JP6172300B2 - 熱間圧延機の温度制御装置 - Google Patents

熱間圧延機の温度制御装置 Download PDF

Info

Publication number
JP6172300B2
JP6172300B2 JP2015560872A JP2015560872A JP6172300B2 JP 6172300 B2 JP6172300 B2 JP 6172300B2 JP 2015560872 A JP2015560872 A JP 2015560872A JP 2015560872 A JP2015560872 A JP 2015560872A JP 6172300 B2 JP6172300 B2 JP 6172300B2
Authority
JP
Japan
Prior art keywords
temperature
flow rate
frequency component
power
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015560872A
Other languages
English (en)
Other versions
JPWO2015118606A1 (ja
Inventor
佐野 光彦
光彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Publication of JPWO2015118606A1 publication Critical patent/JPWO2015118606A1/ja
Application granted granted Critical
Publication of JP6172300B2 publication Critical patent/JP6172300B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • General Induction Heating (AREA)

Description

本発明は、熱間圧延機の温度制御装置、より詳しくは、圧延機の出側に設定された温度管理位置における材料温度が目標値になるように温度調整手段を操作する温度制御装置に関する。
熱間圧延では、引張強さなどの所望の製品の材質特性を得ること、また、製品の表面品質を良好に保つことが求められる。この要求に応えるため、圧延機の出側に温度管理位置を設定し、この温度管理位置での材料温度を、材料の全長にわたって、指定された目標値に一致させるための温度制御が行われている。
熱間圧延において材料温度を調整する手段としては、次の3つの手段が知られている。従来、これらの温度調整手段を用いた様々な温度制御方法が提案されている。
第1の温度調整手段:圧延速度を変更すること
第2の温度調整手段:冷却装置の冷却水流量を変更すること
第3の温度調整手段:誘導加熱装置の電力を変更すること
例えば、特許文献1には、第1の温度調整手段及び第2の温度調整手段を利用した温度制御方法が示されている。当該文献に開示された方法によれば、材料の長手方向の多数の計算点について、温度モデルを用いて必要となる冷却水流量が計算され、フィードフォワード制御によって冷却水流量が操作される。また、温度管理位置における材料温度と目標値との偏差を少なくするように、フィードバック制御によって冷却水流量が操作される。さらに、冷却水流量が上限或いは下限に達した時には、材料温度が目標値になるように、フィードバック制御によって圧延速度の修正が行われる。
また、特許文献2には、第3の温度調整手段を利用した温度制御方法が示されている。材料を加熱炉で昇温する際、水冷されている炉内の支持梁に材料が接触すると、材料の支持梁に接触した部分には温度低下によるスキッドマークが生じる。特許文献2に開示された方法によれば、スキッドマークに対して局所的に誘導加熱の電力を増やすことにより、温度管理位置における温度の変動を抑制することが行われる。
日本特許第3657750号公報 日本特公昭61−29110号公報 日本特開平3−99710号公報 日本特許第3041134号公報 国際公開第10/058457号
ところで、上記の第1乃至第3の温度調整手段は温度調整に係る応答特性に違いが有る。ただし、ここでいう応答特性とは操業上の様々な制約も含めた応答特性であって、機器単体での応答特性とは必ずしも一致しない。操業上の様々な制約も含めて急な変更が可能であることを応答が早い、ゆっくりとした変更に限られることを応答が遅いと称する。
第1の温度調整手段に関して言えば、急な圧延速度の変更はライン全体の制御外乱となる。このため、温度調整のための圧延速度の変更はゆっくりとした変更に限られる。つまり、第1の温度調整手段は温度調整に係る応答が遅い。なお、制御外乱には、スタンド間の張力が変動して板幅精度が低下することや、下流の冷却設備(ランアウトテーブル)での水冷の冷却時間が変化してコイラー入側温度が変動することなどが含まれる。
一方、誘導加熱装置の電力の変更は電気的な回路によるため応答がよく、急な変更が可能である。つまり、第3の温度調整手段は温度調整に係る応答が早い。
第2の温度調整手段については、応答のよいサーボバルブなどを冷却装置に適用した場合、変更性及び変更範囲の両方において第1の温度調整手段と第3の温度調整手段の中間の特性を得ることができる。よって、3つの温度調整手段の応答特性を比較すると、第3の温度調整手段、第2の温度調整手段、第1の温度調整手段の順に温度調整に係る応答が早いと言える。
しかしながら、このような第1乃至第3の温度調整手段の間の応答特性の違いは、従来の温度制御方法では十分に考慮されていなかった。つまり、従来の温度制御方法は第1乃至第3の温度調整手段を単に組み合わせただけであり、これでは温度精度を向上させるには限界があった。
具体的には、スキッドマークのような短時間の現象に対しては、応答の遅い第1の温度調整手段を適用しても材料の温度変動を十分に除去することはできない。一方、材料の先端部と尾端部では圧延機列の入側での待機時間に差がある。このため、待機時間の差に起因して長手方向の温度差(サーマルランダウン)は数10℃に達する場合がある。このように長時間に亘る大きな温度変動を全て第3の温度調整手段のみで除去しようとすれば、誘導加熱装置の電力値が上限或いは下限に容易に達してしまい、材料温度目標値を維持することができなくなってしまう場合がある。また、特許文献1に開示されているように、まずは応答のよい温度調整手段によって温度調整を行い、その温度調整手段の操作量が上限又は下限に近づいたら次の温度調整手段による温度調整に切り換える方式もある。しかし、この方式では切り換えの遅れが問題になる。
本発明は、上述のような課題に鑑みなされたもので、応答特性の異なる複数の温度調整手段を有する熱間圧延機において、各々の温度調整手段をその応答特性に応じて適正に操作することによって、被圧延材の温度精度を向上させることを目的とする。
上記目的の達成のため、本発明に係る熱間圧延機の温度制御装置は以下のように構成される。
本発明に係る熱間圧延機の温度制御装置は、被圧延材を圧延する圧延スタンドと、前記被圧延材を冷却する水冷装置と、前記被圧延材を加熱する誘導加熱装置と、前記圧延スタンドのロール回転速度を変更する速度変更装置と、前記水冷装置の冷却水流量を変更する流量変更装置と、前記誘導加熱装置の電力を変更する電力変更装置とを備えた熱間圧延機に適用される。
本発明の一つの形態によれば、前記熱間圧延機に適用される温度制御装置は、設定計算装置、出側温度計算装置、周波数成分抽出装置、電力設定修正装置、流量設定修正装置、及び、速度設定修正装置を備える。前記設定計算装置は、与えられた製造指示情報に基づき、前記電力変更装置に対する電力の基準値、前記流量変更装置に対する冷却水流量の基準値、及び、前記速度変更装置に対するロール回転速度の基準値の各々の初期値を計算するように構成される。前記出側温度計算装置は、前記被圧延材の長手方向の複数の計算点について、前記熱間圧延機の入側における各計算点の測定温度或いは計算温度、前記圧延スタンドのロール回転速度、前記誘導加熱装置の電力、及び、前記水冷装置の冷却水流量に基づき、前記熱間圧延機の出側に設定された温度管理位置に到達した時点での温度を計算するように構成される。前記周波数成分抽出装置は、前記出側温度計算装置で計算された各計算点の出側温度と、与えられた温度目標値との偏差から、高周波数成分、中周波数成分、及び、低周波数成分を抽出するように構成される。前記電力設定修正装置は、前記高周波数成分に基づき、前記電力変更装置に対する電力の基準値を修正するように構成される。前記流量設定修正装置は、前記中周波数成分に基づき、前記流量変更装置に対する冷却水流量の基準値を修正するように構成される。そして、前記速度設定修正装置は、前記低周波数成分に基づき、前記速度変更装置に対するロール回転速度の基準値を修正するように構成される。
本発明の別の形態によれば、前記熱間圧延機に適用される温度制御装置は、設定計算装置、温度計、周波数成分抽出装置、電力設定修正装置、流量設定修正装置、及び、速度設定修正装置を備える。前記設定計算装置は、与えられた製造指示情報に基づき、前記電力変更装置に対する電力の基準値、前記流量変更装置に対する冷却水流量の基準値、及び、前記速度変更装置に対するロール回転速度の基準値の各々の初期値を計算するように構成される。前記温度計は、前記熱間圧延機の出側において前記被圧延材の温度を測定するように構成される。前記周波数成分抽出装置は、前記温度計により測定された前記被圧延材の温度と、与えられた温度目標値との偏差から、高周波数成分、中周波数成分、及び、低周波数成分を抽出するように構成される。前記電力設定修正装置は、前記高周波数成分に基づき、前記電力変更装置に対する電力の基準値を修正するように構成される。前記流量設定修正装置は、前記中周波数成分に基づき、前記流量変更装置に対する冷却水流量の基準値を修正するように構成される。そして、前記速度設定修正装置は、前記低周波数成分に基づき、前記速度変更装置に対するロール回転速度の基準値を修正するように構成される。
本発明によれば、被圧延材の出側温度の計算値或いは測定値に含まれる高い周波数で変動する成分に対しては、応答の早い温度調整手段である誘導加熱装置の電力の変更によって対応することができ、低い周波数で変動する成分に対しては、応答の遅い温度調整手段であるロール回転速度の変更によって対応することができ、中ほどの周波数で変動する成分に対しては、応答が中ほどの温度調整手段である冷却水流量の変更によって対応することができる。このように各々の温度調整手段をその応答特性を考慮して操作することにより、被圧延材の温度の変動が速やかに抑えられるとともに、各温度調整手段の操作量が上限又は下限に達しにくくなる。よって、本発明によれば、被圧延材の温度精度を向上させることができる。
本発明の第1の実施形態に係る熱間圧延機及びその温度制御装置の構成を示す模式図である。 本発明の第2の実施形態に係る熱間圧延機及びその温度制御装置の構成を示す模式図である。
図面を参照して、本発明の第1及び第2の実施形態を説明する。各図面において、同一又は類似の部分には同一又は類似の符号を付している。以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、構成部品の構造、配置等を下記のものに限定する意図はない。本発明は以下に示す実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
第1の実施形態.
一般的な熱間圧延機は、単数又は複数の圧延スタンドを備える。本実施の形態に係る熱間圧延機は、複数の圧延スタンドを備える鋼板の熱間薄板圧延(ホットストリップミル)の仕上圧延機として構成されている。仕上圧延機の上流側には、加熱工程及び粗圧延工程があり、1200℃程度まで加熱された板厚200〜250mm程度の被圧延材(以下、単に材料という)が板厚20〜50mm程度になるまで圧延されたのち、電動の搬送テーブルで仕上圧延機に搬送される。また、仕上圧延機の下流側には、多数の冷却水ノズルを備えた冷却テーブル(ランアウトテーブル)と巻き取り機(コイラー)があり、圧延された材料は冷却されたのちコイル状に巻き取られる。
図1に示すように、本実施の形態では、仕上圧延機1は6台の圧延スタンド1a〜1fを備える。各々の圧延スタンド1a〜1fには、ロールを回転させるモータ2が備えられる。モータ2の操作は、モータ2ごとに設けられた定速制御装置(ASC)4によって行われる。また、各々の圧延スタンド1a〜1fには、ロールギャップを変更するための油圧又は電動の圧下装置3が備えられる。圧下装置3の操作は、圧下装置3に設けられた定位置制御装置(APC)5によって行われる。定速制御装置4と定位置制御装置5のそれぞれは、設定計算装置10で計算された基準値に従って動作する。
粗圧延工程で圧延された材料が仕上圧延機1の前の所定位置に到達すると、設定計算装置10は、上位計算機30から指定された所望の板厚の製品を製造できるように、各圧延スタンド1a〜1fの出側板厚及びロールギャップ基準値を計算する。この手法の詳細は、例えば、特許文献3に開示されている通り公知であるので、ここでは説明を省略する。定位置制御装置5は、設定計算装置10で計算されたロールギャップ基準値に従って圧下装置3を操作する。
設定計算装置10はまた、後述の方法で最終圧延スタンド1fのモータ回転速度を決定する。さらに、設定計算装置10は、材料を安定に通板するため、その他の各圧延スタンド1a〜1eの出側における材料の体積速度(マスフロー)が一定になるように各圧延スタンド1a〜1eのロール回転速度を計算する。設定計算装置10で計算されたロール回転速度の基準値は、速度変更装置11に入力される。定速制御装置4は、速度変更装置11から指示されるモータ回転速度に従ってモータ2を操作する。なお、圧延中は、定速制御装置4に対し張力制御装置8からモータ回転速度が指示される。張力制御装置8は、材料に作用する張力が適正になるように、定速制御装置4を介して各圧延スタンド1a〜1eのロール回転速度の調整を行う。この手法の詳細は、例えば、特許文献4に開示されている通り公知であるので、ここでは説明を省略する。また、設定計算装置10は、ライン上の要所に設置された図示しない熱片検出器(HMD)と搬送テーブルの速度実績値とを使い、ライン上における材料の位置を追跡している。
圧延スタンド1a〜1fの間には、圧延スタンド1a〜1eで圧延された材料を冷却するための水冷装置6が設置されている。水冷装置6は、材料の上面と下面の両方から冷却できるように、搬送ラインの上側と下側にそれぞれ配置されている。水冷装置6には流量調整バルブがあり、同バルブの開度を操作することによって注水する冷却水の流量を調整することができる。各水冷装置6の冷却水流量の変更は、流量変更装置12によって行われる。
先頭の圧延スタンド1aの上流と、二番目の圧延スタンド1bと三番目の圧延スタンド1cとの間には、材料を加熱するための誘導加熱装置7が設置されている。誘導加熱装置7は、材料の上面と下面の両方から加熱できるように、搬送ラインの上側と下側にそれぞれ配置されている。誘導加熱装置7は、供給する電力を操作することによって加熱能力を調整することができる。各誘導加熱装置7の電力の変更は、電力変更装置13によって行われる。
本実施の形態に係る温度制御装置は、以上の構成を有する仕上圧延機1に適用される。本実施の形態に係る温度制御装置は、入側温度計算装置15、出側温度計算装置16、周波数成分抽出装置17、速度修正量計算装置18、流量修正量計算装置19、及び、電力修正量計算装置20を備える。上述の設定計算装置10も本実施の形態に係る温度制御装置を構成する要素の1つである。
設定計算装置10は、材料が仕上圧延機1の前の所定位置に到達すると、上位計算機30から与えられる製造指示情報に基づき、水冷装置6の冷却水流量、誘導加熱装置7の電力、及び、各圧延スタンド1a〜1fのロール回転速度の各々の初期値を決定する。製造指示情報には、製品の板厚が含まれる。なお、冷却水流量の初期値は、材料の先端部が仕上圧延機1に到達したときの流量であり、誘導加熱装置7の電力の初期値は、材料の先端部が仕上圧延機1に到達したときの電力であり、ロール回転速度の初期値は、材料の先端部が仕上圧延機1に到達したときの速度である。
冷却水流量、誘導加熱装置7の電力、及び、ロール回転速度には、機械的制約及び操業上の制約(例えば、鋼材の酸化物スケール発生による表面品質劣化を避けるための制約)による上下限値が予め指定されている。設定計算装置10は、この上下限値の範囲内で各初期値を決定する。初期値の決め方は様々な方法が考えられる。ここでは、応答の早い誘導加熱装置7の電力、及び、水冷装置6の冷却水流量の各初期値については、変更範囲を十分に確保できるように、計算機内の数表を索引するなどして予め決定するものとする。例えば、上下限値の中央値を初期値としてもよい。次に、これらの条件下で、仕上圧延機1の出側の温度が目標値に一致するように、ロール回転速度の初期値を計算する。ただし、初期値間の計算の順序は任意である。例えば、先ず、最終圧延スタンド1fのロール回転速度と誘導加熱装置7の電力とを計算機内の数表を索引するなどして決め、次に、これらの条件下で、仕上圧延機1の出側の温度が目標値に一致するように水冷装置6の冷却水流量を計算してもよい。
各初期値の計算において、設定計算装置10は、材料が仕上圧延機1を通過する間の温度変化を正確に模擬できる数式モデルを用いる。以下、この数式モデルを温度モデルと称する。温度モデルでは以下の因子が考慮される。
(a)各圧延スタンドでの材料の変形に伴う加工発熱
(b)材料とロールの接触面の相対すべりによる摩擦発熱
(c)材料とロールの接触面からの抜熱
(d)材料表面から冷却水への抜熱
(e)誘導加熱装置から材料表面への入熱
(f)材料表面からの大気への熱放射による抜熱
温度モデルの計算においては、入力変数として圧延速度が必要である。圧延速度の計算には収束計算の手法を用いる。(a)〜(e)の具体的計算方法については、特許文献5などに開示されている方法が利用できる。例えば次式により計算することができる。なお、qpi、qfi、qRi、qAj、qWj、qIHjは、全て単位時間、単位板幅あたりの熱量である。
<加工発熱量>
Figure 0006172300
<摩擦発熱量>
Figure 0006172300
<ロール抜熱量>
Figure 0006172300
<空冷抜熱量>
Figure 0006172300
<水冷抜熱量>
Figure 0006172300
<誘導加熱装置からの入熱量>
Figure 0006172300
ここで、上記式中の記号の意味は以下のとおりである。
i:圧延スタンドの番号を表す添え字
j:加熱区間及び冷却区間の番号を表す添え字
fp(...):加工発熱量を表す関数
ff(...):摩擦発熱量を表す関数
fR(...):ロールへの抜熱量を表す関数
fA(...):空冷による抜熱量を表す関数
fW(...):水冷による抜熱量を表す関数
fIH(...):誘導加熱装置からの入熱量を表す関数
μ:摩擦係数
ρ:圧延される材料の密度
φ:圧延される材料の比熱
λ:圧延される材料の熱伝導率
ρR:ロールの密度
φR:ロールの比熱
λR:ロールの熱伝導率
εA:大気への放射率
σ:Stefan-Boltzmann定数
Qi:冷却水流量
LISi:iスタンドとi+1スタンドの距離
T:加熱区間または冷却区間の開始温度
TA:大気温度
TRi:ロール温度代表値
P:誘導加熱装置に供給される単位幅当たりの電力
材料上には、多数の計算点が材料の長手方向に所定の間隔で定義される。この計算点の間隔は、長すぎるとスキッドマークなどの急な温度変動をとらえることができなくなり、逆に、短すぎると計算機の演算能力が不足してしまう可能性がある。よって、仕上圧延機1の出側において1〜20m程度の間隔が望ましい。仕上圧延機1の入側における間隔には、次式により換算することができる。
入側の計算点の間隔=出側の計算点の間隔×入側の板厚/出側の板厚
仕上圧延機1の上流(例えば、粗圧延機40の出側)の所定位置に設置された放射温度計(以下、上流温度計と記す)27で、各計算点の材料温度(以下、上流温度と記す)が測定される。ただし、上流温度計27の測定値に変えて、上流側の機器の操業状態や上流工程の途中の温度計の測定値に基づいて、数理モデルにより上記所定位置における各計算点の材料温度を計算してもよい。
入側温度計算装置15は、材料が上流温度計27と仕上圧延機1の間の所定の入側温度計算位置28に到達したタイミングで、以下の処理を行う。なお、上流温度計27から入側温度計算位置28までの距離は、材料の長さより長いことが望ましい。また、入側温度計算位置28から仕上圧延機1までの距離は、当該区間を材料が搬送されるのに要する時間が、水冷装置6、誘導加熱装置7、及び、速度変更装置11の何れの応答時間よりも長いことが望ましい。ただし、これには限定されない。
入側温度計算装置15は、まず、各計算点について、上流温度計27の測定時点から仕上圧延機1への到達時点までの搬送時間を計算する。次に、上流温度の実績値と、搬送時間の計算値を用いて、各計算点が仕上圧延機1の入側に到達するときの材料温度(以下、入側温度と記す)を計算する。この計算には、搬送時間内における材料の熱の収支に基づいた数理モデルが用いられる。計算された各計算点の入側温度は、出側温度計算装置16に入力される。
出側温度計算装置16は、入側温度の計算値と、冷却水流量、誘導加熱装置7の電力、及び、圧延速度の各基準値或いは測定値に基づき、各計算点が仕上圧延機1の出側に設定された温度管理位置26に到達するときの材料温度(以下、出側温度と記す)を計算する。この計算には、前述の温度モデルが用いられる。設定計算装置10は、温度モデルを用いて出側温度の目標値から冷却水流量等の基準値の初期値を計算する。これに対し、出側温度計算装置16は、温度モデルによる計算を設定計算装置10とは逆方向に行うことによって、実際の冷却水流量等から出側温度の予測値を計算する。なお、出側温度計算装置16は、設定計算装置10との間で同じ温度モデルを共用している。だだし、設定計算装置10と出側温度計算装置16のそれぞれが独自に温度モデルを備えていてもよい。それぞれが温度モデルを備える場合、全く同内容の温度モデルでもよいし、設定計算装置10の温度モデルは詳細なモデルで、出側温度計算装置16の温度モデルは簡易なモデルとしてもよいし、或いは、その逆でもよい。また、出側温度計算装置16は温度モデルを備えず、設定計算装置10から温度モデルによる計算結果をもらうように構成することもできる。
出側温度計算装置16により計算された各計算点の出側温度の計算値と、上位計算機30から与えられる出側温度の目標値との差(以下、出側温度偏差と記す)が演算器21にて計算される。計算された各計算点の出側温度偏差は、周波数成分抽出装置17に入力される。
周波数成分抽出装置17は、各計算点が仕上圧延機1の入側に到達する時刻を参照して、各計算点の出側温度偏差から、高周波数成分、中周波数成分、及び、低周波数成分を取り出す。高周波数、中周波数、及び、低周波数の各定義は、対象プラントの操業状態によって調整すべきである。ただし、例を挙げるならば、高周波数は、誘導加熱装置7の応答を勘案して、1〜0.1Hz程度の周波数成分と定義し、中周波数は、水冷装置6の応答を勘案して、0.2〜0.03Hz程度の周波数成分と定義し、低周波数は、0.05Hz程度以下の周波数成分と定義することができる。
周波数成分の抽出の手法としては、様々な手法が適用可能である。広く用いられている手法としては、(i)デジタルフィルターを用いる手法、(ii)窓関数を使うフーリエ変換による手法、(iii)ウェーブレット変換による手法を挙げることができる。
(i)の手法には、様々なものが提案されている。その何れもが周波数成分抽出装置17に利用可能である。単純なFIR(Finite Impulse Response)フィルタでは、入力と出力の関係は次のように表される。ここで、係数配列a0〜aNを汎用の設計ソフトウエアで決めることにより、低周波数域通過フィルタ(LPF)や高周波数域通過フィルタ(HPF)などを実現できる。なお、式中の記号nは計算点の番号であり、記号Nはフィルタの次数であり、記号x[]は入力信号であり、記号y[]は出力信号である。
Figure 0006172300
カットオフ周波数0.02Hz程度のLPFを適用すると、低周波数成分が得られる。そして、元の信号から低周波数成分を差し引いた後、カットオフ周波数0.2Hz程度のLPFを適用すると、中周波数成分が得られる。さらに、カットオフ周波数0.2Hz程度のHPFを適用するか、或いは、元の信号から低周波数成分及び中周波数成分を差し引くことにより、高周波数成分が得られる。
(ii)の手法において、窓関数は、ある有限区間内でのみ値を持ち、それ以外はゼロとなる関数であり、例えば、ガウス窓やブラックマン窓が知られている。ガウス窓は次式で表される。なお、t0は時刻、σは窓幅を表すパラメータである。
Figure 0006172300
解析しようとする波形に窓関数を乗じてからフーリエ変換を適用すると、特定時刻の周波数分布を得ることができる。この窓関数を少しずつ移動させながらフーリエ変換を適用することで、周波数成分別の信号を得ることができる。なお、窓関数の窓幅を変えることで、時間分解能を変更することができる。つまり、窓幅を大きくし過ぎると、短時間の現象に対して時間的なずれが無視できなくなってしまう。窓幅を狭くすれば時刻の特定精度を高めることができるものの、逆に周波数分解能が低下し、各周波数成分への分離ができなくなる。したがって、窓幅(ガウス窓ではσ)は0.5〜10(秒)程度が好適である。
(iii)の手法は、周波数に応じてウェーブレット基底関数(マザーウェーブレット)が拡大縮小される、具体的には、高周波数では時間分解能が高くなる仕組みを有し、時間分解能と周波数分解能を両立しやすい特徴がある。この特性は、使用するウェーブレット基底関数により変わる。一般的な熱間圧延プラントでは、温度変動が一定の短い周期で繰り返し発生するような現象は少ないので、時間分解能が良い低次、すなわち、波数が少ないウェーブレット基底関数(例えば、4次のPaul wavelet)が適している。ただし、何らかの理由で一定の短い周期で繰り返し変化するような場合には、周波数分解能の高い高次、すなわち、波数が多いウェーブレット基底関数(例えば、6次のMorlet wavelet)が適している。
なお、(ii)の手法や(iii)の手法による周波数成分の抽出では、時間刻みが等間隔の場合、並びに、測定点数が2のべき乗である場合に効率的に演算できるアルゴリズムが知られている。例えば、高速フーリエ変換(FFT)や周波数領域でのwavelet変換などである。これらを利用する場合には、各計算点のデータ、つまり、到達時刻及び出側温度偏差を線形補間や多次関数補間などにより補間して波形を復元した後、等時間間隔で、データ数が2のべき乗(例えば、1024点や2048点など)になるように再サンプリングし、周波数成分抽出を適用する。
このようにして、周波数成分抽出装置17では、出側温度偏差を各周波数成分に分解した結果が各計算点について得られる。このうち、高周波数成分は電力修正量計算装置20に入力され、中周波数成分は流量修正量計算装置19に入力され、低周波数成分は速度修正量計算装置18に入力される。
電力修正量計算装置20は、高周波数成分に基づき誘導加熱装置7の電力の修正量を計算する。電力修正量の計算には、設定計算装置10が誘導加熱装置7の電力の初期値の計算に用いたのと同じ数式モデルを用いることができる。その数式モデルを逆算することで電力修正量が得られる。しかし、その方法では計算負荷が高くなるので、好ましくは、次に示す簡易式を用いて電力修正量を計算する。なお、次式において、ΔPは電力修正量(kW)であり、δP/δTFDは影響係数(kW/℃)であり、ΔTFD HFは出側温度偏差の高周波数成分である。
Figure 0006172300
なお、上記式中の偏微分係数は、微小値(±δP)を加えた場合の計算結果を用いて、次の式により予め設定計算時に計算される。
Figure 0006172300
電力修正量計算装置20で計算された電力修正量は、演算器24にて、設定計算装置10で設定された電力基準値に加算される。これにより、電力変更装置13に対する電力の基準値が修正される。本実施の形態では、電力修正量計算装置20と演算器24とにより「電力設定修正装置」が構成される。修正された電力基準値が入力された電力変更装置13は、機器が電力を変更するのに要する時間を考慮して、当該計算点が誘導加熱装置7の直下に到達するのに合わせ、誘導加熱装置7の電力を変更する。図1のように誘導加熱装置7が複数ある場合は、予め指定された優先度、又は、重みに従い、電力の変更を行う。
流量修正量計算装置19は、中周波数成分に基づき水冷装置6の冷却水流量の修正量を計算する。流量修正量の計算には、設定計算装置10が水冷装置6の冷却水流量の初期値の計算に用いたのと同じ数式モデルを用いることができる。その数式モデルを逆算することで流量修正量が得られる。しかし、その方法では計算負荷が高くなるので、好ましくは、次に示す簡易式を用いて流量修正量を計算する。なお、次式において、Δflwは流量修正量(%)であり、δflw/δTFDは影響係数(%/℃)であり、ΔTFD MFは出側温度偏差の中周波数成分である。
Figure 0006172300
なお、上記式中の偏微分係数は、微小値(±δflw)を加えた場合の計算結果を用いて、次の式により予め設定計算時に計算される。
Figure 0006172300
流量修正量計算装置19で計算された流量修正量は、演算器23にて、設定計算装置10で設定された流量基準値に加算される。これにより、流量変更装置12に対する冷却水量の基準値が修正される。本実施の形態では、流量修正量計算装置19と演算器23とにより「流量設定修正装置」が構成される。修正された流量基準値が入力された流量変更装置12は、機器が流量を変更するのに要する時間を考慮して、当該計算点が水冷装置6の直下に到達するのに合わせ、水冷装置6の冷却水流量を変更する。図1のように水冷装置6が複数ある場合は、予め指定された優先度、又は、重みに従い、電力の変更を行う。
速度修正量計算装置18は、低周波数成分に基づきロール回転速度の修正量を計算する。速度修正量の計算には、設定計算装置10がロール回転速度の初期値の計算に用いたのと同じ数式モデルを用いることができる。その数式モデルを逆算することで速度修正量が得られる。しかし、その方法では計算負荷が高くなるので、好ましくは、次に示す簡易式を用いて速度修正量を計算する。なお、次式において、ΔVは速度修正量(m/s)であり、δV/δTFDは影響係数(m/s/℃)であり、ΔTFD LFは出側温度偏差の低周波数成分である。
Figure 0006172300
なお、上記式中の偏微分係数は、微小値(±δV)を加えた場合の計算結果を用いて、次の式により予め設定計算時に計算される。
Figure 0006172300
速度修正量計算装置18で計算された速度修正量は、演算器22にて、設定計算装置10で設定された速度基準値に加算される。これにより、速度変更装置11に対するロール回転速度の基準値が修正される。本実施の形態では、速度修正量計算装置18と演算器22とにより「速度設定修正装置」が構成される。修正された速度基準値が入力された速度変更装置11は、機器が速度を変更するのに要する時間を考慮して、当該計算点が最終圧延スタンド1fの直下に到達するのに合わせ、ロール回転速度を変更する。
ところで、本実施の形態では、温度モデルを用いたフィードフォワード制御によって材料の温度制御を行うため、仕上圧延機1の出側の温度管理位置26に温度計を設置する必要はない。ただし、温度管理位置26に温度計を設置することは任意である。温度計を設置した場合には、温度計で得られた温度データに基づいて製品の合否を判定することができる。また、温度データから異常を判定することや、温度データに基づいて温度モデルのパラメータを学習することもできる。
第2の実施形態.
本発明の第2の実施形態を図2に示す。第1の実施の形態では、出側温度計算装置16が温度モデルを用いて出側温度を計算するのに対し、本実施形態では、仕上圧延機1の出側に設置された放射温度計(以下、出側温度計と記す)31が出側温度を測定する。そして、出側温度計31により得た出側温度の測定値と、上位計算機30から与えられる出側温度の目標値との差(以下、出側温度偏差と記す)が演算器32で計算される。出側温度偏差は、第1の実施形態と同構成の周波数成分抽出装置17に入力される。つまり、第1の実施形態では、フィードフォワード制御によって材料の温度制御を行うのに対し、本実施形態では、フィードバック制御によって材料の温度制御を行う。
周波数成分抽出装置17により抽出された高周波数成分に基づき、電力変更装置13は、即座に誘導加熱装置7の電力を変更する。高周波数の定義、及び、高周波数成分から誘導加熱装置7の電力修正量を計算するための構成は、第1の実施形態と同様である。なお、電力を変更する際には、スミスのむだ時間補正を適用してもよい。つまり、電力を変更した時点に誘導加熱装置7の直下にあった材料上の点が、搬送されて出側温度計31の直下まで到達するまでの間、電力の変更により予想される温度変化分を出側温度偏差から差し引くようにしてもよい。
また、周波数成分抽出装置17による中周波数の成分に基づき、流量変更装置12は、水冷装置6の流量を変更する。中周波数の定義、及び、中周波数成分から水冷装置6の流量変更量を計算するための構成は、第1の実施形態と同様である。なお、流量を変更する際には、スミスのむだ時間補正を適用してもよい。つまり、流量を変更した時点に水冷装置6の直下にあった材料上の点が、搬送されて出側温度計31の直下まで到達するまでの間、冷却水流量の変更により予想される温度変化分を出側温度偏差から差し引くようにしてもよい。
また、周波数成分抽出装置17による低周波数の成分に基づき、速度変更装置11は、最終圧延スタンド1fのロール回転速度を変更する。低周波数の定義、及び、低周波数成分から最終圧延スタンド1fのロール回転装置の変更量を計算するための構成は、第1の実施形態と同様である。なお、ロール回転速度を変更する際には、スミスのむだ時間補正を適用してもよい。つまり、ロール回転速度を変更した時点に最終圧延スタンド1fの直下にあった材料上の点が、搬送されて出側温度計31の直下まで到達するまでの間、ロール回転速度の変更により予想される温度変化分を出側温度偏差から差し引くようにしてもよい。
なお、スミスのむだ時間補正が適用されないか、適用されるもののゲインが低い場合には、誘導加熱装置7、水冷装置6、又は、最終圧延スタンド1fからの距離に相当するむだ時間により各々の変更に対する応答が遅くなる。よって、その場合は、高周波数、中周波数、及び、低周波数の範囲はそれぞれ第1の実施形態に比べて低周波数側にずらすことが好ましい。
1 仕上圧延機
1a〜1f 圧延スタンド
2 モータ
3 圧下装置
4 定速制御装置(ASC)
5 定位置制御装置(APC)
6 水冷装置
7 誘導加熱装置
8 張力制御装置
10 設定計算装置
11 速度変更装置
12 流量変更装置
13 電力変更装置
15 入側温度計算装置
16 出側温度計算装置
17 周波数成分抽出装置
18 速度修正量計算装置
19 流量修正量計算装置
20 電力修正量計算装置
26 温度管理位置
27 上流温度計
28 入側温度計算位置
30 上位計算機
31 出側温度計
40 粗圧延機

Claims (2)

  1. 被圧延材を圧延する圧延スタンドと、前記被圧延材を冷却する水冷装置と、前記被圧延材を加熱する誘導加熱装置と、前記圧延スタンドのロール回転速度を変更する速度変更装置と、前記水冷装置の冷却水流量を変更する流量変更装置と、前記誘導加熱装置の電力を変更する電力変更装置とを有する熱間圧延機の温度制御装置において、
    与えられた製造指示情報に基づき、前記電力変更装置に対する電力の基準値、前記流量変更装置に対する冷却水流量の基準値、及び、前記速度変更装置に対するロール回転速度の基準値の各々の初期値を計算する設定計算装置と、
    前記被圧延材の長手方向の複数の計算点について、前記熱間圧延機の入側における各計算点の測定温度或いは計算温度、前記圧延スタンドのロール回転速度、前記誘導加熱装置の電力、及び、前記水冷装置の冷却水流量に基づき、前記熱間圧延機の出側に設定された温度管理位置に到達した時点での温度を計算する出側温度計算装置と、
    前記出側温度計算装置で計算された各計算点の出側温度と、与えられた温度目標値との偏差から、高周波数成分、中周波数成分、及び、低周波数成分を抽出する周波数成分抽出装置と、
    前記高周波数成分に基づき、前記電力変更装置に対する電力の基準値を修正する電力設定修正装置と、
    前記中周波数成分に基づき、前記流量変更装置に対する冷却水流量の基準値を修正する流量設定修正装置と、
    前記低周波数成分に基づき、前記速度変更装置に対するロール回転速度の基準値を修正する速度設定修正装置と、
    を備えることを特徴とする熱間圧延機の温度制御装置。
  2. 被圧延材を圧延する圧延スタンドと、前記被圧延材を冷却する水冷装置と、前記被圧延材を加熱する誘導加熱装置と、前記圧延スタンドのロール回転速度を変更する速度変更装置と、前記水冷装置の冷却水流量を変更する流量変更装置と、前記誘導加熱装置の電力を変更する電力変更装置とを備えた熱間圧延機の温度制御装置において、
    与えられた製造指示情報に基づき、前記電力変更装置に対する電力の基準値、前記流量変更装置に対する冷却水流量の基準値、及び、前記速度変更装置に対するロール回転速度の基準値の各々の初期値を計算する設定計算装置と、
    前記熱間圧延機の出側において前記被圧延材の温度を測定する温度計と、
    前記温度計により測定された前記被圧延材の出側温度と、与えられた温度目標値との偏差から、高周波数成分、中周波数成分、及び、低周波数成分を抽出する周波数成分抽出装置と、
    前記高周波数成分に基づき、前記電力変更装置に対する電力の基準値を修正する電力設定修正装置と、
    前記中周波数成分に基づき、前記流量変更装置に対する冷却水流量の基準値を修正する流量設定修正装置と、
    前記低周波数成分に基づき、前記速度変更装置に対するロール回転速度の基準値を修正する速度設定修正装置と、
    を備えることを特徴とする熱間圧延機の温度制御装置。
JP2015560872A 2014-02-04 2014-02-04 熱間圧延機の温度制御装置 Active JP6172300B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/052539 WO2015118606A1 (ja) 2014-02-04 2014-02-04 熱間圧延機の温度制御装置

Publications (2)

Publication Number Publication Date
JPWO2015118606A1 JPWO2015118606A1 (ja) 2017-03-23
JP6172300B2 true JP6172300B2 (ja) 2017-08-02

Family

ID=53777447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015560872A Active JP6172300B2 (ja) 2014-02-04 2014-02-04 熱間圧延機の温度制御装置

Country Status (4)

Country Link
US (1) US10040107B2 (ja)
JP (1) JP6172300B2 (ja)
CN (1) CN105960293B (ja)
WO (1) WO2015118606A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102058786B1 (ko) * 2015-09-14 2019-12-23 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 압연재의 온도 제어 장치
JP6429059B1 (ja) * 2017-02-28 2018-11-28 Jfeスチール株式会社 冷間圧延機および冷間圧延方法
CN107042241A (zh) * 2017-03-15 2017-08-15 中冶华天工程技术有限公司 基于棒材轧制过程轧辊磨损的水箱在线调整系统及方法
CN107042234B (zh) * 2017-03-15 2019-05-03 中冶华天工程技术有限公司 基于棒材全流程大数据采集的智能化工艺生产方法
CN106984653B (zh) * 2017-06-05 2019-01-01 杭州电子科技大学 温轧机分段加热装置
EP3434383A1 (de) * 2017-07-24 2019-01-30 Primetals Technologies Austria GmbH Gerüstkühler zum abkühlen eines stahlbands in einem walzgerüst
CN110153188A (zh) * 2018-02-14 2019-08-23 宣城市金泓钢管科技有限公司 一种分段加热装置
CN111788319B (zh) * 2018-03-23 2022-07-26 日本制铁株式会社 金属带板的感应加热方法及其感应加热设备
CN108959793B (zh) * 2018-07-13 2023-01-17 燕山大学 一种伞齿轮双频分段循环感应加热数值模拟方法
CN111936245B (zh) * 2019-03-06 2022-08-05 东芝三菱电机产业系统株式会社 轧机的冷却水注水控制装置及冷却水注水控制方法
DE102019203088A1 (de) * 2019-03-06 2020-09-10 Sms Group Gmbh Verfahren zur Herstellung eines metallischen Bandes oder Blechs
JP7095651B2 (ja) * 2019-05-14 2022-07-05 東芝三菱電機産業システム株式会社 エッジヒータの制御システム
JP7179426B2 (ja) * 2019-07-30 2022-11-29 株式会社神戸製鋼所 鋼板温度データ処理装置および鋼板温度データ処理方法
DE102019217966A1 (de) 2019-11-21 2021-05-27 Sms Group Gmbh Einstellung einer Auslauftemperatur eines aus einer Walzstraße auslaufenden Metallbands
JP7196875B2 (ja) * 2020-03-30 2022-12-27 Jfeスチール株式会社 鋼板の制御冷却方法及び制御冷却装置
TWI786580B (zh) * 2021-03-26 2022-12-11 中國鋼鐵股份有限公司 精軋機出口溫度估算方法
TWI747774B (zh) * 2021-03-26 2021-11-21 中國鋼鐵股份有限公司 精軋機出口溫度估算方法
CN115672685B (zh) * 2021-07-27 2023-08-11 宝山钢铁股份有限公司 一种生产取向硅钢的氧化镁涂层烘烤质量控制方法
TWI763578B (zh) * 2021-08-04 2022-05-01 中國鋼鐵股份有限公司 鋼胚的粗軋出口溫度的預測方法
CN113617852B (zh) * 2021-08-09 2023-03-17 太原科技大学 一种基于数据驱动的楔横轧智能化控制系统
KR20240134344A (ko) * 2023-01-26 2024-09-09 가부시키가이샤 티마이크 열간 압연 라인의 온도 제어 시스템 및 온도 제어 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119492A (en) 1981-01-16 1982-07-24 Mitsubishi Electric Corp Method of controlling temperature in hot strip mill line
JPH0615084B2 (ja) * 1984-05-09 1994-03-02 三菱電機株式会社 自動板幅制御装置
JPS63171215A (ja) 1987-01-08 1988-07-15 Kawasaki Steel Corp 圧延材の水冷制御方法
JPH0399710A (ja) 1989-09-14 1991-04-24 Toshiba Corp 圧延機のパススケジュールの設定方法および装置
JP3041134B2 (ja) 1992-06-03 2000-05-15 株式会社東芝 ルーパ多変数制御装置
US5787746A (en) * 1994-07-25 1998-08-04 Alcan Aluminum Corporation Multi-stand hot rolling mill tension and strip temperature multivariable controller
JP2960878B2 (ja) 1995-11-21 1999-10-12 住友軽金属工業株式会社 圧延機における温度制御方法および温度制御装置
JPH10314820A (ja) 1997-05-21 1998-12-02 Nippon Steel Corp 線材捲取温度制御方法
JP3657750B2 (ja) 1997-09-10 2005-06-08 東芝三菱電機産業システム株式会社 熱間仕上圧延機の温度制御装置及び記録媒体
JPH11342410A (ja) 1998-04-01 1999-12-14 Nkk Corp 圧延ラインの板厚制御方法及び装置
JP2000210708A (ja) 1999-01-21 2000-08-02 Toshiba Corp 圧延機出側の圧延材温度制御方法及び圧延材温度制御装置
JP3546864B2 (ja) 2001-07-18 2004-07-28 住友金属工業株式会社 熱間圧延方法とその装置
JP4658752B2 (ja) 2005-09-14 2011-03-23 新日本製鐵株式会社 熱間連続圧延機の板厚制御装置,板厚制御システム,方法,コンピュータプログラム,およびコンピュータで読み取り可能な記憶媒体
CN101433919B (zh) * 2008-07-17 2010-09-29 东北大学 一种中厚板层流冷却控制方法
CN102215992B (zh) * 2008-11-19 2013-10-02 东芝三菱电机产业系统株式会社 对热轧装置进行控制的控制装置
BR112015018044B1 (pt) * 2013-02-04 2022-03-15 Toshiba Mitsubishi-Electric Industrial Systems Corporation Dispositivo de controle que economiza energia para linha de laminação

Also Published As

Publication number Publication date
CN105960293B (zh) 2017-12-15
JPWO2015118606A1 (ja) 2017-03-23
CN105960293A (zh) 2016-09-21
US10040107B2 (en) 2018-08-07
US20160339494A1 (en) 2016-11-24
WO2015118606A1 (ja) 2015-08-13

Similar Documents

Publication Publication Date Title
JP6172300B2 (ja) 熱間圧延機の温度制御装置
JP6435234B2 (ja) 熱間圧延仕上げミル出側温度制御装置およびその制御方法
US10710133B2 (en) Temperature calculation method, temperature calculation apparatus, heating control method, and heating control apparatus
JP6146553B1 (ja) 鋼板の温度制御装置及び温度制御方法
JP6404195B2 (ja) プラント制御装置、圧延制御装置、プラント制御方法およびプラント制御プログラム
JP2013150990A (ja) 薄板用熱間圧延機の制御装置および薄板用熱間圧延機の制御方法
WO2017130508A1 (ja) 鋼板の温度制御装置及び温度制御方法
JP2012101235A (ja) 冷却停止温度制御装置および冷却停止温度制御方法
JP6021450B2 (ja) 加熱炉の操業支援システム
KR101592741B1 (ko) 온도 분포 예측 장치
JP2019503870A (ja) 圧延素材の平坦維持装置及び方法
CN111420999B (zh) 一种精轧中间坯上下表面温差控制方法
JP2006281231A (ja) 連続式熱間仕上圧延機における板形状制御方法
JP3891067B2 (ja) 鋼管の圧延温度制御方法
CN111420998B (zh) 一种精轧中间坯长度方向宽度温度均匀加热方法
JP6021659B2 (ja) 加熱炉の操業支援システム
KR101528690B1 (ko) 강판 제조 방법
JP2007283346A (ja) 圧延材の冷却制御方法及び圧延装置
KR101050792B1 (ko) 동적 재설정을 이용한 냉각제어방법
JP5761091B2 (ja) 熱間圧延ラインの温度制御方法および温度制御システム
JP2003205306A (ja) 鋼板の製造方法
CN113518672B (zh) 用于制造金属带材或板材的方法
JP3692904B2 (ja) 熱間仕上圧延機のセットアップ方法
JP6551282B2 (ja) 熱間仕上圧延方法
JP2023061225A (ja) 熱間圧延中の鋼板張力とルーパー角の制御方法及び制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6172300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250