power.
  • the communication control circuit 236 can transmit information indicating the peak or average of the output voltage and/or the output current of the buck circuit 234 to the communication control circuit 222.
  • the communication control circuit 222 can determine whether the peak value or the average value of the output voltage and/or the output current of the step-down circuit 234 matches the current required charging voltage and/or charging current of the battery. If not, the wireless transmitting circuit can be adjusted. The transmit power of 221 .
  • the communication control circuit 236 can transmit the temperature information of the battery 232 to the communication control circuit 222. If the temperature of the battery 232 is too high, the communication control circuit 222 can reduce the transmission power of the wireless transmission circuit 221 to reduce the output of the wireless receiving circuit 231. Current, thereby reducing the temperature of the battery 232.
  • the charging power is equal to 20W, and the charging voltage of a single cell is equal to 5V as an example.
  • the output voltage/output current of the step-down circuit 234 needs to be maintained at 10V/2A.
  • the wireless transmitting circuit generates an electromagnetic signal based on 10V/2A
  • the wireless receiving circuit converts the electromagnetic signal into an output voltage/output current of 10V/2A
  • the heat generated by the power transmission process is reduced due to the current being reduced from 4A to 2A. It will be reduced accordingly.
  • the device to be charged includes a buck circuit 234 as shown in FIG. 2, and the battery 232 of the device to be charged includes N cells (N is a positive integer greater than 1) in series with each other.
  • the charging power is equal to 20W, and the charging voltage of a single cell is equal to 5V as an example.
  • the output voltage/output current of the step-down circuit 234 needs to be maintained at 10V/2A. Assuming that the step-down circuit 234 is a half-voltage circuit, the voltage before the step-down is 20V/1A. .
  • the wireless transmitting circuit generates an electromagnetic signal based on 20V/1A, and accordingly, the wireless receiving circuit converts the electromagnetic signal into an output voltage/output current of 20V/1A, and further reduces the power transmission process because the current is reduced from 4A to 1A.
  • the wireless charging device 220 provided by the embodiment of the present application can continuously adjust the transmit power of the wireless transmitting circuit 221 during the charging process, so that the output voltage and/or output current of the buck circuit 234 is currently required by the battery 232.
  • the charging voltage and / or charging current match.
  • the manner of adjusting the transmit power of the wireless transmitting circuit 221 is not specifically limited in the embodiment of the present application.
  • the communication control circuit 222 can communicate with the power supply device 210 to adjust the output voltage and/or output current of the power supply device 210, thereby adjusting the transmission power of the wireless transmission circuit 221.
  • the communication control circuit 222 can adjust the amount of power extracted by the wireless transmitting circuit 221 from the maximum output power supplied from the power supply device 210, thereby adjusting the transmission power of the wireless transmitting circuit 221.
  • the wireless charging device 220 can directly receive an alternating current (eg, 220V alternating current), and the communication control circuit 222 can directly convert the alternating current into a required voltage and/or current according to the feedback of the communication control circuit 236. The manner of adjusting the transmission power of the wireless transmission circuit 221 will be described in detail below with reference to FIGS. 4-6.
  • FIG. 4 is an example of a method of adjusting the transmission power of the wireless transmission circuit 221.
  • the wireless charging device 220 may further include a charging interface 223.
  • the charging interface 223 can be used to connect to an external power supply device 210.
  • the wireless transmitting circuit 221 can also be used to generate an electromagnetic signal according to the output voltage and the output current of the power supply device 210.
  • the communication control circuit 222 can also be configured to communicate with the power supply device 210 to negotiate the maximum output power of the power supply device 210, and adjust the amount of power extracted by the wireless transmission circuit 221 from the maximum output power during wireless charging. To adjust the transmission power of the wireless transmission circuit 221.
  • the communication control circuit 222 communicates with the power supply device 210 whose output power is adjustable to negotiate the maximum output power of the power supply device 210. After the negotiation is completed, the power supply device 210 can supply the output voltage and the output current to the wireless charging device 220 according to the maximum output power. During the charging process, the communication control circuit 222 can extract a certain amount of power from the maximum output power for wireless charging according to actual needs. That is, the embodiment of the present application allocates the control right of the transmission power adjustment of the wireless transmission circuit 221 to the communication control circuit 222, and the communication control circuit 222 can immediately respond to the wireless transmission circuit 221 after receiving the feedback information of the device 230 to be charged. The transmission power is adjusted to have the advantages of fast adjustment speed and high efficiency.
  • the manner in which the communication control circuit 222 extracts the amount of power from the maximum output power provided by the power supply device 210 is not specifically limited in the embodiment of the present application.
  • a voltage conversion circuit (which may be, for example, a power adjustment circuit) may be provided within the wireless transmitting device 220, and the voltage conversion circuit may be coupled to a transmitting coil or a transmitting antenna for adjusting the power received by the transmitting coil or the transmitting antenna.
  • the voltage conversion circuit may include, for example, a pulse width modulation (PWM) controller and a switching unit.
  • the communication control circuit 222 can adjust the transmit power of the wireless transmit circuit 221 by adjusting the duty cycle of the control signal issued by the PWM controller and/or by controlling the switching frequency of the switch unit.
  • the power supply device 210 can also directly output a large fixed power (such as 40 W), so that the communication control circuit 222 can be provided without power supply.
  • the device 210 negotiates its maximum output power and directly adjusts the amount of power extracted by the wireless transmitting circuit 221 from the fixed power provided by the power supply device 210.
  • the type of the power supply device 210 is not specifically limited in the present application.
  • the power supply device 210 can be an adapter, a power bank, a car charger, or a computer.
  • the type of the charging interface 223 is not specifically limited in the present application.
  • the charging interface 223 can be a USB interface.
  • the USB interface can be, for example, a USB 2.0 interface, a micro USB interface, or a USB TYPE-C interface.
  • the charging interface 223 can also be a lightning interface, or any other type of parallel port and/or serial port that can be used for charging.
  • the communication mode between the communication control circuit 222 and the power supply device 210 is not specifically limited in the embodiment of the present application.
  • the communication control circuit 222 can be connected to the power supply device 210 through a communication interface other than the charging interface, and communicate with the power supply device 210 through the communication interface.
  • the communication control circuit 222 can communicate with the power supply device 210 in a wireless manner.
  • the communication control circuit 222 can perform near field communication (NFC) with the power supply device 210.
  • NFC near field communication
  • the communication control circuit 222 can communicate with the power supply device 210 through the charging interface 223 without the need to provide an additional communication interface or other wireless communication module, which can simplify the implementation of the wireless charging device 220.
  • the charging interface 223 is a USB interface, and the communication control circuit 222 can communicate with the power providing device 210 based on data lines (such as D+ and/or D- lines) in the USB interface.
  • the charging interface 223 can be a USB interface (such as a USB TYPE-C interface) that supports a power delivery (PD) communication protocol, and the communication control circuit 222 and the power providing device 210 can communicate based on a PD communication protocol.
  • PD power delivery
  • the power supply device 210 adjusts the output power is not specifically limited in the present application.
  • the power supply device 210 can internally provide a voltage feedback loop and a current feedback loop to enable adjustment of its output voltage and/or output current according to actual needs.
  • FIG. 5 is another example of a transmission power adjustment manner of the wireless transmission circuit 221 provided by the embodiment of the present application.
  • the embodiment corresponding to FIG. 5 is not intended to control the maximum output power of the power supply device 210, but to relatively accurately control the output power of the power supply device 210, so as to make the output of the power supply device 210 as much as possible. Power can directly meet current power requirements.
  • the embodiment of FIG. 5 assigns control of the transmission power adjustment of the wireless transmission circuit 221 to the power supply device 210 by changing the output voltage and/or output current by the power supply device 210.
  • the transmission power of the wireless transmission circuit 221 is adjusted.
  • the advantage of this adjustment method is how much power is required by the wireless charging device 220, how much power is provided by the power supply device 210, and there is no waste of power. A detailed description will be given below with reference to FIG. 5.
  • the wireless charging device 220 may further include a charging interface 223 and a voltage conversion circuit 224.
  • the charging interface 223 can be used to connect to the power supply device 210.
  • the voltage conversion circuit 224 can be configured to receive an output voltage of the power supply device 210 and convert the output voltage of the power supply device 210 to obtain an output voltage and an output current of the voltage conversion circuit 224.
  • the wireless transmitting circuit 221 can also be used to generate an electromagnetic signal according to the output voltage and the output current of the voltage converting circuit 224.
  • the communication control circuit 222 can also be used to communicate with the power supply device 210 to negotiate the output voltage and/or output current of the power supply device 210.
  • the embodiment of the present application adopts a high-voltage low-current method for energy transmission.
  • the energy transmission mode requires a high input voltage (such as 10V or 20V) of the wireless transmitting circuit 221, and the maximum output voltage of the power supply device 210 cannot reach the wireless transmission.
  • the input voltage requirement of circuit 221, the setting of voltage conversion circuit 224 may be such that the input voltage of wireless transmit circuit 221 cannot be reached to the desired input voltage.
  • the voltage conversion circuit 224 can also be omitted to simplify the implementation of the wireless charging device 220.
  • the voltage conversion circuit 224 can be a boost circuit.
  • the boosting factor of the voltage conversion circuit 224 and the step-down factor of the step-down circuit 234 are related to parameters such as an output voltage that the power supply device 210 can provide, and a charging voltage required for the battery 232.
  • the two embodiments may be equal or non-equal, and the embodiment of the present application does not specifically limit this.
  • the boosting factor of the voltage conversion circuit 224 and the step-down factor of the step-down circuit 234 can be set equal.
  • the voltage conversion circuit 224 may be a voltage multiplying circuit for boosting the output voltage of the power supply device 210 by a factor of two; the step-down circuit 234 may be a half voltage circuit for reducing the output voltage of the wireless receiving circuit 231 by half.
  • the embodiment of the present application sets the boosting multiple of the voltage conversion circuit 224 and the step-down multiple of the step-down circuit 234 to 1:1.
  • This arrangement can make the output voltage and the output current of the step-down circuit 234 and the power supply device 210, respectively.
  • the output voltage is consistent with the output current, which facilitates the implementation of the communication control circuits 222, 236.
  • the communication control circuit 236 knows that the output current of the step-down circuit 234 is 4.5A, it is necessary to adjust the output power of the power supply device 210 so that the output current of the step-down circuit 234 reaches 5A.
  • the communication control circuit 222 or the communication control circuit 236 needs to be based on the drop when adjusting the output power of the power supply device 210.
  • the difference between the current output current of the voltage circuit 234 and the expected value recalculates the adjustment value of the output power of the power supply device 210.
  • the ratio of the boosting multiple of the voltage conversion circuit 224 to the step-down multiple of the step-down circuit 234 is set to 1:1, and the communication control circuit 236 notifies the communication control circuit 222 to increase the output current to 5A, thereby It simplifies the feedback adjustment of the wireless charging path.
  • the wireless charging device 220 can actively determine whether the output voltage and/or output current of the power supply device 210 needs to be adjusted. In other embodiments, the wireless charging device 220 can serve as a bridge between the power supply device 210 and the device to be charged 230, and is primarily responsible for forwarding information between the two.
  • the communication control circuit 222 communicates with the device 230 to be charged to determine whether it is necessary to adjust the output voltage and/or output current of the power supply device 210; the output voltage of the power supply device 210 needs to be adjusted and In the case of an output current, the communication control circuit 222 communicates with the power supply device 210 to instruct the power supply device 210 to adjust the output voltage and/or output current of the power supply device 210.
  • the communication control circuit 222 inside the wireless charging device 220 performs wireless communication with the device to be charged 230 to acquire adjustment information for indicating the output voltage and/or output to the power supply device 210.
  • the current is adjusted; the communication control circuit 222 communicates with the power supply device 210, and transmits the adjustment information to the power supply device 210, so that the power supply device 210 adjusts the output voltage and/or the output current of the power supply device according to the adjustment information.
  • the communication between the wireless charging device 220 (or the communication control circuit 222) and the power supply device 210 may be one-way communication or two-way communication.
  • the embodiment of the present application does not specifically limit this.
  • the output current of the power supply device may be constant direct current, pulsating direct current or alternating current, which is not specifically limited in this embodiment of the present application.
  • the communication control circuit 222 can be connected to the wireless transmitting circuit 221 so that the wireless transmitting circuit 221 can be controlled to start operating, or the wireless transmitting circuit 221 can be stopped when the wireless charging process is abnormal.
  • communication control circuitry 222 may not be coupled to wireless transmit circuitry 221.
  • FIG. 6 is another example of the transmission power adjustment manner of the wireless transmission circuit 221. Different from the embodiment shown in FIG. 4 and FIG. 5, the wireless charging device 220 corresponding to the embodiment of FIG. 6 does not acquire power from the power supply device 210, but directly converts an externally input alternating current (such as a commercial power) into the above electromagnetic signal.
  • an externally input alternating current such as a commercial power
  • the wireless charging device 220 may further include a voltage conversion circuit 224 and a power supply circuit 225.
  • the power supply circuit 225 can be configured to receive an externally input alternating current (such as a commercial power) and generate an output voltage and an output current of the power supply circuit 225 according to the alternating current.
  • the power supply circuit 225 can rectify and/or filter the alternating current to obtain a direct current or a pulsating direct current, and transmit the direct current or the pulsating direct current to the voltage conversion circuit 224.
  • the voltage conversion circuit 224 can be used to receive the output voltage of the power supply circuit 225 and convert the output voltage of the power supply circuit 225 to obtain the output voltage and output current of the voltage conversion circuit 224.
  • the wireless transmitting circuit 221 can also be used to generate an electromagnetic signal according to the output voltage and the output current of the voltage converting circuit 224.
  • the embodiment of the present application integrates an adapter-like function inside the wireless charging device 220, so that the wireless charging device 220 does not need to obtain power from an external power supply device, improves the integration degree of the wireless charging device 220, and reduces the wireless charging process. The number of devices required.
  • the embodiment of the present application uses a high-voltage low-current method for energy transmission.
  • the energy transmission mode requires a high input voltage (for example, 10V or 20V) of the wireless transmitting circuit 221, and the maximum output voltage of the power supply circuit 225 cannot reach the wireless transmission.
  • the input voltage requirement of circuit 221, the setting of voltage conversion circuit 224 may be such that the input voltage of wireless transmit circuit 221 cannot be reached to the desired input voltage.
  • the voltage conversion circuit 224 can also be omitted to simplify the implementation of the wireless charging device 220.
  • the wireless charging device 220 can support the first wireless charging mode and the second wireless charging mode, and the wireless charging device 220 charges the charging device 230 faster than the wireless charging in the first wireless charging mode.
  • the wireless charging device 220 operating in the first wireless charging mode is filled with the time of the battery in the device 230 to be charged of the same capacity. Shorter.
  • the second wireless charging mode may be referred to as a normal wireless charging mode, such as a conventional wireless charging mode based on the QI standard, the PMA standard, or the A4WP standard.
  • the first wireless charging mode can be a fast wireless charging mode.
  • the normal wireless charging mode may refer to a wireless charging mode in which the wireless charging device 220 has a small transmitting power (usually less than 15 W, and the commonly used transmitting power is 5 W or 10 W). In the normal wireless charging mode, it is intended to completely fill a large capacity battery. (e.g., a 3000 mAh capacity battery) typically takes several hours; while in the fast wireless charging mode, the wireless charging device 220 has a relatively large transmit power (typically greater than or equal to 15 W). Compared with the normal wireless charging mode, the charging time required for the wireless charging device 220 to completely fill the same capacity battery in the fast wireless charging mode can be significantly shortened and the charging speed is faster.
  • communication control circuit 222 is in two-way communication with communication control circuit 236 to control the transmit power of wireless charging device 220 in the first wireless charging mode.
  • the communication control circuit 222 and the communication control circuit 236 can perform two-way communication to control the transmission power of the wireless charging device 220 in the first wireless charging mode, which may include: the communication control circuit 222 and The communication control circuit 236 performs two-way communication to negotiate a wireless charging mode between the wireless charging device 220 and the device to be charged 230.
  • the communication control circuit 222 can perform handshake communication with the communication control circuit 236. If the handshake communication is successful, the wireless charging device 220 is controlled to charge the device to be charged 230 using the first wireless charging mode, and the handshake communication fails. Next, the wireless charging device 220 is controlled to charge the device to be charged 230 using the second wireless charging mode.
  • Handshake communication can refer to the identification of each other's identities by the communicating parties.
  • the success of the handshake communication may indicate that the wireless charging device 220 and the device to be charged 230 both support the wireless charging mode with adjustable transmit power provided by the embodiment of the present application.
  • the failure of the handshake communication may indicate that at least one of the wireless charging device 220 and the device to be charged 230 does not support the wireless charging mode with adjustable transmit power provided by the embodiment of the present application.
  • the wireless charging device 220 does not blindly use the first wireless charging mode to perform fast wireless charging on the charging device 230, but performs two-way communication with the device to be charged 230 to negotiate whether the wireless charging device 220 can adopt the first wireless.
  • the charging mode performs fast wireless charging of the charging device 230, which can improve the security of the charging process.
  • the communication control circuit 222 performs two-way communication with the communication control circuit 236 to negotiate a wireless charging mode between the wireless charging device 220 and the device to be charged 230.
  • the communication control circuit 222 may send the first instruction to the communication control circuit 236.
  • the first instruction is used to query whether the device to be charged 230 turns on the first wireless charging mode;
  • the communication control circuit 222 receives the reply command sent by the communication control circuit 236 for the first instruction, and the reply command is used to indicate whether the device to be charged 230 agrees
  • the first wireless charging mode is turned on; in the case where the device to be charged 230 agrees to turn on the first wireless charging mode, the communication control circuit 222 controls the wireless charging device 220 to charge the device to be charged 230 using the first wireless charging mode.
  • the communication control circuit 222 can also select or switch the wireless charging mode according to some other factors. For example, the communication control circuit 222 can also be used to control the wireless charging device 220 according to the temperature of the battery 232. The first wireless charging mode or the second wireless charging mode charges the battery 232.
  • the communication control circuit 222 can control the wireless charging device 220 to perform normal charging using the second wireless charging mode when the temperature is greater than or equal to the first threshold. At this time, the communication control circuit 222 can control the wireless charging device 220 to perform fast charging using the first wireless charging mode. Further, when the temperature is higher than a high temperature threshold (eg, 50 ° C), the communication control circuit 222 can control the wireless charging device 220 to stop charging.
  • a preset first threshold eg, 5 ° C or 10 ° C
  • the communication control circuit 222 can control the wireless charging device 220 to perform normal charging using the second wireless charging mode when the temperature is greater than or equal to the first threshold. At this time, the communication control circuit 222 can control the wireless charging device 220 to perform fast charging using the first wireless charging mode.
  • a high temperature threshold eg, 50 ° C
  • the communication control circuit 222 can control the wireless charging device 220 to stop charging.
  • the wireless charging mode with adjustable transmit power provided by the embodiment of the present application can be used to control one or more charging phases in the charging phase of the battery 232.
  • the wireless charging mode with adjustable transmit power provided by the embodiment of the present application can be mainly used to control the constant current charging phase of the battery 232.
  • the device to be charged 230 may retain the conversion circuit.
  • charging may be performed using a conventional wireless charging method similar to that shown in FIG.
  • the conversion circuit in the device to be charged 230 can convert the output voltage and the output current of the wireless receiving circuit 231 to satisfy the trickle charging phase and constant Charging requirements during the charging phase.
  • the charging power received by the battery 232 in the trickle charging phase and the constant voltage charging phase is small, and the efficiency conversion loss and heat accumulation of the conversion circuit inside the charging device 230 are acceptable. The details will be described below with reference to FIG. 7.
  • the charging channel in which the step-down circuit 234 is located may be referred to as a first charging path 233.
  • the device to be charged 230 may further include a second charging channel 239.
  • a conversion circuit 237 can be disposed on the second charging channel 239.
  • the conversion circuit 237 can be configured to receive the output voltage and the output current of the wireless receiving circuit 231, and perform constant voltage and/or constant current control on the output voltage and/or the output current of the wireless receiving circuit 231 such that the output voltage of the second charging channel 239 is The output current matches the current desired charging voltage and/or charging current of the battery 232 and charges the battery 232 based on the output voltage and/or output current of the second charging channel 239.
  • Communication control circuit 236 can also be used to control switching between first charging channel 233 and second charging channel 239.
  • a switch 238 may be disposed on the first charging channel 233, and the communication control circuit 236 may control between the first charging channel 233 and the second charging channel 239 by controlling the conduction and closing of the switch 238.
  • Switch may be disposed on the first charging channel 233, and the communication control circuit 236 may control between the first charging channel 233 and the second charging channel 239 by controlling the conduction and closing of the switch 238. Switch.
  • the wireless charging device 220 can include a first wireless charging mode and a second wireless charging mode, and the wireless charging device 220 charges the charging device 230 faster than the first wireless charging mode. The charging speed of the charging device 230 to be charged by the wireless charging device 220 in the second wireless charging mode.
  • the device to be charged 230 can control the operation of the first charging channel 233; when the wireless charging device 220 uses the second wireless charging mode as the device to be charged When the battery in 230 is being charged, the device to be charged 230 can control the second charging channel 239 to operate.
  • the communication control circuit 236 can control the charging of the battery 232 using the second charging channel 239, and the constant voltage constant current process of the battery can be performed by the converting circuit 237. (such as charging IC) for control.
  • the battery 232 can be controlled to be charged using the first charging channel 233, and the constant current control of the battery can be implemented based on the adjustment of the transmission power by the wireless charging device.
  • the reserved conversion circuit 237 can be better compatible with conventional wireless charging methods.
  • first charging channel 233 and the second charging channel 239 may be selected in various manners, and are not limited to being selected based on the charging phase in which the battery 232 is currently located.
  • the communication control circuit 236 is further configured to perform handshake communication with the communication control circuit 222, and if the handshake communication is successful, control the first charging channel 233 to work, in the case that the handshake communication fails, The second charging channel 239 is controlled to operate.
  • Handshake communication can refer to the identification of each other's identities by the communicating parties.
  • the success of the handshake communication may indicate that the wireless charging device 220 and the device to be charged 230 both support the wireless charging mode with adjustable transmit power provided by the embodiment of the present application.
  • the failure of the handshake communication may indicate that at least one of the wireless charging device 220 and the device to be charged 230 does not support the wireless charging mode with adjustable transmit power provided by the embodiment of the present application.
  • the charging can be performed by the conventional wireless charging mode through the second charging channel 239, such as the wireless charging mode based on the QI standard.
  • the communication control circuit 236 can also be used to control switching between the first charging channel 233 and the second charging channel 239 according to the temperature of the battery 232.
  • the communication control circuit 236 can control normal wireless charging using the second charging channel 239, when the temperature is greater than or equal to the first threshold, Communication control circuit 236 can control fast wireless charging using first charging channel 233. Further, when the temperature is above a high temperature threshold (eg, 50 ° C), the communication control circuit 236 can control to stop wireless charging.
  • a preset first threshold such as 5 ° C or 10 ° C
  • the communication control circuit 236 can control normal wireless charging using the second charging channel 239
  • the temperature is greater than or equal to the first threshold
  • Communication control circuit 236 can control fast wireless charging using first charging channel 233.
  • a high temperature threshold eg, 50 ° C
  • the output current of the wireless receiving circuit 231 can be a pulsating direct current, which can reduce the lithium deposition phenomenon of the battery 232 and improve the service life of the battery.
  • the communication control circuit 236 can detect the peak or average of the pulsating direct current to perform subsequent communication or control based on the peak or average of the pulsating direct current.
  • the wireless charging device 220 may further include an external interface and a wireless data transmission circuit, and the external interface may be used to connect to an electronic device having a data processing and transmission function, and the external interface may be the charging interface described above.
  • the first communication control unit 222 can also be used to wirelessly charge the charging device 230 according to the output power of the electronic device during the connection of the external interface to the electronic device having the data processing and transmission function.
  • the wireless data transmission circuit is configured to: when the wireless charging control unit wirelessly charges the to-be-charged device 230 according to an output power of the electronic device, to store data stored in the electronic device by using a wireless link Transmission to the device to be charged 230 or transmission of data stored in the device to be charged to the electronic device 230 via a wireless link.
  • the wireless data transmission circuit is configured to transmit at least one of the following data: data in a USB protocol format, data in a display port (DP) protocol format, and a mobile high-definition link MHL protocol format. The data.
  • the device embodiments of the present application are described in detail above with reference to FIG. 2 to FIG. 7.
  • the method embodiments of the present application are described in detail below with reference to FIG. 8 to FIG. 9.
  • the method embodiments and the device embodiments correspond to each other, and thus are not described in detail. Portions can be found in the previous device embodiments.
  • FIG. 8 is a schematic flowchart of a method for controlling a device to be charged according to an embodiment of the present application.
  • the device to be charged includes: a wireless receiving circuit, configured to receive an electromagnetic signal emitted by the wireless charging device, and convert the electromagnetic signal into an output voltage of the wireless receiving circuit; and a step-down circuit, configured to receive the wireless receiving The output voltage of the circuit is stepped down by the output voltage of the wireless receiving circuit to obtain an output voltage of the step-down circuit, and the battery of the device to be charged is charged based on an output voltage of the step-down circuit.
  • the control method of FIG. 8 includes steps S810 to S820.
  • step S810 the temperature of the device to be charged is detected.
  • step S820 when the temperature of the device to be charged is greater than a preset threshold, sending feedback information to the wireless charging device, the feedback information is used to trigger the wireless charging device to control the wireless charging process to reduce The output voltage of the wireless receiving circuit.
  • control method of FIG. 8 may further include: performing wireless communication with the wireless charging device, so that the wireless charging device controls a wireless charging process such that an output voltage and/or an output current of the step-down circuit Matching the current required charging voltage and/or charging current of the battery.
  • FIG. 9 is a schematic flowchart of a method for controlling a wireless charging apparatus according to an embodiment of the present application.
  • the wireless charging device includes a wireless transmitting circuit for transmitting an electromagnetic signal to wirelessly charge a battery of a charging device.
  • the control method of FIG. 9 includes steps S910 to S920.
  • step S910 the feedback information sent by the device to be charged when the temperature of the device to be charged is greater than a preset threshold is received.
  • step S920 the wireless charging process is controlled according to the feedback information to reduce the output voltage of the wireless receiving circuit of the device to be charged.
  • step S920 may include: reducing a duty ratio of the wireless transmitting circuit to reduce an output voltage of the wireless receiving circuit according to the feedback information.
  • step S920 may include: adjusting a transmit frequency of the wireless transmit circuit to reduce an output voltage of the wireless receive circuit according to the feedback information.
  • the wireless charging device further includes: a voltage conversion circuit, configured to perform a step-up process on the input voltage of the wireless charging device to obtain an output voltage of the voltage conversion circuit; and the step S920 may include: Feedback information reduces an output voltage of the voltage conversion circuit to reduce an output voltage of the wireless receiving circuit.
  • control method of FIG. 9 may further include: performing wireless communication with the device to be charged to adjust a transmit power of the wireless transmit circuit, such that a transmit power of the wireless transmit circuit is currently required by the battery The charging voltage and / or charging current are matched.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (such as a digital video disc (DVD)), or a semiconductor medium (such as a solid state disk (SSD)).
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium such as a digital video disc (DVD)
  • a semiconductor medium such as a solid state disk (SSD)
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the devices and devices mentioned in the present application may each be a chip system or a device or device having a housing.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Abstract

提供一种待充电设备、无线充电装置及其控制方法。该待充电设备包括无线接收电路,用于接收无线充电装置发射的电磁信号,并将电磁信号转换成无线接收电路的输出电压;降压电路,用于接收无线接收电路的输出电压,对无线接收电路的输出电压进行降压处理,得到降压电路的输出电压,并基于降压电路的输出电压对待充电设备的电池进行充电;温度检测电路,用于检测待充电设备的温度;通信控制电路,用于当待充电设备的温度大于预设阈值时,向无线充电装置发送反馈信息,反馈信息用于触发无线充电装置对无线充电过程进行控制,以降低无线接收电路的输出电压。上述待充电设备具有充电效率高,发热量低的优点。

Description

待充电设备、无线充电装置及其控制方法
本申请要求于2017年4月7日提交中国专利局、申请号为PCT/CN2017/079784、发明名称为“无线充电系统、装置、方法及待充电设备”的PCT申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线充电领域,并且更为具体地,涉及一种待充电设备、无线充电装置及其控制方法。
背景技术
目前,在充电技术领域,待充电设备主要采用有线充电方式进行充电。
以手机为例,目前,手机的充电方式仍以有线充电方式为主。具体地,当需要为手机充电时,可以通过充电线缆(如通用串行总线(universal serial bus,USB)线缆)将手机与电源提供设备相连,并通过该充电线缆将电源提供设备的输出功率传输至手机,为手机内的电池充电。
对待充电设备而言,有线充电方式需要使用充电线缆,导致充电准备阶段的操作繁琐。因此,无线充电方式越来越受到人们的青睐。但传统的无线充电方式效果较差,亟待改善。
发明内容
本申请提供一种待充电设备、无线充电装置及其控制方法,能够改善无线充电过程。
第一方面,提供一种待充电设备,所述待充电设备包括:无线接收电路,用于接收无线充电装置发射的电磁信号,并将所述电磁信号转换成所述无线接收电路的输出电压;降压电路,用于接收所述无线接收电路的输出电压,对所述无线接收电路的输出电压进行降压处理,得到所述降压电路的输出电压,并基于所述降压电路的输出电压对所述待充电设备的电池进行充电;温度检测电路,用于检测所述待充电设备的温度;通信控制电路,用于当所述待充电设备的温度大于预设阈值时,向所述无线充电装置发送反馈信息,所述反馈信息用于触发所述无线充电装置对无线充电过程进行控制,以降低所述无线接收电路的输出电压。
第二方面,提供一种无线充电装置,包括:无线发射电路,用于发射电磁信号,以对待充电设备进行无线充电;通信控制电路,用于接收所述待充电设备在所述待充电设备的温度大于预设阈值情况下发送的反馈信息;根据所述反馈信息,对无线充电过程进行控制,以降低所述待充电设备的无线接收电路的输出电压。
第三方面,提供一种待充电设备的控制方法,所述待充电设备包括:无线接收电路,用于接收无线充电装置发射的电磁信号,并将所述电磁信号转换成所述无线接收电路的输出电压;降压电路,用于接收所述无线接收电路的输出电压,对所述无线接收电路的输出电压进行降压处理,得到所述降压电路的输出电压,并基于所述降压电路的输出电压对所述待充电设备的电池进行充电;所述控制方法包括:检测所述待充电设备的温度;当所述待充电设备的温度大于预设阈值时,向所述无线充电装置发送反馈信息,所述反馈信息用于触发所述无线充电装置对无线充电过程进行控制,以降低所述无线接收电路的输出电压。
第四方面,提供一种无线充电装置的控制方法,所述无线充电装置包括:无线发射电路,用于发射电磁信号,以对待充电设备的电池进行无线充电;所述控制方法包括:接收所述待充电设备在所述待充电设备的温度大于预设阈值情况下发送的反馈信息;根据所述反馈信息,对无线充电过程进行控制,以降低所述待充电设备的无线接收电路的 输出电压。
附图说明
图1是传统无线充电系统的结构示例图。
图2是本发明一个实施例提供的无线充电系统的结构示意图。
图3是本发明另一实施例提供的无线充电系统的结构示意图。
图4是本发明又一实施例提供的无线充电系统的结构示意图。
图5是本发明又一实施例提供的无线充电系统的结构示意图。
图6是本发明又一实施例提供的无线充电系统的结构示意图。
图7是本发明一个实施例提供的待充电设备的结构示意图。
图8是本发明一个实施例提供的无线充电方法的示意性流程图。
图9是本发明另一实施例提供的无线充电方法的示意性流程图。
具体实施方式
本申请实施例基于无线充电技术对待充电设备进行充电,无线充电技术不需要电缆即可完成功率的传输,能够简化充电准备阶段的操作。
传统的无线充电技术一般将电源提供设备(如适配器)与无线充电装置(如无线充电底座)相连,并通过该无线充电装置将电源提供设备的输出功率以无线的方式(如电磁信号或电磁波)传输至待充电设备,对待充电设备进行无线充电。
按照无线充电原理不同,无线充电方式主要分为磁耦合(或电磁感应)、磁共振以及无线电波三种方式。目前,主流的无线充电标准包括QI标准、电源实物联盟(power matters alliance,PMA)标准、无线电源联盟(alliance for wireless power,A4WP)。QI标准和PMA标准均采用磁耦合方式进行无线充电。A4WP标准采用磁共振方式进行无线充电。
下面结合图1,对传统的无线充电方式进行介绍。
如图1所示,无线充电系统包括电源提供设备110、无线充电装置120以及待充电设备130,其中无线充电装置120例如可以是无线充电底座,待充电设备130例如可以是终端。
电源提供设备110与无线充电装置120连接之后,会将电源提供设备110的输出电流传输至无线充电装置120。无线充电装置120可以通过内部的无线发射电路121将电源提供设备110的输出电流转换成电磁信号(或电磁波)进行发射。例如,该无线发射电路121可以将电源提供设备110的输出电流转换成交流电,并通过发射线圈或发射天线(图中未示出)将该交流电转换成电磁信号。
待充电设备130可以通过无线接收电路131接收无线发射电路121发射的电磁信号,并将该电磁信号转换成无线接收电路131的输出电流。例如,该无线接收电路131可以通过接收线圈或接收天线(图中未示出)将无线发射电路121发射的电磁信号转换成交流电,并对该交流电进行整流和/或滤波等操作,将该交流电转换成无线接收电路131的输出电压和输出电流。
对于传统无线充电技术,在无线充电之前,无线充电装置120与待充电设备130会预先协商无线发射电路121的发射功率。假设无线充电装置120与待充电设备130之间协商的功率为5W,则无线接收电路131的输出电压和输出电流一般为5V和1A。假设无线充电装置120与待充电设备130之间协商的功率为10.8W,则无线接收电路131的输出电压和输出电流一般为9V和1.2A。
无线接收电路131的输出电压并不适合直接加载到电池133两端,而是需要先经过待充电设备130内的变换电路132进行变换,以得到待充电设备130内的电池133所预期的充电电压和/或充电电流。
变换电路132可用于对无线接收电路131的输出电压进行变换(如恒压和/或恒流控制),以满足电池133所预期的充电电压和/或充电电流的需求。
作为一种示例,该变换电路132可指充电管理模块,例如充电集成电路(integrated circuit,IC)。在电池133的充电过程中,变换电路132可用于对电池133的充电电压和/或充电电流进行管理。该变换电路132可以包含电压反馈功能,和/或,电流反馈功能,以实现对电池133的充电电压和/或充电电流的管理。
举例来说,电池的充电过程可包括涓流充电阶段,恒流充电阶段和恒压充电阶段中的一个或者多个。在涓流充电阶段,变换电路132可利用电流反馈功能使得在涓流充电阶段进入到电池133的电流满足电池133所预期的充电电流大小(譬如第一充电电流)。在恒流充电阶段,变换电路132可利用电流反馈功能使得在恒流充电阶段进入电池133的电流满足电池133所预期的充电电流大小(譬如第二充电电流,该第二充电电流可大于第一充电电流)。在恒压充电阶段,变换电路132可利用电压反馈功能使得在恒压充电阶段加载到电池133两端的电压的大小满足电池133所预期的充电电压大小。
作为一种示例,当无线接收电路131的输出电压大于电池133所预期的充电电压时,变换电路132可用于对无线接收电路131的输出电压进行降压处理,以使降压转换后得到的充电电压满足电池133所预期的充电电压需求。作为又一种示例,当无线接收电路131的输出电压小于电池133所预期的充电电压时,变换电路132可用于对无线接收电路131的输出电压进行升压处理,以使升压转换后得到的充电电压满足电池133所预期的充电电压需求。
作为又一示例,以无线接收电路131输出5V恒定电压为例,当电池133包括单个电芯(以锂电池电芯为例,单个电芯的充电截止电压一般为4.2V)时,变换电路132(例如Buck降压电路)可对无线接收电路131的输出电压进行降压处理,以使得降压后得到的充电电压满足电池133所预期的充电电压需求。
作为又一示例,以无线接收电路131输出5V恒定电压为例,当电池133包括相互串联的两节或两节以上电芯(以锂电池电芯为例,单个电芯的充电截止电压一般为4.2V)时,变换电路132(例如Boost升压电路)可对无线接收电路131的输出电压进行升压处理,以使得升压后得到的充电电压满足电池133所预期的充电电压需求。
变换电路132受限于电路转换效率低下的原因,致使未被转换部分的电能以热量的形式散失。这部分热量会聚焦在待充电设备130的内部。待充电设备130的设计空间和散热空间都很小(例如,用户使用的移动终端物理尺寸越来越轻薄,同时移动终端内密集排布了大量的电子元器件以提升移动终端的性能),这不但提升了变换电路132的设计难度,还会导致聚焦在待充电设备130内的热量很难及时移除,进而引发待充电设备130的异常。
例如,变换电路132上聚集的热量可能会对变换电路132附近的电子元器件造成热干扰,引发电子元器件的工作异常。又如,变换电路132上聚集的热量,可能会缩短变换电路132及附近电子元件的使用寿命。又如,变换电路132上聚集的热量,可能会对电池133造成热干扰,进而导致电池133充放电异常。又如变换电路132上聚集的热量,可能会导致待充电设备130的温度升高,影响用户在充电时的使用体验。又如,变换电路132上聚集的热量,可能会导致变换电路132自身的短路,使得无线接收电路131的输出电压直接加载在电池133两端而引起充电异常,如果电池133长时间处于过压充电状态,甚至会引发电池133的爆炸,危及用户安全。
为了解决上述问题,本申请实施例提供一种无线充电系统。该无线充电系统中的无线充电装置与待充电设备能够进行无线通信,使得该无线充电装置可以对无线充电过程进行控制,从而使得无线充电装置的发射功率与待充电设备内部的电池当前所需的充电电压和/或充电电流相匹配(或与待充电设备内部的电池当前所处的充电阶段相匹配)。无线充电装置的发射功率与电池当前所需的充电电压和/或充电电流相匹配可以指:无线 充电装置对电磁信号的发射功率的配置使得该电磁信号被无线接收电路接收之后,无线接收电路的输出电压和/或输出电流与待充电设备内部的电池所需的充电电压和/或充电电流相匹配(或无线接收电路的输出电压和/或输出电流满足待充电设备内部的电池的充电需求)。这样一来,在待充电设备中,无线接收电路的输出电压和/或输出电流就可以直接加载在电池的两端,为电池进行充电(下文将待充电设备的这种充电方式成为直充),从而可以避免上文描述的变换电路对无线接收电路的输出电压和/或输出电流进行变换而引发的能量损失、发热等问题。
在解决了变换电路的发热问题之后,无线充电过程的主要发热源集中在无线发射电路(包括发射线圈)以及无线接收电路(包括接收线圈)。
以充电功率等于20W,单节电芯的充电电压/充电电流等于5V/4A为例进行说明。作为一种可能的实现方式,无线发射电路可以基于5V/4A生成电磁信号,相应地,无线接收电路将电磁信号转换成5V/4A的输出电压/输出电流,这种基于低压大电流的充电方式会导致无线发射电路和无线接收电路在电能传输过程产生较大热量。
为了降低无线发射电路和无线接收电路的发热,本申请实施例对上述直充方式进行进一步改进,在无线接收电路与电池之间设置降压电路,并将降压电路的输出电压作为电池的充电电压。仍以充电功率等于20W,单节电芯的充电电压/充电电流等于5V/4A为例进行说明。为了满足电池对充电电压的要求,降压电路的输出电压/输出电流需要维持在5V/4A,假设降压电路为半压电路,那么降压前的电压即为10V/2A。这样一来,无线发射电路基于10V/2A生成电磁信号,相应地,无线接收电路将电磁信号转换成10V/2A的输出电压/输出电流,由于电流从4A降低至2A,电能传输过程产生的热量就会相应降低。
下面结合图2,对本申请实施例提供的无线充电系统200进行详细介绍。
如图2所示,本申请实施提供的无线充电系统200可以包括无线充电装置220和待充电设备230。
无线充电装置220可以包括:无线发射电路221和通信控制电路222。通信控制电路222中的控制功能例如可以通过微控制单元(micro control unit,MCU)实现。
无线发射电路221可用于发射电磁信号,以对待充电设备230进行无线充电。在一些实施例中,无线发射电路221可包括无线发射驱动电路和发射线圈或发射天线(图中未示出)。无线发射驱动电路可用于生成较高频率的交流电,发射线圈或发射天线可用于将该较高频率的交流电转换成电磁信号发射出去。
通信控制电路222可用于在无线充电的过程中与待充电设备230进行无线通信。具体地,通信控制电路222可以与待充电设备230中的通信控制电路236进行通信。本申请实施例对通信控制电路222和通信控制电路236之间的通信方式,以及通信控制电路222和通信控制电路236交互的通信信息不做具体限定,下文会结合具体的实施例进行详细描述。
待充电设备230可以包括:无线接收电路231、电池232、降压电路234温度检测电路235以及通信控制电路236。通信控制电路236中的控制功能例如可以通过微控制单元(micro control unit,MCU)实现,或者可以通过MCU与待充电设备内部的应用处理器(application processor,AP)共同实现。
无线接收电路231可用于接收电磁信号,并将电磁信号转换成无线接收电路231的输出电压和输出电流。具体地,无线接收电路231可包括接收线圈或接收天线(图中未示出),以及与该接收线圈和接收天线相连的整流电路和/或滤波电路等整形电路。接收天线或接收线圈可用于将电磁信号转换成交流电,整形电路可用于将交流电转换成无线接收电路231的输出电压和输出电流。
需要说明的是,本申请实施例对整形电路的具体形式以及整形电路整形之后得到的无线接收电路231的输出电压和输出电流的形式不做具体限定。
在一些实施例中,整形电路可以包括整流电路和滤波电路,无线接收电路231的输出电压可以为滤波之后得到的稳定的电压。在另一些实施例中,整形电路可以包括整流电路,无线接收电路231的输出电压可以为整流之后得到的脉动波形的电压,该脉动波形的电压直接加载到待充电设备230的电池232两端以对电池232进行充电。将无线接收电路231的输出电压调整为脉动波形的电压的方式可以有多种,例如,可以去掉无线接收电路231中的滤波电路,仅保留整流电路。
可以理解是,无线接收电路231的输出电流可以以间歇的方式为电池232充电,该无线接收电路231的输出电流的周期可以跟随输入无线充电系统200的交流电例如交流电网的频率进行变化,例如,无线接收电路231的输出电流的周期所对应的频率为电网频率的整数倍或倒数倍。并且,无线接收电路231的输出电流可以以间歇的方式为电池232充电时,无线接收电路231的输出电流对应的电流波形可以是与电网同步的一个或一组脉冲组成。脉动形式的电压/电流的大小周期性变换,与传统的恒定直流电相比,能够降低锂电池的析锂现象,提高电池的使用寿命,并且有利于降低电池的极化效应、提高充电速度、减少电池的发热,从而保证待充电设备充电时的安全可靠。
降压电路234可用于接收无线接收电路231的输出电压,对无线接收电路231的输出电压进行降压处理,得到降压电路234的输出电压和输出电流,并基于降压电路234的输出电压和输出电流对电池232进行充电。
降压电路234的实现形式可以有多种。作为一个示例,降压电路234可以为Buck电路。作为另一个示例,降压电路234可以为电荷泵(charge pump)。
降压电路234的引入使得无线传输过程中产生的电压(如无线接收电路的输出电压等)保持在较高电压,从而进一步降低了系统的发热。
降压电路234的输入电压和输出电压之间的压差越小,降压电路234的工作效率越高、产热量越小;相应地,降压电路234的输入电压和输出电压之间的压差越大,降压电路234的工作效率越低、产热量越大。因此,对于工作效率较低的降压电路234而言,其降压过程也会产生比较多的热量。
基于以上考虑,本申请实施例引入温度检测电路235,通信控制电路236基于温度检测电路235对待充电设备230的温度进行检测,形成一种具有温度反馈机制的无线充电系统,能够对待充电设备230的温度进行监控,并在待充电设备230的温度大于一定阈值时,及时提高降压电路234的工作效率,以降低系统的产热量。
下面结合图2,对温度检测电路235和通信控制电路236的温度监控机制进行详细描述。
温度检测电路235可用于检测待充电设备230的温度。温度检测电路235的实现形式可以有多种。例如,温度检测电路235可以包括温度检测电阻。该温度检测电阻例如可以是热敏电阻。温度检测电路235可以基于热敏电阻的阻值确定待充电设备230的温度。
本申请实施例对温度检测电路235在待充电设备230中的位置不做具体限定。作为一个示例,温度检测电路235可以设置在待充电设备230内部的热源附近。例如,可以将温度检测电路235中的温度检测电阻设置在降压电路234附近。以降压电路234为BUCK IC为例,可以在BUCK IC中附加温度检测电阻。在这种情况下,待充电设备230的温度也可以理解为降压电路234的温度,即将降压电路234的温度视为待充电设备230的温度。
通信控制电路236可用于当待充电设备230的温度大于预设阈值时,向无线充电装置220发送反馈信息,反馈信息用于触发无线充电装置220对无线充电过程进行控制,以降低无线接收电路231的输出电压(本文中的“降低无线接收电路231的输出电压”可替换为降低降压电路234的输入电压和输出电压之差;或者,可替换为提高降压电路234的工作效率)。
需要说明的是,在无线充电过程中,电池232对充电电压和充电电流的需求一般由电池232当前所处的充电阶段决定。由于电池232的充电电压和充电电流即为降压电路234的输出电压和输出电流,因此,降压电路234的输出电压和输出电流也由电池232当前所处的充电阶段决定。为了能够提高降压电路234的工作效率,需要减少降压电路234的输入电压和输出电压之间的压差。由于降压电路234的输出电压取决于电池232当前所处的充电阶段,不能随意调节,因此,为了降低降压电路234的输入电压和输出电压之间的压差,可以降低降压电路234的输入电压,即降低无线接收电路231的输出电压(本申请实施例中,无线接收电路231的输出电压与降压电路234的输入电压为同一电压)。
因此,当待充电设备230的温度大于预设阈值时,本申请实施例通过通信控制电路236向无线充电装置220发送反馈信息,触发其对无线充电过程进行控制,以降低无线接收电路231的输出电压。
无线充电装置220根据反馈信息,降低无线接收电路231的输出电压的方式可以有多种。
作为一个示例,无线发射装置220可以根据反馈信息,降低无线发射电路221的占空比,以降低无线接收电路231的输出电压。
作为另一个示例,无线发射装置220可以根据反馈信息,调整无线发射电路221的发射频率,以降低无线接收电路231的输出电压。
作为又一示例,无线发射装置220可以降低电压转换电路224的输出电压,以降低无线接收电路231的输出电压。电压转换电路224的结构和功能的详细描述参见后文的图5-图6的描述。
需要说明的是,无线发射装置220可以使用上述方式中的某种方式降低无线接收电路231的输出电压,也可以将上述方式结合以降低无线接收电路231的输出电压。例如,无线发射装置220可以仅通过降低电压转换电路224的输出电压的方式达到降低无线接收电路231的输出电压的目的;又如,无线发射装置220可以先通过降低电压转换电路224的输出电压的方式对无线接收电路231的输出电压(或降压电路234的工作效率)进行粗调节,然后通过调整无线发射电路的占空比和/或发射频率,对无线接收电路231的输出电压(或降压电路234的工作效率)进行精调。
本申请实施例对反馈信息的具体内容不做具体限定。例如,反馈信息可以是用于指示待充电设备230的温度的信息;又如,反馈信息可以是用于指示待充电设备230温度过高的信息;以无线充电装置220通过降低电压转换电路224的方式降低无线接收电路231的输出电压为例,反馈信息可以是指示电压转换电路224的输出电压过高的信息;以无线充电装置220通过调整无线发射电路221的发射频率和/或占空比的方式降低无线接收电路231的输出电压为例,反馈信息可以是指示无线发射电路221的发射频率和/或占空比过高的信息。
可选地,通信控制电路236还可用于与通信控制电路222进行无线通信,以便通信控制电路222对无线充电过程进行控制,使得降压电路234的输出电压和/或输出电流与电池232当前所需的充电电压和/或充电电流相匹配。
换句话说,通信控制电路236可用于与通信控制电路222进行无线通信,以便通信控制电路222对无线充电过程进行控制,使得降压电路234的输出电压和/或输出电流满足电池232在涓流充电阶段、恒压充电阶段、恒流充电阶段中的至少一个阶段的充电需求。
通信控制电路236可以通过某种检测电路(如电压检测电路和/或电流检测电路)或某种检测方式获取降压电路234的输出电压和/或输出电流,并基于降压电路234的输出电压和/或输出电流与通信控制电路222进行上述无线通信。
本申请实施例中所使用到的待充电设备可以是指终端,该“终端”可包括,但不限 于被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。另外,本申请实施例中所使用到的待充电设备或终端还可包括移动电源(power bank),该移动电源能够接收无线充电装置的充电,从而将能量存储起来,以为其他电子装置提供能量。
本申请实施例对无线充电装置220与待充电设备230之间的通信方式和通信顺序不做具体限定。
可选地,在一些实施例中,无线充电装置220与待充电设备230(或通信控制电路236与通信控制电路222)之间的无线通信可以为单向的无线通信。举例说明,在电池232的无线充电过程中,可以规定待充电设备230为通信的发起方,无线充电装置220为通信的接收方。比如,在电池的恒流充电阶段,待充电设备230可以实时检测电池232的充电电流(即无线接收电路231的输出电流),当电池232的充电电流与电池当前所需的充电电流不匹配时,待充电设备230向无线充电装置220发送调整信息,指示无线充电装置220调整无线发射电路221的发射功率。
可选地,在一些实施例中,无线充电装置220与待充电设备230(或通信控制电路236与通信控制电路222)之间的无线通信可以为双向的无线通信。双向的无线通信一般要求接收方在接收到发起方发起的通信请求之后,向发起方发送响应信息,双向通信机制能够使得通信过程更加安全。
本申请实施例的上述描述并不会对无线充电装置220(无线充电装置220中的通信控制电路222)与待充电设备230(待充电设备230中的通信控制电路236)的主从性进行限定。换句话说,无线充电装置220与待充电设备230中的任何一方均可作为主设备方发起双向通信会话,相应地另外一方可以作为从设备方对主设备方发起的通信做出第一响应或第一回复。作为一种可行的方式,可以在通信过程中,通过比较无线充电装置220与待充电设备230之间的链路状况确定主、从设备的身份。例如,假设无线充电装置220向待充电设备230发送信息的无线链路为上行链路,待充电设备230向无线充电装置220发送信息的无线链路为下行链路,如果上行链路的链路质量较好,可以将无线充电装置220设置为通信的主设备;如果下行链路的链路质量较好,可以将待充电设备230设置为通信的从设备。
本申请实施例并未对无线充电装置220与待充电设备230之间双向通信的具体实现方式作出限制,即言,无线充电装置220与待充电设备230中的任何一方作为主设备方发起通信会话,相应地另外一方作为从设备方对主设备方发起的通信会话做出第一响应或第一回复,同时主设备方能够针对所述从设备方的第一响应或第一回复做出第二响应,即可认为主、从设备之间完成了一次通信协商过程。
作为主设备方能够根据所述从设备方针对通信会话的第一响应或第一回复做出第二响应的一种方式可以是:主设备方能够接收到所述从设备方针对通信会话所做出的第一响应或第一回复,并根据接收到的所述从设备的第一响应或第一回复做出针对性的第二 响应。
作为主设备方能够根据所述从设备方针对通信会话的第一响应或第一回复做出进一步的第二响应的一种方式还可以是:主设备方在预设的时间内没有接收到所述从设备方针对通信会话的第一响应或第一回复,主设备方也会对所述从设备的第一响应或第一回复做出针对性的第二响应。
可选地,在一些实施例中,当待充电设备230作为主设备发起通信会话,无线充电装置220作为从设备对主设备方发起的通信会话做出第一响应或第一回复后,无需要待充电设备230对无线充电装置220的第一响应或第一回复做出针对性的第二响应,即可认为无线充电装置220与待充电设备230之间完成了一次通信协商过程。
本申请实施例对无线充电装置220中的通信控制电路222与待充电设备230中的通信控制电路236之间的无线通信方式不做具体限定。举例说明,通信控制电路和通信控制电路可以基于蓝牙(bluetooth)、无线保真(wireless fidelity,Wi-Fi)或反向散射(backscatter)调制方式(或功率负载调制方式)进行无线通信。
本申请实施例对通信控制电路236与通信控制电路222之间的通信内容不做具体限定,除了与温度相关的反馈信息之外,还可以包括其他通信信息,下面结合具体的实施例进行详细描述。
作为一个示例,通信控制电路236可以向通信控制电路222发送降压电路234的输出电压和/或输出电流。进一步地,通信控制电路236还可以向通信控制电路222发送电池状态信息,其中电池状态信息包括待充电设备230中的电池232的当前电量和/或当前电压。通信控制电路222首先可以根据电池232状态信息,确定电池232当前所处的充电阶段,进而确定与电池232当前所需的充电电压和/或充电电流相匹配的目标充电电压和/或目标充电电流;然后,通信控制电路222可以将通信控制电路236发送来的降压电路234的输出电压和/或输出电流与上述目标充电电压和/或目标充电电流相比较,以确定降压电路234的输出电压和/或输出电流与电池232当前所需的充电电压和/或充电电流是否匹配,并在降压电路234的输出电压和/或输出电流与电池232当前所需的充电电压和/或充电电流不匹配的情况下,调整无线发射电路221的发射功率,直到降压电路234的输出电压和/或输出电流与电池232当前所需的充电电压和/或充电电流相匹配。
作为另一个示例,通信控制电路236可以向通信控制电路222发送调整信息,以指示通信控制电路222调整无线发射电路221的发射功率。例如,通信控制电路236可以指示通信控制电路222增大无线发射电路221的发射功率;又如,通信控制电路236可以指示通信控制电路222减小无线发射电路221的发射功率。更为具体地,无线充电装置220可以为无线发射电路221设置发射功率的多个档位,第一通信控制单元222每接收到一次调整信息,就将无线发射电路221的发射功率的档位调整一格,直到降压电路234的输出电压和/或输出电流与电池232当前所需的充电电压和/或充电电流相匹配。
除了上述通信内容之外,通信控制电路222和通信控制电路236之间还可以交互许多其他通信信息。在一些实施例中,通信控制电路222和通信控制电路236之间可以交互用于安全保护、异常检测或故障处理的信息,如电池232的温度信息,进入过压保护或过流保护的指示信息等信息,功率传输效率信息(该功率传输效率信息可用于指示无线发射电路221和无线接收电路231之间的功率传输效率)。
例如,当电池232的温度过高时,通信控制电路222和/或通信控制电路236可以控制充电回路进入保护状态,如控制充电回路停止无线充电。又如,通信控制电路222接收到通信控制电路236发送的过压保护或过流保护的指示信息之后,通信控制电路222可以降低发射功率,或控制无线发射电路221停止工作。又如通信控制电路222接收到通信控制电路236发送的功率传输效率信息之后,如果功率传输效率低于预设阈值,可以控制无线发射电路221停止工作,并向用户通知这一事件,如通过显示屏显示功率传输效率过低,或者可以通过指示灯指示功率传输效率过低,以便用户调整无线充电的环 境。
在一些实施例中,通信控制电路222和通信控制电路236之间可以交互能够用于调整无线发射电路221的发射功率调整的其他信息,如电池232的温度信息,指示降压电路234的输出电压和/或输出电流的峰值或均值的信息,功率传输效率信息(该功率传输效率信息可用于指示无线发射电路221和无线接收电路231之间的功率传输效率)等。
例如,通信控制电路236可以向通信控制电路222发送功率传输效率信息,通信控制电路222还用于根据功率传输效率信息确定无线发射电路221的发射功率的调整幅度。具体地,如果功率传输效率信息指示无线发射电路221与无线接收电路231之间的功率传输效率低,则通信控制电路222可以增大无线发射电路221的发射功率的调整幅度,使得无线发射电路221的发射功率快速达到目标功率。
又如,如果无线接收电路231输出的是脉动波形的电压和/或电流,通信控制电路236可以向通信控制电路222发送指示降压电路234的输出电压和/或输出电流的峰值或均值的信息,通信控制电路222可以判断降压电路234的输出电压和/或输出电流的峰值或均值是否与电池当前所需的充电电压和/或充电电流是否匹配,如果不匹配,则可以调整无线发射电路221的发射功率。
又如,通信控制电路236可以向通信控制电路222发送电池232的温度信息,如果电池232的温度过高,通信控制电路222可以降低无线发射电路221的发射功率,以降低无线接收电路231的输出电流,从而降低电池232的温度。
本申请实施例提供的无线充电装置220中的电池232可以包括一节电芯,也可以包括相互串联的N节电芯(N为大于1的正整数)。以N=2为例,如图3所示,电池232可以包括电芯232a和电芯232b,且电芯232a和电芯232b相互串联。以充电功率等于20W,单节电芯的充电电压等于5V为例进行说明。为了满足串联双电芯对充电电压的要求,降压电路234的输出电压/输出电流需要维持在10V/2A。这样一来,无线发射电路基于10V/2A生成电磁信号,相应地,无线接收电路将电磁信号转换成10V/2A的输出电压/输出电流,由于电流从4A降低至2A,电能传输过程产生的热量就会相应降低。图3是以N=2为例进行说明的,实际上,N的取值可以是3,也可以是3以上的正整数。相互串联的电芯越多,电能经过无线发射电路221和无线接收电路231所产生的热量就越小。
可选地,在一些实施例中,待充电设备包含如图2所示的降压电路234,且待充电设备的电池232包含相互串联的N节电芯(N为大于1的正整数)。仍以充电功率等于20W,单节电芯的充电电压等于5V为例进行说明。为了满足串联双电芯对充电电压的要求,降压电路234的输出电压/输出电流需要维持在10V/2A,假设降压电路234为半压电路,那么降压前的电压即为20V/1A。这样一来,无线发射电路基于20V/1A生成电磁信号,相应地,无线接收电路将电磁信号转换成20V/1A的输出电压/输出电流,由于电流从4A降低至1A,进一步降低了电能传输过程产生的热量。
上文已经指出,本申请实施例提供的无线充电装置220能够在充电过程中不断调整无线发射电路221的发射功率,使得降压电路234的输出电压和/或输出电流与电池232当前所需的充电电压和/或充电电流相匹配。本申请实施例对无线发射电路221的发射功率的调整方式不做具体限定。例如,通信控制电路222可以与电源提供设备210进行通信,以调整电源提供设备210的输出电压和/或输出电流,从而调整无线发射电路221的发射功率。又如,通信控制电路222可以调整无线发射电路221从电源提供设备210提供的最大输出功率中抽取的功率量,从而调整无线发射电路221的发射功率。又如,无线充电装置220可以直接接收交流电(如220V的交流电),通信控制电路222可以根据通信控制电路236的反馈,直接将交流电转换成需要的电压和/或电流。下面结合图4-图6,对无线发射电路221的发射功率的调整方式进行详细说明。
图4是无线发射电路221的发射功率调整方式的一个示例。请参见图4,无线充电装置220还可以包括充电接口223。充电接口223可用于与外部的电源提供设备210相连。 无线发射电路221还可用于根据电源提供设备210的输出电压和输出电流,生成电磁信号。通信控制电路222还可以用于与电源提供设备210进行通信,以协商电源提供设备210的最大输出功率,并在无线充电的过程中,调整无线发射电路221从最大输出功率中抽取的功率量,以调整无线发射电路221的发射功率。
本申请实施例中,通信控制电路222与输出功率可调的电源提供设备210进行通信,以协商该电源提供设备210的最大输出功率。在协商完成之后,电源提供设备210就可以按照该最大输出功率向无线充电装置220提供输出电压和输出电流。在充电过程中,通信控制电路222可以根据实际需要从该最大输出功率中抽取一定的功率量用于无线充电。也就是说,本申请实施例将无线发射电路221的发射功率调整的控制权分配给通信控制电路222,通信控制电路222能够在接收到待充电设备230的反馈信息之后立刻对无线发射电路221的发射功率进行调整,具有调节速度快、效率高的优点。
本申请实施例对通信控制电路222从电源提供设备210提供的最大输出功率中抽取功率量的方式不做具体限定。例如,可以在无线发射装置220内部设置电压转换电路(例如可以是功率调整电路),该电压转换电路可以与发射线圈或发射天线相连,用于调整发射线圈或发射天线接收到的功率。该电压转换电路例如可以包括脉冲宽度调制(pulse width modulation,PWM)控制器和开关单元。通信控制电路222可以通过调整PWM控制器发出的控制信号的占空比,和/或通过控制开关单元的开关频率调整无线发射电路221的发射功率。
需要说明的是,在图4的实施例中,作为一种替换方式,电源提供设备210也可以直接输出较大的固定功率(如40W),这样一来,通信控制电路222可以无需与电源提供设备210协商其最大输出功率,直接调整无线发射电路221从电源提供设备210提供的固定功率中抽取的功率量即可。
本申请对电源提供设备210的类型不做具体限定。例如,电源提供设备210可以为适配器、移动电源(power bank)、车载充电器或电脑等设备。
本申请对充电接口223的类型不做具体限定。可选地,在一些实施例中,该充电接口223可以为USB接口。该USB接口例如可以是USB 2.0接口,micro USB接口,或USB TYPE-C接口。可选地,在另一些实施例中,该充电接口223还可以lightning接口,或者其他任意类型的能够用于充电的并口和/或串口。
本申请实施例对通信控制电路222与电源提供设备210之间的通信方式不做具体限定。作为一个示例,通信控制电路222可以通过除充电接口之外的其他通信接口与电源提供设备210相连,并通过该通信接口与电源提供设备210通信。作为另一个示例,通信控制电路222可以以无线的方式与电源提供设备210进行通信。例如,通信控制电路222可以与电源提供设备210进行近场通信(near field communication,NFC)。作为又一个示例,通信控制电路222可以通过充电接口223与电源提供设备210进行通信,而无需设置额外的通信接口或其他无线通信模块,这样可以简化无线充电装置220的实现。例如,充电接口223为USB接口,通信控制电路222可以与电源提供设备210基于该USB接口中的数据线(如D+和/或D-线)进行通信。又如,充电接口223可以为支持功率传输(power delivery,PD)通信协议的USB接口(如USB TYPE-C接口),通信控制电路222与电源提供设备210可以基于PD通信协议进行通信。
本申请对电源提供设备210调节输出功率的方式不做具体限定。例如,电源提供设备210内部可以设置电压反馈环和电流反馈环,从而能够根据实际需要对其输出电压和/或输出电流的调节。
图5是本申请实施例提供的无线发射电路221的发射功率调整方式的另一示例。与图4不同,图5对应的实施例并非要对电源提供设备210的最大输出功率进行控制,而是要对电源提供设备210的输出功率进行相对准确的控制,尽量使得电源提供设备210的输出功率可以直接满足当前的功率需求。而且,与图4的实施例不同,图5的实施例 将无线发射电路221的发射功率调整的控制权分配给电源提供设备210,由电源提供设备210通过改变输出电压和/或输出电流的方式对无线发射电路221的发射功率进行调整。这种调整方式的优点在于无线充电装置220需要多少功率,电源提供设备210就提供多少功率,不存在功率的浪费。下面结合图5进行详细描述。
如图5所示,本申请实施例提供的无线充电装置220还可包括充电接口223和电压转换电路224。充电接口223可用于与电源提供设备210相连。电压转换电路224可用于接收电源提供设备210的输出电压,并对电源提供设备210的输出电压进行转换,得到电压转换电路224的输出电压和输出电流。无线发射电路221还可用于根据电压转换电路224的输出电压和输出电流,生成电磁信号。通信控制电路222还可用于与电源提供设备210进行通信,以协商电源提供设备210的输出电压和/或输出电流。
本申请实施例采用高压低电流的方式进行能量传输,这种能量传输方式对无线发射电路221的输入电压(如10V或20V)要求较高,如果电源提供设备210的最大输出电压无法达到无线发射电路221的输入电压需求,电压转换电路224的设置可以使得无法达到无线发射电路221的输入电压达到期望的输入电压。当然,可替换地,如果电源提供设备210的输出电压可以达到无线发射电路221对输入电压需求,也可以省去电压转换电路224,以简化无线充电装置220的实现。
电压转换电路224可以为升压电路,电压转换电路224的升压倍数与降压电路234的降压倍数的设置与电源提供装置210能够提供的输出电压、电池232需要的充电电压等参数有关,二者可以相等也可以不相等,本申请实施例对此不做具体限定。作为一种实现方式,可以将电压转换电路224的升压倍数与降压电路234的降压倍数设置为相等。例如,电压转换电路224可以是倍压电路,用于将电源提供设备210的输出电压提升2倍;降压电路234可以是半压电路,用于将无线接收电路231的输出电压降低一半。
本申请实施例将电压转换电路224的升压倍数与降压电路234的降压倍数设置为1:1,这种设置方式可以使得降压电路234的输出电压和输出电流分别与电源提供设备210的输出电压和输出电流相一致,有利于简化通信控制电路222,236的实现。以电池232对充电电流的需求为5A为例,当通信控制电路236获知降压电路234的输出电流为4.5A时,需要调整电源提供设备210的输出功率,使得降压电路234的输出电流达到5A。如果电压转换电路224的升压倍数与降压电路234的降压倍数之比不等于1:1,则在调整电源提供设备210的输出功率时,通信控制电路222或通信控制电路236需要基于降压电路234的当前输出电流与期望值之间的差距,重新计算电源提供设备210的输出功率的调整值。本申请实施例将电压转换电路224的升压倍数与降压电路234的降压倍数之比设置为1:1,则通信控制电路236通知通信控制电路222将输出电流提升至5A即可,从而简化了无线充电通路的反馈调整方式。
在图5的实施例中,无线充电装置220可以主动确定是否需要调整电源提供设备210的输出电压和/或输出电流。在另一些实施例中,无线充电装置220可以作为电源提供设备210和待充电设备230之间通信的桥梁,主要负责在二者之间转发信息。
例如,在无线充电的过程中,通信控制电路222与待充电设备230进行通信,以确定是否需要调整电源提供设备210的输出电压和/或输出电流;在需要调整电源提供设备210的输出电压和/或输出电流的情况下,通信控制电路222与电源提供设备210进行通信,以指示电源提供设备210调整电源提供设备210的输出电压和/或输出电流。
又如,在无线充电的过程中,无线充电装置220内部的通信控制电路222与待充电设备230进行无线通信,获取调整信息,调整信息用于指示对电源提供设备210的输出电压和/或输出电流进行调整;通信控制电路222与电源提供设备210进行通信,将调整信息发送至电源提供设备210,以便电源提供设备210根据调整信息调整电源提供设备的输出电压和/或输出电流。
应理解,与无线充电装置220和待充电设备230之间的通信方式类似,无线充电装 置220(或通信控制电路222)与电源提供设备210之间的通信可以为单向通信,也可以为双向通信,本申请实施例对此不做具体限定。
还应理解,电源提供设备的输出电流可以为恒定直流电、脉动直流电或交流电,本申请实施例对此不做具体限定。
在图5实施例中,通信控制电路222可以与无线发射电路221相连,从而可以控制无线发射电路221开始工作,或者在无线充电过程发生异常时,控制无线发射电路221停止工作。或者,在一些实施例中,通信控制电路222可以不与无线发射电路221相连。
图6是无线发射电路221的发射功率调整方式的另一示例。与图4和图5所示的实施例不同,图6的实施例对应的无线充电装置220并非从电源提供设备210获取电能,而是直接将外部输入的交流电(如市电)转换成上述电磁信号。
如图6所示,无线充电装置220还可包括电压转换电路224和电源提供电路225。电源提供电路225可用于接收外部输入的交流电(如市电),并根据交流电生成电源提供电路225的输出电压和输出电流。例如,电源提供电路225可以对交流电进行整流和/或滤波,得到直流电或脉动直流电,并将该直流电或脉动直流电传输至电压转换电路224。
电压转换电路224可用于接收电源提供电路225的输出电压,并对电源提供电路225的输出电压进行转换,得到电压转换电路224的输出电压和输出电流。无线发射电路221还可用于根据电压转换电路224的输出电压和输出电流,生成电磁信号。
本申请实施例在无线充电装置220内部集成了类似适配器的功能,使得该无线充电装置220无需从外部的电源提供设备获取功率,提高了无线充电装置220的集成度,并减少了实现无线充电过程所需的器件的数量。
本申请实施例采用高压低电流的方式进行能量传输,这种能量传输方式对无线发射电路221的输入电压(如10V或20V)要求较高,如果电源提供电路225的最大输出电压无法达到无线发射电路221的输入电压需求,电压转换电路224的设置可以使得无法达到无线发射电路221的输入电压达到期望的输入电压。当然,可替换地,如果电源提供电路225的输出电压可以达到无线发射电路221对输入电压需求,也可以省去电压转换电路224,以简化无线充电装置220的实现。
可选地,在一些实施例中,无线充电装置220可以支持第一无线充电模式和第二无线充电模式,无线充电装置220在第一无线充电模式下对待充电设备230的充电速度快于无线充电装置220在第二无线充电模式下对待充电设备230的充电速度。换句话说,相较于工作在第二无线充电模式下的无线充电装置220来说,工作在第一无线充电模式下的无线充电装置220充满相同容量的待充电设备230中的电池的耗时更短。
第二无线充电模式可为称为普通无线充电模式,例如可以是传统的基于QI标准、PMA标准或A4WP标准的无线充电模式。第一无线充电模式可为快速无线充电模式。该普通无线充电模式可以指无线充电装置220的发射功率较小(通常小于15W,常用的发射功率为5W或10W)的无线充电模式,在普通无线充电模式下想要完全充满一较大容量电池(如3000毫安时容量的电池),通常需要花费数个小时的时间;而在快速无线充电模式下,无线充电装置220的发射功率相对较大(通常大于或等于15W)。相较于普通无线充电模式而言,无线充电装置220在快速无线充电模式下完全充满相同容量电池所需要的充电时间能够明显缩短、充电速度更快。
可选地,在一些实施例中,通信控制电路222与通信控制电路236进行双向通信,以控制在第一无线充电模式下的无线充电装置220的发射功率。
进一步地,在一些实施例中,通信控制电路222与通信控制电路236可以进行双向通信,以控制在第一无线充电模式下的无线充电装置220的发射功率的过程可包括:通信控制电路222与通信控制电路236进行双向通信,以协商无线充电装置220与待充电设备230之间的无线充电模式。
具体地,通信控制电路222可以与通信控制电路236进行握手通信,在握手通信成 功的情况下,控制无线充电装置220使用第一无线充电模式为待充电设备230进行充电,在握手通信失败的情况下,控制无线充电装置220使用第二无线充电模式为待充电设备230进行充电。
握手通信可以指通信双方对彼此身份的识别。握手通信成功可以表示无线充电装置220和待充电设备230均支持本申请实施例提供的发射功率可调的无线充电方式。握手通信失败可以表示无线充电装置220和待充电设备230中的至少一方不支持本申请实施例提供的发射功率可调的无线充电方式。
本申请实施例中,无线充电装置220并非盲目地采用第一无线充电模式对待充电设备230进行快速无线充电,而是与待充电设备230进行双向通信,协商无线充电装置220是否可以采用第一无线充电模式对待充电设备230进行快速无线充电,这样能够提升充电过程的安全性。
具体地,通信控制电路222与通信控制电路236进行双向通信,以协商无线充电装置220与待充电设备230之间的无线充电模式可包括:通信控制电路222向通信控制电路236发送第一指令,第一指令用于询问待充电设备230是否开启第一无线充电模式;通信控制电路222接收通信控制电路236发送的针对所述第一指令的回复指令,回复指令用于指示待充电设备230是否同意开启第一无线充电模式;在待充电设备230同意开启第一无线充电模式的情况下,通信控制电路222控制无线充电装置220使用第一无线充电模式为待充电设备230充电。
除了基于通信协商的方式确定无线充电模式之外,通信控制电路222还可以根据一些其他因素选取或切换无线充电模式,如通信控制电路222还可用于根据电池232的温度,控制无线充电装置220使用第一无线充电模式或第二无线充电模式为电池232充电。
例如,当温度低于预设的第一阈值(如5℃或10℃)时,通信控制电路222可以控制无线充电装置220使用第二无线充电模式进行普通充电,当温度大于或等于第一阈值时,通信控制电路222可以控制无线充电装置220使用第一无线充电模式进行快速充电。进一步地,当温度高于高温阈值(如50℃)时,通信控制电路222可以控制无线充电装置220停止充电。
需要说明的是,本申请实施例提供的发射功率可调的无线充电方式可用于控制电池232的充电阶段中的一个或多个充电阶段。举例来说,本申请实施例提供的发射功率可调的无线充电方式可主要用于控制电池232的恒流充电阶段。在其他实施例中,待充电设备230可保留变换电路,当电池处于涓流充电阶段和恒压充电阶段时,可以采用类似图1所示的传统无线充电方式进行充电。具体地,当电池232处于涓流充电阶段和恒压充电阶段时,待充电设备230内的变换电路可以对无线接收电路231的输出电压和输出电流进行变换,使其满足涓流充电阶段和恒压充电阶段的充电需求。相较于恒流充电阶段,电池232在涓流充电阶段和恒压充电阶段接收的充电功率较小,待充电设备230内部的变换电路的效率转换损失和热量累积是可以接受的。下面结合图7进行详细说明。
如图7所示,可以将降压电路234所处的充电通道称为第一充电通道233。待充电设备230还可包括:第二充电通道239。第二充电通道239上可以设置变换电路237。变换电路237可用于接收无线接收电路231的输出电压和输出电流,对无线接收电路231的输出电压和/或输出电流进行恒压和/或恒流控制,使得第二充电通道239的输出电压和/或输出电流与电池232当前所需的充电电压和/或充电电流相匹配,并基于第二充电通道239的输出电压和/或输出电流对电池232进行充电。通信控制电路236还可用于控制第一充电通道233和第二充电通道239之间的切换。例如,如图7所示,第一充电通道233上可以设置开关238,通信控制电路236可以通过控制该开关238的导通与关段控制第一充电通道233和第二充电通道239之间的切换。上文指出,在某些实施例中,无线充电装置220可以包括第一无线充电模式和第二无线充电模式,且无线充电装置220在第一无线充电模式下对待充电设备230的充电速度快于无线充电装置220在第二无线充电模 式下对待充电设备230的充电速度。当无线充电装置220使用第一无线充电模式为待充电设备230内的电池充电时,待充电设备230可以控制第一充电通道233工作;当无线充电装置220使用第二无线充电模式为待充电设备230内的电池充电时,待充电设备230可以控制第二充电通道239工作。
举例说明,当电池232处于涓流充电阶段和/或恒压充电阶段时,通信控制电路236可以控制使用第二充电通道239对电池232进行充电,电池的恒压恒流过程可以由变换电路237(如充电IC)进行控制。当电池232处于恒流充电阶段时,可以控制使用第一充电通道233对电池232进行充电,电池的恒流控制可以基于无线充电装置对发射功率的调整实现。保留变换电路237可以更好地兼容传统无线充电方式。
需要说明的是,第一充电通道233和第二充电通道239的选取方式可以有多种,不限于基于电池232当前所处的充电阶段进行选取。
可选地,在一些实施例中,通信控制电路236还可用于与通信控制电路222进行握手通信,在握手通信成功的情况下,控制第一充电通道233工作,在握手通信失败的情况下,控制第二充电通道239工作。
握手通信可以指通信双方对彼此身份的识别。握手通信成功可以表示无线充电装置220和待充电设备230均支持本申请实施例提供的发射功率可调的无线充电方式。握手通信失败可以表示无线充电装置220和待充电设备230中的至少一方不支持本申请实施例提供的发射功率可调的无线充电方式。在握手通信失败的情况下,可以通过第二充电通道239,采用传统的无线充电方式进行充电,如基于QI标准的无线充电方式。
可选地,在另一些实施例中,通信控制电路236还可用于根据电池232的温度,控制第一充电通道233和第二充电通道239之间的切换。
例如,当温度低于预设的第一阈值(如5℃或10℃)时,通信控制电路236可以控制使用第二充电通道239进行普通的无线充电,当温度大于或等于第一阈值时,通信控制电路236可以控制使用第一充电通道233进行快速的无线充电。进一步地,当温度高于高温阈值(如50℃)时,通信控制电路236可以控制停止无线充电。
上文指出,无线接收电路231的输出电流可以是脉动直流电,这样可以降低电池232的析锂现象,提高电池的使用寿命。当无线接收电路231输出的是脉动直流电时,通信控制电路236可以检测脉动直流电的峰值或均值,从而基于脉动直流电的峰值或均值进行后续通信或控制。
可选地,在一些实施例中,无线充电装置220还可以包括外部接口和无线数据传输电路,该外部接口可用于与具有数据处理和传输功能的电子设备连接,该外部接口可以是上述充电接口,也可以是其他接口;第一通信控制单元222还可用于在所述外部接口与具有数据处理和传输功能的电子设备连接的过程中,根据所述电子设备的输出功率对待充电设备230进行无线充电;无线数据传输电路可用于在所述无线充电控制单元根据所述电子设备的输出功率对所述待充电设备230进行无线充电的过程中,通过无线链路将所述电子设备中存储的数据传输至所述待充电设备230,或者通过无线链路将所述待充电设备中存储的数据传输至所述电子设备230。所述无线数据传输电路用于传输以下数据中的至少一种:USB协议格式的数据、显示接口(display port,DP)协议格式的数据、传输移动高清连接(mobile high-definition link MHL)协议格式的数据。
上文结合图2-图7,详细描述了本申请的装置实施例,下面结合图8-图9,详细描述本申请的方法实施例,方法实施例与装置实施例相互对应,因此未详细描述的部分可以参见前面各装置实施例。
图8是本申请实施例提供的待充电设备的控制方法的示意性流程图。所述待充电设备包括:无线接收电路,用于接收无线充电装置发射的电磁信号,并将所述电磁信号转换成所述无线接收电路的输出电压;降压电路,用于接收所述无线接收电路的输出电压,对所述无线接收电路的输出电压进行降压处理,得到所述降压电路的输出电压,并基于 所述降压电路的输出电压对所述待充电设备的电池进行充电。
图8的控制方法包括步骤S810-步骤S820。
在步骤S810中,检测所述待充电设备的温度。
在步骤S820中,当所述待充电设备的温度大于预设阈值时,向所述无线充电装置发送反馈信息,所述反馈信息用于触发所述无线充电装置对无线充电过程进行控制,以降低所述无线接收电路的输出电压。
可选地,图8的控制方法还可包括:与所述无线充电装置进行无线通信,以便所述无线充电装置对无线充电过程进行控制,使得所述降压电路的输出电压和/或输出电流与所述电池当前所需的充电电压和/或充电电流相匹配。
图9是本申请实施例提供的无线充电装置的控制方法的示意性流程图。所述无线充电装置包括无线发射电路,用于发射电磁信号,以对待充电设备的电池进行无线充电。
图9的控制方法包括步骤S910-步骤S920。
在步骤S910中,接收所述待充电设备在所述待充电设备的温度大于预设阈值情况下发送的反馈信息。
在步骤S920中,根据所述反馈信息,对无线充电过程进行控制,以降低所述待充电设备的无线接收电路的输出电压。
可选地,步骤S920可包括:根据所述反馈信息,降低所述无线发射电路的占空比,以降低所述无线接收电路的输出电压。
可选地,步骤S920可包括:根据所述反馈信息,调整所述无线发射电路的发射频率,以降低所述无线接收电路的输出电压。
可选地,所述无线充电装置还包括:电压转换电路,用于对所述无线充电装置的输入电压进行升压处理,得到所述电压转换电路的输出电压;步骤S920可包括:根据所述反馈信息,降低所述电压转换电路的输出电压,以降低所述无线接收电路的输出电压。
可选地,图9的控制方法还可包括:与所述待充电设备进行无线通信,以调整所述无线发射电路的发射功率,使得所述无线发射电路的发射功率与所述电池当前所需的充电电压和/或充电电流相匹配。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单 元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本申请提及的装置、设备均可以为芯片系统,也可以是具有壳体的装置或设备。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种待充电设备,其特征在于,所述待充电设备包括:
    无线接收电路,用于接收无线充电装置发射的电磁信号,并将所述电磁信号转换成所述无线接收电路的输出电压;
    降压电路,用于接收所述无线接收电路的输出电压,对所述无线接收电路的输出电压进行降压处理,得到所述降压电路的输出电压,并基于所述降压电路的输出电压对所述待充电设备的电池进行充电;
    温度检测电路,用于检测所述待充电设备的温度;
    通信控制电路,用于当所述待充电设备的温度大于预设阈值时,向所述无线充电装置发送反馈信息,所述反馈信息用于触发所述无线充电装置对无线充电过程进行控制,以降低所述无线接收电路的输出电压。
  2. 根据权利要求1所述的待充电设备,其特征在于,所述通信控制电路还用于与所述无线充电装置进行无线通信,以便所述无线充电装置对无线充电过程进行控制,使得所述降压电路的输出电压和/或输出电流与所述电池当前所需的充电电压和/或充电电流相匹配。
  3. 根据权利要求1或2所述的待充电设备,其特征在于,所述降压电路为BUCK电路。
  4. 根据权利要求1-3中任一项所述的待充电设备,其特征在于,所述温度检测电路包括温度检测电阻。
  5. 根据权利要求1-4中任一项所述的待充电设备,其特征在于,所述温度检测电阻与所述降压电路集成在同一芯片中。
  6. 一种无线充电装置,其特征在于,包括:
    无线发射电路,用于发射电磁信号,以对待充电设备进行无线充电;
    通信控制电路,用于:
    接收所述待充电设备在所述待充电设备的温度大于预设阈值情况下发送的反馈信息;
    根据所述反馈信息,对无线充电过程进行控制,以降低所述待充电设备的无线接收电路的输出电压。
  7. 根据权利要求6所述的无线充电装置,其特征在于,所述根据所述反馈信息,对无线充电过程进行控制,以降低所述待充电设备的无线接收电路的输出电压,包括:
    根据所述反馈信息,降低所述无线发射电路的占空比,以降低所述无线接收电路的输出电压。
  8. 根据权利要求6所述的无线充电装置,其特征在于,所述根据所述反馈信息,对无线充电过程进行控制,以降低所述待充电设备的无线接收电路的输出电压,包括:
    根据所述反馈信息,调整所述无线发射电路的发射频率,以降低所述无线接收电路的输出电压。
  9. 根据权利要求6所述的无线充电装置,其特征在于,所述无线充电装置还包括:
    电压转换电路,用于对所述无线充电装置的输入电压进行升压处理,得到所述电压转换电路的输出电压;
    所述根据所述反馈信息,对无线充电过程进行控制,以降低所述待充电设备的无线接收电路的输出电压,包括:
    根据所述反馈信息,降低所述电压转换电路的输出电压,以降低所述无线接收电路的输出电压。
  10. 根据权利要求6-9中任一项所述的无线充电装置,其特征在于,所述通信控制电路还用于与所述待充电设备进行无线通信,以调整所述无线发射电路的发射功率,使得所述无线发射电路的发射功率与所述待充电设备的电池当前所需的充电电压和/或充 电电流相匹配。
  11. 一种待充电设备的控制方法,其特征在于,所述待充电设备包括:
    无线接收电路,用于接收无线充电装置发射的电磁信号,并将所述电磁信号转换成所述无线接收电路的输出电压;
    降压电路,用于接收所述无线接收电路的输出电压,对所述无线接收电路的输出电压进行降压处理,得到所述降压电路的输出电压,并基于所述降压电路的输出电压对所述待充电设备的电池进行充电;
    所述控制方法包括:
    检测所述待充电设备的温度;
    当所述待充电设备的温度大于预设阈值时,向所述无线充电装置发送反馈信息,所述反馈信息用于触发所述无线充电装置对无线充电过程进行控制,以降低所述无线接收电路的输出电压。
  12. 根据权利要求11所述的控制方法,其特征在于,所述控制方法还包括:
    与所述无线充电装置进行无线通信,以便所述无线充电装置对无线充电过程进行控制,使得所述降压电路的输出电压和/或输出电流与所述电池当前所需的充电电压和/或充电电流相匹配。
  13. 根据权利要求11或12所述的控制方法,其特征在于,所述降压电路为BUCK电路。
  14. 根据权利要求11-13中任一项所述的控制方法,其特征在于,所述温度检测电路包括温度检测电阻。
  15. 根据权利要求11-14中任一项所述的控制方法,其特征在于,所述温度检测电阻与所述降压电路集成在同一芯片中。
  16. 一种无线充电装置的控制方法,其特征在于,所述无线充电装置包括:
    无线发射电路,用于发射电磁信号,以对待充电设备的电池进行无线充电;
    所述控制方法包括:
    接收所述待充电设备在所述待充电设备的温度大于预设阈值情况下发送的反馈信息;
    根据所述反馈信息,对无线充电过程进行控制,以降低所述待充电设备的无线接收电路的输出电压。
  17. 根据权利要求16所述的控制方法,其特征在于,所述根据所述反馈信息,对无线充电过程进行控制,以降低所述待充电设备的无线接收电路的输出电压,包括:
    根据所述反馈信息,降低所述无线发射电路的占空比,以降低所述无线接收电路的输出电压。
  18. 根据权利要求16所述的控制方法,其特征在于,所述根据所述反馈信息,对无线充电过程进行控制,以降低所述待充电设备的无线接收电路的输出电压,包括:
    根据所述反馈信息,调整所述无线发射电路的发射频率,以降低所述无线接收电路的输出电压。
  19. 根据权利要求16所述的控制方法,其特征在于,所述无线充电装置还包括:
    电压转换电路,用于对所述无线充电装置的输入电压进行升压处理,得到所述电压转换电路的输出电压;
    所述根据所述反馈信息,对无线充电过程进行控制,以降低所述待充电设备的无线接收电路的输出电压,包括:
    根据所述反馈信息,降低所述电压转换电路的输出电压,以降低所述无线接收电路的输出电压。
  20. 根据权利要求16-19中任一项所述的控制方法,其特征在于,所述控制方法还包括:
    与所述待充电设备进行无线通信,以调整所述无线发射电路的发射功率,使得所述无线发射电路的发射功率与所述电池当前所需的充电电压和/或充电电流相匹配。
PCT/CN2018/081963 2017-04-07 2018-04-04 待充电设备、无线充电装置及其控制方法 WO2018184574A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18780574.2A EP3609037B1 (en) 2017-04-07 2018-04-04 Device under charge, wireless charging apparatus and control method thereof
JP2019553928A JP6987148B2 (ja) 2017-04-07 2018-04-04 充電対象機器、無線充電装置及びその制御方法
CN201880005253.4A CN110121823B (zh) 2017-04-07 2018-04-04 待充电设备、无线充电装置及其控制方法
KR1020197030861A KR102269323B1 (ko) 2017-04-07 2018-04-04 충전 대상 기기, 무선 충전 장치 및 그 제어 방법
US16/589,074 US11196306B2 (en) 2017-04-07 2019-09-30 Device to be charged, wireless charging device and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2017/079784 2017-04-07
PCT/CN2017/079784 WO2018184230A1 (zh) 2017-04-07 2017-04-07 无线充电系统、装置、方法及待充电设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/589,074 Continuation US11196306B2 (en) 2017-04-07 2019-09-30 Device to be charged, wireless charging device and control method thereof

Publications (1)

Publication Number Publication Date
WO2018184574A1 true WO2018184574A1 (zh) 2018-10-11

Family

ID=63711967

Family Applications (8)

Application Number Title Priority Date Filing Date
PCT/CN2017/079784 WO2018184230A1 (zh) 2017-04-07 2017-04-07 无线充电系统、装置、方法及待充电设备
PCT/CN2018/076722 WO2018184430A1 (zh) 2017-04-07 2018-02-13 无线充电系统、装置及方法
PCT/CN2018/076700 WO2018184428A1 (zh) 2017-04-07 2018-02-13 无线充电系统、方法及待充电设备
PCT/CN2018/076713 WO2018184429A1 (zh) 2017-04-07 2018-02-13 无线充电系统、方法及待充电设备
PCT/CN2018/081963 WO2018184574A1 (zh) 2017-04-07 2018-04-04 待充电设备、无线充电装置及其控制方法
PCT/CN2018/081971 WO2018184577A1 (zh) 2017-04-07 2018-04-04 无线充电装置和无线充电方法
PCT/CN2018/081909 WO2018184564A1 (zh) 2017-04-07 2018-04-04 无线充电方法、装置、系统和待充电设备
PCT/CN2018/081925 WO2018184569A1 (zh) 2017-04-07 2018-04-04 无线充电方法、装置、系统和待充电设备

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/CN2017/079784 WO2018184230A1 (zh) 2017-04-07 2017-04-07 无线充电系统、装置、方法及待充电设备
PCT/CN2018/076722 WO2018184430A1 (zh) 2017-04-07 2018-02-13 无线充电系统、装置及方法
PCT/CN2018/076700 WO2018184428A1 (zh) 2017-04-07 2018-02-13 无线充电系统、方法及待充电设备
PCT/CN2018/076713 WO2018184429A1 (zh) 2017-04-07 2018-02-13 无线充电系统、方法及待充电设备

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/CN2018/081971 WO2018184577A1 (zh) 2017-04-07 2018-04-04 无线充电装置和无线充电方法
PCT/CN2018/081909 WO2018184564A1 (zh) 2017-04-07 2018-04-04 无线充电方法、装置、系统和待充电设备
PCT/CN2018/081925 WO2018184569A1 (zh) 2017-04-07 2018-04-04 无线充电方法、装置、系统和待充电设备

Country Status (6)

Country Link
US (8) US10998751B2 (zh)
EP (8) EP3462564A4 (zh)
JP (5) JP6812537B2 (zh)
KR (5) KR102328496B1 (zh)
CN (9) CN109314396B (zh)
WO (8) WO2018184230A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3893357A4 (en) * 2018-12-27 2021-12-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging method and apparatus, device to be charged, storage medium, and chip system
KR20220140867A (ko) * 2020-03-06 2022-10-18 위트리시티 코포레이션 무선 전력 시스템들에서의 능동 정류

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787325B (zh) 2017-04-07 2023-06-27 Oppo广东移动通信有限公司 无线充电系统、装置、方法及待充电设备
MX2019010614A (es) * 2017-04-07 2019-10-15 Guangdong Oppo Mobile Telecommunications Corp Ltd Sistema, dispositivo y metodo de carga inalambrica, y dispositivo para ser cargado.
EP3462564A4 (en) * 2017-04-07 2019-05-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS LOADING SYSTEM, DEVICE AND METHOD AND DEVICE TO BE LOADED
CN108539832A (zh) * 2018-03-16 2018-09-14 维沃移动通信有限公司 无线充电接收端设备、无线充电方法、系统及终端设备
AR114789A1 (es) * 2018-04-18 2020-10-14 Hoffmann La Roche Anticuerpos anti-hla-g y uso de los mismos
AU2018423071B2 (en) * 2018-05-31 2021-03-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging method and charging apparatus
WO2020124582A1 (zh) * 2018-12-21 2020-06-25 Oppo广东移动通信有限公司 接收装置和无线充电方法
CN113169575A (zh) * 2018-12-21 2021-07-23 Oppo广东移动通信有限公司 充电装置、待充电设备、充电方法及计算机存储介质
WO2020147127A1 (zh) 2019-01-18 2020-07-23 Oppo广东移动通信有限公司 无线充电控制方法和充电控制装置
US11532950B2 (en) * 2019-05-08 2022-12-20 Western Digital Technologies, Inc. Systems and methods for wireless charging and wireless data transfer for multiple devices
US11581759B2 (en) * 2019-05-14 2023-02-14 Canon Kabushiki Kaisha Power reception apparatus, control method, and storage medium
CN112186820A (zh) 2019-07-02 2021-01-05 台达电子工业股份有限公司 充电器及充电方法
CN112242725B (zh) * 2019-07-19 2022-06-24 Oppo广东移动通信有限公司 无线充电装置、方法及系统
CN112311024A (zh) * 2019-07-25 2021-02-02 Oppo广东移动通信有限公司 待充电设备、无线充电方法及系统
CN112332501B (zh) * 2019-07-30 2022-11-15 Oppo广东移动通信有限公司 无线充电方法和待充电设备
CN110402002A (zh) * 2019-07-31 2019-11-01 北京小米移动软件有限公司 一种开关设备
JP7321850B2 (ja) * 2019-09-09 2023-08-07 株式会社マキタ 充電器および充電システム
CN110635546B (zh) * 2019-09-18 2021-11-30 华为数字能源技术有限公司 一种无线充电的电子设备、方法及系统
CN110571950A (zh) * 2019-09-29 2019-12-13 江西联智集成电路有限公司 无线充电设备接收器及无线充电设备检测系统
CN112671052A (zh) * 2019-10-16 2021-04-16 Oppo广东移动通信有限公司 待充电设备及充电方法
CN110649688B (zh) * 2019-10-21 2023-03-14 广西电网有限责任公司电力科学研究院 一种基于电池温度检测的无线充电控制系统及方法
CN112803610A (zh) * 2019-11-14 2021-05-14 Oppo广东移动通信有限公司 待充电设备、系统以及无线充电方法、存储介质
EP4024663A4 (en) * 2019-11-14 2022-11-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS CHARGING APPARATUS, DEVICE TO BE CHARGED, CHARGING SYSTEM AND METHOD, AND STORAGE MEDIA
EP4060852A4 (en) * 2019-11-14 2022-12-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. ELECTRONIC DEVICE, AND WIRELESS CHARGING APPARATUS, SYSTEM, AND METHOD
CN111049371A (zh) * 2019-12-16 2020-04-21 上海南芯半导体科技有限公司 一种中等功率低成本的电荷泵充电方法
US11923715B2 (en) * 2019-12-20 2024-03-05 Qualcomm Incorporated Adaptive multi-mode charging
CN111130183A (zh) * 2020-01-14 2020-05-08 北京小米移动软件有限公司 无线充电方法和装置、无线充电设备、电子设备
FR3107791B1 (fr) * 2020-03-02 2023-03-24 Radiall Sa Ensemble de transfert d’énergie électrique sans fil et sans contact comprenant un système amélioré de régulation de l’énergie transférée.
JP7437631B2 (ja) * 2020-03-31 2024-02-26 パナソニックIpマネジメント株式会社 通信制御装置、通信制御システム、および、通信制御方法
KR20220163425A (ko) 2020-04-01 2022-12-09 센사타 테크놀로지스, 인크 무선 배터리 관리 시스템 내의 청취 전용 무선 네트워크 컨트롤러
CN111439141A (zh) * 2020-04-09 2020-07-24 西交利物浦大学 无线充电控制系统及装置
US11594892B2 (en) 2020-06-02 2023-02-28 Inventus Power, Inc. Battery pack with series or parallel identification signal
US11476677B2 (en) 2020-06-02 2022-10-18 Inventus Power, Inc. Battery pack charge cell balancing
US11588334B2 (en) 2020-06-02 2023-02-21 Inventus Power, Inc. Broadcast of discharge current based on state-of-health imbalance between battery packs
EP4158718A4 (en) 2020-06-02 2024-03-13 Inventus Power Inc LARGE FORMAT BATTERY MANAGEMENT SYSTEM
US11509144B2 (en) 2020-06-02 2022-11-22 Inventus Power, Inc. Large-format battery management system with in-rush current protection for master-slave battery packs
US11489343B2 (en) 2020-06-02 2022-11-01 Inventus Power, Inc. Hardware short circuit protection in a large battery pack
US11552479B2 (en) 2020-06-02 2023-01-10 Inventus Power, Inc. Battery charge balancing circuit for series connections
US11245268B1 (en) 2020-07-24 2022-02-08 Inventus Power, Inc. Mode-based disabling of communiction bus of a battery management system
CN111711254B (zh) * 2020-08-06 2020-11-24 苏州明纬科技有限公司 通用型充电装置及其充电方法
KR102418987B1 (ko) * 2020-08-11 2022-07-11 (주)화인파워엑스 무선 충전 디바이스
CN112117833A (zh) * 2020-09-01 2020-12-22 珠海格力电器股份有限公司 温控器充电装置和温控器设备
CN112290611A (zh) * 2020-09-17 2021-01-29 安克创新科技股份有限公司 用于无线充电的系统
CN112701802A (zh) * 2020-11-19 2021-04-23 国网浙江省电力有限公司宁波供电公司 一种用于机器人的无线充电系统与方法
TWI783372B (zh) * 2021-02-08 2022-11-11 鄭佳吟 具有鑲崁功能的無線充電裝置
CN113098143A (zh) * 2021-03-30 2021-07-09 北京小米移动软件有限公司 电子设备的充电系统、无线充电端、终端及充电方法
CN114024375B (zh) * 2021-11-25 2024-02-13 桔充充(杭州)新能源有限公司 一种二轮电动车的无线充电系统的故障自保护电路及方法
DE102022207058A1 (de) * 2022-07-11 2024-01-11 Robert Bosch Gesellschaft mit beschränkter Haftung Schnittstellenmodul zum Laden und Entladen eines elektrochemischen Energiespeichers
CN117526471A (zh) * 2022-07-28 2024-02-06 北京小米移动软件有限公司 应用于穿戴设备的无线充电电路及穿戴设备
CN116707154A (zh) * 2022-09-29 2023-09-05 荣耀终端有限公司 无线电能接收电路及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202998182U (zh) * 2012-10-17 2013-06-12 广东欧珀移动通信有限公司 可与手机通信的多功能保护套
CN103944243A (zh) * 2014-02-27 2014-07-23 北京航空航天大学 一种电动汽车用带有精确对中功能的感应式非接触充电装置
CN205355893U (zh) * 2016-02-25 2016-06-29 深圳天珑无线科技有限公司 移动终端与充电器
CN106451705A (zh) * 2016-12-20 2017-02-22 北京小米移动软件有限公司 电子设备、无线充电系统、设备、方法和装置

Family Cites Families (311)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694668A (en) * 1970-01-02 1972-09-26 Bunker Ramo Track and hold system
US4641089A (en) * 1983-04-27 1987-02-03 Hal A. Huggins Ammeter apparatus and method for capturing current readings
US5187615A (en) * 1988-03-30 1993-02-16 Hitachi, Ltd. Data separator and signal processing circuit
US5057793A (en) * 1989-11-13 1991-10-15 Cowley Nicholas P Frequency synthesizer PLL having digital and analog phase detectors
JPH03189569A (ja) * 1989-12-20 1991-08-19 Toshiba Corp 電圧測定装置
DE69130046T2 (de) * 1990-10-22 1999-05-06 Nec Corp Frequenzsynthesierer mit PLL, der einen Frequenzwechsel des Ausgangs mit hoher Geschwindigkeit ermöglicht
JP3620118B2 (ja) * 1995-10-24 2005-02-16 松下電器産業株式会社 定電流・定電圧充電装置
JP3439013B2 (ja) 1996-02-29 2003-08-25 三洋電機株式会社 二次電池のパルス充電方法
JP3595646B2 (ja) * 1997-03-19 2004-12-02 株式会社カージオペーシングリサーチ・ラボラトリー 生体植え込み装置
AU3046297A (en) 1997-06-16 1999-01-04 Yehuda Binder Battery substitute pack
JP2000333377A (ja) 1999-05-21 2000-11-30 Sony Computer Entertainment Inc エンタテインメントシステムおよび充電システム
CN2464002Y (zh) 2000-12-16 2001-12-05 蒋冠珞 自生反向脉冲的快速充电机
US20120181973A1 (en) * 2003-08-29 2012-07-19 Robert Lyden Solar array resembling natural foliage including means for wireless transmission of electric power
US20060103355A1 (en) * 2004-11-16 2006-05-18 Joseph Patino Method and system for selectively charging a battery
US9167471B2 (en) * 2009-05-07 2015-10-20 Jasper Technologies, Inc. System and method for responding to aggressive behavior associated with wireless devices
WO2007013726A1 (en) * 2005-07-29 2007-02-01 Ls Cable Ltd. Contact-less chargeable battery and charging device, battery charging set, and charging control method thereof
KR100853889B1 (ko) * 2005-07-29 2008-08-25 엘에스전선 주식회사 무 접점 충전 배터리 및 충전기, 이들을 포함하는 배터리충전 세트, 및 충전제어 방법
KR100792311B1 (ko) * 2005-07-30 2008-01-07 엘에스전선 주식회사 충전전력 공급장치, 충전 장치, 배터리 장치, 무접점 충전 시스템 및 무접점 충전 방법
EP1749607B1 (en) * 2005-08-01 2012-03-14 Agie Charmilles SA Method and generator for electrical discharge machining
JP4890837B2 (ja) * 2005-11-07 2012-03-07 ローム株式会社 電源装置
CA2632755C (en) * 2005-12-07 2014-06-17 Boston Scientific Neuromodulation Corporation Battery protection and zero-volt battery recovery system for an implantable medical device
CN101379887B (zh) * 2005-12-20 2012-10-31 皇家飞利浦电子股份有限公司 控制提供到电子器件的电流的方法和装置
JP5020530B2 (ja) * 2006-04-14 2012-09-05 パナソニック株式会社 充電方法ならびに電池パックおよびその充電器
US8296587B2 (en) * 2006-08-30 2012-10-23 Green Plug, Inc. Powering an electrical device through a legacy adapter capable of digital communication
JP4311687B2 (ja) * 2006-10-06 2009-08-12 日本テキサス・インスツルメンツ株式会社 電源回路およびバッテリ装置
KR100896104B1 (ko) * 2007-04-25 2009-05-07 엘에스전선 주식회사 부하변조 기능을 갖는 무접점 충전 배터리 및 이를 구비한배터리 충전 세트
CN101330229A (zh) * 2007-06-21 2008-12-24 北京市北邮信息科技发展有限责任公司 一种非接触式电能传输装置
GB2451470B (en) * 2007-07-31 2011-11-23 Wolfson Microelectronics Plc DC-TO-DC converter
US8461817B2 (en) * 2007-09-11 2013-06-11 Powercast Corporation Method and apparatus for providing wireless power to a load device
JP2011505746A (ja) * 2007-11-30 2011-02-24 アギア システムズ インコーポレーテッド 携帯電子デバイス間の電力共用
WO2009069844A1 (en) * 2007-11-30 2009-06-04 Chun-Kil Jung Multiple non-contact charging system of wireless power transmision and control method thereof
CN101232196B (zh) * 2008-02-02 2011-04-06 中兴通讯股份有限公司 一种usb充电座中充电模式的控制电路及其方法
KR100976161B1 (ko) * 2008-02-20 2010-08-16 정춘길 무접점충전시스템 및 그의 충전제어방법
US20090237029A1 (en) * 2008-03-24 2009-09-24 Spx Corporation Inductive battery charger for service equipment
JP4987775B2 (ja) * 2008-03-27 2012-07-25 株式会社東芝 無線被給電端末、システムおよび方法
JP2009273327A (ja) * 2008-05-10 2009-11-19 Sanyo Electric Co Ltd 電池内蔵機器と充電台
JP5316541B2 (ja) 2008-09-26 2013-10-16 株式会社村田製作所 無接点充電システム
US8527688B2 (en) * 2008-09-26 2013-09-03 Palm, Inc. Extending device functionality amongst inductively linked devices
US8234509B2 (en) * 2008-09-26 2012-07-31 Hewlett-Packard Development Company, L.P. Portable power supply device for mobile computing devices
US8947042B2 (en) 2008-11-13 2015-02-03 Qualcomm Incorporated Wireless power and data transfer for electronic devices
US8497658B2 (en) * 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices
EP2416470B1 (en) * 2009-03-30 2019-11-13 Fujitsu Limited Wireless power supply system, wireless power transmission device, and wireless power receiving device
JP2011034306A (ja) * 2009-07-31 2011-02-17 Toshiba Corp 情報処理装置及び給電制御方法
US8120412B2 (en) * 2009-08-07 2012-02-21 Freescale Semiconductor, Inc. Voltage boosting system with slew rate control and method thereof
US8928284B2 (en) * 2009-09-10 2015-01-06 Qualcomm Incorporated Variable wireless power transmission
US8390249B2 (en) 2009-11-30 2013-03-05 Broadcom Corporation Battery with integrated wireless power receiver and/or RFID
US20110127953A1 (en) * 2009-11-30 2011-06-02 Broadcom Corporation Wireless power system
JP5550097B2 (ja) 2009-12-02 2014-07-16 Necカシオモバイルコミュニケーションズ株式会社 無接点充電装置及び電子機器並びにプログラム
KR101097262B1 (ko) * 2009-12-28 2011-12-21 삼성에스디아이 주식회사 배터리 팩, 이의 충전방법
TW201145753A (en) 2010-01-05 2011-12-16 Access Business Group Int Llc Integrated wireless power system
EP2525466B1 (en) * 2010-01-13 2020-03-11 Panasonic Corporation Electric power supply device and vehicle charge system
JP2011151891A (ja) * 2010-01-19 2011-08-04 Sony Corp 二次電池の充電方法および充電装置
JP2011152018A (ja) * 2010-01-25 2011-08-04 Sony Corp ワイヤレス蓄電システムおよびワイヤレス給電システム
JP5198489B2 (ja) * 2010-01-28 2013-05-15 株式会社エヌ・ティ・ティ・ドコモ 充電回路、移動機及び充電方法
US9561730B2 (en) * 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
TWI406471B (zh) * 2010-05-14 2013-08-21 崇越科技股份有限公司 充電系統及其充電方法
EP2580844A4 (en) * 2010-06-11 2016-05-25 Mojo Mobility Inc WIRELESS POWER TRANSFER SYSTEM SUPPORTING INTEROPERABILITY AND MULTIPOLAR MAGNETS FOR USE WITH THIS SYSTEM
KR101682386B1 (ko) * 2010-06-29 2016-12-12 삼성전자 주식회사 휴대용 충전 장치 및 그의 충전 방법 및 충전 시스템
JP2012016125A (ja) * 2010-06-30 2012-01-19 Panasonic Electric Works Co Ltd 非接触給電システム及び非接触給電システムの金属異物検出装置
CA2816082A1 (en) 2010-11-03 2012-05-10 Xped Holdings Pty Ltd Wireless device detection and communication apparatus and system
CN102013717B (zh) * 2010-12-03 2013-01-16 清华大学 植入式医疗仪器用具有对位自动提示功能的无线充电方法
KR20120068566A (ko) * 2010-12-17 2012-06-27 콘티넨탈 오토모티브 시스템 주식회사 무선 충전 방법 및 시스템
US10141770B2 (en) * 2011-01-18 2018-11-27 Mojo Mobility, Inc. Powering and/or charging with a plurality of protocols
US20130285605A1 (en) * 2011-01-18 2013-10-31 Mojo Mobility, Inc. Systems and methods for wireless power transfer
US9178369B2 (en) * 2011-01-18 2015-11-03 Mojo Mobility, Inc. Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system
US9496732B2 (en) * 2011-01-18 2016-11-15 Mojo Mobility, Inc. Systems and methods for wireless power transfer
US9356659B2 (en) * 2011-01-18 2016-05-31 Mojo Mobility, Inc. Chargers and methods for wireless power transfer
US20120194124A1 (en) 2011-01-31 2012-08-02 Nokia Corporation Wireless Battery Charging System
JP5713714B2 (ja) * 2011-02-10 2015-05-07 キヤノン株式会社 給電装置及び制御方法
US20120223590A1 (en) * 2011-03-02 2012-09-06 Qualcommm Incorporated Reducing heat dissipation in a wireless power receiver
KR101267076B1 (ko) * 2011-03-24 2013-05-24 주식회사 한림포스텍 무선 전력 전송 어셈블리에서의 전력 제어 방법 및 무선 전력 전송 어셈블리
US9735623B2 (en) * 2011-05-17 2017-08-15 Samsung Electronics Co., Ltd. Power transmitting method and power transmitter for communication with power receiver
US9444247B2 (en) * 2011-05-17 2016-09-13 Samsung Electronics Co., Ltd. Apparatus and method of protecting power receiver of wireless power transmission system
JP2012239814A (ja) 2011-05-24 2012-12-10 Fujifilm Corp 放射線撮影装置
JP2012249410A (ja) * 2011-05-27 2012-12-13 Sharp Corp 電気自動車充電用の充電器及び充電装置
KR102012684B1 (ko) 2011-05-31 2019-08-26 삼성전자주식회사 무선 전력을 이용한 통신 장치 및 방법
JP5767873B2 (ja) 2011-06-28 2015-08-26 株式会社東芝 蓄電装置および蓄電システム
JP5505375B2 (ja) 2011-06-29 2014-05-28 株式会社豊田自動織機 セルバランス制御装置及びセルバランス制御方法
US9379571B2 (en) * 2011-07-11 2016-06-28 Delphi Technologies, Inc. Electrical charging system having energy coupling arrangement for wireless energy transmission therebetween
US20130026981A1 (en) * 2011-07-28 2013-01-31 Broadcom Corporation Dual mode wireless power
JP5893285B2 (ja) 2011-08-04 2016-03-23 キヤノン株式会社 給電装置及びプログラム
KR101580342B1 (ko) * 2011-08-29 2015-12-24 삼성전기주식회사 무선 전력 전송 시스템 및 그의 제어방법
EP2579522B1 (en) * 2011-10-05 2018-05-30 BlackBerry Limited Wireless power charging and communication with wireless communication devices in a communication system
US10285241B2 (en) * 2011-10-06 2019-05-07 A9.Com, Inc. Wireless lighting device with charging port
JP2013085386A (ja) * 2011-10-11 2013-05-09 Panasonic Corp 蓄電池制御装置、蓄電池制御方法、電力貯蔵システム及び電気自動車の駆動システム
KR101818773B1 (ko) 2011-10-24 2018-02-22 삼성전자주식회사 공진 방식 무선 충전 시스템용 수신 전력 변환 장치
KR101338732B1 (ko) * 2011-11-10 2013-12-06 엘지이노텍 주식회사 무선전력 송신장치, 무선전력 수신장치, 무선전력 전송 방법, 무선전력 수신 방법, 정보 전송 방법 및 정보 수신 방법
JP2013115859A (ja) * 2011-11-25 2013-06-10 Hitachi Maxell Ltd ワイヤレス電力伝送装置
JP6045141B2 (ja) * 2011-12-05 2016-12-14 キヤノン株式会社 電子機器及びプログラム
US8928182B2 (en) * 2011-12-16 2015-01-06 Tdk Corporation Wireless power feeder and wireless power transmission system
CN102522799A (zh) 2011-12-30 2012-06-27 成都林海电子有限责任公司 一种移动终端电源
US9761370B2 (en) * 2012-01-23 2017-09-12 United States Department Of Energy Dual side control for inductive power transfer
CN104054234B (zh) * 2012-01-27 2017-07-04 索尼公司 电子设备和馈电系统
US9362774B2 (en) * 2012-01-27 2016-06-07 Medtronic, Inc. Battery charging top-off
JP5880122B2 (ja) * 2012-02-21 2016-03-08 株式会社豊田自動織機 非接触電力伝送装置
KR101882800B1 (ko) * 2012-02-28 2018-08-01 삼성전자주식회사 무선 전력 수신기 및 그 제어 방법
JP2013183496A (ja) * 2012-02-29 2013-09-12 Equos Research Co Ltd 電力伝送システム
JP2013191913A (ja) * 2012-03-12 2013-09-26 Renesas Electronics Corp ワイヤレス充電回路、ワイヤレス充電システム及び半導体装置
US9407106B2 (en) * 2012-04-03 2016-08-02 Qualcomm Incorporated System and method for wireless power control communication using bluetooth low energy
JP5872373B2 (ja) * 2012-04-25 2016-03-01 三洋電機株式会社 無接点給電方法
KR101438884B1 (ko) * 2012-05-07 2014-09-05 엘지이노텍 주식회사 무선전력 송신장치 및 그의 무선전력 전송 방법
JP2013243890A (ja) * 2012-05-22 2013-12-05 Heads Corp 非接触給電装置
WO2013179284A2 (en) 2012-05-29 2013-12-05 Humavox Ltd. Wireless charging device
KR101920236B1 (ko) * 2012-06-19 2018-11-20 삼성전자주식회사 배터리를 충전하기 위한 방법 및 그 전자 장치
CN102735906B (zh) * 2012-07-05 2014-11-05 矽力杰半导体技术(杭州)有限公司 一种电感电流检测电路以及应用其的led驱动电路
US9973021B2 (en) * 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
KR102158288B1 (ko) * 2012-07-09 2020-09-21 삼성전자주식회사 배터리를 충전하기 위한 방법 및 그 전자 장치
KR101848303B1 (ko) * 2012-07-10 2018-04-13 삼성전자주식회사 전력 전송을 제어하기 위한 방법 및 이를 위한 전력 송신기
US9142999B2 (en) * 2012-07-13 2015-09-22 Qualcomm Incorporated Systems, methods, and apparatus for small device wireless charging modes
JP2014023348A (ja) * 2012-07-20 2014-02-03 Nikon Corp 携帯端末の充電装置
KR101270675B1 (ko) 2012-08-28 2013-06-03 한국과학기술원 급전장치
KR101947980B1 (ko) * 2012-09-12 2019-02-14 삼성전자주식회사 무선 전력 전송 장치 및 방법, 무선 전력 수신 장치
US20140091623A1 (en) * 2012-09-28 2014-04-03 Keith Shippy Power share controller
CN102969801B (zh) * 2012-11-01 2014-08-06 重庆大学 电流型无线供电系统负载识别方法
KR101455695B1 (ko) * 2012-11-16 2014-11-04 한국전기연구원 무선전력전송시스템을 위한 시스템 웨이크 업 방법
KR102052590B1 (ko) * 2012-11-22 2019-12-05 삼성에스디아이 주식회사 배터리 관리 시스템 및 그 구동 방법
CN103036282A (zh) 2012-12-06 2013-04-10 捷普科技(上海)有限公司 一种电压自适应无线充电装置及方法
CN103036283B (zh) * 2012-12-06 2015-02-11 捷普科技(上海)有限公司 一种间歇无线充电通信装置及方法
US9431848B2 (en) * 2012-12-06 2016-08-30 Samsung Electronics Co., Ltd Method and apparatus for protecting wireless power receiver from excessive charging temperature
JP5976516B2 (ja) * 2012-12-12 2016-08-23 三洋電機株式会社 無接点充電方法
US20140191568A1 (en) * 2013-01-04 2014-07-10 Mojo Mobility, Inc. System and method for powering or charging multiple receivers wirelessly with a power transmitter
JP5880455B2 (ja) * 2013-01-16 2016-03-09 ソニー株式会社 受電装置、非接触電力伝送システム及び受電電圧制御方法
CN104871397B (zh) * 2013-01-24 2017-11-21 松下知识产权经营株式会社 蓄电池装置
CN103078381B (zh) * 2013-01-27 2015-06-17 中国科学院电工研究所 一种电动汽车无线充电装置及其输出控制方法
CN103138342B (zh) * 2013-01-29 2014-12-17 深圳市中远航科技有限公司 一种无线充电的移动电源
EP2953235B1 (en) * 2013-01-29 2018-09-12 Fujitsu Limited Wireless power transfer system, power receiver, and wireless power transfer method
CN103107584B (zh) * 2013-02-01 2015-08-19 深圳市京泉华科技股份有限公司 一种具有无线移动充电功能的装置及其无线充电方法
JP6100011B2 (ja) * 2013-02-06 2017-03-22 キヤノン株式会社 給電装置、給電方法及びプログラム
EP3402063A1 (de) * 2013-02-08 2018-11-14 Markus Rehm Drahtlose resonanzgekoppelte elektrische energieübertragung
JP2014168365A (ja) * 2013-02-28 2014-09-11 Renesas Electronics Corp ワイヤレス給電システム
JP6188351B2 (ja) * 2013-03-01 2017-08-30 キヤノン株式会社 給電装置、給電装置の制御方法、プログラム
US20140247141A1 (en) * 2013-03-04 2014-09-04 Hello Inc. Monitoring device with wireless communication over non-contiguous channels
US9998180B2 (en) * 2013-03-13 2018-06-12 Integrated Device Technology, Inc. Apparatuses and related methods for modulating power of a wireless power receiver
CN103208848B (zh) * 2013-03-14 2015-12-23 深圳市中远航科技有限公司 一种无线充电电源
US9318915B2 (en) 2013-03-20 2016-04-19 Halo2Cloud Llc Portable power charger with wireless and direct charging connectivity
CN103269092B (zh) * 2013-03-28 2016-04-13 小米科技有限责任公司 一种应用无线充电器进行充电的方法和无线充电器
JP5846334B2 (ja) * 2013-03-29 2016-01-20 日産自動車株式会社 非接触給電システム
TWI482391B (zh) 2013-04-02 2015-04-21 Wistron Corp 用於一電子裝置之充電電路及其相關充電方法
CN104124775B (zh) * 2013-04-28 2018-09-21 海尔集团技术研发中心 无线电能传输系统及其智能控制方法、智能控制系统
KR102047963B1 (ko) 2013-05-02 2019-11-25 한국전자통신연구원 무선 충전 장치 및 방법
WO2014179818A1 (en) 2013-05-03 2014-11-06 CommSense LLC Antenna environment sensing device
KR101787796B1 (ko) * 2013-05-03 2017-10-18 삼성전자주식회사 무선 전력 송신기, 무선 전력 수신기 및 각각의 제어 방법
US9178441B2 (en) * 2013-05-17 2015-11-03 Analog Devices, Inc. Power converter control to avoid imbalance and transformer saturation
US9155900B2 (en) 2013-06-20 2015-10-13 Cochlear Limited Medical device battery charging system and methods
JP2015006068A (ja) * 2013-06-21 2015-01-08 三洋電機株式会社 無接点給電方法
EP3022817B1 (en) * 2013-07-19 2018-03-28 Philips Lighting Holding B.V. Power negotiation in daisy-chained systems
WO2015009329A1 (en) 2013-07-19 2015-01-22 Intel Corporation Apparatus, system and method of wireless power transfer
KR102039376B1 (ko) * 2013-07-19 2019-11-04 삼성전자주식회사 무선 충전을 위한 충전 전압 설정 방법
TWI552483B (zh) 2013-07-22 2016-10-01 光寶電子(廣州)有限公司 電池模組、電池模組供電管理方法及其裝置
KR102126713B1 (ko) * 2013-08-13 2020-06-25 삼성전자주식회사 무선 전력 전송 시스템에서 무선 충전 제어 방법 및 장치
JP6165009B2 (ja) * 2013-09-27 2017-07-19 エスアイアイ・セミコンダクタ株式会社 給電システム、給電装置、及び給電方法
CN103457332B (zh) * 2013-10-08 2015-08-12 平湖凌云信息科技有限公司 无线充电器设备和无线充电方法
CN104578209A (zh) * 2013-10-22 2015-04-29 中兴通讯股份有限公司 一种无线充电终端及用户终端、无线充电方法
KR102147243B1 (ko) * 2013-11-04 2020-08-24 삼성전자 주식회사 전자장치의 충전 장치 및 방법
CN103607007B (zh) * 2013-11-18 2015-12-02 奇瑞汽车股份有限公司 一种无线充电发射电路
CN104659925A (zh) * 2013-11-20 2015-05-27 中兴通讯股份有限公司 无线电能收发方法和装置
KR101987315B1 (ko) 2013-12-24 2019-09-30 삼성전자주식회사 무선 전력 전송 장치 및 에너지 충전 장치
CN105247755A (zh) 2013-12-26 2016-01-13 联发科技股份有限公司 多路径充电器及其充电方法
CN107769549A (zh) * 2014-01-08 2018-03-06 联发科技(新加坡)私人有限公司 一种集成电路
CN104796011A (zh) * 2014-01-21 2015-07-22 中兴通讯股份有限公司 一种充电方法、交流电适配器、充电管理装置及终端
US20150214748A1 (en) 2014-01-24 2015-07-30 Mediatek Inc. Wireless power supply scheme capable of dynamically adjusting output power of wireless power transmitter according to voltage/current/power information of portable electronic device to be charged
CN103795040B (zh) * 2014-01-28 2016-11-09 广东欧珀移动通信有限公司 电子设备及其电源适配器
JP6329386B2 (ja) * 2014-02-21 2018-05-23 ルネサスエレクトロニクス株式会社 非接触給電方法及び非接触給電システム
KR20180069107A (ko) * 2014-02-23 2018-06-22 애플 인크. 유도 전력 전송 시스템의 임피던스 매칭
US10298064B2 (en) * 2014-02-24 2019-05-21 Sony Corporation Power receiving unit, power feeding control method, and feed system
TW201533561A (zh) 2014-02-25 2015-09-01 Novatek Microelectronics Corp 可攜式電腦及無線鍵盤與平板電腦
KR101817455B1 (ko) * 2014-02-25 2018-01-11 닛산 지도우샤 가부시키가이샤 비접촉 급전 시스템 및 송전 장치
JP6150004B2 (ja) 2014-02-25 2017-06-28 日産自動車株式会社 非接触給電システム及び送電装置
KR102181156B1 (ko) * 2014-03-07 2020-11-20 삼성전자주식회사 무선 충전을 위한 커버 부재와 전자 장치 및 방법
US10298048B1 (en) * 2014-04-15 2019-05-21 Mediatek Inc. Wireless charging system and charging control method for dynamically adjusting output power
CN104113104B (zh) 2014-05-22 2017-01-04 深圳天珑无线科技有限公司 一种充电方法及系统
CN104124483B (zh) * 2014-05-23 2016-05-04 东莞市钜大电子有限公司 一种移动电源快速充电方法及系统
CN106165244A (zh) * 2014-05-30 2016-11-23 株式会社Ihi 非接触供电系统、受电装置及送电装置
JP6201896B2 (ja) * 2014-05-30 2017-09-27 株式会社Ihi 送電装置及び非接触給電システム
US20150365737A1 (en) * 2014-06-11 2015-12-17 Enovate Medical, Llc Wireless transfer station with display
US10574079B1 (en) * 2014-06-20 2020-02-25 Qnovo Inc. Wireless charging techniques and circuitry for a battery
CN104065147B (zh) * 2014-06-27 2017-06-06 宇龙计算机通信科技(深圳)有限公司 一种充电适配器、终端、充电控制方法
JP2016015862A (ja) * 2014-07-03 2016-01-28 株式会社Ihi 受電装置
WO2016002839A1 (ja) * 2014-07-03 2016-01-07 株式会社Ihi 受電装置、非接触給電システム及び送電装置
US10148096B2 (en) 2014-07-07 2018-12-04 Mediatek Singapore Pte. Ltd. Wireless or wired power delivery using a controllable power adapter
CN104037918A (zh) * 2014-07-08 2014-09-10 江苏天行健汽车科技有限公司 一种磁共振式车载移动终端无线充电系统及方法
US10355527B2 (en) 2014-07-16 2019-07-16 Taiwan Semiconductor Manufacturing Company Limited Wireless charging receiver with variable resonant frequency
JP6446194B2 (ja) * 2014-07-17 2018-12-26 ローム株式会社 ワイヤレス受電装置、そのレシーバ回路およびワイヤレス受電装置の制御方法
US9680531B2 (en) * 2014-08-01 2017-06-13 Qualcomm Incorporated System and method for detecting inadequate wireless coupling and improving in-band signaling in wireless power transfer systems
CN204190475U (zh) * 2014-08-11 2015-03-04 长城信息产业股份有限公司 一种无线充电发射器及无线充电装置
CN104158269B (zh) * 2014-08-11 2016-03-16 长城信息产业股份有限公司 一种无线充电发射器、接收器、充电装置及无线充电方法
KR102320853B1 (ko) * 2014-09-02 2021-11-02 삼성전자 주식회사 전자 장치, 전자 장치의 충전 제어 방법, 전원 공급 장치, 및 전원 공급 장치의 전력 공급 방법
KR20160028537A (ko) 2014-09-03 2016-03-14 주식회사 케이더파워 휴대용 충전기
KR102025890B1 (ko) * 2014-09-11 2019-09-26 주식회사 위츠 비접촉 방식 충전 장치
US9973017B2 (en) * 2014-09-19 2018-05-15 Samsung Electronics Co., Ltd. Charger circuit including a plurality of charging paths
JP2016063725A (ja) * 2014-09-22 2016-04-25 株式会社豊田自動織機 受電機器及び非接触電力伝送装置
JP2016063726A (ja) * 2014-09-22 2016-04-25 株式会社豊田自動織機 受電機器及び非接触電力伝送装置
CN105515210A (zh) * 2014-09-26 2016-04-20 国家电网公司 非接触充电桩、车载充电装置和充电系统
KR102332172B1 (ko) * 2014-09-26 2021-11-29 삼성전자주식회사 무선 전력 송신기 및 무선 전력 수신기
CN105529802B (zh) * 2014-09-29 2019-01-04 南京德朔实业有限公司 一种充电系统
US20160094080A1 (en) * 2014-09-29 2016-03-31 Chervon Intellectual Property Limited Charging system and charging method thereof and battery pack
CN104283293B (zh) * 2014-09-29 2016-06-29 深圳市泰金田科技有限公司 谐振-移频实现汽车无线充电的方法及系统
TWI640145B (zh) * 2014-10-13 2018-11-01 力智電子股份有限公司 轉接器、可攜式電子裝置與其充電控制方法
JP6049669B2 (ja) * 2014-10-23 2016-12-21 株式会社ダイヘン 直流電力供給装置および直流電力供給方法
JP2016092959A (ja) * 2014-11-04 2016-05-23 株式会社豊田自動織機 送電機器及び非接触電力伝送装置
JP2016092986A (ja) * 2014-11-05 2016-05-23 株式会社豊田自動織機 非接触電力伝送装置及び受電機器
CN104467130A (zh) * 2014-11-10 2015-03-25 深圳市兴吉胜电子有限公司 无线充电器
CN204290441U (zh) * 2014-11-10 2015-04-22 深圳市兴吉胜电子有限公司 无线充电器
DK3220506T3 (da) * 2014-11-11 2020-05-04 Guangdong Oppo Mobile Telecommunications Corp Ltd Kommunikationsfremgangsmåde, strømadapter og terminal
MY176505A (en) * 2014-11-11 2020-08-12 Guangdong Oppo Mobile Telecommunications Corp Ltd Power adapter and terminal
JP6013442B2 (ja) * 2014-12-24 2016-10-25 株式会社ダイヘン 非接触給電システム、送電装置、および、異物検出方法
CN104539033B (zh) * 2015-01-15 2016-08-24 东北大学 一种电动汽车自调整无线充电系统及方法
CN104617632B (zh) * 2015-02-16 2017-01-04 荆涛 可适配不同电子设备的充电装置及其充电方法、电子设备
JP2016152722A (ja) * 2015-02-18 2016-08-22 株式会社東芝 半導体装置及びワイヤレス給電システム
KR102381085B1 (ko) * 2015-02-27 2022-04-01 삼성전자주식회사 전압 컨버터, 그것을 갖는 충전 집적회로 및 전자 장치, 및 그것의 배터리 충전 방법
CN104701955B (zh) * 2015-03-03 2017-03-22 惠州Tcl移动通信有限公司 一种无线充电装置
KR102335018B1 (ko) * 2015-03-05 2021-12-02 삼성에스디아이 주식회사 충전 전압 제어 장치
EP4064521B1 (en) * 2015-03-10 2024-05-01 Samsung Electronics Co., Ltd. Method and apparatus for wireless charging
KR102154779B1 (ko) * 2015-03-10 2020-09-10 삼성전자주식회사 무선 충전 방법 및 장치
CN104701583B (zh) * 2015-04-09 2017-01-25 福州瑞芯微电子股份有限公司 基于usb接口的电池充电方法、适配器、用电设备和系统
US20160301238A1 (en) 2015-04-10 2016-10-13 Intel Corporation Managing presence and long beacon extension pulses
CN104752046B (zh) 2015-04-21 2017-03-01 浙江东尼电子股份有限公司 一种无线充电器用接收线圈
CN106208172B (zh) * 2015-04-30 2020-06-16 微软技术许可有限责任公司 移动客户端设备无线充电、通信及认证技术
JP6651711B2 (ja) * 2015-05-13 2020-02-19 セイコーエプソン株式会社 制御装置、電子機器及び無接点電力伝送システム
CN106063073B (zh) * 2015-05-13 2018-09-28 广东欧珀移动通信有限公司 快速充电方法、电源适配器和移动终端
HUE043256T2 (hu) * 2015-05-13 2019-08-28 Guangdong Oppo Mobile Telecommunications Corp Ltd Gyors töltési eljárás, hálózati adapter és mobil végberendezés
JP6547402B2 (ja) * 2015-05-13 2019-07-24 セイコーエプソン株式会社 制御装置、電子機器及び無接点電力伝送システム
JP6701623B2 (ja) * 2015-05-13 2020-05-27 セイコーエプソン株式会社 制御装置、電子機器及び無接点電力伝送システム
JP2017529043A (ja) * 2015-06-01 2017-09-28 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッド 充電回路及び移動端末
US20160373166A1 (en) * 2015-06-17 2016-12-22 Intel Corporation Proximity sensor for deep sleep wakeup of wireless charger
US20160380467A1 (en) * 2015-06-26 2016-12-29 Lei Shao Managing the output power of a wireless charger
JP6525775B2 (ja) * 2015-07-07 2019-06-05 キヤノン株式会社 送電装置及びその制御方法
US10170926B2 (en) 2015-07-27 2019-01-01 Samsung Electronics Co., Ltd Method for transmitting wireless power in wireless charging system including a wireless power transmitting unit and wireless power receiving unit
CN105148402B (zh) * 2015-08-03 2018-03-20 北京品驰医疗设备有限公司 具有保护和限制功能的充电式植入医疗装置
CN105098900B (zh) * 2015-08-05 2018-05-29 青岛海信移动通信技术股份有限公司 移动终端、可直充电源适配器及充电方法
CN104967200B (zh) * 2015-08-05 2018-04-27 青岛海信移动通信技术股份有限公司 一种快速充电方法及移动终端
CN105140985B (zh) * 2015-08-05 2017-08-25 青岛海信移动通信技术股份有限公司 移动终端、可直充电源适配器及充电方法
KR102184527B1 (ko) * 2015-08-19 2020-11-30 삼성전자주식회사 전자 장치 및 전자 장치에서 유무선 충전 방법
KR101764974B1 (ko) * 2015-08-24 2017-08-03 엘지이노텍 주식회사 무전전력전송 시스템 및 이의 구동 방법.
JP6278012B2 (ja) * 2015-08-28 2018-02-14 トヨタ自動車株式会社 非接触電力伝送システム及び送電装置
EP3352329B1 (en) * 2015-09-17 2021-02-17 IHI Corporation Contactless power transmission device, and contactless power supply system
JP2017060328A (ja) * 2015-09-17 2017-03-23 トヨタ自動車株式会社 非接触受電装置及び電力伝送システム
CN204992704U (zh) * 2015-09-23 2016-01-20 南京熊猫电子制造有限公司 一种双通道无线充电发射器
KR20170043393A (ko) * 2015-10-13 2017-04-21 엘지이노텍 주식회사 코일 장치와 코일 장치의 제조 방법 및 코일 장치를 포함하는 무선전력전송장치 그리고 무선전력수신장치
CN105226779B (zh) 2015-10-19 2017-06-20 广东欧珀移动通信有限公司 无线充电设备及其控制方法和控制装置
CN105978049A (zh) 2015-10-26 2016-09-28 乐视移动智能信息技术(北京)有限公司 电池倍压充电电路和移动终端
CN105226762A (zh) * 2015-10-29 2016-01-06 宁波力芯科信息科技有限公司 一种无线充电器设备和无线充电方法
US9871386B2 (en) * 2015-10-30 2018-01-16 Avago Technologies General Ip (Singapore) Pte. Ltd Wireless communication device and power receiving unit with switching prediction and methods for use therewith
CN105656115B (zh) * 2015-11-30 2019-05-14 东莞酷派软件技术有限公司 一种双通道充电方法、系统和终端
CN105471029B (zh) * 2015-12-18 2018-06-19 潘子恒 无线充电系统及其无线充电装置
WO2017133391A1 (zh) * 2016-02-05 2017-08-10 广东欧珀移动通信有限公司 充电系统、充电时的保护方法、电源适配器
JP6615873B2 (ja) * 2016-02-05 2019-12-04 オッポ広東移動通信有限公司 充電方法、アダプター及び移動端末
JP6645241B2 (ja) * 2016-02-16 2020-02-14 株式会社Ihi 送電装置
CN205544421U (zh) * 2016-02-17 2016-08-31 深圳市坤兴科技有限公司 具有高兼容性的快充充电电路及电源适配器
CN105656213A (zh) * 2016-02-25 2016-06-08 苏州立感电子科技有限公司 无线充电电路、无线充电装置和无线充电方法
US20170256956A1 (en) * 2016-03-04 2017-09-07 Qualcomm Incorporated Multi-impedance rectification for wireless power transfer
CN205544455U (zh) * 2016-03-25 2016-08-31 武汉大学 一种具有异物检测功能的电动汽车快速无线充电系统
WO2017163625A1 (ja) * 2016-03-25 2017-09-28 シャープ株式会社 発電システム、パワーコンディショナ、電力制御装置、電力制御方法及び電力制御プログラム
CN105680524A (zh) * 2016-04-01 2016-06-15 小天才科技有限公司 一种非接触式充电设备
CN105720645A (zh) * 2016-04-11 2016-06-29 浙江德景电子科技有限公司 一种充电方法、装置和充电器
KR102629141B1 (ko) * 2016-04-25 2024-01-26 삼성전자주식회사 배터리의 충전을 제어하기 위한 방법 및 그 전자 장치
CN105826066B (zh) 2016-05-16 2019-02-22 上海墨百意信息科技有限公司 一种应用于无线充电系统的线圈及电感调节方法
CN105896670A (zh) * 2016-05-25 2016-08-24 乐视控股(北京)有限公司 一种充电装置及移动终端
CN106026231B (zh) * 2016-05-30 2019-12-10 Oppo广东移动通信有限公司 一种无线充电方法及装置
CN106026237A (zh) 2016-06-06 2016-10-12 薛寿贞 无线充电器及无线充电系统
US10086709B2 (en) * 2016-06-14 2018-10-02 Ford Global Technologies, Llc Variable wakeup of a high-voltage charger based on low-voltage system parameters
US10599232B2 (en) * 2016-06-15 2020-03-24 Dexin Electronic Ltd. Wireless charging mouse, wireless charging mouse device and charging method thereof
KR102602243B1 (ko) 2016-07-29 2023-11-16 삼성전자주식회사 무선 전력 수신 장치 및 그 제어 방법
CN205945131U (zh) * 2016-07-29 2017-02-08 武汉大学 近场谐振与感应耦合协同式生物遥测装置无线充电系统
CN106230049B (zh) * 2016-08-01 2020-02-14 安克创新科技股份有限公司 无线充电装置与方法
US11101674B2 (en) * 2016-08-05 2021-08-24 Avago Technologies International Sales Pte. Limited Battery charging architectures
US10286799B2 (en) * 2016-08-23 2019-05-14 GM Global Technology Operations LLC Hands-free conductive battery charger for an electric vehicle
CN205986343U (zh) * 2016-08-26 2017-02-22 武汉大学 基于uswpt的可隔金属介质的无线充电装置
JP6658403B2 (ja) 2016-08-29 2020-03-04 株式会社Ihi 送電装置
TWI646799B (zh) * 2016-08-29 2019-01-01 物聯智慧科技(深圳)有限公司 遠端喚醒方法、連線伺服器及具有休眠模式的連網裝置
CN106169798A (zh) 2016-09-28 2016-11-30 北京小米移动软件有限公司 高压充电系统、高压充电电池及终端设备
CN106169799A (zh) 2016-09-29 2016-11-30 昆山工研院新型平板显示技术中心有限公司 无线充电装置、无线充电设备及利用该无线充电设备进行充电的方法
US10541542B2 (en) * 2016-09-30 2020-01-21 O2Micro Inc. System and method for charging a battery pack
JP6765923B2 (ja) * 2016-10-05 2020-10-07 東芝テック株式会社 受電装置及び充電制御プログラム
CN106385070B (zh) * 2016-10-09 2019-02-12 北京新能源汽车股份有限公司 一种识别充电桩类型的方法及装置
WO2018068243A1 (zh) * 2016-10-12 2018-04-19 广东欧珀移动通信有限公司 移动终端
WO2018072209A1 (zh) 2016-10-21 2018-04-26 北京小米移动软件有限公司 充电方法及电子设备
CN106374579B (zh) * 2016-10-28 2019-02-22 北京航空航天大学 无线充电系统及其功率传输控制方法
CN106506634A (zh) * 2016-11-04 2017-03-15 河北云景信息科技有限公司 一种摄像机智能供电系统及快充方法
CN106505751B (zh) * 2016-11-29 2020-03-27 努比亚技术有限公司 基于WiFi通信的无线充电方法及装置
US11418049B2 (en) * 2016-12-07 2022-08-16 Huawei Technologies Co., Ltd. Wireless charging/discharging method and wireless charging and discharging device
CN106451684B (zh) * 2016-12-08 2019-08-16 华为技术有限公司 一种智能控制无线充电的方法、设备及其系统
CN106532989A (zh) * 2016-12-26 2017-03-22 宇龙计算机通信科技(深圳)有限公司 无线充电控制电路、无线充电控制方法及电子装置
US10483802B2 (en) * 2017-03-14 2019-11-19 Texas Instruments Incorporated Peak voltage detection in a differentially driven wireless resonant transmitter
MX2019010614A (es) * 2017-04-07 2019-10-15 Guangdong Oppo Mobile Telecommunications Corp Ltd Sistema, dispositivo y metodo de carga inalambrica, y dispositivo para ser cargado.
EP3462564A4 (en) * 2017-04-07 2019-05-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS LOADING SYSTEM, DEVICE AND METHOD AND DEVICE TO BE LOADED
CN109787325B (zh) * 2017-04-07 2023-06-27 Oppo广东移动通信有限公司 无线充电系统、装置、方法及待充电设备
US11345467B2 (en) * 2017-04-07 2022-05-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, and sending end device
US9941795B1 (en) * 2017-04-19 2018-04-10 Dialog Semiconductor (Uk) Limited Circuits and method for extracting average load current in DC-DC switching converters
US11101695B2 (en) * 2017-04-28 2021-08-24 Samsung Electronics Co., Ltd. Electronic device for wirelessly receiving power and method for operating the same
ES2826861T3 (es) * 2017-07-17 2021-05-19 Jiangsu Midea Cleaning Appliances Co Ltd Cargador para aspirador y procedimiento de control de carga rápida del mismo
US10620679B2 (en) * 2017-09-01 2020-04-14 Dell Products L.P. Prioritizing supplying electrical power by a power storage adapter to connected devices
KR102584438B1 (ko) * 2017-11-13 2023-10-05 삼성전자주식회사 전력의 경로를 조정하는 장치 및 그 동작 방법
KR102540749B1 (ko) * 2018-03-23 2023-06-08 삼성전자주식회사 전자 장치의 외부에서 공급되는 전력의 속성 및 전자 장치의 상태에 적어도 기반하여 전력 전송 경로를 결정하는 전자 장치 및 제어 방법
CN111279574B (zh) * 2018-04-25 2024-03-22 Oppo广东移动通信有限公司 终端设备和充电控制方法
WO2019218162A1 (zh) * 2018-05-15 2019-11-21 Oppo广东移动通信有限公司 待充电设备、无线充电方法及系统
CN111566893B (zh) * 2018-05-15 2024-01-30 Oppo广东移动通信有限公司 待充电设备和充电控制方法
CN111566889B (zh) * 2018-05-25 2024-02-02 Oppo广东移动通信有限公司 无线充电接收装置及移动终端
AU2018424953B2 (en) * 2018-05-25 2021-07-15 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charging receiving device and mobile terminal
CN117293983A (zh) * 2018-06-08 2023-12-26 华为技术有限公司 一种无线充电装置以及使用所述装置的终端
EP3786988A4 (en) * 2018-06-11 2021-09-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS CHARGING COIL, WIRELESS CHARGING KIT AND ELECTRONIC DEVICE
TWI665842B (zh) * 2018-06-13 2019-07-11 金碳洁股份有限公司 無線充電的電源管理系統及其方法
CN111684680A (zh) * 2018-06-22 2020-09-18 Oppo广东移动通信有限公司 充电装置、移动终端和充电控制方法
US20200036218A1 (en) * 2018-07-25 2020-01-30 Qualcomm Incorporated Wireless Power Transfer Circuitry with a Multi-Path Architecture
KR102624380B1 (ko) * 2018-09-18 2024-01-15 삼성전자주식회사 무선 전력 전송과 관련된 송신 효율을 확인하기 위한 전력량 정보를 송수신하기 위한 장치 및 그 제어 방법
EP3872950A4 (en) * 2018-12-21 2021-11-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. SENDING DEVICE, RECEIVING DEVICE, POWER SUPPLY DEVICE, AND WIRELESS CHARGING METHOD
EP3890142A4 (en) * 2018-12-21 2021-12-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging control method, device to be charged, wireless charging device and storage medium
CN109672254B (zh) * 2019-02-22 2021-01-29 维沃移动通信有限公司 一种充电控制电路、终端设备及控制方法
WO2020172868A1 (zh) * 2019-02-28 2020-09-03 Oppo广东移动通信有限公司 充电方法和充电装置
KR20210031270A (ko) * 2019-09-11 2021-03-19 삼성전자주식회사 스위칭 충전 및 직접 충전 방식에 기반하여 배터리를 충전하는 충전 관리 칩 및 그 동작방법
EP4018526A4 (en) * 2019-10-17 2022-10-26 Samsung Electronics Co., Ltd. ELECTRONIC DEVICE INCLUDING A RESONANCE CHARGING CIRCUIT

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202998182U (zh) * 2012-10-17 2013-06-12 广东欧珀移动通信有限公司 可与手机通信的多功能保护套
CN103944243A (zh) * 2014-02-27 2014-07-23 北京航空航天大学 一种电动汽车用带有精确对中功能的感应式非接触充电装置
CN205355893U (zh) * 2016-02-25 2016-06-29 深圳天珑无线科技有限公司 移动终端与充电器
CN106451705A (zh) * 2016-12-20 2017-02-22 北京小米移动软件有限公司 电子设备、无线充电系统、设备、方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3893357A4 (en) * 2018-12-27 2021-12-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging method and apparatus, device to be charged, storage medium, and chip system
KR20220140867A (ko) * 2020-03-06 2022-10-18 위트리시티 코포레이션 무선 전력 시스템들에서의 능동 정류
JP7381767B2 (ja) 2020-03-06 2023-11-16 ワイトリシティ コーポレーション ワイヤレス電力システムにおけるアクティブ整流
KR102659781B1 (ko) 2020-03-06 2024-04-22 위트리시티 코포레이션 무선 전력 시스템들에서의 능동 정류

Also Published As

Publication number Publication date
EP3609045B1 (en) 2022-06-15
US20190356153A1 (en) 2019-11-21
KR102445168B1 (ko) 2022-09-19
WO2018184569A1 (zh) 2018-10-11
KR102328496B1 (ko) 2021-11-17
US11515736B2 (en) 2022-11-29
EP3609037B1 (en) 2022-12-07
CN110168845B (zh) 2023-07-25
US11437865B2 (en) 2022-09-06
EP3609049A1 (en) 2020-02-12
JP2020511102A (ja) 2020-04-09
US20190140470A1 (en) 2019-05-09
CN110168848B (zh) 2023-07-25
US11196305B2 (en) 2021-12-07
US20200036216A1 (en) 2020-01-30
CN110121823A (zh) 2019-08-13
EP3609041A1 (en) 2020-02-12
JP6972159B2 (ja) 2021-11-24
US11349350B2 (en) 2022-05-31
US10998751B2 (en) 2021-05-04
EP3595125B1 (en) 2021-12-22
CN109314396B (zh) 2022-07-19
EP3609049B1 (en) 2022-12-28
JP6987148B2 (ja) 2021-12-22
EP3609039A1 (en) 2020-02-12
CN110168845A (zh) 2019-08-23
KR20190127887A (ko) 2019-11-13
US11196306B2 (en) 2021-12-07
US20200021129A1 (en) 2020-01-16
EP3609049A4 (en) 2020-04-08
EP3595125A4 (en) 2020-02-26
US20200014235A1 (en) 2020-01-09
KR102269323B1 (ko) 2021-06-25
US20190386516A1 (en) 2019-12-19
WO2018184564A1 (zh) 2018-10-11
US20200021148A1 (en) 2020-01-16
US20190356154A1 (en) 2019-11-21
CN209472406U (zh) 2019-10-08
JP2020516224A (ja) 2020-05-28
CN110121824A (zh) 2019-08-13
EP3462564A4 (en) 2019-05-08
US11349349B2 (en) 2022-05-31
EP3609043A4 (en) 2020-04-08
US11201509B2 (en) 2021-12-14
CN110121823B (zh) 2023-09-01
JP6907327B2 (ja) 2021-07-21
JP2019531685A (ja) 2019-10-31
WO2018184430A1 (zh) 2018-10-11
EP3609039B1 (en) 2022-12-07
WO2018184230A1 (zh) 2018-10-11
KR20190117722A (ko) 2019-10-16
EP3609043B1 (en) 2022-11-30
KR102424046B1 (ko) 2022-07-21
EP3595125A1 (en) 2020-01-15
EP3609039A4 (en) 2020-04-15
CN110168849A (zh) 2019-08-23
EP3609041A4 (en) 2020-04-08
EP3462564A1 (en) 2019-04-03
JP2020516221A (ja) 2020-05-28
EP3609045A4 (en) 2020-04-15
CN110100369B (zh) 2023-11-17
EP3609037A4 (en) 2020-04-01
KR20190126870A (ko) 2019-11-12
CN110168855B (zh) 2023-12-22
CN110168849B (zh) 2023-11-17
EP3609037A1 (en) 2020-02-12
CN109314396A (zh) 2019-02-05
WO2018184429A1 (zh) 2018-10-11
KR20190038918A (ko) 2019-04-09
KR20190122800A (ko) 2019-10-30
CN110168855A (zh) 2019-08-23
CN110168848A (zh) 2019-08-23
JP6812537B2 (ja) 2021-01-13
KR102264015B1 (ko) 2021-06-11
EP3609041B1 (en) 2023-04-26
WO2018184577A1 (zh) 2018-10-11
EP3609043A1 (en) 2020-02-12
WO2018184428A1 (zh) 2018-10-11
EP3609045A1 (en) 2020-02-12
CN110100369A (zh) 2019-08-06
CN110121824B (zh) 2024-01-02
JP2020511108A (ja) 2020-04-09
JP6929959B2 (ja) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2018184574A1 (zh) 待充电设备、无线充电装置及其控制方法
JP7203901B2 (ja) 無線充電装置、無線充電方法及び被充電機器
TWI675526B (zh) 無線充電系統、裝置、方法及待充電裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019553928

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197030861

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018780574

Country of ref document: EP

Effective date: 20191104