WO2018122608A1 - Lanthanide precursors and deposition of lanthanide-containing films using the same - Google Patents

Lanthanide precursors and deposition of lanthanide-containing films using the same Download PDF

Info

Publication number
WO2018122608A1
WO2018122608A1 PCT/IB2017/001721 IB2017001721W WO2018122608A1 WO 2018122608 A1 WO2018122608 A1 WO 2018122608A1 IB 2017001721 W IB2017001721 W IB 2017001721W WO 2018122608 A1 WO2018122608 A1 WO 2018122608A1
Authority
WO
WIPO (PCT)
Prior art keywords
nme
lanthanide
precursor
group
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/IB2017/001721
Other languages
English (en)
French (fr)
Inventor
Satoko Gatineau
DaeHyeon KIM
Wontae Noh
Jean-Marc Girard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to KR1020197020790A priority Critical patent/KR102503211B1/ko
Priority to CN201780076504.3A priority patent/CN110062817A/zh
Priority to JP2019530435A priority patent/JP7253490B2/ja
Publication of WO2018122608A1 publication Critical patent/WO2018122608A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/409Oxides of the type ABO3 with A representing alkali, alkaline earth metal or lead and B representing a refractory metal, nickel, scandium or a lanthanide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Definitions

  • lanthanide-containing film forming compositions comprising Lanthanide precursors having the general formulae, L-Ln-C5R4-[(ER2)m-(ER2)n-L'], L-Ln-C4AR3-3-[(ER 2 )m-(ER 2 )n-L']-, L-Ln-C3(m-A2)R2-4-[(ER2)m-(ER 2 )n-L']-, wherein Ln is selected from Lanthanide elements consisting of La, Y, Sc, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu bonded in an ⁇ 5 bonding mode to the aromatic ring group; A is independently N, Si, B, P or O; each E is independently C, Si, B or P; m and n are independently 0, 1 or 2; m + n >1 ; each R is independently an H or a C1-C4 hydrocarbyl group; adjacent Rs may
  • ALD atomic layer deposition
  • Lanthanum 2,2-6,6- tetramethylheptanedionate's [La(tmhd)3] melting point is as high as 230 ° C
  • Lanthanum tris(bis(trimethylsilyl)amido) [La(tmsa)3] melting point is 150 ° C. Additionally, the delivery efficiency of those precursors is very difficult to control.
  • Non-substituted cyclopentadienyl compounds also exhibit low volatility with a high melting point. Molecule design may both help improve volatility and reduce the melting point. However, in process conditions, these classes of materials have been proven to have limited use. For instance, La(iPrCp)3 does not allow an ALD regime above 225 ° C.
  • Cp bridged Y and Lu compounds are synthesized and may be used for catalysts or precursors for rare-earth oxide thin films.
  • F Edelmann discloses the Cp-one ligand bridged Y compound Me 4 Cp-SiMe2-N(ph)- Y- (F Edelmann, "Lanthanide Aamidinates and guanidinates: from laboratory curiosities to efficient homogeneous catalysts and precursors for rare- earth oxide thin films", Chem. Soc. Rev., 2009, 38, p2253-2268).
  • Lanthanide precursors currently available present many drawbacks when used in a deposition process. Consequently, there exists a need for alternate precursors for deposition of Lanthanide-containing films.
  • Lanthanide-containing film forming compositions comprising Lanthanide precursors having the general formulae:
  • Ln is selected from Lanthanide elements consisting of La, Y, Sc, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu bonded in an rf bonding mode to the aromatic ring group;
  • A is independently N, Si, B, P or O;
  • each E is independently C, Si, B or P;
  • m and n are independently 0, 1 or 2;
  • each R is independently an H or a C1-C4 hydrocarbyl group; adjacent Rs may be joined to form a hydrocarbyl ring;
  • L is a -1 anionic ligand selected from the group consisting of NR 2, OR ' , Cp, amidinate, ⁇ -diketonate, or keto-iminate, wherein R ' is an H or a C1-C4 hydrocarbon group; adjacent R s may be joined to form a hydrocarbyl ring; and L' is NR" or
  • the aromatic group being a heterocyclic group containing N, Si, B, P or 0;
  • the aromal ic group being a methyl substituted pyrrole
  • the aromal ic group being an isopropyl substituted pyrrole
  • the aromal ic group being a tertbutyl substituted pyrrole
  • the aromal ic group being a methyl substituted pyrazole
  • the aromal ic group being an isopropyl substituted pyrazole
  • the aromal ic group being a tertbutyl substituted pyrazole
  • the aromal ic group being a methyl substituted imidazole
  • the aromal ic group being an isopropyl substituted imidazole
  • the aromal ic group being a tertbutyl substituted imidazole
  • the aromal ic group being a methyl substituted silacyclopentadienide; the aromal ic group being an isopropyl substituted silacyclopentadienide the aromal ic group being a tertbutyl substituted silacyclopentadienide; the aromal ic group being a methyl substituted borole;
  • the aromal ic group being an isopropyl substituted borole
  • the aromal ic group being a tertbutyl substituted borole
  • the aromal ic group being a methyl substituted phosphole
  • the aromal ic group being an isopropyl substituted phosphole
  • the aromal ic group being a tertbutyl substituted phosphole
  • the Lanthanide precursor being (Me 2 N)-La-C5H 3 -1 -Me-3-[(CH2)2-NMe]-; the Lanthanide precursor being (Me 2 N)- -Y-C5H3-I -Me-3-[(CH 2 ) 2 -NMe]-; the Lanthanide precursor being (Me 2 N)- -SC-C5H3-I -Me-3-[(CH 2 ) 2 -NMe]-; the Lanthanide precursor being (Me 2 N)- -Ce-CsHs-l -Me-3-[(CH 2 ) 2 -NMe]-; the Lanthanide precursor being (Me 2 N)- -Pr-CsHs-l -Me-3-[(CH 2 ) 2 -NMe]-; the Lanthanide precursor being (Me 2 N)- -Nd-CsHs-l -Me-3-[(CH 2 ) 2 -NMe]-
  • the Lanthanide precursor being Cp-La-C 5 H 3 -1 -Me-3-[(CH 2 ) 2 -NMe]-;
  • the Lanthanide precursor being Cp-Sc-C 5 H 3 -1 -Me-3-[(CH 2 ) 2 -NMe]-;
  • the Lanthanide precursor being Cp-Pr-C 5 H 3 -1 -Me-3-[(CH 2 ) 2 -NMe]-;
  • the Lanthanide precursor being Cp-Sm-C5H3-1 -Me-3-[(CH2)2-0]-;
  • the Lanthanide precursors disclosed above are introduced into a reactor having a substrate disposed therein. At least part of the Lanthanide precursor is deposited onto the substrate to form the Lanthanide- containing film on the substrate using a vapor deposition process.
  • the disclosed method may optionally include one or more of the following aspects:
  • the substrate being a Ge02 film
  • the substrate being a high k gate dielectric film
  • the Lanthanide precursor being a liquid at a temperature below 70°C;
  • the Lanthanide precursor being a liquid at a temperature below 40°C
  • the Lanthanide-containing film being selected from the group consisting of Ln 2 03, (LnLn')03, L ⁇ Os-Ln ⁇ Os, LnSixOy, LnGe x O y , (Al, Ga, Mn)Ln03, HfLnOx, and ZrLnOx, LnSrCo04, LnSrMn04, wherein Ln' is a different Lanthanide from Ln and x and y are each a number selected from 1 -5 inclusive;
  • the reactant species being selected from the group consisting of O2, O3, H2O, H2O2, acetic acid, formalin, para-formaldehyde, and combinations thereof;
  • the vapor deposition process being a chemical vapor deposition process
  • the vapor deposition process being an atomic layer deposition process
  • the vapor deposition process being a spatial ALD process
  • the vapor deposition process including a plasma process
  • the vapor deposition process being a thermal process.
  • Lanthanide-containing film coated substrates comprising the product of the disclosed methods. Notation and Nomenclature
  • the indefinite article “a” or “an” means one or more.
  • the term "independently" when used in the context of describing R groups should be understood to denote that the subject R group is not only independently selected relative to other R groups bearing the same or different subscripts or superscripts, but is also independently selected relative to any additional species of that same R group.
  • the two or three R 1 groups may, but need not be identical to each other or to R 2 or to R 3 .
  • values of R groups are independent of each other when used in different formulas.
  • hydrocarbyl group refers to a functional group containing carbon and hydrogen; the term “alkyl group” refers to saturated functional groups containing exclusively carbon and hydrogen atoms.
  • the hydrocarbyl group may be saturated or unsaturated.
  • Either term refers to linear, branched, or cyclic groups. Examples of linear alkyl groups include without limitation, methyl groups, ethyl groups, propyl groups, butyl groups, etc. Examples of branched alkyls groups include without limitation, t- butyl. Examples of cyclic alkyl groups include without limitation, cyclopropyl groups, cyclopentyl groups, cyclohexyl groups, etc.
  • the abbreviation "Me” refers to a methyl group
  • the abbreviation “Et” refers to an ethyl group
  • the abbreviation “Pr” refers to a propyl group
  • the abbreviation “"Pr” refers to a "normal” or linear propyl group
  • the abbreviation “'Pr” refers to an isopropyl group
  • the abbreviation “Bu” refers to a butyl group
  • the abbreviation “"Bu” refers to a "normal” or linear butyl group
  • the abbreviation “ f Bu” refers to a fe/f-butyl group, also known as 1 , 1 - dimethylethyl
  • the abbreviation “ s Bu” refers to a sec-butyl group, also known as 1 - methylpropyl
  • the abbreviation “'Bu” refers to an /so-butyl group, also
  • the abbreviation "ortho-” or “o-” refers to an aromatic ring having carbon replacements at 1 ,2 positions; the abbreviation “meta-” or “m-” refers to an aromatic ring having carbon replacements at 1 ,3 positions; the abbreviation “para-” or “p-” refers to an six- memebered aromatic ring having carbon replacements at 1 ,4 positions.
  • the compounds shown in following structure formula are represented by (Me2N)-La-C3(m-A2)H2-4-(CH2- -NMe)-
  • La is bonded in an if bonding mode to the aromatic ring group;
  • A is independently N, Si, B or P.
  • ⁇ 5 is the hapticity of the above precursors representing five contiguous atoms of the aromatic ring group bonded to the La atom.
  • L-Ln-CsF - [(ER 2 )m-(ER 2 )n-L']-, L-Ln-C4AR3-3-[(ER 2 )m-(ER 2 )n-L']- and L-Ln-C 3 (m-A 2 )R2-4- [(ER2)m-(ER2)n-L']-, refer to the compounds having the following structure formula, respectivel :
  • Ln is selected from Lanthanide elements consisting of La, Y, Sc, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu bonded in an ⁇ 5 bonding mode to the aromatic ring group;
  • A is independently N, Si, B, P or 0; each E is independently C, Si, B or P; m and n are independently 0, 1 or 2; m + n >1 ;
  • each R is independently an H or a C1 -C4 hydrocarbyl group; and adjacent Rs may be joined to form a hydrocarbyl ring;
  • each L is independently a -1 anionic ligand selected from the group consisting of NR2, OR ' , Cp, amidinate, ⁇ -diketonate, or keto-iminate, wherein R ' is an H or a C1-C4 hydrocarbon group; and adjacent R s may be joined to form a hydrocarbyl ring; and each L' is independently
  • Ln refers to the Lanthanide group, which includes the following elements: lanthanum (“La”), yttrium (“Y”), scandium (“Sc”), cerium (“Ce”), praseodymium (“Pr”), neodymium (“Nd”), samarium (“Sm”), europium (“Eu”), gadolinium (“Gd”), terbium (“Tb”), dysprosium (“Dy”), holmium (“Ho”), erbium (“Er”), thulium (“Tm”), ytterbium (“Yb”), or lutetium (“Lu”);
  • the abbreviation “Cp” refers to cyclopentadienyl;
  • A refers to angstroms; prime (“ ' ") is used to indicate a different component than the first, for example (LnLn')O3 refers to a Lanthanide oxide containing two different Lanthan
  • Group 3 refers to Group 3 of the Periodic Table (i.e., Sc, Y, La, or Ac).
  • Group 4 refers to Group 4 of the Periodic Table (i.e., Ti, Zr, or Hf) and Group 5 refers to Group 5 of the Periodic Table (i.e., V, Nb, or Ta).
  • the films or layers deposited may be listed throughout the specification and claims without reference to their proper stoichiometry.
  • the layers may include pure (Si) layers, carbide (SioCp) layers, nitride (SikNi) layers, oxide (SinOm) layers, or mixtures thereof, wherein k, I, m, n, o, and p inclusively range from 1 to 6.
  • silicon oxide is SinOm, wherein n ranges from 0.5 to 1 .5 and m ranges from 1.5 to 3.5. More preferably, the silicon oxide layer is S1O2.
  • These films may also contain Hydrogen, typically from 0 at% to 15 at%. However, since not routinely measured, any film compositions given ignore their H content, unless explicitly stated otherwise.
  • Lanthanide-containing film forming compositions are disclosed.
  • the Lanthanide-containing film forming compositions comprise Lanthanide precursors having the general formulae,
  • Ln is selected from Lanthanide elements consisting of La, Y, Sc, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu bonded in an ⁇ 5 bonding mode to the aromatic group;
  • A-containing aromatic group contains one or two As wherein the two As are at ortho- or meta- positions;
  • A is independently N, Si, B, P or O;
  • each E is independently C, Si, B or P;
  • m and n are independently 0, 1 or 2;
  • each R is independently an H or a C1-C4 hydrocarbyl group; adjacent Rs may be joined to form a hydrocarbyl ring;
  • each L is independently a -1 anionic ligand selected from the group consisting of NR2, OR ' , Cp, amidinate, ⁇ -diketonate, or keto-iminate, wherein R ' is an H or a C1-C4 hydrocarbon group;
  • the Lanthanide-containing film forming compositions further comprise the Lanthanide precursors having the following formulae:
  • Ln is selected from Lanthanide elements consisting of La, Y, Sc, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu bonded in an ⁇ 5 bonding mode to the aromatic group;
  • A is independently N, Si, B, P or O;
  • each E is independently C, Si, B or P;
  • m and n are independently 0, 1 or 2;
  • each R is independently an H or a C1-C4 hydrocarbyl group; and adjacent Rs may be joined to form a hydrocarbyl ring;
  • each L is independently a -1 anionic ligand selected from the group consisting of NR 2, OR ' , Cp, amidinate, ⁇ -diketonate, or keto-iminate, wherein R ' is an H or a C1-C4 hydrocarbon group; and adjacent R s may be joined to form a hydrocarbyl ring; and each L' is independently
  • Preferred Lanthanide precursors include (Me2N)-Ln-C5H3-1 -Me-3-(CH2- CH 2 -NMe)- and (Me 2 N)-Ln-C5H3-1 -Me-3-(CH2-CH 2 -0)-, corresponding to the following structure formula respectively:
  • Ln is selected from Lanthanide elements consisting of La, Y, Sc, Ce, Pr,
  • the compounds include Cp-La-C5H 3 -1 -Me-3-[(CH 2 ) 2 -NMe]-; Cp- Y-CsHs-1 -Me-3-[(CH 2 ) 2 -NMe]-; Cp-Sc-C 5 H 3 -1 -Me-3-[(CH 2 ) 2 -NMe]-; Cp-Ce-CsHs-1 - Me-3-[(CH 2 ) 2 -NMe]-; Cp-Pr-C 5 H 3 -1 -Me-3-[(CH 2 ) 2 -NMe]-; Cp-Nd-C 5 H 3 -1 -Me-3- [(CH 2 ) 2 -NMe]-; Cp-Sm-C 5 H 3 -1 -Me-3-[(CH 2 ) 2 -NMe]-; Cp-Eu-CsHs-1 -Me-3-[(CH 2 ) 2 -NMe]-;
  • the disclosed Lanthanide-containing precursors having the above structures i.e., having one aromatic group with asymmetric structure may be liquid and less or not viscous.
  • the disclosed Lanthanide-containing precursors having the above structures may have high vapor pressure and may be used in direct liquid injection (DLI) where the precursor is fed in a liquid state and then vaporized before it is introduced into a reactor.
  • DLI direct liquid injection
  • bridged aromatic groups for example, cyciopentadienyi (Cp)/amino or bridged Cp/alkoxy, may help to stabilize the compounds.
  • Such properties include better control of steric crowding around the metal center, which in turn controls the surface reaction on the substrate and the reaction with a second reactant (such as an oxygen source).
  • a second reactant such as an oxygen source.
  • Independently fine tuning the substituents on the ligands increases volatility and thermal stability and decreases melting point to yield either liquids or low melting solids.
  • Lanthanide precursors with properties suited for the vapor deposition process (i.e., a volatile, yet thermally stable, liquid or low melting solid (having a melting point below about 105 ° C)
  • a direct correlation between the properties of the central metal ion (coordination number) and ligands (steric effect, ratio of two heteroleptic ligands) has been observed.
  • the metal compound has a 3+ charge and coordination number of 6.
  • m is 2 and n is 1 .
  • the Lanthanide precursor has a melting point below about 105°C, preferably below about 80 ° C, more preferably below about 70°C, and even more preferably below about 40°C.
  • the synthesis of the lanthanide precursors may be carried out by following methods:
  • Lanthanide precursor may be deposited to form Lanthanide-containing films using any vapor deposition methods known to those of skill in the art.
  • suitable vapor deposition methods include without limitation, conventional chemical vapor deposition (CVD), atomic layer deposition (ALD), or other types of vapor depositions that are variations thereof, such as plasma enhanced ALD (PEALD), plasma enhanced CVD (PECVD), low pressure CVD (LPCVD), pulsed chemical vapor deposition (P-CVD), low pressure CVD (LPCVD), sub- atmospheric CVD (SACVD), atmospheric pressure CVD (APCVD), hot-wire CVD (HWCVD, also known as cat-CVD, in which a hot wire serves as an energy source for the deposition process), thermal ALD, thermal CVD, spatial ALD, hot-wire ALD (HWALD), radicals incorporated deposition, and super critical fluid deposition, or combinations thereof.
  • the deposition method is preferably ALD, PE-ALD, or spatial ALD in order to provide suitable step coverage and film
  • the substrate upon which the Lanthanide-containing film will be deposited will vary depending on the final use intended.
  • the substrate may be chosen from oxides which are used as dielectric materials in MIM, DRAM, FeRam technologies or gate dielectrics in CMOS technologies (for example, HfO2 based materials, T1O2 based materials, GeO2 based materials, ZrO2 based materials, rare earth oxide based materials, ternary oxide based materials, etc.) or from nitride-based films (for example, TaN) that are used as an oxygen barrier between copper and the low-k layer.
  • oxides which are used as dielectric materials in MIM, DRAM, FeRam technologies or gate dielectrics in CMOS technologies (for example, HfO2 based materials, T1O2 based materials, GeO2 based materials, ZrO2 based materials, rare earth oxide based materials, ternary oxide based materials, etc.) or from nitride-based films (for example, TaN) that are used as
  • substrates include, but are not limited to, solid substrates such as metal substrates (for example, Au, Pd, Rh, Ru, W, Al, Ni, Ti, Co, Pt and metal silicides, such as TiSi2, C0S12, and NiSi2); metal nitride containing substrates (for example, TaN, TiN, WN, TaCN, TiCN, TaSiN, and TiSiN); semiconductor materials (for example, Si, SiGe, GaAs, InP, diamond, GaN, and SiC); insulators (for example, S1O2, SisN 4 , SiON, Hf02, Ta 2 05, Zr02, T1O2, AI2O3, and barium strontium titanate); or other substrates that include any number of combinations of these materials.
  • metal substrates for example, Au, Pd, Rh, Ru, W, Al, Ni, Ti, Co, Pt and metal silicides, such as TiSi2, C0S12, and NiSi2
  • Plastic substrates such as poly(3,4- ethylenedioxythiophene)poly (styrenesulfonte) [PEDOTPSS], may also be used.
  • the actual substrate utilized may also depend upon the specific precursor embodiment utilized. In many instances though, the preferred substrate utilized will be selected from TiN, Ru, and Si type substrates.
  • the vapor of the Lanthanide precursor is introduced into a reactor containing at least one substrate.
  • the temperature and the pressure within the reactor and the temperature of the substrate are held at conditions suitable for vapor deposition of at least part of the Lanthanide precursor onto the substrate.
  • conditions within the chamber are such that at least part of the vaporized precursor is deposited onto the substrate to form the Lanthanide-containing film.
  • the reactor may be any enclosure or chamber of a device in which deposition methods take place, such as, without limitation, a parallel-plate type reactor, a cold-wall type reactor, a hot-wall type reactor, a single-wafer reactor, a multi-wafer reactor, or other such types of deposition systems.
  • the reactor may be maintained at a pressure ranging from about 0.5 mTorr to about 20 Torr.
  • the temperature within the reactor may range from about 250°C to about 600°C.
  • the temperature may be optimized through mere experimentation to achieve the desired result.
  • the substrate may be heated to a sufficient temperature to obtain the desired Lanthanide-containing film at a sufficient growth rate and with desired physical state and composition.
  • a non-limiting exemplary temperature range to which the substrate may be heated includes from 150°C to 600°C.
  • the temperature of the substrate remains less than or equal to 450°C.
  • the Lanthanide precursor may be fed in liquid state to a vaporizer where it is vaporized before it is introduced into the reactor. Prior to its vaporization, the Lanthanide precursor may optionally be mixed with one or more solvents, one or more metal sources, and a mixture of one or more solvents and one or more metal sources.
  • the solvents may be selected from the group consisting of toluene, ethyl benzene, xylene, mesitylene, decane, dodecane, octane, hexane, pentane, or others.
  • the resulting concentration may range from approximately 0.05 M to approximately 2 M.
  • the metal source may include any metal precursors now known or later developed.
  • the Lanthanide precursor may be vaporized by passing a carrier gas into a container containing the Lanthanide precursor or by bubbling the carrier gas into the Lanthanide precursor.
  • the carrier gas may include, but is not limited to, Ar, He, N2, and mixtures thereof.
  • the carrier gas and Lanthanide precursor are then introduced into the reactor.
  • the container may be heated to a temperature that permits the Lanthanide precursor to be in its liquid phase and to have a sufficient vapor pressure.
  • the carrier gas may include, but is not limited to, Ar, He, N2,and mixtures thereof.
  • the Lanthanide precursor may optionally be mixed in the container with a solvent, another precursor, or a mixture thereof.
  • the container may be maintained at temperatures in the range of, for example, 0-100°C. Those skilled in the art recognize that the temperature of the container may be adjusted in a known manner to control the amount of Lanthanide precursor vaporized.
  • the Lanthanide precursor may be mixed with reactant species inside the reactor.
  • exemplary reactant species include, without limitation, H2, metal precursors such as TMA or other aluminum-containing precursors, other Lanthanide precursors, TBTDET, TAT-DMAE, PET, TBTDEN, PEN, and any combination thereof.
  • the reactant species may include an oxygen source which is selected from, but not limited to, O2, O3, H2O, H2O2, acetic acid, formalin, para-formaldehyde, and combinations thereof.
  • the reactant species may include a nitrogen source which is selected from, but not limited to, nitrogen (N2), ammonia and alkyl derivatives thereof, hydrazine and alkyl derivatives thereof, N-containing radicals (for instance N , NH , N H2 ), NO, N2O, NO2, amines, and any combination thereof.
  • N2 nitrogen
  • N-containing radicals for instance N , NH , N H2
  • the reactant species may include a carbon source which is selected from, but not limited to, methane, ethane, propane, butane, ethylene, propylene, t-butylene, isobutylene, CCU, and any combination thereof.
  • the reactant species may include a silicon source which is selected from, but not limited to, SiH 4 , S 12H6, SisHs, TriDMAS, BDMAS, BDEAS, TDEAS, TDMAS, TEMAS, (SiH 3 ) 3 N, (SiH 3 ) 2 O, trisilylamine, disiloxane, trisilylamine, disilane, trisilane, an alkoxysilane SiHx(OR 1 )4-x, a silanol Si(OH) x (OR 1 )4-x (preferably Si(OH)(OR 1 )3 ; more preferably Si(OH)(OtBu) 3 an aminosilane SiH x (NR 1 R 2 ) 4 -x (
  • the reactant species may include a precursor which is selected from, but not limited to, alkyls such as SbR' 3 or SnR' ' 4 (wherein each R' ' is independently H or a linear, branched, or cyclic C1 - C6 carbon chain), alkoxides such as Sb(OR')3 or Sn(OR')4 (where each R' is independently H or a linear, branched, or cyclic C1 -C6 carbon chain), and amines such as Sb(NR 1 R 2 )(NR 3 R 4 )(NR 5 R 6 ) or Ge(NR 1 R 2 )(NR 3 R 4 )(NR 5 R 6 )(NR 7 R 8 ) (where each precursor which is selected from, but not limited to, alkyls such as SbR' 3 or SnR' ' 4 (wherein each R' ' is independently H or a linear, branched, or cyclic C1 - C6 carbon chain), alkoxides such
  • the Lanthanide precursor and one or more reactant species may be introduced into the reactor simultaneously (chemical vapor deposition), sequentially (atomic layer deposition), or in other combinations.
  • the Lanthanide precursor may be introduced in one pulse and two additional metal sources may be introduced together in a separate pulse [modified atomic layer deposition].
  • the reactor may already contain the reactant species prior to introduction of the Lanthanide precursor.
  • the reactant species may be passed through a plasma system localized remotely from the reactor, and decomposed to radicals.
  • the Lanthanide precursor may be introduced to the reactor continuously while other reactant species are introduced by pulse (pulsed-chemical vapor deposition).
  • a pulse may be followed by a purge or evacuation step to remove excess amounts of the component introduced.
  • the pulse may last for a time period ranging from about 0.01 s to about 10 s, alternatively from about 0.3 s to about 3 s, alternatively from about 0.5 s to about 2 s.
  • the vapor phase of a Lanthanide precursor is introduced into the reactor, where at least part of the Lanthanide precursor reacts with a suitable substrate in a self-limiting manner. Excess Lanthanide precursor may then be removed from the reactor by purging and/or evacuating the reactor. An oxygen source, such as ozone, is introduced into the reactor where it reacts with the absorbed Lanthanide precursor.
  • any excess oxygen source is removed from the reactor by purging and/or evacuating the reactor. If the desired film is a Lanthanide oxide film, this two-step process may provide the desired film thickness or may be repeated until a film having the necessary thickness has been obtained.
  • LaGeOx wherein x is a number ranging from 1 to 5 inclusive, may spontaneously form when the ALD LaO film is deposited on a Ge or GeO2 substrate.
  • the LaGeOx film may serve as a channel material in metal oxide semiconductor (MOS) devices due to high hole mobility and low dopant activation temperatures.
  • MOS metal oxide semiconductor
  • the LaOx film may be deposited as a capping layer on an HfOx or ZrOx high k gate dielectric film, with x being a number ranging from 1 to 5 inclusive.
  • the LaOx capping layer reduces Fermi level pinning effects between the gate dielectric layer and a metal gate.
  • the two-step process above may be followed by introduction of the vapor of a precursor into the reactor.
  • the precursor will be selected based on the nature of the Lanthanide metal oxide film being deposited and may include a different Lanthanide precursor.
  • the precursor is contacted with the substrate. Any excess precursor is removed from the reactor by purging and/or evacuating the reactor.
  • an oxygen source may be introduced into the reactor to react with the precursor. Excess oxygen source is removed from the reactor by purging and/or evacuating the reactor.
  • a desired film thickness has been achieved, the process may be terminated. However, if a thicker film is desired, the entire four-step process may be repeated. By alternating the provision of the Lanthanide precursor, precursor, and oxygen source, a film of desired composition and thickness can be deposited.
  • the Lanthanide-containing films or Lanthanide-containing layers resulting from the processes discussed above may include La2O3, (LaLn)O3, La2O3-Ln2O3, LaSixOy, LaGexOy, (Al, Ga, Mn)LnO3, HfLaOx or ZrLaOx, LaSrCoO4, LaSrMnO4 where Ln is a different Lanthanide and x is 1 to 5 inclusive.
  • the Lanthanide-containing film may include HfLaOx or ZrLaOx.
  • the film may be subject to further processing, such as thermal annealing, furnace-annealing, rapid thermal annealing, UV or e-beam curing, and/or plasma gas exposure.
  • further processing such as thermal annealing, furnace-annealing, rapid thermal annealing, UV or e-beam curing, and/or plasma gas exposure.
  • the lanthanum-containing film may be exposed to a temperature ranging from approximately 200°C and approximately 1000°C for a time ranging from approximately 0.1 second to approximately 7200 seconds under an inert atmosphere, an H-containing atmosphere, a N-containing atmosphere, an O-containing atmosphere, or combinations thereof.
  • the temperature is 350°C for 1800 seconds under an inert atmosphere of Argon.
  • the resulting film may contain fewer impurities and therefore may have an improved density resulting in improved leakage current.
  • the annealing step may be performed in the same reactor in which the deposition process is performed. Alternatively, the substrate may be removed from the reactor, with the annealing/flash annealing process being performed in a separate apparatus. Any of the above post-treatment methods, but especially thermal annealing, has been found effective to reduce carbon and nitrogen contamination of the Lanthanide- containing film. This in turn tends to improve the leakage current and the interface trap density (Dit) of the film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
PCT/IB2017/001721 2016-12-30 2017-12-14 Lanthanide precursors and deposition of lanthanide-containing films using the same Ceased WO2018122608A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197020790A KR102503211B1 (ko) 2016-12-30 2017-12-14 란탄족 전구체 및 이를 이용한 란탄족-함유막의 증착
CN201780076504.3A CN110062817A (zh) 2016-12-30 2017-12-14 镧系元素前体以及使用其沉积含镧系元素的膜
JP2019530435A JP7253490B2 (ja) 2016-12-30 2017-12-14 ランタニド含有膜を形成する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/396,221 2016-12-30
US15/396,221 US20180187303A1 (en) 2016-12-30 2016-12-30 Lanthanide precursors and deposition of lanthanide-containing films using the same

Publications (1)

Publication Number Publication Date
WO2018122608A1 true WO2018122608A1 (en) 2018-07-05

Family

ID=62709316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/001721 Ceased WO2018122608A1 (en) 2016-12-30 2017-12-14 Lanthanide precursors and deposition of lanthanide-containing films using the same

Country Status (5)

Country Link
US (2) US20180187303A1 (enExample)
JP (1) JP7253490B2 (enExample)
KR (1) KR102503211B1 (enExample)
CN (1) CN110062817A (enExample)
WO (1) WO2018122608A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113195504A (zh) * 2018-12-19 2021-07-30 韩松化学株式会社 稀土前体、制造其的方法和使用其形成薄膜的方法

Families Citing this family (284)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (ko) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. 기판 가공 장치 및 그 동작 방법
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (ko) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기체 공급 유닛 및 이를 포함하는 기판 처리 장치
KR102762543B1 (ko) 2016-12-14 2025-02-05 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR102700194B1 (ko) 2016-12-19 2024-08-28 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (ko) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
TWI815813B (zh) 2017-08-04 2023-09-21 荷蘭商Asm智慧財產控股公司 用於分配反應腔內氣體的噴頭總成
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102491945B1 (ko) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
KR102597978B1 (ko) 2017-11-27 2023-11-06 에이에스엠 아이피 홀딩 비.브이. 배치 퍼니스와 함께 사용하기 위한 웨이퍼 카세트를 보관하기 위한 보관 장치
JP7206265B2 (ja) 2017-11-27 2023-01-17 エーエスエム アイピー ホールディング ビー.ブイ. クリーン・ミニエンバイロメントを備える装置
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
CN111630203A (zh) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 通过等离子体辅助沉积来沉积间隙填充层的方法
TWI799494B (zh) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 沈積方法
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
KR102636427B1 (ko) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 장치
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (ko) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102600229B1 (ko) 2018-04-09 2023-11-10 에이에스엠 아이피 홀딩 비.브이. 기판 지지 장치, 이를 포함하는 기판 처리 장치 및 기판 처리 방법
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
KR102709511B1 (ko) 2018-05-08 2024-09-24 에이에스엠 아이피 홀딩 비.브이. 기판 상에 산화물 막을 주기적 증착 공정에 의해 증착하기 위한 방법 및 관련 소자 구조
US12272527B2 (en) 2018-05-09 2025-04-08 Asm Ip Holding B.V. Apparatus for use with hydrogen radicals and method of using same
KR102596988B1 (ko) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 그에 의해 제조된 장치
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
TWI840362B (zh) 2018-06-04 2024-05-01 荷蘭商Asm Ip私人控股有限公司 水氣降低的晶圓處置腔室
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (ko) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 시스템
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
TWI815915B (zh) 2018-06-27 2023-09-21 荷蘭商Asm Ip私人控股有限公司 用於形成含金屬材料及包含含金屬材料的膜及結構之循環沉積方法
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102707956B1 (ko) 2018-09-11 2024-09-19 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344B (zh) 2018-10-01 2024-10-25 Asmip控股有限公司 衬底保持设备、包含所述设备的系统及其使用方法
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (ko) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치
KR102605121B1 (ko) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
KR102546322B1 (ko) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US12378665B2 (en) 2018-10-26 2025-08-05 Asm Ip Holding B.V. High temperature coatings for a preclean and etch apparatus and related methods
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR102748291B1 (ko) 2018-11-02 2024-12-31 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US20200165270A1 (en) * 2018-11-28 2020-05-28 Versum Materials Us, Llc Low Halide Lanthanum Precursors For Vapor Deposition
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (ko) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치를 세정하는 방법
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
TWI874340B (zh) 2018-12-14 2025-03-01 荷蘭商Asm Ip私人控股有限公司 形成裝置結構之方法、其所形成之結構及施行其之系統
TWI819180B (zh) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 藉由循環沈積製程於基板上形成含過渡金屬膜之方法
KR102727227B1 (ko) 2019-01-22 2024-11-07 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN111524788B (zh) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 氧化硅的拓扑选择性膜形成的方法
TWI845607B (zh) 2019-02-20 2024-06-21 荷蘭商Asm Ip私人控股有限公司 用來填充形成於基材表面內之凹部的循環沉積方法及設備
KR20200102357A (ko) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. 3-d nand 응용의 플러그 충진체 증착용 장치 및 방법
KR102626263B1 (ko) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치
KR102638425B1 (ko) 2019-02-20 2024-02-21 에이에스엠 아이피 홀딩 비.브이. 기판 표면 내에 형성된 오목부를 충진하기 위한 방법 및 장치
TWI842826B (zh) 2019-02-22 2024-05-21 荷蘭商Asm Ip私人控股有限公司 基材處理設備及處理基材之方法
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
KR102782593B1 (ko) 2019-03-08 2025-03-14 에이에스엠 아이피 홀딩 비.브이. SiOC 층을 포함한 구조체 및 이의 형성 방법
KR102858005B1 (ko) 2019-03-08 2025-09-09 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체
JP2020167398A (ja) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー ドアオープナーおよびドアオープナーが提供される基材処理装置
KR102809999B1 (ko) 2019-04-01 2025-05-19 에이에스엠 아이피 홀딩 비.브이. 반도체 소자를 제조하는 방법
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (ko) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. 기상 반응기 시스템 및 이를 사용하는 방법
KR102869364B1 (ko) 2019-05-07 2025-10-10 에이에스엠 아이피 홀딩 비.브이. 비정질 탄소 중합체 막을 개질하는 방법
KR20200130121A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 딥 튜브가 있는 화학물질 공급원 용기
KR20200130652A (ko) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조
JP7598201B2 (ja) 2019-05-16 2024-12-11 エーエスエム・アイピー・ホールディング・ベー・フェー ウェハボートハンドリング装置、縦型バッチ炉および方法
JP7612342B2 (ja) 2019-05-16 2025-01-14 エーエスエム・アイピー・ホールディング・ベー・フェー ウェハボートハンドリング装置、縦型バッチ炉および方法
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (ko) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 배기 가스 분석을 포함한 기상 반응기 시스템을 사용하는 방법
KR20200141931A (ko) 2019-06-10 2020-12-21 에이에스엠 아이피 홀딩 비.브이. 석영 에피택셜 챔버를 세정하는 방법
KR20200143254A (ko) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (ko) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법
JP7499079B2 (ja) 2019-07-09 2024-06-13 エーエスエム・アイピー・ホールディング・ベー・フェー 同軸導波管を用いたプラズマ装置、基板処理方法
CN112216646A (zh) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 基板支撑组件及包括其的基板处理装置
CN112242318A (zh) 2019-07-16 2021-01-19 Asm Ip私人控股有限公司 基板处理装置
KR20210010816A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 라디칼 보조 점화 플라즈마 시스템 및 방법
KR102860110B1 (ko) 2019-07-17 2025-09-16 에이에스엠 아이피 홀딩 비.브이. 실리콘 게르마늄 구조를 형성하는 방법
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242295B (zh) 2019-07-19 2025-12-09 Asmip私人控股有限公司 形成拓扑受控的无定形碳聚合物膜的方法
TWI839544B (zh) 2019-07-19 2024-04-21 荷蘭商Asm Ip私人控股有限公司 形成形貌受控的非晶碳聚合物膜之方法
CN112309843A (zh) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 实现高掺杂剂掺入的选择性沉积方法
CN112309899B (zh) 2019-07-30 2025-11-14 Asmip私人控股有限公司 基板处理设备
US12169361B2 (en) 2019-07-30 2024-12-17 Asm Ip Holding B.V. Substrate processing apparatus and method
CN112309900B (zh) 2019-07-30 2025-11-04 Asmip私人控股有限公司 基板处理设备
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
CN118422165A (zh) 2019-08-05 2024-08-02 Asm Ip私人控股有限公司 用于化学源容器的液位传感器
CN112342526A (zh) 2019-08-09 2021-02-09 Asm Ip私人控股有限公司 包括冷却装置的加热器组件及其使用方法
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
JP2021031769A (ja) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. 成膜原料混合ガス生成装置及び成膜装置
KR20210024423A (ko) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 홀을 구비한 구조체를 형성하기 위한 방법
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
KR20210024420A (ko) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR102806450B1 (ko) 2019-09-04 2025-05-12 에이에스엠 아이피 홀딩 비.브이. 희생 캡핑 층을 이용한 선택적 증착 방법
KR102733104B1 (ko) 2019-09-05 2024-11-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US12469693B2 (en) 2019-09-17 2025-11-11 Asm Ip Holding B.V. Method of forming a carbon-containing layer and structure including the layer
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (zh) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法
KR20210042810A (ko) 2019-10-08 2021-04-20 에이에스엠 아이피 홀딩 비.브이. 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법
TW202128273A (zh) 2019-10-08 2021-08-01 荷蘭商Asm Ip私人控股有限公司 氣體注入系統、及將材料沉積於反應室內之基板表面上的方法
TWI846953B (zh) 2019-10-08 2024-07-01 荷蘭商Asm Ip私人控股有限公司 基板處理裝置
TWI846966B (zh) 2019-10-10 2024-07-01 荷蘭商Asm Ip私人控股有限公司 形成光阻底層之方法及包括光阻底層之結構
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
TWI834919B (zh) 2019-10-16 2024-03-11 荷蘭商Asm Ip私人控股有限公司 氧化矽之拓撲選擇性膜形成之方法
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR102845724B1 (ko) 2019-10-21 2025-08-13 에이에스엠 아이피 홀딩 비.브이. 막을 선택적으로 에칭하기 위한 장치 및 방법
KR20210050453A (ko) 2019-10-25 2021-05-07 에이에스엠 아이피 홀딩 비.브이. 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR102890638B1 (ko) 2019-11-05 2025-11-25 에이에스엠 아이피 홀딩 비.브이. 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR102861314B1 (ko) 2019-11-20 2025-09-17 에이에스엠 아이피 홀딩 비.브이. 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템
CN112951697B (zh) 2019-11-26 2025-07-29 Asmip私人控股有限公司 基板处理设备
KR20210065848A (ko) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. 제1 유전체 표면과 제2 금속성 표면을 포함한 기판 상에 타겟 막을 선택적으로 형성하기 위한 방법
CN112885693B (zh) 2019-11-29 2025-06-10 Asmip私人控股有限公司 基板处理设备
CN120998766A (zh) 2019-11-29 2025-11-21 Asm Ip私人控股有限公司 基板处理设备
JP7527928B2 (ja) 2019-12-02 2024-08-05 エーエスエム・アイピー・ホールディング・ベー・フェー 基板処理装置、基板処理方法
KR20210070898A (ko) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
KR20210080214A (ko) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. 기판 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조
KR20210089079A (ko) 2020-01-06 2021-07-15 에이에스엠 아이피 홀딩 비.브이. 채널형 리프트 핀
JP7730637B2 (ja) 2020-01-06 2025-08-28 エーエスエム・アイピー・ホールディング・ベー・フェー ガス供給アセンブリ、その構成要素、およびこれを含む反応器システム
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
KR102882467B1 (ko) 2020-01-16 2025-11-05 에이에스엠 아이피 홀딩 비.브이. 고 종횡비 피처를 형성하는 방법
KR102675856B1 (ko) 2020-01-20 2024-06-17 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법 및 박막 표면 개질 방법
TWI889744B (zh) 2020-01-29 2025-07-11 荷蘭商Asm Ip私人控股有限公司 污染物捕集系統、及擋板堆疊
TW202513845A (zh) 2020-02-03 2025-04-01 荷蘭商Asm Ip私人控股有限公司 半導體裝置結構及其形成方法
KR20210100010A (ko) 2020-02-04 2021-08-13 에이에스엠 아이피 홀딩 비.브이. 대형 물품의 투과율 측정을 위한 방법 및 장치
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
TW202146691A (zh) 2020-02-13 2021-12-16 荷蘭商Asm Ip私人控股有限公司 氣體分配總成、噴淋板總成、及調整至反應室之氣體的傳導率之方法
KR20210103956A (ko) 2020-02-13 2021-08-24 에이에스엠 아이피 홀딩 비.브이. 수광 장치를 포함하는 기판 처리 장치 및 수광 장치의 교정 방법
TWI855223B (zh) 2020-02-17 2024-09-11 荷蘭商Asm Ip私人控股有限公司 用於生長磷摻雜矽層之方法
TWI895326B (zh) 2020-02-28 2025-09-01 荷蘭商Asm Ip私人控股有限公司 專用於零件清潔的系統
TW202139347A (zh) 2020-03-04 2021-10-16 荷蘭商Asm Ip私人控股有限公司 反應器系統、對準夾具、及對準方法
KR20210116249A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 록아웃 태그아웃 어셈블리 및 시스템 그리고 이의 사용 방법
KR20210116240A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 조절성 접합부를 갖는 기판 핸들링 장치
KR102775390B1 (ko) 2020-03-12 2025-02-28 에이에스엠 아이피 홀딩 비.브이. 타겟 토폴로지 프로파일을 갖는 층 구조를 제조하기 위한 방법
US12173404B2 (en) 2020-03-17 2024-12-24 Asm Ip Holding B.V. Method of depositing epitaxial material, structure formed using the method, and system for performing the method
KR102755229B1 (ko) 2020-04-02 2025-01-14 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법
TWI887376B (zh) 2020-04-03 2025-06-21 荷蘭商Asm Ip私人控股有限公司 半導體裝置的製造方法
TWI888525B (zh) 2020-04-08 2025-07-01 荷蘭商Asm Ip私人控股有限公司 用於選擇性蝕刻氧化矽膜之設備及方法
KR20210128343A (ko) 2020-04-15 2021-10-26 에이에스엠 아이피 홀딩 비.브이. 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
TW202143328A (zh) 2020-04-21 2021-11-16 荷蘭商Asm Ip私人控股有限公司 用於調整膜應力之方法
KR20210132600A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템
KR20210132612A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐 화합물들을 안정화하기 위한 방법들 및 장치
TW202208671A (zh) 2020-04-24 2022-03-01 荷蘭商Asm Ip私人控股有限公司 形成包括硼化釩及磷化釩層的結構之方法
TW202146831A (zh) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法
KR20210132576A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐 나이트라이드 함유 층을 형성하는 방법 및 이를 포함하는 구조
KR102783898B1 (ko) 2020-04-29 2025-03-18 에이에스엠 아이피 홀딩 비.브이. 고체 소스 전구체 용기
KR20210134869A (ko) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Foup 핸들러를 이용한 foup의 빠른 교환
JP7726664B2 (ja) 2020-05-04 2025-08-20 エーエスエム・アイピー・ホールディング・ベー・フェー 基板を処理するための基板処理システム
JP7736446B2 (ja) 2020-05-07 2025-09-09 エーエスエム・アイピー・ホールディング・ベー・フェー 同調回路を備える反応器システム
KR102788543B1 (ko) 2020-05-13 2025-03-27 에이에스엠 아이피 홀딩 비.브이. 반응기 시스템용 레이저 정렬 고정구
TW202146699A (zh) 2020-05-15 2021-12-16 荷蘭商Asm Ip私人控股有限公司 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統
KR20210143653A (ko) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR102795476B1 (ko) 2020-05-21 2025-04-11 에이에스엠 아이피 홀딩 비.브이. 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법
KR20210145079A (ko) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 기판을 처리하기 위한 플랜지 및 장치
KR102702526B1 (ko) 2020-05-22 2024-09-03 에이에스엠 아이피 홀딩 비.브이. 과산화수소를 사용하여 박막을 증착하기 위한 장치
KR20210146802A (ko) 2020-05-26 2021-12-06 에이에스엠 아이피 홀딩 비.브이. 붕소 및 갈륨을 함유한 실리콘 게르마늄 층을 증착하는 방법
TWI876048B (zh) 2020-05-29 2025-03-11 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202212620A (zh) 2020-06-02 2022-04-01 荷蘭商Asm Ip私人控股有限公司 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法
KR102879479B1 (ko) 2020-06-15 2025-10-30 에스케이트리켐 주식회사 란탄족 전구체 및 이를 이용한 란탄족 함유 박막 및 상기 박막의 형성 방법 및 상기 란탄족 함유 박막을 포함하는 반도체 소자.
TW202208659A (zh) 2020-06-16 2022-03-01 荷蘭商Asm Ip私人控股有限公司 沉積含硼之矽鍺層的方法
KR20210158809A (ko) 2020-06-24 2021-12-31 에이에스엠 아이피 홀딩 비.브이. 실리콘이 구비된 층을 형성하는 방법
TWI873359B (zh) 2020-06-30 2025-02-21 荷蘭商Asm Ip私人控股有限公司 基板處理方法
US12431354B2 (en) 2020-07-01 2025-09-30 Asm Ip Holding B.V. Silicon nitride and silicon oxide deposition methods using fluorine inhibitor
KR102707957B1 (ko) 2020-07-08 2024-09-19 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
TWI864307B (zh) 2020-07-17 2024-12-01 荷蘭商Asm Ip私人控股有限公司 用於光微影之結構、方法與系統
TWI878570B (zh) 2020-07-20 2025-04-01 荷蘭商Asm Ip私人控股有限公司 用於沉積鉬層之方法及系統
KR20220011092A (ko) 2020-07-20 2022-01-27 에이에스엠 아이피 홀딩 비.브이. 전이 금속층을 포함하는 구조체를 형성하기 위한 방법 및 시스템
TW202219303A (zh) 2020-07-27 2022-05-16 荷蘭商Asm Ip私人控股有限公司 薄膜沉積製程
KR20220021863A (ko) 2020-08-14 2022-02-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
TW202228863A (zh) 2020-08-25 2022-08-01 荷蘭商Asm Ip私人控股有限公司 清潔基板的方法、選擇性沉積的方法、及反應器系統
TW202534193A (zh) 2020-08-26 2025-09-01 荷蘭商Asm Ip私人控股有限公司 形成金屬氧化矽層及金屬氮氧化矽層的方法
TW202229601A (zh) 2020-08-27 2022-08-01 荷蘭商Asm Ip私人控股有限公司 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統
KR20220033997A (ko) 2020-09-10 2022-03-17 에이에스엠 아이피 홀딩 비.브이. 갭 충진 유체를 증착하기 위한 방법 그리고 이와 관련된 시스템 및 장치
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
KR20220036866A (ko) 2020-09-16 2022-03-23 에이에스엠 아이피 홀딩 비.브이. 실리콘 산화물 증착 방법
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TWI889903B (zh) 2020-09-25 2025-07-11 荷蘭商Asm Ip私人控股有限公司 基板處理方法
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
KR20220045900A (ko) 2020-10-06 2022-04-13 에이에스엠 아이피 홀딩 비.브이. 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치
CN114293174A (zh) 2020-10-07 2022-04-08 Asm Ip私人控股有限公司 气体供应单元和包括气体供应单元的衬底处理设备
TW202229613A (zh) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法
KR102873665B1 (ko) 2020-10-15 2025-10-17 에이에스엠 아이피 홀딩 비.브이. 반도체 소자의 제조 방법, 및 ether-cat을 사용하는 기판 처리 장치
TW202217037A (zh) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 沉積釩金屬的方法、結構、裝置及沉積總成
TW202223136A (zh) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 用於在基板上形成層之方法、及半導體處理系統
TW202229620A (zh) 2020-11-12 2022-08-01 特文特大學 沉積系統、用於控制反應條件之方法、沉積方法
TWI894397B (zh) 2020-11-20 2025-08-21 德商馬克專利公司 鑭系及類鑭系過渡金屬之錯合物
TW202229795A (zh) 2020-11-23 2022-08-01 荷蘭商Asm Ip私人控股有限公司 具注入器之基板處理設備
TW202235649A (zh) 2020-11-24 2022-09-16 荷蘭商Asm Ip私人控股有限公司 填充間隙之方法與相關之系統及裝置
TW202235675A (zh) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 注入器、及基板處理設備
US12255053B2 (en) 2020-12-10 2025-03-18 Asm Ip Holding B.V. Methods and systems for depositing a layer
TW202233884A (zh) 2020-12-14 2022-09-01 荷蘭商Asm Ip私人控股有限公司 形成臨限電壓控制用之結構的方法
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202232639A (zh) 2020-12-18 2022-08-16 荷蘭商Asm Ip私人控股有限公司 具有可旋轉台的晶圓處理設備
TW202226899A (zh) 2020-12-22 2022-07-01 荷蘭商Asm Ip私人控股有限公司 具匹配器的電漿處理裝置
TW202231903A (zh) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成
TW202242184A (zh) 2020-12-22 2022-11-01 荷蘭商Asm Ip私人控股有限公司 前驅物膠囊、前驅物容器、氣相沉積總成、及將固態前驅物裝載至前驅物容器中之方法
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
USD1099184S1 (en) 2021-11-29 2025-10-21 Asm Ip Holding B.V. Weighted lift pin
USD1060598S1 (en) 2021-12-03 2025-02-04 Asm Ip Holding B.V. Split showerhead cover
CN119403955A (zh) 2022-09-16 2025-02-07 思科特利肯股份有限公司 含镧族金属薄膜形成用前体、利用所述前体的含镧族金属薄膜形成方法以及包含所述含镧族金属薄膜的半导体组件
JP2025520756A (ja) 2022-09-16 2025-07-03 エスケー トリケム カンパニー リミテッド ランタン族金属含有薄膜形成用前駆体、これを用いたランタン族金属含有薄膜形成方法、および前記ランタン族金属含有薄膜を含む半導体素子
KR102614467B1 (ko) 2022-11-30 2023-12-14 에스케이트리켐 주식회사 스칸듐 또는 이트륨 함유 박막 형성용 전구체, 이를 이용한 스칸듐 또는 이트륨 함유 박막 형성 방법 및 상기 스칸듐 또는 이트륨 함유 박막을 포함하는 반도체 소자.
KR20250082116A (ko) 2023-11-29 2025-06-09 에스케이트리켐 주식회사 란탄족 금속 함유 박막 형성용 전구체, 이를 이용한 란탄족 금속 함유 박막 형성 방법 및 상기 박막을 포함하는 반도체 소자.
KR20250081126A (ko) 2023-11-29 2025-06-05 에스케이트리켐 주식회사 란탄족 금속 함유 박막 형성용 전구체, 이를 이용한 란탄족 금속 함유 박막 형성 방법 및 상기 란탄족 금속 함유 박막을 포함하는 반도체 소자.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621127A (en) * 1994-05-13 1997-04-15 Basf Aktiengesellschaft Preparation of bridged half sandwich complexes
US20090074965A1 (en) * 2006-03-10 2009-03-19 Advanced Technology Materials, Inc. Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate, and tantalate dielectric films
US20130066082A1 (en) * 2010-11-30 2013-03-14 Air Products And Chemicals, Inc. Metal-Enolate Precursors For Depositing Metal-Containing Films

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ235032A (en) * 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
WO2009149372A1 (en) 2008-06-05 2009-12-10 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Preparation of lanthanide-containing precursors and deposition of lanthanide-containing films
WO2016049154A1 (en) * 2014-09-23 2016-03-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Carbosilane substituted amine precursors for deposition of si-containing films and methods thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621127A (en) * 1994-05-13 1997-04-15 Basf Aktiengesellschaft Preparation of bridged half sandwich complexes
US20090074965A1 (en) * 2006-03-10 2009-03-19 Advanced Technology Materials, Inc. Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate, and tantalate dielectric films
US20130066082A1 (en) * 2010-11-30 2013-03-14 Air Products And Chemicals, Inc. Metal-Enolate Precursors For Depositing Metal-Containing Films

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FEDUSHKIN, I. L. ET AL.: "Organometallic Compounds of the Lanthanides. 141.1 Synthesis, Molecular Structure, and Solution Behavior of Some Lanthanum (III) and Ytterbium (II) Complexes Containing New Tridentate 1, 2-and 1, 3-Bis (2-(dimethylamino) ethyl) cyclopentadienyl Ligands", ORGANOMETALLICS, vol. 19, no. 20, October 2000 (2000-10-01), pages 4066 - 4076, XP055512627, Retrieved from the Internet <URL:DOI:10.1021/om000409x> *
PIERS, W. E. ET AL.: "Coping with Extreme Lewis Acidity: Strategies for the Synthesis of Stable, Mononuclear Organometallic Derivatives of Scandium", SYNLETT, 1990, pages 74 - 84, XP055512606, Retrieved from the Internet <URL:DOI:10.1055/s-1990-20992> *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113195504A (zh) * 2018-12-19 2021-07-30 韩松化学株式会社 稀土前体、制造其的方法和使用其形成薄膜的方法
JP2022512155A (ja) * 2018-12-19 2022-02-02 ハンソル ケミカル カンパニー リミテッド 希土類前駆体、その製造方法およびこれを用いて薄膜を形成する方法
JP7161621B2 (ja) 2018-12-19 2022-10-26 ハンソル ケミカル カンパニー リミテッド 希土類前駆体、その製造方法およびこれを用いて薄膜を形成する方法
CN113195504B (zh) * 2018-12-19 2024-05-28 韩松化学株式会社 稀土前体、制造其的方法和使用其形成薄膜的方法

Also Published As

Publication number Publication date
CN110062817A (zh) 2019-07-26
US11242597B2 (en) 2022-02-08
JP2020504779A (ja) 2020-02-13
KR20190094238A (ko) 2019-08-12
US20180187303A1 (en) 2018-07-05
JP7253490B2 (ja) 2023-04-06
US20200149156A1 (en) 2020-05-14
KR102503211B1 (ko) 2023-03-28

Similar Documents

Publication Publication Date Title
US11242597B2 (en) Lanthanide precursors and deposition of lanthanide-containing films using the same
US8283201B2 (en) Preparation of lanthanide-containing precursors and deposition of lanthanide-containing films
US9711347B2 (en) Preparation of lanthanide-containing precursors and deposition of lanthanide-containing films
KR101304760B1 (ko) 증착용 티타늄 함유 전구체
EP2499274B1 (en) Deposition methods using hafnium-containing compounds
US20170050999A1 (en) Germanium- and zirconium-containing composition for vapor deposition of zirconium-containing films
US9099301B1 (en) Preparation of lanthanum-containing precursors and deposition of lanthanum-containing films
KR102138707B1 (ko) 희토류 전구체, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2012074511A2 (en) Deposition of alkaline earth metal fluoride films in gas phase at low temperature
US10106568B2 (en) Hafnium-containing film forming compositions for vapor deposition of hafnium-containing films
TWI593820B (zh) 含鑭系元素前驅物的製備和含鑭系元素薄膜的沈積

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530435

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197020790

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17886036

Country of ref document: EP

Kind code of ref document: A1