WO2018079215A1 - 1液硬化型熱伝導性シリコーングリース組成物及び電子・電装部品 - Google Patents

1液硬化型熱伝導性シリコーングリース組成物及び電子・電装部品 Download PDF

Info

Publication number
WO2018079215A1
WO2018079215A1 PCT/JP2017/036214 JP2017036214W WO2018079215A1 WO 2018079215 A1 WO2018079215 A1 WO 2018079215A1 JP 2017036214 W JP2017036214 W JP 2017036214W WO 2018079215 A1 WO2018079215 A1 WO 2018079215A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mass
group
silicone grease
grease composition
Prior art date
Application number
PCT/JP2017/036214
Other languages
English (en)
French (fr)
Inventor
加藤 智子
藤澤 豊彦
春美 小玉
正之 大西
Original Assignee
東レ・ダウコーニング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ・ダウコーニング株式会社 filed Critical 東レ・ダウコーニング株式会社
Priority to EP17863451.5A priority Critical patent/EP3533837A4/en
Priority to CN201780066916.9A priority patent/CN109890900B/zh
Priority to KR1020197013200A priority patent/KR102203924B1/ko
Priority to US16/345,704 priority patent/US11319412B2/en
Priority to JP2018503274A priority patent/JP6531238B2/ja
Publication of WO2018079215A1 publication Critical patent/WO2018079215A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/50Lubricating compositions characterised by the base-material being a macromolecular compound containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon

Definitions

  • the present invention relates to a one-part curable heat conductive silicone grease composition, a method for applying the composition, and an electronic device using the composition.
  • Thermally conductive silicone rubber composition thermally conductive silicone gel composition, thermally conductive silicone grease composition, one-part curable heat to efficiently dissipate heat as the mounted semiconductors become denser and highly integrated Conductive silicone grease compositions and the like have been developed and used. (Patent Documents 1 to 12). Moreover, it has become able to cope with severe heat dissipation conditions.
  • a heat dissipation sheet using a heat conductive silicone rubber composition may be used as a heat countermeasure for semiconductor packages.
  • Patent Document 12 since the silicone rubber composition as described in the same document has a high crosslinking density, if the surface in contact with the heat generating member has an inclination or unevenness, the silicone rubber composition A gap was generated between the heat generating member and the heat dissipation capability was affected. For this reason, in applications where heat is radiated from such a heat generating member, a heat-dissipating grease having a good surface followability and being thinly applied is suitable from the viewpoint of heat radiation performance efficiency and stability.
  • the heat dissipating grease can be broadly divided into two types: a “non-curing type” that maintains the grease state without being cured, and a “curing type” that can be cured after compression to a desired thickness.
  • “Non-curing type” heat radiation grease is generally easy to handle, as it can be stored at room temperature. However, since the semiconductor package expands and contracts due to the heat history of heat generation and cooling in the heat generating part, the "non-curing type” heat radiation grease flows out of the semiconductor package (pump-out) and voids are generated, resulting in high reliability. Undesirable from the point of view.
  • curing type heat radiation grease can be hard to generate a pump-out or void basically by being cured after being deformed to a desired thickness. Thereby, the reliability of a semiconductor package can be improved.
  • curable heat dissipating grease can be hard to generate a pump-out or void basically by being cured after being deformed to a desired thickness.
  • Addition-curing heat radiation grease has been proposed as a heat countermeasure for semiconductor packages (Patent Document 13).
  • the addition-curing type there are a one-component composition and a two-component composition, but the one-component composition is preferred from the viewpoint of workability such as complicated mixing.
  • freezing or refrigeration storage is essential, and product management is difficult.
  • curing it is necessary to heat the electronic device for a certain period of time after coating, which leads to a reduction in production efficiency due to complicated and long process steps.
  • One of the objects of the present invention is to provide a one-part curable thermally conductive silicone grease composition that has excellent long-term storage stability at room temperature, excellent handling workability, and vertical retention in harsh temperature environments. There is. Another object of the present invention is to solve the problem of physical properties caused by using a fine particle catalyst in a silicone grease composition. One of the objects of the present invention is an effective application method of the composition. Another object of the present invention is to provide an electronic device having the composition.
  • the one-component curable thermally conductive silicone grease composition that is one of the present invention has the following characteristics: (A) Organopolysiloxane having an aliphatic unsaturated hydrocarbon group bonded to at least one silicon atom in one molecule and a viscosity at 25 ° C.
  • the one-part curable thermally conductive silicone grease composition which is one of the present invention has the following characteristics: (A) Organopolysiloxane having an aliphatic unsaturated hydrocarbon group bonded to at least one silicon atom in one molecule and a viscosity at 25 ° C.
  • Hydrogen siloxane the number of silicon atom-bonded hydrogen atom groups in component (B) / the amount of aliphatic unsaturated hydrocarbon groups in component (A) is 0.2 to 3.0
  • C Thermally conductive filler containing particles having an average particle size of 0.01 to 200 ⁇ m: 400 to 5,000 parts by mass
  • D A fine particle catalyst having an average particle diameter of 0.01 to 10 ⁇ m made of a thermoplastic resin having a softening point of 40 ° C. to 200 ° C. containing 0.01% by mass or more of a platinum-based catalyst as platinum metal atoms: 01-20 parts by mass
  • Curing controller A one-part curable heat conductive silicone grease composition comprising at least 0.001 to 5 parts by mass.
  • a method for producing a one-component curable heat conductive silicone grease which is one of the present invention, is characterized in that the composition is heated at a temperature equal to or higher than the softening point of the component (D).
  • the installation method of the heat conductive silicone grease composition which is one of the present invention is filled in a nozzle capable of one liquid curing type heat conduction discharge, and a part or all of the nozzle is above the softening point of the component (D). After heating at a temperature, the one-part curable heat conductive silicone grease composition is applied by being discharged from the nozzle.
  • the manufacturing method of the heat radiating member which is one of this invention is characterized by including the said process.
  • An electronic device includes the heat dissipation member.
  • the one-component curable thermally conductive silicone grease composition of the present invention has long-term storage stability at room temperature and adaptability to temperature changes in the external environment. Thereby, for example, cracks do not occur even in a high temperature environment exceeding 80 ° C., and a high heat dissipation function can be exhibited even in a further high temperature environment. And it has slipperiness, dripping, and high workability in a vertical environment. Moreover, the physical property of a heat radiating member can be controlled easily and reliably by the coating method of this invention, without requiring another crosslinking reaction (heat-hardening) process.
  • the electronic device of the present invention can stably exhibit a heat radiation function even under a severe temperature environment.
  • the one-component curable thermally conductive silicone grease composition of the present invention will be described in detail.
  • the grease composition refers to those having physical properties as grease after the crosslinking reaction (after curing), and in the present application, those having a complex elastic modulus of 0.01 MPa to 20 MPa.
  • curing means a crosslinking reaction, and even if the viscosity increases, as indicated by the fact that the material after curing is grease, it does not necessarily become “hard” in terms of physical properties.
  • Component (A) is an organosilane having an aliphatic unsaturated hydrocarbon group bonded to at least one silicon atom in one molecule and having a viscosity at 25 ° C. of 50 to 100,000 mPa ⁇ s. Polysiloxane.
  • the aliphatic unsaturated hydrocarbon group bonded to the silicon atom of the organopolysiloxane is preferably a monovalent hydrocarbon group having an aliphatic unsaturated bond having 2 to 8 carbon atoms, particularly 2 to 6 carbon atoms. More preferably, it is an alkenyl group, and examples thereof include alkenyl groups such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group, and octenyl group. Particularly preferred is a vinyl group.
  • the aliphatic unsaturated hydrocarbon group may be bonded to the silicon atom at the end of the molecular chain, may be bonded to the silicon atom in the middle of the molecular chain, or may be bonded to both.
  • the organic group other than the aliphatic unsaturated hydrocarbon group bonded to the silicon atom of the organopolysiloxane includes an unsubstituted or substituted group having 1 to 18 carbon atoms, particularly 1 to 10 carbon atoms, particularly 1 to 8 carbon atoms.
  • a monovalent hydrocarbon group not containing an aliphatic unsaturated bond is preferable.
  • the organopolysiloxane has a viscosity at 25 ° C. of 50 to 100,000 mPa ⁇ s, preferably in the range of 60 to 20,000 mPa ⁇ s, particularly preferably in the range of 100 to 5,000 mPa ⁇ s. is there. This is obtained when the viscosity at 25 ° C. is less than the lower limit of the above range, but the viscosity of the resulting silicone composition is lowered, but the physical properties are lowered, while when the upper limit of the above range is exceeded. There exists a tendency for the handling workability
  • the molecular structure of the organopolysiloxane is not particularly limited as long as it has the above properties, and examples thereof include linear, branched, partially branched, or linear structures having a cyclic structure, and resinous forms.
  • examples thereof include linear, branched, partially branched, or linear structures having a cyclic structure, and resinous forms.
  • those having a linear structure in which the main chain is composed of repeating diorganosiloxane units and both ends of the molecular chain are blocked with triorganosiloxy groups are preferred.
  • the organopolysiloxane having a linear structure may partially have a branched structure or a cyclic structure. These organopolysiloxanes can be used alone or in combination of two or more.
  • the component (B) is composed of an organohydrogensiloxane containing at least two silicon-bonded hydrogen atoms in one molecule.
  • the composition has an effect as a cross-linking agent, and the silicon-bonded hydrogen atom in one molecule is 0.01 to 0.4% by mass.
  • a monovalent hydrocarbon having no aliphatic unsaturated bond such as an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, or a halogenated alkyl group
  • Examples of the group include an alkyl group and an aryl group, and a methyl group and a phenyl group are particularly preferable.
  • the molecular structure of the component (B) is not particularly limited, and examples thereof include straight-chain, partially-branched straight-chain, branched-chain, cyclic, network-like, and dendritic, and are preferably straight-chain.
  • the viscosity of component (B) at 25 ° C. is not particularly limited, but is preferably in the range of 1 to 10,000 mPa ⁇ s.
  • the component (B) preferably contains an average of 0 to less than 3 hydrogen atoms bonded to non-terminal silicon atoms in one molecule. This is because when there are three or more non-terminal silicon atom-bonded hydrogen atoms, the crosslinking reaction proceeds too much and the desired complex elastic modulus and other effects cannot be obtained. Moreover, as one aspect of the present invention, when the average number of non-terminal silicon atom-bonded hydrogen atoms in the component (B) is 0 or more and less than 1, the component (A) is branched, partially branched, or It is preferable to have a linear or resinous organopolysiloxane having a cyclic structure.
  • the component (B) when the average number of non-terminal silicon atom-bonded hydrogen atoms in the component (B) is 1 or more and less than 3, the component (A) is branched, partially branched, It is preferable to have an organopolysiloxane having a linear structure having a cyclic structure. Moreover, as one aspect of the present invention, when the average number of non-terminal silicon atom-bonded hydrogen atoms in the component (B) is 2 or more and less than 3, the organohydrogensiloxane constituting the component (B) is terminated. It is preferable that the number of silicon atom-bonded hydrogen atoms in the molecule is less than 2 on average.
  • Examples of the component (B) include molecular chain both ends trimethylsiloxy group-capped methylhydrogensiloxane / dimethylsiloxane copolymer, molecular chain both ends dimethylhydrogensiloxy group-capped methylhydrogensiloxane / dimethylsiloxane copolymer, molecule 2 of chain end dimethylhydrogensiloxy group-blocked dimethylpolysiloxane, molecular chain both ends dimethylhydrogensiloxy group-blocked methylphenylpolysiloxane, molecular chain both ends dimethylhydrogensiloxy group-blocked diphenylpolysiloxane, and these organopolysiloxanes A mixture of two or more species is exemplified.
  • the component (B) is a silicon atom-bonded hydrogen atom in one molecule within a range of 0.01 to 0.4% by mass, preferably within a range of 0.02 to 0.35. Particularly preferably, it is in the range of 0.05 to 0.3. This is because when the content of the component (B) is less than the lower limit of the above range, the handling workability of the resulting silicone composition tends to be remarkably reduced, and when the upper limit of the above range is exceeded, the resulting composition is After application, it tends to slip off when left vertically for a long time in a harsh temperature environment. *
  • the content of the component (B) is such that the silicon atom-bonded hydrogen atoms in this component are within the range of 0.2 to 3.0 with respect to one alkenyl group in the component (A).
  • a range of 0.3 to 2.5 is preferable, and a range of 0.4 to 2.2 is particularly preferable. This is because if the content of the component (B) is less than the lower limit of the above range, the composition obtained is likely to flow out (pumping out) from the semiconductor package, while the upper limit of the above range is exceeded. When it exceeds, when the composition obtained is left to stand for a long time in a severe temperature environment after application, the composition tends to slip off.
  • the thermally conductive filler of component (C) is a component for imparting thermal conductivity to the present composition.
  • the component (C) include metal oxides such as aluminum oxide, zinc oxide, magnesium oxide, titanium oxide, and beryllium oxide; metal hydroxides such as aluminum hydroxide and magnesium hydroxide; aluminum nitride, silicon nitride, and nitride Examples thereof include nitrides such as boron; carbides such as boron carbide, titanium carbide and silicon carbide; graphite such as graphite and graphite; metals such as aluminum, copper, nickel and silver, and mixtures thereof.
  • the component (C) is preferably a metal oxide, metal hydroxide, nitride, carbide, or a mixture thereof, And at least one selected from the group consisting of aluminum oxide, crystalline silica, zinc oxide, magnesium oxide, titanium oxide, beryllium oxide, aluminum hydroxide, and magnesium hydroxide.
  • the shape of (C) component is not specifically limited, For example, spherical shape, needle shape, flake shape, and indefinite shape are mentioned.
  • a spherical or irregular shape Spherical aluminum oxide is ⁇ -alumina obtained mainly by high-temperature spraying or hydrothermal treatment of alumina hydrate.
  • the spherical shape may be not only a true spherical shape but also a round shape.
  • the average particle size of the component (C) is not limited, but is preferably 0.01 to 200 ⁇ m, more preferably 0.01 to 150 ⁇ m, and particularly 0.01 to 100 ⁇ m. preferable.
  • the component (C) may be surface-treated with an organosilicon compound or a known surface treating agent in order to improve storage stability.
  • organosilicon compound include methyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-aminopropyltrimethoxysilane.
  • Alkoxysilanes such as 3-aminopropyltriethoxysilane and N- (2-aminoethyl) -3-aminopropyltrimethoxysilane; chlorosilanes such as methyltrichlorosilane, dimethyldichlorosilane and trimethylmonochlorosilane; hexamethyldisilazane Silazanes such as hexamethylcyclotrisilazane; molecular chain both ends silanol-blocked dimethylsiloxane oligomer, molecular chain both ends silanol-blocked dimethylsiloxane / methylvinylsiloxane copolymer Mer, both molecular chain terminals blocked with silanol groups methylvinylsiloxane oligomer and the siloxane oligomer such as both molecular chain terminals blocked with silanol groups methylphenylsiloxane oligomer.
  • Examples of other surface treatment agents include organic metal compounds, organic metal complexes, fluorine-based organic compounds, organic compounds having a hydroxyl group, a carboxy group, and an amino group.
  • As the surface treatment method for example, a method of directly mixing heat conductive particles and / or electrically conductive particles and these surface treatment agents (dry treatment method), these surface treatment agents are treated with toluene, methanol, heptane.
  • an organic metal compound such as organic titanium, water, or the like is added to improve the treatment efficiency. It is preferable to do.
  • the content of component (C) is in the range of 400 to 5,000 parts by weight, preferably in the range of 400 to 3,000 parts by weight, particularly preferably 100 parts by weight of component (A). Is in the range of 500 to 2,500 parts by mass. This is because when the content of the component (C) is less than the lower limit of the above range, the resulting silicone composition tends to have insufficient thermal conductivity, whereas when the content exceeds the upper limit of the above range, the resulting silicone is obtained. This is because the workability of the composition tends to be remarkably lowered.
  • the component (D) fine particle catalyst is a catalyst for accelerating the curing of the present composition, and has a softening point of 40 to 200 ° C. containing 0.01% by mass or more of a platinum-based catalyst as a platinum metal atom. It consists of a certain thermoplastic resin.
  • the average particle diameter is 0.01 to 500 ⁇ m, preferably 0.1 to 50 ⁇ m, and particularly preferably 0.1 to 10 ⁇ m. This is because it is difficult to produce a fine particle catalyst having an average particle diameter of less than 0.01 ⁇ m, and a fine particle catalyst having an average particle diameter exceeding 500 ⁇ m is not uniformly dispersed in the component (A), and This is because the curability becomes non-uniform.
  • Examples of the structure of component (D) include a structure in which a platinum-based catalyst is dissolved or dispersed in a thermoplastic resin, and a microcapsule structure in which a platinum-based catalyst is included in a shell of a thermoplastic resin.
  • Examples of this platinum-based catalyst include platinum fine powder, platinum black, platinum-supported silica fine powder, platinum-supported activated carbon, chloroplatinic acid, platinum tetrachloride, an alcohol solution of chloroplatinic acid, a complex of platinum and olefin, A complex of platinum and an alkenylsiloxane such as divinyltetramethyldisiloxane may be mentioned, and a divinyldisiloxane complex of platinum is particularly preferable.
  • the content of the platinum-based catalyst in the component (D) is such an amount that the platinum metal atom is 0.01% by mass or more. This is because a fine particle catalyst made of a thermoplastic resin having a platinum-based catalyst content of less than 0.01% by mass as the platinum metal atom does not exhibit sufficient curing acceleration.
  • the thermoplastic resin has a softening point in the range of 40 to 200 ° C, preferably in the range of 50 to 180 ° C, and more preferably in the range of 60 to 160 ° C. This is because when a fine particle catalyst made of a thermoplastic resin having a softening point of less than 40 ° C. is used, the storage stability of the resulting composition at room temperature is remarkably lowered, and this is a heat exceeding 200 ° C.
  • thermoplastic resin examples include a siloxane unit represented by the formula: C 6 H 5 SiO 3/2 as a main component, and, in addition, a siloxane unit represented by the formula: (C 6 H 5 ) 2 SiO 2/2.
  • a siloxane unit represented by the formula: CH 3 SiO 3/2 , a siloxane unit represented by the formula: (CH 3 ) 2 SiO 2/2 , a formula represented by CH 3 (CH 2 CH 2 ) SiO 2/2 Siloxane unit, thermoplastic silicone resin, acrylic resin, polycarbonate resin, polystyrene resin, methylcellulose resin, polysilane resin, nylon resin, polyester resin containing a siloxane unit represented by the formula: CH 3 (C 6 H 5 ) SiO 2/2 , Polypropylene resin and polyalkylene wax.
  • the softening point of the thermoplastic resin can be determined by observing the softening state of the resin with a microscope on a hot plate that can be heated at a constant temperature.
  • the resin preferably contains a siloxane unit in order to adjust heat resistance and softening point.
  • Examples of the method for preparing component (D) include a vapor phase drying method in which a platinum-based catalyst and a thermoplastic resin are uniformly mixed and then granulated, and the thermoplastic resin is interfaced in the presence of the platinum-based catalyst.
  • Polymerization method or in-situ polymerization method, coacervation method in the presence of platinum-based catalyst, submerged drying method, and fine particle catalyst with narrow particle size distribution can be prepared relatively easily Vapor phase drying or submerged drying is preferred. Since the platinum-based catalyst may adhere to the surface of the fine particle catalyst thus prepared, removal of these with a cleaning agent provides a thermally conductive silicone rubber composition having excellent storage stability. This is preferable.
  • This cleaning agent does not dissolve the thermoplastic resin but preferably dissolves the platinum-based catalyst. Examples thereof include alcohols such as methyl alcohol and ethyl alcohol; and siloxane oligomers such as hexamethyldisiloxane.
  • the amount of component (D) is within the range of 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight, particularly preferably 1 to The range is 10 parts by mass. This is because if the component (D) is less than 0.01 parts by weight with respect to 100 parts by weight of the component (A), the curability of the resulting composition is significantly reduced, and this is 20 parts by weight. Even if it exceeds, curability does not change so much and becomes uneconomical.
  • Component (E) is a curing control agent (that is, a hydrosilylation reaction control agent) for improving handling workability.
  • a curing control agent that is, a hydrosilylation reaction control agent
  • Examples of such component (E) include 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyn-3-ol, 2-phenyl-3-butyn-2-ol, Acetylene compounds such as 1-ethynylcyclohexanol; Enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; 1,3,5,7-tetra Triazoles such as methyl-1,3,5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclototrasiloxane, benzotriazole, phosphine , Mercaptans, hydrazines and
  • the content of these curing inhibitors depends on the curing conditions of the present composition. For example, it is in the range of 0.001 to 5 parts by mass, preferably in the range of 0.01 to 3 parts by mass, particularly preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the organopolysiloxane of component (A). 1 to 2 parts by mass.
  • component (E) is less than the lower limit of the above range, the composition tends to be hardened in the heated coating nozzle, making it difficult to discharge, and the component (E) exceeds the upper limit of the range. This is because it tends to take unnecessary time to cure.
  • the one-part curable thermally conductive silicone grease composition of the present invention is represented by a hydrolyzable organopolysiloxane compound represented by (F-1) and (F-2) described later. Either or both of the hydrolyzable organosilane compounds can be included.
  • the hydrolyzable organopolysiloxane compound (F-1) and the hydrolyzable organosilane compound represented by (F-2) may exhibit the effect of treating the surface of the thermally conductive filler. . In addition, it may help to increase the filling of the filler or to suppress the sedimentation and separation of the filler in terms of storage stability at room temperature.
  • Component (F-1) The component (F-1) is represented by the following general formula (1): Wherein R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group, R 2 is independently a hydrogen atom, an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, and a is 5 to 250 And b is an integer of 1 to 3), and is an organopolysiloxane having a viscosity at 25 ° C. of 10 to 10,000 mPa ⁇ s.
  • R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group, and examples thereof include a linear alkyl group, a branched alkyl group, a cyclic alkyl group, an alkenyl group, an aryl group, an aralkyl group, Examples include halogenated alkyl groups.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and an octyl group.
  • Examples of the branched alkyl group include isopropyl group, isobutyl group, tert-butyl group, and 2-ethylhexyl group.
  • Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group.
  • Examples of the alkenyl group include a vinyl group and an allyl group.
  • Examples of the aryl group include a phenyl group and a tolyl group.
  • Examples of the aralkyl group include a 2-phenylethyl group and a 2-methyl-2-phenylethyl group.
  • Examples of the halogenated alkyl group include a 3,3,3-trifluoropropyl group, a 2- (nonafluorobutyl) ethyl group, and a 2- (heptadecafluorooctyl) ethyl group.
  • R 1 is preferably a methyl group or a phenyl group.
  • R 2 is independently a hydrogen atom, an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group.
  • alkyl group include linear alkyl groups, branched alkyl groups, and cyclic alkyl groups similar to those exemplified for R 1 .
  • alkoxyalkyl group include a methoxyethyl group and a methoxypropyl group.
  • the acyl group include an acetyl group and an octanoyl group.
  • R 2 is preferably an alkyl group, particularly preferably a methyl group or an ethyl group.
  • a is an integer of 5 to 250, preferably 5 to 200, more preferably an integer of 5 to 150.
  • B is an integer of 1 to 3.
  • component (F-1) for example, a compound represented by the formula: Dimethylpolysiloxane represented by the formula: Dimethylpolysiloxane represented by the formula: Dimethylpolysiloxane represented by the formula: A dimethylpolysiloxane-methylphenylsiloxane copolymer represented by the formula: And a dimethylpolysiloxane / diphenylsiloxane copolymer represented by the formula: [Component (F-2)]
  • the component (F-2) is represented by the following general formula (2): R 3 c R 4 d Si ( OR 5) 4-cd (2) Wherein R 3 is independently an alkyl group having 6 to 15 carbon atoms, R 4 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 is independently And an alkyl group having 1 to 6 carbon atoms, c is an integer of 1 to 3, d is an integer of 0 to 2, provided that
  • R 3 examples include hexyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group, pentadecyl group and the like. If the number of carbon atoms is less than 6, the wettability with the thermally conductive filler (component (C)) tends to be insufficient, and if it is greater than 15, the component (F-2) is likely to solidify at room temperature. The handling tends to be inconvenient and the heat resistance of the resulting composition tends to decrease.
  • R 4 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group.
  • Alkyl group such as a group; cycloalkyl group such as cyclopentyl group and cyclohexyl group; alkenyl group such as vinyl group and allyl group; aryl group such as phenyl group and tolyl group; 2-phenylethyl group and 2-methyl-2-phenyl Aralkyl groups such as ethyl group; halogenated hydrocarbon groups such as 3,3,3-trifluoropropyl group, 2- (nonafluorobutyl) ethyl group, p-chlorophenyl group and the like. preferable.
  • R 5 is independently an alkyl group having 1 to 6 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and the like. An ethyl group is preferred.
  • c is usually an integer of 1 to 3, particularly preferably 1.
  • d is an integer of 0-2.
  • c + d is an integer of 1 to 3.
  • the content of component (F) is in the range of 0.05 to 20 parts by weight, preferably in the range of 0.05 to 10 parts by weight, more preferably 100 parts by weight of component (C). Is in the range of 0.1 to 10 parts by mass, and particularly preferably in the range of 0.1 to 5 parts by mass. This is because when the content of the component (F) is less than the lower limit of the above range, when the component (C) is contained in a large amount, the fluidity of the resulting silicone composition is decreased, or the resulting silicone composition This is because the component (C) tends to settle and separate during storage, whereas when the upper limit of the above range is exceeded, the physical properties of the resulting silicone composition tend to deteriorate.
  • the one-component curable thermally conductive silicone grease composition of the present invention can contain fine silica powder as the (G) component.
  • the silica fine powder of component (G) is a component that makes it difficult to slip off even if the composition is left standing vertically after coating.
  • Examples of the component (G) include silica fine powders such as fumed silica and precipitated silica; silica fine powders obtained by hydrophobizing the surface of these silica fine powders with an organosilicon compound such as alkoxysilane, chlorosilane, or silazane. Is done.
  • the particle size of the component (G) is not particularly limited, but the BET specific surface area is preferably 50 m 2 / g or more, and particularly preferably 100 m 2 / g or more.
  • the content of component (G) is in the range of 0.1 to 10 parts by mass, preferably in the range of 0.5 to 10 parts by mass, relative to 100 parts by mass of component (A). This is because if the content of the component (G) is less than the lower limit of the above range, the resulting silicone composition tends to slip off when left vertically after being applied, whereas if it exceeds the upper limit of the above range. This is because the handling workability of the resulting silicone composition tends to be remarkably lowered.
  • the composition contains a pigment, a dye, a fluorescent dye, a heat-resistant additive, a flame retardant, a plasticizer, and an adhesion-imparting agent as other optional components as long as the object of the present invention is not impaired. Also good.
  • a polymer having no reactive group at the terminal or a polymer having condensation reaction activity may be contained. Examples include polydimethylsiloxane blocked with trimethylsiloxy at both ends, polydimethylsiloxane blocked with dimethylhydroxy at both ends, and polydimethylsiloxane blocked with trimethoxy at both ends.
  • the one-component curable heat conductive silicone grease composition of the present invention and other optional components can be produced by mixing uniformly.
  • the mixing method of each component of the organopolysiloxane composition may be a conventionally known method and is not particularly limited, but usually a uniform mixture is obtained by simple stirring.
  • solid components, such as an inorganic filler are included as arbitrary components, mixing using a mixing apparatus is more preferable.
  • Such a mixing device is not particularly limited, and examples thereof include a single-screw or twin-screw continuous mixer, a two-roll, a loss mixer, a Hobart mixer, a dental mixer, a planetary mixer, a kneader mixer, and a Henschel mixer.
  • the one-part curable thermally conductive silicone grease composition of the present invention is interposed between electronic components such as transistors, ICs, memory elements, and other heat generating members and the cooling member, and transfers heat from the heat generating member to the cooling member. It can be suitably used for heat dissipation.
  • the one-part curable heat conductive silicone grease composition of the present invention is preferably applied in a state where a part of the application nozzle is heated in advance. As a result, the one-part curable heat conductive silicone grease composition of the present invention gradually undergoes a crosslinking reaction even at room temperature, and can be used as a highly reliable heat dissipating material even under a severe temperature environment.
  • the heating condition for applying the silicone composition of the present invention is not particularly limited as long as it is equal to or higher than the softening point of the component (D), but is usually 80 to 200 ° C., preferably 100 to 180 ° C. for 1 second. -30 minutes, preferably 10 seconds to 5 minutes. If it is less than the lower limit of the above range, the thermoplastic resin is not sufficiently melted and does not cure. Therefore, it is necessary to heat the electronic device after coating to melt the component (D) and cure it to a predetermined viscosity. On the other hand, if the upper limit of the above range is exceeded, the workability tends to deteriorate due to thickening and crosslinking reactions in the nozzle.
  • the one-component curable thermally conductive silicone grease composition of the present invention can be crosslinked without being heated by a coating nozzle or can be crosslinked by heat generated from a heat generating member such as an electronic component.
  • the complex elastic modulus after the crosslinking reaction is desirably in the range of 0.01 MPa to 20 MPa in the temperature range of ⁇ 40 ° C. to 150 ° C., preferably
  • the pressure is 0.05 MPa to 10 MPa, more preferably 0.05 to 5 MPa.
  • the one-part curable thermally conductive silicone grease composition of the present invention has high thermal conductivity and low viscosity at room temperature, so that it is excellent in handling workability. However, after heat application, it is reliable in a harsh environment. Therefore, it can be suitably used as a heat dissipating material for automobile control units.
  • the one-part curable heat conductive silicone grease composition of the present invention has a viscosity measured at 25 ° C. of preferably 3.0 to 1,000 Pa ⁇ s, more preferably 10 to 500 Pa ⁇ s, particularly preferably. 50 Pa ⁇ s to 300 Pa ⁇ s.
  • the viscosity can be obtained by adjusting the mixing
  • the viscosity is a value at 25 ° C. measured using a TA Instruments rheometer (AR2000EX). (The geometry is a parallel plate with a diameter of 20 mm, the gap is 0.5 mm, and the share rate is 10.0 [1 / s].)
  • an electronic component 1 is mounted on a circuit board 2, and a circuit on the circuit board 2 and an external lead 3 of the electronic component 1 are electrically connected.
  • a via (VIA) hole is formed in the circuit board 2 in order to efficiently transmit heat generated from the electronic component 1.
  • the electronic device of the present invention has a structure in which heat generated from the electronic component 1 is dissipated by the heat dissipating member 5 through the one-part curable heat conductive silicone grease composition 4.
  • the thickness of the one-component curable thermally conductive silicone grease composition is not particularly limited, but is preferably in the range of 0.1 to 3 mm. In particular, as shown in FIG.
  • the one-part curable heat conductive silicone grease composition of the present invention the installation method of the one-part curable heat conductive silicone grease, and the electronic device having the same will be described in detail with reference to examples.
  • the viscosity, thermal conductivity, thermal shock reliability, complex elastic modulus, and storage stability at room temperature of the one-component curable thermally conductive silicone grease composition were measured as follows.
  • the initial viscosity (Pa ⁇ s) at 25 ° C. of the one-component curable thermally conductive silicone grease composition was measured using a rheometer (AR2000EX) manufactured by TA Instruments. The geometry was measured using a parallel plate with a diameter of 20 mm under the conditions of a gap of 0.5 mm and a shear rate of 10.0 (1 / s). Further, the ratio of the viscosity at a shear rate of 1.0 to the viscosity at a shear rate of 10.0 was shown as a thixotropy ratio. The composition was heated at 120 ° C. for 5 minutes and then allowed to stand at room temperature for 1 hour, and the viscosity at a shear rate of 10.0 was measured with the same apparatus.
  • the one-component curable heat conductive silicone grease composition was heated at 120 ° C. for 5 minutes and then allowed to stand at room temperature (25 ° C.) for 1 week.
  • room temperature 25 ° C.
  • the geometry used a parallel plate with a diameter of 20 mm, a gap of 1.00 mm, a strain of 1%, and a frequency of 1 Hz.
  • the complex elastic modulus at ⁇ 40 ° C. was measured, and then the temperature was raised to 25 ° C. for measurement. Finally, the temperature was raised to 150 ° C. and measured.
  • thermo conductivity In the same manner as the complex elastic modulus measurement, a one-part curable thermal conductive silicone grease composition was heated at 120 ° C. for 5 minutes, and then allowed to stand at room temperature for 1 week. 60 mm ⁇ 150 mm ⁇ 25 mm After defoaming, the surface was coated with a polyvinylidene chloride film having a thickness of 10 ⁇ m, and then the thermal conductivity (W / mK) was rapidly increased by Kyoto Electronics Industry Co., Ltd. through the film. It was measured by a conductivity measuring device (hot wire method).
  • Thermal Shock Reliability of the one-part curable thermally conductive silicone grease composition was evaluated by the test method shown in FIGS. That is, a one-part curable heat conductive silicone grease composition is heated in a heating nozzle at 120 ° C. for 5 minutes, and then a predetermined amount of the composition 7 is applied on the copper plate 6, and then near both ends of the copper plate. With the spacer 8 having a thickness of 0.5 mm or 2.0 mm installed, the one-part curable thermally conductive silicone grease composition was sandwiched by a glass plate 9 so as to have a diameter of 2 cm. Then, the copper plate 6 and the glass plate 9 were fixed with the clip 10, and the test body was produced. One cycle of -40 ° C.
  • the thermal shock test was performed 200 cycles, and the distance by which the one-part curable thermal conductive silicone grease composition slipped was measured. The distance that fell off was less than 1 mm, “ ⁇ ”, 1 to 3 mm was “ ⁇ ”, and the distance over 5 mm was “ ⁇ ”. Further, the appearance of the one-part curable heat conductive silicone grease composition after the test was observed, and the case where no pump-out or crack occurred was evaluated as “None”, and the case where it occurred was evaluated as “Generation”.
  • the one-component curable heat conductive silicone grease composition was placed in a glass container, sealed and stored at 25 ° C., and the number of days until the viscosity doubled compared to the initial value was measured.
  • each component used is as follows.
  • the viscosity is a value measured with a rotational viscometer at 25 ° C.
  • the following components for preparing the one-part curable heat conductive silicone grease composition of the present invention were prepared.
  • Component A-1 Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a viscosity at 25 ° C. of 400 mPa ⁇ s Si—Vi content 0.44% by mass
  • A-3 Dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and a viscosity of 40,000 mPa ⁇ s at 25 ° C.
  • Component B-1 Hydrogen polysiloxane represented by the following average formula Si-H content 0.15 mass% 25 mPa ⁇ s
  • B-2 Hydrogen polysiloxane represented by the following average formula Si-H content 0.10 mass% 20mPa ⁇ s
  • B-3 Hydrogen polysiloxane represented by the following average formula Si-H content 0.12% by mass 15mPa ⁇ s
  • B-4 Hydrogen polysiloxane represented by the following average formula Si-H content 0.73 mass% 5 mPa ⁇ s
  • Component C-1 Zinc oxide fine powder having an average particle size of 0.12 ⁇ m
  • C-2 Crushed alumina fine powder having an average particle size of 0.4 ⁇ m
  • C-3 Crushed alumina fine powder having an average particle size of 1.2 ⁇ m
  • C-4 spherical alumina fine powder having an average particle diameter of 4.0 ⁇ m
  • C-5 round alumina fine powder having an average particle diameter of 20
  • Si—H / Si—Vi (number ratio) is the ratio of the total number of SiH groups in the component (B) to the total number of alkenyl groups in the component (A).
  • (A), (C), (F), (G), and (I) were mixed with a Ross mixer, and then heated and stirred at 150 ° C. for 1 hour under reduced pressure. Then, it cooled to 25 degreeC and returned to the normal pressure.
  • the (D) component is added and mixed uniformly to prepare a one-part curable heat conductive silicone grease composition. did.
  • the properties of this one-part curable heat conductive silicone grease composition and its cured product were measured, and the results are shown in Table 1.
  • Example 1 In the same manner as in Example 1, except that the component (D) was not added, the entire components were mixed to prepare a one-part curable heat conductive silicone grease composition.
  • Example 2 In Example 1, component (H) was mixed in place of component (D) to prepare a one-part curable heat conductive silicone grease composition.
  • Example 3 A one-component curable heat conductive silicone grease composition was prepared by mixing in the same manner as in Example 1 except that the component (E) was not added. In Comparative Examples 1 to 3, the properties of this one-part curable heat conductive silicone grease composition and its cured product were also measured, and the results are shown in Table 1.
  • the heat conductive silicone grease composition of the present invention can be stored for a long period of time at room temperature, and can be used even in a severe temperature environment. It can also be used in places where the installation surface is uneven or inclined.
  • the heat dissipating member can be accurately installed easily and at low cost and reliably cured.
  • semiconductors, electronic components, and electronic devices that use the heat-dissipating grease can withstand even a severe temperature environment with high reliability, and can be used in automobile control units and the like.

Abstract

[課題]長期保存安定性と取扱作業性が優れ、過酷温度環境下で垂直保持性を有する1液硬化型熱伝導性シリコーングリース組成物、その塗布方法、当該組成物を有する電子装置を提供する。 [解決手段] (A)一分子中に少なくとも1個の脂肪族不飽和炭化水素基を有し、25℃における粘度が50~100,000mPa・sであるオルガノポリシロキサン (B)一分子中に少なくとも2個のケイ素原子結合水素原子を含有するオルガノハイドロジェンシロキサン (C)平均粒子径が0.01~200μmの粒子径を含む熱伝導性充填材 (D)白金系触媒を白金金属原子として0.01質量%以上含有する軟化点が40℃~200℃である熱可塑性樹脂からなる平均粒子径が0.01~10μmである微粒子触媒 (E) 硬化制御剤 から少なくともなり、硬化後に複素弾性率が25℃において0.01MPa~20MPaである1液硬化型熱伝導性シリコーングリース組成物

Description

1液硬化型熱伝導性シリコーングリース組成物及び電子・電装部品
本発明は、1液硬化型熱伝導性シリコーングリース組成物、当該組成物の塗布方法、およびそれを用いてなる電子装置に関する。
トランジスター、IC、メモリー素子等の電子部品を搭載したプリント回路基板やハイブリッドICは外部環境からの保護や金属接続や放熱のためにパッケージ化されている。搭載される半導体の高密度・高集積化にともない、効率よく放熱するために、熱伝導性シリコーンゴム組成物、熱伝導性シリコーンゲル組成物、熱伝導性シリコーングリース組成物、1液硬化型熱伝導性シリコーングリース組成物等が開発され、使用されてきた。(特許文献1~12)。また、厳しい放熱条件に対応できるものとなってきた。
半導体パッケージの熱対策には熱伝導性シリコーンゴム組成物を用いた放熱シートなども使われることもある。(特許文献12)しかしながら、同文献に記載されているようなシリコーンゴム組成物であると、架橋密度が高いため、発熱部材に接する面が傾斜や凹凸を有しているとシリコーンゴム組成物と発熱部材との間に間隙が生じ、放熱能力に影響が生じていた。そのため、そのような発熱部材から放熱させる用途においては、表面追従性がよく薄く塗布可能な放熱グリースが放熱性能効率及び安定性の観点から好適であった。
放熱グリースは硬化せずにグリース状を保つ「非硬化型」と、所望の厚みに圧縮後に硬化させることができる「硬化型」の2つに大別することができる。「非硬化型」の放熱グリースは一般に室温下で保存が可能であるなど、取扱いの容易さが特長である。しかしながら、半導体パッケージは発熱部において、発熱、冷却の熱履歴による膨張・収縮が起こるため、「非硬化型」の放熱グリースは半導体パッケージからの流れ出し(ポンプアウト)や、ボイド発生するため信頼性の観点から望ましくない。
一方で「硬化型」の放熱グリースは所望の厚みに変形後に硬化させることで、基本的には、ポンプアウトやボイドを発生しづらくできる。これにより、半導体パッケージの信頼性を高めることができる。しかしながら、硬化型の放熱グリースを用いる上での別の課題も生ずる。
半導体パッケージの熱対策として、付加硬化型の放熱グリースが提案されている(特許文献13)。付加硬化型としては、1液型組成物、2液型組成物が存在するが、混合の煩雑さ等の作業性の面から1液型組成物が好まれる。しかし1液型組成物の場合、冷凍もしくは冷蔵保存が必須となり、製品管理が困難である。また硬化させる際には、塗布後に電子装置を一定時間加熱する必要があるため工程の煩雑化・長期化による生産効率の低下を招いてしまう。更に加熱工程による環境負荷の増加という課題も存在していた。さらに加熱が不要であったとしても塗布厚みが2mmを超えるような場合にはその硬化が不十分であった。
このような種々の課題に対し、縮合硬化型の放熱グリース開発されてきた。(特許文献14、15)。このタイプの放熱グリースの特徴は、加熱工程を要さずとも、空気中の湿気によって増粘・硬化することである。しかしながら、縮合硬化型の放熱グリースは、リワーク性に乏しく、硬化反応の際に低沸点の脱離成分の発生という問題がある。これにより、臭気の発生や脱離成分による電子部品の汚染という課題を有している。つまり、硬化メカニズムを変更することで、解決できる利点は生じても、種々の問題が新たに発生してしまうというのが現実であった。
特許第2938428号公報 特許第2938429号公報 特許第3580366号公報 特許第3952184号公報 特許第4572243号公報 特許第4656340号公報 特許第4913874号公報 特許第4917380号公報 特許第4933094号公報 特許第5283346号公報 特許第5233325号公報 特許第3524634号公報 特許第5832983号公報 特許第5365572号公報 特開2016-98337号公報
本発明の目的のひとつは、室温下での長期保存安定性と、取扱作業性が優れ、過酷な温度環境下で垂直保持性を有する、1液硬化型熱伝導性シリコーングリース組成物を提供することにある。また、本発明の目的のひとつとして、微粒子触媒をシリコーングリース組成物において用いることで生ずる物性上の課題を解決することにある。また、本発明の目的のひとつは、当該組成物の効果的な塗布方法にある。また、本発明の目的のひとつは、当該組成物を有する電子装置を提供することもある。
本発明のひとつである、1液硬化型熱伝導性シリコーングリース組成物は、次の特徴を有する:
(A)一分子中に少なくとも1個のケイ素原子に結合する脂肪族不飽和炭化水素基を有し、25℃における粘度が50~100,000mPa・sであるオルガノポリシロキサン:100質量部、
(B)一分子中に少なくとも2個のケイ素原子結合水素原子を含有するオルガノハイドロジェンシロキサン:0.1~50質量部、
(C)平均粒子径が0.01~200μmの粒子径を含む熱伝導性充填材:400~5,000質量部、
(D)白金系触媒を白金金属原子として0.01質量%以上含有する軟化点が40℃~200℃である熱可塑性樹脂からなる平均粒子径が0.01~10μmである微粒子触媒:0.01~20質量部、
(E) 硬化制御剤:0.001~5質量部
から少なくともなり、硬化後に複素弾性率が25℃において0.01~20MPa以下である。
また、本発明のひとつである、1液硬化型熱伝導性シリコーングリース組成物は次の特徴を有する:
(A)一分子中に少なくとも1個のケイ素原子に結合する脂肪族不飽和炭化水素基を有し、25℃における粘度が50~100,000mPa・sであるオルガノポリシロキサン:100質量部、
(B)一分子中に少なくとも2個のケイ素原子結合水素原子を含有するオルガノハイドロジェンシロキサンであり、更に非末端ケイ素原子に結合した水素原子を一分子中平均で0以上3個未満含有するオルガノハイドロジェンシロキサン:(B)成分中のケイ素原子結合水素原子基の個数/(A)成分中の脂肪族不飽和炭化水素基の個数が、0.2~3.0になる量、
(C)平均粒子径が0.01~200μmの粒子径を含む熱伝導性充填材:400~5,000質量質量部、
(D)白金系触媒を白金金属原子として0.01質量%以上含有する軟化点が40℃~200℃である熱可塑性樹脂からなる平均粒子径が0.01~10μmである微粒子触媒:0.01~20質量部、
(E) 硬化制御剤:0.001~5質量部
から少なくともなる1液硬化型熱伝導性シリコーングリース組成物。
 また、本発明のひとつである、1液硬化型熱伝導性シリコーングリースの製造方法は、上記組成物を(D)成分の軟化点以上の温度で加熱する、という特徴を有する。
 本発明のひとつである熱伝導性シリコーングリース組成物の設置方法は、1液硬化型熱伝導吐出可能なノズル内に充填し、該ノズルの一部又は全部を(D)成分の軟化点以上の温度で加熱した後に、前記1液硬化型熱伝導性シリコーングリース組成物を該ノズルから吐出させて塗布するという特徴を有する。
 また、本発明のひとつである放熱部材の製造方法は、上記工程を含むことを特徴とする。
 本発明のひとつである電子装置は、上記放熱部材を有することを特徴とする。
本発明の1液硬化型熱伝導性シリコーングリース組成物は、室温下での長期保存安定性や、外部環境の温度変化への適応能力を有す。これにより、例えば、80℃を超える高温環境下においても、クラックを生じることが無く、更なる高温環境化においても高放熱機能を発揮することができる。そして、垂直環境下でのずれ落ち性、液だれ性、高作業性を有している。また、本発明の塗布方法により、別の架橋反応(加熱硬化)工程を必要とせずに、簡便に確実に、放熱部材の物性をコントロールすることができる。本発明の電子装置は、過酷な温度環境下においても安定的に放熱機能を発揮できる。
 本発明の1液硬化型熱伝導性シリコーングリース組成物を詳細に説明する。
グリース組成物とは、架橋反応後(硬化後)において、グリースとしての物性を有するものをいい、本願においては複素弾性率が0.01MPa~20MPaで規定されるものをいう。尚、「硬化」とは架橋反応を意味し、硬化後の物質がグリースであることが示しているように、粘性が増したとしても、必ずしも物性上「硬く」なるわけではない。
(A)成分
(A)成分は、一分子中に少なくとも1個のケイ素原子に結合する脂肪族不飽和炭化水素基を有し、25℃における粘度が、50~100,000mPa・sであるオルガノポリシロキサンである。
前記オルガノポリシロキサンのケイ素原子に結合する脂肪族不飽和炭化水素基としては、炭素数2~8、特に炭素数2~6の脂肪族不飽和結合を有する1価炭化水素基であることが好ましく、より好ましくはアルケニル基であり、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、及びオクテニル基等のアルケニル基が挙げられる。特に好ましくはビニル基である。脂肪族不飽和炭化水素基は、分子鎖末端のケイ素原子に結合していても、分子鎖途中のケイ素原子に結合していても、両者に結合していてもよい。
前記オルガノポリシロキサンのケイ素原子に結合する脂肪族不飽和炭化水素基以外の有機基としては、炭素数1~18、特に炭素数1~10、とりわけ炭素数1~8の、非置換又は置換の脂肪族不飽和結合を含まない1価炭化水素基であることが好ましく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、又は、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基等が挙げられる。特にはメチル基であることが好ましい。
前記オルガノポリシロキサンは、25℃における粘度が50~100,000mPa・sであり、好ましくは60~20,000mPa・sの範囲内であり、特に好ましくは100~5,000mPa・sの範囲内である。これは、25℃における粘度が上記範囲の下限未満であると、得られるシリコーン組成物の粘度は低下するものの、物理的特性が低下してしまい、一方、上記範囲の上限を超えると、得られるシリコーン組成物の取扱作業性が著しく低下する傾向がある。
前記オルガノポリシロキサンは、上記性質を有するものであればその分子構造は特に限定されず、直鎖状、分岐鎖状、一部分岐状又は環状構造を有する直鎖状、樹脂状等が挙げられる。特には、主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状構造を有するものが好ましい。該直鎖状構造を有するオルガノポリシロキサンは、部分的に分岐状構造、又は環状構造を有していてもよい。該オルガノポリシロキサンは、1種を単独で又は2種以上を組み合わせて使用することができる。
(B)成分
(B)成分は、一分子中に少なくとも2個のケイ素原子結合水素原子を含有するオルガノハイドロジェンシロキサンからなる。本組成物の架橋剤として効果を有し、一分子中のケイ素原子結合水素原子が0.01~0.4質量%である。(B)成分中のケイ素原子に結合している有機基としては、アルキル基、シクロアルキル基、アリール基、アラルキル基、ハロゲン化アルキル基等の脂肪族不飽和結合を有さない一価炭化水素基が例示され、好ましくは、アルキル基、アリール基であり、特に好ましくは、メチル基、フェニル基である。(B)成分の分子構造は特に限定されず、直鎖状、一部分岐を有する直鎖状、分岐鎖状、環状、網目状、樹枝状が例示され、好ましくは、直鎖状である。また、(B)成分の25℃における粘度は特に限定されないが、好ましくは、1~10,000mPa・sの範囲内である。
(B)成分は1分子中に、非末端ケイ素原子に結合した水素原子を平均で0以上3個未満含有することが好ましい。非末端ケイ素原子結合水素原子を3個以上有する場合、架橋反応が進みすぎ、所望の複素弾性率やその他の効果を得られなくなるからである。また、本発明の一態様として、(B)成分中の非末端ケイ素原子結合水素原子を一分子中平均で0以上1個未満有する場合、(A)成分に、分岐鎖状、一部分岐状又は環状構造を有する直鎖状、または樹脂状の構造のオルガノポリシロキサンを有することが好ましい。また、本発明の一態様として、(B)成分中の非末端ケイ素原子結合水素原子を一分子中平均で1以上3個未満有する場合、(A)成分に、分岐鎖状、一部分岐状又は環状構造を有する直鎖状の構造のオルガノポリシロキサンを有することが好ましい。また、本発明の一態様として、(B)成分中の非末端ケイ素原子結合水素原子を一分子中平均で2以上3個未満有する場合、(B)成分を構成するオルガノハイドロジェンシロキサンが末端に有するケイ素原子結合水素原子は一分子中平均で2個未満であることが好ましい。
(B)成分の例としては、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルフェニルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルポリシロキサン、およびこれらのオルガノポリシロキサンの2種以上の混合物が例示される。
本発明において、(B)成分は、一分子中のケイ素原子結合水素原子が0.01~0.4質量%の範囲内であり、好ましくは0.02~0.35の範囲内であり、特に好ましくは0.05~0.3の範囲内である。これは、(B)成分の含有量が上記範囲の下限未満であると、得られるシリコーン組成物の取り扱い作業性が著しく低下する傾向があり、上記範囲の上限を超えると、得られる組成物が、塗布後、過酷な温度環境下で長時間、垂直に放置された場合にずれ落ち易くなる傾向がある。 
(B)成分の含有量は、(A)成分中のアルケニル基1個に対して、本成分中のケイ素原子結合水素原子が0.2~3.0個の範囲内となる量であり、好ましくは、0.3~2.5の範囲であり、特に好ましくは、0.4~2.2の範囲である。これは、(B)成分の含有量が、上記範囲の下限未満であると、得られる組成物を塗布後、半導体パッケージからの流れ出し(ポンピングアウト)が発生しやすく、一方、上記範囲の上限を超えると、得られる組成物が、塗布後、過酷な温度環境下で長時間、垂直に放置された場合にずれ落ち易くなる傾向がある。
(C)成分
(C)成分の熱伝導性充填剤は本組成物に熱伝導性を付与するための成分である。(C)成分としては、例えば、酸化アルミニウム、酸化亜鉛、酸化マグネシウム、酸化チタン、酸化ベリリウム等の金属酸化物;水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物;窒化アルミニウム、窒化ケイ素、窒化ホウ素等の窒化物;炭化ホウ素、炭化チタン、炭化ケイ素等の炭化物;グラファイト、黒鉛等の石墨;アルミニウム、銅、ニッケル、銀等の金属、およびこれらの混合物からなるのもが挙げられる。特に、得られるシリコーン組成物に電気絶縁性が必要な場合は、(C)成分としては、金属酸化物、金属水酸化物、窒化物、炭化物、またはこれらの混合物であることが好ましく、さらには、酸化アルミニウム、結晶性シリカ、酸化亜鉛、酸化マグネシウム、酸化チタン、酸化ベリリウム、水酸化アルミニウム、および水酸化マグネシウムからなる群より選ばれる少なくとも1種であることが好ましい。
(C)成分の形状は特に限定されず、例えば、球状、針状、燐片状、不定形状が挙げられる。特に、(C)成分として酸化アルミニウムまたは結晶性シリカを用いる場合には球状、不定形のものを用いることが好ましい。球状酸化アルミニウムは、主として高温溶射法あるいはアルミナ水和物の水熱処理により得られるα-アルミナである。ここでいう球状とは、真球状のみならず、丸み状であってもよい。(C)成分の平均粒径は限定されないが、0.01~200μmであることが好ましく、さらには、0.01~150μmであることが好ましく、特には、0.01~100μmであることが好ましい。
また、本発明の1液硬化型熱伝導性シリコーングリース組成物は、貯蔵安定性を高めるため等に、(C)成分は有機ケイ素化合物または公知の表面処理剤により表面処理されていてもよい。その有機ケイ素化合物としては、例えば、メチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン等のアルコキシシラン;メチルトリクロルシラン、ジメチルジクロルシラン、トリメチルモノクロルシラン等のクロロシラン;ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン等のシラザン;分子鎖両末端シラノール基封鎖ジメチルシロキサンオリゴマー、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体オリゴマー、分子鎖両末端シラノール基封鎖メチルビニルシロキサンオリゴマー、分子鎖両末端シラノール基封鎖メチルフェニルシロキサンオリゴマー等のシロキサンオリゴマーが挙げられる。その他の表面処理剤としては、有機金属化合物、有機金属錯体、フッ素系有機化合物、水酸基、カルボキシ基、アミノ基を有する有機化合物等、が例示される。表面処理方法としては、例えば、熱伝導性粒子および/または電気伝導性粒子とこれらの表面処理剤を直接混合して処理する方法(乾式処理方法)、これらの表面処理剤をトルエン、メタノール、ヘプタン等の有機溶剤と共に熱伝導性粒子および/または電気伝導性粒子と混合して処理する方法(湿式処理方法)、(A)成分とこれらの表面処理剤との混合物中に熱伝導性粒子および/または電気伝導性粒子を配合するか、または、(A)成分と熱伝導性粒子および/または電気伝導性粒子の混合物中にこれらの表面処理剤を配合して熱伝導性粒子および/または電気伝導性粒子の表面を処理する方法(in-situ処理方法)が挙げられる。また、これらの表面処理剤により熱伝導性粒子および/または電気伝導性粒子の表面処理を行う際に、その処理効率を向上させるために、例えば、有機チタン等の有機金属化合物、水等を添加することが好ましい。
(C)成分の含有量は、(A)成分100質量部に対して400~5,000質量部の範囲内であり、好ましくは、400~3,000質量部の範囲内であり、特に好ましくは、500~2,500質量部の範囲内である。これは、(C)成分の含有量が上記範囲の下限未満であると、得られるシリコーン組成物の熱伝導性が十分でなくなる傾向があり、一方、上記範囲の上限を超えると、得られるシリコーン組成物の取扱作業性が著しく低下する傾向があるからである。
(D)成分
(D)成分の微粒子触媒は本組成物の硬化を促進するための触媒であり、白金系触媒を白金金属原子として0.01質量%以上含有する軟化点が40~200℃である熱可塑性樹脂からなる。その平均粒子径が0.01~500μmであり、好ましくは0.1~50μmの範囲内であり、特に好ましくは0.1~10μmである。これは平均粒子径が0.01μm未満である微粒子触媒を製造することが困難であり、また、これが500μmをこえる微粒子触媒は、(A)成分中に均一に分散せず、得られる組成物の硬化性が不均一となるためである。(D)成分の構造としては、例えば、熱可塑性樹脂中に白金系触媒が溶解または分散している構造、熱可塑性樹脂の殻の中に白金系触媒が包含されたマイクロカプセル構造が挙げられる。この白金系触媒としては、例えば、白金微粉末、白金黒、白金坦持シリカ微粉末、白金坦持活性炭、塩化白金酸、四塩化白金、塩化白金酸のアルコール溶液、白金とオレフィンとの錯体、白金とジビニルテトラメチルジシロキサン等のアルケニルシロキサンとの錯体が挙げられ、特に白金のジビニルジシロキサン錯体であることが好ましい。(D)成分中に白金系触媒の含有量は、その白金金属原子が0.01質量%以上となる量である。これは、白金系触媒の含有量が、その白金金属原子として0.01質量%未満である熱可塑性樹脂からなる微粒子触媒は、十分な硬化促進を示さなくなるためである。また、この熱可塑性樹脂は軟化点が40~200℃の範囲内であり、好ましくは50~180℃の範囲内であり、より好ましくは60~160℃の範囲内である。これは、軟化点が40℃未満である熱可塑性樹脂からなる微粒子触媒を用いると、得られる組成物の室温下での保存安定性が著しく低下するためであり、また、これが200℃をこえる熱可塑性樹脂からなる微粒子触媒を用いると、得られる組成物の硬化性が著しく低下するためである。この熱可塑性樹脂としては、例えば、式:CSiO3/2で示されるシロキサン単位を主成分とし、他に、式:(CSiO2/2で示されるシロキサン単位、式:CHSiO3/2で示されるシロキサン単位、式:(CHSiO2/2で示されるシロキサン単位、式:CH(CH=CH)SiO2/2で示されるシロキサン単位、式:CH(C)SiO2/2で示されるシロキサン単位を含有する熱可塑性シリコーン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、メチルセルロース樹脂、ポリシラン樹脂、ナイロン樹脂、ポリエステル樹脂、ポリプロピレン樹脂、ポリアルキレンワックスが挙げられる。この熱可塑性樹脂の軟化点は一定温度で昇温できるホットプレート上でこの樹脂が軟化する状態を顕微鏡で観察することにより求められる。また、本発明の一態様として、この樹脂に、耐熱特性や軟化点を調整するためにシロキサン単位を含むことが好ましい。
(D)成分の調製方法としては、例えば、白金系触媒と熱可塑性樹脂を均一に混合した後、この混合物を粒状化する気相乾燥法、白金系触媒の存在下で熱可塑素樹脂を界面重合する方法またはin-situ重合する方法、白金系触媒の存在下でコアセルベーションする方法、液中乾燥法が挙げられ、狭い粒子径分布の微粒子触媒を比較的簡単に調製することができることから、気相乾燥法または液中乾燥法が好ましい。このようにして調製された微粒子触媒の表面には白金系触媒が付着している場合があるので、これらを洗浄剤によって除去することが保存安定性に優れた熱伝導性シリコーンゴム組成物を得ることができることから好ましい。この洗浄剤は熱可塑性樹脂を溶解しないが、白金系触媒を溶解するものが好ましく、例えば、メチルアルコール、エチルアルコール等のアルコール類;ヘキサメチルジシロキサン等のシロキサンオリゴマー類が挙げられる。
(D)成分の配合量は(A)成分100質量部に対して0.01~20質量部の範囲内であり、好ましくは0.1~10質量部の範囲であり、特に好ましくは1~10質量部の範囲である。これは、(A)成分100質量部に対して(D)成分が0.01質量部未満であると、得られる組成物の硬化性が著しく低下するためであり、また、これが20質量部をこえても、硬化性にさほど変化はなく、不経済となるからである。
(E)成分
(E)成分は取扱作業性を向上するための硬化制御剤(即ち、ヒドロシリル化反応制御剤)である。このような(E)成分としては、例えば、2-メチル-3-ブチン-2-オール、3,5-ジメチル-1-ヘキシン-3-オール、2-フェニル-3-ブチン-2-オール、1-エチニルシクロヘキサノール等のアセチレン系化合物;3-メチル-3-ペンテン-1-イン,3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロトトラシロキサン、ベンゾトリアゾール等のトリアゾール類,フォスフィン類,メルカプタン類,ヒドラジン類等が挙げられる。これらの硬化抑制剤の含有量は、本組成物の硬化条件に依る。例えば、(A)成分のオルガノポリシロキサン100質量部に対して0.001~5質量部の範囲内であり、好ましくは、0.01~3質量部の範囲であり、特に好ましくは、0.1~2質量部である。これは(E)成分が前記範囲の下限未満であると、加熱された塗布ノズル内で当該組成物が硬化して吐出が困難になる傾向があり、(E)成分が前記範囲の上限を超えると、硬化までに不必要な時間がかかる傾向があるからである。
(F)成分
本発明の1液硬化型熱伝導性シリコーングリース組成物は、後述する、(F-1)で表される加水分解性オルガノポリシロキサン化合物、及び(F-2)で表される加水分解性オルガノシラン化合物のいずれか又は両方を含むことができる。
(F-1)成分の加水分解性オルガノポリシロキサン化合物、及び(F-2)で表される加水分解性オルガノシラン化合物は、熱伝導性充填材の表面を処理する効果を発揮することがある。また、充填材の高充填化を補助したり、室温における保存性において、充填材の沈降分離を抑制する効果を発揮する場合がある。
[(F-1)成分](F-1)成分は、下記一般式(1)
Figure JPOXMLDOC01-appb-C000002
(式中、R1は独立に非置換または置換の一価炭化水素基であり、Rは独立に水素原子、アルキル基、アルコキシアルキル基、アルケニル基またはアシル基であり、aは5~250の整数であり、bは1~3の整数である。)で表され、25℃における粘度が10~10,000mPa・sのオルガノポリシロキサンである。
上記R1は独立に非置換または置換の一価の炭化水素基であり、その例としては、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基が挙げられる。直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基が挙げられる。分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、tert-ブチル基、2-エチルヘキシル基が挙げられる。環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基が挙げられる。アルケニル基としては、例えば、ビニル基、アリル基が挙げられる。アリール基としては、例えば、フェニル基、トリル基が挙げられる。アラルキル基としては、例えば、2-フェニルエチル基、2-メチル-2-フェニルエチル基が挙げられる。ハロゲン化アルキル基としては、例えば、3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基が挙げられる。R1は好ましくはメチル基、フェニル基である。
上記Rは独立に水素原子、アルキル基、アルコキシアルキル基、アルケニル基、またはアシル基である。アルキル基としては、例えば、R1について例示したのと同様の直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基が挙げられる。アルコキシアルキル基としては、例えば、メトキシエチル基、メトキシプロピル基が挙げられる。アシル基としては、例えば、アセチル基、オクタノイル基が挙げられる。Rはアルキル基であることが好ましく、特にはメチル基、エチル基であることが好ましい。
aは5~250の整数であるが、好ましくは5~200、より好ましくは5~150の整数である。また、bは1~3の整数である。
(F-1)成分の好適な具体例としては、例えば、式:
Figure JPOXMLDOC01-appb-C000003
で表されるジメチルポリシロキサン、式:
Figure JPOXMLDOC01-appb-C000004
で表されるジメチルポリシロキサン、式:
Figure JPOXMLDOC01-appb-C000005
で表されるジメチルポリシロキサン、式:
Figure JPOXMLDOC01-appb-C000006
で表されるジメチルポリシロキサン・メチルフェニルシロキサンコポリマー、式:
Figure JPOXMLDOC01-appb-C000007
で表されるジメチルポリシロキサン・ジフェニルシロキサンコポリマーが挙げられる。
[(F-2)成分](F-2)成分は、下記一般式(2):
3 c4 dSi(OR54-c-d (2)
(式中、R3は独立に炭素原子数6~15のアルキル基であり、R4は独立に非置換または置換の炭素原子数1~8の一価炭化水素基であり、R5は独立に炭素原子数1~6のアルキル基であり、cは1~3の整数であり、dは0~2の整数であり、ただし、c+dは1~3の整数である。)で表されるアルコキシシランである。 
の具体例としては、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、テトラデシル基、ペンタデシル基等が挙げられる。該炭素原子数が6より小さいと、熱伝導性充填剤((C)成分)との濡れ性が不充分となりやすく、15より大きいと、(F-2)成分が常温で固化しやすいのでその取扱いが不便になりやすい上、得られる組成物の耐熱性が低下しやすい。
上記Rは独立に非置換または置換の炭素原子数1~8の飽和または不飽和の一価炭化水素基であり、その具体例としては、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基;3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、p-クロロフェニル基等のハロゲン化炭化水素基が挙げられ、特にメチル基、エチル基が好ましい。
上記Rは独立に炭素原子数1~6のアルキル基であり、その具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基などが挙げられ、特にメチル基、エチル基が好ましい。
上記cは、通常、1~3の整数であるが、特に好ましくは1である。上記dは0~2の整数である。ただし、c+dは1~3の整数である。
(F-2)成分の好適な具体例としては、例えば、
17Si(OCH
1021Si(OCH
1225Si(OCH
1021Si(CH)(OCH
1021Si(C)(OCH
1021Si(CH)(OC
1021Si(CH=CH)(OCH
1021Si(CHCHCF)(OCH
等が挙げられる。
(F)成分の含有量は、(C)成分100質量部に対して0.05~20質量部の範囲内であり、好ましくは、0.05~10質量部の範囲内であり、さらに好ましくは、0.1~10質量部の範囲内であり、特に好ましくは、0.1~5質量部の範囲内である。これは、(F)成分の含有量が上記範囲の下限未満であると、(C)成分を多量に含有した場合に、得られるシリコーン組成物の流動性が低下したり、得られるシリコーン組成物の貯蔵中に(C)成分が沈降分離する傾向があり、一方、上記範囲の上限を超えると、得られるシリコーン組成物の物理的特性が低下する傾向があるからである。
(G)成分
本発明の1液硬化型熱伝導性シリコーングリース組成物は(G)成分として、シリカ微粉末を含有することができる。 (G)成分のシリカ微粉末は、本組成物を塗布後、垂直に放置してもずれ落ち難くするための成分である。(G)成分としては、ヒュームドシリカ、沈降性シリカ等のシリカ微粉末;これらのシリカ微粉末の表面を、アルコキシシラン、クロロシラン、シラザン等の有機ケイ素化合物により疎水化処理したシリカ微粉末が例示される。(G)成分の粒子径は特に限定されないが、そのBET比表面積が50m/g以上であることが好ましく、特には、100m/g以上であることが好ましい。
(G)成分の含有量は、(A)成分100質量部に対して0.1~10質量部の範囲内であり、好ましくは、0.5~10質量部の範囲内である。これは、(G)成分の含有量が上記範囲の下限未満であると、得られるシリコーン組成物を塗布後、垂直に放置するとずれ落ちやすくなる傾向があり、一方、上記範囲の上限を超えると、得られるシリコーン組成物の取扱作業性が著しく低下する傾向があるからである。
さらに、本組成物には、本発明の目的を損なわない限り、その他任意の成分として、顔料、染料、蛍光染料、耐熱添加剤、難燃性付与剤、可塑剤、接着付与剤を含有してもよい。さらに、粘度やチクソ性調整のために、末端に反応基を有しないポリマーや縮合反応活性のあるポリマーを含有してもよい。その例としては、両末端トリメチルシロキシ基封鎖ポリジメチルシロキサン、両末端ジメチルヒドロキシ基封鎖ポリジメチルシロキサン、両末端トリメトキシ基封鎖ポリジメチルシロキサンがある。
本発明の1液硬化型熱伝導性シリコーングリース組成物、およびその他の任意成分は、均一に混合することにより製造することができる。オルガノポリシロキサン組成物の各成分の混合方法は、従来公知の方法でよく特に限定されないが、通常、単純な攪拌により均一な混合物となる。また、任意成分として無機質充填剤等の固体成分を含む場合は、混合装置を用いた混合がより好ましい。こうした混合装置としては特に限定がなく、一軸または二軸の連続混合機、二本ロール、ロスミキサー、ホバートミキサー、デンタルミキサー、プラネタリミキサー、ニーダーミキサー、およびヘンシェルミキサー等が例示される。
本発明の1液硬化型熱伝導性シリコーングリース組成物は、トランジスター、IC、メモリー素子等の電子部品その他の発熱部材と冷却部材との間に介在させて発熱部材からの熱を冷却部材に伝熱して放熱するために好適に用いることができる。本発明の1液硬化型熱伝導性シリコーングリース組成物は、塗布ノズルの一部を予め加熱した状態で塗布されることが好ましい。これにより、本発明の1液硬化型熱伝導性シリコーングリース組成物は室温でも次第に架橋反応し、過酷な温度環境下でも信頼性に優れた放熱材として使用できる。本発明のシリコーン組成物を塗布する際の加熱条件は、(D)成分の軟化点以上であれば特に制限されるものでないが、通常80~200℃、好ましくは100~180℃で、1秒~30分、好ましくは10秒~5分である。上記範囲の下限未満であると熱可塑樹脂が十分に溶融せず硬化しないため、塗布後に電子デバイスを加熱して(D)成分を溶融させ、所定の粘度まで硬化させる必要がある。また上記範囲の上限を超えるとノズル内で増粘、架橋反応して作業性が悪くなる傾向がある。また、本発明の1液硬化型熱伝導性シリコーングリース組成物は、塗布ノズルの加熱することなく塗布しても、電子部品等の発熱部材からの発熱によって架橋反応することもできる。
本発明の1液硬化型熱伝導性シリコーングリース組成物は、架橋反応後の複素弾性率が、望ましくは、-40℃~150℃の温度範囲において0.01MPa~20MPaの範囲であり、好ましくは0.05MPa~10MPaであり、より好ましくは0.05~5MPaである。過酷な温度条件下で垂直に放置されて使用される場合、上記範囲の下限未満であると、ポンプアウトやクラック発生する傾向があり、上記範囲の上限を超えると、前記1液硬化型熱伝導性シリコーングリース組成物がずれ落ちる傾向がある。
本発明の1液硬化型熱伝導性シリコーングリース組成物は、高い熱伝導率を有し、室温では低粘度であるため取り扱い作業性が優れるものの、加熱塗布後は、過酷な環境下、信頼性に優れるので自動車のコントロールユニットの放熱材として好適に使用することができる。
本発明の1液硬化型熱伝導性シリコーングリース組成物は、25℃にて測定される粘度が、好ましくは3.0~1,000Pa・s、より好ましくは10~500Pa・s、特に好ましくは50Pa・s~300Pa・sを有する。上記粘度が3.0Pa・s未満では、形状保持が困難となる等、作業性が悪くなるおそれがある。また上記粘度が1,000Pa・sを超える場合にも吐出や塗布が困難となる等、作業性が悪くなるおそれがある。前記粘度は、上述した各成分の配合を調整することにより得ることができる。本発明において、粘度はTAインスツルメント社製レオメーター(AR2000EX)を用いて測定した25℃における値である。(ジオメトリーは直径20mmのパラレルプレート、ギャップは0.5mm、シェアレート10.0[1/s])
次に、本発明の電子装置を図1により説明する。本発明の電子装置は、電子部品1が回路基板2上に搭載され、該回路基板2上の回路と前記電子部品1の外部リード3とが電気的に接続されている。この回路基板2には、電子部品1から発生する熱を効率よく伝えるためにビア(VIA)ホールが形成されている。本発明の電子装置では電子部品1から発生する熱を1液硬化型熱伝導性シリコーングリース組成物4を介して放熱部材5で放熱する構造を有する。この1液硬化型熱伝導性シリコーングリース組成物の厚さは特に限定されないが、0.1~3mmの範囲であることが好ましい。特に、図1で示されるように、1液硬化型熱伝導性シリコーングリース組成物が回路基板3と放熱部材5とで垂直に狭持された状態で過酷な温度条件下で使用される場合でも、前記1液硬化型熱伝導性シリコーングリース組成物がずれ落ちることなく、ポンプアウト、ボイド、クラックも発生しないため、信頼性が優れるという特徴がある。
本発明の1液硬化型熱伝導性シリコーングリース組成物および1液硬化型熱伝導性シリコーングリースの設置方法およびそれを有する電子装置を実施例により詳細に説明する。
1液硬化型熱伝導性シリコーングリース組成物の粘度、熱伝導性、熱衝撃信頼性、複素弾性率、室温下保存性を次のようにして測定した。
[粘度]1液硬化型熱伝導性シリコーングリース組成物の25℃における初期粘度(Pa・s)を、TAインスツルメント社製レオメーター(AR2000EX)を用いて測定した。ジオメトリーは直径20mmのパラレルプレートを用い、ギャップ0.5mm、シェアレート10.0(1/s)の条件で測定した。また、シェアレート10.0の粘度に対するシェアレート1.0の粘度の比をチキソトロピー比として示した。この組成物を120℃で5分間加熱後、室温で1時間放置して、同様の装置にてシェアレート10.0における粘度を測定した。
[複素弾性率]粘度測定と同様にして、1液硬化型熱伝導性シリコーングリース組成物を120℃で5分加熱した後、さらに室温(25℃)で1週間放置した組成物の複素弾性率を、アントンパール社製レオメーター(MCR102)を用いて測定した。ジオメトリーは直径20mmのパラレルプレートを用い、ギャップ1.00mm、歪み1%、周波数1Hzとした。はじめに-40℃における複素弾性率を測定し、続いて25℃に温度を上げて測定した。最後に、温度を150℃に上げて測定した。
[熱伝導率]複素弾性率測定と同様にして、1液硬化型熱伝導性シリコーングリース組成物を120℃で5分加熱した後、室温での1週間放置した組成物を60mm×150mm×25mmの容器に充填し、脱泡した後、その表面を厚さ10μmのポリ塩化ビニリデンフィルムで被覆した後、該フィルムを介して熱伝導率(W/mK)を京都電子工業株式会社製の迅速熱伝導率測定装置(熱線法)により測定した。
[熱衝撃信頼性]図2および図3で示される試験方法により、1液硬化型熱伝導性シリコーングリース組成物の熱衝撃信頼性を評価した。すなわち、1液硬化型熱伝導性シリコーングリース組成物を加熱ノズル内にて120℃で5分加熱した後、銅板6上に該組成物7を所定量塗布した後、該銅板の両端部近くにに厚さ0.5mmまたは2.0mmのスペーサー8を設置した状態でガラス板9により前記1液硬化型熱伝導性シリコーングリース組成物を直径2cmになるように狭持した。その後、銅板6とガラス板9とをクリップ10により固定して試験体を作製した。この試験体を、銅板に対する1液硬化型熱伝導性シリコーングリース組成物の接触面が垂直となるように静置した状態で、-40℃、30分間、次いで、150℃、30分間を1サイクルとする熱衝撃試験を200サイクル実施し、1液硬化型熱伝導性シリコーングリース組成物がずれ落ちた距離を測定した。ずれ落ちた距離が1mm未満のものを『◎』、1~3mmのものを『〇』、5mmを超えるものを『×』とした。また、試験後の1液硬化型熱伝導性シリコーングリース組成物の外観を観察し、ポンプアウト、クラックの発生しなかったものを「無し」、発生したものを「発生」として評価した。
[室温保管における保存性]
 1液硬化型熱伝導性シリコーングリース組成物をガラスの容器入れて封入し25℃で保存して、初期に比べ粘度が倍に増加するまでの日数を測定した。
表1において、使用された各成分は以下の通りである。なお、粘度は25℃において回転粘度計により測定した値である。
まず、本発明の1液硬化型熱伝導性シリコーングリース組成物を調製する以下の各成分を用意した。
(A)成分
A-1:両末端がジメチルビニルシリル基で封鎖され、25℃における粘度が400mPa・sのジメチルポリシロキサン Si-Vi含有量 0.44質量%
A-2:式(CH)SiO2/2で表されるシロキサン単位 95モル%、式:CHSiO3/2で表されるシロキサン単位 2.4モル%、式:(CH)SiO1/2で表されるシロキサン単位 2.0モル%、および式:(CH)(CH=CH)SiO1/2で表されるシロキサン単位 0.6モル%からなり、25℃における粘度が350mPa・sのオルガノポリシロキサン Si-Vi含有量 0.22質量%
A-3:両末端がジメチルビニルシリル基で封鎖され、25℃における粘度が40,000mPa・sのジメチルポリシロキサン Si-Vi含有量 0.08質量%
(B)成分
B-1:下記平均式で表されるハイドロジェンポリシロキサン
Figure JPOXMLDOC01-appb-C000008
Si-H含有量 0.15質量% 25mPa・s

B-2:下記平均式で表されるハイドロジェンポリシロキサン
Figure JPOXMLDOC01-appb-C000009

Si-H含有量 0.10質量% 20mPa・s

B-3:下記平均式で表されるハイドロジェンポリシロキサン
Figure JPOXMLDOC01-appb-C000010
Si-H含有量 0.12質量% 15mPa・s

B-4:下記平均式で表されるハイドロジェンポリシロキサン
Figure JPOXMLDOC01-appb-C000011
Si-H含有量 0.73質量% 5mPa・s

(C)成分
C-1:平均粒子径0.12μmの酸化亜鉛微粉末
C-2:平均粒子径0.4μm破砕状アルミナ微粉末
C-3:平均粒子径1.2μmの破砕状アルミナ微粉末
C-4:平均粒子径4.0μmの球状アルミナ微粉末
C-5:平均粒子径20μmの丸み状アルミナ微粉末
C-6:平均粒子径35μmの球状アルミナ微粉末

(D)成分
D-1:白金錯体の1,3-ジビニルテトラメチルジシロキサンを白金金属原子として0.4質量%含有する軟化点が115℃であるメチルメタクリレート・ブチルメタクリレート共重合体(デュポン社製Elvacite2013)からなる平均粒子径が1.5μmである微粒子触媒

D-2:白金錯体の1,3-ジビニルテトラメチルジシロキサンを白金金属原子として0.4質量%含有する((C)SiO3/2)0.78((CHSiO1/2)0.22で示され軟化点が85℃である熱可塑性シリコーン樹脂からなる平均粒子径が1.2μmである微粒子触媒

(E)成分
E-1:トリス(1,1-ジメチルプロピンオキシ)メチルシラン
E-2:1-エチニル-1-シクロヘキサノール

(F)成分
F-1:下記式で表されるポリオルガノシロキサン
Figure JPOXMLDOC01-appb-C000012
F-2:
1021Si(OCH で表されるアルキルシラン

その他の成分
(G)成分
G:BET比表面積が200m/gであり、ヘキサメチルジシラザンにより疎水化処理されたヒュームドシリカ
(H)成分
H:白金錯体の1 , 3 - ジビニルテトラメチルジシロキサンを上記A-1と同じジメチルポリシロキサンに溶解した溶液(白金金属原子として0.4質量%)
(I)成分
I:メチルトリメトキシシラン

[実施例1~6]、[比較例4、5]
上記(A)~(E)成分及びその他の成分を、下記表1に示す配合量に従い、下記に示す方法で配合して1液硬化型熱伝導性シリコーングリース組成物を調整した。なお、表1中のSi-H/Si-Vi(個数比)は(A)成分のアルケニル基の個数の合計に対する(B)成分中のSiH基の個数の合計の比である。
ロスミキサーにより、(A)、(C)、(F)、(G)、(I)を混合した後、減圧下、150℃で1時間加熱攪拌した。その後、25℃まで冷却し、常圧に戻した。つづいて、(B)、(E)、を加えて攪拌させた後、最後に、(D)成分を加えて均一になるように混合し、1液硬化型熱伝導性シリコーングリース組成物を調製した。この1液硬化型熱伝導性シリコーングリース組成物及びその硬化物の特性を測定し、それらの結果を表1に示した。

[比較例1]
実施例1において(D)成分を入れない以外は同様に、成分全体を混合して1液硬化型熱伝導性シリコーングリース組成物を調製した。
[比較例2] 
実施例1において(D)成分の代わりに(H)成分を混合して1液硬化型熱伝導性シリコーングリース組成物を調製した。
[比較例3]
実施例1において(E)成分の入れない以外は同様に混合して1液硬化型熱伝導性シリコーングリース組成物を調製した。

比較例1~3においても、同様に、この1液硬化型熱伝導性シリコーングリース組成物及びその硬化物の特性を測定し、それらの結果を表1に示した。

Figure JPOXMLDOC01-appb-T000013
本発明の電子装置の断面図である。 垂直保持性を評価するための試験体の作製方法を示す概念図である。 垂直保持性を評価するための試験体の斜視図である。 加熱吐出するためのノズルの断面概念図である。
1 電子素子
2 回路基板
3 外部リード
4 熱硬化型伝導性シリコーン組成物
5 放熱部材
6 銅板
7 熱伝導性シリコーン組成物
8 スペーサー
9 ガラス板
10 クリップ
11 ディスペンス用ノズル
12 ノズル加熱ユニット
13 ノズル吐出口
本発明の熱伝導性シリコーングリース組成物は、室温での良好な長期保存が可能であり、過酷な温度環境下でも用いることができる。また、設置面に凹凸や傾斜があるような場所においても用いることができる。本発明の方法により、この放熱グリースを塗布することで、容易にかつ低コストかつ確実に硬化させて、放熱部材を的確に設置できる。また、この放熱グリースを用いた半導体、電子部品及び電子装置は、過酷な温度環境下にも信頼性高く耐えうることができ、自動車のコントロールユニットなどにおいても用いられることができる。

Claims (10)

  1. (A)一分子中に少なくとも1個のケイ素原子に結合する脂肪族不飽和炭化水素基を有し、25℃における粘度が50~100,000mPa・sであるオルガノポリシロキサン:100質量部、
    (B)一分子中に少なくとも2個のケイ素原子結合水素原子を含有するオルガノハイドロジェンシロキサン:0.1~50質量部、
    (C)平均粒子径が0.01~200μmの粒子径を含む熱伝導性充填材:400~5,000質量部、
    (D)白金系触媒を白金金属原子として0.01質量%以上含有する軟化点が40℃~200℃である熱可塑性樹脂からなる平均粒子径が0.01~10μmである微粒子触媒:0.01~20質量部、
    (E) 硬化制御剤:0.001~5質量部
    から少なくともなり、硬化後に複素弾性率が25℃において0.01MPa~20MPaである1液硬化型熱伝導性シリコーングリース組成物。
  2. (B)成分において、前記オルガノハイドロジェンシロキサンが非末端ケイ素原子結合水素原子を一分子中に平均で0以上3個未満含有する、請求項1に記載の1液硬化型熱伝導性シリコーングリース組成物。
  3. (A)一分子中に少なくとも1個のケイ素原子に結合する脂肪族不飽和炭化水素基を有し、25℃における粘度が50~100,000mPa・sであるオルガノポリシロキサン:100質量部、
    (B)一分子中に少なくとも2個のケイ素原子結合水素原子を含有するオルガノハイドロジェンシロキサンが、非末端ケイ素原子結合水素原子を一分子中に平均で0以上3個未満含有するオルガノハイドロジェンシロキサン:(B)成分中のケイ素原子結合水素原子基の個数/(A)成分中の脂肪族不飽和炭化水素基の個数が、0.2~3.0になる量、
    (C)平均粒子径が0.01~200μmの粒子径を含む熱伝導性充填材:400~5,000質量部、
    (D)白金系触媒を白金金属原子として0.01質量%以上含有する軟化点が40℃~200℃である熱可塑性樹脂からなる平均粒子径が0.01~10μmである微粒子触媒:0.01~20質量部、
    (E) 硬化制御剤:0.001~5質量部
    から少なくともなる1液硬化型熱伝導性シリコーングリース組成物。
  4. (F)成分として、
    下記一般式(F-1):
    Figure JPOXMLDOC01-appb-C000001

    (式中、R1は独立に非置換または置換の一価炭化水素基であり、Rは独立に水素原子、アルキル基、アルコキシアルキル基、アルケニル基またはアシル基であり、aは5~250の整数であり、bは1~3の整数である。)で表され、25℃における粘度が10~10,000mP・s未満であるオルガノポリシロキサン: (B)成分100質量部に対して0.05~20質量部

    及び/又は、下記一般式(F-2)

    (F-2):下記一般式(2):
    3 c4 dSi(OR54-c-d (2)
    (式中、R3は独立に炭素原子数6~15のアルキル基であり、R4は独立に非置換または置換の炭素原子数1~8の一価炭化水素基であり、R5は独立に炭素原子数1~6のアルキル基であり、cは1~3の整数であり、dは0~2の整数であり、ただし、c+dは1~3の整数である。)で表されるアルコキシシラン:
    (B)成分100質量部に対して0.05~20質量部

    からなる少なくともなるポリオルガノシロキサン、または、シラン化合物
    を有する請求項1乃至3のいずれか一項に記載の1液硬化型熱伝導性グリース組成物。
  5. (G)シリカ微粉末: 0.1~10質量部を有する請求項1乃至4のいずれか1項に記載の1液硬化型熱伝導性シリコーングリース組成物。
  6. 請求項1乃至5のいずれか1項に記載の1液硬化型熱伝導性シリコーングリース組成物を(D)成分の軟化点以上の温度で加熱して得る、-40℃~150℃の温度範囲における複素弾性率が0.01MPa~20MPaという特徴を有する1液硬化型熱伝導性シリコーングリースの製造方法。
  7. 請求項1乃至5のいずれか1項に記載の1液硬化型熱伝導性シリコーングリース組成物を吐出可能なノズル内に充填し、該ノズルの一部又は全部を(D)成分の軟化点以上の温度で加熱した後に、前記1液硬化型熱伝導性シリコーングリース組成物を該ノズルから吐出させて塗布することを特徴とする、1液硬化型熱伝導性シリコーングリース組成物の設置方法。
  8. 請求項6の工程を含むことを特徴とする放熱部材の製造方法。
  9. 電子部品または該電子部品を搭載した回路基板に請求項1乃至5のいずれか1項に記載の1液硬化型熱伝導性シリコーングリース組成物の硬化物を介して放熱部材を設けてなる電子装置。
  10. 0.1~3mmの厚さを有する前記1液硬化型熱伝導性シリコーングリース組成物の硬化物が前記回路基板と前記放熱部材とで垂直に狭持された状態で使用されることを特徴とする、請求項9に記載の電子装置。
PCT/JP2017/036214 2016-10-31 2017-10-05 1液硬化型熱伝導性シリコーングリース組成物及び電子・電装部品 WO2018079215A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17863451.5A EP3533837A4 (en) 2016-10-31 2017-10-05 SINGLE-COMPONENT CURABLE HEAT-CONDUCTING SILICON LUBRICATION COMPOSITION AND ELECTRONIC / ELECTRICAL COMPONENT
CN201780066916.9A CN109890900B (zh) 2016-10-31 2017-10-05 单组分可固化型导热硅脂组合物和电子/电气组件
KR1020197013200A KR102203924B1 (ko) 2016-10-31 2017-10-05 1액 경화형 열 전도성 실리콘 그리스 조성물 및 전자/전장 부품
US16/345,704 US11319412B2 (en) 2016-10-31 2017-10-05 Thermally conductive silicone compound
JP2018503274A JP6531238B2 (ja) 2016-10-31 2017-10-05 1液硬化型熱伝導性シリコーングリース組成物及び電子・電装部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-213176 2016-10-31
JP2016213176 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018079215A1 true WO2018079215A1 (ja) 2018-05-03

Family

ID=62024882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036214 WO2018079215A1 (ja) 2016-10-31 2017-10-05 1液硬化型熱伝導性シリコーングリース組成物及び電子・電装部品

Country Status (7)

Country Link
US (1) US11319412B2 (ja)
EP (1) EP3533837A4 (ja)
JP (1) JP6531238B2 (ja)
KR (1) KR102203924B1 (ja)
CN (1) CN109890900B (ja)
TW (1) TWI755437B (ja)
WO (1) WO2018079215A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190136996A (ko) * 2018-05-31 2019-12-10 신에쓰 가가꾸 고교 가부시끼가이샤 저열저항 실리콘 조성물
WO2020031669A1 (ja) * 2018-08-10 2020-02-13 信越化学工業株式会社 シリコーン組成物及びその製造方法
JP2020063380A (ja) * 2018-10-18 2020-04-23 信越化学工業株式会社 熱伝導性シリコーン組成物
WO2020080256A1 (ja) * 2018-10-15 2020-04-23 デンカ株式会社 二液硬化型組成物セット、熱伝導性硬化物及び電子機器
CN112955506A (zh) * 2018-11-09 2021-06-11 积水保力马科技株式会社 导热性组合物、导热性构件、导热性构件的制造方法、散热结构、发热复合构件、散热复合构件
WO2022130665A1 (ja) 2020-12-15 2022-06-23 富士高分子工業株式会社 熱伝導性液状組成物
WO2022210422A1 (ja) * 2021-03-31 2022-10-06 積水ポリマテック株式会社 熱伝導性組成物、熱伝導性部材、バッテリモジュール
DE102022110708A1 (de) 2021-05-19 2022-11-24 Dupont Toray Specialty Materials Kabushiki Kaisha Aushärtbare silikonzusammensetzung, einkapselungsmittel und optische halbleitervorrichtung
WO2024077435A1 (en) * 2022-10-10 2024-04-18 Dow Silicones Corporation Thermally conductive silicone composition

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7160508B2 (ja) * 2017-07-24 2022-10-25 ダウ・東レ株式会社 熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体
JP7136065B2 (ja) * 2019-11-14 2022-09-13 信越化学工業株式会社 熱伝導性シリコーン組成物及び熱伝導性シリコーンシート
CN113574115B (zh) * 2019-12-18 2022-10-28 富士高分子工业株式会社 导热性组合物及其制造方法
JP7165647B2 (ja) * 2019-12-26 2022-11-04 信越化学工業株式会社 熱伝導性シリコーン樹脂組成物
CN111569103B (zh) * 2020-05-18 2022-02-11 华引芯(武汉)科技有限公司 一种便携式双波段uv led杀菌消毒灯
KR102459630B1 (ko) * 2020-12-28 2022-10-27 윤재만 오일블리딩 방지 실리콘 방열패드 조성물 및 그 조성물을 이용한 방열패드 제조방법
CN114774086A (zh) * 2022-04-14 2022-07-22 华南理工大学 一种导热增强的相变纳米胶囊复合材料及制备方法与应用
CN116939980B (zh) * 2023-09-19 2024-01-23 江西鸿宇电路科技有限公司 一种高散热柔性led线路板及其制备方法

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913874B1 (ja) 1969-08-29 1974-04-03
JPS4917380B1 (ja) 1970-07-06 1974-04-30
JPS4933094B1 (ja) 1968-12-31 1974-09-04
JPS524634B1 (ja) 1970-05-06 1977-02-05
JPS5233325B2 (ja) 1973-11-01 1977-08-27
JPS58366B2 (ja) 1973-10-06 1983-01-06 ソニー株式会社 表面材貼付方法
JPS5832983B2 (ja) 1976-09-24 1983-07-16 ツア−ンファブリ−ク・ヴィ−ナント・ゼ−ネウント・コンパニ−・ゲ−エムベ−ハ− 歯の色鑑定のための色ひな型
JPH08319425A (ja) * 1995-05-25 1996-12-03 Toray Dow Corning Silicone Co Ltd 熱伝導性シリコーンゴム組成物
JP2938428B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性グリース組成物
JP2938429B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2003292781A (ja) * 2002-04-03 2003-10-15 Dow Corning Toray Silicone Co Ltd 導電性シリコーンゴム組成物
JP2004168920A (ja) * 2002-11-21 2004-06-17 Dow Corning Toray Silicone Co Ltd 熱伝導性シリコーンエラストマー組成物
JP2004176165A (ja) * 2002-11-29 2004-06-24 Dow Corning Toray Silicone Co Ltd 銀粉末、その製造方法、および硬化性シリコーン組成物
WO2007032481A1 (ja) * 2005-09-15 2007-03-22 Nihon Handa Co., Ltd. 熱硬化性シリコーンゴム組成物、電子部品および電子機器
JP3952184B2 (ja) 2002-10-10 2007-08-01 信越化学工業株式会社 熱伝導性シート
JP2008518082A (ja) * 2004-10-28 2008-05-29 ダウ・コーニング・コーポレイション 硬化可能な伝導組成物
JP4572243B2 (ja) 2008-03-27 2010-11-04 信越化学工業株式会社 熱伝導性積層体およびその製造方法
JP4656340B2 (ja) 2008-03-03 2011-03-23 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP5283346B2 (ja) 2007-04-10 2013-09-04 信越化学工業株式会社 熱伝導性硬化物及びその製造方法
JP5365572B2 (ja) 2010-04-13 2013-12-11 信越化学工業株式会社 室温湿気増粘型熱伝導性シリコーングリース組成物
JP2014003152A (ja) * 2012-06-18 2014-01-09 Dow Corning Toray Co Ltd サーマルインターフェース材の形成方法および放熱構造体
JP2016098337A (ja) 2014-11-25 2016-05-30 信越化学工業株式会社 一液付加硬化型シリコーン組成物、その保存方法及び硬化方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524634A (en) 1976-06-14 1977-01-13 Kaoru Ogura Window frame fitting method
JPS58366A (ja) 1981-06-23 1983-01-05 Nippon Steel Corp 連続鋳造鋼のモ−ルド焼付き検出方法
JPH0214244A (ja) * 1988-06-30 1990-01-18 Toray Dow Corning Silicone Co Ltd 加熱硬化性オルガノポリシロキサン組成物
JP2608484B2 (ja) * 1990-05-24 1997-05-07 東レ・ダウコーニング・シリコーン株式会社 ヒドロシリル化反応用触媒含有熱可塑性樹脂微粒子の製造方法
JP4015722B2 (ja) * 1997-06-20 2007-11-28 東レ・ダウコーニング株式会社 熱伝導性ポリマー組成物
EP0939115A1 (en) 1998-02-27 1999-09-01 Shin-Etsu Chemical Co., Ltd. Thermally conductive grease composition
JP3580366B2 (ja) 2001-05-01 2004-10-20 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
CN1220720C (zh) * 2001-07-26 2005-09-28 陶氏康宁东丽硅氧烷株式会社 室温可固化的有机聚硅氧烷组合物
JP4933094B2 (ja) 2005-12-27 2012-05-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP4917380B2 (ja) 2006-07-31 2012-04-18 信越化学工業株式会社 放熱用シリコーングリース組成物及びその製造方法
JP5233325B2 (ja) 2008-02-29 2013-07-10 信越化学工業株式会社 熱伝導性硬化物及びその製造方法
JP4913874B2 (ja) 2010-01-18 2012-04-11 信越化学工業株式会社 硬化性オルガノポリシロキサン組成物および半導体装置
JP5553006B2 (ja) 2010-11-12 2014-07-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP5783128B2 (ja) * 2012-04-24 2015-09-24 信越化学工業株式会社 加熱硬化型熱伝導性シリコーングリース組成物
JP5819787B2 (ja) 2012-07-19 2015-11-24 信越化学工業株式会社 硬化性シリコーン樹脂組成物
JP5832983B2 (ja) 2012-10-18 2015-12-16 信越化学工業株式会社 シリコーン組成物
EP3004275B1 (en) 2013-02-11 2020-10-21 Dow Silicones Corporation In situ method for forming thermally conductive thermal radical cure silicone composition

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933094B1 (ja) 1968-12-31 1974-09-04
JPS4913874B1 (ja) 1969-08-29 1974-04-03
JPS524634B1 (ja) 1970-05-06 1977-02-05
JPS4917380B1 (ja) 1970-07-06 1974-04-30
JPS58366B2 (ja) 1973-10-06 1983-01-06 ソニー株式会社 表面材貼付方法
JPS5233325B2 (ja) 1973-11-01 1977-08-27
JPS5832983B2 (ja) 1976-09-24 1983-07-16 ツア−ンファブリ−ク・ヴィ−ナント・ゼ−ネウント・コンパニ−・ゲ−エムベ−ハ− 歯の色鑑定のための色ひな型
JPH08319425A (ja) * 1995-05-25 1996-12-03 Toray Dow Corning Silicone Co Ltd 熱伝導性シリコーンゴム組成物
JP2938428B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性グリース組成物
JP2938429B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2003292781A (ja) * 2002-04-03 2003-10-15 Dow Corning Toray Silicone Co Ltd 導電性シリコーンゴム組成物
JP3952184B2 (ja) 2002-10-10 2007-08-01 信越化学工業株式会社 熱伝導性シート
JP2004168920A (ja) * 2002-11-21 2004-06-17 Dow Corning Toray Silicone Co Ltd 熱伝導性シリコーンエラストマー組成物
JP2004176165A (ja) * 2002-11-29 2004-06-24 Dow Corning Toray Silicone Co Ltd 銀粉末、その製造方法、および硬化性シリコーン組成物
JP2008518082A (ja) * 2004-10-28 2008-05-29 ダウ・コーニング・コーポレイション 硬化可能な伝導組成物
WO2007032481A1 (ja) * 2005-09-15 2007-03-22 Nihon Handa Co., Ltd. 熱硬化性シリコーンゴム組成物、電子部品および電子機器
JP5283346B2 (ja) 2007-04-10 2013-09-04 信越化学工業株式会社 熱伝導性硬化物及びその製造方法
JP4656340B2 (ja) 2008-03-03 2011-03-23 信越化学工業株式会社 熱伝導性シリコーングリース組成物
JP4572243B2 (ja) 2008-03-27 2010-11-04 信越化学工業株式会社 熱伝導性積層体およびその製造方法
JP5365572B2 (ja) 2010-04-13 2013-12-11 信越化学工業株式会社 室温湿気増粘型熱伝導性シリコーングリース組成物
JP2014003152A (ja) * 2012-06-18 2014-01-09 Dow Corning Toray Co Ltd サーマルインターフェース材の形成方法および放熱構造体
JP2016098337A (ja) 2014-11-25 2016-05-30 信越化学工業株式会社 一液付加硬化型シリコーン組成物、その保存方法及び硬化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3533837A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210305A (ja) * 2018-05-31 2019-12-12 信越化学工業株式会社 低熱抵抗シリコーン組成物
KR102478791B1 (ko) 2018-05-31 2022-12-20 신에쓰 가가꾸 고교 가부시끼가이샤 저열저항 실리콘 조성물
KR20190136996A (ko) * 2018-05-31 2019-12-10 신에쓰 가가꾸 고교 가부시끼가이샤 저열저항 실리콘 조성물
JPWO2020031669A1 (ja) * 2018-08-10 2021-08-02 信越化学工業株式会社 シリコーン組成物及びその製造方法
WO2020031669A1 (ja) * 2018-08-10 2020-02-13 信越化学工業株式会社 シリコーン組成物及びその製造方法
JP7010381B2 (ja) 2018-08-10 2022-01-26 信越化学工業株式会社 シリコーン組成物及びその製造方法
WO2020080256A1 (ja) * 2018-10-15 2020-04-23 デンカ株式会社 二液硬化型組成物セット、熱伝導性硬化物及び電子機器
JP6727471B1 (ja) * 2018-10-15 2020-07-22 デンカ株式会社 二液硬化型組成物セット、熱伝導性硬化物及び電子機器
JP7070320B2 (ja) 2018-10-18 2022-05-18 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2020063380A (ja) * 2018-10-18 2020-04-23 信越化学工業株式会社 熱伝導性シリコーン組成物
CN112955506A (zh) * 2018-11-09 2021-06-11 积水保力马科技株式会社 导热性组合物、导热性构件、导热性构件的制造方法、散热结构、发热复合构件、散热复合构件
EP3878911A4 (en) * 2018-11-09 2022-08-10 Sekisui Polymatech Co., Ltd. THERMAL TRANSDUCING COMPOSITION, THERMAL TRANSDUCING ELEMENT, METHOD OF MAKING A THERMAL TRANSDUCING ELEMENT, HEAT TRANSFER STRUCTURE, HEAT-GENERATING COMPOSITE ELEMENT AND HEAT-DISSIPTING COMPOSITE ELEMENT
CN112955506B (zh) * 2018-11-09 2024-01-12 积水保力马科技株式会社 导热性组合物、导热性构件、导热性构件的制造方法、散热结构、发热复合构件、散热复合构件
WO2022130665A1 (ja) 2020-12-15 2022-06-23 富士高分子工業株式会社 熱伝導性液状組成物
WO2022210422A1 (ja) * 2021-03-31 2022-10-06 積水ポリマテック株式会社 熱伝導性組成物、熱伝導性部材、バッテリモジュール
DE102022110708A1 (de) 2021-05-19 2022-11-24 Dupont Toray Specialty Materials Kabushiki Kaisha Aushärtbare silikonzusammensetzung, einkapselungsmittel und optische halbleitervorrichtung
KR20220156756A (ko) 2021-05-19 2022-11-28 듀폰 도레이 스페셜티 머티리얼즈 가부시키가이샤 경화성 실리콘 조성물, 봉지제, 및 광 반도체 장치
US11939472B2 (en) 2021-05-19 2024-03-26 Dupont Toray Specialty Materials Kabushiki Kaisha Curable silicone composition, encapsulant and optical semiconductor device
WO2024077435A1 (en) * 2022-10-10 2024-04-18 Dow Silicones Corporation Thermally conductive silicone composition

Also Published As

Publication number Publication date
US20190345291A1 (en) 2019-11-14
EP3533837A4 (en) 2020-07-08
TW201829623A (zh) 2018-08-16
CN109890900A (zh) 2019-06-14
JPWO2018079215A1 (ja) 2018-11-01
US11319412B2 (en) 2022-05-03
JP6531238B2 (ja) 2019-06-19
EP3533837A1 (en) 2019-09-04
KR20190075081A (ko) 2019-06-28
TWI755437B (zh) 2022-02-21
CN109890900B (zh) 2022-01-14
KR102203924B1 (ko) 2021-01-18

Similar Documents

Publication Publication Date Title
WO2018079215A1 (ja) 1液硬化型熱伝導性シリコーングリース組成物及び電子・電装部品
JP7160508B2 (ja) 熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体
CN111094458B (zh) 导热性硅酮凝胶组合物、导热性部件及散热构造体
JP5843368B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
JP5233325B2 (ja) 熱伝導性硬化物及びその製造方法
JP5278943B2 (ja) 熱硬化性シリコーンゴム組成物、電子部品および電子機器
TW201908413A (zh) 多成分固化型導熱性聚矽氧凝膠組合物、導熱性構件及散熱結構體
WO2020137086A1 (ja) 熱伝導組成物及びこれを用いた熱伝導性シート
KR20080006482A (ko) 열전도성 실리콘 그리스 조성물 및 그의 경화물
JP6339761B2 (ja) 熱伝導性シリコーン組成物及び熱伝導性部材
JP2009286855A (ja) 熱伝導性シリコーン組成物および電子装置
JP2010150399A (ja) 熱伝導性シリコーングリース組成物
JP7422742B2 (ja) 多成分型熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体
JP2021534262A (ja) サーマルギャップフィラー及びバッテリーマネジメントシステムへのその用途
JP2009235279A (ja) 熱伝導性成形体およびその製造方法
JP6656509B1 (ja) 導電性充填剤の製造方法、導電性付加反応硬化型シリコーン組成物および半導体装置
JP2022180701A (ja) 熱伝導性シリコーン組成物及びその硬化物
KR20210080351A (ko) 열전도성 실리콘 조성물 및 그의 경화물
JP2021055007A (ja) 1液硬化型熱伝導性シリコーン組成物及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018503274

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197013200

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017863451

Country of ref document: EP

Effective date: 20190531