WO2018159370A1 - 冷間圧延機および冷間圧延方法 - Google Patents

冷間圧延機および冷間圧延方法 Download PDF

Info

Publication number
WO2018159370A1
WO2018159370A1 PCT/JP2018/005853 JP2018005853W WO2018159370A1 WO 2018159370 A1 WO2018159370 A1 WO 2018159370A1 JP 2018005853 W JP2018005853 W JP 2018005853W WO 2018159370 A1 WO2018159370 A1 WO 2018159370A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
stand
steel plate
cold rolling
rolling
Prior art date
Application number
PCT/JP2018/005853
Other languages
English (en)
French (fr)
Inventor
達人 福島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP18761758.4A priority Critical patent/EP3590614B1/en
Priority to JP2018526952A priority patent/JP6429059B1/ja
Priority to KR1020197023771A priority patent/KR102221665B1/ko
Priority to RU2019125437A priority patent/RU2717626C1/ru
Priority to CN201880012150.0A priority patent/CN110300633B/zh
Priority to US16/488,339 priority patent/US11612923B2/en
Publication of WO2018159370A1 publication Critical patent/WO2018159370A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0245Lubricating devices
    • B21B45/0248Lubricating devices using liquid lubricants, e.g. for sections, for tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0245Lubricating devices
    • B21B45/0248Lubricating devices using liquid lubricants, e.g. for sections, for tubes
    • B21B45/0251Lubricating devices using liquid lubricants, e.g. for sections, for tubes for strips, sheets, or plates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/06Product speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/02Edge parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a cold rolling mill and a cold rolling method, and more specifically, a tandem cold rolling mill suitable for rolling difficult-to-roll materials such as silicon steel plates and stainless steel plates, and its cold
  • the present invention relates to a cold rolling method using a rolling mill.
  • the cold rolling mill to be used is a tandem type in which a plurality of rolling mills are arranged in series or a reverse type consisting of a single stand, Regardless of whether it is a batch type that rolls steel strips in units of one coil or a continuous type that welds steel strips on the entry side of rolling equipment and continuously rolls steel strips, Rolling is generally performed at about room temperature and at most about 40 ° C.
  • a property of the steel sheet that the higher the temperature, the lower the deformation resistance and the rollability is improved, but the energy cost required to increase the steel sheet temperature is higher than the above merit. This is because the rise is larger, the manufacturing process is complicated by raising the steel plate temperature, and there are problems in handling.
  • Patent Document 1 when cold rolling a silicon steel sheet, an induction heating device is used on the inlet side of the rolling mill to replace the steel sheet edge with a ductile-brittle transition temperature in a Charpy impact test.
  • a cold rolling method of heating to a temperature of 60 ° C. or higher and supplying to a rolling mill is disclosed.
  • Patent Document 2 discloses an induction heating apparatus using a pair of C-type inductors (inductors) as shown in FIG. 1 as means for heating the steel plate edge portion.
  • this induction heating apparatus both edge portions of the steel plate 1 are sandwiched from above and below by the slit portion of the C-type inductor 2 and an induction current is generated in the steel plate edge portion by the high frequency magnetic flux generated by flowing a high frequency current through the induction heating coil 3, The steel sheet edge is heated by Joule heat generated by the induced current.
  • the edge portion on the side where the wrap length has been reduced generates less eddy currents that block the flow of magnetic flux, the power factor decreases, and the reactive current increases, so even if the coil current is increased, Predetermined output cannot be produced, resulting in insufficient heating.
  • the opposite edge portion has a large wrap length, and therefore is heated abnormally, contrary to the above. As a result, edge cracks occur during rolling at the underheated edge portion, and ear waves due to thermal expansion occur at the other abnormally heated edge portion, making stable rolling difficult. Therefore, when heating the steel plate edge portion to a predetermined temperature by induction heating, it is important to control the lap length to an optimum value. Therefore, the induction heating apparatus which controls said wrap length to the predetermined range is disclosed by patent document 3 and patent document 4, for example.
  • rolling oil such as soluble oil and mineral oil
  • emulsified dispersed
  • water emulsion
  • the emulsion acts as a rolling lubricant as well as a coolant. Therefore, the emulsion is also called rolling oil or coolant. Therefore, in the present invention, the emulsion is hereinafter referred to as “coolant”.
  • the concentration of the rolling oil contained in the coolant used in the circulating oil supply system depends on the type of the rolling oil, it is usually about 2 to 4 mass%. However, it has a disadvantage in rolling difficult-to-roll materials such as hard materials and extremely thin materials. Therefore, as a means for further improving rolling lubricity, a hybrid system (for example, see Non-Patent Document 1) in which a small amount of a high concentration coolant is directly injected onto the steel sheet surface while using a low concentration coolant has been proposed. Yes. In this system, high-concentration coolant is used in the second and subsequent stands from the viewpoint of reducing the amount of rolling oil to be circulated and maintaining its cleanliness.
  • low-concentration coolant that functions as a lubricant and coolant is supplied from the entrance and exit sides of each stand to the work roll outer peripheral surface and / or work roll and intermediate roll or backup roll.
  • the steel sheet is rolled while being sprayed between. Therefore, even if the techniques of Patent Documents 1 and 2 are applied and the steel plate edge portion is heated to a temperature of 60 ° C. or higher using an edge heater on the upstream side of the first stand, the spray is injected on the first stand entry side. Since it cools by the low concentration coolant or the liquid pool formed in the roll bite, the steel plate temperature when reaching the roll bite of the first stand becomes 60 ° C. or less.
  • This cooling becomes particularly remarkable at the time of low-speed rolling such as rolling the welded portion of the preceding coil and the succeeding coil because the time until the steel plate reaches the roll bite becomes long. Therefore, it is necessary to set the heating temperature of the edge heater to a high value in consideration of the cooling by the coolant, and the amount of electric power necessary for the heating inevitably increases.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to produce a difficult-to-roll material such as a silicon steel plate and a stainless steel plate, particularly at the time of low-speed rolling, at the edge of the steel plate.
  • Another object of the present invention is to provide a cold rolling mill that enables rolling without causing sheet breakage and to propose a cold rolling method using the cold rolling mill.
  • Non-Patent Document 1 On the upstream side of the first stand of the tandem type cold rolling mill, after heating both edge portions of the steel plate with an edge heater, a high concentration coolant is sprayed onto the steel plate edge portion, so that the steel plate made of coolant is used. It has been found that the plate-out amount of the rolling oil can be secured while suppressing the temperature drop at the edge portion, and consequently, it is possible to roll a difficult-to-roll material without causing an ear crack or a plate break even at a low speed rolling.
  • the present invention has been developed.
  • the present invention based on the above knowledge is a circulating oil supply type tandem type cold rolling mill in which a steel sheet is continuously rolled by supplying a coolant that serves both as rolling oil and cooling water to each stand.
  • a coolant that serves both as rolling oil and cooling water
  • It is a cold rolling mill characterized in that a facility for injecting coolant having a higher concentration than the coolant supplied to the first stand onto the surfaces of both edge portions of the steel sheet is provided.
  • the edge heater in the cold rolling mill of the present invention is an induction heating device that heats only the edge of the steel sheet by sandwiching both edge parts of the steel sheet from above and below with a C-type inductor.
  • the high concentration coolant in the cold rolling mill of the present invention is characterized in that the concentration of the rolling oil is 10 mass% or more.
  • the present invention also provides a method for cold rolling a steel sheet using a circulating oil supply type tandem cold rolling mill that supplies coolant that serves as both rolling oil and cooling water to each stand.
  • a method for cold rolling a steel sheet using a circulating oil supply type tandem cold rolling mill that supplies coolant that serves as both rolling oil and cooling water to each stand.
  • using an edge heater to heat the steel plate temperature at both edges of the steel plate to 60 ° C. or more on the roll bit entry side of the first stand; and Cold rolling, characterized in that, before the heated steel plate edge portions reach the roll bit of the first stand, a coolant having a higher concentration than the coolant supplied to the first stand is sprayed onto the surfaces of the steel plate edge portions. Is the method.
  • the high concentration coolant in the cold rolling method of the present invention is characterized in that the concentration of the rolling oil is 10 mass% or more.
  • the cold rolling method of the present invention is characterized in that the injection amount of the high concentration coolant and / or the injection amount of the low concentration coolant on the first stand entrance side is adjusted according to the rolling speed.
  • the surface of the both steel plate edge portions is between the edge heater and the first stand. Since a small amount of coolant having a higher concentration than the coolant supplied to the first stand of the cold rolling mill is injected, heat loss due to the injection of the high concentration coolant can be reduced, and the rolling oil on the steel plate surface can be reduced.
  • the plate-out property can be improved. Therefore, according to the present invention, the temperature of the steel sheet edge part on the roll bite entry side can be stably set to 60 ° C. or more without excessive heating by the edge heater, and the rolling oil on the steel sheet surface A plate-out amount can be secured.
  • FIG. 2 shows an outline of a fully continuous 4-stand cold rolling facility to which the technology of the present invention can be applied.
  • a steel plate 102 unwound from a coil state in a payoff reel (unwinding machine) 101 is joined to a preceding material and a succeeding material by a welding machine 103, and after passing through a looper 104, a cold rolling mill comprising four stands. After being rolled to a predetermined plate thickness, it is wound around the coil by the tension reel 108 on the exit side. The rolled steel sheet wound on the tension reel 108 is cut by the running shear 107 at the welded portion between the preceding material and the succeeding material or when a predetermined winding weight is reached. The succeeding steel plate that has been discharged and rolled after cutting is wound around another tension reel that has been waiting, and rolling is continued.
  • FIG. 3 is an enlarged view of the front stage portion of the 4-stand cold rolling mill shown in FIG. 2, that is, the first stand, the second stand, and the entry side portion of the first stand.
  • the rolling oil supply system is a circulating oil supply system
  • the rolling lubricant rolling oil
  • the roll is cooled by mixing the rolling oil at a low concentration with respect to water.
  • the emulsified emulsion is sprayed from the injection device provided on the entry side and exit side of each stand toward the outer peripheral surface of the work roll and / or between the work roll and the intermediate roll.
  • the coolant supplied to each stand is also referred to as “low concentration coolant” and the injection device thereof is also referred to as “low concentration coolant injection device”.
  • the cold rolling oil synthetic esters, mineral oils, animal and vegetable oils and fats are generally used, and the concentration of the rolling oil in the low-concentration coolant is usually about 1 to 5 mass%.
  • the temperature of the low-concentration coolant is usually controlled at about 40 to 70 ° C. in consideration of cooling ability.
  • the cold rolling mill of the present invention shown in FIG. 3 is provided with an edge heater for heating both edge portions of the steel plate on the upstream side (immediately before the entry side) of the first stand.
  • the steel plate edge portion can be heated to a temperature equal to or higher than the ductile-brittle transition temperature (60 ° C.).
  • the heating method of the edge heater is not particularly limited as long as it can rapidly heat the steel plate edge portion, but is preferably an induction heating method for which technology has already been established.
  • the heating region of the steel plate edge portion by the edge heater is preferably in the range of at least 30 mm from the plate width end portion. However, if the heating region is too wide, the heating equipment cost increases and the amount of power required for heating also increases. Note that the installation position of the edge heater is preferably in the range of 2 to 10 m upstream from the first stand. If it exceeds 10 m, heat loss from heating to the roll bit of the first stand is large. On the other hand, if it is less than 2 m, a space for installing a high-concentration coolant injection device to be described later may not be secured.
  • the heating temperature by the edge heater at the steel plate edge portion may be such that the steel plate edge temperature on the roll bit entrance side of the first stand is equal to or higher than the ductile-brittle transition temperature (60 ° C.) of the difficult-to-roll material. is important.
  • the low-concentration coolant is injected on the entrance side of the first stand, and the liquid bite of the low-concentration coolant is formed in the roll bite portion of the work roll, the steel plate edge portion heated by the edge heater Will be cooled. Therefore, in order to set the temperature of the edge of the steel sheet on the roll bite entrance side of the first stand to 60 ° C.
  • the steel plate edge temperature on the roll bit entry side of the first stand is preferably 80 ° C. or higher.
  • the steel plate edge portion is further cooled when the amount of low concentration coolant injection on the first stand entry side is increased or the low concentration coolant is injected onto the steel plate edge portion.
  • a vicious cycle occurs in which it is necessary to further increase the heating temperature of the edge heater.
  • the cold rolling mill of the present invention shown in FIG. 3 has a rolling oil concentration between the edge heater and the first stand rolling mill as compared with the above-described low concentration coolant.
  • a high-concentration coolant injection device capable of injecting coolant having a high level (high-concentration coolant) onto the surfaces of both edge portions of the steel sheet is installed.
  • FIG. 4 is a view of the cold rolling mill shown in FIG. 3, after heating a hot-rolled steel plate having a thickness of 2.0 mm with an edge heater during low-speed rolling (steel plate speed on the first stand 20 mpm).
  • the result of investigating the relationship with the steel plate temperature of the roll bite entrance side of the stand is shown.
  • the edge heater is installed at a position 5 m upstream from the first stand, and the high-concentration coolant injection device is installed at a position 1 m upstream from the first stand.
  • a small amount of high-concentration coolant should be injected onto the surface of the edge of the heated steel sheet in order to lower the heating temperature of the edge heater.
  • the heating temperature in the edge heater needs to be 350 ° C.
  • the heating temperature at the edge heater can be lowered to 190 ° C., and when the concentration of the rolling oil is further increased, the heating temperature at the edge heater can be further lowered.
  • the plate-out amount of the rolling oil (the amount of adhesion to the steel sheet surface) is generally desirably 50 mg / m 2 or more.
  • the plate-out amount of rolling oil from the emulsified coolant decreases, so in order to ensure lubricity during rolling, the heating temperature of the edge heater An increase in is not preferable.
  • the steel plate temperature when the steel plate temperature is 100 ° C. or higher, the steel plate temperature increases and the plate-out amount of the rolling oil decreases for each concentration of coolant. Therefore, in order to ensure a predetermined plate-out amount when the steel plate temperature is high, it is preferable to inject a high concentration coolant. For example, in order to secure a plate-out amount of 50 mg / m 2 or more of the rolling oil, in the case of a coolant having a rolling oil concentration of 3 mass%, the steel plate temperature needs to be 120 ° C. or less. When the concentration of the rolling oil is 10 mass%, the steel sheet temperature may be 180 ° C. or lower.
  • the relationship between the rolling oil concentration of the coolant obtained from FIG. 4 and the edge heater heating temperature necessary to ensure a steel plate temperature of 60 ° C. or more of the roll tool, and the rolling oil concentration of the coolant obtained from FIG. 5 and the rolling FIG. 6 shows the relationship with the steel plate temperature necessary for securing an oil plate-out amount of 50 mg / m 2 or more.
  • the rolling oil concentration of the coolant necessary to secure the steel sheet temperature of the roll bite of 60 ° C. or higher and the rolling oil concentration of the coolant necessary to ensure the plate-out amount of 50 mg / m 2 or more of the rolling oil are as follows.
  • the compatible range is approximately 10 mass% or more, that is, in order to reduce the heating temperature at the edge heater while maintaining the lubricity during cold rolling, the concentration of the rolling oil is 10 mass% or more. It can be seen that a small amount of coolant may be sprayed onto the surface of the steel plate edge. In addition, the density
  • the welded portion of the preceding coil and the succeeding coil is rolled.
  • rolling is performed at a reduced rolling speed.
  • the injection amount of the coolant during such low-speed rolling that is, the injection amount of the low concentration coolant or the high concentration coolant is constant
  • the cooling time by the coolant becomes long.
  • the steel sheet edge temperature on the roll bite entry side during high-speed rolling is heated by an edge heater so as to be 60 ° C. or higher, the steel plate edge portion is greatly cooled during low-speed rolling, and the roll bite entry temperature May be well below 60 ° C.
  • the heating temperature of the edge heater is preferably adjusted according to the rolling speed.
  • the region of the steel plate edge portion where the high-concentration coolant is injected is limited to both the steel plate edge portions heated by the edge heater.
  • a control device is required to adjust the injection position of the high-concentration coolant accordingly. Therefore, the equipment cost and the maintenance load increase. Therefore, the range in which the high-concentration coolant is injected may be expanded in consideration of plate width variation. Furthermore, the injection region may be made full width, and the injection amount of the low-concentration coolant may be reduced accordingly.
  • an induction heating type edge heater that heats both edges of the steel plate at a position 5 m upstream of the first stand, and a high concentration coolant that injects a high concentration coolant between the edge heater and the first stand.
  • a fully continuous tandem cold rolling mill provided with an injection device, a hot rolled steel sheet having a thickness of 2.0 to 3.0 mm containing 3.0 mass% or more of Si is obtained with a thickness of 0.3
  • An experiment for cold rolling to ⁇ 0.5 mm was conducted.
  • the tandem cold rolling mill is of a circulating oil supply type, and is mixed with water so that the concentration of the rolling oil mainly composed of ester is 3 mass%, and the emulsion is a low concentration coolant (A low-concentration coolant injection device that injects (temperature: 50 ° C.) between the outer peripheral surface of the work roll of each stand and between the work roll and the intermediate roll is provided.
  • the edge heater is configured to be able to heat a range of 30 mm from the plate width end portions of both edge portions of the steel plate by a C-type inductor.
  • the high-concentration coolant injection device is installed at a position 5 m upstream from the roll bit of the first stand, and is mixed with water so that the rolling oil mainly composed of ester becomes 10 mass% and emulsified.
  • a high-concentration coolant (temperature: 50 ° C.) can be injected at an injection amount of 0.1 m 3 / min over the entire width including both edge portions of the steel plate.
  • the setting conditions of the high concentration coolant injection device installed between the edge heater which heats both edges of a steel plate, and the 1st stand, and the low concentration coolant injection device of the 1st stand were shown in Table 1.
  • the rolling condition 1 is that both the steel plate edge portions (width 30 mm) were heated with an edge heater after setting the injection amount of the low-concentration coolant on the first stand entrance side to 5 m 3 / min.
  • injection of the concentration coolant was not performed, and the electric energy of the edge heater at this time was set so that the temperature of the edge of the steel plate on the roll bite entrance side of the first stand was 60 ° C.
  • rolling condition 2 is an example (comparative example) in which the amount of electric power of the edge heater is reduced to 70 when the power consumption of rolling condition 1 is 100 (base) with respect to rolling condition 1 described above.
  • rolling condition 3 is lower than the rolling condition 2 in that the injection amount of the low concentration coolant is reduced to 75 when the injection amount of the rolling conditions 1 and 2 is 100 (base), and the high concentration coolant.
  • the result of the said experiment evaluated by the fracture
  • the steel plate edge was heated with an edge heater so that the temperature at the inlet side of the first stand was 60 ° C.
  • the incidence was 0.4%.
  • the heating temperature of the edge heater has to be increased, so that the amount of electric power required for heating is great.
  • rolling condition 2 in which the amount of power of the edge heater is reduced with respect to the rolling condition 1, the power consumption is reduced, but the steel plate edge temperature on the roll bite entry side is reduced to 40 ° C. due to insufficient heating of the steel plate edge portion.
  • the amount of low-concentration coolant injection was reduced with respect to the above-described rolling condition 2, and in the rolling condition 3 in which high-concentration coolant was injected, the power amount of the edge heater was reduced as in the rolling condition 2. Since the heat loss reduction at the steel sheet edge portion by reducing the low-concentration coolant injection amount was larger than the heat loss due to high-concentration coolant injection, the steel plate edge temperature on the roll bite entry side increased to 60 ° C.
  • the plate breakage rate due to the ear cracks is greatly improved with respect to the rolling condition 2, and is 0. Reduced to 2%. From this result, it can be seen that by applying the present invention and injecting high-concentration coolant, even if the heating power amount of the induction heating device and the injection amount of low-concentration coolant are reduced, the occurrence of plate breakage can be greatly reduced. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Metal Rolling (AREA)

Abstract

圧延油と冷却水を兼ねたクーラントを各スタンドに供給して鋼板を連続的に圧延する循環給油方式のタンデム式冷間圧延機において、上記冷間圧延機の第1スタンドの上流側に鋼板の両エッジをロールバイト入側の鋼板温度で60℃以上に加熱するエッジヒータが配設され、かつ、上記エッジヒータと上記第1スタンドとの間に、第1スタンドに供給するクーラントより高濃度のクーラントを鋼板両エッジ部表面に噴射する設備を配設してなる冷間圧延機を用いることにより、珪素鋼板やステンレス鋼板のような難圧延材を、低速圧延時においても、鋼板エッジの耳割れや板破断を起こすことなく圧延することを可能とする。

Description

冷間圧延機および冷間圧延方法
 本発明は、冷間圧延機と冷間圧延方法に関し、具体的には、珪素鋼板やステンレス鋼板のような難圧延材の圧延に用いて好適なタンデム式の冷間圧延機と、その冷間圧延機を用いた冷間圧延方法に関するものである。
 従来、鋼帯(鋼板)を冷間圧延するに際しては、使用する冷間圧延機が、複数の圧延機を直列に配列したタンデム式あるいは単スタンドからなるリバース式などの種類を問わず、また、鋼帯を1コイル単位で圧延するバッチ式、あるいは、圧延設備の入側で鋼帯を溶接して連続的に鋼帯を圧延する連続式であるかを問わず、被圧延材の鋼板温度を室温程度、高くとも40℃程度として圧延するのが一般的である。これは、鋼板の性質として、温度が高い程、変形抵抗が低下し、圧延性が向上することが知られてはいるものの、上記メリットに対して、鋼板温度を高めるために必要なエネルギーコストの上昇の方が大きく、また、鋼板温度を高めることによる製造工程の複雑化やハンドリング面での問題があることなどの理由による。
 ところで、JIS G3141に規定されたような一般冷延鋼板では、上記のような室温レベルの温度で行う冷間圧延でも、鋼板の板幅端部(エッジ部)に生ずる耳割れは小さく、操業上、板破断等の大きな問題を生じることはない。しかし、Siを1mass%以上含有する珪素鋼板(電磁鋼板)や、CrやNi等の合金元素を多量に含有するステンレス鋼板などは、一般冷延鋼板と比較し、硬質で脆化し易いため、室温レベルの温度で冷間圧延を行うと、圧延後の鋼板エッジ部に大きな耳割れが発生し、最悪の場合、圧延中に板破断を起こしてしまうという問題がある。
 この問題を解決する技術として、例えば、特許文献1には、珪素鋼板を冷間圧延するに際して、圧延機入側において誘導加熱装置を用いて鋼板エッジ部を、シャルピー衝撃試験における延性-脆性遷移温度である60℃以上の温度に加熱してから圧延機に供給する冷間圧延方法が開示されている。
 また、特許文献2には、鋼板エッジ部を加熱する手段として、図1に示したような、1対のC型インダクタ(誘導子)を用いた誘導加熱装置が開示されている。この誘導加熱装置は、鋼板1の両エッジ部をC型インダクタ2のスリット部で上下から挟み、誘導加熱コイル3に高周波電流を流して発生した高周波磁束で鋼板エッジ部に誘導電流を発生させ、該誘導電流によるジュール熱で鋼板エッジ部を加熱するものである。
 ここで、上記誘導加熱装置で鋼板エッジ部を所定の温度に加熱するためには、鋼板エッジ部と、このエッジ部を上下から挟むインダクタとが重なり合う長さ(ラップ長)が予め設定された範囲となるよう、インダクタの位置を鋼板の板幅変化に応じて調整する必要がある。しかし、実操業においては、上記板幅変化だけでなく、平坦度不良等によって鋼板に蛇行が発生したり、鋼板エッジ部が板幅方向に移動したりするため、鋼板両エッジ部のラップ長が変化する。そのため、例えば、ラップ長が小さくなった側のエッジ部は、磁束の流れを遮る渦電流の発生が少なくなって力率が低下し、無効電流が増加するため、コイル電流を増加しても、所定の出力が出せず、加熱不足となる。一方、反対側のエッジ部はラップ長が大きくなるため、上記とは逆に、異常加熱されることになる。その結果、加熱不足のエッジ部には、圧延中に耳割れが生じ、他方の異常加熱されたエッジ部には、熱膨張による耳波が生じるため、安定した圧延が困難になってしまう。したがって、鋼板エッジ部を誘導加熱で所定の温度に加熱する場合には、ラップ長を最適な値に制御することが重要となる。そのため、上記のラップ長を所定の範囲に制御する誘導加熱装置が、例えば、特許文献3や特許文献4に開示されている。
 ところで、冷間圧延機における潤滑油(圧延油)の供給方式としては、循環給油方式と直接給油方式の二つの方法があるが、一般冷延鋼板では前者の方式が一般的である。この方式は、ソリュブル油、ミネラル油等の圧延油を水に乳化(分散)してエマルションとしたものを、鋼板や圧延機のワークロール等に供給して圧延を行い、使用後のエマルションは回収して循環使用する方式である。この方式では、上記エマルションは、圧延潤滑剤として作用すると同時に、冷却剤としても作用する。そのため、上記エマルションは、圧延油あるいはクーラントとも称されている。そこで、本発明では、上記エマルションを、以降、「クーラント」と称する。
 また、上記循環給油方式に使用されるクーラントに含まれる圧延油の濃度は、圧延油の種類にもよるが、通常、2~4mass%程度であるため、圧延油の原単位に優れているものの、硬質材や極薄材等の難圧延材の圧延には不利な面を有している。そこで、さらに圧延潤滑性を向上させる手段として、低濃度のクーラントを使用しながら、さらに高濃度のクーラントを少量、鋼板表面に直接噴射するハイブリッド方式(例えば、非特許文献1参照)が提案されている。この方式では、高濃度のクーラントは、循環使用する圧延油の量を少なくして、その清浄度を保つ観点から、第2スタンド以降で使用されている。
特開昭61-015919号公報 特開平11-290931号公報 特開昭53-070063号公報 特開平11-172325号公報
「板圧延の理論と実際」:日本鉄鋼協会発行、p208-211(1984)
 循環給油方式のタンデム式冷間圧延機では、潤滑剤および冷却剤として機能する低濃度のクーラントを、各スタンドの入側および出側からワークロール外周面および/またはワークロールと中間ロールあるいはバックアップロールの間に噴射しながら鋼板を圧延している。そのため、特許文献1や2の技術を適用し、第1スタンドの上流側で、エッジヒータを用いて鋼板エッジ部を60℃以上の温度に加熱しても、第1スタンド入側で噴射される低濃度クーラントやロールバイトに形成された液溜りによって冷却されるため、第1スタンドのロールバイトに到達したときの鋼板温度は60℃以下となってしまう。この冷却は、先行コイルと後行コイルの溶接部を圧延するときのような低速圧延時には、鋼板がロールバイトに到達するまでの時間が長くなるため、特に顕著となる。したがって、エッジヒータでの加熱温度は、上記クーラントによる冷却を加味して高めに設定する必要があり、加熱に必要な電力量も必然的に上昇することになる。
 さらに、鋼板を圧延するには、適正量の圧延油を供給することが必要であるが、クーラント中に含まれる圧延油の鋼板表面へのプレートアウト量は、鋼板温度が高いほど低下する。そのため、エッジヒータで加熱した鋼板エッジ部は、板幅中央部と比較して潤滑不足となり易く、耳割れや板破断に対してより不利となるため、圧延油を何らかの手段で補充してやることが必要となる。しかし、ただ単に低濃度クーラントの噴射量を増やすだけでは、クーラントによる熱損失が増大するだけで、鋼板エッジ部の圧延性向上には寄与することがない。
 本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、珪素鋼板やステンレス鋼板のような難圧延材を、特に、低速圧延時においても、鋼板エッジの耳割れや板破断を起こすことなく圧延することを可能とする冷間圧延機を提供するとともに、その冷間圧延機を用いた冷間圧延方法を提案することにある。
 発明者らは、上記課題を解決する方法について、非特許文献1に開示されたハイブリッド方式の給油方式に着目して鋭意検討を重ねた。その結果、タンデム式冷間圧延機の第1スタンドの上流側で、エッジヒータで鋼板両エッジ部を加熱した後、該鋼板エッジ部に対して高濃度のクーラントを噴射することで、クーラントによる鋼板エッジ部の温度低下を抑制しつつ、圧延油のプレートアウト量を確保でき、ひいては、低速圧延時においても難圧延材を耳割れや板破断を起こすことなく圧延することが可能となることを見出し、本発明を開発するに至った。
 上記知見に基づく本発明は、圧延油と冷却水を兼ねたクーラントを各スタンドに供給して鋼板を連続的に圧延する循環給油方式のタンデム式冷間圧延機において、上記冷間圧延機の第1スタンドの上流側に、鋼板の両エッジをロールバイト入側の鋼板温度で60℃以上に加熱するエッジヒータが配設されてなり、かつ、上記エッジヒータと上記第1スタンドとの間に、第1スタンドに供給するクーラントより高濃度のクーラントを鋼板両エッジ部表面に噴射する設備を配設してなることを特徴とする冷間圧延機である。
 本発明の冷間圧延機における上記エッジヒータは、鋼板の両エッジ部を上下からC型のインダクタで挟んで鋼板エッジ部のみを加熱する誘導加熱装置であることを特徴とする。
 また、本発明の冷間圧延機における上記高濃度のクーラントは、圧延油の濃度が10mass%以上であることを特徴とする。
 また、本発明は、圧延油と冷却水を兼ねたクーラントを各スタンドに供給する循環給油方式のタンデム式冷間圧延機を用いて鋼板を冷間圧延する方法において、上記冷間圧延機の第1スタンドの上流側で、エッジヒータを用いて鋼板両エッジ部の鋼板温度が、第1スタンドのロールバイト入側で60℃以上となるよう加熱し、かつ、
上記加熱した鋼板両エッジ部が、第1スタンドのロールバイトに到達する前に、第1スタンドに供給するクーラントより高濃度のクーラントを鋼板両エッジ部表面に噴射することを特徴とする冷間圧延方法である。
 また、本発明の冷間圧延方法における上記高濃度のクーラントは、圧延油の濃度が10mass%以上のものであることを特徴とする。
 また、本発明の冷間圧延方法は、上記高濃度クーラントの噴射量および/または第1スタンド入側の低濃度クーラントの噴射量を、圧延速度に応じて調整することを特徴とする。
 本発明によれば、タンデム式冷間圧延機の第1スタンドの上流側に設置したエッジヒータで鋼板エッジ部を加熱した後、該エッジヒータと第1スタンドとの間で鋼板両エッジ部表面に、冷間圧延機の第1スタンドに供給するクーラントよりも高濃度のクーラントを少量噴射するようにしたので、高濃度クーラント噴射による熱損失を低減することができるとともに、鋼板表面への圧延油のプレートアウト性を向上することができる。したがって、本発明によれば、エッジヒータで過度の加熱を行うことなく、ロールバイト入側の鋼板エッジ部温度を安定して60℃以上とすることができ、かつ、鋼板表面への圧延油のプレートアウト量を確保することができる。したがって、本発明によれば、珪素鋼板やステンレス鋼板のような難圧延材を低速で冷間圧延するときでも、加熱電力の増加や圧延油原単位の上昇を抑制しつつ、板幅端部の耳割れや板破断などの圧延トラブルを防止することができるので、製品品質の向上や、製造コストの低下、生産性の向上に大いに寄与する。
C型インダクタ(誘導子)を用いた誘導加熱装置を説明する図である。 完全連続式の冷間圧延機の概要を説明する図である。 図2の冷間圧延機の前段部分を説明する図である。 エッジヒータで加熱後の鋼板温度とロールバイト入側の鋼板温度に及ぼすクーラントの圧延油濃度の影響を示すグラフである。 鋼板温度とプレートアウト量に及ぼすクーラントの圧延油濃度の影響を示すグラフである。 クーラントの圧延油濃度の好適範囲を説明するグラフである。
 以下、本発明について具体的に説明する。
 図2は、本発明の技術を適用することができる完全連続式の4スタンド冷間圧延設備の概要を示したものである。ペイオフリール(巻戻機)101においてコイルの状態から巻き戻された鋼板102は、溶接機103によって先行材と後行材とが接合され、ルーパー104を経た後、4スタンドからなる冷間圧延機で所定の板厚まで圧延された後、出側のテンションリール108によってコイルに巻き取られる。テンションリール108に巻き取られた圧延後の鋼板は、先行材と後行材との溶接部で、あるいは、所定の巻取重量となったときに、出側の走間シャー107で切断されて排出され、切断後に圧延された後行の鋼板は、待機していた別のテンションリールに巻き取られ、圧延が継続して行われる。
 図3は、上記図2に示した4スタンド冷間圧延機の前段部分、すなわち、第1スタンド、第2スタンドと、第1スタンドの入側部分を拡大して示したものである。
 圧延油の供給方式が循環給油方式のタンデム式冷間圧延機においては、一般に、圧延用潤滑剤(圧延油)の供給とロールの冷却を、水に対して圧延油を低濃度に混合して乳化したエマルション(クーラント)を、各スタンドの入側および出側に設けられた噴射装置から、ワークロール外周面および/またはワークロールと中間ロールの間に向けて噴射することで行っている。なお、本発明では、以降、各スタンドに供給されるクーラントを「低濃度クーラント」、その噴射装置を「低濃度クーラント噴射装置」ともいう。
 ここで、上記冷間圧延油としては、一般に、合成エステルや鉱油、動植物油脂等が用いられており、また、低濃度クーラントにおける圧延油の濃度は、通常、1~5mass%程度である。また、この低濃度クーラントの温度は、冷却能を考慮し、通常、40~70℃程度に管理されている。
 従来、循環給油方式のタンデム式冷間圧延機では、上記した低濃度クーラントのみで冷間圧延を行ってきた。しかし、低濃度クーラントのみで、珪素鋼板やステンレス鋼板等の難圧延材を冷間圧延しようとすると、被圧延材の延性不足に起因して、鋼板エッジ部に耳割れを生じ、最悪、板破断に至ることがある。
 そこで、上記問題点に対応するため、図3に示す本発明の冷間圧延機には、第1スタンドの上流側(入側直前)に鋼板の両エッジ部を加熱するエッジヒータが設置されており、鋼板エッジ部を、延性-脆性遷移温度(60℃)以上の温度に加熱することが可能となっている。上記エッジヒータの加熱方式は、鋼板エッジ部を急速加熱できる手段であれば、特に制限はないが、既に技術が確立している誘導加熱方式であれば好適である。
 上記エッジヒータによる鋼板エッジ部の加熱領域は、板幅端部から少なくとも30mmの範囲とするのが好ましい。ただし、加熱領域を広くし過ぎると、加熱設備費が増大する他、加熱に要する電力量も増大するので、最大50mm程度とするのが好ましい。
 なお、上記エッジヒータの設置位置は、第1スタンドから上流側2~10mの範囲とするのが好ましい。10mを超えると、加熱から第1スタンドのロールバイトに至るまでの熱損失が大きく、一方、2m未満では、後述する高濃度クーラント噴射装置を設置するスペースを確保できなくなる虞がある。
 ここで、上記鋼板エッジ部のエッジヒータによる加熱温度は、第1スタンドのロールバイト入側の鋼板エッジ温度が、難圧延材の延性-脆性遷移温度(60℃)以上になるよう加熱することが重要である。しかし、第1スタンドの入側では低濃度クーラントが噴射されており、かつ、ワークロールのロールバイト部には、低濃度クーラントの液溜りが形成されているため、エッジヒータで加熱した鋼板エッジ部は冷却されてしまう。そのため、第1スタンドのロールバイト入側の鋼板エッジ部の温度を60℃以上とするためには、エッジヒータでの加熱温度(エッジヒータ出側温度)を、前述した低濃度クーラントによる熱損失を加味して設定する必要がある。なお、第1スタンドのロールバイト入側の鋼板エッジ温度は、好ましくは80℃以上である。
 さらに考慮すべきことは、鋼板温度を高めると、圧延油のプレートアウト性が低下するため、鋼板エッジ部が潤滑不足となるということである。この問題を解決するため、第1スタンド入側での低濃度クーラントの噴射量を増大させたり、鋼板エッジ部に低濃度クーラントを噴射したりすると、鋼板エッジ部がさらに冷却されてしまうため、ロールバイト入側の鋼板エッジ温度を60℃以上とするためには、エッジヒータでの加熱温度をさらに高める必要があるという悪循環に陥る。
 そこで、上記問題点を解決するため、図3に示す本発明の冷間圧延機には、上記エッジヒータと第1スタンドの圧延機との間に、前述した低濃度クーラントよりも圧延油の濃度を高くしたクーラント(高濃度クーラント)を鋼板両エッジ部の表面に噴射することができる高濃度クーラント噴射装置が設置されている。
 ここで、上記高濃度クーラントは、圧延油の濃度が10mass%以上であることが好ましい。以下、その理由について説明する。
 図4は、図3に示した冷間圧延機において、低速圧延時(第1スタンド入側の鋼板速度20mpm)に、板厚2.0mmの熱延鋼板をエッジヒータで加熱した後、前述した高濃度クーラント噴射装置から、圧延油の供給量を一定とし、圧延油の濃度と流量を種々に変化させたクーラント(温度:50℃)を噴射したときの、上記エッジヒータの加熱温度と第1スタンドのロールバイト入側の鋼板温度との関係を調査した結果を示したものである。なお、エッジヒータは、第1スタンドから上流側に5mの位置、高濃度クーラント噴射装置は、第1スタンドから上流側に1mの位置に設置されている。
 この図4の結果から、エッジヒータの加熱温度を低下するためには、加熱後の鋼板エッジ表面に高濃度のクーラントを少量噴射すればよいことがわかる。例えば、ロールバイト入側の鋼板温度を60℃とするためには、クーラントの圧延油の濃度が3mass%の場合は、エッジヒータでの加熱温度は350℃とする必要があるが、クーラントの圧延油の濃度を10mass%とした場合は、エッジヒータでの加熱温度を190℃まで低下することができ、圧延油の濃度をさらに高めると、エッジヒータの加熱温度をさらに低下することができる。
 また、難圧延材の冷間圧延においては、圧延潤滑性を確保するためには、圧延油のプレートアウト量(鋼板表面への付着量)は、一般に50mg/m以上であることが望ましいとされているが、前述したように、鋼板温度が上昇すると、エマルション化したクーラントからの圧延油のプレートアウト量が低下するため、圧延時の潤滑性を確保するためには、エッジヒータの加熱温度の上昇は好ましくない。
 そこで、圧延油の濃度を種々に変化させたクーラントのプレートアウト性に及ぼす鋼板温度の影響を調べ、その結果を図5に示した。この図から、鋼板温度が100℃以上では、各濃度のクーラントとも、鋼板温度が上昇するとともに圧延油のプレートアウト量が低下している。したがって、鋼板温度が高いときに所定のプレートアウト量を確保するためには、高濃度のクーラントを噴射するのが好ましい。例えば、圧延油のプレートアウト量50mg/m以上を確保するためには、圧延油の濃度が3mass%のクーラントの場合は、鋼板温度が120℃以下であることが必要であるが、クーラントの圧延油の濃度を10mass%とした場合は、鋼板温度が180℃以下であればよいことになる。
 そして、図4から得られるクーラントの圧延油濃度とロールバイトの鋼板温度60℃以上を確保するために必要なエッジヒータ加熱温度との関係、および、図5から得られるクーラントの圧延油濃度と圧延油のプレートアウト量50mg/m以上を確保するために必要な鋼板温度との関係を併記して示したのが図6である。この図から、ロールバイトの鋼板温度60℃以上を確保するために必要なクーラントの圧延油濃度と、圧延油のプレートアウト量50mg/m以上を確保するために必要なクーラントの圧延油濃度が両立する範囲は、概ね10mass%以上の範囲であること、すなわち、冷間圧延時の潤滑性を維持したままエッジヒータでの加熱温度を低下するためには、圧延油の濃度が10mass%以上のクーラントを少量、鋼板エッジの表面に噴射すればよいことがわかる。なお、より好ましい圧延油の濃度は20mass%以上である。
 なお、図2に示したような、先行コイルと後行コイルを圧延機の入側で接合して連続的に圧延を行う冷間圧延機においては、先行コイルと後行コイルの溶接部を圧延する際には、圧延速度を落として圧延するのが一般的である。しかし、このような低速圧延時のクーラントの噴射量、すなわち、低濃度クーラントや高濃度クーラントの噴射量が一定であると、クーラントによる冷却時間が長くなる。その結果、高速圧延時のロールバイト入側の鋼板エッジ温度が60℃以上となるようエッジヒータで加熱していた場合には、低速圧延時には、鋼板エッジ部が大きく冷却され、ロールバイト入側温度が60℃を大きく下回ってしまうおそれがある。そこで、高濃度クーラントの噴射量および/または第1スタンド入側の低濃度クーラントの噴射量は、圧延速度に応じて調整するのが好ましい。あるいは、高濃度クーラントの噴射量および/または第1スタンド入側の低濃度クーラントの噴射量に加えてさらに、エッジヒータの加熱温度も、圧延速度に応じて調整するのが好ましい。
 また、高濃度クーラントを噴射する鋼板エッジ部の領域は、上記説明では、エッジヒータで加熱する鋼板両エッジ部のみに限定していた。しかし、両エッジへの噴射のみでは、圧延する鋼板の板幅が変化したり、鋼板に蛇行が生じたりした場合には、それに応じて、高濃度クーラントの噴射位置を調整する制御装置が必要となるため、設備コストやメンテナンス負荷が増大する。そこで、高濃度クーラントを噴射する領域を、板幅変動を考慮して範囲を拡大したりしてもよい。さらに、噴射領域を全幅とし、その分、低濃度クーラントの噴射量を削減するようにしてもよい。
 図3のように、第1スタンドの上流5mの位置に鋼板の両エッジを加熱する誘導加熱方式のエッジヒータと、該エッジヒータと第1スタンドとの間に高濃度クーラントを噴射する高濃度クーラント噴射装置を配設した完全連続式のタンデム式冷間圧延機を用いて、Siを3.0mass%以上含有する板厚が2.0~3.0mmの熱延鋼板を、板厚0.3~0.5mmまで冷間圧延する実験を行った。
 ここで、上記タンデム式冷間圧延機は、循環給油方式のもので、水に対して、エステルを主成分とする圧延油を濃度が3mass%となるよう混合し、エマルション化した低濃度クーラント(温度:50℃)を、各スタンドのワークロールの外周面およびワークロールと中間ロールとの間に噴射する低濃度クーラント噴射装置を配設した構造となっている。
 また、上記エッジヒータは、C型のインダクタによって、鋼板両エッジ部の板幅端部から30mmの範囲を加熱できるようにしたものである。
 また、上記高濃度クーラント噴射装置は、第1スタンドのロールバイトから上流側5mの位置に設置され、水に対してエステルを主とした圧延油を濃度10mass%となるよう混合し、エマルション化した高濃度クーラント(温度:50℃)を、鋼板の両エッジ部を含む全幅に亘って、噴射量0.1m/minで噴射できるようにしたものである。
 そして、上記実験では、鋼板両エッジを加熱するエッジヒータと、第1スタンドとの間に設置した高濃度クーラント噴射装置と、第1スタンドの低濃度クーラント噴射装置の設定条件を表1に示したように3条件で変化させた。
 具体的には、圧延条件1は、第1スタンド入側の低濃度クーラントの噴射量を5m/minに設定した上で、エッジヒータで鋼板両エッジ部(幅30mm)を加熱したが、高濃度クーラントの噴射は行なわなかった例(従来例)であり、この際のエッジヒータの電力量は、第1スタンドのロールバイト入側の鋼板エッジ部の温度が60℃となるよう設定した。
 また、圧延条件2は、上記圧延条件1に対して、エッジヒータの電力量を、圧延条件1の消費電力を100(ベース)としたときの70に削減した例(比較例)である。
 また、圧延条件3は、上記圧延条件2に対して、低濃度クーラントの噴射量を、圧延条件1および2の噴射量を100(ベース)としたときの75に低減し、かつ、高濃度クーラントを噴射した例(発明例)である。
 なお、上記実験の結果は、各圧延条件における全圧延コイル数に対する板破断が発生したコイル数の比率である破断発生率(%)で評価し、この結果を表1に併記した。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、エッジヒータで鋼板エッジ部を第1スタンドのロールバイト入側の温度で60℃となるよう加熱したが、高濃度クーラントを噴射しなかった圧延条件1では、板破断発生率は0.4%であった。しかし、低濃度クーラントによる冷却を補償するため、エッジヒータでの加熱温度を高めざるを得なかったため、加熱に要する電力量も多大であった。
 また、上記圧延条件1に対して、エッジヒータの電力量を削減した圧延条件2では、消費電力は低減するものの、鋼板エッジ部の加熱不足によりロールバイト入側の鋼板エッジ温度が40℃まで低下したため、耳割れによる板破断が頻発し、板破断の発生率は1.4%まで上昇した。
 また、上記圧延条件2に対して、低濃度クーラントの噴射量を削減し、高濃度クーラントを噴射した圧延条件3では、エッジヒータの電力量は圧延条件2と同様、削減したままであったが、高濃度クーラント噴射による熱損失より、低濃度クーラント噴射量削減による鋼板エッジ部の熱損失低減の方が大きかったため、ロールバイト入側の鋼板エッジ温度は60℃まで上昇した。さらに、高濃度クーラント噴射による圧延油のプレートアウト性の向上も相俟って、耳割れによる板破断発生率は、圧延条件2に対して大幅に改善され、従来技術と同レベル以下の0.2%まで低減した。
 この結果から、本発明を適用し、高濃度クーラントを噴射することで、誘導加熱装置の加熱電力量や低濃度クーラントの噴射量を削減しても、板破断の発生を大幅に低減できることがわかる。
 1:鋼板
 2:C型誘導子(インダクタ)
 3:誘導加熱コイル
 101:ペイオフリール
 102:鋼板
 103:溶接機
 104:ルーパー
 105:蛇行制御装置(ブライドルロール)
 106:4スタンド圧延機
 107:走間シャー
 108:テンションリール
 
 

Claims (6)

  1. 圧延油と冷却水を兼ねたクーラントを各スタンドに供給して鋼板を連続的に圧延する循環給油方式のタンデム式冷間圧延機において、
    上記冷間圧延機の第1スタンドの上流側に、鋼板の両エッジをロールバイト入側の鋼板温度で60℃以上に加熱するエッジヒータが配設されてなり、かつ、
    上記エッジヒータと上記第1スタンドとの間に、第1スタンドに供給するクーラントより高濃度のクーラントを鋼板両エッジ部表面に噴射する設備を配設してなることを特徴とする冷間圧延機。
  2. 上記エッジヒータは、鋼板の両エッジ部を上下からC型のインダクタで挟んで鋼板エッジ部のみを加熱する誘導加熱装置であることを特徴とする請求項1に記載の冷間圧延機。
  3. 上記高濃度のクーラントは、圧延油の濃度が10mass%以上であることを特徴とする請求項1または2に記載の冷間圧延機。
  4. 圧延油と冷却水を兼ねたクーラントを各スタンドに供給する循環給油方式のタンデム式冷間圧延機を用いて鋼板を冷間圧延する方法において、
    上記冷間圧延機の第1スタンドの上流側で、エッジヒータを用いて鋼板両エッジ部の鋼板温度が、第1スタンドのロールバイト入側で60℃以上となるよう加熱し、かつ、
    上記加熱した鋼板両エッジ部が、第1スタンドのロールバイトに到達する前に、第1スタンドに供給するクーラントより高濃度のクーラントを鋼板両エッジ部表面に噴射することを特徴とする冷間圧延方法。
  5. 上記高濃度のクーラントは、圧延油の濃度が10mass%以上のものであることを特徴とする請求項4記載の冷間圧延方法。
  6. 上記高濃度クーラントの噴射量および/または第1スタンド入側の低濃度クーラントの噴射量を、圧延速度に応じて調整することを特徴とする請求項4または5に記載の冷間圧延方法。
PCT/JP2018/005853 2017-02-28 2018-02-20 冷間圧延機および冷間圧延方法 WO2018159370A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18761758.4A EP3590614B1 (en) 2017-02-28 2018-02-20 Cold rolling mill and cold rolling method
JP2018526952A JP6429059B1 (ja) 2017-02-28 2018-02-20 冷間圧延機および冷間圧延方法
KR1020197023771A KR102221665B1 (ko) 2017-02-28 2018-02-20 냉간 압연기 및 냉간 압연 방법
RU2019125437A RU2717626C1 (ru) 2017-02-28 2018-02-20 Стан холодной прокатки и способ холодной прокатки
CN201880012150.0A CN110300633B (zh) 2017-02-28 2018-02-20 冷轧机以及冷轧方法
US16/488,339 US11612923B2 (en) 2017-02-28 2018-02-20 Cold rolling mill and cold rolling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-035641 2017-02-28
JP2017035641 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159370A1 true WO2018159370A1 (ja) 2018-09-07

Family

ID=63370135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005853 WO2018159370A1 (ja) 2017-02-28 2018-02-20 冷間圧延機および冷間圧延方法

Country Status (8)

Country Link
US (1) US11612923B2 (ja)
EP (1) EP3590614B1 (ja)
JP (1) JP6429059B1 (ja)
KR (1) KR102221665B1 (ja)
CN (1) CN110300633B (ja)
RU (1) RU2717626C1 (ja)
TW (1) TWI645918B (ja)
WO (1) WO2018159370A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024117A1 (ja) * 2022-07-29 2024-02-01 日本製鉄株式会社 金属板の誘導加熱装置、金属板の加工設備および金属板の誘導加熱方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7276502B2 (ja) * 2020-06-30 2023-05-18 Jfeスチール株式会社 方向性電磁鋼板の製造方法及び設備列
CN111822519A (zh) * 2020-08-26 2020-10-27 武汉钢铁有限公司 一种冷连轧机轧辊冷却控制系统
DE102021202457A1 (de) * 2021-03-15 2022-09-15 Sms Group Gmbh Anlage und Verfahren zum Kaltwalzen von Metallband aus Stahl
JP7111217B1 (ja) * 2021-04-30 2022-08-02 Jfeスチール株式会社 冷延鋼板の製造方法及び製造設備
JP7111216B1 (ja) * 2021-04-30 2022-08-02 Jfeスチール株式会社 冷延鋼板の製造方法及び製造設備

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370063A (en) 1976-12-02 1978-06-22 Mitsubishi Electric Corp Beltlike rolled substance edge heat induction device
JPS6115919A (ja) 1984-06-29 1986-01-24 Kawasaki Steel Corp けい素鋼板の冷間圧延方法
JPH11172325A (ja) 1997-12-09 1999-06-29 Sumitomo Metal Ind Ltd 鋼板エッジ部の誘導加熱制御方法
JPH11290931A (ja) 1998-04-16 1999-10-26 Nippon Steel Corp ストリップエッジの誘導加熱装置の加熱電力制御方法および加熱電力制御装置
JP2005193242A (ja) * 2003-12-26 2005-07-21 Jfe Steel Kk 金属板の冷間タンデム圧延方法および冷間タンデム圧延機
JP2011051001A (ja) * 2009-09-04 2011-03-17 Jfe Steel Corp 冷間圧延における潤滑油供給方法および冷間圧延機ならびに冷延鋼板の製造方法
JP2012148310A (ja) * 2011-01-19 2012-08-09 Jfe Steel Corp 鋼板エッジ部の加熱方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06115919A (ja) 1992-09-29 1994-04-26 Mitsui Toatsu Chem Inc 炭化珪素粉末の製造方法
RU2301119C1 (ru) * 2005-09-26 2007-06-20 Открытое акционерное общество "Северсталь" Способ производства холоднокатаных полос и устройство для его осуществления
JP4905056B2 (ja) * 2005-10-31 2012-03-28 Jfeスチール株式会社 金属板の冷間圧延方法及び冷間タンデム圧延機
DE102008050392A1 (de) * 2008-06-18 2009-12-24 Sms Siemag Aktiengesellschaft Verfahren und Vorrichtung zum Schmieren von Walzen und eines Walzbandes eines Walzgerüsts
JP5691231B2 (ja) * 2010-04-16 2015-04-01 Jfeスチール株式会社 冷間圧延方法
JP5488197B2 (ja) * 2010-05-21 2014-05-14 Jfeスチール株式会社 鋼帯の誘導加熱方法
JP2012055955A (ja) * 2010-09-13 2012-03-22 Nippon Steel Corp 冷間圧延における圧延潤滑方法およびその装置
CA2900559C (en) * 2013-03-11 2018-01-02 Novelis Inc. Improving the flatness of a rolled strip
JP6020475B2 (ja) * 2014-01-20 2016-11-02 Jfeスチール株式会社 冷間圧延設備
JP6172300B2 (ja) * 2014-02-04 2017-08-02 東芝三菱電機産業システム株式会社 熱間圧延機の温度制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370063A (en) 1976-12-02 1978-06-22 Mitsubishi Electric Corp Beltlike rolled substance edge heat induction device
JPS6115919A (ja) 1984-06-29 1986-01-24 Kawasaki Steel Corp けい素鋼板の冷間圧延方法
JPH11172325A (ja) 1997-12-09 1999-06-29 Sumitomo Metal Ind Ltd 鋼板エッジ部の誘導加熱制御方法
JPH11290931A (ja) 1998-04-16 1999-10-26 Nippon Steel Corp ストリップエッジの誘導加熱装置の加熱電力制御方法および加熱電力制御装置
JP2005193242A (ja) * 2003-12-26 2005-07-21 Jfe Steel Kk 金属板の冷間タンデム圧延方法および冷間タンデム圧延機
JP2011051001A (ja) * 2009-09-04 2011-03-17 Jfe Steel Corp 冷間圧延における潤滑油供給方法および冷間圧延機ならびに冷延鋼板の製造方法
JP2012148310A (ja) * 2011-01-19 2012-08-09 Jfe Steel Corp 鋼板エッジ部の加熱方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Theory and practice of sheet rolling", 1984, THE IRON AND STEEL INSTITUTE OF JAPAN, pages: 208 - 211
See also references of EP3590614A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024117A1 (ja) * 2022-07-29 2024-02-01 日本製鉄株式会社 金属板の誘導加熱装置、金属板の加工設備および金属板の誘導加熱方法

Also Published As

Publication number Publication date
CN110300633A (zh) 2019-10-01
EP3590614A4 (en) 2020-02-26
EP3590614B1 (en) 2021-06-16
US11612923B2 (en) 2023-03-28
JP6429059B1 (ja) 2018-11-28
KR20190107701A (ko) 2019-09-20
US20200230673A1 (en) 2020-07-23
EP3590614A1 (en) 2020-01-08
CN110300633B (zh) 2020-12-29
JPWO2018159370A1 (ja) 2019-03-07
RU2717626C1 (ru) 2020-03-24
TWI645918B (zh) 2019-01-01
KR102221665B1 (ko) 2021-02-26
TW201838731A (zh) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6429059B1 (ja) 冷間圧延機および冷間圧延方法
TWI261000B (en) Hot rolling method and apparatus for steel strip
JP7180401B2 (ja) 圧延設備及び圧延方法
CN108067843A (zh) 一种带钢激光对焊工艺
JP5691231B2 (ja) 冷間圧延方法
JP2020059050A (ja) 圧延設備及び鋼板の圧延方法
JP2965969B1 (ja) 鋼板の連続めっき方法
JP2018024017A (ja) 高級鋼連続熱間圧延方法
JP7107113B2 (ja) 圧延方法
JP4687255B2 (ja) 鋼板の製造方法
JP2006021246A (ja) 高強度熱延鋼板製造設備。
JP4250849B2 (ja) 電縫鋼管の製造方法および設備列
JP4200854B2 (ja) 連続処理における高Cr系高炭素鋼帯の破断防止処理方法および鋼帯の連続処理設備
KR20010044857A (ko) 초극박 열연강판 생산겸용 연속열간압연장치 및 이를이용한 초극박 열연강판의 제조방법
CN113787099B (zh) 一种780MPa级高强度汽车板的酸洗冷轧方法
JP7111217B1 (ja) 冷延鋼板の製造方法及び製造設備
JP3255044B2 (ja) ダブルリデュース圧延法および圧延装置
JP2004314113A (ja) 幅方向に機械的特性が異なる高張力鋼帯及びその製造方法
JP5488197B2 (ja) 鋼帯の誘導加熱方法
JP5761071B2 (ja) 高張力鋼板の調質圧延方法、調質圧延設備及び圧延ライン
JP2021030241A (ja) 圧延設備及び圧延方法
JP3255045B2 (ja) ダブルリデュース圧延法
JP2004195496A (ja) 熱間圧延ラインにおける鋼材加熱方法
JPH04351277A (ja) 圧延クラッド材の製造装置
JP2000246303A (ja) ステンレス鋼の熱間圧延方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018526952

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197023771

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018761758

Country of ref document: EP

Effective date: 20190930