CN205986343U - 基于uswpt的可隔金属介质的无线充电装置 - Google Patents

基于uswpt的可隔金属介质的无线充电装置 Download PDF

Info

Publication number
CN205986343U
CN205986343U CN201620947724.1U CN201620947724U CN205986343U CN 205986343 U CN205986343 U CN 205986343U CN 201620947724 U CN201620947724 U CN 201620947724U CN 205986343 U CN205986343 U CN 205986343U
Authority
CN
China
Prior art keywords
module
circuit
information
frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201620947724.1U
Other languages
English (en)
Inventor
蔡昌松
王军华
张智
方支剑
胡妹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201620947724.1U priority Critical patent/CN205986343U/zh
Application granted granted Critical
Publication of CN205986343U publication Critical patent/CN205986343U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本实用新型涉及超声波隔金属介质的无线充电技术领域,具体涉及基于USWPT的可隔金属介质的无线充电装置,包括发射单元和接收单元,所述发射单元还包括依次连接的信息调制模块和信号接收器,所述接收单元还包括依次连接的信息解调模块、开关控制模块、电池信息检测模块和信号发射器。该无线充电装置通过通信通道和检测模块,可同时进行“一对多”无线充电,可在工作过程中随时控制负载电池充电线路的通断,可以通过闭环控制自动维持谐振工作状态的稳定性。自动关断电量已满的负载电池的充电线路,提高充电效率。当充电任务完成时,可以自动停止充电装置,节省电能。

Description

基于USWPT的可隔金属介质的无线充电装置
技术领域
本实用新型属于超声波隔金属介质的无线充电技术领域,尤其涉及基于USWPT的可隔金属介质的无线充电装置。
背景技术
超声波无线电能传输技术USWPT主要是基于压电效应与逆压电效应的原理,利用超声换能器进行电能与机械能之间的相互转换,从而实现电能的无线传输。超声波可通过压电材料的逆压电效应方便的转化成电能,其实现方式为发射端的压电材料器件从电源中获取电能并将其转换为机械能,以超声波的形式传播到空气、水、金属等媒介中;随后接收端通过压电材料接收器件的逆压电效应将超声波能量转换为电能,调整后提供给用电端设备。
随着无线充电技术的推广,其应用环境也日趋复杂。由于电磁场在金属中传播时衰减严重,故在有金属挡板、金属墙、密闭金属容器等有金属隔离物的场合中,现阶段已较为成熟的电磁感应式和电磁谐振式WPT技术无法有效得到应用。超声波是指频率大于20kHz的声波,具有方向性强、能量易于集中等特点。它作为机械波,可以在空气、水、金属等各种媒质中传播而无电磁干扰等问题。由于超声波式无线电能传输技术USWPT对各种传输环境的适应性强、传输距离较远且可实现“一对多”传能,故其在电子产品、医疗、军工等多个应用领域都有很好的发展前景。
因为金属介质与压电材料之间的阻抗不匹配问题相较于气体、液体两种介质而言小得多。所以相比于其他两种介质中的超声波电能传输,隔金属介质的超声波无线传输可以大幅度提高传输功率和效率。应用USWPT技术为金属容器中的电气设备进行无线充电拥有得天独厚的优势。而现有的超声波穿透金属板无线电能传输装置存在如何提高充电效率,实现自动控制等问题。
实用新型内容
本实用新型的目的是提出一种穿透各种金属介质进行无线电能传输的装置,能同时进行“一对多”无线充电,工作过程中随时控制负载电池充电线路通断,能够检测电池状态并自动停止充电,既节省电能又提高了充电效率。另外还克服了发射换能器谐振频率漂移,使得谐振工作状态稳定。
为实现上述目的,本实用新型采用的技术方案是:基于USWPT的可隔金属介质的无线充电装置,包括发射单元和接收单元,所述发射单元包括依次连接的工频电源模块、整流电路、驱动电路、高频逆变电路、反馈网络、发射端匹配电路和发射换能器;所述接收单元包括依次连接的接收换能器、接收端匹配电路、整流稳压电路和负载电池模块;所述发射单元还包括依次连接的信息调制模块和信号接收器,所述接收单元还包括依次连接的信息解调模块、开关控制模块、电池信息检测模块和信号发射器;所述工频电源模块提供交流电经过整流电路、驱动电路、高频逆变电路得到高频交流电,通过所述发射换能器以超声波形式传递至接收换能器,通过所述整流稳压电路得到稳定的直流电向所述负载电池模块充电;所述信息调制模块调制负载电池操作信号,通过通信通道发送至所述信息解调模块,并控制开关控制模块对相应负载的充电线路进行开启或关断操作;所述电池信息检测模块监测各负载电池信息,若检测到某负载电池电量充满,则控制开关模块关断相应负载电池充电线路;若检测到所有负载电池充电线路关断,则触发所述信号发射器发射超声波信号至所述信号接收器,所述信号接收器控制所述驱动电路使所述无线充电装置停止充电。
在上述的基于USWPT的可隔金属介质的无线充电装置中,所述通信通道包括所述信息调制模块、发射换能器、接收换能器和信息解调模块;所述信息调制模块的信号通过所述发射换能器和所述接收换能器进行超声波无线传输至所述信息解调模块。
在上述的基于USWPT的可隔金属介质的无线充电装置中,所述发射换能器的输出信号作为反馈网络的给定输入信号,所述高频逆变电路的输出信号作为反馈网络的实际输入信号,构成闭环控制电路来控制驱动电路,调节高频逆变电路中开关器件的通断,使得所述高频逆变电路的输出的频率和电压随发射换能器谐振频率的变化而变化,保证发射换能器工作在谐振频率点上,克服谐振频率漂移。
在上述的基于USWPT的可隔金属介质的无线充电装置中,所述发射端匹配电路用于消除发射换能器的容性无功和阻抗变换;所述接收端匹配电路用于阻抗变换;所述发射换能器工作在逆压电效应状态,将电能转换为机械能;所述接收换能器工作在正压电效应状态,将机械能转换为电能。
上述基于USWPT的可隔金属介质的无线充电装置实现的原理如下:发射单元包括依次连接的工频电源模块,信息调制模块,信号接收器,整流电路,驱动电路,高频逆变电路,反馈网络,发射端匹配电路和发射换能器;接收单元包括依次连接的接收换能器,接收端匹配电路 ,信息解调模块,开关控制模块,电池信息检测模块,信号发射器,整流稳压电路和负载电池模块。工频电源模块为整流电路提供电源电压;信息调制模块对来自软件输入的操作信号进行调制,加载在高频信号上通过通信通道发送至信息解调模块;信号接收器接收来自信号发射器的反馈信号;整流电路将工频交流电整流滤波为直流电并作为高频逆变电路的输入;驱动电路产生PWM控制信号并放大,控制高频逆变电路中开关器件的触发,驱动高频逆变电路;高频逆变电路将输入的直流电逆变为高频交流电输出;反馈网络构成闭环控制,根据高频逆变电路的输出调节开关器件的通断,改变开关频率;发射端匹配电路消除发射换能器的容性无功同时起到阻抗变换的作用;发射换能器工作在逆压电效应状态,将从高频电源获得的电能转换为机械能;接收换能器工作在正压电效应状态,将接收换能器辐射面上的机械能转换为电能;接收端匹配电路起到阻抗变换的作用;信息解调模块实现与发射单元的超声波信息交互,并控制开关控制模块;开关控制模块控制各负载电池充电线路的通断;电池信息检测模块检测负载电池模块电池电压等工作信息;信号发射器向信号接收器发射接收端反馈信号;整流稳压电路将接收的能量整流稳压成恒定的直流电,向负载电池模块充电;负载电池模块存储电能,为负载正常工作供电。
发射换能器在工作过程中,由于发热、磨损、老化等原因使得其谐振频率漂移。将发射换能器输出信号作为反馈网络的给定输入信号,将高频逆变电路的输出信号作为反馈网络的实际输入信号,反馈网络构成的闭环控制电路通过对比两者误差来控制驱动电路,调节开关器件的通断状态,使得高频逆变电路的输出的频率和电压可随着发射换能器谐振频率的变化而变化,确保发射换能器一直工作在谐振频率点上,能够稳定、高效的进行将电能转换为机械能输出。
上述基于USWPT的可隔金属介质的无线充电装置的通信通道主要由以下几个部分组成:信息调制模块、发射换能器、接收换能器和信息解调模块。充电开始前,通过软件将所选负载电池信息发送给信息调制模块,信息调制模块将输入信息调制至特定频段,依靠由发射换能器、接收换能器进行超声波无线传输,所选负载电池信息以超声波载波的型式传送到信息解调模块,开关控制模块依据被解调的信息使所选负载电池线路导通,可以实现同时“一对多”对负载电池充电。在工作过程中若想中断某负载电池的充电,通过软件将负载电池充电中断信号发送给信息调制模块,通过通信通道将信号传送到信息解调模块,并控制开关控制模块将相应的负载电池线路关断。
在充电过程中,电池信息检测模块实时检测负载电池模块电池电压等工作信息。当电池信息检测模块检测到某负载电池电压已充电至额定值时,自动控制开关控制模块将该负载电池的充电线路关断,提高其余负载电池的充电效率。若开关控制模块检测到所有充电线路均为关断状态,自动触发信号发射器发射特定频段的超声波信号,信号接收器接收到停止信号,控制驱动电路使充电装置停止工作。
本实用新型的有益效果:该无线充电装置适用于各种金属介质的无线电能传输,工作过程不受电磁干扰,控制简便,安全可靠。可以实现“一对多”充电,能够检测电池状态并自动停止充电,在工作过程中随时控制负载电池充电线路的通断。可以自动调节主电路输出的频率和电压,使其稳合发射端谐振频率,大大提高了无线能量传输的功效。
附图说明
图1是本实用新型一个实施例整体功能示意图。
图2是本实用新型一个实施例通过通信通道控制负载电池充电方案的工作流程示意图;
图3是是本实用新型一个实施例自动检测停止充电的工作流程示意图;
其中,1-发射单元、11、工频电源、12-信息调制模块、13-信号接收器、14-整流电路、15-驱动电路、16-高频逆变电路、17-反馈网络、18-发射端匹配电路、19-发射换能器;2-接收单元、21-接收换能器、22-接收端匹配电路、23-信息解调模块、24-开关控制模块、25-电池信息检测模块、26-信号发射器、27-整流稳压电路、28-负载电池模块。
具体实施方式
下面结合附图对本实用新型的实施方式进行详细描述。
本实施例采用以下技术方案:基于USWPT的可隔金属介质的无线充电装置,包括发射单元和接收单元,所述发射单元包括依次连接的工频电源模块、整流电路、驱动电路、高频逆变电路、反馈网络、发射端匹配电路和发射换能器;所述接收单元包括依次连接的接收换能器、接收端匹配电路、整流稳压电路和负载电池模块;所述发射单元还包括依次连接的信息调制模块和信号接收器,所述接收单元还包括依次连接的信息解调模块、开关控制模块、电池信息检测模块和信号发射器;所述工频电源模块提供交流电经过整流电路、驱动电路、高频逆变电路得到高频交流电,通过所述发射换能器以超声波形式传递至接收换能器,通过所述整流稳压电路得到稳定的直流电向所述负载电池模块充电;所述信息调制模块调制负载电池操作信号,通过通信通道发送至所述信息解调模块,并控制开关控制模块对相应负载的充电线路进行开启或关断操作;所述电池信息检测模块监测各负载电池信息,若检测到某负载电池电量充满,则控制开关模块关断相应负载电池充电线路;若检测到所有负载电池充电线路关断,则触发所述信号发射器发射超声波信号至所述信号接收器,所述信号接收器控制所述驱动电路使所述无线充电装置停止充电。
进一步,所述通信通道包括所述信息调制模块、发射换能器、接收换能器和信息解调模块;所述信息调制模块的信号通过所述发射换能器和所述接收换能器进行超声波无线传输至所述信息解调模块。
进一步,所述发射换能器的输出信号作为反馈网络的给定输入信号,所述高频逆变电路的输出信号作为反馈网络的实际输入信号,构成闭环控制电路来控制驱动电路,调节高频逆变电路中开关器件的通断,使得所述高频逆变电路的输出的频率和电压随发射换能器谐振频率的变化而变化,保证发射换能器工作在谐振频率点上,克服谐振频率漂移。
更进一步,所述发射端匹配电路用于消除发射换能器的容性无功和阻抗变换;所述接收端匹配电路用于阻抗变换;所述发射换能器工作在逆压电效应状态,将电能转换为机械能;所述接收换能器工作在正压电效应状态,将机械能转换为电能。
如图1所示,发射单元1包括:依次连接的工频电源模块11,信息调制模块12,信号接收器13,整流电路14,驱动电路15,高频逆变电路16,反馈网络17,发射端匹配电路18,发射换能器19。接收单元2包括:依次连接的接收换能器21,接收端匹配电路 22,信息解调模块23,开关控制模块24,电池信息检测模块25,信号发射器26,整流稳压电路27,负载电池模块28。
具体实施时,工频电源模块11为整流电路14提供电源电压;信息调制模块12对来自软件输入的操作信号进行调制,加载在高频信号上通过通信通道发送至信息解调模块23;信号接收器13接收来自信号发射器26的反馈信号;整流电路14将工频交流电整流滤波为直流电并作为高频逆变电路16的输入;驱动电路15产生PWM控制信号并放大,控制高频逆变电路16中开关器件的触发,驱动高频逆变电路16;高频逆变电路16将输入的直流电逆变为高频交流电输出;反馈网络17构成闭环控制,根据高频逆变电路16的输出调节开关器件的通断,改变开关频率;发射端匹配电路18消除发射换能器19的容性无功同时起到阻抗变换的作用;发射换能器19工作在逆压电效应状态,将从高频电源获得的电能转换为机械能;接收换能器21工作在正压电效应状态,将接收换能器辐射面上的机械能转换为电能;接收端匹配电路22起到阻抗变换的作用;信息解调模块23实现与发射单元2的超声波信息交互,并控制开关控制模块24;开关控制模块24控制各负载电池充电线路的通断;电池信息检测模块25检测负载电池模块28电池电压等工作信息;信号发射器26向信号接收器13发射接收端反馈信号;整流稳压电路27将接收的能量整流稳压成恒定的直流电,向负载电池模块28充电;负载电池模块28存储电能,为负载正常工作供电。
实施时,发射换能器19在工作过程中,由于发热、磨损、老化等原因使得其谐振频率漂移。将发射换能器19输出信号作为反馈网络17的给定输入信号,将高频逆变电路16的输出信号作为反馈网络17的实际输入信号,反馈网络17构成的闭环控制电路通过对比两者误差来控制驱动电路15,调节开关器件的通断状态,使得高频逆变电路16的输出的频率和电压可随着发射换能器19谐振频率的变化而变化,确保发射换能器19一直工作在谐振频率点上,能够稳定、高效的进行将电能转换为机械能输出。
本实施例所述的通信通道主要由以下几个部分组成:信息调制模块12、发射换能器19、接收换能器21和信息解调模块23。工作过程如图2所示,充电开始前,通过软件将所选负载电池信息发送给信息调制模块12,信息调制模块12将输入信息调制至特定频段,依靠由发射换能器19、接收换能器21进行超声波无线传输,所选负载电池信息以超声波载波的型式传送到信息解调模块23,开关控制模块24依据被解调的信息使所选负载电池线路导通,可以实现同时“一对多”对负载电池充电。在工作过程中若想中断某负载电池的充电,通过软件将负载电池充电中断信号发送给信息调制模块12,通过通信通道将信号传送到信息解调模块23,并控制开关控制模块将相应的负载电池线路关断。
如图3所示,本实施例检测电池电量信息并自动停止充电的工作流程。在充电过程中,电池信息检测模块25实时检测负载电池模块28电池电压等工作信息。当电池信息检测模块25检测到某负载电池电压已充电至额定值时,自动控制开关控制模块24将该负载电池的充电线路关断,提高其余负载电池的充电效率。若开关控制模块24检测到所有充电线路均为关断状态,自动触发信号发射器26发射特定频段的超声波信号,信号接收器13接收到停止信号,控制驱动电路15使充电装置停止工作。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
虽然以上结合附图描述了本实用新型的具体实施方式,但是本领域普通技术人员应当理解,这些仅是举例说明,可以对这些实施方式做出多种变形或修改,而不背离本实用新型的原理和实质。本实用新型的范围仅由所附权利要求书限定。

Claims (4)

1.基于USWPT的可隔金属介质的无线充电装置,包括发射单元和接收单元,所述发射单元包括依次连接的工频电源模块、整流电路、驱动电路、高频逆变电路、反馈网络、发射端匹配电路和发射换能器;所述接收单元包括依次连接的接收换能器、接收端匹配电路、整流稳压电路和负载电池模块;其特征在于,所述发射单元还包括依次连接的信息调制模块和信号接收器,所述接收单元还包括依次连接的信息解调模块、开关控制模块、电池信息检测模块和信号发射器;所述工频电源模块提供交流电经过整流电路、驱动电路、高频逆变电路得到高频交流电,通过所述发射换能器以超声波形式传递至接收换能器,通过所述整流稳压电路得到稳定的直流电向所述负载电池模块充电;所述信息调制模块调制负载电池操作信号,通过通信通道发送至所述信息解调模块,并控制开关控制模块对相应负载的充电线路进行开启或关断操作;所述电池信息检测模块监测各负载电池信息,若检测到某负载电池电量充满,则控制开关模块关断相应负载电池充电线路;若检测到所有负载电池充电线路关断,则触发所述信号发射器发射超声波信号至所述信号接收器,所述信号接收器控制所述驱动电路使所述无线充电装置停止充电。
2.如权利要求1所述的基于USWPT的可隔金属介质的无线充电装置,其特征在于,所述通信通道包括所述信息调制模块、发射换能器、接收换能器和信息解调模块;所述信息调制模块的信号通过所述发射换能器和所述接收换能器进行超声波无线传输至所述信息解调模块。
3.如权利要求1或2所述的基于USWPT的可隔金属介质的无线充电装置,其特征在于,所述发射换能器的输出信号作为反馈网络的给定输入信号,所述高频逆变电路的输出信号作为反馈网络的实际输入信号,构成闭环控制电路来控制驱动电路,调节高频逆变电路中开关器件的通断,使得所述高频逆变电路的输出的频率和电压随发射换能器谐振频率的变化而变化,保证发射换能器工作在谐振频率点上,克服谐振频率漂移。
4.如权利要求3所述的基于USWPT的可隔金属介质的无线充电装置,其特征在于,所述发射端匹配电路用于消除发射换能器的容性无功和阻抗变换;所述接收端匹配电路用于阻抗变换;所述发射换能器工作在逆压电效应状态,将电能转换为机械能;所述接收换能器工作在正压电效应状态,将机械能转换为电能。
CN201620947724.1U 2016-08-26 2016-08-26 基于uswpt的可隔金属介质的无线充电装置 Active CN205986343U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620947724.1U CN205986343U (zh) 2016-08-26 2016-08-26 基于uswpt的可隔金属介质的无线充电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620947724.1U CN205986343U (zh) 2016-08-26 2016-08-26 基于uswpt的可隔金属介质的无线充电装置

Publications (1)

Publication Number Publication Date
CN205986343U true CN205986343U (zh) 2017-02-22

Family

ID=58035819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620947724.1U Active CN205986343U (zh) 2016-08-26 2016-08-26 基于uswpt的可隔金属介质的无线充电装置

Country Status (1)

Country Link
CN (1) CN205986343U (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106667548A (zh) * 2017-02-28 2017-05-17 重庆西山科技股份有限公司 基于无线控制的超声手术系统
CN109067017A (zh) * 2018-08-21 2018-12-21 南京航空航天大学 基于自适应控制的超声波无线电能传输系统
CN110011431A (zh) * 2019-04-28 2019-07-12 辽宁工程技术大学 一种应用于人体植入式设备的超声耦合无线充电系统
CN110168845A (zh) * 2017-04-07 2019-08-23 Oppo广东移动通信有限公司 无线充电系统、方法及待充电设备
CN112688408A (zh) * 2020-12-28 2021-04-20 杭州电子科技大学 一种低功耗超声波能量收集电路及其使用方法
CN112787419A (zh) * 2019-11-04 2021-05-11 北京小米移动软件有限公司 一种无线充电发射器、终端以及无线充电方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106667548A (zh) * 2017-02-28 2017-05-17 重庆西山科技股份有限公司 基于无线控制的超声手术系统
CN110168845A (zh) * 2017-04-07 2019-08-23 Oppo广东移动通信有限公司 无线充电系统、方法及待充电设备
CN109067017A (zh) * 2018-08-21 2018-12-21 南京航空航天大学 基于自适应控制的超声波无线电能传输系统
CN110011431A (zh) * 2019-04-28 2019-07-12 辽宁工程技术大学 一种应用于人体植入式设备的超声耦合无线充电系统
CN112787419A (zh) * 2019-11-04 2021-05-11 北京小米移动软件有限公司 一种无线充电发射器、终端以及无线充电方法
CN112688408A (zh) * 2020-12-28 2021-04-20 杭州电子科技大学 一种低功耗超声波能量收集电路及其使用方法
CN112688408B (zh) * 2020-12-28 2022-06-14 杭州电子科技大学 一种低功耗超声波能量收集电路及其使用方法

Similar Documents

Publication Publication Date Title
CN205986343U (zh) 基于uswpt的可隔金属介质的无线充电装置
US20210273488A1 (en) Hybrid wireless power transmitting system and method therefor
CN102299548B (zh) 电子装置及其供电方法以及无线供电系统
JP6467350B2 (ja) 共振型無線電力伝送システムにおける無線電力伝送制御方法、それを用いる無線電力送信装置、及びそれを用いる無線電力受信装置
CN102355035A (zh) 无线充电发送装置、无线充电系统以及无线充电控制方法
CN103107584B (zh) 一种具有无线移动充电功能的装置及其无线充电方法
WO2007123433A1 (fr) Système de chargement sans fil avec rétroaction
CN104319830A (zh) 一种基于近场通信的充电系统和方法
CN104659925A (zh) 无线电能收发方法和装置
CN109417309A (zh) 带内通信的无线充电系统
US8766486B2 (en) Non-resonance wireless power device
CN103812195A (zh) 一种无线充放电电路、终端设备及无线充放电方法
CN106849387A (zh) 一种无线充电发射装置及其智能充电输入和输出方法
CN104426205B (zh) 无线充电装置与方法以及使用该装置的移动终端
CN202721505U (zh) 一种新型智能快速充电无线充电器
CN105406606A (zh) 无线充电方法及无线充电发射装置
CN104617646A (zh) 一种基于zvs自激磁共振的智能无线充电装置
CN110311439A (zh) 一种基于无线能量传输系统的无线充电方法
CN206673710U (zh) 一种无线充电发射装置
EP3618226B1 (en) Wireless power maximum efficiency tracking by system control
CN204290445U (zh) 一种具有蓝牙功能的无线充电器
CN105262242A (zh) 一种能量双向流动的无线充电装置
CN202634088U (zh) 物联网传感器网络内一对多无线充电系统
CN208623397U (zh) 无线充电设备
CN109193889A (zh) 无线充电系统

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant