WO2018109794A1 - 半導体装置の駆動方法および駆動回路 - Google Patents

半導体装置の駆動方法および駆動回路 Download PDF

Info

Publication number
WO2018109794A1
WO2018109794A1 PCT/JP2016/086858 JP2016086858W WO2018109794A1 WO 2018109794 A1 WO2018109794 A1 WO 2018109794A1 JP 2016086858 W JP2016086858 W JP 2016086858W WO 2018109794 A1 WO2018109794 A1 WO 2018109794A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
gate
semiconductor device
gate wiring
current
Prior art date
Application number
PCT/JP2016/086858
Other languages
English (en)
French (fr)
Other versions
WO2018109794A9 (ja
Inventor
翔 田中
茂 楠
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680091464.5A priority Critical patent/CN110062957B/zh
Priority to PCT/JP2016/086858 priority patent/WO2018109794A1/ja
Priority to JP2018556028A priority patent/JP6656414B2/ja
Priority to US16/466,341 priority patent/US11245393B2/en
Priority to DE112016007515.4T priority patent/DE112016007515B4/de
Publication of WO2018109794A1 publication Critical patent/WO2018109794A1/ja
Publication of WO2018109794A9 publication Critical patent/WO2018109794A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/08116Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit in composite switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08148Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/127Modifications for increasing the maximum permissible switched current in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/28Modifications for introducing a time delay before switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices

Definitions

  • the present invention relates to a driving method and a driving circuit for a semiconductor device, and more particularly to a driving method and a driving circuit for a voltage-driven semiconductor device.
  • MOS-FET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • Patent Document 1 discloses a plurality of first gate voltage driven semiconductor elements whose gates are connected to a first gate pattern and a plurality of first gate electrodes whose gates are connected to a second gate pattern. It is described that one semiconductor device is constituted by parallel connection with a two-gate voltage driven semiconductor element. Further, it is described that the breakdown due to the surge voltage is prevented by setting the voltage change at the time of turn-off between the first gate pattern and the second gate pattern at different timings.
  • Patent Document 2 also describes a structure in which the gate electrode of the power semiconductor element is divided into a plurality of parts.
  • a gate electrode whose breakdown voltage between the gate and the source does not reach a specified value among the divided gate electrodes is connected to the source terminal instead of the gate terminal, so that the lower region of the gate electrode is connected to the IGBT. Is described as a configuration that does not operate.
  • the short-circuit time is ⁇ (Ic ⁇ Vce) dt, which is a time integral value of power (Ic ⁇ Vce) multiplied by a current (collector current Ic for IGBT) and a voltage (collector-emitter voltage Vce for IGBT). Is the time required to reach an ESC defined by the energy that the semiconductor device can withstand during a short circuit.
  • ESC is substantially determined depending on the size of the semiconductor chip, and Vce at the time of short circuit is also substantially determined by the voltage of the power supply to which the semiconductor device is connected. Therefore, in order to lengthen the short circuit time, it is necessary to suppress the collector current Ic.
  • the magnitude of the collector current Ic is proportional to the magnitude of the electron current injected when turned on. For this reason, if the collector current Ic is increased to suppress the switching loss, it is disadvantageous in securing the short-circuit time, and it is understood that the two are in a trade-off relationship. As described above, it is difficult for the voltage-driven semiconductor device to improve the short-circuit time while maintaining the element performance represented by the switching loss.
  • the present invention has been made to solve such problems, and an object of the present invention is to ensure a short-circuit time without increasing switching loss in a voltage-driven semiconductor device. .
  • the plurality of gate wirings are first and A second gate wiring is included.
  • the current is controlled by at least one first semiconductor element having a first channel region whose current is controlled by the voltage of the first gate wiring and the voltage of the second gate wiring. And at least one second semiconductor element having a second channel region.
  • the step of applying the on-voltage of the semiconductor device to both the first and second gate wirings, and the elapse of a predetermined time after the application of the on-voltage is started.
  • the step of applying an on-voltage to the first gate wiring while applying the off-voltage of the semiconductor device to the second gate wiring is provided.
  • a drive circuit for a semiconductor device including a plurality of semiconductor elements electrically connected in parallel and a plurality of electrically insulated gate wirings.
  • the gate voltage control unit is provided.
  • the plurality of gate wirings include first and second gate wirings.
  • the current is controlled by at least one first semiconductor element having a first channel region whose current is controlled by the voltage of the first gate wiring and the voltage of the second gate wiring.
  • at least one second semiconductor element having a second channel region.
  • the first gate voltage control unit is configured to apply an on voltage or an off voltage of the semiconductor device to the first gate wiring in accordance with the drive control signal.
  • the second gate voltage control is configured to apply an on voltage or an off voltage to the second gate wiring in accordance with the drive control signal.
  • the first gate voltage control unit applies an off voltage to the first gate wiring when the drive control signal is at the first signal level, and the on voltage when the drive control signal is at the second signal level. Is applied to the first gate wiring.
  • the second gate voltage control unit pulsates the ON voltage with a predetermined time width with respect to the second gate wiring when the drive control signal transits from the first signal level to the second signal level. Apply to.
  • FIG. 2 is a conceptual cross-sectional view illustrating a configuration for supplying a gate voltage to the semiconductor device of FIG. 1.
  • FIG. 3 is a plan view illustrating a first arrangement example of gate wirings in the semiconductor device shown in FIGS. 1 and 2.
  • FIG. 3 is a plan view for explaining a second arrangement example of gate wirings in the semiconductor device shown in FIGS. 1 and 2.
  • It is a conceptual circuit diagram explaining the drive structure of the semiconductor device according to the present embodiment.
  • It is a conceptual wave form diagram explaining the drive method of the semiconductor device according to this Embodiment.
  • FIG. 6 is a simulation waveform diagram when a load short circuit occurs when the semiconductor device is turned on. It is sectional drawing explaining the modification of the structure of the semiconductor device to which the drive method according to this Embodiment is applied.
  • FIG. 11 is a plan view for explaining an arrangement example of gate wirings in a semiconductor device according to the modification shown in FIG. 10.
  • FIG. 1 is a cross-sectional view illustrating an example of the configuration of a semiconductor device 100 to which the driving method according to the present embodiment is applied.
  • a semiconductor device 100 includes an N + buffer layer 102, an N ⁇ drift layer 106, a charge storage layer 107, a channel dope layer 108, a source injection region 109, formed on the upper surface of a P + substrate 101, And a P + diffusion region 110.
  • a collector electrode 103 is formed on the back surface of the P + substrate 101, and the P + substrate 101 functions as a collector layer.
  • the semiconductor device 100 includes an emitter electrode 111 and a plurality of gate electrodes 105.
  • the emitter electrode 111 is formed on the upper surface of a partial region of the source injection region 109 (a region where the oxide film 112 is not formed) and the P + diffusion region 110. It is provided on the first main surface side of the semiconductor chip.
  • Collector electrode 103 is provided on the second main surface opposite to the first main surface.
  • the emitter electrode 111 and the plurality of gate electrodes 105 are insulated by the oxide film 112. Further, the gate electrode 105 is electrically insulated from surrounding layers and regions by the gate insulating film 104.
  • Each gate electrode 105 is constituted by a gate wiring formed of a conductor (for example, polysilicon) embedded in a trench groove provided in a stripe shape so as to extend in the vertical direction in FIG.
  • the semiconductor device 100 shown in FIG. 1 has a so-called charge storage type trench gate type bipolar transistor (CSTBT (registered trademark)) structure, and the voltage of the gate electrode (hereinafter, simply “ A transistor cell 120 having a channel region 113 in which a current changes depending on an electric field according to a gate voltage ”is formed.
  • CSTBT charge storage type trench gate type bipolar transistor
  • Each transistor cell 120 is provided with a channel region 113 in which current is controlled according to the voltage of the gate electrode 105.
  • the ON resistance can be reduced by reducing the pitch of a plurality of gate wirings formed in a trench type to form many transistor cells 120.
  • the semiconductor device 100 has a configuration in which a plurality of transistor cells 120 are electrically connected in parallel with the collector electrode 103 and the emitter electrode 111 in common on the same chip. That is, in the semiconductor device 100, the collector current 103 functioning as a pair of main electrodes and the emitter electrode 111 are proportional to the sum of the electron currents in the channel regions 113 controlled in accordance with the voltages of the gate electrodes 105. A current (hereinafter also referred to as collector current Ic) is generated. As described above, the semiconductor device 100 functions as a voltage-driven switching element that can control the collector current Ic in accordance with the gate voltage.
  • FIG. 2 is a conceptual cross-sectional view illustrating a configuration for supplying a gate voltage to the semiconductor device 100.
  • FIG. 2 the notation of the emitter electrode 111 and the oxide film 112 is deleted from FIG. 1, and instead, a configuration for supplying a gate voltage is conceptually shown.
  • a plurality of gate electrodes 105 are constituted by a plurality of gate wirings insulated from each other.
  • two types of gate wirings 114a and 114b are arranged.
  • Gate interconnections 114a and 114b are electrically connected to gate pads 115a and 115b, respectively.
  • the gate pads 115a and 115b are electrically insulated from each other, and a separate voltage signal is applied from a driver circuit described later.
  • the plurality of transistor cells 120 include a transistor cell 120a in which the gate electrode 105 is configured by the gate wiring 114a and a transistor cell 120b in which the gate electrode 105 is configured by the gate wiring 114b.
  • the transistor cell 120a has a channel region 113a whose current is controlled according to the voltage of the gate wiring 114a
  • the transistor cell 120b has a channel region 113b whose current is controlled according to the voltage of the gate wiring 114b.
  • the gate wiring 114a corresponds to the “first gate wiring”
  • the channel region 113a corresponds to the “first channel region”
  • the transistor cell 120a corresponds to the “first semiconductor element”.
  • the gate wiring 114b corresponds to a “second gate wiring”
  • the channel region 113b corresponds to a “second channel region”
  • the transistor cell 120b corresponds to a “second semiconductor element”.
  • 3 and 4 are plan views of the semiconductor device 100 as viewed from the first main surface side, for explaining an arrangement example of the gate wirings 114a and 114b. 3 and 4 show only the gate wiring and the gate pad.
  • gate wirings 114a and 114b are provided including a periodic wiring pattern for forming a gate electrode portion extending in the same direction (left and right direction on the paper). Further, the gate wiring 114a is electrically connected to the gate pad 115a. Gate wiring 114b is electrically connected to gate pad 115b.
  • the gate pads 115a and 115b can be provided in a wiring layer different from the gate wirings 114a and 114b. Gate pads 115a and 115b are preferably arranged symmetrically (line symmetric or point symmetric) on the first main surface of semiconductor device 100 in order to avoid interference between wires connected to gate pads 115a and 115b, respectively. .
  • a gate voltage signal Vg1 is supplied to the gate pad 115a.
  • a gate voltage signal Vg2 is supplied to the gate pad 115b.
  • the voltage of the gate line 114a is defined by the gate voltage signal Vg1
  • the voltage of the gate line 114b is defined by the gate voltage signal Vg2.
  • the two types of gate wirings are periodically arranged in the order of “114a, 114b, 114a, 114b,...”, But can be periodically arranged in different orders. is there. For example, “114a, 114b, 114b, 114a, 114b, 114b,...” Or “114a, 114a, 114a, 114b, 114a, 114a, 114a, 114b, 114a,. If so, the number of gate wirings 114a and 114b may be different.
  • FIG. 5 is a conceptual circuit diagram illustrating a driving configuration of the semiconductor device according to the present embodiment.
  • semiconductor device 100 includes a plurality of transistor cells 120a whose gate voltage signals are controlled by gate wiring 114a and a plurality of transistor cells 120b whose gate voltage signals are controlled by gate wiring 114b.
  • An equivalent circuit of a configuration in which the electrode 103 and the emitter electrode 111 are connected in parallel is shown.
  • the semiconductor device 100 is turned on when the voltage between the collector electrode 103 and the emitter electrode 111 is higher than the threshold voltage while the voltage between the collector electrode 103 and the emitter electrode 111 is higher than the threshold voltage. In the on state, the collector-emitter voltage Vce is almost zero.
  • the collector current Ic is the sum of the sum of electron current and hole current generated in the plurality of transistor cells 120a according to the voltage of the gate wiring 114a and the sum of electron current and hole current generated in the plurality of transistor cells 120b according to the voltage of the gate wiring 114b. Indicated by
  • the drive circuit 130 of the semiconductor device 100 turns on and off the semiconductor device 100 according to the signal level of the drive control signal Spd. For example, the drive circuit 130 turns off the semiconductor device 100 during a period in which the drive control signal Spd is at a logic low level (hereinafter also simply referred to as “L level”), while the drive control signal Spd is at a logic high level (hereinafter referred to as “L”).
  • L level a logic low level
  • L logic high level
  • the semiconductor device 100 operates so as to be turned on during a period of time (also simply referred to as “H level”).
  • the drive circuit 130 includes a gate voltage control unit 131 and a gate voltage control unit 132.
  • the gate voltage control unit 131 generates a gate voltage signal Vg1 according to the drive control signal Spd.
  • the gate voltage signal Vg1 is supplied to the gate wiring 114a via the gate pad 115a.
  • the gate voltage control unit 132 generates a gate voltage signal Vg2 according to the drive control signal Spd.
  • the gate voltage signal Vg2 is supplied to the gate wiring 114b via the gate pad 115b.
  • FIG. 6 is a conceptual waveform diagram illustrating a method for driving a semiconductor device according to the present embodiment.
  • drive control signal Spd is at the L level in order to turn off semiconductor device 100.
  • both gate voltage signals Vg1 and Vg2 are set to voltages for turning off transistor cells 120a and 120b (hereinafter also referred to as “off voltage”).
  • the off voltage is, for example, the ground voltage GND or a negative voltage.
  • the drive control signal Spd transitions from the L level to the H level in order to turn on the semiconductor device 100.
  • each of the gate voltage signals Vg1 and Vg2 changes from an off voltage to a voltage for turning on each of the transistor cells 120a and 120b (hereinafter also referred to as “on voltage”).
  • the on-voltage is, for example, positive power supply voltage VCC.
  • the gate voltage signal Vg1 is maintained at the ON voltage during the H level period of the drive control signal Spd.
  • the gate voltage signal Vg2 is changed from the on voltage to the off voltage at the time t2 when the predetermined time Tpl has elapsed from the time t1. That is, when the semiconductor device 100 is turned on, the gate voltage signal Vg2 can apply an ON voltage in a pulse shape to the gate wiring 114b with a time width corresponding to the predetermined time Tpl. Thereby, after time t2, the step of applying the on voltage to the gate wiring 114a while applying the off voltage to the gate wiring 114b can be realized.
  • the drive control signal Spd changes from the H level to the L level at time t3 in order to turn off the semiconductor device 100.
  • the gate voltage signal Vg1 is changed from the on voltage to the off voltage.
  • the gate voltage signal Vg2 is maintained at the off voltage similarly to the time t2 and thereafter.
  • channel region 113a is inverted to N-type and a channel is formed.
  • channel region 113b is inverted to an N type and a channel is formed.
  • Electrons are injected from the emitter electrode 111 into the N ⁇ drift layer 106 via the charge storage layer 107 through the channels formed in the channel regions 113a and 113b.
  • the injected electrons cause forward bias between the P + substrate (collector layer) 101 and the N ⁇ drift layer 106 via the N + buffer layer 102, and the collector electrodes 103 to P + substrate (collector layer) 101 and N ⁇ Holes are injected into the N ⁇ drift layer 106 via the + buffer layer 102.
  • the resistance of the N ⁇ drift layer 106 is significantly reduced by the conductivity modulation, and the current capacity as the IGBT is increased.
  • the gate-emitter voltage becomes 0 or a negative voltage
  • the channel region 113b returns to the P-type.
  • the channel disappears, and the electron current stops flowing in the transistor cell 120b in response to the supply of electrons injected from the emitter electrode 111 being stopped.
  • the channel formation is maintained, so that the electron current of the transistor cell 120a continuously flows.
  • the electron current from both the plurality of transistor cells 120a and 120b flows as the collector current Ic from time t1 to t2.
  • the electron current from the plurality of transistor cells 120a flows as the collector current Ic.
  • the gate-emitter voltage becomes 0 or a negative voltage in the transistor cell 120a, and the channel region 113a returns to the P-type.
  • the channel disappears also in the channel region 113a, so that the supply of electrons injected from the emitter electrode 111 is also stopped in the transistor cell 120a.
  • FIGS. 7 to 9 show simulation waveforms when the semiconductor device 100 is turned on and turned off. 7 to 9, Vg1 (transistor cell 120a) was set according to the waveform of FIG. 6, and the setting of Vg2 (transistor cell 120b) was compared among the following three cases.
  • the second case is a driving method according to the present embodiment in which Vg2 is a pulse waveform shown in FIG.
  • the third case is a driving method shown for comparison in which Vg2 is maintained at the off voltage.
  • FIG. 7 shows a simulation waveform when the semiconductor device 100 is turned on
  • FIG. 8 shows a simulation waveform when the semiconductor device 100 is turned off. 7 and 8, a normal turn-on operation and a turn-off operation in which a load short circuit has not occurred are simulated.
  • waveform 301 in the first case is the same as the waveform of Vg1 in FIG.
  • waveform 302 of the second case is the same as the waveform of Vg2 in FIG. 6, and Vg2 is maintained at the off voltage in the waveform 303 of the third case.
  • the waveforms 311 to 313 in the first to third cases are also shown for the gate-emitter voltage Vge of the transistor cell 120b controlled by the gate voltage signal Vg2.
  • Vge increases as the gate voltage signal Vg2 is set to the ON voltage.
  • a mirror section 305 in which Vge is constant occurs.
  • the generation timing of the mirror section 305 is generated at a constant timing according to the driving conditions by the driving circuit 130 and the element characteristics of the semiconductor device 100, and can be known in advance by actual machine experiments and simulations.
  • Vge decreases as Vg2 changes to the off voltage after time t2.
  • Waveforms 321 to 323 in the first to third cases are shown for the collector current Ic in the entire semiconductor device 100, and waveforms 331 to 333 are also shown for the collector-emitter voltage Vce in the first to third cases. It is.
  • the behavior of the collector current Ic up to time t2 is almost the same in the waveforms 321 and 322.
  • the rising speed of the current is gentle compared to the waveforms 321 and 322.
  • the peak current with respect to the steady current Ion at the time of ON is also smaller than those of the waveforms 321 and 322.
  • the switching conditions are adjusted so that Ion of the collector current Ic is equal to that in the first case, and the simulation is executed.
  • the behavior up to time t2 is almost the same in the waveforms 331 and 332.
  • the waveform 333 in the third case where a channel is not formed in each transistor cell 120b it can be understood that the voltage falling timing is delayed as compared with the waveforms 331 and 332.
  • FIG. 8 shows a simulation waveform when the semiconductor device 100 is turned off.
  • the gate voltage signal Vg1 changes from the on voltage to the off voltage, whereby the semiconductor device 100 is turned off.
  • the waveform 301 in the first case is the same as the waveform of Vg1 in FIG.
  • Vgs at turn-off is fixed to the off voltage.
  • a channel is formed in the on state in the third case (waveforms 323 and 333) as compared to the first case (waveforms 321 and 331) at the time of turn-off. Since the number of transistor cells 120 is small, the rise of Vce and the fall of Ic occur at an earlier timing.
  • the driving method (second case) according to the present embodiment is applied in the normal turn-on operation and the turn-off operation without causing a load short circuit
  • the normal driving method (first case) is applied.
  • the switching loss does not deteriorate.
  • FIG. 9 shows a simulation waveform at turn-on when a load short circuit occurs.
  • the simulation was performed with the applied voltage (ie, Vce) of the semiconductor device 100 being 1.5 times that of FIGS. 7 and 8 (corresponding to 2/3 times the rated voltage).
  • Vg1 and Vg2 are maintained at the on voltage from time t1 to t3, and in the second case, Vg1 is maintained at the on voltage from time t1 to t3.
  • Vg2 is set to the ON voltage in a pulsed manner between times t1 and t2.
  • Vg1 is maintained at the on voltage from time t1 to time t3, while Vg2 is maintained at the off voltage from time t1 to time t3.
  • the gate-emitter voltage Vge of the transistor cell 120b controlled by the gate voltage signal Vg2 shows the behavior of waveforms 311 to 313 in the first to third cases, respectively.
  • the collector current Ic shows the behavior of the waveforms 321 to 323 in the first to third cases, respectively.
  • Vce is a constant value in the simulation of FIG.
  • the collector current Ic equivalent to that in the first case is generated in the period immediately after the turn-on, but after the time t2 when the gate voltage signal Vg2 changes to the off voltage.
  • the collector current Ic can be suppressed by cutting the current of the transistor cell 120b corresponding to the gate wiring 114b. Therefore, regarding “Ic ⁇ Vce” that determines the short-circuit time until the semiconductor device 100 reaches a short-circuit failure when an overcurrent occurs due to the occurrence of a load short-circuit or the like, the second case is much larger than the first case. It can be seen that As a result, in case 2, the short circuit time corresponding to ESC / ⁇ ⁇ (Ic ⁇ Vce) dt can be secured longer than in case 1.
  • the collector current Ic can be suppressed as a whole, but the peak value at turn-on also becomes small. As a result, there is a concern that the detection of a short-circuit fault in response to the collector current Ic becoming excessive will be hindered. In other words, from the comparison of the waveforms 321 and 322, even if the gate voltage signal Vg2 is pulsed, detection of a load short circuit based on the peak value of the collector current Ic can be performed in the same manner as in the first case (normal driving method). It is understood that
  • the on-voltage is applied to a part of the gate wiring (gate wiring 114b) in a pulse form just after the turn-on, thereby performing normal operation.
  • the collector current Ic when the load short-circuit occurs can be suppressed without increasing the switching loss at the time (when the load short-circuit does not occur).
  • the gate voltage control unit 132 that generates the gate voltage signal Vg2 outputs, for example, a pulse voltage having a predetermined time width Tpl in response to a transition from the L level to the H level of the drive control signal Spd. It can be configured to have a function of a general one-shot pulse generation circuit.
  • the time width Tpl based on the behavior of voltage and current at turn-on.
  • the time width Tpl (FIG. 6) of the pulse voltage is preferably set to be equal to or greater than the sum of the time width td (on) and the time width tc (on) shown in FIG. 7 (that is, Tpl ⁇ td ( on) + tc (on)).
  • the time width td (on) corresponds to the required time from the rising timing (time t1) of the gate voltage signals Vg1 and Vg2 to the rising start of the collector current Ic.
  • the time width tc (on) corresponds to a required time from the start of the rise of the collector current Ic to the completion of the fall of the collector-emitter voltage Vce.
  • the switching loss can be suppressed by increasing the collector current per unit time by setting the gate voltage signal Vg2 to the ON voltage.
  • the time width Tpl is preferably set after td (on) + tc (on) has elapsed or after the end of the mirror section.
  • the time width Tpl is set such that the gate voltage signal Vg2 changes to the off voltage at a timing when td (on) + tc (on) has elapsed from time t1 or at a timing later than the timing of the end of the mirror period. It is preferable to do.
  • the behavior of Vge, Ic, and Vce up to time t2 is based on the normal driving method (first case) and the on-voltage of some gate wirings in a pulse form immediately after turn-on. This is substantially the same as the present embodiment (second case).
  • the behavior (specifically, Ic, A fixed value can be determined in advance according to the measurement result or simulation result of Vge and Vce. Therefore, the OFF timing of the pulse voltage can be fixed in advance and can be set by a counter or the like. That is, it is not necessary to monitor the voltage and current (Ic, Vge, Vce) during the switching operation in order to determine the off timing of the pulse voltage.
  • the gate wiring is divided into two types and the gate voltage signal is independently controlled.
  • the gate wiring can be divided into three or more types.
  • FIG. 10 is a cross-sectional view illustrating a modification of the configuration of the semiconductor device to which the driving method according to the present embodiment is applied.
  • FIG. 10 is compared with FIG. 2, in the configuration of FIG. 10, three types of gate wirings 114a are used as a plurality of gate wirings for configuring the gate electrode 105 (FIG. 1) in each transistor cell 120 (FIG. 1). 114b and 114c are arranged. Gate interconnections 114a, 114b and 114c are electrically connected to gate pads 115a, 115b and 115c, respectively. The gate pads 115a to 115c are electrically insulated from each other, and a separate voltage signal is applied from the drive circuit 130 (FIG. 4).
  • the plurality of transistor cells 120 include a transistor cell 120a in which the gate electrode 105 is configured by the gate wiring 114a, a transistor cell 120b in which the gate electrode 105 is configured by the gate wiring 114b, 114c includes a transistor cell 120c in which the gate electrode 105 is formed. That is, the transistor cell 120a has a channel region 113a whose current is controlled according to the voltage of the gate wiring 114a, and the transistor cell 120b has a channel region 113b whose current is controlled according to the voltage of the gate wiring 114b.
  • the transistor cell 120c includes a channel region 113c in which current is controlled according to the voltage of the gate wiring 114c.
  • FIG. 11 is a plan view for explaining an arrangement example of the gate wiring in the semiconductor device shown in FIG.
  • each of gate wirings 114a to 114c is provided including a periodic wiring pattern for forming a gate electrode portion extending in the same direction (left and right direction on the paper).
  • three types of gate wirings are periodically arranged in the order of “114a, 114b, 114c, 114a, 114b, 114c,...”, But may be periodically arranged in different orders. It is. For example, “114a, 114b, 114c, 114b, 114a, 114b, 114c, 114b,...” Or “114a, 114a, 114b, 114c, 114a, 114a, 114b, 114c,. If arranged, the number of gate wirings 114a, 114b, 114c may be different.
  • the gate wirings 114a to 114c intersect on the plan view, but are electrically connected to each other by being arranged in different layers.
  • the gate wirings 114a to 114c are electrically connected to the gate pads 115a to 115c, respectively.
  • the gate pads 115a to 115c can also be provided in a wiring layer different from the gate wirings 114a to 114c.
  • the gate pads 115a to 115c are also preferably arranged apart from each other in order to avoid wire interference.
  • the gate voltage signal Vg1 of FIG. 6 is applied to one or two of the gate wirings 114a to 114c, and a pulse voltage (gate voltage signal Vg2 of FIG. ) Is applied.
  • a pulse voltage is applied to two types of gate wirings, a voltage having a pulse width different from that of the gate voltage signal Vg2 (FIG. 6) (for example, a gate voltage signal) is applied to one gate wiring.
  • Vg3 may be applied.
  • drive circuit 130 further includes a gate drive control unit for outputting gate voltage signal Vg3 in addition to gate voltage control units 131 and 132.
  • the gate wiring can be divided into four or more types.
  • the drive circuit 130 has some K types (K: 1 ⁇ K ⁇ (N ⁇ 1)) of the N types. Is controlled so as to apply the gate voltage signal Vg1 in FIG.
  • the drive circuit 130 can apply a pulse voltage only to the remaining (NK) types of gate wirings immediately after the turn-on.
  • the gate voltage signal Vg2 of FIG. 6 is applied to part or all of the (NK) types of gate wirings.
  • the pulse width can be changed between them.
  • the structure of the semiconductor device to which the driving method and the driving circuit described in this embodiment are applied is not limited to the CSTBT structure illustrated in FIGS. That is, in a semiconductor device having a configuration in which a plurality of semiconductor elements are electrically connected in parallel, the present invention is applied if the gate voltage is controlled by a plurality of electrically insulated gate wirings. It is possible to drive.
  • 100 semiconductor device 101 P + substrate, 102 N + buffer layer, 103 collector electrode, 104 gate insulating film, 105 gate electrode, 106 N ⁇ drift layer, 107 charge storage layer, 108 channel doped layer, 109 source injection region, 110 P + diffusion region, 111 emitter electrode, 112 oxide film, 113, 113a, 113b, 113c channel region, 114a, 114b, 114c gate wiring, 115a, 115b, 115c gate pad, 120, 120a, 120b, 120c transistor cell, 130 Drive circuit, 131, 132 Gate voltage controller, 301-303, 311-313, 321-323, 331-333 waveform (simulation), 305 mirror section, GND ground voltage, Ic collector current, Tpl predetermined time (time) Width), Vg1, Vg2 gate voltage signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

半導体装置(100)は、コレクタ電極(103)およびエミッタ電極(111)の間に電気的に並列接続された、複数の第1のトランジスタセル(120a)および第2のトランジスタセル(120b)を備える。各第1のトランジスタセル(120a)のゲート電圧は、第1のゲート配線(114a)によって制御される。各第2のトランジスタセル(120b)のゲート電圧は、第2のゲート配線(114b)によって制御される。駆動回路(130)は、半導体装置(100)のターンオン時において、第1および第2のゲート配線(114a、114b)の両方に半導体装置(100)のオン電圧を印加するとともに、オン電圧の印加が開始されてから予め定められた時間の経過後において、第2のゲート配線(114b)には半導体装置(100)のオフ電圧を印加する一方で、第1のゲート配線(114a)にはオン電圧を印加する。

Description

半導体装置の駆動方法および駆動回路
 この発明は半導体装置の駆動方法および駆動回路に関し、より特定的には、電圧駆動型の半導体装置の駆動方法および駆動回路に関する。
 電力用半導体装置の一つとして、MOS-FET(Metal-Oxide-Semiconductor Field-Effect Transistor)およびIGBT(Insulated Gate Bipolar Transistor)に代表される、ゲート電極の電圧に応じてオンオフが制御される電圧駆動型の半導体装置が知られている。
 特開2004-319624号公報(特許文献1)には、ゲートが第1ゲートパターンに接続される複数の第1ゲート電圧駆動型半導体素子と、ゲートが第2ゲートパターンに接続される複数の第2ゲート電圧駆動型半導体素子との並列接続によって、1個の半導体装置を構成することが記載されている。さらに、第1ゲートパターンと第2ゲートパターンとの間でターンオフ時の電圧変化を異なるタイミングとすることによって、サージ電圧による破壊を防止することが記載されている。
 また、特開平6-85268号公報(特許文献2)にも、電力用半導体素子のゲート電極を複数個に分割する構造が記載されている。特許文献2には、分割されたゲート電極のうち、ゲート・ソース間耐圧が規定値に達しないゲート電極については、ゲート端子ではなくソース端子と接続することにより、当該ゲート電極の下方領域をIGBTとして動作させない構成が記載されている。
特開2004-319624号公報 特開平6-85268号公報
 電圧駆動型の半導体装置では、オンオフ時のスイッチング損失の抑制が求められる。特に、ターンオン時には、注入される電子電流が大きいと呼応するホールの量も多くなるため、ターンオンが完了するまでの時間が短くなりスイッチング損失が小さくなる。
 一方で、電圧駆動型の半導体装置では、負荷短絡等の発生により過電流が生じた場合に、半導体装置が短絡故障に至るまでの短絡時間は長いことが望ましい。一般的に、短絡時間は、電流(IGBTではコレクタ電流Ic)および電圧(IGBTではコレクタ・エミッタ間電圧Vce)を乗算したパワー(Ic×Vce)の時間積分値である∫(Ic×Vce)dtが、当該半導体装置が短絡時に耐えることができるエネルギで定義されるESCに達するまでの所要時間となる。ここで、ESCは半導体チップの大きさに依存してほぼ決まり、短絡時のVceについても半導体装置が接続される電源の電圧によってほぼ決まってしまう。したがって、短絡時間を長くするには、コレクタ電流Icの抑制が必要となる。
 しかしながら、コレクタ電流Icの大きさは、オン時に注入される電子電流の大きさに比例する。このため、スイッチング損失抑制のためにコレクタ電流Icを大きくすると、短絡時間の確保では不利となり、両者はトレードオフの関係にあることが理解される。このように、電圧駆動型の半導体装置では、スイッチング損失に代表される素子性能を維持したままで、短絡時間を改善することが困難である。
 本発明はこのような問題点を解決するためになされたものであって、本発明の目的は、電圧駆動型の半導体装置について、スイッチング損失を増加させることなく、短絡時間を確保することである。
 本開示のある局面では、電気的に並列接続された複数の半導体素子と、電気的に絶縁された複数のゲート配線とを備えた半導体装置の駆動方法において、複数のゲート配線は、第1および第2のゲート配線を含む。複数の半導体素子は、第1のゲート配線の電圧によって電流が制御される第1のチャネル領域を有する少なくとも1個の第1の半導体素子と、第2のゲート配線の電圧によって電流が制御される第2のチャネル領域を有する少なくとも1個の第2の半導体素子とを含む。駆動方法は、半導体装置のターンオン時において、第1および第2のゲート配線の両方に半導体装置のオン電圧を印加するステップと、オン電圧の印加が開始されてから予め定められた時間の経過後において、第2のゲート配線には半導体装置のオフ電圧を印加する一方で、第1のゲート配線にはオン電圧を印加するステップとを備える。
 本開示の他のある局面では、電気的に並列接続された複数の半導体素子と、電気的に絶縁された複数のゲート配線とを備えた半導体装置の駆動回路であって、第1および第2のゲート電圧制御部を備える。複数のゲート配線は、第1および第2のゲート配線を含む。複数の半導体素子は、第1のゲート配線の電圧によって電流が制御される第1のチャネル領域を有する少なくとも1個の第1の半導体素子と、第2のゲート配線の電圧によって電流が制御される第2のチャネル領域を有する少なくとも1個の第2の半導体素子とを含む。第1のゲート電圧制御部は、駆動制御信号に従って、第1のゲート配線に半導体装置のオン電圧またはオフ電圧を印加するように構成される。半導体装置のターンオン時に第1の信号レベルから第2の信号レベルに遷移する一方で、半導体装置のターンオフ時に第2の信号レベルから第1の信号レベルに遷移する。第2のゲート電圧制御は、駆動制御信号に応じて第2のゲート配線にオン電圧またはオフ電圧を印加するように構成される。第1のゲート電圧制御部は、駆動制御信号が第1の信号レベルであるときにオフ電圧を第1のゲート配線に印加するとともに、駆動制御信号が第2の信号レベルであるときにオン電圧を第1のゲート配線に印加する。第2のゲート電圧制御部は、駆動制御信号が第1の信号レベルから第2の信号レベルへ遷移したときに、第2のゲート配線に対して予め定められた時間幅でオン電圧をパルス状に印加する。
 この発明によれば、電圧駆動型の半導体装置について、スイッチング損失を増加させることなく、短絡時間を確保することができる。
本実施の形態に従う駆動方法が適用される半導体装置の構成の一例を説明するための断面図である。 図1の半導体装置に対してゲート電圧を供給するための構成を説明する概念的な断面図である。 図1および図2に示された半導体装置におけるゲート配線の第1の配置例を説明する平面図である。 図1および図2に示された半導体装置におけるゲート配線の第2の配置例を説明する平面図である。 本実施の形態に従う半導体装置の駆動構成を説明する概念的な回路図である。 本実施の形態に従う半導体装置の駆動方法を説明する概念的な波形図である。 半導体装置のターンオン時のシミュレーション波形図である。 半導体装置のターンオフ時のシミュレーション波形図である。 半導体装置のターンオン時に負荷短絡が発生したときのシミュレーション波形図である。 本実施の形態に従う駆動方法が適用される半導体装置の構成の変形例を説明する断面図である。 図10に示された変形例に従う半導体装置におけるゲート配線の配置例を説明する平面図である。
 以下、本発明の実施の形態について図面を用いて説明する。なお、以下では、図中の同一または相当部分に同一符号を付して、その説明は原則的に繰り返さないものとする。
 図1は、本実施の形態に従う駆動方法が適用される半導体装置100の構成の一例を説明する断面図である。
 図1を参照して、半導体装置100は、P基板101の上面に形成された、Nバッファ層102、Nドリフト層106、電荷蓄積層107、チャネルドープ層108、ソース注入領域109、および、P拡散領域110を備える。P基板101の裏面にはコレクタ電極103が形成されており、P基板101は、コレクタ層として機能する。
 さらに、半導体装置100は、エミッタ電極111と、複数のゲート電極105とを備える。エミッタ電極111は、ソース注入領域109の一部領域(酸化膜112の非形成領域)と、P拡散領域110との上面に形成される。半導体チップの第1の主表面側に設けられる。コレクタ電極103は、第1の主表面とは反対側の第2の主表面に設けられる。第1の主表面において、エミッタ電極111および複数のゲート電極105の間は、酸化膜112によって絶縁されている。さらに、ゲート電極105は、ゲート絶縁膜104によって、周囲の各層および領域から電気的に絶縁されている。
 各ゲート電極105は、図1の紙面鉛直方向に延在するようにストライプ状に設けられたトレンチ溝に埋め込まれた導電体(たとえば、ポリシリコン)で形成されたゲート配線によって構成される。図1に示された半導体装置100は、いわゆる、電荷蓄積形トレンチゲート型バイポーラトランジスタ(CSTBT(登録商標))構造を有しており、ゲート電極105毎に、ゲート電極の電圧(以下、単に「ゲート電圧」とも称する)に応じた電界に依存して電流が変化するチャネル領域113を有するトランジスタセル120が形成される。
 各トランジスタセル120では、ゲート電極105の電圧に応じて電流が制御されるチャネル領域113が設けられる。CSTBT構造を始めとする縦型トランジスタ構造では、トレンチ型で形成される複数のゲート配線のピッチを縮小して、多くのトランジスタセル120を形成することによって、オン抵抗の低減を図ることができる。
 このように、半導体装置100は、同一チップ上に、コレクタ電極103およびエミッタ電極111を共通として、複数のトランジスタセル120が電気的に並列接続された構成を有している。すなわち、半導体装置100では、一対の主電極として機能するコレクタ電極103およびエミッタ電極111間には、各ゲート電極105の電圧に応じて制御された各チャネル領域113での電子電流の和に比例する電流(以下、コレクタ電流Icとも称する)が発生する。このように、半導体装置100は、ゲート電圧に応じてコレクタ電流Icを制御可能な、電圧駆動型のスイッチング素子として機能する。
 図2には、半導体装置100に対してゲート電圧を供給するための構成を説明する概念的な断面図が示される。
 図2では、図1からエミッタ電極111および酸化膜112の表記が削除され、代わりに、ゲート電圧を供給するための構成が概念的に示されている。
 半導体装置100では、互いに絶縁された複数のゲート配線によって、複数のゲート電極105が構成される。図2の例では、2種類のゲート配線114aおよび114bが配置される。ゲート配線114aおよび114bは、ゲートパッド115aおよび115bとそれぞれ電気的に接続される。ゲートパッド115aおよび115bは互いに電気的に絶縁されており、後程説明する駆動回路から別個の電圧信号を印加される。
 この結果、複数のトランジスタセル120は、ゲート配線114aによってゲート電極105が構成されるトランジスタセル120aと、ゲート配線114bによってゲート電極105が構成されるトランジスタセル120bとを含むことが理解される。トランジスタセル120aは、ゲート配線114aの電圧に応じて電流が制御されるチャネル領域113aを有し、トランジスタセル120bは、ゲート配線114bの電圧に応じて電流が制御されるチャネル領域113bを有する。
 このように、ゲート配線114aは「第1のゲート配線」に対応し、チャネル領域113aは「第1のチャネル領域」に対応し、トランジスタセル120aは「第1の半導体素子」に対応する。また、ゲート配線114bは「第2のゲート配線」に対応し、チャネル領域113bは「第2のチャネル領域」に対応し、トランジスタセル120bは「第2の半導体素子」に対応する。
 図3および図4には、ゲート配線114a,114bの配置例を説明するための、半導体装置100を第1の主表面側から見た平面図が示される。図3および図4には、ゲート配線およびゲートパッドのみが表記されている。
 図3および図4を参照して、ゲート配線114aおよび114bは、同一方向(紙面左右方向)に延在するゲート電極部分を形成するための周期的な配線パターンを含んで設けられる。さらに、ゲート配線114aは、ゲートパッド115aと電気的に接続される。ゲート配線114bは、ゲートパッド115bと電気的に接続される。
 ゲートパッド115aおよび115bは、ゲート配線114aおよび114bとは異なる配線層に設けることができる。ゲートパッド115a,115bは、ゲートパッド115a,115bにそれぞれ接続されたワイヤ同士の干渉を回避するために、半導体装置100の第1の主表面において対称配置(線対称または点対称)することが好ましい。
 ゲートパッド115aには、ゲート電圧信号Vg1が供給される。ゲートパッド115bには、ゲート電圧信号Vg2が供給される。この結果、ゲート配線114aの電圧は、ゲート電圧信号Vg1によって規定され、ゲート配線114bの電圧は、ゲート電圧信号Vg2によって規定される。
 なお、図3および図4では、2種類のゲート配線は、「114a,114b,114a,114b,…」の順に周期的に配列されているが、異なる順序で周期的に配置することも可能である。たとえば、「114a,114b,114b,114a,114b,114b,…」、あるいは、「114a,114a,114a,114b,114a,114a,114a,114b,114a,…」のように、周期的に配列されていれば、ゲート配線114aおよび114bの配置本数が異なっていてもよい。
 図5は、本実施の形態に従う半導体装置の駆動構成を説明する概念的な回路図である。
 図5を参照して、半導体装置100は、ゲート配線114aによってゲート電圧信号を制御される複数のトランジスタセル120aと、ゲート配線114bによってゲート電圧信号を制御される複数のトランジスタセル120bとが、コレクタ電極103およびエミッタ電極111の間に並列接続された構成の等価回路で示される。
 半導体装置100は、コレクタ電極103およびエミッタ電極111の間に電圧が印加された状態において、ゲート-エミッタ間の電圧がしきい値電圧よりも高いとオンする。オン状態では、コレクタ-エミッタ間電圧Vceがほぼ0になる。コレクタ電流Icは、ゲート配線114aの電圧に従って複数のトランジスタセル120aに生じる電子電流およびホール電流の和と、ゲート配線114bの電圧に従って複数のトランジスタセル120bに生じる電子電流およびホール電流の和との総和で示される。
 一方で、半導体装置100は、ゲート電圧がしきい値電圧よりも低いとオフされる。オフ状態では、Ic=0となる。
 半導体装置100の駆動回路130は、駆動制御信号Spdの信号レベルに応じて、半導体装置100をオンオフする。たとえば、駆動回路130は、駆動制御信号Spdが論理ローレベル(以下、単に「Lレベル」とも表記する)の期間において半導体装置100をオフする一方で、駆動制御信号Spdが論理ハイレベル(以下、単に「Hレベル」とも表記する)の期間において半導体装置100をオンするように動作する。
 駆動回路130は、ゲート電圧制御部131と、ゲート電圧制御部132とを有する。ゲート電圧制御部131は、駆動制御信号Spdに従ってゲート電圧信号Vg1を発生する。ゲート電圧信号Vg1は、ゲートパッド115aを経由して、ゲート配線114aに供給される。ゲート電圧制御部132は、駆動制御信号Spdに従ってゲート電圧信号Vg2を発生する。ゲート電圧信号Vg2は、ゲートパッド115bを経由して、ゲート配線114bに供給される。
 図6は、本実施の形態に従う半導体装置の駆動方法を説明する概念的な波形図である。
 図6を参照して、時刻t1以前では、半導体装置100をオフ状態とするために、駆動制御信号SpdはLレベルである。これに応じて、ゲート電圧信号Vg1およびVg2の両方は、各トランジスタセル120a,120bをオフするための電圧(以下、「オフ電圧」)とも称する)に設定される。オフ電圧は、たとえば接地電圧GNDまたは負電圧である。
 時刻t1において、駆動制御信号Spdは、半導体装置100をターンオンするために、LレベルからHレベルに遷移する。これに応じて、ゲート電圧信号Vg1およびVg2の各々は、オフ電圧から各トランジスタセル120a,120bをオンするための電圧(以下、「オン電圧」)とも称する)に変化する。オン電圧は、たとえば正の電源電圧VCCである。これにより、時刻t1に対応して、ゲート配線114a,114bの両方にオン電圧を印可するステップが実現できる。
 ゲート電圧信号Vg1は、駆動制御信号SpdのHレベル期間において、オン電圧に維持される。これに対して、ゲート電圧信号Vg2は、時刻t1から所定時間Tplが経過した時刻t2において、オン電圧からオフ電圧に変化される。すなわち、ゲート電圧信号Vg2によって、半導体装置100のターンオン時において、ゲート配線114bに対して、所定時間Tplに相当する時間幅でオン電圧をパルス状に印加することができる。これにより、時刻t2以降では、ゲート配線114bにオフ電圧を印加する一方で、ゲート配線114aにオン電圧を印可するステップが実現できる。
 駆動制御信号Spdは、時刻t3において、半導体装置100をターンオフするために、HレベルからLレベルに遷移する。これに応じて、ゲート電圧信号Vg1は、オン電圧からオフ電圧に変化される。一方で、ゲート電圧信号Vg2は、時刻t2以降と同様にオフ電圧に維持される。
 次に、図6に示されたゲート電圧信号Vg1,Vg2に応じた半導体装置100の動作を説明する。
 再び図2を参照して、時刻t1において、ゲート配線114aに、しきい値電圧よりも高いオン電圧が印可されると、チャネル領域113aがN型に反転しチャネルが形成される。同様に、ゲート配線114bにオン電圧が印可されることにより、チャネル領域113bがN型に反転しチャネルが形成される。
 チャネル領域113aおよび113bに形成されたチャネルを通じて、エミッタ電極111から電子が電荷蓄積層107を経由してNドリフト層106に注入される。この注入された電子によりNバッファ層102を介してP基板(コレクタ層)101とNドリフト層106との間が順バイアスされ、コレクタ電極103からP基板(コレクタ層)101およびNバッファ層102を経由して、Nドリフト層106にホールが注入される。この結果、電導度変調によりNドリフト層106の抵抗が大幅に低下することで、IGBTとしての電流容量は増大する。
 時刻t2において、ゲート配線114bにオフ電圧が供給されると、トランジスタセル120bでは、ゲート・エミッタ間電圧が0または負電圧となって、チャネル領域113bがP型に戻る。これにより、チャネルが消滅するので、トランジスタセル120bではエミッタ電極111から注入されていた電子の供給が停止されることに応じて、電子電流が流れなくなる。一方で、オン電圧が供給されるゲート配線114aに対応するチャネル領域113aでは、チャネルの形成が維持されるので、トランジスタセル120aの電子電流は継続的に流れる。
 したがって、半導体装置100のオン期間(Spd=Hレベル)において、時刻t1~t2では、複数のトランジスタセル120aおよび120bの両方による電子電流がコレクタ電流Icとして流れる。一方で、時刻t2~t3では、複数のトランジスタセル120aによる電子電流のみがコレクタ電流Icとして流れることになる。
 時刻t3において、ゲート配線114aにオフ電圧が供給されると、トランジスタセル120aでも、ゲート・エミッタ間電圧が0または負電圧となって、チャネル領域113aがP型に戻る。これにより、チャネル領域113aでもチャネルが消滅するので、トランジスタセル120aにおいても、エミッタ電極111から注入されていた電子の供給が停止される。この結果、複数のトランジスタセル120aおよび120bの全てにおいて電子電流が流れなくなるので、半導体装置100はオフされてIc=0となる。
 次に、図7~図9には、半導体装置100のターンオン時およびターンオフ時のシミュレーション波形が示される。図7~図9を通じて、Vg1(トランジスタセル120a)を図6の波形に従って設定した下で、Vg2(トランジスタセル120b)の設定について、下記の3個のケース間での比較を行った。
 第1のケースは、全トランジスタセル120を並列に作動させるようにVg2=Vg1とする通常の駆動方法である。第2のケースは、Vg2を図6に示されたパルス状波形とする本実施の形態に従う駆動方法である。第3のケースは、比較のために示される、Vg2をオフ電圧に維持した駆動方法である。
 図7には、半導体装置100のターンオン時のシミュレーション波形が示され、図8には、半導体装置100のターンオフ時のシミュレーション波形が示される。図7および図8では、負荷短絡が発生していない通常のターンオン動作およびターンオフ動作がシミュレーションされている。
 図7を参照して、ゲート電圧信号Vg2について、第1のケースでの波形301は、図6のVg1の波形と同様である。一方で、第2のケースの波形302は、図6のVg2の波形と同一であり、第3のケースの波形303では、Vg2はオフ電圧に維持される。
 ゲート電圧信号Vg2によって制御されるトランジスタセル120bのゲート-エミッタ間電圧Vgeについても、第1~第3のケースにおける波形311~313が示される。波形311,312では、ゲート電圧信号Vg2がオン電圧に設定されるのに応じて、Vgeが上昇する。Vgeの上昇の途中で、Vgeが一定となるミラー区間305が発生する。
 なお、ミラー区間305の発生タイミングは、駆動回路130による駆動条件および半導体装置100の素子特性に従って一定タイミングで発生するので、実機実験やシミュレーションによって予め知ることができる。
 波形312では、時刻t2以降でVg2がオフ電圧に変化するのに応じて、Vgeも低下する。Vg2=0のときの波形313は、Vge=0に維持される。
 半導体装置100全体でのコレクタ電流Icについて、第1~第3のケースにおける波形321~323が示され、コレクタ-エミッタ間電圧Vceについても、第1~第3のケースにおける波形331~333が示される。
 コレクタ電流Icについて、時刻t2までの挙動は、波形321および322でほぼ同一である。一方で、各トランジスタセル120bにチャネルが形成されない第3のケースでの波形323は、電流の立上り速度が、波形321,322に比較して緩やかである。また、オン時の定常電流Ionに対するピーク電流についても、波形321,322と比較して小さいことが理解される。なお、第2および第3のケースでは、コレクタ電流IcのIonが第1のケースと同等となるように、スイッチングの条件を調整して、シミュレーションを実行している。
 コレクタ-エミッタ間電圧Vceについて、時刻t2までの挙動は、波形331および332でほぼ同一である。一方で、各トランジスタセル120bにチャネルが形成されない第3のケースでの波形333は、電圧の立下りタイミングが、波形331,332に比較して遅れることが理解できる。
 なお、ゲート電圧信号Vg2がオフ電圧に変化する時刻t2をミラー区間305の終了後に設定することにより、時刻t2において、コレクタ電流Ic=Ion、かつ、コレクタ-エミッタ間電圧Vceがほぼ0であり、半導体装置100のターンオンはほぼ完了していることが理解される。
 図7のシミュレーション結果より、第3のケースでは、第1のケースと比較して、ターンオン時のIcおよびVceの変化が緩やかであることが理解される。したがって、第3のケースでは、スイッチング損失が増大することが懸念される。一方で、第1および第2のケースの間では、ターンオン時のIcおよびVceの挙動はほぼ同じである。したがって、ゲート電圧信号Vg2をパルス状電圧としても、ターンオン時のスイッチング損失は、通常の駆動手法である第1のケースと同等であることが理解される。
 図8には、半導体装置100のターンオフ時のシミュレーション波形が示される。
 図8を参照して、時刻t3において、ゲート電圧信号Vg1がオン電圧からオフ電圧に変化することで、半導体装置100はターンオフされる。ゲート電圧信号Vg2について、第1のケースでの波形301は、図6のVg1の波形と同様である。一方で、第2のケースの波形302および第3のケースの波形303では、ターンオフ時のVgsはオフ電圧に固定される。
 コレクタ電流Icおよびコレクタ-エミッタ間電圧Vceについて、ターンオフ時には、第1のケース(波形321および331)と比較して、第3のケース(波形323および333)では、オン状態でチャネルが形成されるトランジスタセル120の個数が少ないため、より早いタイミングで、Vceの立上りおよびIcの立下りが発生する。
 第2のケース(波形322および332)でのIcおよびVceの挙動は、第3のケース(波形323および333)に近くなる。ただし、第1~第3のケースを通じて、Vceの立上りタイミングとIcの立下りタイミングとの時間差、および、VceおよびIcの傾きは同等である。このため、第1~第3のケースを通じて、ターンオフ時のスイッチング損失は同等であることが理解される。
 このように、負荷短絡が発生しない、すなわち通常のターンオン動作およびターンオフ動作において、本実施の形態に従う駆動方法(第2のケース)を適用しても、通常の駆動方法(第1のケース)に対してスイッチング損失が悪化することはない。
 図9には、負荷短絡発生時のターンオン時のシミュレーション波形が示される。図9では、半導体装置100の印加電圧(すなわち、Vce)を、図7および図8での1.5倍(定格電圧の2/3倍相当)としてシミュレーションを行った。
 また、図9では、図7および図8とは時間軸のスケールを変更しているが、時刻t1、t2およびt3は、図7および図8と同様のタイミングを示している。したがって、図9においても、第1のケースでは、Vg1およびVg2は時刻t1~t3の間オン電圧に維持され、第2のケースでは、Vg1は時刻t1~t3の間オン電圧に維持される一方で、Vg2は、時刻t1~t2間でパルス状にオン電圧に設定される。また、第3のケースでは、Vg1が時刻t1~t3の間オン電圧に維持される一方で、Vg2は時刻t1~t3を通じてオフ電圧に維持されている。
 この結果、ゲート電圧信号Vg2によって制御されるトランジスタセル120bのゲート-エミッタ間電圧Vgeは、第1~第3のケースのそれぞれにおいて波形311~313の挙動を示す。また、コレクタ電流Icは、第1~第3のケースのそれぞれにおいて波形321~323の挙動を示す。なお、上述のように、図9のシミュレーションでは、Vceは一定値である。
 波形311~313および波形321~323より、第2のケースでは、ターンオン直後の期間では、第1のケースと同等のコレクタ電流Icが生じるが、ゲート電圧信号Vg2がオフ電圧に変化する時刻t2以降では、ゲート配線114bに対応するトランジスタセル120bの電流がカットされることにより、コレクタ電流Icを抑制できることが理解される。したがって、負荷短絡等の発生により過電流が生じた場合に、半導体装置100が短絡故障に至るまでの短絡時間を決める「Ic×Vce」について、第2のケースでは、第1のケースよりも大幅に低減できることが理解される。この結果、ESC/∫(Ic×Vce)dtに相当する短絡時間について、ケース2では、ケース1よりも長く確保することができる。
 第3のケースでは、全体的にコレクタ電流Icを抑制できているが、ターンオン時のピーク値も小さくなる。この結果、コレクタ電流Icが過大になることに応じた短絡故障の検出に支障が生じることが懸念される。言い換えると、波形321および322の比較から、ゲート電圧信号Vg2をパルス状としても、コレクタ電流Icのピーク値に基づく負荷短絡の検出は、第1のケース(通常の駆動方法)と同様に実行可能であることが理解される。
 このように、本実施の形態による半導体装置100の駆動方法によれば、一部のゲート配線(ゲート配線114b)に対して、オン電圧をターンオン直後のみのパルス状に印加することにより、通常動作時(負荷短絡非発生時)におけるスイッチング損失を増加させることなく、負荷短絡発生時におけるコレクタ電流Icを抑制することができる。この結果、スイッチング損失を増加させることなく、負荷短絡発生時に半導体装置100が短絡故障に至るまでの時間(短絡時間)を確保することが可能となる。
 なお、ゲート電圧信号Vg2を発生するゲート電圧制御部132は、たとえば、駆動制御信号SpdのLレベルからHレベルへの遷移に応答して、予め定められた時間幅Tplのパルス電圧を出力する、一般的なワンショットパルス生成回路の機能を有するように構成することができる。
 ここで、時間幅Tplは、ターンオン時の電圧および電流の挙動に基づいて設定することが好ましい。たとえば、パルス電圧の時間幅Tpl(図6)は、図7中に示された時間幅td(on)および時間幅tc(on)の和以上に設定することが好ましい(すなわち、Tpl≧td(on)+tc(on))。
 図7に示されるように、時間幅td(on)は、ゲート電圧信号Vg1,Vg2の立上りタイミング(時刻t1)からコレクタ電流Icの立上り開始までの所要時間に相当する。また、時間幅tc(on)は、コレクタ電流Icの立上り開始から、コレクタ-エミッタ間電圧Vceの立下り完了までの所要時間に相当する。これらの電流および電圧の変化期間内においては、ゲート電圧信号Vg2をオン電圧とすることにより、単位時間当たりのコレクタ電流を大きくすることで、スイッチング損失を抑制することができる。言い換えると、Tpl<td(on)+tc(on)とすると、コレクタ電流Icの立上りおよび/またはVceの立下りが緩やかになることで、スイッチング損失が、通常の駆動方法(第1のケース)よりも増加することが懸念される。
 一方で、図9から理解できるように、負荷短絡発生時には、ゲート電圧信号Vg2のパルス状の時間幅Tplを短くする程、コレクタ電流Icの抑制、すなわち、絶縁時間を確保する効果が高くなる。tc(on)区間の終了タイミング(Vceが立ち下がったタイミング)をVce波形のみで判断することが難しい場合には、ミラー区間が終了するタイミングで、Vceが確実に立ち下がったタイミングを判断することができる。時間幅Tplについては、td(on)+tc(on)が経過した後、または、ミラー区間終了のタイミングよりも後に設定することが好ましい。
 これらから、時間幅Tplは、時刻t1からtd(on)+tc(on)が経過したタイミング、または、ミラー区間終了のタイミングよりも遅いタイミングで、ゲート電圧信号Vg2がオフ電圧へ変化するように設定することが好ましい。ここで、図7で説明したように、時刻t2までのVge、IcおよびVceの挙動は、通常の駆動方法(第1のケース)と、一部のゲート配線のオン電圧をターンオン直後のパルス状とする本実施の形態(第2のケース)との間でほぼ同様である。
 したがって、本実施の形態におけるパルス状電圧の時間幅Tplについては、通常の駆動方法(各ゲート配線が共通にオン電圧を印加)における半導体装置100のターンオン時の挙動(具体的には、Ic,Vge,Vceの実測結果またはシミュレーション結果)に従って予め固定値を定めることができる。したがって、パルス状電圧のオフタイミングは、予め固定することができ、カウンタ等によって設定することができる。すなわち、パルス状電圧のオフタイミングを決めるために、スイッチング動作中における電圧および電流(Ic,Vge,Vce)を監視することは不要である。
 (変形例)
 以上では、ゲート配線を2種類に区分してゲート電圧信号をそれぞれ独立に制御する構成を説明したが、ゲート配線は、3以上の複数種類に区分することも可能である。
 図10には、本実施の形態に従う駆動方法が適用される半導体装置の構成の変形例を説明する断面図が示される。
 図10を図2と比較して、図10の構成では、各トランジスタセル120(図1)でのゲート電極105(図1)を構成するための複数のゲート配線として、3種類のゲート配線114a、114bおよび114cが配置される。ゲート配線114a、114bおよび114cは、ゲートパッド115a、115bおよび115cとそれぞれ電気的に接続される。ゲートパッド115a~115cは互いに電気的に絶縁されており、駆動回路130(図4)から別個の電圧信号を印加される。
 従って、図10の構成例では、複数のトランジスタセル120は、ゲート配線114aによってゲート電極105が構成されるトランジスタセル120aと、ゲート配線114bによってゲート電極105が構成されるトランジスタセル120bと、ゲート配線114cによってゲート電極105が構成されるトランジスタセル120cを含む。すなわち、トランジスタセル120aは、ゲート配線114aの電圧に応じて電流が制御されるチャネル領域113aを有し、トランジスタセル120bは、ゲート配線114bの電圧に応じて電流が制御されるチャネル領域113bを有し、トランジスタセル120cは、ゲート配線114cの電圧に応じて電流が制御されるチャネル領域113cを有する。
 図11には、図10に示された半導体装置におけるゲート配線の配置例を説明する平面図が示される。
 図11を参照して、ゲート配線114a~114cの各々は、同一方向(紙面左右方向)に延在するゲート電極部分を形成するための周期的な配線パターンを含んで設けられる。図11の例では、3種類のゲート配線が、「114a,114b,114c,114a,114b,114c,…」の順に周期的に配列されているが、異なる順序で周期的に配置することも可能である。たとえば、「114a,114b,114c,114b,114a,114b,114c,114b,…」、あるいは、「114a,114a,114b,114c,114a,114a,114b,114c,…」のように、周期的に配列されていれば、ゲート配線114a,114b、114cの配置本数が異なっていてもよい。
 なお、領域117では、ゲート配線114a~114cが平面図上では交差しているが、異なる層に配置されることにより、電気的には互いに非接続である。
 さらに、ゲート配線114a~114cは、ゲートパッド115a~115cのそれぞれと電気的に接続される。ゲートパッド115a~115cについても、ゲート配線114a~114cとは異なる配線層に設けることができる。ゲートパッド115a~115cについても、ワイヤの干渉を回避するために、互いに離間させて配置することが好ましい。
 ゲート配線114a~114cのうちの、1つまたは2つには、図6のゲート電圧信号Vg1が印加され、残りのゲート配線には、ターンオン直後のみのパルス状電圧(図6のゲート電圧信号Vg2)が印加される。なお、2種類のゲート配線に対して、パルス状電圧が印可される場合には、一方のゲート配線については、ゲート電圧信号Vg2(図6)とは異なるパルス幅の電圧(たとえば、ゲート電圧信号Vg3)が印可されてもよい。このような場合には、駆動回路130は、ゲート電圧制御部131および132に加えて、ゲート電圧信号Vg3を出力するためのゲート駆動制御部をさらに含むことになる。
 また、ゲート配線は、4以上の複数種類に分割することも可能である。このようにゲート配線がN種類(N:3以上の整数)に分割された構成において、駆動回路130は、N種類のうちの一部のK種類(K:1≦K≦(N-1)の整数)のゲート配線について、図6でのゲート電圧信号Vg1を印加するように制御する。
 さらに、駆動回路130は、残りの(N-K)種類のゲート配線に対して、ターンオン直後のみのパルス状電圧を印加することができる。このとき、(N-K)種類のゲート配線の一部または全部には、図6のゲート電圧信号Vg2が印加される。なお、2種類以上のゲート配線にパルス状電圧を印加する場合には、これらの間でパルス幅を変えることも可能である。
 これにより、本実施の形態で説明したのと同様に、半導体装置のスイッチング損失を増加させることなく、負荷短絡発生時に短絡故障に至るまでの時間を確保することができる。
 なお、本実施の形態で説明した駆動方法および駆動回路が適用される半導体装置の構成は、図1および図2に例示さしたCSTBT構造で限定されるものではない。すなわち、複数の半導体素子が電気的に並列接続された構成を有する半導体装置において、ゲート電圧を電気的に絶縁された複数のゲート配線によって制御する構成を有するものであれば、本発明を適用した駆動の対象とすることが可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 100 半導体装置、101 P基板、102 Nバッファ層、103 コレクタ電極、104 ゲート絶縁膜、105 ゲート電極、106 Nドリフト層、107 電荷蓄積層、108 チャネルドープ層、109 ソース注入領域、110 P拡散領域、111 エミッタ電極、112 酸化膜、113,113a,113b,113c チャネル領域、114a,114b,114c ゲート配線、115a,115b,115c ゲートパッド、120,120a,120b,120c トランジスタセル、130 駆動回路、131,132 ゲート電圧制御部、301~303,311~313,321~323,331~333 波形(シミュレーション)、305 ミラー区間、GND 接地電圧、Ic コレクタ電流、Tpl 所定時間(時間幅)、Vg1,Vg2 ゲート電圧信号。

Claims (6)

  1.  電気的に並列接続された複数の半導体素子と、電気的に絶縁された複数のゲート配線とを備えた半導体装置の駆動方法であって、
     前記複数のゲート配線は、第1および第2のゲート配線を含み、
     前記複数の半導体素子は、前記第1のゲート配線の電圧によって電流が制御される第1のチャネル領域を有する少なくとも1個の第1の半導体素子と、前記第2のゲート配線の電圧によって電流が制御される第2のチャネル領域を有する少なくとも1個の第2の半導体素子とを含み、
     前記駆動方法は、
     前記半導体装置のターンオン時において、前記第1および第2のゲート配線の両方に前記半導体装置のオン電圧を印加するステップと、
     前記オン電圧の印加が開始されてから予め定められた時間の経過後において、前記第2のゲート配線には前記半導体装置のオフ電圧を印加する一方で、前記第1のゲート配線には前記オン電圧を印加するステップとを備える、半導体装置の駆動方法。
  2.  前記予め定められた時間は、前記オン電圧の印加開始から前記半導体装置の端子間電流の立ち上がりが開始されるまでの第1の所要時間と、前記端子間電流の立ち上がりの開始から前記半導体装置の端子間電圧が立ち下がるまでの第2の所要時間との和以上である、請求項1記載の半導体装置の駆動方法。
  3.  前記予め定められた時間は、前記半導体装置のミラー区間後に、前記第2のゲート配線に前記オフ電圧が印加されるように決められる、請求項1記載の半導体装置の駆動方法。
  4.  電気的に並列接続された複数の半導体素子と、電気的に絶縁された複数のゲート配線とを備えた半導体装置の駆動回路であって、
     前記複数のゲート配線は、第1および第2のゲート配線を含み、
     前記複数の半導体素子は、前記第1のゲート配線の電圧によって電流が制御される第1のチャネル領域を有する少なくとも1個の第1の半導体素子と、前記第2のゲート配線の電圧によって電流が制御される第2のチャネル領域を有する少なくとも1個の第2の半導体素子とを含み、
     前記駆動回路は、
     前記半導体装置のターンオン時に第1の信号レベルから第2の信号レベルに遷移する一方で、前記半導体装置のターンオフ時に前記第2の信号レベルから前記第1の信号レベルに遷移する駆動制御信号に従って、前記第1のゲート配線に前記半導体装置のオン電圧またはオフ電圧を印加するように構成された第1のゲート電圧制御部と、
     前記駆動制御信号に応じて前記第2のゲート配線に前記オン電圧または前記オフ電圧を印加するように構成された第2のゲート電圧制御部とを備え、
     前記第1のゲート電圧制御部は、前記駆動制御信号が前記第1の信号レベルであるときに前記オフ電圧を前記第1のゲート配線に印加するとともに、前記駆動制御信号が前記第2の信号レベルであるときに前記オン電圧を前記第1のゲート配線に印加し、
     前記第2のゲート電圧制御部は、前記駆動制御信号が前記第1の信号レベルから前記第2の信号レベルへ遷移したときに、前記第2のゲート配線に対して予め定められた時間幅で前記オン電圧をパルス状に印加する、半導体装置の駆動回路。
  5.  前記予め定められた時間幅は、前記オン電圧の印加開始から前記半導体装置の端子間電流の立ち上がりが開始されるまでの第1の所要時間と、前記端子間電流の立ち上がりの開始から前記半導体装置の端子間電圧が立ち下がるまでの第2の所要時間との和以上となるように決められる、請求項4記載の半導体装置の駆動回路。
  6.  前記予め定められた時間幅は、前記半導体装置のミラー区間後に、前記第2のゲート配線に対して前記オフ電圧が印加されるように決められる、請求項4記載の半導体装置の駆動回路。
PCT/JP2016/086858 2016-12-12 2016-12-12 半導体装置の駆動方法および駆動回路 WO2018109794A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680091464.5A CN110062957B (zh) 2016-12-12 2016-12-12 半导体装置的驱动方法以及驱动电路
PCT/JP2016/086858 WO2018109794A1 (ja) 2016-12-12 2016-12-12 半導体装置の駆動方法および駆動回路
JP2018556028A JP6656414B2 (ja) 2016-12-12 2016-12-12 半導体装置の駆動方法および駆動回路
US16/466,341 US11245393B2 (en) 2016-12-12 2016-12-12 Driving method and drive circuit for semiconductor device
DE112016007515.4T DE112016007515B4 (de) 2016-12-12 2016-12-12 Ansteuerverfahren und Ansteuerschaltung für Halbleitervorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/086858 WO2018109794A1 (ja) 2016-12-12 2016-12-12 半導体装置の駆動方法および駆動回路

Publications (2)

Publication Number Publication Date
WO2018109794A1 true WO2018109794A1 (ja) 2018-06-21
WO2018109794A9 WO2018109794A9 (ja) 2019-05-02

Family

ID=62558178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086858 WO2018109794A1 (ja) 2016-12-12 2016-12-12 半導体装置の駆動方法および駆動回路

Country Status (5)

Country Link
US (1) US11245393B2 (ja)
JP (1) JP6656414B2 (ja)
CN (1) CN110062957B (ja)
DE (1) DE112016007515B4 (ja)
WO (1) WO2018109794A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020043204A (ja) * 2018-09-10 2020-03-19 三菱電機株式会社 半導体装置
JP2020155582A (ja) * 2019-03-20 2020-09-24 株式会社東芝 半導体装置及び半導体回路
CN111725309A (zh) * 2019-03-19 2020-09-29 株式会社东芝 半导体装置及其控制方法
JP2020161786A (ja) * 2019-03-19 2020-10-01 株式会社東芝 半導体装置およびその制御方法
JP2021141304A (ja) * 2020-03-03 2021-09-16 株式会社東芝 半導体装置の制御方法
JP2022097649A (ja) * 2018-12-21 2022-06-30 ローム株式会社 半導体装置
EP4060747A3 (en) * 2021-03-19 2022-11-16 Kabushiki Kaisha Toshiba Semiconductor device and semiconductor circuit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6946219B2 (ja) * 2018-03-23 2021-10-06 株式会社東芝 半導体装置
US11374563B2 (en) * 2020-03-03 2022-06-28 Kabushiki Kaisha Toshiba Method for controlling semiconductor device
JP7387501B2 (ja) * 2020-03-18 2023-11-28 株式会社東芝 半導体装置およびその制御方法
JP2023106740A (ja) 2022-01-21 2023-08-02 株式会社東芝 駆動装置及び半導体モジュール
CN116388742B (zh) * 2023-06-02 2023-08-29 东莞市长工微电子有限公司 功率半导体器件栅极驱动电路及驱动方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191221A (ja) * 2003-12-25 2005-07-14 Toshiba Corp 半導体装置
JP2012238715A (ja) * 2011-05-11 2012-12-06 Mitsubishi Electric Corp 半導体装置及び半導体素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085268A (ja) 1983-10-17 1985-05-14 Toyobo Co Ltd 気体の膨張仕事を定圧仕事に変換する方法
JP3227825B2 (ja) 1991-10-24 2001-11-12 富士電機株式会社 電力用半導体素子およびその製造方法
EP1160963A3 (en) * 2000-05-31 2004-02-04 Sanken Electric Co., Ltd. DC-to-DC converter
JP2004319624A (ja) * 2003-04-14 2004-11-11 Denso Corp 半導体装置
KR101153803B1 (ko) * 2010-05-31 2012-07-03 에스케이하이닉스 주식회사 반도체 장치의 퓨즈 회로
JP5854895B2 (ja) * 2011-05-02 2016-02-09 三菱電機株式会社 電力用半導体装置
JP5701176B2 (ja) * 2011-08-04 2015-04-15 三菱電機株式会社 ゲート駆動装置
WO2015022860A1 (ja) * 2013-08-12 2015-02-19 日産自動車株式会社 スイッチング装置
US9722581B2 (en) * 2014-07-24 2017-08-01 Eaton Corporation Methods and systems for operating hybrid power devices using driver circuits that perform indirect instantaneous load current sensing
JP6402591B2 (ja) * 2014-10-31 2018-10-10 富士電機株式会社 半導体装置
CN109997297A (zh) * 2016-11-25 2019-07-09 株式会社电装 栅极驱动装置
JP7006547B2 (ja) * 2018-09-10 2022-01-24 三菱電機株式会社 半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191221A (ja) * 2003-12-25 2005-07-14 Toshiba Corp 半導体装置
JP2012238715A (ja) * 2011-05-11 2012-12-06 Mitsubishi Electric Corp 半導体装置及び半導体素子

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020043204A (ja) * 2018-09-10 2020-03-19 三菱電機株式会社 半導体装置
JP7383073B2 (ja) 2018-12-21 2023-11-17 ローム株式会社 半導体装置
JP2022097649A (ja) * 2018-12-21 2022-06-30 ローム株式会社 半導体装置
JP7041653B2 (ja) 2019-03-19 2022-03-24 株式会社東芝 半導体装置およびその制御方法
JP2020161786A (ja) * 2019-03-19 2020-10-01 株式会社東芝 半導体装置およびその制御方法
CN111725309A (zh) * 2019-03-19 2020-09-29 株式会社东芝 半导体装置及其控制方法
US11594622B2 (en) 2019-03-19 2023-02-28 Kabushiki Kaisha Toshiba Semiconductor device and method of controlling same
US12080784B2 (en) 2019-03-19 2024-09-03 Kabushiki Kaisha Toshiba Semiconductor device and method of controlling same
CN111725310A (zh) * 2019-03-20 2020-09-29 株式会社东芝 半导体装置及半导体电路
JP7199270B2 (ja) 2019-03-20 2023-01-05 株式会社東芝 半導体装置及び半導体回路
JP2020155582A (ja) * 2019-03-20 2020-09-24 株式会社東芝 半導体装置及び半導体回路
JP2021141304A (ja) * 2020-03-03 2021-09-16 株式会社東芝 半導体装置の制御方法
JP7458273B2 (ja) 2020-03-03 2024-03-29 株式会社東芝 半導体装置の制御方法
EP4060747A3 (en) * 2021-03-19 2022-11-16 Kabushiki Kaisha Toshiba Semiconductor device and semiconductor circuit
US12087850B2 (en) 2021-03-19 2024-09-10 Kabushiki Kaisha Toshiba Semiconductor device and semiconductor circuit

Also Published As

Publication number Publication date
CN110062957B (zh) 2023-09-01
DE112016007515B4 (de) 2024-07-18
US11245393B2 (en) 2022-02-08
CN110062957A (zh) 2019-07-26
DE112016007515T5 (de) 2019-09-19
WO2018109794A9 (ja) 2019-05-02
JP6656414B2 (ja) 2020-03-04
JPWO2018109794A1 (ja) 2019-10-24
US20200083879A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
WO2018109794A1 (ja) 半導体装置の駆動方法および駆動回路
US10892352B2 (en) Power semiconductor device
JP7091204B2 (ja) 半導体装置
JP5742672B2 (ja) 半導体装置
CN102655367B (zh) 功率模块
US10439054B2 (en) Insulated gate bipolar transistor
US9447767B2 (en) Single chip igniter and internal combustion engine ignition device
JP2015179705A (ja) トレンチmos型半導体装置
WO2011118321A1 (ja) 半導体装置
US20150109031A1 (en) Rc-igbt with freewheeling sic diode
CN104143973A (zh) 半导体器件
WO2018016282A1 (ja) 半導体装置
JP2007288774A (ja) 低スイッチング損失、低ノイズを両立するパワーmos回路
JP5454073B2 (ja) 半導体モジュールとその制御方法
CN111030431B (zh) 半导体装置
JP4947230B2 (ja) 半導体装置
JP7078619B2 (ja) 並列逆導通igbtおよびワイドバンドギャップスイッチのスイッチング
JP7047898B2 (ja) スイッチング装置及びスイッチング装置の制御方法
JP4437655B2 (ja) 半導体装置及び半導体装置の駆動回路
JP2007288094A (ja) Igbtとそれを駆動するゲート駆動回路
JP7305589B2 (ja) 半導体装置及び半導体回路
JP5780489B2 (ja) ゲート駆動回路
JP6584977B2 (ja) 半導体装置
JP4226444B2 (ja) 駆動装置及び電力変換装置
JP7346170B2 (ja) 半導体装置及び半導体モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556028

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16924066

Country of ref document: EP

Kind code of ref document: A1