WO2018124509A1 - 시아노에틸기 함유 중합체 및 이의 제조 방법 - Google Patents

시아노에틸기 함유 중합체 및 이의 제조 방법 Download PDF

Info

Publication number
WO2018124509A1
WO2018124509A1 PCT/KR2017/013948 KR2017013948W WO2018124509A1 WO 2018124509 A1 WO2018124509 A1 WO 2018124509A1 KR 2017013948 W KR2017013948 W KR 2017013948W WO 2018124509 A1 WO2018124509 A1 WO 2018124509A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
cyanoethyl group
containing polymer
cyanoethylation
polymer
Prior art date
Application number
PCT/KR2017/013948
Other languages
English (en)
French (fr)
Inventor
한혜수
강민아
권경안
류동조
한선희
최철훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780021761.7A priority Critical patent/CN108884188A/zh
Priority to US16/082,410 priority patent/US11066490B2/en
Priority to EP17889265.9A priority patent/EP3409698B1/en
Priority to JP2018548034A priority patent/JP6651242B2/ja
Priority to PL17889265.9T priority patent/PL3409698T3/pl
Publication of WO2018124509A1 publication Critical patent/WO2018124509A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F16/04Acyclic compounds
    • C08F16/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cyanoethyl group-containing polymer and a method for producing the same.
  • a safety reinforced separator is used as one method for improving battery stability.
  • SRS is a coating of inorganic particles on polymer films such as PE (polyethylene) and PP (polypropylene). Inorganic particles may interfere with the thermal contraction of the polymer film and maintain the shape of the separator even at a high degree of silver to maintain the role of separating the positive electrode and the negative electrode.
  • a binder is used to attach the inorganic particles to the polymer film.
  • binders used for this purpose include polymers containing 2-cyanoethyl groups.
  • the polymer serves as a dispersant to help disperse the inorganic particles when the inorganic particles are coated on the polymer film in addition to the adhesive for attaching the inorganic particles to the polymer film.
  • the present invention provides a cyanoethyl group-containing polymer.
  • this invention provides the manufacturing method of a cyanoethyl group containing polymer. [Measures of problem]
  • a polymer containing a cyanoethyl group which comprises less than 1.0% of the repeating unit containing 0CH 2 CH 2 C0NH 2 and ions thereof relative to the total repeating unit included in the polymer, Repeat units comprising -0CH 2 CH 2 C00H and ions thereof 2. Cyanoethyl group containing polymer containing 0% or less is provided.
  • the present inventors found that the cyanoethyl group-containing polymer having a small content of a specific functional group was used as a binder for SRS (Safety Reinforced Separator) to improve dispersibility of inorganic particles and to enhance adhesion of inorganic particles to a polymer film. Confirmation and complete the present invention.
  • SRS Safety Reinforced Separator
  • the content of a specific functional group included in the polymer is defined as the ratio of the repeating unit including the specific functional group to the total repeating unit included in the polymer.
  • the total repeating unit included in the polymerizer refers to the total number of repeating units (ie, degree of polymerization) of the polymer included in the polymerizer on average, and the repeating unit including the functional group is included in the polymer on average.
  • the number of specific functional group containing repeating units is meant. For example, if a polymer having a degree of polymerization of 100 contains on average one repeat unit containing -0CH 2 CH 2 C0NH 2 , the polymer contains -0CH 2 CH 2 C0NH 2 for the total repeat units included in the polymer.
  • Repeat unit 1 It is defined as a polymer containing 0%.
  • the cyanoethyl group-containing polymer may or may not contain -0CH 2 CH 2 CO 2 and a very small amount thereof.
  • the _0CH 2 CH 2 C0NH 2 is through cyanoethylation (cyanoethyl at i on) When introducing a cyanoethyl group into the polymer, it may be a functional group introduced due to side reactions.
  • the -0CH 2 CH 2 C0 ⁇ 2 is a cyano group according to the environment containing the polymer is placed - 0CH 2 CH 2 C0NH 3 + graphite may be present in -0CH 2 CH 2 C0NH _ form. therefore.
  • the cyanoethyl group-containing polymer may contain -0C3 ⁇ 4C3 ⁇ 4C00H and its ions in a very small amount or may not contain black.
  • the cyanoethyl group-containing polymer may include a repeating unit containing -0CH 2 CH 2 C00H and ions thereof in an amount of 2.0% or less, that is, 0% to 2.0%, based on the total repeating units included in the polymer. . It is possible to provide a binder capable of uniformly fixing the inorganic particles to the polymer film by improving the dispersing force of the inorganic particles within this range.
  • the above — 0CH 2 C C00H may be a functional group introduced due to side reactions when introducing a cyanoethyl group into the polymer through cyanoethyl ation.
  • the -0CH 2 CH 2 C00H may exist in the form of -0CH 2 CH 2 C00 " depending on the environment in which the cyanoethyl group-containing polymer is placed.
  • a repeating unit comprising — 0C CH 2 C00H and its ion — 0C3 ⁇ 4C C00. The total ratio of must fall within the above range in order to exhibit the above-mentioned effect.
  • the cyanoethyl group-containing polymer may be, for example, cyanoethyl pullulan, cyanoethyl cellulose, cyanoethyl dihydroxypropyl pullulan, cyanoethyl hydroxyethyl cell, or cyanoethyl hydroxypropyl. It may be cyanoethyl polysaccharides such as cellulose, cyanoethyldihydroxypropylcellose or cyanoethyl starch, or black cyanoethylpolyvinyl alcohol. Among these, cyanoethyl polyvinyl alcohol has the advantage of being able to strongly fix the inorganic particles to the polymer film, and having flexibility, it is difficult to be broken or peeled off even when the separator is bent.
  • cyanoethyl group-containing polymer is cyanoethyl polyvinyl alcohol, it may include a repeating unit represented by the following formula (1).
  • the cyanoethyl polyvinyl alcohol may include a repeating unit represented by the following Chemical Formula 2, provided that the cyanoethyl group does not have a substitution rate ⁇ 100 ) .
  • cyanoethyl polyvinyl alcohol may include or may not contain a very small amount of repeating units represented by the following Formulas 3 and 4.
  • n is 0 or 1.
  • the cyanoethyl group-containing polymer has a repeating unit represented by Formula 3 relative to the total amount of the repeating units represented by Formulas 1 to 4. 0% or less, ie 0-1. 0%, and the repeating unit represented by the formula (4) is 2. 0% or less, ie 0-2. Can contain 0%.
  • the cyanoethyl group containing polymer which implements the above-mentioned effect within this range can be provided.
  • the method for producing a cyanoethyl group-containing polymer includes preparing a cyanoethyl group-containing polymer from a semi-functional functional group-containing polymer through a cyanoethylat ion of a reactive functional group-containing polymer and a cyanoethyl group dobbi precursor.
  • the solubility of the reactants can be maintained at an excellent level to suppress the side reactions generated by the specific functional group described above.
  • a solvent may be added so that Ra calculated by Equation 1 below is less than 6.
  • ⁇ 02 , ⁇ ⁇ 2 and ⁇ ⁇ 2 are the solubility parameters due to the dispersibility of the mixture of the semi-functional functional polymer containing the cyanoethyl group introduction precursor and the molar ratio of 100—X: X, the solubility parameter due to the polarity, and the hydrogen bonding.
  • Solubility parameter, X is the cyanoethylation substitution rate measured at any one point
  • ⁇ , ⁇ ⁇ 1 and ⁇ are the solubility parameter by the dispersibility of the solvent system used for cyanoethylation reaction at any one point
  • Ra is the distance between Hansen solubility parameters of solvent and solute. The smaller the Ra value, the higher the affinity between the solvent and the solute, so that the solute can be easily dissolved in the solvent.
  • the Ra solubility of the reactants is maintained at a superior level by using Ra.
  • ⁇ ⁇ ⁇ are each dispersion (dispersion force) solubility parameter, solubility parameter and a hydrogen, bond (hydrogen bonding) due to polar (dipolar intermolecular force) by the above expression (1).
  • 5 D2 , ⁇ ⁇ 2 and ⁇ ⁇ 2 represent solubility parameters of the reactants at a specific time point.
  • the semi-ungmul collected during the actual cyanoethylation reaction contains various by-products in addition to the precursors and products. Accordingly, in the measurement of the physical properties of the reactants, the use of the semi-aungmul collected directly during the reaction has a problem of low accuracy, reliability and reproducibility.
  • the present inventors then cyanoethylated measuring the substituted at any point in time, and mixing the cyanoethylated replacement ratio containing half male functional group at a ratio of Daewoong the polymer and the cyano group introduced into the precursor, and thus-not obtained, was used as the physical property to represent the solubility parameters of the reactants of the particular —timesite—by calculating the solubility parameters of the mixture. For example, cyanoethylation at some point If the substitution rate was 30%, the solubility parameter of the reactants at the time point was replaced by the solubility parameter of the mixture prepared by mixing the semi-ung functional group containing polymer and the cyanoethyl group introduction precursor in a molar ratio of 70:30.
  • ⁇ 01 , ⁇ ⁇ 1 and 5 ⁇ ) 1 are solubility parameters by dispersing force of the solvent system used for cyanoethylation reaction, solubility parameter by polarity and solubility parameter by hydrogen bonding.
  • the solvent system is "cyano dissolved does not directly participate in the ethylation banung precursor graphite is contained the solvent used for dispersing.
  • the solvent system may also include a precursor capable of dissolving and dispersing other precursors in a liquid phase at room temperature (about 25 ° C.) while directly participating in the cyanoethylation reaction.
  • the precursor mixture black solvent The solubility parameter of the mixture containing two or more substances such as the system can be calculated through the following formula (2).
  • ⁇ [complex] ⁇ ( ⁇ [# 3 ⁇ 4i] * a) + (. ⁇ [substance 2 ] * b) +... + ( ⁇ [substance n ] * n) ⁇ / (a + b + --- + n)
  • a, b,... n is each of substance 1, substance 2,... Is the weight ratio of substance n ⁇
  • Equation 2 is a formula for calculating the solubility parameter of a mixture containing n kinds of substances, the weight of each substance in the solubility parameters of each substance ( ⁇ [material ⁇ ⁇ [material 2] , ... ⁇ [material ⁇ ] ) The sum of the product multiplied by the ratio (a, b, ... n) is divided by the sum of the increase ratios of the total substances to obtain the solvent degree parameter of the mixture.
  • a hydroxy group-containing polymer can be used as the reactive functional group-containing polymer.
  • the semi-active functional group-containing polymer such as pullulan, cellulose / dihydroxypropyl pullulan, hydroxyethyl cellulose, hydroxypropyl cellulose, dihydroxy propyl cellulose or starch, etc.
  • polysaccharides or polyvinyl alcohol various kinds of cyanoethyl group-containing polymers described above can be produced.
  • cyanoethyl group introduction residue various kinds of precursors known in the art may be used. Specifically, acrylonitrile may be used as the cyanoethyl group introduction precursor.
  • the cyanoethylation reaction can be carried out in the presence of a base catalyst.
  • caustic soda NaOH
  • sodium carbonate NaC0 3
  • a combination thereof may be used as the base catalyst.
  • a solvent exhibiting high solubility in the precursor and the product used in the cyanoethylation reaction may be used.
  • water distilled water
  • an alcohol solvent, a ketone solvent, a sulfoxide H type solvent, or a mixed solvent thereof may be used.
  • the alcohol solvent is methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n- butyl alcohol, isobutyl alcohol, t-butyl alcohol.
  • n-pentyl alcohol N-nuclear alcohol or mixtures thereof may be used, and methyl ketone, acetone, or a mixture thereof may be used as the ketone solvent, and dimethyl sulfoxide may be used as the sulfoxide solvent.
  • the cyanoethylation reaction may be performed for about 40 to 500 minutes at a temperature of about 10 to 60 ° C. Within this range, it is possible to minimize side reactions in which the specific functional groups described above are generated.
  • the solvent is added so that Ra calculated by Equation 1 is less than 6 during the cyanoethylation reaction.
  • the type and content of the solvent to be added may be determined according to the type and content of the precursor to be used, the cyanoethylation substitution rate and the kind and content of the solvent added in the initial reaction.
  • polyvinyl alcohol may be used as the reactive functional group-containing polymer, and acrylonitrile may be used as the cyanoethyl group introduction precursor.
  • a polyvinyl alcohol, an acrylonitrile, a base catalyst and a first solvent are mixed to prepare a mixture, and a second solvent is added to the cyanoethylation reaction mixture of the mixture.
  • a second solvent is added to the cyanoethylation reaction mixture of the mixture.
  • the solvent added before the reaction is described as' first solvent 1 .
  • the solvent to be added is described as 'second solvent'.
  • the first solvent collectively refers to two or more mixed solvents as well as one kind of solvent
  • the second solvent collectively refers to two or more mixed solvents as well as one kind of solvent.
  • the first solvent may be appropriately selected so that Ra represented by Formula 1 is less than 6.
  • solubility parameters by polarity and solubility parameters by hydrogen bonding are substituted.
  • the solubility parameter by dispersing force, solubility parameter by polarity and solubility parameter by hydrogen bonding of polyvinyl alcohol are 15.90 MPa 1/2 , 8.10 MPa 1/2 and 18.80 MPa 1/2 , respectively. 15.90 to 5 D2 , ⁇ ⁇ 2 and ⁇ ⁇ 2 of Equation 1. Substitute 8.10 and 18.80.
  • 5 D1 , ⁇ ⁇ 1 and ⁇ ⁇ 1 of Equation 1 have solubility parameters by dispersing power, solvent solubility parameter by polarity, and solubility by hydrogen bonding in acrylonitrile exhibiting liquid phase at room temperature and the first solvent. Assign parameters.
  • Assign parameters are solubility parameters by dispersing power, solvent solubility parameter by polarity, and solubility by hydrogen bonding in acrylonitrile exhibiting liquid phase at room temperature and the first solvent. Assign parameters.
  • the first solvent water (distilled water), an alcohol solvent, a ketone solvent, a sulfoxide solvent or a mixed solvent thereof can be used.
  • the alcohol solvent methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, t_butyl alcohol.
  • Acetone or a mixture thereof may be used, and dimethyl sulfoxide may be used as the sulfoxide solvent.
  • water may be used alone as the first solvent. If a mixed solvent of water and an organic solvent is used as the first solvent, the organic solvent may be used more than 0 parts by weight and less than 100 parts by weight with respect to 100 parts by weight of acrylonitrile.
  • the first solvent polyvinyl alcohol, The acrylonitrile, the base catalyst and the first solvent can be mixed and stirred for about 40 minutes to 500 minutes at a temperature of about 10 to 60 ° C. to proceed with cyanoethylation reaction.
  • the second solvent may be added so that Ra is not greater than 6 by monitoring the Ra value calculated by Equation 1.
  • the cyanoethylation substitution rate can be determined during cyanoethylation reaction through H-NMR. Specifically, when the hydroxyl group of polyvinyl alcohol is substituted with a cyanoethyl group, a peak corresponding to -CH 2 CN is observed at 2.5 to 2.8 ppm, and a peak corresponding to -CH 2 -which is a main chain derived from polyvinyl alcohol is 1.3. To 2.0 ppm. Therefore, the cyanoethylation substitution rate can be determined through the percentage of the peak area observed at 2.5 to 2.8 ppm relative to the peak area observed at 1.3 to 2.0 ppm.
  • solubility parameter of the mixture in which the precursors were mixed at a rate corresponding to the cyanoethylation substitution rate is obtained.
  • a precursor mixture and formula 2 above Precursor mixing ⁇ solubility parameter according to the cyanoethylation substitution rate of polyvinyl alcohol can be calculated through the results are shown in Table 1 below.
  • the solubility parameter of the solvent system at that time point is obtained. And, by substituting these values into the above formula 1 to confirm the Ra value, if the Ra value is increased, a suitable second solvent can be added to lower the Ra value.
  • an alcohol solvent, a ketone solvent, a sulfoxide solvent, or a mixed solvent thereof may be added as the second solvent.
  • the alcohol solvent is methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol. Isobutyl alcohol, t- butyl alcohol, n-pentyl alcohol, n- nuxyl alcohol, or a mixture thereof can be used.
  • the ketone solvent methyl ethyl ketone, acetone or a mixture thereof can be used. Dimethyl sulfoxide and the like can be used as the sulfoxide solvent.
  • Ra of Formula 1 may be adjusted to less than 6 by adding a second solvent two or more times in the range of cyanoethylation substitution rate within 25% to 85%.
  • the second solvent is added at 30 to 70 parts by weight based on 100 parts by weight of the first solvent in the range of 25% to 35% cyanoethylation substitution rate, and cyanoethyl In the range of 45% to 55% conversion rate, the second solvent may be added in an amount of 30 to 130 parts by weight based on 100 parts by weight of the first solvent, thereby adjusting Ra of Equation 1 to less than 6.
  • the low 1 2 solvent may be added in an amount of 30 to 130 parts by weight based on 100 parts by weight of the first solvent in the range of -75% to 85% of cyanoethylation substitution rate.
  • the manufacturing method of cyanoethyl polyvinyl alcohol is described in detail, but the manufacturing method of the present invention may be utilized in the production of various types of cyanoethyl group-containing polymers.
  • the cyanoethyl group-containing polymer prepared according to the preparation method of the present invention does not contain or contain a very small amount of functional groups such as -0CH 2 CH 2 C0NH 2 and -0CH 2 CH 2 C00H, and thus is suitable for use in safety reinforced separator (SRS) applications. It can be utilized as a binder to improve the dispersibility of the inorganic particles, and to enhance the adhesion of the inorganic particles to the polymer film.
  • a separator including a cyanoethyl group-containing polymer having a low content of a specific functional group and a secondary battery including the separator.
  • the separator and the secondary battery may be manufactured in a manner known in the art, except that the above-described cyanoethyl group-containing polymer is used.
  • the separator is a polymer film; Inorganic particles distributed on the polymer film; And a binder for fixing the inorganic particles to the polymer film, and may include a cyanoethyl group-containing polymer having a low content of the specific functional group described above as the binder.
  • the cyanoethyl group-containing polymer contains or does not contain very small amounts of functional groups of -0CH CH 2 C0N3 ⁇ 4 and — 0CH 2 CH 2 C0OH ⁇ to enhance the dispersion and adhesion of the inorganic particles to uniformly distribute the inorganic particles on the polymer film. It can be distributed and combined strongly.
  • the secondary battery may exhibit excellent stability including such a separator.
  • the cyanoethyl group-containing polymer according to an embodiment of the present invention has a very low content of other functional groups other than the cyanoethyl group, and is used as a binder for safety reinforced separator (SRS) to improve the dispersibility of inorganic particles, and to inorganic materials for the polymer film.
  • SRS safety reinforced separator
  • Equation 1 Substituting the solubility parameter value into Equation 1 gives the cyanoethylation substitution rate of 30%. It is confirmed that Ra is less than 6 at 5.03. Cyanoethylation reaction was continued, and when the cyanoethylation substitution ratio reached 50%, 30 g of acetone was further added to the reaction vessel. Referring to Table 1, when the cyanoethylation substitution rate is 50%, S D 2 of Formula 1 is 15.95 MPa 1/2 , ⁇ ⁇ 2 is 10,45 MPa 1/2 , and ⁇ ⁇ 2 is 12.80 MPa 1/2 .
  • a cyanoethyl group-containing polymer was prepared in the same manner as in Example 1, except that reaction temperature was adjusted to 50 ° C. in Example 1. The Ra value throughout the cyanoethylation reaction was monitored to confirm that it was maintained below 6.
  • Example 3 Preparation of Cyanoethyl Group-Containing Polymer
  • a cyanoethyl group-containing polymer was prepared in the same manner as in Example 1, except that 100 g of acetone was further added to the reaction vessel when the cyanoethylation substitution rate was 80% in Example 1. It was confirmed that the Ra value in the whole cyanoethylation reaction reaction was maintained at about 5.52 and less than 6.
  • aqueous polyvinyl alcohol solution 20 g of polyvinyl alcohol, 80 g of distilled water
  • 2 g of a 30% by weight aqueous NaOH solution 0.6 g of NaOH, 1.4 g of distilled water
  • 150 g of acrylonitrile were added thereto and stirred at 30 ° C. to proceed with cyanoethylation.
  • Comparative Example 1 Preparation of Cyanoethyl Group-Containing Polymer 100 g of 7% by weight polyvinyl alcohol aqueous solution, 2 g of 30% by weight aqueous NaOH solution and 100 g of acrylonitrile were added thereto, and stirred at 50 ° C. for 1 hour to proceed with cyanoethylation reaction. When the cyanoethylation reaction was monitored and the cyanoethylation substitution rate was 50%, the Ra of Equation 1 was measured and found to be 6 or more as 12.32.
  • Example 1 100 g of distilled water was added to the reaction vessel when the cyanoethylation substitution rate was 30%, and 100 g of distilled water was added to the reaction vessel when the cyanoethylation substitution rate was 50%.
  • a cyanoethyl group-containing polymer was prepared in the same manner as in Example 1.
  • Comparative Example 2 when the cyanoethylation substitution rate was 30%, the Ra. Of Equation 1 was measured to be 16.21. When the cyanoethylation substitution rate was 50%, the Ra of Equation 1 was measured to be 21.24 or more. Confirmed. Comparative Example 3: Preparation of Cyanoethyl Group-Containing Polymer
  • the content of repeating units comprising -0CH 2 CH 2 C0NH 2 and ions thereof and -0CH 2 C3 ⁇ 4C00H and ions thereof introduced into the cyanoethyl group-containing polymers prepared in Examples and Comparative Examples was H-. Confirmation via NMR and IR spectra and the results in Table 2. Indicated. Specifically,-0CH for each repeating unit included in each polymer through the area of peaks observed in 2.2-2.3 ⁇ in the H- ⁇ R spectrum and the peak corresponding to -C00 in 1570 cnf 1 of the IR spectrum. The content of repeating units comprising 2 CH 2 C0NH 2 and ions thereof and ⁇ 0CH 2 CH 2 C00H and its repeating units was calculated.
  • alumina having a cyanoethyl group-containing polymer and an average particle diameter of 0.7 and a BET of 4 m 2 / g was 10:90.
  • Slurry was prepared by mixing in weight ratio. Then, in order to confirm the dispersibility of the cyanoethyl group-containing polymer, the slurry prepared above was measured at 25 ° C. while rotating at 200 rpm using a dispersion stability disperser (UMiSi zer), and the result was measured. Table 3 shows.
  • artificial graphite, carbon black, CMC, a binder was mixed with water in a weight ratio of 96: 1: 1: 1 to prepare a sound slurry.
  • the negative electrode slurry was coated on a copper foil having a thickness of ⁇ , ⁇ ⁇ , dried at 80 ° C. for at least 1 hour, and then rolled to prepare a negative electrode.
  • the negative electrode and the separator were put into a lamination apparatus and bonded, and the sample pole was measured using a UTM apparatus to measure the force required to peel off the adhesive surface of the electrode and the separator (porous coating) at a rate of 100 ⁇ s / niin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 시아노에틸기 함유 중합체 및 이의 제조 방법에 관한 것이다. 시아노에틸기 함유 중합체는 시아노에틸기 외의 다른 관능기의 함량이 적은 특징을 가진다.

Description

【발명의 명칭】
시아노에틸기 함유 중합체 및 이의 제조 방법
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2016년 12월 27일자 한국 특허 출원 제 10-2016-0179851호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 시아노에틸기 함유 중합체 및 이의 제조 방법에 관한 것이다.
【발명의 배경이 되는 기술】
이차전지를 제조함에 있어서, 전지의 안정성을 향상시키기 위한 한 가지 방법으로 SRS (safety reinforced separator)를 사용하고 있다. SRS는 PE (polyethylene) , PP (polypropylene) 등의 고분자 필름에 무기물 입자를 코팅시킨 것으로. 무기물 입자가 고분자 필름의 열수축을 방해하고 높은 은도에서도 분리막의 형태를 유지시켜 양극과 음극을 분리시키는 역할을 계속 유지할 수 있다.
한편, SRS 제조 시에는 무기물 입자를 고분자 필름에 부착시키기 위해 바인더가 사용된다. 현재 이러한 용도로 사용되는 바인더에는 2- 시아노에틸기를 함유하는 중합체가 있다. 상기 중합체는 고분자 필름에 무기물 입자를 부착시키는 접착제 역할 외에도 고분자 필름에 무기물 입자를 코팅할 때 무기물 입자의 분산을 돕는 분산제 역할을 한다.
고분자 필름 상에 무기물 입자가 균일하게 분포하지 않을 경우 무기물 입자가 분포되지 않은 국소 부위는 열수축을 일으킬 가능성이 있다. 따라서, 접착제 및 분산제로 유용한 바인더의 개발이 필요한 실정이다.
【발명의 내용】
【해결하고자 하는 과제】
본 발명은 시아노에틸기 함유 중합체를_제공한다.
또한, 본 발명은 시아노에틸기 함유 중합체의 제조 방법을 제공한다 . 【과제의 해결 수단】
이하 발명의 구체적인 구현예에 따른 시아노에틸기 함유 증합체 및 이의 제조 방법 등에 대해 설명하기로 한다 .
발명의 일 구현예에 따르면, 시아노에틸기를 함유하는 중합체로서, 상기 중합체에 포함된 총 반복 단위에 대해 — 0CH2CH2C0NH2 및 이의 이온을 포함하는 반복 단위를 1.0% 이하로 포함하고, -0CH2CH2C00H 및 이의 이온을 포함하는 반복 단위를 2 . 0% 이하로 포함하는 시아노에틸기 함유 중합체가 제공된다.
본 발명자들은 실험 결과, 특정 관능기의 함량이 적은 시아노에틸기 함유 중합체는 SRS ( safety re i nforced separator ) 용도의 바인더로 활용되어 무기물 입자의 분산력을 향상시키고, 고분자 필름에 대한 무기물 입자의 접착력을 강화시킴을 확인하고 본 발명을 완성하였다.
본 명세서에서는 중합체에 포함된 특정 관능기의 함량을 중합체에 포함된 총 반복 단위에 대한 특정 관능기를 포함하는 반복 단위의 비율로 정의한다. 이때, 증합체에 포함된 총 반복 단위는 증합체가 평균적으로 포함하는 중합체의 전체 반복 단위의 수 (즉, 증합도)를 의미하며, 특¾ 관능기를 포함하는 반복 단위는 중합체가 평균적으로 포함하는 특정 관능기 함유 반복 단위의 수를 의미한다. 예를 들어, 중합도가 100 인 중합체에 - 0CH2CH2C0NH2를 포함하는 반복 단위가 평균적으로 1 개씩 포함되어 있다면, 중합체에 포함된 총 반복 단위에 대해 -0CH2CH2C0NH2를 포함하는 반복 단위를 1 . 0%로 포함하는 중합체로 정의한다.
상기 시아노에틸기 함유 중합체는 -0CH2CH2C0匪 2 및 이의 이온을 매우 적은 함량으로 포함하거나 혹은 포함하지 않을 수 있다.
. 구체적으로, 상기 .시아노에틸기 함유 중합체는,ᅳ상기 중합체에 포함된 총 반복 단위에 대해 — 0CH2CH2C0NH2 및 이의 이온을 포함하는 반복 단위를 1 . 0% 이하, 즉 0% 내지 1 .0%로 포함할 수 있다. 이—러한 범위 내에서 무기물 입자의 분산력을 향상시켜 고분자 필름에 무가물 입자를 균일하게 고정할 수 있는 바인더를 제ᅵ공할 수 있다.
상기 _0CH2CH2C0NH2는 시아노에틸화 반응 ( cyanoethyl at i on)을 통해 중합체에 시아노에틸기를 도입할 때, 부반응으로 인하여 도입된 관능기일 수 있다. 상기 -0CH2CH2C0丽 2는 시아노에틸기 함유 중합체가 놓인 환경에 따라 - 0CH2CH2C0NH3 + 흑은 -0CH2CH2C0NH_ 형태로 존재할 수 있다. 따라서. - 0CH2CH2C0NH2와 이의 이온인 -0CH2CH2C0丽 3 + 및 -0CH2CH2C0NH—를 포함하는 반복 단위의 총 비율이 상기 범위 내에 속해야 상술한 효과를 나타낼 수 있다.
상기 시아노에틸기 함유 중합체는 -0C¾C¾C00H 및 이의 이온을 매우 적은 함량으로 포함하거나 흑은 포함하지 않을 수 있다.
구체적으로, 상기 시아노에틸기 함유 중합체는, 상기 중합체에 포함된 총 반복 단위에 대해 -0CH2CH2C00H 및 이의 이온을 포함하는 반복 단위를 2.0% 이하 즉 0% 내지 2.0%로 포함할 수 있다. 이러한 범위 내에서 무기물 입자의 분산력을 향상시켜 고분자 필름에 무기물 입자를 균일하게 고정할 수 있는 바인더를 제공할 수 있다.
상기 — 0CH2C C00H는 시아노에틸화 반응 (cyanoethyl at i on)을 통해 중합체에 시아노에틸기를 도입할 때, 부반응으호 인하여 도입된 관능기일 수 있다. 상기 -0CH2CH2C00H는 시아노에틸기 함유 중합체가 놓인 환경에 따라 - 0CH2CH2C00" 형태로 존재할 수 있다. 따라서, — 0C CH2C00H와 이의 이온인 - 0C¾C C00 를 포함하는 반복 단위의 총 비율이 상기 범위 내에 속해야 상술한 효과를 나타낼 수 있다.
상기 시아노에틸기 함유 중합체는, 예를 들면, 시아노에틸풀루란, 시아노에틸셀를로오스, 시아노에틸디히드록시프로필풀루란, 시아노에틸히드록시에틸셀를로오스 시아노에틸히드록시프로필셀롤로오스, 시아노에틸디히드록시프로필셀를로오스 또는 시아노에틸전분 등과 같은 시아노에틸 다당류이거나 흑은 시아노에틸폴리비닐알코올일 수 있다. 이 중에서도 시아노에틸폴리비닐알코을은 고분자 필름에 무기물 입자를 」강하게 고정시킬 수 있고, 유연성이 있어 분리막을 구부리더라도 깨지거나 박리되기 어렵다는 이점이 있다.
상기 시아노에틸기 함유 중합체가 시아노에틸폴리비닐알코을이면, 하기 화학식 1로 표시되는 반복 단위를 포함할 수 있다.
[화학식 1]
Figure imgf000005_0001
또한, 시아노에틸폴리비닐알코을은 시아노에틸기의 치환율 ο 100 )가 아니라면, 하기 화학식 2로표시되는 반복 단위를 포함할 수 있다.
[
Figure imgf000005_0002
그리고, 상기 시아노에틸폴리비닐알코올은 하기 화학식 3 및 4로 표시되는 반복 단위를 매우 미량 포함하거나 포함하지 않을 수 있다.
Figure imgf000005_0003
상기 화학식 3 및 4에서, m은 1 내지 3의 정수이고, n은 0 또는 1이다. 구체적으로, 상기 시아노에틸기 함유 중합체는 상기 화학식 1 내지 4로 표시되는 반복 단위 총 량에 대해 상기 화학식 3으로 표시되는 반복 단위를 1 . 0% 이하, 즉 0 내지 1 . 0%로 포함하고, 상기 화학식 4로 표시되는 반복 단위를 2 . 0% 이하, 즉 0 내지 2 . 0%로 포함할 수 있다. 이러한 범위 내에서 상술한 효과를 구현하는 시아노에틸기 함유 중합체를 제공할 수 있다.
한편, 발명의 다른 구현예에 따르면, 상술한 특정 관능기의 함량이 적은 시아노에틸기 함유 중합체의 제조 방법이 제공된다.
구체적으로, 상기 시아노에틸기 함유 중합체의 제조 방법은 반응성 관능기 함유 중합체 및 시아노에틸기 도빕 전구체의 시아노에틸화 반응 (cyanoethylat ion)을 통해 반웅성 관능기 함유 중합체로부터 시아노에틸기 함유 중합체를 제조하는 단계를ᅭ포함하는데, 이때 반응물의 용해도를.우수한 수준으로 유지하여 상술한 특정 관능기가 생성되는 부반웅을 억제할 수 있다. 보다 구체적으로, 상기 시아노에틸화 반응 동안 하기 식 1로 계산되는 Ra가 6 미만이 되도록 용매를 첨가할 수 있다.
[식 1ᅵ
(Ra)2 = 4( δ D2 - 5D1)2 + ( δΡ2 - δΡ1)2 + ( δΗ2 - δΗι)2
상기 식 1에서,
δ02, δΡ2 및 δΗ2는 반웅성 관능기 함유 중합체 및 시아노에틸기 도입 전구체를 100— X : X의 몰 비율로 흔합한 흔합물의 분산력에 의한 용해도 파라미터, 극성에 의한 용해도 파라미터 및 수소 결합에 의한 용해도 파라미터이며 , 상기 X는 어느 한 시점에서 측정된 시아노에틸화 치환율이고, δοι, δΡ1 및 ^은 상기 어느 한 시점에서 시아노에틸화 반웅에 사용되는 용매 계의 분산력에 의한 용해도 파라미터, 극성에 의한 용해도 파라미터 및 수소 결합에 의한 용해도 파라미터이다ᅳ
Ra는 용매 및 용질의 Hansen solubility parameters 간의 거리이다. 상기 Ra 값이 작을수록 용매 및 용질의 친화도가 높아 용질이 용매에 용이하게 녹을 수 있다.
이에, 상기 제조 방법에서는 이러한 Ra를 이용하여 반응물의 용해도 ¾ 우수한 수준으로 유지한다.
상기 식 1에서 SD, δρ 및 δΗ는 각각 분산력 (dispersion force)에 의한 용해도 파라미터, 극성 (dipolar intermolecular force)에 의한 용해도 파라미터 및 수소 '결합 (hydrogen bonding)에 의한 용해도 파라미터를 의미한다. 상기 식 1에서 5D2, δΡ2 및 δΗ2는 특정 시점에서의 반응물의 용해도 파라미터를 대변한다. 실제 시아노에틸화 반응 진행 중에 채취한 반웅물에는 전구체와 생성물 외에도 각종 부산물들이 포함되어 있다. 이에 따라, 반응물의 물성올 측정함에 있어 반응 진행 중에 직접 채취한 반웅물을 이용하는 것은 정확성, 신뢰성 및 재현성이 낮은 문제가 있다.
이에 , 본 발명자들은 어느 한 시점에서 시아노에틸화 치환을을 측정한 후, 시아노에틸화 치환율에 대웅하는 비율로 반웅성 관능기 함유 중합체 및 시아노에틸기 도입 전구체를 혼합하고, 이렇게- 얻어지 '는 혼합물의 용해도 파라미터를 계산함으로써- 특정 —시점에석의 반응물의 용해도 파라미터를 대변하는 물성으로 이용하였다. 예를 들어 , 어느 한 시점에서 시아노에틸화 치환율이 30%라면, 아 시점에서의 반응물의 용해도 파라미터는 반웅성 관능기 함유 중합체 및 시아노에틸기 도입 전구체를 70:30의 몰 비율로 혼합하여 제조한 혼합물의 용해도 파라미터로 대체하였다.
한편, δ01, δΡ1 및 5})1은 시아노에틸화 반웅에 사용되는 용매 계 (solvent system)의 분산력에 의한 용해도 파라미터, 극성에 의한 용해도 파라미터 및 수소 결합에 의한 용해도 파라미터이다.
상기 용매 계에는 '시아노에틸화 반웅에 직접적으로 참여하지 않으나 전구체를 용해 흑은 분산시키기 위해 사용되는 용매가 포함된다. 또한, 상기 용매 계에는 시아노에틸화 반응에 직접 참여하면서 상온 (약 25°C)에서 액상을 나타내 다른 전구체를 용해 흑은 분산시킬 수 있는 전구체도 포함될 수 있다.. 상기 전구체 흔합물 흑은 용매 계와 같이 2 종 이상 물질을 포함하는 혼합물의 용해도 파라미터는 하기 식 2를 통해 계산할 수 있다.
[식 2]
δ [흔합물] = {( δ [#¾i]*a) + (.δ [물질 2]*b) + … + (δ [물질 n] *n)}/(a+b+---+n)
상기 식 2에서 a, b, … n은 각각 물질 1, 물질 2, … 물질 n의 중량 비율이다ᅳ
상기 식 2는 n 종의 물질을 포함하는 흔합물의 용해도 파라미터를 구하는 식으로, 각 물질의 용해도 파라미터 (δ [물질 ιμ δ [물질 2], ··· δ [물질 η])에 각 물질의 중량 비율 (a, b, … n)을 곱한 값의 합을 총 물질의 증량 비율의 합으로 나누어 흔합물의 용매도 파라미터를 구할 수 있다.
상기 반응성 관능기 함유 중합체로는 히드록시기 함유 중합체를 사용할 수 있다. 구체적으로, 상기 반웅성 관능기 함유 중합체로서, 풀루란, 셀롤로오스/ 디히드록시프로필풀루란, 히드록시에틸셀를로오스, 히드록시프로필셀를로오스 , 디히드톡시프로필셀를로오스 또는 전분 등과 같은 다당류를 사용하거나 혹은 폴리비닐알코올을 사용하면 상술한 다양한 종류의 시아노에틸기 함유 중합체를 제조할 수 있다.
상기 시아노에틸기: 도입 잔구체로는 본 발명이 속하는 기술분야에 알려진 다양한 종류의 전구체를 사용할 수 있다. 구체적으로, 상기 시아노에틸기 도입 전구체로는 아크릴로니트릴을 사용할 수 있다. 상기 시아노에틸화 반웅은 염기 촉매 존재 하에서 진행될 수 있다.
' 상기 염기 촉매로는 가성 소다 (NaOH), ' 탄산나트륨 (NaC03) 또는 이들의 흔합물이 사용될 수 있다.
상기 제조 방법에서는 시아노에틸화 반응에 사용되는 전구체 및 생성물에 대해 높은 용해도를 나타내는 용매가사용될 수 있다. 일 예로, 상기 제조 방법에서는 물 (증류수) , 알코올류 용매, 케톤류 용매, 설폭사이 H류 용매 혹은 이들의 흔합 용매가 사용될 수 있다. 구체적으로, 상기 알코올류 용매로는 메틸알코올, 에틸알코올, n-프로필알코올, 이소프로필알코을, n- 부틸알코올, 이소부틸알코올, t-부틸알코올. n-펜틸알코을. n-핵실알코올 또는 이들의 흔합물 둥이 사용될 수 있고, 상기 케톤류 용매로는 메틸에틸케톤, 아세톤 또는 이들의 혼합물 등이 사용될 수 있으며, 상기 설폭사이드류 용매로는 디메틸설폭사이드 등이 사용될 수 있다.
상기 시아노에틸화 반웅은 약 10 내지 60°C의 온도에서 약 40 분 내지 500 분간 진행될 수 있다. 이러한 범위 내에서 상술한 특정 관능기가 생성되는 부반웅을 최소화할 수 있다.
상기 제조 방법에서는 상술한 대로 시아노에틸화 반응 동안 상기 식 1로 계산되는 Ra가 6 미만이 되도록 용매를 첨가한다. 이때 첨가되는 용매의 종류 및 함량은 사용하는 전구체의 종류 및 함량, 시아노에틸화 치환율 및 반웅 초기에 투입된 용매의 종류 및 함량 등에 따라 결정될 수 있다.
일 예로, 상기 제조 방법을 통해 시아노에틸폴리비닐알코올을 제조하는 방법을 상세히 설명한다.
상기 시아노에틸폴리비닐알코올을 제조하기 위해 상기 반응성 관능기 함유 증합체로는 폴리비닐알코올을 사용하고, 상기 시아노에틸기 도입 전구체로는 아크릴로니트릴을 사용할 수 있다.
따라서, 시아노에틸플리비닐알코올의 제조 방법은 폴리비닐알코올, 아크릴로니트릴, 염기 촉매 및 제 1 용매를 혼합하여 흔합물을 제조하고, 상기 흔합물의 시아노에틸화 반웅 증에 제 2 용매를 첨가하여 상술한 특정. 관능기 함량이 적은 시아노에틸폴리비닐알코을을 제공할 수 있다.
본 명세서에서는 반응 전 투입된 용매와 반웅 중 투입되는 용매를 구별하기 위해 반응 전 투입된 용매는 '제 1 용매1로 기재하고. 반응 중 투입되는 용매를 '제.2 용매 '로 기재한다. 상기 제 1 용매는 한 종류의 용매뿐 아니라 2 이상의 혼합 용매를 통칭하며, 상기 제 2 용매도 한 종류의 용매뿐 아니라 2 이상의 혼합 용매를 통칭한다.
상기 제 1 용매는 상기 식 1로 표시되는 Ra가 6 미만이 되도록 적절히 선택될 수 있다.
구체적으로, 반응 초기의 시아노에틸화 치환율은 0% 이므로, 식 1의 δ02. δΡ2 및 δΗ2에는 폴리비닐알코올 (폴리비닐알코올 및아크릴로니트릴의 몰 비율 = 100:0)의 분산력에 의한 용해도 파라미터, 극성에 의한 용해도 파라미터 및 수소 결합에 의한 용해도 파라미터를 대입한다. ᅳ 폴리비닐알코을의 분산력에 의한 용해도 파라미터, 극성에 의한 용해도 파라미터 및 수소 결합에 의한 용해도 파라미터는 각각 15.90 MPa1/2, 8.10 MPa1/2 및 18.80 MPa1/2이므로. 식 1의 5D2, δΡ2 및 δΗ2에 15.90. 8.10 및 18.80을 대입한다.
그리고, 식 1의 5D1, δΡ1 및 δΗ1에는 상온에서 액상을 나타내는 아크릴로니트릴과 및 제 1 용매를 포함하는 용매 계의 분산력에 의한 용해도 파라미터, 극성에 의한 용해도 파라미터 및 수소 결합에 의한 용해도 파라미터를 대입한다. 따라서 , 상기 식 1로 계산되는 . Ra가 6 미만이 되도툭 적절한 제 1 용매를 선택할 수 있다.
상기 제 1 용매로는 물 (증류수), 알코올류 용매, 케톤류 용매, 설폭사이드류 용매 혹은 이들의 흔합 용매를 사용할 수 있다. 구체적으로, 상기 알코올류 용매로는 메틸알코을, 에틸알코올, n-프로필알코올, 이소프로필알코올, n-부틸알코올, 이소부틸알코올, t_부틸알코올. n- 펜틸알코올 n-핵실알코올 또는 이들의 혼합물 둥을 사용할 수 있고, 상기 케론류 용매로는 메틸에틸케톤,. 아세톤 또는 이들의 혼합물 등을 사용할 수 있으며, 상기 설폭사이드류 용매로는 디메틸설폭사이드 등을사용할 수 있다. 이 중에서도 상기 제 1 용매로는 물이 단독으로 사용될 수 있다. 만일 상기 제 1 용매로 물과 유기 용매의 혼합 용매가 사용된다면, 유기 용매를 아크릴로니트릴 100 중량부에 대해 0 중량부 초과 100 증량부 미만으로 사용할 수 있다.—
제 1 용매로 적절한 용매를 선택한 후, 폴리비닐알코올, 아크릴로니트릴, 염기 촉매 및 제 1 용매를 흔합하고, 이를 약 10 내지 60°C의 온도에서 약 40 분 내지 500 분간 교반하여 시아노에틸화 반웅을 진행할 수 있다. 상기 시아노에틸화 반웅을 진행하는 동안 식 1로 계산되는 Ra 값을 모니터링하여 Ra가 6 이상이 되지 않도록 제 2 용매를 첨가할 수 있다.
구체적으로, H-NMR을 통해 시아노에틸화 반응 중에 시아노에틸화 치환율을 구할 수 있다. 구체적으로, 폴리비닐알코올의 히드록시기가 시아노에틸기로 치환되면, -CH2CN에 해당하는 peak는 2.5 내지 2.8 ppm에서 관찰되며, 폴리비닐알코올 유래의 주쇄인 -CH2-에 해당하는 peak는 1.3 내지 2.0 ppm에서 관찰된다. 따라서 , 1.3 내지 2.0 ppm에서 관찰되는 peak의 면적에 대한 2.5 내지 2.8 ppm에서 관찰되는 peak의 면적의 백분율을 통해 시아노에틸화 치환율을 구할 수 있다.
[식 3]
시아노에틸화 치환율 (%) :: (peak area of 2. 5 2.8 ppm) I (peak area of 1.3 - 2.0 ppm) * 100
이어서, 시아노에틸화 치환율에 대웅하는 비율로 전구체들을 흔합한 흔합물의 용해도 파라미터를 구한다. 일 예로. 전구체 혼합물을 제조하고 상기 식 2를:. 통해 폴리비닐알코올의 시아노에틸화 치환율에 따른 전구체 흔합 § 용해도 파라미터를 계산할 수 있으몌 그 결과는 하기 표 1과 같다.
【표 1】
Figure imgf000010_0001
60 40 60 15.96 10.92 11.60
70 30 70 15.97 11.39 10.40
80 20 80 15.98 11.86 9.20
90 10 90 15.99 12.33 8.00
100 0 100 16.00 12.80 6.80
* PVA: 폴리비닐알코올; AN : 아크릴로니트릴
그리고, 해당 시점에서의 용매 계의 용해도 파라미터를 구한다. 、그리고 이 값들을 상기 식 1에 대입하여 Ra 값을 확인하고, Ra 값이 상승하였다면 적절한 제 2 용매를 투입하여 Ra 값을 낮출 수 있다.
일 예로, 시아노에틸폴리비닐알코올의 제조 방법에서는 제 2 용매로 알코올류 용매, 케톤류 용매, 설폭사이드류 용매 혹은 이들의 흔합 용매를 첨가할 수 있다. 구체적으로, 상기 알코올류 용매로는 메틸알코올, 에틸알코.올, n-프로필알코올, 이소프로필알코올, n-부틸알코올. 이소부틸알코을, t— 부틸알코올, n-펜틸알코올, n—핵실알코을 또는 이들의 흔합물 등을 사용할 수 있고, 상기 케톤류 용매로는 메틸에틸케톤, 아세톤 또는 이들의 혼합물 등을 사용할 수 있으며, 상기 설폭사이드류 용매로는 디메틸설폭사이드 등을 사용할 수 있다.
또한, 시아노에틸폴리비닐알코올의 제조 방법에서는 시아노에틸화 치환율이 25% 내지 85% 내인 범위에서 2 회 이상 제 2 용매를 첨가하여 상기 식 1의 Ra를 6 미만으로 조절할 수 있다.
구체적으로, 시아노에틸폴리비닐알코올의 제조 방법에서는 시아노에틸화 치환율이 25% 내지 35% 내인 범위에서 제 2 용매를 제 1 용매 100 중량부에 대하여 30 내지 70 중량부로 첨가하고, 시아노에틸화 치환율이 45% 내지 55% 내인 범위에서 제 2 용매를 제 1 용매 100 중량부에 대하여 30 내지 130 중량부로 첨가하여 상기 식 1의 Ra를 6 미만으로 조절할 수 있다. 또한, 필요에 따라, 시아노에틸화 치환율이—75% 내지 85% 내인 범위에서 저 1 2 용매를 제 1 용매 100 중량부에 대하여 30 내지 130 중량부로 첨가할 수 있다. 상기에서는 시아노에틸폴리비닐알코을의 제조 방법에 대해 상세히 설명하였으나, 본 발명의 제조 방법은 다양한 종류의 시아노에틸기 함유 중합체의 제조 방법에 활용될 수 있다. 본 발명의 제조 방법에 따라 제조된 시아노에틸기 함유 중합체는 -0CH2CH2C0NH2 및 -0CH2CH2C00H 등의 관능기를 매우 미량으로 포함하거나 포함하지 않아 SRS ( safety re inforced separator ) 용도의 바인더로 활용되어 무기물 입자의 분산력을 향상시키고, 고분자 필름에 대한 무기물 입자의 접착력을 강화시킬 수 있다.
한편, 발명의 또 다른 구현예에 따르면, 상술한 특정 관능기의 함량이 적은 시아노에틸기 함유 중합체를 포함하는 분리막과 상기 분리막을 포함하는 이차전지가 제공된다. 상기 분리막 및 이차전지는 상술한 시아노에틸기 함유 중합체를 사용한다는 점을 제외하면 본 발명이 속한 기술분야에 알려진 방식으로 제조될 수 있다.
상기 분리막은 고분자 필름; 상기 고분자 필름 상에 분포하는 무기물 입자; 및 상기 고분자 필름에 무기물 입자를 고정시키는 바인더를 포함하며, 상기 바인더로 상술한 특정 관능기의 함량이 적은 시아노에틸기 함유 중합체를 포함할 수 있다.
.상기 시아노에틸기 함유 중합체는 -0CH CH2C0N¾ 및 — 0CH2CH2C0OH ^의 관능기를 매우 미량으로 포함하거나 포함하지 않아 무기물 입자의 분산력 및 접착력을 강화시켜 고분자 필름 상에 무기물 입자를 균일하게 분포시키며 강하게 결합시킬 수 있다. 그리고, 상기 이차전지는 이러한 분리막을 포함하여 우수한 안정성을 나타낼 수 있다.
【발명의 효과】
발명의 일 구현예에 따른 시아노에틸기 함유 중합체는 시아노에틸기 외의 다른 관능기의 함량이 극히 적어 SRS ( safety re inforced separator ) 용도의 바인더로 활용되어 무기물 입자의 분산력을 향상시키고, 고분자 필름에 대한 무기물 입자의 접착력을 강화시킬 수 있다.
【발명을 실시하기 위한 구체적인 내용】
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를' 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다. 실시예 1: 시아노에틸기 함유 중합체의 제조
반응 용기에 20 중량 %의 폴리비닐알코올 수용액 100 g (폴리비닐알코올
20 g, 증류수 80 g), 30 중량 %의 NaOH 수용액 2 g (NaOH 0.6 g, 증류수 1.4 g) 및 아크릴로니트릴 150 g을 넣고 30°C에서 교반하여 시아노에틸화 반웅을 진행하였다.
그리고, H-NMR을 통해 시아노에틸화 치환율을 모니터링하여, 시아노에틸화 치환율이 30%가 되었을 때. 상기 반응 용기에 아세톤 30 g을 투입하였다. 상기 표 1을 참고하면, 시아노에틸화 치환율이 30%일 때, 상기 식 1의 SD2는 15.93 MPa1/2이고, δΡ2는 9.51 MPa1/2이고, δΗ2는 15.20 MPa1/2임이 확인된다. 한편, 시아노에틸화 치환율이 30%가 되었을 때 아세톤을 투입한 후 상기 식 1의 sD1, δΡ1 및 δΗι는 각각 15.78 MPa1/2, 13.54 MPa1/2 및 18.19 MPa1/2이었다. 상기 용해도 파라미터 값을 상기 식 1에 대입하면 시아노에틸화 치환율이 30%일 때 . Ra가 5.03으로 6 미만임이 확인된다. 시아노에틸화 반웅을 계속 진행하여 시아노에틸화 치환율이 50%가 되었을 때 상기 반응 용기에 아세톤 30 g을 추가로 투입하였다. 상기 표 1을 참고하면, 시아노에틸화 치환율이 50%일 때, 상기 식 1의 SD2는 15.95 MPa1/2이고, δΡ2는 10,45 MPa1/2이고, δΗ2는 12.80 MPa1/2이다. 그리고, 시아노에틸화 치환율이 50%가 되었을 때 아세톤을 투입한 후 상기 식 1의 sD1, δΡ1 및 ^는 각각 15.75 MPa1/2, 13.22 MPa1/2 및 17.19 MPa1/2이었다. 이러한 용해도 파라미터 값을 상기 식 1에 대입하면 시아노에틸화 치환율이 50%일 때, Ra가 5.20으로 6 미만임이 확인 ½다. '-
30 분 후, 상기 반응 용기에 아세트산 3 g을 첨가하고 증류수 3000 g을 첨가하여 반응 생성물을 침전시켰다. 그리고 침전시킨 중합체를 아세톤 200 g에 다시 용해시키고, 이를 증류수 3000 g에 투입하여 시아노에틸기 함유 중합체를 재침전시켰다. 상기 시아노에틸화 반웅 전 과정에서의 Ra 값을 모니터링하여 6 미만으로 유지됨을 확인하였다. 실시예 2 : 시아노에틸기 함유 중합체의 제조
상기 실시예 1에서 반웅 온도를 50°C로 조절한 것을 제외하고 실시예 1과 동일한 방법으로 시아노에틸기 함유 중합체를 제조하였다. 상기 시아노에틸화 반웅 전 과정에서의 Ra 값을 모니터링하여 6 미만으로 유지됨을 확인하였다. 실시예 3 : 시아노에틸기 함유 중합체의 제조
상기 실시예 1에서 시아노에틸화 치환율이 80%일 때 상기 반웅 용기에 아세톤 100 g을 추가로 투입한 것을 제외하고 실시예 1과 동일한 방법으로 시아노에틸기 함유 중합체를 제조하였다. 상기 시아노에틸화 반웅 전 과정에서의 Ra 값이 약 5 .52로 유지되어 6 미만임을 확인하였다. 실시예 4 : 시아노에틸기 함유 중합체의 제조
반웅 용기에 20 중량 %의 폴리비닐알코을 수용액 100 g (폴리비닐알코을 20 g , 증류수 80 g) . 30 중량 %의 NaOH 수용액 2 g (NaOH 0.6 g , 증류수 1.4 g) 및 아크릴로니트릴 150 g을 넣고 30°C에서 교반하여 시아노에틸화 반응을 진행하였다.
그리고, H-NMR을 통해 시아노에틸화 치환율을 모니터링하여, 시아노에틸화 치환율이 30%가 되었을 때, 상기 반웅 용기에 디메틸설폭사이드 50 g을 투입하였다. 상기 표 1올 참고하면. 시아노에틸화 치환율이 30%일 때, 상기 식 1의 S D2는 15.93 MPa1/2이고, δ Ρ2는 9.51 MPa1/2이고, δ Η2는 —15. 20 MPa1/2임이 확인된다. 한편, ^아노에틸화 치환율이 30%가 되 -었을 때 디메틸설폭사이드를 투입한 후 상기 식 1의 5 D1 , '' δ Ρ1 및 5 111는 각각 16.29 MPa1/2 , 14.41 MPa1/2 및 17.96 MPa1/2이었다. 상기. 용해도 파라미터 값을 상기 식 1에 대입하면 시아노에틸화 치환율이 30%일 때, Ra가 5.67로 6 미만임이 확인된다. 시아노에틸화 반응을 계속 진행하여 시아노에틸화 치환율이 50%가 되었을 때 상기 반응 용기에 디메틸설폭사이드 100 g을 추가로 투입하였다. 상기 표 1올 참고하면, 시아노에틸화 치환을이 50%일 때, 상기 식 1의 5 D2는 15.95 MPa1/2이고, δ Ρ2는 1으 45 MPa1/2이고, δ Η2는 12.80 MPa1/2이다. 그리고, 시아노에틸화 치환율이 50%가 되었을 때 디메틸설폭사이드를 투입한 후 상기 식 1의 5 D1 , δ Ρ1 및 ^는 각각 16.86 MPa1/2 , 14.97 MPa1/2 및 16.00 MPa1/2이었다. 이러한 용해도 파라미터 값을 상기 식 1에 대입하면 시아노에틸화 치환율이 50¾일 때, Ra가 5.83으로 6 미만임이 확인된다. 시아노에틸화 반웅을 계속 진행하여 시아노에틸화 치환율이 80%가 되었을 때 상기 반응 용기에 이소프로필알코올 100 g을 추가로 투입하였다. 상기 표 1을 참:고하면, 시아노에틸화 치환율이 80%일 때, 상기 식 1≤ 5 D2는 15.98 MPa1/2이고, δ Ρ2는 11.86 MPa1/2이고, δ Η2는 9.20 MPa1/2이다. 그리고, 시아노에틸화 치환율이 80%가 되었을 때 이소프로필알코올을 투입한 후 상기 식 1의 5 D1 , δ Ρ1 및 δ Η1는 각각 17.43 MPa1/2 , 14.56 MPa1/2 및 13. 55 MPa1/2이었다. 이러한 용해도 파라미터 값을 상기 식 1에 대입하면 시아노에틸화 치환율이 80%일 때, 1 가 5.88로 6 미만임이 확인된다.
30 분 후, 상기 반응 용기에 아세트산 3 g을 첨가하고 증류수 3000 g을 첨가하여 반웅 생성물을 침전시켰다. 그리고 침전시 ¾ 중합체를 아세론 200 g에 다시 용해시키고, 이를 증류수 3000 g에 투입하여 시아노에틸기 함유 중합체를 재침전시켰다. 상기 시아노에틸화 반응 전 과정에서의 Ra 값을 모니터링하여 6 미만으로 유지됨을 확인하였다. 비교예 1 : 시아노에틸기 함유 중합체의 제조 반웅 용기쎄 7 중량 %의 폴리비닐알코올 수용액 100 g , 30 중량 %의 NaOH 수용액 2 g 및 아크릴로니트릴 100 g을 넣고 50°C에서 1 시간 동안 교반하여 시아노에틸화 반웅을 진행하였다. 시아노에틸화 반응을 모니터링하여 시아노에틸화 치환율이 50% 일 때 식 1의 Ra를 측정한 결과 12.32로 6 이상임이 확인되었다.
이후, 상기 반웅 용기에 아세트산 3 g을 첨가하고 증류수 3000 g을 첨가하여 반웅 생성물을 침전시켰다. 그리고 침전시킨 중합체를 아세톤 200 g에 다시 용해시키고, 이를 증류수 .3000 g에 투입하여 시아노에틸기 함유 중합체를 재침전시켰다. 비교예 2 : 시아노에틸기 함유 중합체의 제조
상기 실시예 1에서 시아노에틸화 치환율이 30% 일 때 상기 반웅 용기에 증류수 100 g을 투입하고, 시아노에틸화 치환율이 50%일 때 상기 반웅 용기에 증류수 100 g을 투입한 것을 제외하고 실시예 1과 동일한 방법으로 시아노에틸기 함유 중합체를 제조하였다. 비교예 2에서 시아노에틸화 치환율이 30% 일 때 식 1의 Ra.를 측정한 결과 16.21이고, 시아노에틸화 치환율이 50%、일 때 식 1의 Ra를 측정한 결과 21.24로 6 이상임이 확인되었다. 비교예 3 : 시아노에틸기 함유 중합체의 제조
반웅 용기에 폴리비닐알코올 100 g , NaOH 10 g 및 아크릴로니트릴 200 g을 넣고 아세톤 400 mL (316.4 g) 및 증류수 300 mL를 첨가한 후 70°C로 교반하여 시아노에틸화 반웅을 진행하였다ᅳ
30 분 후, 시아노에틸화 치환율이 60% 일 때 아세톤 100 mL ( 79. 1 g)를 투입하고 시아노에틸화 반웅을 계속 진행하였다. 아세톤 투입 전 식 1의 Ra를 계산한 결과 8.41이었고. 아세톤 투입 후 식 1의 Ra를 계산한 결과 6.99로 나타나 Ra가 6 이상임이 확인되었다.
30 분 후, 상기 반웅 용기에 아세트산 3 g을 첨가하고 증류수 3000 g을 첨가하여 반응 생성물을 침전시켰다. 그리고 침전시킨 중합체를 아세톤 200 g에 다시 용해시키고, 이를 증류수 3000 g에 투입하여 시아노에틸기 함유 중합체를 재침전시켰다. 시험예: 시아노에틸기 함유 중합체의 구조 확인 및 특성 평가
( 1) 시아노에틸기 함유 중합체의 구조 확인
상기 실시예 및 비교예에서 제조한 시아노에틸기 함유 중합체에 도입된 -0CH2CH2C0NH2 및 이의 이온을 포함하는 반복 단위와 -0CH2C¾C00H 및 이의 이온을 포함하는 반복 단위의 함량을 H-NMR 및 IR 스펙트럼을 통해 확인하고 그 결과를 표 2에. 나타내었다. 구체적으로, H-匪 R 스펙트럼에서 2.2 내지 2.3 ρρηι에서 관찰되는 peak의 면적과 IR 스펙트럼의 1570 cnf1에서 관찰되는 - C00에 해당하는 peak의 면적을 통해 각 중합체에 포함된 반복 단위에 대한 - 0CH2CH2C0NH2 및 이의 이온을 포함하는 반복 단위와 ᅳ 0CH2CH2C00H 및 이의 이은을 포함하는 반복 단위의 함량을 계산하였다.
【표 2】
Figure imgf000017_0001
(단위 : )
(2) 시아노에틸기 함유 중합체 특성 평가
-상기 실시예 및 비교예에서 제조한 시아노에틸기 함유 중합쎄를 무기물 입자와 흔합하여 분산력과 접착력을 평가하였다. 구체적으로, 시아노에틸기 함유 중합체와 평균 입경이 0.7 이며, BET가 4 m2/g인 알루미나를 10 : 90의 중량 비율로 흔합하여 슬러리를 제조하였다. 그리고, 시아노에틸기 함유 중합체의 분산력을 확인하기 위해 상기에서 제조한 슬러리를 분산 안정성 분산기 (UMiSi zer )를 이용하여 200 rpm으로 회전시키면서 25°C에서 알루미나의 침강 속도를 측정하고, 그 결과를 하기 표 3에 나타내었다. 시아노에틸기 함유 중합체의 분산력이 우수할수록 알루미나가 잘 분산되어 느리게 침강된다. 시아노에틸기 함유 중합체의 접착력을 평가하기 위해, 하기와 같은 방법으로 분리막의 일면에 전극이 접착된 조립체를 제조하고 전극에서 분리막이 박리되는데 필요한 힘을 측정하여 하기 표 3에 나타내었다.
구체적으로, 인조 흑연, 카본 블랙, CMC , 바인더를 96 : 1 : 1 : 2의 중량비로 물과 혼합하여 음국 슬러리를 제조하였다. 상기 음극 슬러리를 ί,Ο 卿의 두께를 갖는 구리 호일 위에 코팅하고 80°C에서 1 시간 이상 건조시킨후 압연 (pressing)하여 음극을 제조하였다.
이후, 상기에서 제조한 시아노에틸기 함유 중합체와 무기물 입자꾀 슬러리를 닥터 블레어드 » 이용하여 폴리에틸렌 다공성 기재의 일 에 도포하고 건조하여 다공성 코팅충이 형성된 분리막을 준비하였다.
상기 음극과 분리막을 라미네이션 장비에 넣어 접착시키고, 이 샘폴을 UTM 장비를 이용하여 100 隱 /niin의 속도로 전극 및 분리막 (다공성 코팅충)의 접착면이 박리되는데 필요한 힘을 측정하였다.
【표 3]
Figure imgf000019_0001
상기 표 3을 참고하면, 실시예 1 내지 4에서의 침강 속도가 비교예 1 내지 3에 비해 낮아 무기물 입자의 분산성이 향상된 것이 확인되고, 실시예 1 내지 4에서의 전극 접착력이 비교예 1 내지 3에 비해 높아 무기물 입자의 접참력이 향상된 것이 확인된다. 이에 따라, -0CH2CH2C0NH2 및 — 0C C¾C00H 등의 관능기가 적은 시아노에틸기 함유 중합체를 이용하면 우수한 분산력 및 접착력을 구현할 수 있음이 확인된다.

Claims

【청구범위】
【청구항 1】
시아노에틸기를 함유하는 중합체로서,
상기 중합체에 포함된 총 반복 단위에 대해 -0CH2CH2C0NH2 및 이의 이온을 포함하는 반복 단위를 1.0% 이하로 포함하고, — 0CH2CH2C00H 및 이의 이온을 포함하는 반복 단위를 2.0% 이하로 포함하는 시아노에틸기 함유 중합체.
【청구항 2】
제 1 항에 있어서, 상기 시아노에틸기 함유 중합체는0 시아노에틸폴리비닐알코올인, 시아노에틸기 함유 중합체.
【청구항 3】
제 2 항에 있어서, 상기 시아노에틸기 함유 중합체는 하기 화학식 i 내지 4로 표시되는 반복 단위 총 량에 대해 하기 화학식 3으로 표시되는 반복5 단위를 1.0% 이하로 포함하고, 하기 화학식 4로 표시되는 반복 단위를 2.0% 이하로 포함하는, 시아노에틸기 함유 증합체 :
[ [화학식 2]
Figure imgf000020_0001
상기 화학식 3 및 4에서, m은 1 내지 3의 정수이고, n은 0 또는 1이다.
【청구항 4】 반응성 관능기 함유 중합체 및 시아노에틸기 도입 전구체의 시아노에틸화 반응을 통해 반웅성 관능기 함유 중합체로부터 시아노에틸기 함유 중합체를 제조하는 단계를 포함하며 ,
상기 시아노에틸화 반웅 동안 하기 식 1로 계산되는 Ra가 6 미만이 되도록 용매를 첨가하는, 시아노에틸기 함유 중합체의 제조 방법:
[식 1]
(Ra)2 = 4( δ D2 - δ 0ι)2 + ( δ Ρ2 - δ Ρ1)2 + ( δ Η2 - δ Ηι)2
상기 식 1에서,
S D2 , δ Ρ2 및 δ Η2는 반웅성 관능기 함유 중합체 및 시아노에틸기 도입 전구체를 100-χ : X 의 몰. 비율로 흔합한 흔합물의 분산력에 의한 용해도 파라미터, 극성에 의한 용해도 파라미터 및 수소 결합에 의한 용해도 파라미터이며 , 상기 X는 어느 한 시점에서 측정된 시아노에틸화 치환율이고, δ οΐ , δ Ρ! 및 δ Η1은 상기 어느 한 시점에서 시아노에틸화 반웅에 사용되는 용매 계의 분산력에 의한 용해도 파라미터, 극성에 의한 용해도 파라미터 및 수소 결합에 의한 용해도 파라미터이다.
【청구항 5】
제 4 항에 있어서, 시아노에틸화 반웅은 10 내지 60°C의 은도쎄서 40 분 내지 500 분간 진행되는, 시아노에틸기 함유 중합체의 제조 방법.
[청구항 6】
제 4 항에 있어서, 폴리비닐알코올, 아크릴로니트릴, 염기 촉매 및 제 1 용매를 흔합하여 혼합물을 제조하고, 상기 흔합물의 시아노에틸화 반응 중에 제 2 용매를 첨가하여, 폴리비닐알코올로부터 시아노에틸폴리비닐알코올을 제조하는. 시아노에틸기 함유 증합체의 제조 방법 .
[청구항 7】
제 6 항에 있어서, 상기 제 2 용매로 알코을류 용매, 케톤류 용매, 설폭사이드류 용매 혹은 이들의 흔합 용매를 첨가하는, 시아노에틸기 함유 중합체의 제조 방법 .
【청구항 8]
제 6 항에 있어서, 시아노에틸화 치환율이 25% 내지 85% 내인 범위에서 2 회 이상 제 2 용매를 첨가하는, 시아노에틸기 함유 중합체의 제조 방법.
【청구항 9】
제 6 항에 있어서, 시아노에틸화 치환율이 25% 내지 35% 내인 범위에서 제 2 용매를 제 1 용매 100 중량부에 대하여 30 내지 70 중량부로 첨가하고, 시아노에틸화 치환율이 45% 내지 55% 내인 범위에서 제 2'용매를 제 1 용매 100 중량부에 대하여 30 내지 130 중량부로 첨가하는, 시아노에틸기 함유 중합체의 제조 방법 .
【청구항 10】
고분자 필름;
상기 고분자 필름 상에 분포하는 무기물 입자; 및
상기 고분자 필름에 무기물 입자를 고정시키는 바인더를 포함하며, 상기 바인더는 제 1 항에 따른 시아노에틸기 함유 중합체를 포함하는, 분리막. 【청구항 11】
제 10 항에 따른 분리막올 포함하는 이차전지 .
PCT/KR2017/013948 2016-12-27 2017-11-30 시아노에틸기 함유 중합체 및 이의 제조 방법 WO2018124509A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780021761.7A CN108884188A (zh) 2016-12-27 2017-11-30 含有氰乙基的聚合物及其制备方法
US16/082,410 US11066490B2 (en) 2016-12-27 2017-11-30 Cyanoethyl group-containing polymer and preparation method thereof
EP17889265.9A EP3409698B1 (en) 2016-12-27 2017-11-30 Polymer containing cyanoethyl group and preparation method therefor
JP2018548034A JP6651242B2 (ja) 2016-12-27 2017-11-30 シアノエチル基含有重合体およびその製造方法
PL17889265.9T PL3409698T3 (pl) 2016-12-27 2017-11-30 Polimer zawierający grupę cyjanoetylową i sposób jego wytwarzania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160179851A KR102029448B1 (ko) 2016-12-27 2016-12-27 시아노에틸기 함유 중합체 및 이의 제조 방법
KR10-2016-0179851 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018124509A1 true WO2018124509A1 (ko) 2018-07-05

Family

ID=62710686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013948 WO2018124509A1 (ko) 2016-12-27 2017-11-30 시아노에틸기 함유 중합체 및 이의 제조 방법

Country Status (8)

Country Link
US (1) US11066490B2 (ko)
EP (1) EP3409698B1 (ko)
JP (1) JP6651242B2 (ko)
KR (1) KR102029448B1 (ko)
CN (1) CN108884188A (ko)
HU (1) HUE061378T2 (ko)
PL (1) PL3409698T3 (ko)
WO (1) WO2018124509A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112867760A (zh) * 2018-10-19 2021-05-28 株式会社Lg化学 包含含氰乙基的聚合物的用于非水电解液电池的隔膜的分散剂、隔膜和非水电解液电池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102447937B1 (ko) 2018-07-23 2022-09-27 주식회사 엘지화학 2-시아노에틸기 함유 중합체의 제조 방법
KR102551395B1 (ko) * 2018-12-11 2023-07-03 주식회사 엘지화학 2-시아노에틸기 함유 중합체의 제조 방법
KR102405288B1 (ko) 2019-01-22 2022-06-07 주식회사 엘지화학 비닐 알코올계 공중합체, 이의 제조 방법 및 이를 포함하는 기체 차단성 필름
KR20210025837A (ko) 2019-08-28 2021-03-10 (주)에코케미칼 시아노에틸폴리비닐알콜의 제조방법
KR102535527B1 (ko) * 2022-04-11 2023-05-26 주식회사 한솔케미칼 공중합체를 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극, 상기 음극을 포함하는 이차전지, 및 상기 공중합체의 중합방법
KR20240051641A (ko) * 2022-10-13 2024-04-22 한국화학연구원 겔 고분자 전해질 형성용 조성물, 그로부터 제조된 겔 고분자 전해질 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2341553A (en) * 1942-10-29 1944-02-15 Du Pont Polyvinyl cyanoethyl ether
JP2012224851A (ja) * 2011-04-05 2012-11-15 Shin-Etsu Chemical Co Ltd 2−シアノエチル基含有有機化合物の製造方法
US8771880B2 (en) * 2011-04-05 2014-07-08 Shin-Etsu Chemical Co., Ltd. Binder for separator of non-aqueous electrolyte battery comprising 2-cyanoethyl group-containing polymer and separator and battery using the same
KR101532815B1 (ko) * 2011-04-05 2015-06-30 신에쓰 가가꾸 고교 가부시끼가이샤 2-시아노에틸기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 결합제 및 이것을 이용한 세퍼레이터 및 전지
KR101634416B1 (ko) * 2011-04-05 2016-06-28 신에쓰 가가꾸 고교 가부시끼가이샤 2-시아노에틸기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 결합제 및 이것을 이용한 세퍼레이터 및 전지

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB575626A (en) 1943-12-10 1946-02-26 Du Pont Improvements in or relating to the production of polyvinyl ethers
US2941990A (en) 1957-07-15 1960-06-21 American Cyanamid Co Cyanoethylated polymers
US3194798A (en) 1962-05-09 1965-07-13 Westinghouse Electric Corp Cyanoethylation of polyvinyl alcohol
JPH075650B2 (ja) 1986-07-16 1995-01-25 株式会社興人 有機バインダ−
JPH0825980B2 (ja) 1989-09-14 1996-03-13 信越化学工業株式会社 シアノエチル化物とその製造方法
JPH06202350A (ja) 1992-12-25 1994-07-22 Shin Etsu Chem Co Ltd 電子写真感光体
CN100400551C (zh) 2003-09-27 2008-07-09 无锡市化工研究设计院宜兴联营实验厂 改进的聚乙烯醇-β-氰乙基醚制造方法
JP5101541B2 (ja) * 2008-05-15 2012-12-19 信越化学工業株式会社 パターン形成方法
EP2466678B1 (en) 2009-08-10 2017-11-22 LG Chem, Ltd. Lithium secondary battery
RU2436803C2 (ru) 2010-02-01 2011-12-20 Открытое акционерное общество "Пластполимер" (ОАО "Пластполимер") Способ получения цианэтиловых эфиров полимеров винилового спирта
JP2011213782A (ja) 2010-03-31 2011-10-27 Fujifilm Corp ポリマー溶液の製造方法、ポリマーの精製方法
KR101623101B1 (ko) 2010-10-07 2016-05-20 주식회사 엘지화학 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 구비한 전기화학소자
JP5776430B2 (ja) 2011-08-10 2015-09-09 Dic株式会社 ポリ(n−シアノエチルエチレンイミン)骨格を有するポリマー及びその結晶体の製造方法
CN102942645B (zh) 2012-10-22 2014-09-24 广州市杰迅电子材料有限公司 改性聚乙烯醇树脂的制备方法及其应用
TWI557968B (zh) 2013-11-06 2016-11-11 Lg化學股份有限公司 電化學裝置用分離器與電化學裝置
JP6460830B2 (ja) 2015-02-23 2019-01-30 リンテック株式会社 脂肪族ポリカーボネート樹脂、固体電解質、およびリチウムイオン二次電池
KR20160129598A (ko) 2015-04-30 2016-11-09 주식회사 엘지화학 전해액 함침성이 향상된 전기화학소자용 세퍼레이터 및 이를 포함하는 전기화학소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2341553A (en) * 1942-10-29 1944-02-15 Du Pont Polyvinyl cyanoethyl ether
JP2012224851A (ja) * 2011-04-05 2012-11-15 Shin-Etsu Chemical Co Ltd 2−シアノエチル基含有有機化合物の製造方法
US8771880B2 (en) * 2011-04-05 2014-07-08 Shin-Etsu Chemical Co., Ltd. Binder for separator of non-aqueous electrolyte battery comprising 2-cyanoethyl group-containing polymer and separator and battery using the same
KR101532815B1 (ko) * 2011-04-05 2015-06-30 신에쓰 가가꾸 고교 가부시끼가이샤 2-시아노에틸기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 결합제 및 이것을 이용한 세퍼레이터 및 전지
KR101634416B1 (ko) * 2011-04-05 2016-06-28 신에쓰 가가꾸 고교 가부시끼가이샤 2-시아노에틸기 함유 중합체를 포함하는 비수전해질 전지 세퍼레이터용 결합제 및 이것을 이용한 세퍼레이터 및 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3409698A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112867760A (zh) * 2018-10-19 2021-05-28 株式会社Lg化学 包含含氰乙基的聚合物的用于非水电解液电池的隔膜的分散剂、隔膜和非水电解液电池
EP3845594A4 (en) * 2018-10-19 2021-12-29 LG Chem, Ltd. Dispersant for non-aqueous electrolyte battery separator including cyanoethyl group-containing polymer, non-aqueous electrolyte battery separator, and non-aqueous electrolyte battery
CN112867760B (zh) * 2018-10-19 2023-03-28 株式会社Lg化学 包含含氰乙基的聚合物的用于非水电解液电池的隔膜的分散剂、隔膜和非水电解液电池

Also Published As

Publication number Publication date
EP3409698B1 (en) 2023-01-25
CN108884188A (zh) 2018-11-23
JP6651242B2 (ja) 2020-02-19
KR102029448B1 (ko) 2019-10-07
JP2019509383A (ja) 2019-04-04
KR20180075912A (ko) 2018-07-05
US20190085102A1 (en) 2019-03-21
EP3409698A1 (en) 2018-12-05
EP3409698A4 (en) 2019-04-03
PL3409698T3 (pl) 2023-05-15
US11066490B2 (en) 2021-07-20
HUE061378T2 (hu) 2023-06-28

Similar Documents

Publication Publication Date Title
WO2018124509A1 (ko) 시아노에틸기 함유 중합체 및 이의 제조 방법
JP6824902B2 (ja) 非常に優れたアルカリ安定性を有するイミダゾール及びイミダゾリウムカチオン
TWI525128B (zh) 導電性高分子、導電性高分子的品質管理方法以及導電性高分子的精製方法
TW201000397A (en) Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
CN109071466B (zh) 用于金属-有机杂化结构的多向多齿配体
KR102601057B1 (ko) 계층적 자가배열 금속-유기구조체 나노입자를 포함하는 다기능성 초분자 하이브리드, 및 그의 제조 방법
KR20190047717A (ko) 전기전도성 기판의 코팅 방법, 및 그래핀성 탄소 입자를 포함하는 관련된 전착성 조성물
Xu et al. CuSO4 nanoparticles loaded on carboxymethylcellulose/polyaniline composites: A highly efficient catalyst with enhanced catalytic activity in the synthesis of propargylamines, benzofurans, and 1, 2, 3‐triazoles
KR20170034840A (ko) 블록 공중합체, 및 이를 이용한 그래핀의 제조 방법
KR102056557B1 (ko) 공중합체 및 그 제조 방법, 및 공중합체 조성물
Wang et al. Topochemical polymerization of unsymmetrical aryldiacetylene supramolecules with nitrophenyl substituents utilizing C–H⋯ π interactions
KR102224895B1 (ko) 바인더, 이를 포함하는 분리막 및 이차전지
Tan et al. A low dielectric constant polyimide/polyoxometalate composite
JP2011068829A (ja) 耐熱膜の製造方法
CN109097025B (zh) 一种可调荧光氮点的制备方法
KR20180098880A (ko) 바인더, 이를 포함하는 분리막 및 이차전지
Xu et al. Chain-end functionalization of living helical polyisocyanides through a Pd (II)-mediated Sonogashira coupling reaction
JP5620159B2 (ja) アズルミン酸混合液及びその製造方法
CN111527113B (zh) 含有2-氰乙基的聚合物的制备方法
Gao et al. Synthesis of poly (methylphenylsiloxane)/phenylene‐silica hybrid material with interpenetrating networks and its performance as thermal resistant coating
Godoy et al. Kinetic investigation of thermal formation processes of SiOC glasses derived from C-containing hybrid polymeric networks
Aleksandrov et al. A biocompatible nanocomposite based on allyl chitosan and vinyltriethoxysilane for tissue engineering
KR102232140B1 (ko) 고온 안정성을 갖는 2-시아노에틸기를 함유하는 유기화합물을 포함하는 2차 전지 분리막 코팅용 바인더
KR101876029B1 (ko) 그래핀 옥사이드 시트 유도체 및 이의 제조방법
JP2014231540A (ja) 導電性ポリマー前駆体、および導電性ポリマーとその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017889265

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017889265

Country of ref document: EP

Effective date: 20180827

ENP Entry into the national phase

Ref document number: 2018548034

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE